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ARTICLE INFO ABSTRACT

Keywords: Hybrid power systems are increasingly adopted onboard. Lithium-ion batteries now serve as a viable energy
Energy management storage solution that enhances fuel efficiency and reduces the operating hours of main power units, thereby
Hybrid power system

reducing operational expenses. However, integrating batteries onboard requires decision-making that accounts
for diverse scenarios, including battery chemistry, variations in vessel operational profiles, and fluctuating
fuel prices. To address these challenges, this study investigates whether battery sizing and scheduling of the

Lithium ion battery
Mixed integer linear programming

Optimization
P([)’wer plant scheduling power and energy management system require a scenario-based stochastic decision framework. Specifically,
Stochastic it examines how energy storage requirements are influenced by varying load profiles, whether the optimal

battery size and power management strategy are affected by fuel price fluctuations, and how robust the
overall strategy remains under operational uncertainties. A deterministic equivalent of a two-stage stochastic
decision framework is introduced to incorporate these uncertainties, offering insights into the required battery
technology, capacity, and correlated behavior of onboard energy management. Multiple scenarios are applied
to a trailing suction hopper dredger, analyzing three load profiles with distinct variations in power demand.
With reserve power constraints enforced, the optimal battery capacity remains fixed. However, when these
constraints are relaxed, the optimal battery size becomes more sensitive to fuel price changes. In addition,
the results showcase reduction in diesel engine operating hours—thereby lowering both fuel consumption and
maintenance costs, demonstrating that these operational benefits depend not only on the battery’s size but
also on its available throughput, which allows for deeper cycling.

1. Introduction . e . .
years, fuel costs in the maritime industry have varied significantly, as

shown in Fig. 1. The figure illustrates the distribution of fuel prices at
the Port of Rotterdam [9]. These fuel price fluctuations represent just
one of the many uncertainties affecting maritime operations, which also
include diverse operational needs and environmental influences.

Batteries on board vessels serve various functions and offer multiple
benefits, with most achieving payback periods of less than five years
for many vessel types, making them an attractive environmental and
economic investment [1]. Depending on the type of vessel and its

operational profile, batteries can be utilized in different ways. For
example, they can reduce diesel engine (DE) usage, thereby lowering
operating hours and greenhouse gas emissions [2]. They can also
act as a spinning reserve for dynamic positioning vessels or enable
optimal loading of primary power sources on board [3], among other
applications. Traditionally, the maritime industry has relied on mode-
based or rule-based control systems [4]. However, recent studies on
optimal vessel control aim to minimize operational expenses based
on fuel consumption, emissions and battery degradation [5-8]. This
suggests that optimal control or system scheduling can have a varied
impact depending on fluctuations in operational costs. Over recent
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The maritime industry comprises a diverse range of vessels, each
with unique operational needs [10]. Within each vessel segment, ships
may perform various tasks, operate under different profiles [11] in-
fluenced by factors such as weather conditions [12,13], or function in
multiple modes of operation [14]. This variability introduces significant
uncertainty in decision-making, particularly when determining the
appropriate energy and power sources on board or identifying the most
effective operational strategy. Uncertainty thus arises from varying fuel
prices, technology costs and investment decisions, as well as diverse
operational requirements [15,16].
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Fig. 1. Rotterdam bunker fuel price from 07/03/2022-05/03/2025 [9]. Where
P, refers to the xth percentile of the fuel price distribution.

This study focuses on hybridizing an existing power plant of a
trailing suction hopper dredger (TSHD) under the uncertainty of opera-
tional profiles and expenses. Three distinct load profiles are used, each
under two different fuel price scenarios, resulting in a consideration
of six scenarios. Furthermore, six cases are formulated, comprising a
wide range of probable operational situations. Lithium-ion batteries
are selected for hybridization due to their superior overall perfor-
mance, including higher energy and power densities, longer cycle
life, and cost effectiveness compared with alternative energy stor-
age solutions for maritime applications [17,18]. Among lithium-ion
batteries, lithium nickel manganese cobalt oxide (NMC) and lithium—
titanium—oxide (LTO) batteries are preferred for high power applica-
tions [10]. Consequently, these battery types are considered in this
study.

Based on the literature review in Section 2, two critical research
gaps are identified in the context of hybrid maritime power plants
operating under uncertainty.

GAP 1 The joint influence of fuel price volatility and operational
variability on the design requirements of maritime energy
storage systems has not been systematically investigated.
Existing studies overlook how such uncertainties affect the
optimal scheduling of power and energy systems, particu-
larly when battery degradation through lifetime throughput
constraint is considered.

GAP 2

To address these gaps, this study explores whether the sizing and
scheduling of hybrid maritime power and energy systems necessitate
a scenario-based stochastic decision-making framework. Specifically, it
investigates how energy storage requirements vary under diverse load
conditions, quantifies the sensitivity of optimal battery sizing to fuel
price fluctuations, and analyzes the impact of such economic uncer-
tainties on the power and energy management strategy. Furthermore,
the robustness of the resulting strategy is evaluated against operational
variability, with particular attention to mission-dependent load profiles
and battery throughput characteristics.

This paper presents a decision-oriented framework for analyzing the
influence of operational variability — such as fuel costs, load profiles,
and battery technologies — on the sizing of energy storage systems and
the scheduling of hybrid maritime power systems. Rather than focusing
on selecting a single optimal battery size or chemistry, the study
emphasizes how these factors interact to shape system requirements
and control strategies.

The contributions of this work are fourfold. First, it introduces a de-
terministic equivalent of a two-stage stochastic optimization framework
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tailored for joint battery sizing and energy-power plant scheduling
in the presence of fuel price and operational uncertainties specific to
maritime applications. Second, it proposes a flexible and extendable
optimization approach capable of handling multiple maritime load
profiles and a range of fuel price scenarios, enabling adaptive schedul-
ing strategies under uncertainty. Third, through the evaluation of six
distinct cases across six scenarios, the study reveals that battery sizing
requirements are shaped not only by operational profiles and fuel price
levels, but also by battery chemistry, which plays a critical role in defin-
ing optimal scheduling behavior. Finally, it demonstrates how effective
battery throughput management strategies can be implemented across
diverse maritime missions and economic conditions, offering actionable
insights for robust and adaptable power plant scheduling.

The rest of the paper is structured as follows. Section 2 discusses
the existing literature on hybrid power plants, energy storage, and
stochastic decision-making frameworks, providing the basis for this
research. Section 3 presents the onboard power system and opera-
tional characteristics, detailing the benchmark and proposed system
topologies. Section 4 describes the scenario generation process and
outlines the methodology used for optimization, including formulating
different operational and fuel price scenarios. Section 5 introduces the
mathematical model, covering the objective function, power balance
equations, DE and battery constraints. Section 6 presents the results
and discussion, analyzing the performance of the proposed approach
under various scenarios and evaluating the impact of operational un-
certainties. Section 7 concludes the study by summarizing key findings,
discussing implications, and suggesting future research directions.

2. Related work

The problem of optimally sizing energy storage systems for maritime
applications is well established, whether the focus is on fully electric
vessels or hybrid power plants [19-27]. While these studies offer
valuable insights, the majority do not fully account for the uncertainties
associated with operations and operational expenditure in the maritime
applications, and only a small number of studies have tried to address
these complexities.

When uncertainty has been studied, it has been approached in
various ways within the literature. For instance, in [11], the authors
synthesize four distinct operational profiles from measured load data
to examine the optimal sizing of system components alongside their
energy management strategies. Their study explores how different oper-
ational profiles and emission reduction targets influence hybridization
design for a particular type of vessel. A two-layer optimization ap-
proach is adopted, with the outer layer minimizing capital expenditure
(CAPEX) and the inner layer focusing on reducing operational expenses
(OPEX) and formulating the control strategy. Although this method
effectively captures the operational strategy for a given load profile,
it may not fully account for the diverse range of missions a vessel
could undertake in practice, nor for uncertainties such as fluctuating
fuel costs.

A two-stage probabilistic risk-averse approach for energy storage
system sizing in all-electric ships, which integrates both investment and
operational considerations, is presented in [13]. The authors employ
Kernel Density Estimation to model environmental uncertainties and
jointly optimize multi-objective energy storage system sizing and en-
ergy management scheduling while incorporating hydrodynamic con-
straints. However, the study does not account for battery lifetime
during operation. While stochasticity in the load profile is consid-
ered, battery degradation is omitted, meaning the model does not
prioritize energy and power management across different scenarios
based on degradation factors. Furthermore, the authors use a single
base load profile, introducing stochasticity only within that predefined
framework, rather than considering multiple diverse load profiles.

The framework developed in [14] considers multiple operational
profiles, modes of operation, and battery energy throughput. It provides
insights into operational differences due to variations in load profiles,
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the combined effect of load profile variability and investment cost, and
the impact of load fluctuations on battery throughput. The study offers
a comprehensive understanding of energy storage requirements under
these conditions. However, the authors do not examine the combined
variability of operational profiles with other key factors, such as fuel
prices or maintenance-related OPEX. These elements are crucial, as
fuel price fluctuations and maintenance costs influence operational
strategies.

The variability in operational profiles is addressed in [28], where
the authors develop a representative load profile based on a year-long
operational dataset, using the most frequently observed load ramps
and power levels. Additionally, a predefined low-pass filter strategy
is applied to determine the power split between onboard sources,
enabling the calculation of degradation incurred by the fuel cell and
battery. Using this approach, 14 different scenarios are analyzed to
assess lifetime design and determine the net present value of the
retrofitted fuel cell-battery propulsion system compared to the existing
system. Such a study is beneficial to analyze the power split for a given
load profile and a method to synthesis representative profiles, however,
it fails to determine when to competitively use the battery system in a
hybrid power system given the different scenarios.

The uncertainty in battery technology (cost, energy density), fuel
and electricity prices, and volume opportunity cost for a battery-electric
container ship is examined in [16]. The authors analyze 45 vessels
across four propulsion technologies (ICE, NMC, LFP, LTO batteries)
over passage lengths of 500-20,000 km, using a 3 x 3 scenario ma-
trix that combines carbon pricing with technology development. Their
approach provides a holistic perspective on the potential adoption
of battery-electric container ships, both now and in the future. This
study highlights the necessity of considering different scenarios and
variability in such assessments.

In [29] the uncertainties in solar radiation and load demand are
addressed by employing a two-stage stochastic optimization model for
determining the optimal sizing of a hybrid photovoltaic/diesel/storage
power system for merchant marine vessels. Solar radiation uncertainty
is modeled through a Monte Carlo simulation to generate a wide range
of scenarios, which are then reduced using a scenario reduction tech-
nique to manage computational complexity. The model incorporates
five operational load modes for the vessel, reflecting different scenarios
such as cruising or docking, to account for varying energy demands.

While only a limited number of maritime studies have addressed en-
ergy storage system requirements under uncertainty, whether through
case-based scenario analysis or stochastic optimization frameworks [11,
13,14,16,28,29], such approaches are well-established in the broader
context of large-scale energy storage systems in terrestrial and grid-
connected applications.

A stochastic model for optimal planning of battery energy storage
systems for an isolated microgrid is presented in [30]. The uncertainties
considered in their model include renewable energy generation (solar
radiation and wind speed) and power demand. These uncertainties
are modeled through probabilistic scenarios to capture variability,
employing Monte Carlo simulations. Additionally, uncertainties related
to battery operation, such as capacity degradation over time, are also
included. The time step of consideration used for operational analysis
in the paper is one hour.

A stochastic optimization model for renewable-based microgrid op-
eration incorporating battery operating cost is presented in [31]. Un-
certainties include renewable generation variability (solar and wind)
and load forecasting errors, modeled via a probabilistic constrained
approach. Battery-related uncertainties like efficiency losses, capacity
degradation, and lifecycle costs are also incorporated. The operational
analysis uses hourly intervals.

A risk-averse two-stage stochastic model for retailer planning, in-
corporating self-generation and storage systems, is presented in [32].
The uncertainties considered include electricity pool market prices and
consumer demand, modeled using scenario-based analysis to handle
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variability and manage risk. The time step considered for operational
analysis is one hour. A similar two-stage stochastic optimization frame-
work for isolated hybrid microgrids in a rural system is presented
in [33]. The uncertainties considered include variability in renewable
energy resources, specifically solar generation, and stochastic varia-
tions in rural electricity consumption. These uncertainties are modeled
using probabilistic methods, historical monitoring data, and synthetic
stochastic scenarios generated. Additionally, uncertainties related to
the performance and efficiency of system components such as batter-
ies and diesel generators are included. The time step considered for
operational analysis in the paper is hourly intervals.

Large-scale two-stage or multi-stage stochastic optimization frame-
works often deploy decomposition techniques to exploit the block
structure between first-stage and second-stage decisions [34,35]. How-
ever, since this work involves a relatively small number of scenarios,
we can leverage this advantage by directly formulating the two-stage
stochastic optimization problem in its deterministic equivalent form.

These examples from literature [30-33] illustrate the diversity of
stochastic optimization frameworks previously applied to onshore en-
ergy systems. However, extending these frameworks to maritime sys-
tems is challenging due to fundamental differences in system dynamics.
Maritime systems, although similar in power levels to onshore mi-
crogrids, feature dynamics that operate on much shorter timescales,
from seconds to minutes, depending on battery functions and DE’s
capable of transitioning between ON and OFF states in a matter of
minutes. Consequently, the half-hourly or hourly intervals commonly
adopted in onshore stochastic optimization are inadequate for maritime
applications, as these intervals cannot capture the rapid charging and
discharging cycles of batteries nor the complex, short-term operational
constraints and unit commitment decisions of onboard DEs.

3. Onboard power system and operation

The data acquired for this study come from an existing vessel with
mechanical propulsion. However, newer versions of the same vessel are
equipped with electrical propulsion, as shown in Fig. 2(a). The base
power of the system is taken as 8000 kW. The electrically propelled
version of this vessel shall be considered the benchmark. The system
comprises three DE units, two with a capacity of 0.5 p.u. and an
auxiliary DE with a capacity of 0.123 p.u. The goal is to address the
research objectives posed in Section 1 by integrating a battery system,
as shown in Fig. 2(b). The vessel also has multiple non-propulsive loads,
as illustrated in Fig. 2, which are active during dredging and dumping
operations.

Two different load profiles, where the TSHD is in operation, are
considered, along with one load profile representing periods when the
TSHD is out of operation. The dredging and dumping operations can be
observed in the operational profiles shown in Figs. 3(a) and 3(b). The
load profile on Fig. 3(a) involves extended propulsion periods between
the dredging and dumping cycles. The dredging cycle is characterized
by an increase in hopper load, whereas the dumping cycle is identi-
fied by a decrease in hopper load. A relatively constant hopper load
indicates that the TSHD is sailing. The second load profile, shown in
Fig. 3(b), has minimal time between the dredging and dumping cycles,
resulting in a shorter overall cycle compared to the first load profile.
The load profile when the vessel is out of operation is shown in Fig.
3(c). The power demand during such an operation is significantly lower
as compared to when the vessel is operational. Moreover, only DE-3
(auxiliary DE) is operational during this period.

The distribution of power between the DE’s for the operational load
profiles is shown in Figs. 4(a) and 4(b). A contrast can be observed
between the power distribution for load profile 1 (Fig. 4(a)) and load
profile 2 (Fig. 4(b)). In load profile 1, DE-1 and DE-2 are relatively well
loaded compared to load profile 2. For load profile 1, DE-1 operates
above 60% for 59.9% of the time, while DE-2 is loaded above 60% for
53.3% of the time. In contrast, for load profile 2, these percentages drop
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Fig. 3. Three load-profile plots arranged in a triangular layout: (a) Long periods of sailing, (b) Short periods of sailing, and (c) Operation at port.

to 35.5% and 20.8% for DE-1 and DE-2, respectively. This highlights
the significant difference between the two operational profiles and
suggests a greater potential for improving fuel efficiency in the second
load profile. Similarly, the histogram of the auxiliary (AUX) DE loading
during periods when the vessel is out of operation is shown in Fig. 4(c),
where the AUX DE operates under low loading conditions.

The fuel consumption of the DE’s can be estimated using the specific
fuel oil consumption (SFOC) curves typically provided by the manufac-
turer, as shown by the original SFOC data points (kg/kWh) in Fig. 5.
Interpolating these data points results in a second-order relationship be-
tween DE load and fuel consumption, as illustrated by the quadratic fit

curve. However, these curves can be adjusted by multiplying the data
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points by the corresponding power, yielding the fuel consumption flow
(kg/h), as shown in Fig. 5. Furthermore, interpolating these adjusted
data points results in a linear relationship between power demand and
fuel consumption flow (kg/h) [14], represented by the linear fit line
in Fig. 5. In addition to the fuel consumption, there are maintenance
costs (C™anty asgociated with the running hours of the DE. For this
specific vessel, the associated costs are considered to be €30 per hour
of operation for DE-1 and DE-2 and €7.5 per hour for the DE 3 (AUX
DE).

4. Optimization framework and scenario design

This section presents the overall optimization methodology and the
structure of the scenario and case generation process. Section 4.1 intro-
duces the four-step modeling and solution framework used to determine
battery sizing and onboard scheduling strategies under uncertainty.
Section 4.2 then details the design of a structured scenario matrix and
associated cases, used to explore the interaction between fuel price

volatility, mission-dependent load profiles, and battery chemistries in
a tractable yet representative manner.

4.1. Optimization methodology

The methodological workflow developed to address the research
objectives is illustrated in Fig. 6. It consists of four key steps, de-
signed to systematically integrate scenario generation, optimization,
and techno-economic evaluation. In the first step, raw vessel load
profile data are analyzed and preprocessed to remove inconsistencies
and ensure temporal alignment. This provides a clean and represen-
tative set of operational conditions for downstream modeling. In the
second step, discrete scenarios are constructed by combining variations
in mission-dependent load profiles with fuel price fluctuations. These
scenarios are grouped into multiple cases, each representing a distinct
realization of operational and economic conditions. In the third step,
the deterministic equivalent of a two-stage stochastic optimization
problem is formulated and solved for each case. The first-stage decision
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corresponds to the sizing of the battery system, while the second-stage
recourse actions govern the power and energy scheduling across the
scenario tree. The onboard hybrid energy system is modeled using a
Mixed-Integer Linear Programming (MILP) formulation. The optimiza-
tion objective ©® minimizes the total lifetime cost — including capital
expenditures, operational expenditures, and degradation-related costs
- subject to system constraints and degradation limits. This process is
performed for two representative battery chemistries: LTO and NMC.
Finally, the fourth step involves a financial post-analysis, where key
performance indicators such as Payback Period and Return on Invest-
ment (ROI) are computed for each case-chemistry pair. The complete
implementation logic is summarized in Algorithm 1.

The optimization is carried out using the academic license of
Gurobi, with solver version 12.0.1 [36].

Algorithm 1 : Implementation of methodology

1: for chem in {LTO, NMC} do
2: for case in {1,...,12} do

> Select battery chemistry
> Select case

3 Solve the optimization problem to minimize O.

4: Store results: OPEX, CAPEX, Power Split, Battery Size, etc.
5 end for

6: end for

7: Perform financial analysis: Compute Payback Period and ROL.

4.2. Case and scenario generation

In this work, a case is defined as a set of distinct scenarios of
operation, where a scenario refers to a specific combination of the
vessel’s operational profile and the corresponding fuel price during
that profile. Ideally, scenario and case generation would be based on
a probability distribution function representing the likelihood of an
event occurring. However, this information is considered proprietary
and strategically sensitive. Therefore, a set of cases is developed to
address the research objectives posed in Section 1.

Fig. 1 presents the probability density function of fuel prices based
on historical data collected between 07/03/22 and 05/03/25, retrieved
from [9]. The histogram is segmented using percentile-based thresholds
to define representative fuel price levels. For example, dividing the
distribution at the 33.3% and 66.67% percentiles yields three seg-
ments, whereas a 75% threshold results in two. Median values are
sampled from within each segment to serve as representative fuel prices

Energy Conversion and Management: X 28 (2025) 101240

Table 1

Median fuel price (C™®) values in €-ton.
Percentile 0-33.3% 33.3-66.67% 66.67%-100%
cfuel 679 792 1059
Percentile 0-75% 75%-100%
cluel 759 1114
Percentile 0-100%
CFue] 792

in the scenario generation process, alongside the overall median, as
summarized in Table 1.

To balance representativeness and computational tractability, the
75% percentile split is selected as the primary basis for scenario defi-
nition. However, the full 0%-100% percentile range is also considered
in select cases to assess sensitivity in energy storage requirements and
scheduling outcomes under broader fuel price variability.

Three different operational profiles are considered, as shown in
Figs. 3(a)-3(c). The percentage of time a specific load profile occurs
is denoted by £;, where i represents the load profile number. The
operational time during which the vessel is at port or not engaged in
dredging operations (load profile 3) is assumed to be 100 days per year.
Therefore, the corresponding value for £; = 100/365

However, the percentage of time the vessel operates under load pro-
files 1 and 2 is uncertain. Three different possibilities are considered:

1. The vessel spends 25% of the remaining time in load profile 1
and 75% in load profile 2.

2. The vessel spends 75% of the remaining time in load profile 1
and 25% in load profile 2.

3. The vessel splits the remaining time equally between load pro-
files 1 and 2.

The split between load profile 1 and load profile 2 is represented by
,; and w,, respectively. The percentage of time spent in load profiles
1 and 2 is calculated as:

Li=wp (1-Ly), i=1,2 @

With three load profiles and two different fuel prices, a total of six
scenarios (denoted by S; ;) are formed—i.e., two fuel price conditions
j € [1,2] for each of the three load profiles. Since there are three
different possibilities for w;, this results in three distinct cases.

Similarly, in the case where a single fuel price is considered across
all operational profiles, three scenarios are present—each scenario
corresponding to one of the three load profiles but under the same fuel
price. Again, with three configurations of w;, this yields three additional
cases. A total of six cases are defined in the study:

» Cases 1-3: Each case includes six scenarios, constructed from all
possible combinations of three operational load profiles and two
distinct fuel price levels.

+ Cases 4-6: Each case includes three scenarios, corresponding to
the three load profiles evaluated under a single, fixed fuel price
condition.

For cases 1-3, two different fuel costs are considered: Cf“el and
Cg“el, and 4, and A, denote the probabilities associated with the median
fuel prices in two different segments of the fuel price distribution. As
discussed earlier, when using a two-segment approach based on per-
centiles, the fuel price distribution is split at the 75% percentile. There-
fore, Cf“el corresponds to the median fuel price in the first segment
(i.e., from 0% to 75%), where A; = 0.75. Similarly, Cf“d corresponds
to the second segment (i.e., from 75% to 100%), where 1, = 0.25.

For cases 4-6, with one fuel cost are considered: Cf“el where 4,
denotes the probabilities associated with the median fuel prices in
one different segment of the fuel price distribution. Therefore, le“el
corresponds to the median fuel price of the entire distribution (i.e., from



S. Durgaprasad et al.

1.Data pre-processing: Analysis of
Historical fuel price, operational

2. Scenario and case generation utilising
historical fuel price and representative

profile selection of TSHD operation of TSHD

o o

Energy Conversion and Management: X 28 (2025) 101240

3. MILP formulation for optimal
operation and sizing of hybrid
maritime power plants

4. Research deliverables

e J

0 RES R

il . ; ;‘ .
‘(x\qq.‘mf\r‘g §‘|: .

e S I ‘ T
O |

<Load profie 1-> <Load profile 3>

. Constraints linking
operational profies

Constraints linking

—>

Case 1 . . . .

3 Operational profiles and 2 fuel

. 6 scenarios per case and 6 cases
prices

LTO NMC system size
$ Optimal power plant
b scheduling
J' J' Operational hour
v reduction of diesel engine
—> —

Case 6

Optimal energy storage

Battery energy arbitrage

Economic benefits

Fig. 6. 4-step methodology.

Table 2

Cases and Scenarios for dual fuel price (1-3). Where
®;, 4; represent the probability of load profile (i) and
fuel price (j) occurrence.

Case 1 2 3
w, 0.25 0.75 0.5
W, 0.75 0.25 0.5
A 0.75 0.75 0.75
Ay 0.25 0.25 0.25
Table 3

Cases and Scenarios for single fuel price (4-6). Where
4; represent the probability of load profile (i) and
fuel price (j) occurrence.

Case 4 5 6
[oN 0.75 0.25 0.5
W, 0.25 0.75 0.5
A 1 1 1
Ay 0 0 0

0% to 100%), where 4, = 1. In this case, Cg“d and 4, can be considered
to be 0.

A detailed structure of the scenario tree is presented in Fig. 7 and
the considered values of w; and 4; are shown. The probability that a
specific scenario S; ; occurs in a case is given by:

P(S,;)=L;- A, where i€ {1,2,3}), je(l2} @

The values for P(S; 7 associated with different cases can be found
in Table A.1. Given the limited number of scenarios, the two-stage
stochastic problem can be reformulated as its deterministic equivalent
and solved accordingly.

5. Mathematical model

This section presents the mathematical formulation of the hybrid
power and energy management optimization problem. The model in-
tegrates component-level operational constraints, scenario-based un-
certainty, and techno-economic metrics into a unified framework. All
constants used throughout the formulation are summarized in Table
4, while the decision variables — both continuous and binary - are
listed in Table 5. To enhance readability, constants are represented in
standard font, whereas decision variables are highlighted in bold. The

optimization framework captures load balancing, generator logic, bat-
tery dynamics, and financial performance under multiple operational
scenarios, as described in subsequent subsections.

5.1. Objective function

The objective function (O) is listed in Eq. (3). Here, FCOSt is the fuel
cost associated with scenario S, ; for load profile i and fuel prlce Jj. Sim-
ilarly, MC"St represents the mamtenance costs, and B¢t represents the
capital investment required to 1nstall the battery system. The expected
battery lifetime is denoted by TP, and the duration of each load profile
is represented as Tpmﬁ]e

The fuel consumptlon is calculated as shown in Eq. (3b), where
ng;,k(t) is the power produced by the kth DE at time 7. The operational

lfe’

status of the individual DE is given by the binary decision variable
UDE (). The cost of fuel is denoted by CF“el The SFOC coefficients
are denoted by «, and p,. The summation 15 taken over t = 1,...,T; j,
where T, represents the total number of time steps in scenario S,-, e

The maintenance cost associated with the operational hours of the
DE is computed as per Eq. (3c). The maintenance cost per hour of the
DE is denoted by Ci".

Finally, the cost of installing a battery onboard is calculated using
Eq. (3d), where SB is the size of the battery and C, is the cost per
kWh of battery capacity. The cost of the inverter per kW is denoted by
C" and the minimum continuous discharge power per kWh of energy

that the battery can produce is denoted by PE dch

The scenario probabilities P(S; ;) account for both the time spent
at a particular operational profile and the fuel price occurrence. The
total scenario probability is normalized such that the sum over all
combinations equals 1.

min©@ = Bt 4

CAPEX
32 TF’?t
COSt cost . ). $ ..
(X X (Fesceme) - pes, - ). Vi (3a)
=1 j=1 T;
OPEX
301
cost DE DE Fuel P
Pt =y (Psi’j,k(t)~a+ﬁ~U5u,k(t)>-Cj A, Vi (3b)

k=1 t=1
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Fig. 7. Scenario tree of optimization model.
Table 4
Model constants and notation used in the optimization.
Symbol Unit Description Value or Reference
i - Load profile index [1,2,3]
J - Fuel price index [1,2]
k - DE index [1,2,3]
t - Time step index [1,2,...,T;]
T, - Number of time steps in load profile i [1103,259,600]
SiJ - Scenario formed by load profile i and fuel price j Fig. 7 and Tables 2 and 3
P(S; ) - Probability of scenario Table A.1
; - Fraction of remaining time assigned to load profile i Tables 2 and 3
L, - Load profile time percentage Eq. (1)
Ly - Time spent in port profile (load profile 3) 100/365 ~ 0.274
A - Fuel price scenario probability Tables 2 and 3
T year Battery lifetime 10
T}’mf‘le year Duration of load profile i [T;]-3657!
Cf“el €/ton Fuel cost per scenario Table 1
[y, Bi] [ton/kWh, ton] Fuel model coefficients [0.1822,30.8397] - 1073, k €[1,2]
[a3, 5] [ton/kWh, ton] Fuel model coefficients [0.1971,16.482] - 103 k=3
CMaint €/h DE maintenance cost per hour [DE1,2, AUX DE] [30,7.25]
chat €/kWh Battery system cost [LTO,NMC] [930,500]
cn €/kW Inverter cost 60 [37]
; - Inverter loss 2.5%, i€[l,2], [16]
; - Inverter loss 5%, i=3
plemand kw Power demand for load profile i Figs. 3(a)-3(c)
BigM - Big-M constant for logic constraints 8000
pR kw Required reserve power 8000
P
PdEch h! Continuous discharge power per kWh [3.75,2.35] [10]
P
PL h-! Continuous charge power per kWh [4.21,0.93] [10]
Tgli\l" h Minimum DE ON time 0.5
o h Minimum DE OFF time 0.5
DE -
Prin kw Minimum DE power output 100
DE :
P kw Maximum DE power output 4000
APEEX kW/min Maximum DE ramp rate 2000
Neveles - Battery lifetime in cycles [LTO,NMC] [20 000, 7000]
Savings € Total savings over benchmark scenario Defined in Eq. (18a)
Tpp years Payback time Defined in Eq. (18b)
ROI - Return on Investment Defined in Eq. (18¢)
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Table 5

Decision variables.
Decision variables Unit Description
Continuous
BCost € Battery system cost
ng‘:“ € Fuel cost
M(;.:’ist € Maintenance cost
Pgﬁ_; (t) kw DE power
Spat kWh Battery size
Pgiaj‘(t) kw Net battery power
Pi{:‘(t) kw Battery discharge power
Pf;‘i‘j ) kw Battery charge power
APB:‘_J(([) kw Ramp rate of DE
Tgf"l': (1) At DE ON time counter
TE.E‘?EF(I) At DE OFF time counter
EZ’Z‘(t) kWh Energy in battery
Binary

URE (1), O, (1) - DE status (ON/OFF)

UI;%’]: () - Marks last time step the DE was ON
i)
U?_E_“:F (1) - Marks last time step the DE was OFF
i
Ud;?(t) - Battery discharge status
i
Uf;‘i‘j ) - Battery charging status
L)
cost __ DE . cmaint P
Msi,j - Z ZUsij,k(t) Ck At Vi j (30
k=1 t=1
P .
Bcost — SBat . Cbat + SBat . P:lzCh . Clov (3d)

5.2. Load balance

The power system’s load balance equation is given in Eq. (4). In this
equation, P';'f‘f(t) represents the power delivered by the battery, while
ij
P:.je"““‘d denotes the total power demand, including both propulsion
power and electrical loads. The charging and discharging efficiency
is represented by 5, whereas the magnitudes of the charging and
discharging power are given by P;‘; (t) and P‘;f:(t), respectively.

3
Zpgi,k(t) + P';?;(t)
k=1
= pdemand 4 . (PG + PG (®), Vi j1 @
5.3. Diesel engine

The DE can generate power within a specified range, constrained
by a minimum and maximum power limit, as represented in (5). Here,
DE DE . .
P, = in and P.Z o denote the minimum and maximum power output
of the DE when it is operating. The binary variable U2F  (t) determines
i
whether the kth DE is active in scenario S;; at time 7, and PIS’E W®
. »

represents its corresponding power output.

U k® P, < PREL(® S UGE, () - PP, Vi, j kit )

i k—min = k—max’

The AUX DE is turned OFF during load profiles 1 and 2, while both
DE-1 and DE-2 are turned OFF during load profile 3. These constraints
are shown in Eq. (6).

U]s)EJ:O Yi,jel(l,2] (6a)
UI;SF:i’k:O Vj.k€[1,2] (6b)
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The DE cannot be turned ON and OFF repeatedly due to operational
constraints and the fuel consumed during start-up. These operational
limitations are modeled using the Big M integer method, as shown
in Eq. Eq. (7). The decision variable Tgiﬁ‘N (t) is introduced to track

the duration for which the kth DE has been continuously operating in
scenario S; ;. The Big M integer is denoted by BigM. If the DE is ON,

the value of T2"ON(t) is incremented by 1 during each time step.

Sijok
DE, DE,

Tsij,(l)(N(t) < Tsij?(t_l) + 1
+ BigM - (1 -Ugijk(t)), Vi, j ok, t#1, (7a)
DEqgN DEgN

T d® = Tg Q-1 + 1
- BigM - (1 —Ugﬁﬁk(t)), Vi, j ok, t#1, (7b)
DE, . DE ..

Tsi;l)(N(t) < BigM- UG (0, Vi j.k t#1, (70)

T‘S’Ef;(N(t) > —BigM~UgiF;ék(t), Vi, gk, t# 1. 7d)

To ensure that the DE remains ON for a minimum duration (Tgli\;‘ 3

a binary decision variable Uls)_l?(l)(N (t) is introduced to identify the final

i
time step at which the kth DE is ON in scenario S,
DEoN -
Sk

j» as modeled in
Eq. (8). Furthermore, when U (t) equals 1, Eq. (8d) ensures that the

DEgN

continuous variable T .k
ij

: min
ON time T

(t) is greater than or equal to the minimum

U -1 -UE ) < Ug:jfﬁ" t—1), Vijkt#1, (8)
U 2 USN (-1, Vijk i, (8b)
U =D 2 U=, Vijkt#1, &)
T‘;Ei”(t) > T2 — BigM - (1 - UIS)E?“))’ Vi .k, t &)

min . . .
OFF) is enforced using equation
DEpr
Sk

Similarly, a minimum OFF time (T

Eq. (9). A continuous decision variable, T (t), is introduced to track

DEgN
S

the OFF time, analogous to T L (t), as shown in Eq. (9). This decision
)

variable increments by 1 at each time step when the DE is OFF. The OFF
status of the DE is modeled using a binary decision variable, ﬁgF L
INE

which takes the value 1 when the DE is OFF, as defined in Eq. (10).

DEopp DEopp
Tsufl’f' < Tsaﬁ:k t-1+1
+ BigM - (1 -0% (1)), Vi j.k t#]1, (9a)
ije

DEorr DEorr
Tsijvk (t) > Tsijvk t-1)+1

- BigM- (1 -U0% (1)), Vi jkt#]1, (9b)
L)
DE, . = ..
Tg % © <BigM - Ugh, ®, Vi.jk 1, (90)
DE, . = ..
Tg % (O > -BigM - Ut ®, Vijk 1. (9d)
I_JgiFj,k(t) + U';E%k(t) =1, Vij kt (10)

Eq. (11) is analogous to Eq. (.8), but it ensures that the DE remains
OFF for at least a duration of Tg;%. To enforce this constraint, a binary

decision variable UIS)_FT‘;(FF (t) is introduced to identify the last time step
i

when the kth DE was OFF before being switched ON again in scenario
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S; ;- This guarantees that the continuous decision variable T';_E_‘;(FF (t) in
(AE

i DE
ope Whenever U G (t) = 1
i

Eq. (11d) is greater than or equal to T

UDE k(t - U];E K(t)

SUEETF(t— Vi, j ok t#1, (11a)
1- Gls’i,k(t) > UPPorr g ((t=1), Vijk 1 #]1, (11b)
I_Jgﬁ,k(t -1 > UDEOFFsu,k(t -1), Vijk t#1, (11¢)
Tt (2 To

—BigM- (1 —I_JIS’ilj,k(t—l)), Vi j.k t#1. (11d)

When two DE generator sets operate simultaneously and are con-
nected to the same AC bus, they function in parallel, sharing the
load according to their capacity. For equally sized DEs, the load is
distributed equally. This behavior is modeled in Eq. (12). In this
formulation, Eq. (12a) ensures that DE-1 is prioritized to be ON before
DE-2 in each scenario S, ;. This simplification facilitates modeling of
parallel loading conditions, where Egs. (12b)-(12d) ensure that if DE-2
is ON, the load is equally distributed between both DEs.

Uls)i}j;vl(t) > Ugf L, Vit (12a)
PS50 2 BigM - Ugh y(1), Vi, )1, (12b)
PIS’E,Z(t) > P';:j"l(t) - BigM - (1 - UIS’E,Z(t)), Vi, j.t, (12¢)
Pgi’l(t) > P';i]jyz(t), Vi, jt1. (12d)

The ramp rates of the DEs are captured by the decision variable
APDE k(t), as defined in Eq. (13). Once the solution to the objective

functlon in Eq. (3a) is obtained, AP (t) is minimized in a secondary
optimization step, while keeping the solution of Eq. (3a) and the
decision variable SB fixed as constraints. This approach ensures a rea-
sonable power split without altering the previously obtained solution.
Additionally, Eq. (13c) enforces the ramping limits of the DE, where
APEEX represents the maximum allowable power ramp for each DE at
each time step.

AP (2P (O~ PP (t— 1), Vijki#L (13a)

Ang?k(t)>Pm Kt 1)—Pg:;’k(t), Vi j,k,t#1, (13b)
DE P

AP, (®) < APPE Vi jk t# 1. (13c)

Turmng off a DE implies that the available power onboard to
compensate for sudden changes in load is reduced, and system redun-
dancy is also decreased. To address this, a power reserve constraint
is introduced in Eq. (14). This constraint ensures that a minimum of
8000 kW is available in the system at all times whenever a battery is
added to facilitate the shutdown of a DE.

PR >

P Viell,2],),t

14)

max dch’

DE DE Bat E
ZUSiJYk(tyP +8Bat.p

5.4. Battery

The energy stored in the battery is represented by the decision
variable Ebat(t) The battery’s energy is modeled in Eq. (15a). Fig. 7
illustrates the linking constraints between different scenarios within an
operational profile. Specifically, Egs. (15b) and (15c¢) enforce a linking
constraint to ensure that the energy stored in the battery at the end
of each load profile is equal to the energy available at the beginning
of the load profile. The energy management system must also ensure
that the battery is not fully charged or discharged. This is achieved by

10
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constraining the battery’s state of energy between 10% and 90% of its
total capacity, as shown in Eq. (15d). The battery system is also limited
by a maximum continuous power for both charging and discharging.
Typically, this limit is defined by the battery’s C-rate. However, since
this energy and power model does not explicitlypaccount for current

and voltage, a charging power-to-energy ratio Pfh and a discharging

ratio PU’I3 , are introduced. These ratios define the maximum continuous
charging and discharging power the battery can provide per unit of

installed energy capacity.

EZSO =EZ(t =D =P 4r, Vijr#1, (15a)
EZ ) =B, Vij, (15b)
El;;;t (T?roﬁle) — E}"’“(Tf“’me), i, j, (15¢)
0.1 -SBat < Eba‘(t) <09-SBt i j 1 (15d)

— gBat. pE < Pbat(t) < SBat. p Vi, j,t. (15e)

dch’

Fig. 7 illustrates the constraints linking different operational pro-
files. Such a constraint defines the maximum allowable battery through-
put over its lifetime. This is modeled in Eq. (16), where the total
battery throughput accounts for various operational profiles (i) and fuel
price scenarios (j), indexed by scenario S, ;. This linking constraint
enables flexible battery usage across different load profiles and fuel
price scenarios, allowing the battery to be utilized more intensively in
certain periods if it is beneficial to the overall system performance.

=

2 3 profile
Zi:l Zj 1 P(Sij)'T[

bat
Thfe

3
z < SBat Neveles

1 j=1rt

MN

(16a)

dch
PS‘J (1) At -

i

The discharge power P“1Ch and charging power P°h_ of the battery,
J

collectively represented as Pbat are determined according to Eq. (17).
Egs. (17a)-(17f) ensure that the decision variable PdCh captures only the

positive portion of ngl?, where U‘;‘f'_‘ is a binary dec151on variable set to
L) )

1 when the battery is discharging. Furthermore, Eq. (17g) ensures that
the decision variable P‘:Sh reflects the magnitude of the charging power.
ij

PS> -BigM - (1-PEN®), Vi jt, (17a)
id i

PEU(t) <BigM - PO, Vi, jit, (17b)
dch b: : dch -

PSIO S PE(®) +BigM - (1-UGID), Vi jt, (17¢)

Pgﬂ‘(t) > Pg?;(t) - BigM- (1 - U‘}g‘(t)), Vi, j.t, 17d)

PEN) <Bigh - UGM®), Vit (17¢)
i iJ

PG 2 —BigM - US(D), Vi1, azf

P =P (O — PR, Vi 17g)

5.5. Financial calculations

The payback period for hybridizing the power plant refers to the
amount of time required to recover the initial capital expenditure
through annual fuel savings. Assuming the annual savings remain
constant and interest rates are not considered, the payback period (Tpg,
in years) can be calculated as shown in Eq. (18b), where Fbe“d‘mark
represents the fuel consumption of the non-hybrid power plant and
ME;??Chmark denotes the maintenance costs associated with a system

without a battery. The ROI can be calculated as shown in Eq. (18c).
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Fig. 8. Life time cost-benefit analysis of hybrid power plant.
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Table 6
Necessary battery size (kWh) with relaxed reserve power constraints.
Battery Case
1 2 3 4 5 6
LTO 510 487 487 498 487 487
NMC 215 892 569 217 215 215

3
Savings = Z Z (Fgl):t + Mga)jt ) _

2
i=1 j=1 =

2.

i=1j

(

F‘t;enchmark + MI;enchmark)
1 i,j i,j

(18a)
BCOS[
Tpp = Savings (18b)
Thie
Savings — B*t) . 100
Ror = 52VIng ) (18¢)

Beost

6. Results and discussion

This section presents and discusses the results. The financial impli-
cations of hybrid power plants are discussed in Section 6.1, while the
operational strategies for the power plants are examined in Section 6.2.

6.1. Financial implications

The required battery sizes for LTO and NMC batteries remain con-
stant across all cases (1-6) due to the reserve power constraint in
Eq. (14). The battery capacities, rounded up to the nearest integer, are
1066 kWh for LTO and 1703 kWh for NMC. When the reserve power
constraint is relaxed, the required battery size varies with operational
time across different load profiles for both LTO and NMC chemistries.
This variation is more prominent for NMC batteries, particularly when
comparing different fuel price scenarios (i.e., cases 1-3 versus cases
4-6). The battery sizes for both chemistries across all six scenarios are
presented in Table 6.

The rest of the study will focus on the results obtained with reserve
power requirements. The corresponding lifetime cost (objective ©) for
each case is presented in Fig. 8(a). The split in operational costs in
depicted in Table A.2. Across all cases, hybrid power plants consis-
tently result in lower lifetime costs compared to the benchmark case,
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regardless of battery type, fuel price, or operating scenario. Further-
more, hybrid systems integrated with LTO batteries always yield lower
lifetime costs than those using NMC batteries. As expected, the lifetime
cost is strongly influenced by the fuel price—this is evident when
comparing cases 1-3 with cases 4-6. It is also affected by the proportion
of time the vessel operates under load profiles 1 and 2, as seen when
comparing cases 1-3 with each other and cases 4-6 with each other.
The lifetime cost results are tabulated in Table A.3. Fig. 8(b) presents a
sensitivity analysis showing that lifetime savings decrease as time spent
in Load Profile 1 increases and time in Load Profile 2 decreases. This
is attributed to the fact that, under Load Profile 2, DE-2 can remain off
for extended periods compared to Load Profile 1, leading to increased
maintenance savings. This effect is further elaborated in the remainder
of the paper. Additionally, the sensitivity analysis evaluates potential
lifetime savings as a function of the percentage increase in battery cost
per kWh, over the range [-50%,25%]. Lifetime savings remain positive
even with a 25% increase in battery costs. Across the entire range, LTO
batteries yield higher lifetime savings than NMC batteries. However,
the difference between the two chemistries becomes negligible as w,
increases (or equivalently, as w, decreases).

The battery system cost for LTO batteries ranges from 2.5-3% of
the overall expenses (OPEX+CAPEX). Whereas for NMC batteries this
ranges from 2.3-2.8% of the overall expenses. The overall expenses
are dominated by the fuel costs that range from 91.4-92.4%. The
detailed split of the lifetime costs are tabulated in Table A.4. The
calculated payback time/period (Tpg) in years as shown in Table A.5
is visually depicted in Fig. 9. The figure indicates the range of possible
payback time and ROI incurred for different cases. The difference in
payback period and ROI is comparatively insignificant between the two
chemistries. Ranging from a payback period of 3.9 and 3.9 to 5.1 to 5.2
years for LTO and NMC batteries, respectively. Similarly, the possible
return on investments ranges from 93.2% and 91.0% to 155% and
151%, respectively.

The cost of useful energy per euro is illustrated in Fig. 10. Fuel
costs constitute the majority of the cost per kWh, while maintenance
and CAPEX contribute significantly less, by approximately an order of
magnitude. The total cost per kWh ranges from €0.1706-0.186 for the
benchmark case, €0.166-0.178 for systems with LTO batteries, and
€0.167-0.179 for systems with NMC batteries. For LTO batteries, the
contributions of fuel, maintenance, and CAPEX to the total energy cost
range from 91.3-92.3%, 5.0-5.4%, and 2.5-3%, respectively. In the
case of NMC batteries, the corresponding ranges are 91.4-92.1% for
fuel, 5.5-6% for maintenance, and 2.3-2.8% for CAPEX. The detailed
contributions per case are depicted in Table A.6.
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Fig. 10. Cost of energy per kWh.

The operational cost per kWh for the benchmark case is illustrated
in the bars of Fig. 11. For scenarios S, ; with i € 2,3, the operational
costs per kWh are higher compared to i = 1, indicating that load profiles
2 and 3 incur greater costs than load profile 1. The blue and red lines in
the figure represent the operational expenses per kWh for hybrid power
plants using LTO and NMC batteries, respectively. Notably, the highest
cost savings per kWh are observed in load profiles 2 and 3, relative
to profile 1. Furthermore, the cost per kWh remains relatively the
same across different cases for LTO batteries within the same scenario.
In contrast, for NMC batteries, the cost per kWh varies across both
scenarios and cases, highlighting that the limited throughput of NMC
batteries must be strategically managed depending on the scenario. The
detailed contributions of operational expenses per kWh for different
scenarios are depicted in Table A.7.

The split between fuel and maintenance savings relative to CAPEX,
in Millions of euros, is illustrated in Fig. 12. For LTO batteries, the
ratio of fuel savings to CAPEX ranges from 86.6-120.9%, while main-
tenance savings range from 111.5-140.7% of the CAPEX. In the case
of NMC batteries, these ratios are 85.0-116.8% for fuel savings and
103.8-132.2% for maintenance savings. This distribution of savings
relative to CAPEX indicates that both maintenance and fuel savings
individually exceed the battery investment cost, thereby effectively
paying for the batteries and more. Moreover, the maintenance savings
in the case of LTO batteries is consistently more than those seen with
NMC batteries. Indicating a difference in the operational strategy.
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6.2. Implications on power plant operational strategy

The difference in operational expense savings discussed in Sec-
tion 6.1 is further illustrated in Figs. 13(a) and 13(b), which depict
the number of operational hours per day for DE-2 under LTO and
NMC battery configurations, respectively. It is important to note that
DE-1 remains ON at all times for all scenarios S; j with i,j € [1,2].
Moreover, due to redundancy requirements, in the benchmark case,
DE-2 is operational at all times.

A key observation is that under the LTO battery configuration, DE-
2 is not operational in scenarios S,; and S,, across all cases. This
indicates that DE-2 is not utilized under load profile 2. Additionally,
a reduction in DE-2’s operational hours is observed in scenario S, , for
cases 1-3, and in scenario S, ; for cases 5-6.

In contrast, with NMC batteries, DE-2 is OFF in scenario S,, for
cases 2 and 3. This is attributed to the higher cost per kWh associated
with scenario S,, relative to other scenarios. Specifically, in case 2
and case 3, the probabilities P(S,,) are approximately 4% and 9%,
respectively, whereas in case 1, P(S,,) is around 13%. The lower prob-
ability in cases 2 and 3 means that scenario S, , occurs less frequently,
resulting in a reduced lifetime throughput requirement to turn OFF DE-
2 in those cases. The operational strategy for DE-2 with a hybrid power
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plant of NMC batteries is consistent across cases for scenario S, ; across
all cases. The data for Figs. 13(a) and 13(b) is tabulated in Table A.8.

The operation of the AUX DE for scenario S;; in the case of LTO
batteries is shown in Fig. 13(c). In the benchmark case, the AUX DE is
always ON, i.e. the AUX DE is turned ON for 24 h for every operational
day. The operation of the AUX DE in a hybrid power plant with LTO
batteries is consistent across all the cases as shown in Fig. 13(c).

However, in the case of NMC batteries, the operation of the AUX DE
for scenario-S; j is not consistent as shown in Fig. 13(d). What can be
observed is that the AUX DE is operational for longer periods in periods
where the price of fuel is lower (S; ;) as compared to when the price
of fuel is higher (S;,) in case 1-3. The data for Figs. 13(c) and 13(d)
is tabulated in Table A.9.

The power plant scheduling with LTO batteries for case 1, scenario
S1,1 is shown in Fig. 14(a). Where, SoE refers to the battery’s State of
Energy, defined as the amount of energy stored in the battery relative
to its total capacity. The power plant is scheduled such that DE-2 is
turned ON during periods of higher power demand (sailing). Here, the
DE follows an ON/OFF strategy, where DE-2 is turned ON long enough
for the battery to charge sufficiently. This ensures that when DE-2 is
turned OFF, the battery and DE-1 can supply power to the system for
at least 30 min before DE-2 is turned ON again. The battery’s state of

13

energy is also depicted, which shows the battery undergoes deep charge
and discharge cycles.

The operation of the power plant is consistent for load profile 2
(S,;) for power plants with LTO batteries as discussed previously. The
power split between DE-1 and the battery is shown in Fig. 14(b) for
case 1 and scenario S,,. The role of the battery for this operational
profile is to keep DE-2 OFF while shavings peak above the capacity of
DE-1 and fill valleys to charge the battery.

The power demand when the vessel is not operational or at port
in load profile 3 is significantly lower compared to load profiles 1
and 2. Consequently, the operational time of the AUX DE can be
substantially reduced, as opposed to the current strategy, where it
operates continuously during non-operational periods. An example of
the power split between the AUX DE and the battery is shown in Fig.
14(c) for case 1, scenario S; ;. The battery is charged in such a way
that the AUX DE remains ON for at least 30 min and, once turned OFF,
stays OFF for a minimum of 30 min.

Fig. 13(a) shows a difference in the operational hours of DE-2
between scenarios S|, and S, ,, attributed to the higher fuel price in
S1,2. The corresponding power plant scheduling is shown in Fig. 14(d),
and the difference can be compared with Fig. 14(a). During periods of
low power demand, such as dumping or sailing, DE-2 is turned OFF for
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Fig. 14. Operational strategy for Case 1 - LTO batteries.

at least 30 min in S, ,. This strategy is not adopted in S, ;, where DE-2
remains operational at all times except during dredging. This contrast
highlights the importance of utilizing battery throughput effectively,
prioritizing periods where the operational cost per kWh of energy is
high.

The operation of the power plant with NMC batteries is consistent
across load profiles 1 and 2 in terms of the operational time of DE-2,
as previously shown in Fig. 13(b). The power plant scheduling for Case
1, Scenario S ; is illustrated in Fig. 15(a). In this case, the scheduling
strategy ensures that DE-1 remains operational during dredging, while
DE-2 operates during dumping and low power demand periods, such
as sailing, with a minimum ON duration of 30 min. This behavior
resembles the operation observed with LTO batteries in Fig. 14(a).
However, a key difference lies in the charging characteristics: LTO
batteries support significantly higher charging rates, leading to deeper
cycling and, consequently, a higher energy throughput compared to
NMC batteries.

Similar to the first load profile, the operational strategy for the
second load profile for NMC batteries also has a consistent power plant
scheduling agnostic to fuel price and duration of each load profile
(P(S; ;). The operation of the power plant for scenario S,; is shown
in Fig. 15(b). The power plant is scheduled with the battery in such a
way that DE-2 is predominately turned OFF except for a short period of
time during the dredging operation. Moreover, the state of energy does
not increase as steeply in NMC batteries as compared to LTO batteries
for the same scenario.

The operational hours of the AUX DE are significantly higher in
cases 1, 3, 4, and 5 compared to cases 2 and 3. This is primarily
because, in cases 1, 3, 4, and 5, the TSHD operates for a substantial
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portion of time in load profile 2. As a result, a large share of the
allowable battery throughput is allocated to reducing the operational
time of DE-2, leaving less throughput available for Scenario Sj; ;. This
effect is seen in cases 1 and 3 under higher fuel prices, as seen in
Scenario S; ;.

This contrast is illustrated in Figs. 15(c) and 15(d). In the low
fuel price scenario (S;;), the AUX DE is ON for significantly longer
durations and is turned OFF only for the minimum required OFF time.
Moreover, the loading on the AUX DE is lower than that observed in
the higher fuel price scenario. In contrast, under the high fuel price
scenario (Fig. 15(d)), the AUX DE operates closer to the minimum ON
time and is turned OFF for durations much longer than the minimum
OFF time.

The difference in operational strategy between LTO and NMC bat-
teries arises primarily from the amount of available throughput. With
increased operational time spent in load profile 2 (as seen in cases 1, 3,
4, and 6), the throughput available for load profiles 1 and 3 is reduced.
Consequently, for NMC batteries, higher priority is given to scenarios
with higher fuel prices in load profiles 1 and 3. Moreover, in the case
of LTO batteries, the power plant scheduling remains consistent across
load profiles 2 and 3. However, for load profile 1, higher throughput
is allocated to periods with elevated fuel prices. The throughput used
per hour of operation for different scenarios is presented in Fig. A.1.

Another important aspect of the battery requirements analysis is
the power-to-energy ratio, as illustrated in Fig. 16. The charge and
discharge power-to-energy ratios for LTO batteries are shown in Figs.
16(a) and 16(b). LTO batteries operate with a power-to-energy ratio
below 0.5 for a significant portion of the time—=~ 55% during charging
and ~ 75% during discharging. This indicates that, although LTO
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Fig. 15. Operational strategy for Case 1 - NMC batteries.

batteries are capable of fast charging and discharging, they are pre-
dominantly used at lower rates in practice. A similar trend is observed
for NMC batteries (shown in Figs. 16(c) and 16(d)), with the ratio
remaining below 0.5 for ~ 95% of the time during charging and ~
86% during discharging. This further highlights that lower charge and
discharge rates are commonly utilized, even for batteries designed for
spinning reserve/ replacing a secondary DE. Moreover, this suggests
that batteries designed for spinning or emergency reserve are often
oversized relative to their actual usage. Since reserve functions are only
required occasionally, typically during DE failures, the battery’s ability
to deliver high C-rates during these rare events could be sufficient, even
if the supporting auxiliary systems are designed for lower C-rates. As
a result, the extent of battery oversizing for reserve applications could
be reduced.

7. Conclusion

The paper proposes a scenario-based stochastic framework for in-
tegrated battery sizing and power plant scheduling under uncertain
maritime operations and fuel prices. Results show that hybridizing
with LTO or NMC batteries offers economic and operational advantages
over diesel-only systems. Battery capacities for both LTO and NMC are
fixed across scenarios due to a reserve power constraint. The optimal
sizes are 1066 kWh (LTO) and 1703 kWh (NMC), reflecting LTO’s
higher power density and throughput, which allow for deeper and more
frequent cycling.

Hybrid systems consistently reduce lifetime costs (CAPEX + OPEX)
compared to diesel-only setups. In all six cases, LTO configurations
were cheaper than NMC. For example, in Case 1, the benchmark cost
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of €43.9M drops to €42.0M (LTO) and €42.3M (NMC). Similar trends
appear across other cases. Payback periods confirm economic viability:
LTO achieves payback in 3.92-5.01 years and NMC in 3.98-5.05 years.
The ROI ranges from 93%-155% (LTO) and 91%-151% (NMC), driven
by fuel and maintenance savings that offset battery costs. Hybrid
systems also lower energy costs per kWh: €0.166—€0.178 (LTO),
€0.167—€0.179 (NMCQC), vs. €0.171- €0.186 for diesel-only. Fuel re-
mains the largest cost driver (>91%), but is significantly reduced
in hybrid setups—especially with high fuel prices and short sailing
profiles. Lower maintenance costs are also observed with LTO batteries,
driven by reduced DE runtime.

Hybridizing with batteries enables more flexible and efficient oper-
ation. In short-sailing scenarios (load profile 2), DE-2 can remain OFF
entirely with LTO across all cases—a major reduction from the 24-h
operation in the benchmark. The NMC configuration, limited by lower
throughput, cannot consistently achieve this.

Across scenarios, LTO reduces DE-2 usage to 0-13.3 h/day, de-
pending on load and fuel price, with complete shutdowns in several
high-fuel, low-load cases. NMC yields more moderate reductions, typ-
ically operating DE-2 for 2.8-13.3 h/day. Under low fuel prices, NMC
systems keep DE-2 running longer to benefit from cheaper fuel, showing
a more adaptive but constrained strategy.

During port operations (load profile 3), the AUX DE is always ON
in the benchmark case. However, this can be turned OFF for extended
periods. Hybridizing with LTO achieves more consistent shutdowns
(~8.8 h/day of AUX operation), while NMC ranges from 8.8 to 19.7
h/day, depending on the scenario.

One of the paper’s key insights is that the operational strategy must
be adapted to battery chemistry, the fuel price and load profile. LTO
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batteries, with their superior throughput, allow consistent power plant
scheduling across different scenarios. For NMC batteries, however,
scheduling is more sensitive to fuel price and must prioritize high-cost
periods to optimize battery use. This results in more variable DE usage
in NMC-based systems.

The paper has certain limitations. Economically, it does not study
and account for potential future reductions in battery and converter
costs or the time-discounted value of capital expenditures. Technically,
it assumes constant energy storage efficiency over a 10-year lifetime
and does not consider the possibility of extended battery lifespans
in future technologies. Furthermore, the fuel consumption curves of
the DE have been linearized to ensure compatibility with the MILP
formulation. This introduces approximations that does not capture the
inherent non-nonlinearities of the fuel consumption curve.

In conclusion, the paper shows that hybridizing the power system
of a TSHD leads to economic and operational improvements, with
LTO batteries offering superior performance. These findings validate
the use of a scenario-based optimization framework for designing and
scheduling maritime hybrid systems under uncertainty. The consistent
cost reductions through improved energy efficiency and reduced DE
usage highlight the value of integrating batteries into maritime power
plants.
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Table A.1
P(S,;) for different cases in percentage.
Scenario Case
1 2 3 4 5 6
Sii 12.8 38.5 25.7 171 51.4 34.2
Sis 4.3 12.8 8.6 0 0 0
Sh) 38.5 12.8 25.7 51.4 17.1 34.2
Sia 12.8 4.3 8.6 0 0 0
S5 23.6 23.6 23.6 31.5 315 31.5
Sso 7.9 7.9 7.9 0 0 0
Table A.2
OPEX and lifetime costs for benchmark system in Million Euro.
Benchmark Cost [Million Euro]
Case 1 2 3 4 5 6
Feost 40.1 45.9 43.0 37.5 42.9 40.2
Meost 3.8 3.8 3.8 3.8 3.8 3.8
Lifetime 43.9 49.7 46.8 41.3 46.7 44.0
Table A.3
Lifetime costs in Million Euro.
Case 1 2 3 4 5 6
LTO 42.0 48.5 45.3 39.5 45.6 42.5
NMC 42.3 48.7 45.5 39.7 45.7 42.7
Table A.4
Life time cost split in Million Euro.
Case
1 2 3 4 5 6
Benchmark Fuel 40.1 45.9 43 37.5 42.9 40.2
Maintenance 3.8 3.8 3.8 3.8 3.8 3.8
Fuel 38.7 44.8 41.7 36.1 41.8 39.0
LTO Maintenance 2.1 2.5 2.3 21 2.5 2.3
Battery system 1.2 1.2 1.2 1.2 1.2 1.2
Fuel 38.9 44.9 41.9 36.3 42.0 39.1
NMC Maintenance 2.4 2.7 2.5 2.4 2.7 2.5
Battery system 1.1 1.1 1.1 1.1 1.1 1.1
Table A.5
Payback time and ROI.
Case 1 2 3 4 5 6
Payback time [years]
LTO 3.92 5.01 4.38 4.04 5.17 4.52
NMC 3.98 5.05 4.45 4.11 5.23 4.6
ROI [%]
LTO 155 99 128 147 93 121
NMC 151 98 125 143 91 117
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Table A.6
Cost per MWh in Euros.
Case 1 2 3 4 5 6
Total cost per MWh
Benchmark 186 182 184 175 171 173
LTO 178 177 177 167 166 167
NMC 179 178 178 168 167 168
Fuel cost per MWh
Benchmark 170 168 169 159 157 158
LTO 164 164 164 153 153 153
NMC 164 164 164 154 153 153
Maintenance cost per MWh
Benchmark 16.1 13.9 14.9 16.1 13.9 14.9
LTO 9 9 9 9 9 9
NMC 10 9.7 9.8 10 9.7 9.8
Capex cost per MWh
Benchmark 0 0 0 0 0 0
LTO 5.2 4.5 4.8 5.2 4.5 4.8
NMC 4.6 4 4.3 4.6 4 4.3
Table A.7
Operational cost per MWh per scenario Euros.
Case 1 2 3 4 5 6
Scenario Benchmark
S, 160.9 160.9 160.9 167.4 167.4 167.4
S, 230.2 230.2 230.2 0 0 0
S; 169.1 169.1 169.1 175.7 175.7 175.7
S, 240.1 240.1 240.1 0 0 0
Ss 209.9 209.9 209.9 218 218 218
Se 297.5 297.5 297.5 0 0 0
Scenario LTO
S, 155.9 154.9 155.1 162.2 161.2 161.4
S, 223.6 2229 223.2 0 0 0
S5 154 154 154 160.3 160.3 160.3
S, 222 222 222 0 0 0
Ss 180.1 180.1 180.1 187.5 187.5 187.5
S 260.5 260.5 260.5 0 0 0
Scenario NMC
S, 155.9 155.9 155.9 162.3 162.2 162.3
S, 224.2 224.2 224.2 0 0 0
S; 155.5 155.5 155.5 161.9 161.9 161.9
S, 223.7 222 222 0 0 0
Ss 200 181 194.5 202.8 194.8 194
Se 261.1 260.5 261.3 0 0 0
Table A.8
Operational hours of DE-2 per day.
Case 1 2 3 4 5 6
Scenario LTO
S, 13.3 10.6 11.1 13 10.5 11
S, 11.9 10.3 10.8 0 0 0
S 0 0 0 0 0 0
S, 0 0 0 0 0 0
Scenario NMC
S, 13.3 13.3 13.3 13.3 13.1 13.3
S, 13.3 13.3 13.3 0 0 0
S 2.8 2.8 2.8 2.8 2.8 2.8
S, 2.8 0 0 0 0 0
Table A.9
Operational hours of AUX DE per day.
Case 1 2 3 4 5 6
Scenario LTO
S, 8.8 8.8 8.8 8.8 8.8 8.8
S, 8.8 8.8 8.8 0 0 0
Scenario NMC
S, 19.7 9.4 16.7 17 12.7 12.3
S, 9 8.8 9.2 0 0 0
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