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 A B S T R A C T

Hybrid power systems are increasingly adopted onboard. Lithium-ion batteries now serve as a viable energy 
storage solution that enhances fuel efficiency and reduces the operating hours of main power units, thereby 
reducing operational expenses. However, integrating batteries onboard requires decision-making that accounts 
for diverse scenarios, including battery chemistry, variations in vessel operational profiles, and fluctuating 
fuel prices. To address these challenges, this study investigates whether battery sizing and scheduling of the 
power and energy management system require a scenario-based stochastic decision framework. Specifically, 
it examines how energy storage requirements are influenced by varying load profiles, whether the optimal 
battery size and power management strategy are affected by fuel price fluctuations, and how robust the 
overall strategy remains under operational uncertainties. A deterministic equivalent of a two-stage stochastic 
decision framework is introduced to incorporate these uncertainties, offering insights into the required battery 
technology, capacity, and correlated behavior of onboard energy management. Multiple scenarios are applied 
to a trailing suction hopper dredger, analyzing three load profiles with distinct variations in power demand. 
With reserve power constraints enforced, the optimal battery capacity remains fixed. However, when these 
constraints are relaxed, the optimal battery size becomes more sensitive to fuel price changes. In addition, 
the results showcase reduction in diesel engine operating hours—thereby lowering both fuel consumption and 
maintenance costs, demonstrating that these operational benefits depend not only on the battery’s size but 
also on its available throughput, which allows for deeper cycling.
1. Introduction

Batteries on board vessels serve various functions and offer multiple 
benefits, with most achieving payback periods of less than five years 
for many vessel types, making them an attractive environmental and 
economic investment [1]. Depending on the type of vessel and its 
operational profile, batteries can be utilized in different ways. For 
example, they can reduce diesel engine (DE) usage, thereby lowering 
operating hours and greenhouse gas emissions [2]. They can also 
act as a spinning reserve for dynamic positioning vessels or enable 
optimal loading of primary power sources on board [3], among other 
applications. Traditionally, the maritime industry has relied on mode-
based or rule-based control systems [4]. However, recent studies on 
optimal vessel control aim to minimize operational expenses based 
on fuel consumption, emissions and battery degradation [5–8]. This 
suggests that optimal control or system scheduling can have a varied 
impact depending on fluctuations in operational costs. Over recent 
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years, fuel costs in the maritime industry have varied significantly, as 
shown in Fig.  1. The figure illustrates the distribution of fuel prices at 
the Port of Rotterdam [9]. These fuel price fluctuations represent just 
one of the many uncertainties affecting maritime operations, which also 
include diverse operational needs and environmental influences.

The maritime industry comprises a diverse range of vessels, each 
with unique operational needs [10]. Within each vessel segment, ships 
may perform various tasks, operate under different profiles [11] in-
fluenced by factors such as weather conditions [12,13], or function in 
multiple modes of operation [14]. This variability introduces significant 
uncertainty in decision-making, particularly when determining the 
appropriate energy and power sources on board or identifying the most 
effective operational strategy. Uncertainty thus arises from varying fuel 
prices, technology costs and investment decisions, as well as diverse 
operational requirements [15,16]. 
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Fig. 1. Rotterdam bunker fuel price from 07/03/2022-05/03/2025 [9]. Where 
Px refers to the xth percentile of the fuel price distribution.

This study focuses on hybridizing an existing power plant of a 
trailing suction hopper dredger (TSHD) under the uncertainty of opera-
tional profiles and expenses. Three distinct load profiles are used, each 
under two different fuel price scenarios, resulting in a consideration 
of six scenarios. Furthermore, six cases are formulated, comprising a 
wide range of probable operational situations. Lithium-ion batteries 
are selected for hybridization due to their superior overall perfor-
mance, including higher energy and power densities, longer cycle 
life, and cost effectiveness compared with alternative energy stor-
age solutions for maritime applications [17,18]. Among lithium-ion 
batteries, lithium nickel manganese cobalt oxide (NMC) and lithium–
titanium–oxide (LTO) batteries are preferred for high power applica-
tions [10]. Consequently, these battery types are considered in this 
study.

Based on the literature review in Section 2, two critical research 
gaps are identified in the context of hybrid maritime power plants 
operating under uncertainty.
GAP 1 The joint influence of fuel price volatility and operational 

variability on the design requirements of maritime energy 
storage systems has not been systematically investigated.

GAP 2 Existing studies overlook how such uncertainties affect the 
optimal scheduling of power and energy systems, particu-
larly when battery degradation through lifetime throughput 
constraint is considered.

To address these gaps, this study explores whether the sizing and 
scheduling of hybrid maritime power and energy systems necessitate 
a scenario-based stochastic decision-making framework. Specifically, it 
investigates how energy storage requirements vary under diverse load 
conditions, quantifies the sensitivity of optimal battery sizing to fuel 
price fluctuations, and analyzes the impact of such economic uncer-
tainties on the power and energy management strategy. Furthermore, 
the robustness of the resulting strategy is evaluated against operational 
variability, with particular attention to mission-dependent load profiles 
and battery throughput characteristics.

This paper presents a decision-oriented framework for analyzing the 
influence of operational variability – such as fuel costs, load profiles, 
and battery technologies – on the sizing of energy storage systems and 
the scheduling of hybrid maritime power systems. Rather than focusing 
on selecting a single optimal battery size or chemistry, the study 
emphasizes how these factors interact to shape system requirements 
and control strategies.

The contributions of this work are fourfold. First, it introduces a de-
terministic equivalent of a two-stage stochastic optimization framework 
2 
tailored for joint battery sizing and energy–power plant scheduling 
in the presence of fuel price and operational uncertainties specific to 
maritime applications. Second, it proposes a flexible and extendable 
optimization approach capable of handling multiple maritime load 
profiles and a range of fuel price scenarios, enabling adaptive schedul-
ing strategies under uncertainty. Third, through the evaluation of six 
distinct cases across six scenarios, the study reveals that battery sizing 
requirements are shaped not only by operational profiles and fuel price 
levels, but also by battery chemistry, which plays a critical role in defin-
ing optimal scheduling behavior. Finally, it demonstrates how effective 
battery throughput management strategies can be implemented across 
diverse maritime missions and economic conditions, offering actionable 
insights for robust and adaptable power plant scheduling.

The rest of the paper is structured as follows. Section 2 discusses 
the existing literature on hybrid power plants, energy storage, and 
stochastic decision-making frameworks, providing the basis for this 
research. Section 3 presents the onboard power system and opera-
tional characteristics, detailing the benchmark and proposed system 
topologies. Section 4 describes the scenario generation process and 
outlines the methodology used for optimization, including formulating 
different operational and fuel price scenarios. Section 5 introduces the 
mathematical model, covering the objective function, power balance 
equations, DE and battery constraints. Section 6 presents the results 
and discussion, analyzing the performance of the proposed approach 
under various scenarios and evaluating the impact of operational un-
certainties. Section 7 concludes the study by summarizing key findings, 
discussing implications, and suggesting future research directions.

2. Related work

The problem of optimally sizing energy storage systems for maritime 
applications is well established, whether the focus is on fully electric 
vessels or hybrid power plants [19–27]. While these studies offer 
valuable insights, the majority do not fully account for the uncertainties 
associated with operations and operational expenditure in the maritime 
applications, and only a small number of studies have tried to address 
these complexities.

When uncertainty has been studied, it has been approached in 
various ways within the literature. For instance, in [11], the authors 
synthesize four distinct operational profiles from measured load data 
to examine the optimal sizing of system components alongside their 
energy management strategies. Their study explores how different oper-
ational profiles and emission reduction targets influence hybridization 
design for a particular type of vessel. A two-layer optimization ap-
proach is adopted, with the outer layer minimizing capital expenditure 
(CAPEX) and the inner layer focusing on reducing operational expenses 
(OPEX) and formulating the control strategy. Although this method 
effectively captures the operational strategy for a given load profile, 
it may not fully account for the diverse range of missions a vessel 
could undertake in practice, nor for uncertainties such as fluctuating 
fuel costs.

A two-stage probabilistic risk-averse approach for energy storage 
system sizing in all-electric ships, which integrates both investment and 
operational considerations, is presented in [13]. The authors employ 
Kernel Density Estimation to model environmental uncertainties and 
jointly optimize multi-objective energy storage system sizing and en-
ergy management scheduling while incorporating hydrodynamic con-
straints. However, the study does not account for battery lifetime 
during operation. While stochasticity in the load profile is consid-
ered, battery degradation is omitted, meaning the model does not 
prioritize energy and power management across different scenarios 
based on degradation factors. Furthermore, the authors use a single 
base load profile, introducing stochasticity only within that predefined 
framework, rather than considering multiple diverse load profiles.

The framework developed in [14] considers multiple operational 
profiles, modes of operation, and battery energy throughput. It provides 
insights into operational differences due to variations in load  profiles, 



S. Durgaprasad et al. Energy Conversion and Management: X 28 (2025) 101240 
the combined effect of load profile variability and investment cost, and 
the impact of load fluctuations on battery throughput. The study offers 
a comprehensive understanding of energy storage requirements under 
these conditions. However, the authors do not examine the combined 
variability of operational profiles with other key factors, such as fuel 
prices or maintenance-related OPEX. These elements are crucial, as 
fuel price fluctuations and maintenance costs influence operational 
strategies.

The variability in operational profiles is addressed in [28], where 
the authors develop a representative load profile based on a year-long 
operational dataset, using the most frequently observed load ramps 
and power levels. Additionally, a predefined low-pass filter strategy 
is applied to determine the power split between onboard sources, 
enabling the calculation of degradation incurred by the fuel cell and 
battery. Using this approach, 14 different scenarios are analyzed to 
assess lifetime design and determine the net present value of the 
retrofitted fuel cell-battery propulsion system compared to the existing 
system. Such a study is beneficial to analyze the power split for a given 
load profile and a method to synthesis representative profiles, however, 
it fails to determine when to competitively use the battery system in a 
hybrid power system given the different scenarios.

The uncertainty in battery technology (cost, energy density), fuel 
and electricity prices, and volume opportunity cost for a battery-electric 
container ship is examined in [16]. The authors analyze 45 vessels 
across four propulsion technologies (ICE, NMC, LFP, LTO batteries) 
over passage lengths of 500–20,000 km, using a 3 × 3 scenario ma-
trix that combines carbon pricing with technology development. Their 
approach provides a holistic perspective on the potential adoption 
of battery-electric container ships, both now and in the future. This 
study highlights the necessity of considering different scenarios and 
variability in such assessments.

In [29] the uncertainties in solar radiation and load demand are 
addressed by employing a two-stage stochastic optimization model for 
determining the optimal sizing of a hybrid photovoltaic/diesel/storage 
power system for merchant marine vessels. Solar radiation uncertainty 
is modeled through a Monte Carlo simulation to generate a wide range 
of scenarios, which are then reduced using a scenario reduction tech-
nique to manage computational complexity. The model incorporates 
five operational load modes for the vessel, reflecting different scenarios 
such as cruising or docking, to account for varying energy demands.

While only a limited number of maritime studies have addressed en-
ergy storage system requirements under uncertainty, whether through 
case-based scenario analysis or stochastic optimization frameworks [11,
13,14,16,28,29], such approaches are well-established in the broader 
context of large-scale energy storage systems in terrestrial and grid-
connected applications.

A stochastic model for optimal planning of battery energy storage 
systems for an isolated microgrid is presented in [30]. The uncertainties 
considered in their model include renewable energy generation (solar 
radiation and wind speed) and power demand. These uncertainties 
are modeled through probabilistic scenarios to capture variability, 
employing Monte Carlo simulations. Additionally, uncertainties related 
to battery operation, such as capacity degradation over time, are also 
included. The time step of consideration used for operational analysis 
in the paper is one hour.

A stochastic optimization model for renewable-based microgrid op-
eration incorporating battery operating cost is presented in [31]. Un-
certainties include renewable generation variability (solar and wind) 
and load forecasting errors, modeled via a probabilistic constrained 
approach. Battery-related uncertainties like efficiency losses, capacity 
degradation, and lifecycle costs are also incorporated. The operational 
analysis uses hourly intervals.

A risk-averse two-stage stochastic model for retailer planning, in-
corporating self-generation and storage systems, is presented in [32]. 
The uncertainties considered include electricity pool market prices and 
consumer demand, modeled using scenario-based analysis to handle 
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variability and manage risk. The time step considered for operational 
analysis is one hour. A similar two-stage stochastic optimization frame-
work for isolated hybrid microgrids in a rural system is presented 
in [33]. The uncertainties considered include variability in renewable 
energy resources, specifically solar generation, and stochastic varia-
tions in rural electricity consumption. These uncertainties are modeled 
using probabilistic methods, historical monitoring data, and synthetic 
stochastic scenarios generated. Additionally, uncertainties related to 
the performance and efficiency of system components such as batter-
ies and diesel generators are included. The time step considered for 
operational analysis in the paper is hourly intervals.

Large-scale two-stage or multi-stage stochastic optimization frame-
works often deploy decomposition techniques to exploit the block 
structure between first-stage and second-stage decisions [34,35]. How-
ever, since this work involves a relatively small number of scenarios, 
we can leverage this advantage by directly formulating the two-stage 
stochastic optimization problem in its deterministic equivalent form.

These examples from literature [30–33] illustrate the diversity of 
stochastic optimization frameworks previously applied to onshore en-
ergy systems. However, extending these frameworks to maritime sys-
tems is challenging due to fundamental differences in system dynamics. 
Maritime systems, although similar in power levels to onshore mi-
crogrids, feature dynamics that operate on much shorter timescales, 
from seconds to minutes, depending on battery functions and DE’s 
capable of transitioning between ON and OFF states in a matter of 
minutes. Consequently, the half-hourly or hourly intervals commonly 
adopted in onshore stochastic optimization are inadequate for maritime 
applications, as these intervals cannot capture the rapid charging and 
discharging cycles of batteries nor the complex, short-term operational 
constraints and unit commitment decisions of onboard DEs.

3. Onboard power system and operation

The data acquired for this study come from an existing vessel with 
mechanical propulsion. However, newer versions of the same vessel are 
equipped with electrical propulsion, as shown in Fig.  2(a). The base 
power of the system is taken as 8000 kW. The electrically propelled 
version of this vessel shall be considered the benchmark. The system 
comprises three DE units, two with a capacity of 0.5 p.u. and an 
auxiliary DE with a capacity of 0.123 p.u. The goal is to address the 
research objectives posed in Section 1 by integrating a battery system, 
as shown in Fig.  2(b). The vessel also has multiple non-propulsive loads, 
as illustrated in Fig.  2, which are active during dredging and dumping 
operations.

Two different load profiles, where the TSHD is in operation, are 
considered, along with one load profile representing periods when the 
TSHD is out of operation. The dredging and dumping operations can be 
observed in the operational profiles shown in Figs.  3(a) and 3(b). The 
load profile on Fig.  3(a) involves extended propulsion periods between 
the dredging and dumping cycles. The dredging cycle is characterized 
by an increase in hopper load, whereas the dumping cycle is identi-
fied by a decrease in hopper load. A relatively constant hopper load 
indicates that the TSHD is sailing. The second load profile, shown in 
Fig.  3(b), has minimal time between the dredging and dumping cycles, 
resulting in a shorter overall cycle compared to the first load profile. 
The load profile when the vessel is out of operation is shown in Fig. 
3(c). The power demand during such an operation is significantly lower 
as compared to when the vessel is operational. Moreover, only DE-3 
(auxiliary DE) is operational during this period.

The distribution of power between the DE’s for the operational load 
profiles is shown in Figs.  4(a) and 4(b). A contrast can be observed 
between the power distribution for load profile 1 (Fig.  4(a)) and load 
profile 2 (Fig.  4(b)). In load profile 1, DE-1 and DE-2 are relatively well 
loaded compared to load profile 2. For load profile 1, DE-1 operates 
above 60% for 59.9% of the time, while DE-2 is loaded above 60% for 
53.3% of the time. In contrast, for load profile 2, these percentages drop 
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Fig. 2. Comparison of benchmark and proposed topology.
Fig. 3. Three load-profile plots arranged in a triangular layout: (a) Long periods of sailing, (b) Short periods of sailing, and (c) Operation at port.
to 35.5% and 20.8% for DE-1 and DE-2, respectively. This highlights 
the significant difference between the two operational profiles and 
suggests a greater potential for improving fuel efficiency in the second 
load profile. Similarly, the histogram of the auxiliary (AUX) DE loading 
during periods when the vessel is out of operation is shown in Fig.  4(c), 
where the AUX DE operates under low loading conditions.
4 
The fuel consumption of the DE’s can be estimated using the specific 
fuel oil consumption (SFOC) curves typically provided by the manufac-
turer, as shown by the original SFOC data points (kg/kWh) in Fig.  5. 
Interpolating these data points results in a second-order relationship be-
tween DE load and fuel consumption, as illustrated by the quadratic fit 
curve. However, these curves can be adjusted by multiplying the data 
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Fig. 4. Histograms of DE loading arranged in a triangular layout: (a) Load profile 1, (b) Load profile 2, and (c) Load profile 3.
points by the corresponding power, yielding the fuel consumption flow 
(kg/h), as shown in Fig.  5. Furthermore, interpolating these adjusted 
data points results in a linear relationship between power demand and 
fuel consumption flow (kg/h) [14], represented by the linear fit line 
in Fig.  5. In addition to the fuel consumption, there are maintenance 
costs (Cmaint) associated with the running hours of the DE. For this 
specific vessel, the associated costs are considered to be e30 per hour 
of operation for DE-1 and DE-2 and e7.5 per hour for the DE 3 (AUX 
DE).

4. Optimization framework and scenario design

This section presents the overall optimization methodology and the 
structure of the scenario and case generation process. Section 4.1 intro-
duces the four-step modeling and solution framework used to determine 
battery sizing and onboard scheduling strategies under uncertainty. 
Section 4.2 then details the design of a structured scenario matrix and 
associated cases, used to explore the interaction between fuel price 
5 
volatility, mission-dependent load profiles, and battery chemistries in 
a tractable yet representative manner.

4.1. Optimization methodology

The methodological workflow developed to address the research 
objectives is illustrated in Fig.  6. It consists of four key steps, de-
signed to systematically integrate scenario generation, optimization, 
and techno-economic evaluation. In the first step, raw vessel load 
profile data are analyzed and preprocessed to remove inconsistencies 
and ensure temporal alignment. This provides a clean and represen-
tative set of operational conditions for downstream modeling. In the 
second step, discrete scenarios are constructed by combining variations 
in mission-dependent load profiles with fuel price fluctuations. These 
scenarios are grouped into multiple cases, each representing a distinct 
realization of operational and economic conditions. In the third step, 
the deterministic equivalent of a two-stage stochastic optimization 
problem is formulated and solved for each case. The first-stage decision 
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Fig. 5. Specific fuel consumption curve of 4-MW DE onboard. Coefficient 
values provided in Table  4.

corresponds to the sizing of the battery system, while the second-stage 
recourse actions govern the power and energy scheduling across the 
scenario tree. The onboard hybrid energy system is modeled using a 
Mixed-Integer Linear Programming (MILP) formulation. The optimiza-
tion objective  minimizes the total lifetime cost – including capital 
expenditures, operational expenditures, and degradation-related costs 
– subject to system constraints and degradation limits. This process is 
performed for two representative battery chemistries: LTO and NMC. 
Finally, the fourth step involves a financial post-analysis, where key 
performance indicators such as Payback Period and Return on Invest-
ment (ROI) are computed for each case–chemistry pair. The complete 
implementation logic is summarized in Algorithm 1.

The optimization is carried out using the academic license of 
Gurobi, with solver version 12.0.1 [36].

Algorithm 1 : Implementation of methodology
1: for chem in {LTO, NMC} do ⊳ Select battery chemistry
2:  for case in {1,. . . ,12} do ⊳ Select case
3:  Solve the optimization problem to minimize .
4:  Store results: OPEX, CAPEX, Power Split, Battery Size, etc.
5:  end for
6: end for
7: Perform financial analysis: Compute Payback Period and ROI.

4.2. Case and scenario generation

In this work, a case is defined as a set of distinct scenarios of 
operation, where a scenario refers to a specific combination of the 
vessel’s operational profile and the corresponding fuel price during 
that profile. Ideally, scenario and case generation would be based on 
a probability distribution function representing the likelihood of an 
event occurring. However, this information is considered proprietary 
and strategically sensitive. Therefore, a set of cases is developed to 
address the research objectives posed in Section 1.

Fig.  1 presents the probability density function of fuel prices based 
on historical data collected between 07/03/22 and 05/03/25, retrieved 
from [9]. The histogram is segmented using percentile-based thresholds 
to define representative fuel price levels. For example, dividing the 
distribution at the 33.3% and 66.67% percentiles yields three seg-
ments, whereas a 75% threshold results in two. Median values are 
sampled from within each segment to serve as representative fuel prices 
6 
Table 1
Median fuel price (CFuel) values in e-ton.
 Percentile 0–33.3% 33.3–66.67% 66.67%–100% 
 CFuel 679 792 1059  
 Percentile 0–75% 75%–100%  
 CFuel 759 1114  
 Percentile 0–100%
 CFuel 792

in the scenario generation process, alongside the overall median, as 
summarized in Table  1.

To balance representativeness and computational tractability, the 
75% percentile split is selected as the primary basis for scenario defi-
nition. However, the full 0%–100% percentile range is also considered 
in select cases to assess sensitivity in energy storage requirements and 
scheduling outcomes under broader fuel price variability.

Three different operational profiles are considered, as shown in 
Figs.  3(a)–3(c). The percentage of time a specific load profile occurs 
is denoted by i, where i represents the load profile number. The 
operational time during which the vessel is at port or not engaged in 
dredging operations (load profile 3) is assumed to be 100 days per year. 
Therefore, the corresponding value for 3 = 100∕365

However, the percentage of time the vessel operates under load pro-
files 1 and 2 is uncertain. Three different possibilities are considered:

1. The vessel spends 25% of the remaining time in load profile 1 
and 75% in load profile 2.

2. The vessel spends 75% of the remaining time in load profile 1 
and 25% in load profile 2.

3. The vessel splits the remaining time equally between load pro-
files 1 and 2.

The split between load profile 1 and load profile 2 is represented by 
𝜔1 and 𝜔2, respectively. The percentage of time spent in load profiles 
1 and 2 is calculated as: 
i = 𝜔i⋅

(

1 − 3), i = 1, 2 (1)

With three load profiles and two different fuel prices, a total of six 
scenarios (denoted by 𝑖,𝑗) are formed—i.e., two fuel price conditions 
𝑗 ∈ [1, 2] for each of the three load profiles. Since there are three 
different possibilities for 𝜔i, this results in three distinct cases.

Similarly, in the case where a single fuel price is considered across 
all operational profiles, three scenarios are present—each scenario 
corresponding to one of the three load profiles but under the same fuel 
price. Again, with three configurations of 𝜔i, this yields three additional 
cases. A total of six cases are defined in the study:

• Cases 1–3: Each case includes six scenarios, constructed from all 
possible combinations of three operational load profiles and two 
distinct fuel price levels.

• Cases 4–6: Each case includes three scenarios, corresponding to 
the three load profiles evaluated under a single, fixed fuel price 
condition.

For cases 1–3, two different fuel costs are considered: CFuel1  and 
CFuel2 , and 𝜆1 and 𝜆2 denote the probabilities associated with the median 
fuel prices in two different segments of the fuel price distribution. As 
discussed earlier, when using a two-segment approach based on per-
centiles, the fuel price distribution is split at the 75% percentile. There-
fore, CFuel1  corresponds to the median fuel price in the first segment 
(i.e., from 0% to 75%), where 𝜆1 = 0.75. Similarly, CFuel1  corresponds 
to the second segment (i.e., from 75% to 100%), where 𝜆2 = 0.25.

For cases 4–6, with one fuel cost are considered: CFuel1  where 𝜆1
denotes the probabilities associated with the median fuel prices in 
one different segment of the fuel price distribution. Therefore, CFuel1
corresponds to the median fuel price of the entire distribution (i.e., from 
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Fig. 6. 4-step methodology.
Table 2
Cases and Scenarios for dual fuel price (1–3). Where 
𝜔𝐢, 𝜆𝐣 represent the probability of load profile (i) and 
fuel price (j) occurrence.

Case 1 2 3

𝜔𝟐

𝜔𝟏
0.75

0.25
0.25

0.75
0.5

0.5

𝜆𝟏 0.75 0.75 0.75
𝜆𝟐 0.25 0.25 0.25

Table 3
Cases and Scenarios for single fuel price (4–6). Where 
𝝎𝐢, 𝜆𝐣 represent the probability of load profile (i) and 
fuel price (j) occurrence.

Case 4 5 6

𝜔𝟐

𝜔𝟏
0.25

0.75
0.75

0.25
0.5

0.5

𝜆𝟏 1 1 1
𝜆𝟐 0 0 0

% to 100%), where 𝜆1 = 1. In this case, CFuel2  and 𝜆2 can be considered 
o be 0.
A detailed structure of the scenario tree is presented in Fig.  7 and 

he considered values of 𝜔i and 𝜆j are shown. The probability that a 
pecific scenario 𝑖,𝑗 occurs in a case is given by: 

(𝑖,𝑗 ) = 𝑖 ⋅ 𝜆𝑗 ,where 𝑖 ∈ {1, 2, 3}, 𝑗 ∈ {1, 2} (2)

The values for 𝑃 (𝑖,𝑗 ) associated with different cases can be found 
n Table  A.1. Given the limited number of scenarios, the two-stage 
tochastic problem can be reformulated as its deterministic equivalent 
nd solved accordingly.

. Mathematical model

This section presents the mathematical formulation of the hybrid 
ower and energy management optimization problem. The model in-
egrates component-level operational constraints, scenario-based un-
ertainty, and techno-economic metrics into a unified framework. All 
onstants used throughout the formulation are summarized in Table 
, while the decision variables – both continuous and binary – are 
isted in Table  5. To enhance readability, constants are represented in 
tandard font, whereas decision variables are highlighted in bold. The 
7 
optimization framework captures load balancing, generator logic, bat-
tery dynamics, and financial performance under multiple operational 
scenarios, as described in subsequent subsections.

5.1. Objective function

The objective function () is listed in Eq. (3). Here, 𝐅cost𝐢,𝐣
 is the fuel 

cost associated with scenario 𝑖,𝑗 for load profile 𝑖 and fuel price 𝑗. Sim-
ilarly, 𝐌cost

𝐢,𝐣
 represents the maintenance costs, and 𝐁cost represents the 

capital investment required to install the battery system. The expected 
battery lifetime is denoted by Tbatlife, and the duration of each load profile 
is represented as Tprofile𝑖 .

The fuel consumption is calculated as shown in Eq. (3b), where 
𝐏𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭) is the power produced by the 𝑘th DE at time 𝑡. The operational 
status of the individual DE is given by the binary decision variable 
𝐔𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭). The cost of fuel is denoted by CFuel𝑗 . The SFOC coefficients 
are denoted by 𝛼𝑘 and 𝛽𝑘. The summation is taken over 𝑡 = 1,… , 𝑇𝑖,𝑗 , 
where 𝑇𝑖 represents the total number of time steps in scenario 𝑖,𝑗 .

The maintenance cost associated with the operational hours of the 
DE is computed as per Eq. (3c). The maintenance cost per hour of the 
DE is denoted by Cmaint𝑘 .

Finally, the cost of installing a battery onboard is calculated using 
Eq. (3d), where 𝐒Bat is the size of the battery and Cbat is the cost per 
kWh of battery capacity. The cost of the inverter per kW is denoted by 
Cinv and the minimum continuous discharge power per kWh of energy 
that the battery can produce is denoted by P

P
E
dch.

The scenario probabilities 𝑃 (𝑖,𝑗 ) account for both the time spent 
at a particular operational profile and the fuel price occurrence. The 
total scenario probability is normalized such that the sum over all 
combinations equals 1.

min = 𝐁cost
⏟⏟⏟
CAPEX

+

(

3
∑

𝑖=1

2
∑

𝑗=1

(

𝐅cost𝐢,𝐣
+𝐌cost

𝐢,𝐣

)

⋅ 𝑃 (𝑖,𝑗 ) ⋅
Tbatlife

Tprofile𝑖
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

OPEX

)

, ∀ 𝑖, 𝑗 (3a)

Fcost𝑖,𝑗
=

3
∑

𝑇𝑖
∑

(

𝐏𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭) ⋅ 𝛼 + 𝛽 ⋅ 𝐔𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭)
)

⋅ CFuel𝑗 𝛥𝑡, ∀ 𝑖, 𝑗 (3b)

𝑘=1 𝑡=1
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Fig. 7. Scenario tree of optimization model.
Table 4
Model constants and notation used in the optimization.
 Symbol Unit Description Value or Reference  
 𝑖 – Load profile index [1, 2, 3]  
 𝑗 – Fuel price index [1, 2]  
 𝑘 – DE index [1, 2, 3]  
 𝑡 – Time step index [1, 2,… , 𝑇𝑖]  
 𝑇𝑖 – Number of time steps in load profile i [1103, 259, 600]  
 𝑖,𝑗 – Scenario formed by load profile i and fuel price j Fig.  7 and Tables  2 and 3  
 𝑃 (𝑖,𝑗 ) – Probability of scenario Table  A.1  
 𝜔𝑖 – Fraction of remaining time assigned to load profile 𝑖 Tables  2 and 3  
 𝑖 – Load profile time percentage Eq. (1)  
 3 – Time spent in port profile (load profile 3) 100∕365 ≈ 0.274  
 𝜆𝑗 – Fuel price scenario probability Tables  2 and 3  
 Tbatlife year Battery lifetime 10  
 Tprofile𝑖 year Duration of load profile 𝑖 [𝑇𝑖] ⋅ 365−1  
 CFuel𝑗 e/ton Fuel cost per scenario Table  1  
 [𝛼𝑘 , 𝛽𝑘] [ton/kWh, ton] Fuel model coefficients [0.1822, 30.8397] ⋅ 10−3 , 𝑘 ∈ [1, 2] 
 [𝛼3 , 𝛽3] [ton/kWh, ton] Fuel model coefficients [0.1971, 16.482] ⋅ 10−3 𝑘 = 3  
 CMaint e/h DE maintenance cost per hour [DE1,2, AUX DE] [30, 7.25]  
 Cbat e/kWh Battery system cost [LTO,NMC] [930, 500]  
 Cinv e/kW Inverter cost 60 [37]  
 𝜂𝑖 – Inverter loss 2.5%, 𝑖 ∈ [1, 2], [16]  
 𝜂𝑖 – Inverter loss 5%, 𝑖 = 3  
 Pdemand𝑖 kW Power demand for load profile i Figs.  3(a)–3(c)  
 BigM – Big-M constant for logic constraints 8000  
 PR kW Required reserve power 8000  
 P P

E
dch h−1 Continuous discharge power per kWh [3.75, 2.35] [10]  

 P P
E
ch h−1 Continuous charge power per kWh [4.21, 0.93] [10]  

 TminON h Minimum DE ON time 0.5  
 TminOFF h Minimum DE OFF time 0.5  
 PDEmin kW Minimum DE power output 100  
 PDEmax kW Maximum DE power output 4000  
 𝛥PDEmax kW/min Maximum DE ramp rate 2000  
 Ncycles – Battery lifetime in cycles [LTO,NMC] [20 000, 7000]  
 Savings e Total savings over benchmark scenario Defined in Eq. (18a)  
 TPB years Payback time Defined in Eq. (18b)  
 ROI – Return on Investment Defined in Eq. (18c)  
8 
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Table 5
Decision variables.
 Decision variables Unit Description  
 Continuous
 𝐁Cost e Battery system cost  
 𝐅Cost𝐢,𝐣

e Fuel cost  
 𝐌Cost

𝐢,𝐣
e Maintenance cost  

 𝐏DE𝐢,𝐣,𝐤
(𝐭) kW DE power  

 𝐒Bat kWh Battery size  
 𝐏bat𝐢,𝐣

(𝑡) kW Net battery power  
 𝐏dch𝐢,𝐣

(𝑡) kW Battery discharge power  
 𝐏ch𝐢,𝐣

(𝑡) kW Battery charge power  
 𝛥𝐏DE𝐢,𝐣 ,𝐤

(𝑡) kW Ramp rate of DE  
 𝐓DEON𝐢,𝐣 ,𝐤

(𝑡) 𝛥𝑡 DE ON time counter  
 𝐓DEOFF𝐢,𝐣 ,𝐤

(𝑡) 𝛥𝑡 DE OFF time counter  
 𝐄bat𝐢,𝐣

(𝑡) kWh Energy in battery  
 Binary
 𝐔DE𝐢,𝐣 ,𝐤

(𝑡), 𝐔̄DE𝐢,𝐣 ,𝐤
(𝑡) – DE status (ON/OFF)  

 𝐔DEON𝐢,𝐣 ,𝐤
(𝑡) – Marks last time step the DE was ON  

 𝐔DEOFF𝐢,𝐣 ,𝐤
(𝑡) – Marks last time step the DE was OFF 

 𝐔dch𝐢,𝐣
(𝑡) – Battery discharge status  

 𝐔ch𝐢,𝐣
(𝑡) – Battery charging status  

Mcost
𝑖,𝑗

=
3
∑

𝑘=1

𝑇𝑖
∑

𝑡=1
𝐔𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭) ⋅ Cmaint𝑘 𝛥𝑡, ∀ 𝑖, 𝑗 (3c)

Bcost = 𝐒Bat ⋅ Cbat + 𝐒Bat ⋅ P
P
E
dch ⋅ C

inv (3d)

5.2. Load balance

The power system’s load balance equation is given in Eq. (4). In this 
equation, 𝐏bat𝐢,𝐣

(𝐭) represents the power delivered by the battery, while 
Pdemand𝑖  denotes the total power demand, including both propulsion 
power and electrical loads. The charging and discharging efficiency 
is represented by 𝜂, whereas the magnitudes of the charging and 
discharging power are given by 𝐏ch𝐢,𝐣 (𝐭) and 𝐏

dch
𝐢,𝐣

(𝐭), respectively.

3
∑

𝑘=1
𝐏𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭) + 𝐏𝐛𝐚𝐭
𝐢,𝐣

(𝐭)

= Pdemand𝑖 + 𝜂 ⋅
(

𝐏𝐝𝐜𝐡
𝐢,𝐣

(𝐭) + 𝐏𝐜𝐡
𝐢,𝐣

(𝐭)
)

, ∀ 𝑖, 𝑗, 𝑡 (4)

5.3. Diesel engine

The DE can generate power within a specified range, constrained 
by a minimum and maximum power limit, as represented in (5). Here, 
PDE𝑘−min and PDE𝑘−max denote the minimum and maximum power output 
of the DE when it is operating. The binary variable 𝐔𝐃𝐄

𝐢,𝐣 ,𝐤
(𝐭) determines 

whether the 𝑘th DE is active in scenario 𝑖,𝑗 at time 𝑡, and 𝐏𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭)
represents its corresponding power output. 
𝐔𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭) ⋅ PDE𝑘−min ≤ 𝐏𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭) ≤ 𝐔𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭) ⋅ PDE𝑘−max, ∀ 𝑖, 𝑗, 𝑘, 𝑡 (5)

The AUX DE is turned OFF during load profiles 1 and 2, while both 
DE-1 and DE-2 are turned OFF during load profile 3. These constraints 
are shown in Eq. (6).

𝐔𝐃𝐄
𝐢,𝐣 ,𝟑

= 0 ∀ 𝑖, 𝑗 ∈ [1, 2] (6a)

𝐔𝐃𝐄
𝟑,𝐣 ,𝐤

= 0 ∀ 𝑗, 𝑘 ∈ [1, 2] (6b)
9 
The DE cannot be turned ON and OFF repeatedly due to operational 
constraints and the fuel consumed during start-up. These operational 
limitations are modeled using the Big M integer method, as shown 
in Eq. Eq.  (7). The decision variable 𝐓𝐃𝐄𝐎𝐍

𝐢,𝐣 ,𝐤
(𝐭) is introduced to track 

the duration for which the 𝑘th DE has been continuously operating in 
scenario 𝑖,𝑗 . The Big M integer is denoted by BigM. If the DE is ON, 
the value of 𝐓𝐃𝐄𝐎𝐍

𝐢,𝐣 ,𝐤
(𝐭) is incremented by 1 during each time step.

𝐓𝐃𝐄𝐎𝐍
𝐢,𝐣 ,𝐤

(𝐭) ≤ 𝐓𝐃𝐄𝐎𝐍
𝐢,𝐣 ,𝐤

(𝐭 − 𝟏) + 1

+ BigM ⋅
(

1 − 𝐔𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭)
)

, ∀ 𝑖, 𝑗, 𝑘, 𝑡 ≠ 1, (7a)

𝐓𝐃𝐄𝐎𝐍
𝐢,𝐣 ,𝐤

(𝐭) ≥ 𝐓𝐃𝐄𝐎𝐍
𝐢,𝐣 ,𝐤

(𝐭 − 𝟏) + 1

− BigM ⋅
(

1 − 𝐔𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭)
)

, ∀ 𝑖, 𝑗, 𝑘, 𝑡 ≠ 1, (7b)

𝐓𝐃𝐄𝐎𝐍
𝐢,𝐣 ,𝐤

(𝐭) ≤ BigM ⋅ 𝐔𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭), ∀ 𝑖, 𝑗, 𝑘, 𝑡 ≠ 1, (7c)

𝐓𝐃𝐄𝐎𝐍
𝐢,𝐣 ,𝐤

(𝐭) ≥ −BigM ⋅ 𝐔𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭), ∀ 𝑖, 𝑗, 𝑘, 𝑡 ≠ 1. (7d)

To ensure that the DE remains ON for a minimum duration (TminON ), 
a binary decision variable 𝐔𝐃𝐄𝐎𝐍

𝐢,𝐣 ,𝐤
(𝐭) is introduced to identify the final 

time step at which the 𝑘th DE is ON in scenario 𝑖,𝑗 , as modeled in 
Eq. (8). Furthermore, when 𝐔𝐃𝐄𝐎𝐍

𝐢,𝐣 ,𝐤
(𝐭) equals 1, Eq. (8d) ensures that the 

continuous variable 𝐓𝐃𝐄𝐎𝐍
𝐢,𝐣 ,𝐤

(𝐭) is greater than or equal to the minimum 
ON time TminON .

𝐔𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭 − 𝟏) − 𝐔𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭) ≤ 𝐔𝐃𝐄𝐎𝐍
𝐢,𝐣 ,𝐤

(𝐭 − 𝟏), ∀ 𝑖, 𝑗, 𝑘, 𝑡 ≠ 1, (8a)

1 − 𝐔𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭) ≥ 𝐔𝐃𝐄𝐎𝐍
𝐢,𝐣 ,𝐤

(𝐭 − 𝟏), ∀ 𝑖, 𝑗, 𝑘, 𝑡 ≠ 1, (8b)

𝐔𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭 − 𝟏) ≥ 𝐔𝐃𝐄𝐎𝐍
𝐢,𝐣 ,𝐤

(𝐭 − 𝟏), ∀ 𝑖, 𝑗, 𝑘, 𝑡 ≠ 1, (8c)

𝐓𝐃𝐄𝐎𝐍
𝐢,𝐣 ,𝐤

(𝐭) ≥ TminON − BigM ⋅
(

1 − 𝐔𝐃𝐄𝐎𝐍
𝐢,𝐣 ,𝐤

(𝐭)
)

, ∀ 𝑖, 𝑗, 𝑘, 𝑡 (8d)

Similarly, a minimum OFF time (TminOFF) is enforced using equation 
Eq. (9). A continuous decision variable, 𝐓𝐃𝐄𝐎𝐅𝐅

𝐢,𝐣 ,𝐤
(𝐭), is introduced to track 

the OFF time, analogous to 𝐓𝐃𝐄𝐎𝐍
𝐢,𝐣 ,𝐤

(𝐭), as shown in Eq. (9). This decision 
variable increments by 1 at each time step when the DE is OFF. The OFF 
status of the DE is modeled using a binary decision variable, 𝐔̄𝐃𝐄

𝐢,𝐣 ,𝐤
(𝐭), 

which takes the value 1 when the DE is OFF, as defined in Eq. (10).

𝐓𝐃𝐄𝐎𝐅𝐅
𝐢,𝐣 ,𝐤

(𝐭) ≤ 𝐓𝐃𝐄𝐎𝐅𝐅
𝐢,𝐣 ,𝐤

(𝐭 − 𝟏) + 1

+ BigM ⋅
(

1 − 𝐔̄𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭)
)

, ∀ 𝑖, 𝑗, 𝑘, 𝑡 ≠ 1, (9a)

𝐓𝐃𝐄𝐎𝐅𝐅
𝐢,𝐣 ,𝐤

(𝐭) ≥ 𝐓𝐃𝐄𝐎𝐅𝐅
𝐢,𝐣 ,𝐤

(𝐭 − 𝟏) + 1

− BigM ⋅
(

1 − 𝐔̄𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭)
)

, ∀ 𝑖, 𝑗, 𝑘, 𝑡 ≠ 1, (9b)

𝐓𝐃𝐄𝐎𝐅𝐅
𝐢,𝐣 ,𝐤

(𝐭) ≤ BigM ⋅ 𝐔̄𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭), ∀ 𝑖, 𝑗, 𝑘, 𝑡, (9c)

𝐓𝐃𝐄𝐎𝐅𝐅
𝐢,𝐣 ,𝐤

(𝐭) ≥ −BigM ⋅ 𝐔̄𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭), ∀ 𝑖, 𝑗, 𝑘, 𝑡. (9d)

𝐔̄𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭) + 𝐔𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭) = 1, ∀ 𝑖, 𝑗, 𝑘, 𝑡. (10)

Eq. (11) is analogous to Eq. (8), but it ensures that the DE remains 
OFF for at least a duration of TminOFF. To enforce this constraint, a binary 
decision variable 𝐔𝐃𝐄𝐎𝐅𝐅

𝐢,𝐣 ,𝐤
(𝐭) is introduced to identify the last time step 

when the 𝑘th DE was OFF before being switched ON again in scenario 
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𝑖,𝑗 . This guarantees that the continuous decision variable 𝐓𝐃𝐄𝐎𝐅𝐅
𝐢,𝐣 ,𝐤

(𝐭) in 
Eq. (11d) is greater than or equal to TminOFF whenever 𝐔

𝐃𝐄𝐎𝐅𝐅
𝐢,𝐣 ,𝐤

(𝐭) = 1.

𝐔̄𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭 − 𝟏) − 𝐔̄𝐃𝐄
𝐢,𝐣 ,𝐤(𝐭)

≤ 𝐔𝐃𝐄𝐎𝐅𝐅
𝐢,𝐣 ,𝐤

(𝐭 − 𝟏), ∀ 𝑖, 𝑗, 𝑘, 𝑡 ≠ 1, (11a)

1 − 𝐔̄𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭) ≥ 𝐔𝐃𝐄𝐎𝐅𝐅𝐢,𝐣 ,𝐤(𝐭 − 𝟏), ∀ 𝑖, 𝑗, 𝑘, 𝑡 ≠ 1, (11b)

𝐔̄𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭 − 𝟏) ≥ 𝐔𝐃𝐄𝐎𝐅𝐅𝐢,𝐣 ,𝐤(𝐭 − 𝟏), ∀ 𝑖, 𝑗, 𝑘, 𝑡 ≠ 1, (11c)

𝐓𝐃𝐄𝐎𝐅𝐅
𝐢,𝐣 ,𝐤

(𝐭) ≥ TminOFF

− BigM ⋅
(

1 − 𝐔̄𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭 − 𝟏)
)

, ∀ 𝑖, 𝑗, 𝑘, 𝑡 ≠ 1. (11d)

When two DE generator sets operate simultaneously and are con-
nected to the same AC bus, they function in parallel, sharing the 
load according to their capacity. For equally sized DEs, the load is 
distributed equally. This behavior is modeled in Eq. (12). In this 
formulation, Eq. (12a) ensures that DE-1 is prioritized to be ON before 
DE-2 in each scenario 𝑖,𝑗 . This simplification facilitates modeling of 
parallel loading conditions, where Eqs. (12b)–(12d) ensure that if DE-2 
is ON, the load is equally distributed between both DEs.

𝐔𝐃𝐄
𝐢,𝐣 ,𝟏

(𝐭) ≥ 𝐔𝐃𝐄
𝐢,𝐣 ,𝟐

(𝐭), ∀ 𝑖, 𝑗, 𝑡, (12a)

𝐏𝐃𝐄
𝐢,𝐣 ,𝟐

(𝐭) ≥ BigM ⋅ 𝐔𝐃𝐄
𝐢,𝐣 ,𝟐

(𝐭), ∀ 𝑖, 𝑗, 𝑡, (12b)

𝐏𝐃𝐄
𝐢,𝐣 ,𝟐

(𝐭) ≥ 𝐏𝐃𝐄
𝐢,𝐣 ,𝟏

(𝐭) − BigM ⋅
(

1 − 𝐔𝐃𝐄
𝐢,𝐣 ,𝟐

(𝐭)
)

, ∀ 𝑖, 𝑗, 𝑡, (12c)

𝐏𝐃𝐄
𝐢,𝐣 ,𝟏

(𝐭) ≥ 𝐏𝐃𝐄
𝐢,𝐣 ,𝟐

(𝐭), ∀ 𝑖, 𝑗, 𝑡. (12d)

The ramp rates of the DEs are captured by the decision variable 
∆𝐏𝐃𝐄

𝐢,𝐣 ,𝐤
(𝐭), as defined in Eq. (13). Once the solution to the objective 

function in Eq. (3a) is obtained, ∆𝐏𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭) is minimized in a secondary 
optimization step, while keeping the solution of Eq. (3a) and the 
decision variable 𝐒Bat fixed as constraints. This approach ensures a rea-
sonable power split without altering the previously obtained solution. 
Additionally, Eq. (13c) enforces the ramping limits of the DE, where 
𝛥PDEmax represents the maximum allowable power ramp for each DE at 
each time step.

∆𝐏𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭) ≥ 𝐏𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭) − 𝐏𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭 − 𝟏), ∀ 𝑖, 𝑗, 𝑘, 𝑡 ≠ 1, (13a)

∆𝐏𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭) ≥ 𝐏𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭 − 𝟏) − 𝐏𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭), ∀ 𝑖, 𝑗, 𝑘, 𝑡 ≠ 1, (13b)

∆𝐏𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭) ≤ 𝛥PDEmax, ∀ 𝑖, 𝑗, 𝑘, 𝑡 ≠ 1. (13c)

Turning off a DE implies that the available power onboard to 
compensate for sudden changes in load is reduced, and system redun-
dancy is also decreased. To address this, a power reserve constraint 
is introduced in Eq. (14). This constraint ensures that a minimum of 
8000 kW is available in the system at all times whenever a battery is 
added to facilitate the shutdown of a DE. 

PR𝐢,𝐣 ≥
2
∑

𝑘=1
𝐔𝐃𝐄
𝐢,𝐣 ,𝐤

(𝐭) ⋅ PDEmax + 𝐒Bat ⋅ P
P
E
dch, ∀ 𝑖 ∈ [1, 2], 𝑗, 𝑡 (14)

5.4. Battery

The energy stored in the battery is represented by the decision 
variable 𝐄bat𝐢,𝐣

(𝐭). The battery’s energy is modeled in Eq. (15a). Fig.  7 
illustrates the linking constraints between different scenarios within an 
operational profile. Specifically, Eqs. (15b) and (15c) enforce a linking 
constraint to ensure that the energy stored in the battery at the end 
of each load profile is equal to the energy available at the beginning 
of the load profile. The energy management system must also ensure 
that the battery is not fully charged or discharged. This is achieved by 
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constraining the battery’s state of energy between 10% and 90% of its 
total capacity, as shown in Eq. (15d). The battery system is also limited 
by a maximum continuous power for both charging and discharging. 
Typically, this limit is defined by the battery’s C-rate. However, since 
this energy and power model does not explicitly account for current 
and voltage, a charging power-to-energy ratio P

P
E
ch and a discharging 

ratio P
P
E
dch are introduced. These ratios define the maximum continuous 

charging and discharging power the battery can provide per unit of 
installed energy capacity.

𝐄bat𝐢,𝐣
(𝐭) = 𝐄bat𝐢,𝐣

(𝐭 − 𝟏) − 𝐏bat𝐢,𝐣
(𝐭) ⋅ 𝛥𝑡, ∀ 𝑖, 𝑗, 𝑡 ≠ 1, (15a)

𝐄bat𝐢,𝐣
(𝟏) = 𝐄bat𝐢 (𝟏), ∀ 𝑖, 𝑗, (15b)

𝐄bat𝐢,𝐣
(Tprofile𝐢 ) = 𝐄bat𝐢 (Tprofile𝐢 ), ∀ 𝑖, 𝑗, (15c)

0.1 ⋅ 𝐒Bat ≤ 𝐄bat𝐢,𝐣
(𝐭) ≤ 0.9 ⋅ 𝐒Bat, ∀ 𝑖, 𝑗, 𝑡, (15d)

− 𝐒Bat ⋅ P
P
E
ch ≤ 𝐏bat𝐢,𝐣

(𝐭) ≤ 𝐒Bat ⋅ P
P
E
dch, ∀ 𝑖, 𝑗, 𝑡. (15e)

Fig.  7 illustrates the constraints linking different operational pro-
files. Such a constraint defines the maximum allowable battery through-
put over its lifetime. This is modeled in Eq. (16), where the total 
battery throughput accounts for various operational profiles (𝑖) and fuel 
price scenarios (𝑗), indexed by scenario 𝑖,𝑗 . This linking constraint 
enables flexible battery usage across different load profiles and fuel 
price scenarios, allowing the battery to be utilized more intensively in 
certain periods if it is beneficial to the overall system performance.

2
∑

𝑖=1

3
∑

𝑗=1

𝑇𝑖
∑

𝑡=1
𝐏dch𝑖,𝑗

(𝑡)𝛥𝑡 ⋅

∑2
𝑖=1

∑3
𝑗=1 𝑃 (𝑖,𝑗 ) ⋅ T

profile
𝑖

Tbatlife
≤ 𝐒Bat ⋅ Ncycles (16a)

The discharge power 𝐏dch𝐢,𝐣
 and charging power 𝐏ch𝐢,𝐣  of the battery, 

collectively represented as 𝐏bat𝐢,𝐣
, are determined according to Eq. (17). 

Eqs. (17a)–(17f) ensure that the decision variable 𝐏dch𝐢,𝐣
 captures only the 

positive portion of 𝐏bat𝐢,𝐣
, where 𝐔dch𝐢,𝐣

 is a binary decision variable set to 
1 when the battery is discharging. Furthermore, Eq. (17g) ensures that 
the decision variable 𝐏ch𝐢,𝐣  reflects the magnitude of the charging power.

𝐏bat𝐢,𝐣
(𝐭) ≥ −BigM ⋅

(

1 − 𝐏dch𝐢,𝐣
(𝐭)

)

, ∀ 𝑖, 𝑗, 𝑡, (17a)

𝐏bat𝐢,𝐣
(𝐭) ≤ BigM ⋅ 𝐏dch𝐢,𝐣

(𝐭), ∀ 𝑖, 𝑗, 𝑡, (17b)

𝐏dch𝐢,𝐣
(𝐭) ≤ 𝐏bat𝐢,𝐣

(𝐭) + BigM ⋅
(

1 − 𝐔dch𝐢,𝐣
(𝐭)

)

, ∀ 𝑖, 𝑗, 𝑡, (17c)

𝐏dch𝐢,𝐣
(𝐭) ≥ 𝐏bat𝐢,𝐣

(𝐭) − BigM ⋅
(

1 − 𝐔dch𝐢,𝐣
(𝐭)

)

, ∀ 𝑖, 𝑗, 𝑡, (17d)

𝐏dch𝐢,𝐣
(𝐭) ≤ BigM ⋅ 𝐔dch𝐢,𝐣

(𝐭), ∀ 𝑖, 𝑗, 𝑡, (17e)

𝐏dch𝐢,𝐣
(𝐭) ≥ −BigM ⋅ 𝐔dch𝐢,𝐣

(𝐭), ∀ 𝑖, 𝑗, 𝑡, (17f)

𝐏ch𝐢,𝐣 (𝐭) = 𝐏dch𝐢,𝐣
(𝐭) − 𝐏bat𝐢,𝐣

(𝐭), ∀ 𝑖, 𝑗, 𝑡. (17g)

5.5. Financial calculations

The payback period for hybridizing the power plant refers to the 
amount of time required to recover the initial capital expenditure 
through annual fuel savings. Assuming the annual savings remain 
constant and interest rates are not considered, the payback period (TPB, 
in years) can be calculated as shown in Eq. (18b), where Fbenchmark𝑖,𝑗
represents the fuel consumption of the non-hybrid power plant, and 
Mbenchmark

𝑖,𝑗
 denotes the maintenance costs associated with a system 

without a battery. The ROI can be calculated as shown in Eq. (18c).
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Fig. 8. Life time cost–benefit analysis of hybrid power plant.
Table 6
Necessary battery size (kWh) with relaxed reserve power constraints.
 Battery Case

 1 2 3 4 5 6  
 LTO 510 487 487 498 487 487 
 NMC 215 892 569 217 215 215 

Savings =
3
∑

𝑖=1

2
∑

𝑗=1

(

𝐅𝐜𝐨𝐬𝐭
𝐢,𝐣

+𝐌𝐜𝐨𝐬𝐭
𝐢,𝐣

)

−

( 3
∑

𝑖=1

2
∑

𝑗=1
Fbenchmark𝑖,𝑗

+Mbenchmark
𝑖,𝑗

)

(18a)

TPB = 𝐁𝐜𝐨𝐬𝐭

Savings
Tbatlife

(18b)

ROI =
(Savings − 𝐁𝐜𝐨𝐬𝐭 ) ⋅ 100

𝐁𝐜𝐨𝐬𝐭 (18c)

6. Results and discussion

This section presents and discusses the results. The financial impli-
cations of hybrid power plants are discussed in Section 6.1, while the 
operational strategies for the power plants are examined in Section 6.2.

6.1. Financial implications

The required battery sizes for LTO and NMC batteries remain con-
stant across all cases (1–6) due to the reserve power constraint in 
Eq. (14). The battery capacities, rounded up to the nearest integer, are 
1066 kWh for LTO and 1703 kWh for NMC. When the reserve power 
constraint is relaxed, the required battery size varies with operational 
time across different load profiles for both LTO and NMC chemistries. 
This variation is more prominent for NMC batteries, particularly when 
comparing different fuel price scenarios (i.e., cases 1–3 versus cases 
4–6). The battery sizes for both chemistries across all six scenarios are 
presented in Table  6.

The rest of the study will focus on the results obtained with reserve 
power requirements. The corresponding lifetime cost (objective ) for 
each case is presented in Fig.  8(a). The split in operational costs in 
depicted in Table  A.2. Across all cases, hybrid power plants consis-
tently result in lower lifetime costs compared to the benchmark case, 
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regardless of battery type, fuel price, or operating scenario. Further-
more, hybrid systems integrated with LTO batteries always yield lower 
lifetime costs than those using NMC batteries. As expected, the lifetime 
cost is strongly influenced by the fuel price—this is evident when 
comparing cases 1–3 with cases 4–6. It is also affected by the proportion 
of time the vessel operates under load profiles 1 and 2, as seen when 
comparing cases 1–3 with each other and cases 4–6 with each other. 
The lifetime cost results are tabulated in Table  A.3. Fig.  8(b) presents a 
sensitivity analysis showing that lifetime savings decrease as time spent 
in Load Profile 1 increases and time in Load Profile 2 decreases. This 
is attributed to the fact that, under Load Profile 2, DE-2 can remain off 
for extended periods compared to Load Profile 1, leading to increased 
maintenance savings. This effect is further elaborated in the remainder 
of the paper. Additionally, the sensitivity analysis evaluates potential 
lifetime savings as a function of the percentage increase in battery cost 
per kWh, over the range [−50%, 25%]. Lifetime savings remain positive 
even with a 25% increase in battery costs. Across the entire range, LTO 
batteries yield higher lifetime savings than NMC batteries. However, 
the difference between the two chemistries becomes negligible as 𝜔1
increases (or equivalently, as 𝜔2 decreases). 

The battery system cost for LTO batteries ranges from 2.5–3% of 
the overall expenses (OPEX+CAPEX). Whereas for NMC batteries this 
ranges from 2.3–2.8% of the overall expenses. The overall expenses 
are dominated by the fuel costs that range from 91.4–92.4%. The 
detailed split of the lifetime costs are tabulated in Table  A.4. The 
calculated payback time/period (TPB) in years as shown in Table  A.5 
is visually depicted in Fig.  9. The figure indicates the range of possible 
payback time and ROI incurred for different cases. The difference in 
payback period and ROI is comparatively insignificant between the two 
chemistries. Ranging from a payback period of 3.9 and 3.9 to 5.1 to 5.2 
years for LTO and NMC batteries, respectively. Similarly, the possible 
return on investments ranges from 93.2% and 91.0% to 155% and 
151%, respectively.

The cost of useful energy per euro is illustrated in Fig.  10. Fuel 
costs constitute the majority of the cost per kWh, while maintenance 
and CAPEX contribute significantly less, by approximately an order of 
magnitude. The total cost per kWh ranges from e0.1706–0.186 for the 
benchmark case, e0.166–0.178 for systems with LTO batteries, and 
e0.167–0.179 for systems with NMC batteries. For LTO batteries, the 
contributions of fuel, maintenance, and CAPEX to the total energy cost 
range from 91.3–92.3%, 5.0–5.4%, and 2.5–3%, respectively. In the 
case of NMC batteries, the corresponding ranges are 91.4–92.1% for 
fuel, 5.5–6% for maintenance, and 2.3–2.8% for CAPEX. The detailed 
contributions per case are depicted in Table  A.6.
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Fig. 9. Range of possible payback periods and ROI.

Fig. 10. Cost of energy per kWh.

The operational cost per kWh for the benchmark case is illustrated 
in the bars of Fig.  11. For scenarios 𝑖,𝑗 with 𝑖 ∈ 2, 3, the operational 
costs per kWh are higher compared to 𝑖 = 1, indicating that load profiles 
2 and 3 incur greater costs than load profile 1. The blue and red lines in 
the figure represent the operational expenses per kWh for hybrid power 
plants using LTO and NMC batteries, respectively. Notably, the highest 
cost savings per kWh are observed in load profiles 2 and 3, relative 
to profile 1. Furthermore, the cost per kWh remains relatively the 
same across different cases for LTO batteries within the same scenario. 
In contrast, for NMC batteries, the cost per kWh varies across both 
scenarios and cases, highlighting that the limited throughput of NMC 
batteries must be strategically managed depending on the scenario. The 
detailed contributions of operational expenses per kWh for different 
scenarios are depicted in Table  A.7.

The split between fuel and maintenance savings relative to CAPEX, 
in Millions of euros, is illustrated in Fig.  12. For LTO batteries, the 
ratio of fuel savings to CAPEX ranges from 86.6–120.9%, while main-
tenance savings range from 111.5–140.7% of the CAPEX. In the case 
of NMC batteries, these ratios are 85.0–116.8% for fuel savings and 
103.8–132.2% for maintenance savings. This distribution of savings 
relative to CAPEX indicates that both maintenance and fuel savings 
individually exceed the battery investment cost, thereby effectively 
paying for the batteries and more. Moreover, the maintenance savings 
in the case of LTO batteries is consistently more than those seen with 
NMC batteries. Indicating a difference in the operational strategy.
12 
Fig. 11. Operational cost of energy per kWh. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web 
version of this article.)

Fig. 12. Split of operational savings.

6.2. Implications on power plant operational strategy

The difference in operational expense savings discussed in Sec-
tion 6.1 is further illustrated in Figs.  13(a) and 13(b), which depict 
the number of operational hours per day for DE-2 under LTO and 
NMC battery configurations, respectively. It is important to note that 
DE-1 remains ON at all times for all scenarios 𝑖,𝑗 with 𝑖, 𝑗 ∈ [1, 2]. 
Moreover, due to redundancy requirements, in the benchmark case, 
DE-2 is operational at all times.

A key observation is that under the LTO battery configuration, DE-
2 is not operational in scenarios 2,1 and 2,2 across all cases. This 
indicates that DE-2 is not utilized under load profile 2. Additionally, 
a reduction in DE-2’s operational hours is observed in scenario 1,2 for 
cases 1–3, and in scenario 1,1 for cases 5–6.

In contrast, with NMC batteries, DE-2 is OFF in scenario 2,2 for 
cases 2 and 3. This is attributed to the higher cost per kWh associated 
with scenario 2,2 relative to other scenarios. Specifically, in case 2 
and case 3, the probabilities 𝑃 (2,2) are approximately 4% and 9%, 
respectively, whereas in case 1, 𝑃 (2,2) is around 13%. The lower prob-
ability in cases 2 and 3 means that scenario 2,2 occurs less frequently, 
resulting in a reduced lifetime throughput requirement to turn OFF DE-
2 in those cases. The operational strategy for DE-2 with a hybrid power 
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Fig. 13. Comparison of DE-2 and AUX DE operational hours across LTO and NMC cases.
plant of NMC batteries is consistent across cases for scenario 1,𝑗 across 
all cases. The data for Figs.  13(a) and 13(b) is tabulated in Table  A.8.

The operation of the AUX DE for scenario 3,𝑗 in the case of LTO 
batteries is shown in Fig.  13(c). In the benchmark case, the AUX DE is 
always ON, i.e. the AUX DE is turned ON for 24 h for every operational 
day. The operation of the AUX DE in a hybrid power plant with LTO 
batteries is consistent across all the cases as shown in Fig.  13(c).

However, in the case of NMC batteries, the operation of the AUX DE 
for scenario-3,𝑗 is not consistent as shown in Fig.  13(d). What can be 
observed is that the AUX DE is operational for longer periods in periods 
where the price of fuel is lower (3,1) as compared to when the price 
of fuel is higher (3,2) in case 1–3. The data for Figs.  13(c) and 13(d) 
is tabulated in Table  A.9.

The power plant scheduling with LTO batteries for case 1, scenario 
1,1 is shown in Fig.  14(a). Where, SoE refers to the battery’s State of 
Energy, defined as the amount of energy stored in the battery relative 
to its total capacity. The power plant is scheduled such that DE-2 is 
turned ON during periods of higher power demand (sailing). Here, the 
DE follows an ON/OFF strategy, where DE-2 is turned ON long enough 
for the battery to charge sufficiently. This ensures that when DE-2 is 
turned OFF, the battery and DE-1 can supply power to the system for 
at least 30 min before DE-2 is turned ON again. The battery’s state of 
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energy is also depicted, which shows the battery undergoes deep charge 
and discharge cycles.

The operation of the power plant is consistent for load profile 2 
(2,𝑗) for power plants with LTO batteries as discussed previously. The 
power split between DE-1 and the battery is shown in Fig.  14(b) for 
case 1 and scenario 2,1. The role of the battery for this operational 
profile is to keep DE-2 OFF while shavings peak above the capacity of 
DE-1 and fill valleys to charge the battery.

The power demand when the vessel is not operational or at port 
in load profile 3 is significantly lower compared to load profiles 1 
and 2. Consequently, the operational time of the AUX DE can be 
substantially reduced, as opposed to the current strategy, where it 
operates continuously during non-operational periods. An example of 
the power split between the AUX DE and the battery is shown in Fig. 
14(c) for case 1, scenario 3,1. The battery is charged in such a way 
that the AUX DE remains ON for at least 30 min and, once turned OFF, 
stays OFF for a minimum of 30 min.

Fig.  13(a) shows a difference in the operational hours of DE-2 
between scenarios 1,2 and 1,1, attributed to the higher fuel price in 
1, 2. The corresponding power plant scheduling is shown in Fig.  14(d), 
and the difference can be compared with Fig.  14(a). During periods of 
low power demand, such as dumping or sailing, DE-2 is turned OFF for 
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Fig. 14. Operational strategy for Case 1 - LTO batteries.
at least 30 min in 1,2. This strategy is not adopted in 1,1, where DE-2 
remains operational at all times except during dredging. This contrast 
highlights the importance of utilizing battery throughput effectively, 
prioritizing periods where the operational cost per kWh of energy is 
high.

The operation of the power plant with NMC batteries is consistent 
across load profiles 1 and 2 in terms of the operational time of DE-2, 
as previously shown in Fig.  13(b). The power plant scheduling for Case 
1, Scenario 1,1 is illustrated in Fig.  15(a). In this case, the scheduling 
strategy ensures that DE-1 remains operational during dredging, while 
DE-2 operates during dumping and low power demand periods, such 
as sailing, with a minimum ON duration of 30 min. This behavior 
resembles the operation observed with LTO batteries in Fig.  14(a). 
However, a key difference lies in the charging characteristics: LTO 
batteries support significantly higher charging rates, leading to deeper 
cycling and, consequently, a higher energy throughput compared to 
NMC batteries.

Similar to the first load profile, the operational strategy for the 
second load profile for NMC batteries also has a consistent power plant 
scheduling agnostic to fuel price and duration of each load profile 
(𝑃 (𝑖,𝑗 )). The operation of the power plant for scenario 2,1 is shown 
in Fig.  15(b). The power plant is scheduled with the battery in such a 
way that DE-2 is predominately turned OFF except for a short period of 
time during the dredging operation. Moreover, the state of energy does 
not increase as steeply in NMC batteries as compared to LTO batteries 
for the same scenario.

The operational hours of the AUX DE are significantly higher in 
cases 1, 3, 4, and 5 compared to cases 2 and 3. This is primarily 
because, in cases 1, 3, 4, and 5, the TSHD operates for a substantial 
14 
portion of time in load profile 2. As a result, a large share of the 
allowable battery throughput is allocated to reducing the operational 
time of DE-2, leaving less throughput available for Scenario 3,1. This 
effect is seen in cases 1 and 3 under higher fuel prices, as seen in 
Scenario 3,2.

This contrast is illustrated in Figs.  15(c) and 15(d). In the low 
fuel price scenario (3,1), the AUX DE is ON for significantly longer 
durations and is turned OFF only for the minimum required OFF time. 
Moreover, the loading on the AUX DE is lower than that observed in 
the higher fuel price scenario. In contrast, under the high fuel price 
scenario (Fig.  15(d)), the AUX DE operates closer to the minimum ON 
time and is turned OFF for durations much longer than the minimum 
OFF time.

The difference in operational strategy between LTO and NMC bat-
teries arises primarily from the amount of available throughput. With 
increased operational time spent in load profile 2 (as seen in cases 1, 3, 
4, and 6), the throughput available for load profiles 1 and 3 is reduced. 
Consequently, for NMC batteries, higher priority is given to scenarios 
with higher fuel prices in load profiles 1 and 3. Moreover, in the case 
of LTO batteries, the power plant scheduling remains consistent across 
load profiles 2 and 3. However, for load profile 1, higher throughput 
is allocated to periods with elevated fuel prices. The throughput used 
per hour of operation for different scenarios is presented in Fig.  A.1.

Another important aspect of the battery requirements analysis is 
the power-to-energy ratio, as illustrated in Fig.  16. The charge and 
discharge power-to-energy ratios for LTO batteries are shown in Figs. 
16(a) and 16(b). LTO batteries operate with a power-to-energy ratio 
below 0.5 for a significant portion of the time—≈ 55% during charging 
and ≈ 75% during discharging. This indicates that, although LTO 
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Fig. 15. Operational strategy for Case 1 - NMC batteries.
batteries are capable of fast charging and discharging, they are pre-
dominantly used at lower rates in practice. A similar trend is observed 
for NMC batteries (shown in Figs.  16(c) and 16(d)), with the ratio 
remaining below 0.5 for ≈ 95% of the time during charging and ≈
86% during discharging. This further highlights that lower charge and 
discharge rates are commonly utilized, even for batteries designed for 
spinning reserve/ replacing a secondary DE. Moreover, this suggests 
that batteries designed for spinning or emergency reserve are often 
oversized relative to their actual usage. Since reserve functions are only 
required occasionally, typically during DE failures, the battery’s ability 
to deliver high C-rates during these rare events could be sufficient, even 
if the supporting auxiliary systems are designed for lower C-rates. As 
a result, the extent of battery oversizing for reserve applications could 
be reduced.

7. Conclusion

The paper proposes a scenario-based stochastic framework for in-
tegrated battery sizing and power plant scheduling under uncertain 
maritime operations and fuel prices. Results show that hybridizing 
with LTO or NMC batteries offers economic and operational advantages 
over diesel-only systems. Battery capacities for both LTO and NMC are 
fixed across scenarios due to a reserve power constraint. The optimal 
sizes are 1066 kWh (LTO) and 1703 kWh (NMC), reflecting LTO’s 
higher power density and throughput, which allow for deeper and more 
frequent cycling.

Hybrid systems consistently reduce lifetime costs (CAPEX + OPEX) 
compared to diesel-only setups. In all six cases, LTO configurations 
were cheaper than NMC. For example, in Case 1, the benchmark cost 
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of e43.9M drops to e42.0M (LTO) and e42.3M (NMC). Similar trends 
appear across other cases. Payback periods confirm economic viability: 
LTO achieves payback in 3.92–5.01 years and NMC in 3.98–5.05 years. 
The ROI ranges from 93%–155% (LTO) and 91%–151% (NMC), driven 
by fuel and maintenance savings that offset battery costs. Hybrid 
systems also lower energy costs per kWh: e0.166–e0.178 (LTO), 
e0.167–e0.179 (NMC), vs. e0.171– e0.186 for diesel-only. Fuel re-
mains the largest cost driver (>91%), but is significantly reduced 
in hybrid setups—especially with high fuel prices and short sailing 
profiles. Lower maintenance costs are also observed with LTO batteries, 
driven by reduced DE runtime.

Hybridizing with batteries enables more flexible and efficient oper-
ation. In short-sailing scenarios (load profile 2), DE-2 can remain OFF 
entirely with LTO across all cases—a major reduction from the 24-h 
operation in the benchmark. The NMC configuration, limited by lower 
throughput, cannot consistently achieve this.

Across scenarios, LTO reduces DE-2 usage to 0–13.3 h/day, de-
pending on load and fuel price, with complete shutdowns in several 
high-fuel, low-load cases. NMC yields more moderate reductions, typ-
ically operating DE-2 for 2.8–13.3 h/day. Under low fuel prices, NMC 
systems keep DE-2 running longer to benefit from cheaper fuel, showing 
a more adaptive but constrained strategy.

During port operations (load profile 3), the AUX DE is always ON 
in the benchmark case. However, this can be turned OFF for extended 
periods. Hybridizing with LTO achieves more consistent shutdowns 
(≈8.8 h/day of AUX operation), while NMC ranges from 8.8 to 19.7 
h/day, depending on the scenario.

One of the paper’s key insights is that the operational strategy must 
be adapted to battery chemistry, the fuel price and load profile. LTO 
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Fig. 16. Ratio of battery power to energy installed onboard.
batteries, with their superior throughput, allow consistent power plant 
scheduling across different scenarios. For NMC batteries, however, 
scheduling is more sensitive to fuel price and must prioritize high-cost 
periods to optimize battery use. This results in more variable DE usage 
in NMC-based systems.

The paper has certain limitations. Economically, it does not study 
and account for potential future reductions in battery and converter 
costs or the time-discounted value of capital expenditures. Technically, 
it assumes constant energy storage efficiency over a 10-year lifetime 
and does not consider the possibility of extended battery lifespans 
in future technologies. Furthermore, the fuel consumption curves of 
the DE have been linearized to ensure compatibility with the MILP 
formulation. This introduces approximations that does not capture the 
inherent non-nonlinearities of the fuel consumption curve.

In conclusion, the paper shows that hybridizing the power system 
of a TSHD leads to economic and operational improvements, with 
LTO batteries offering superior performance. These findings validate 
the use of a scenario-based optimization framework for designing and 
scheduling maritime hybrid systems under uncertainty. The consistent 
cost reductions through improved energy efficiency and reduced DE 
usage highlight the value of integrating batteries into maritime power 
plants.
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Table A.1
𝑃 (𝑖,𝑗 ) for different cases in percentage.
 Scenario Case

 1 2 3 4 5 6  
 1,1 12.8 38.5 25.7 17.1 51.4 34.2 
 1,2 4.3 12.8 8.6 0 0 0  
 2,1 38.5 12.8 25.7 51.4 17.1 34.2 
 2,2 12.8 4.3 8.6 0 0 0  
 3,1 23.6 23.6 23.6 31.5 31.5 31.5 
 3,2 7.9 7.9 7.9 0 0 0  

Table A.2
OPEX and lifetime costs for benchmark system in Million Euro.
 Benchmark Cost [Million Euro]
 Case 1 2 3 4 5 6  
 𝐹 𝑐𝑜𝑠𝑡 40.1 45.9 43.0 37.5 42.9 40.2 
 𝑀 𝑐𝑜𝑠𝑡 3.8 3.8 3.8 3.8 3.8 3.8  
 Lifetime 43.9 49.7 46.8 41.3 46.7 44.0 

Table A.3
Lifetime costs in Million Euro.
 Case 1 2 3 4 5 6  
 LTO 42.0 48.5 45.3 39.5 45.6 42.5 
 NMC 42.3 48.7 45.5 39.7 45.7 42.7 

Table A.4
Life time cost split in Million Euro.
 Case

 1 2 3 4 5 6  
 Benchmark Fuel 40.1 45.9 43 37.5 42.9 40.2 
 Maintenance 3.8 3.8 3.8 3.8 3.8 3.8  
 
LTO

Fuel 38.7 44.8 41.7 36.1 41.8 39.0 
 Maintenance 2.1 2.5 2.3 2.1 2.5 2.3  
 Battery system 1.2 1.2 1.2 1.2 1.2 1.2  
 
NMC

Fuel 38.9 44.9 41.9 36.3 42.0 39.1 
 Maintenance 2.4 2.7 2.5 2.4 2.7 2.5  
 Battery system 1.1 1.1 1.1 1.1 1.1 1.1  

Table A.5
Payback time and ROI.
 Case 1 2 3 4 5 6  
 Payback time [years]
 LTO 3.92 5.01 4.38 4.04 5.17 4.52 
 NMC 3.98 5.05 4.45 4.11 5.23 4.6  
 ROI [%]
 LTO 155 99 128 147 93 121  
 NMC 151 98 125 143 91 117  
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Table A.6
Cost per MWh in Euros.
 Case 1 2 3 4 5 6  
 Total cost per MWh
 Benchmark 186 182 184 175 171 173  
 LTO 178 177 177 167 166 167  
 NMC 179 178 178 168 167 168  
 Fuel cost per MWh
 Benchmark 170 168 169 159 157 158  
 LTO 164 164 164 153 153 153  
 NMC 164 164 164 154 153 153  
 Maintenance cost per MWh
 Benchmark 16.1 13.9 14.9 16.1 13.9 14.9 
 LTO 9 9 9 9 9 9  
 NMC 10 9.7 9.8 10 9.7 9.8  
 Capex cost per MWh
 Benchmark 0 0 0 0 0 0  
 LTO 5.2 4.5 4.8 5.2 4.5 4.8  
 NMC 4.6 4 4.3 4.6 4 4.3  

Table A.7
Operational cost per MWh per scenario Euros.
 Case 1 2 3 4 5 6  
 Scenario Benchmark

 1 160.9 160.9 160.9 167.4 167.4 167.4 
 2 230.2 230.2 230.2 0 0 0  
 3 169.1 169.1 169.1 175.7 175.7 175.7 
 4 240.1 240.1 240.1 0 0 0  
 5 209.9 209.9 209.9 218 218 218  
 6 297.5 297.5 297.5 0 0 0  
 Scenario LTO

 1 155.9 154.9 155.1 162.2 161.2 161.4 
 2 223.6 222.9 223.2 0 0 0  
 3 154 154 154 160.3 160.3 160.3 
 4 222 222 222 0 0 0  
 5 180.1 180.1 180.1 187.5 187.5 187.5 
 6 260.5 260.5 260.5 0 0 0  
 Scenario NMC

 1 155.9 155.9 155.9 162.3 162.2 162.3 
 2 224.2 224.2 224.2 0 0 0  
 3 155.5 155.5 155.5 161.9 161.9 161.9 
 4 223.7 222 222 0 0 0  
 5 200 181 194.5 202.8 194.8 194  
 6 261.1 260.5 261.3 0 0 0  

Table A.8
Operational hours of DE-2 per day.
 Case 1 2 3 4 5 6  
 Scenario LTO

 1 13.3 10.6 11.1 13 10.5 11  
 2 11.9 10.3 10.8 0 0 0  
 3 0 0 0 0 0 0  
 4 0 0 0 0 0 0  
 Scenario NMC

 1 13.3 13.3 13.3 13.3 13.1 13.3 
 2 13.3 13.3 13.3 0 0 0  
 3 2.8 2.8 2.8 2.8 2.8 2.8  
 4 2.8 0 0 0 0 0  

Table A.9
Operational hours of AUX DE per day.
 Case 1 2 3 4 5 6  
 Scenario LTO

 1 8.8 8.8 8.8 8.8 8.8 8.8  
 2 8.8 8.8 8.8 0 0 0  
 Scenario NMC

 1 19.7 9.4 16.7 17 12.7 12.3 
 2 9 8.8 9.2 0 0 0  
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Fig. A.1. Battery throughput per operational hour per case and scenario.
Data availability

Data will be made available on request.
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