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Abstract

We provide the theory and numerical tools required to simulate Josephson current at
high magnetic fields. We study the flow of supercurrents between two superconducting
contacts connected by a 2d layer of graphene. At uniform fields electrons and holes
follow circular trajectories within the graphene layer. When an electron crosses the
interface between grahene and one of superconductors it retro-reflects into a hole.
When a combination of reflections leads to a loop we have an Andreev bound state.
We use the Markov chain Monte Carlo method provided by the Python package emcee
to find these Andreev bound states. Using sample trajectories we estimate the current
as a function of the superconducting phase difference between the contacts and the
magnetic field.
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Voorwoord

Deze thesis is de afsluiting van mijn dubbele bachelor studie aan de TU Delft. Aangezien
het een dubbele bachelor is, is het onderzoek tweeslachtig. Enerzijds bestudeer ik de
ontwikkeling van superstromen in uniforme magnetische velden voor de bachelor Tech-
nische Natuurkunde. Anderzijds bestudeer ik de mogelijkheid om Markov ketens te
gebruiken om fysische resonanties te vinden voor de bachelor Technische Wiskunde.
Graag zou ik Anton willen bedanken dat hij me met een kluitje het riet heeft ingestu-
urd en Joris dat hij me er daarna weer uit heeft gehaald.
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Introduction

Ieiφ1 eiφ2

Figure 1.1: Two superconductors sep-
arated by a thin insulator. When the
two superconductors have a phase dif-
ference ∆φ = φ1 − φ2 a finite current
flows through the insulator: the Joseph-
son current.

In 1962 Brian David Josephson found a physical explanation for a slightly unusual phe-
nomenon: a finite current between two superconductors separated by a thin insulator.
Josephson argued that current flows in the presence of a complex phase difference ∆φ
between the superconductors. By applying continuity of the wavefunction at both
interfaces he reasoned that the current has sinusoidal dependency on ∆φ:

I(∆φ) = Ic sin(∆φ), (1.1)

Ic is a system dependent quantity known as the critical current.1

1Tinkham [4] p. 196.

It depends on the
usual stuff: insulator thickness, electron density, and physical constants. We set the
~ low and show a picture of the Josephson current in figure 1.2 for future reference.

The situation becomes more interesting when we replace the insulator by a conduct-
ing material: a metal or a doped semiconductor. We recall that doping is the process
of adding impurities to a material. These impurities either steal electrons from the
surrounding material or surrender their own. With this extra boost materials such as
graphene become conductive.

Conductive barriers between superconductors are less resistive to electrons tunnel-
ing through them. For a superconductor-normal metal-superconductor junction (SNS)
the distance between the superconductores can be larger without totally impeding the
current. We replace the 1d insulator in figure 1.1 by a conducting material with a 2d
geometry (see figure 1.3).

I

∆φ

Figure 1.2: The Josephson current
through a Josephson junction has a sin-
uosidal dependency on the phase differ-
ence ∆φ between the superconductors.

With this new degree of freedom come new interesting physical possibilities. Su-
perconductors expel magnetic fields by virtue of the Meissner effect2

2Tinkham [4] p. 3.

but conductors
do not. By increasing the distance between superconductors we allow the presence of
a uniform magnetic field B. If the system is large compared to the penetration depth
of magnetic fields we can approximate an in plane magnetic field as a step function:

B(x) =

{
Bẑ for x in the conductor,
0 for x in the superconductor,

which is tidy and gauge invariant.
Sadly quantum mechanics does not care about the magnetic field. It cares about

the magnetic vector potential A defined such that ∇×A = B. This is a bad definition:
A is not uniquely defined. We can rotate and translate A freely in our 2d geometry
and still describe the same field B. The choice of A is known as the gauge. For us to
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describe the physical world any calculation with A must be gauge invariant. That is:
any choice of A must yield the same result.

W

L

eiφ1 eiφ2

Figure 1.3: Two superconductors seper-
ated by a normal region consisting of
a conductor. The normal region has a
widthW and a length L and an in plane
field. Depending on the strength of the
field the current going through the junc-
tion follows the Fraunhofer pattern.

To this end we introduce the gauge invariant superconducting phase difference:3 3Tinkham [4] p. 202.

γ = ∆φ+
q

~

∫
A · ds,

with q the particle charge and ~ the reduced Planck constant (say h bar). The integral
is important and we use it frequently in this report: the Aharonov-Bohm phase.4

4Kregar [2].

We are going to cheat and claim that the charge is twice the electron charge −e.
We can now introduce the flux quantum: Φ0 = h/2e, with h = 2π~ the regular Planck
constant. The phase difference becomes:

γ = ∆φ− 2π

Φ0

∫
A · ds,

with the Josephson current density:

j = jc sin(γ).

We switched to the current density because we have made the the phase difference
location dependent. Depending on our gauge choice γ varies over the interface.

Since γ is gauge invariant we can choose any gauge. Say we choose A = −Byx̂
oriented perpendicular to the interface between the left superconductor and the normal
metal. We place the origin of our coordinate system in the middle of the junction and
define the width of the interface as W and the length as L. We take the integral over
the interface to calculate the total current:

I

Φ

Figure 1.4: The Fraunhofer pattern is
the sinc relationship between the cur-
rent and the flux through a Josephson
junction. At regular intervals of Φ0 the
current dies out creating the oscillatory
pattern.

I =

∫ W/2

−W/2
j dy = jc

∫ W/2

−W/2
dy sin

(
∆φ− 2π

Φ0

∫ L/2

−L/2
−By dx′

)

= jc

∫ W/2

−W/2
dy sin

(
∆φ+

2πBL

Φ0
y

)
= − jc

2πBL/Φ0

[
cos

(
∆φ+

2πBL

Φ0
y

)]W/2
−W/2

= − jc
2πBL/Φ0

[
cos

(
∆φ+

πBLW

Φ0

)
− cos

(
∆φ− πBLW

Φ0

)]
=

jc
2πBL/Φ0

2 sin ∆φ sin

(
πBLW

Φ0

)
= jcW sin ∆φ sinc

(
π

Φ

Φ0

)
,

where we have used the flux through the normal region: Φ =
∫
B da = BWL and

sinc(x) = sin(x)/x. For Φ = 0 the current reduces to the Josephson current of equation
1.1.

Apparently the current ’counts’ the amount of flux quanta Φ0 in the system. The
pattern that we create by varying the field is the Fraunhofer pattern5 5de Leeuw [3].(see figure 1.4).
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We can use interference patterns like the Fraunhofer pattern to measure small fields
to great precision. At larger fields however the current does not necessarily obey the
Josephson current relation. The source of this break down is the Lorentz force. For
a uniform magnetic field electron start moving along circular trajectories. In normal
metals the cyclotron radius ρ is:

•e

Figure 1.5: An electron follows a circu-
lar trajectory in the presence of a uni-
form magnetic field. When the radius
of this trajectory, the cyclotron radius,
is much larger than the system size we
assume the trajectories to be approxi-
mately linear.

ρ =
mv

eB
,

with m the electron mass and v the electron velocity.
In graphene however, electrons are ’massless’. Their effective mass is significantly

smaller than the usual rest mass m and as such they undergo greater curvature at the
same field.6 6Castro Neto et al. [1].To find the cyclotron radius we replace the product of the mass and the
velocity by the the Fermi momentum of an electron in graphene: pF = ~kF = h/λF .
These are system specific constants known as the Fermi wavevector and the Fermi
wavelength with kF = λF /2π. We rewrite the cyclotron radius in graphene in terms
of flux with A the area penetrated:

ρ =
pF
eB

=
h/λF
eΦ/A

=
2A

λF

(
Φ

Φ0

)−1

. (1.2)

Expressing the cyclotron radius as a function of the amount of flux quanta Φ0 allows
for a tidy conversion between the two. In the rest of the report we frequently use the
flux instead of the magnetic field. The area A of the junction does not change so the
relation is linear.

When the cyclotron radius is much larger than the system size we can neglect the
curvature and assume linearity. This is the assumption that underlies the calculations
of the Fraunhofer pattern. In this report we go beyond this assumption and build up to
the Josephson current from scratch without neglecting curvature. Our goal is to find a
junction geometry that has an interference pattern similar to the Fraunhofer pattern at
high fields. We start by looking at electron trajectories between two superconducting
contacts.
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Electron trajectories

We discuss how classical electron trajectories between two superconductors form from
the Bogoliubov-de Gennes equations. At the interface of a superconductor and a
normal metal electrons reflect as holes and holes as electrons. This process is known
as Andreev reflection. When a trajectory allows for indefinite exchange of holes and
electrons this is called an Andreev state. We integrate over all possible Andreev states
to get the Josephson current for a junction. The challenge we tackle is generalizing
the existing theory to high magnetic fields: fields which result in cyclotron radii of
comparable magnitude to the system size.

2.1 Introduction

We want to learn if and how currents form in Josephson junctions at high uniform
magnetic fields. Ideally we want to find a geometry that has a clear interference
pattern in its critical current at high fields. Such a device can measure large fields
with an uncertainty of just a few flux quanta. The existing theory focuses on linear
ballistic trajectories or simple cases of cycloidal trajectories. We expand on this where
needed to understand which changes we need to make to describe a high field junction.

2.2 Superconductivity

Superconductivity is the phenomenon that allows materials to carry a current without
resistance at low temperatures. These supercurrents carry charge not in the form of
single electrons but rather by pairs of electrons called Cooper pairs. These pairs form
if the combined energy of the pair is smaller than the energy of two single electrons
at the Fermi surface.1

1The Fermi surface is the the barrier
between filled and unfilled electron
states in a material at zero Kelvin.
Electrons at the surface have the
highest energy of all electrons: the
Fermi energy EF .

Intuitively this is strange, how can a pair of two negative
particles be energetically favorable? Bardeen, Cooper, and Schrieffer claim in their
BCS theory that a Cooper pair starts out as a single electron above the Fermi energy.
This electron attracts positive charge in the material in the form of atomic nuclei.
Due to their greater inertia they create a trail of positive charge behind the electron.
This trail is able to attract another electron which forms an energetically favorable
pair with the first.2

2This is the basic assumption of the
BCS theory which is the first to
successfully describe
superconductivity. Tinkham [4] pp.
46-47.

The minimal difference between the energy of a Cooper pair and two electrons at
the Fermi surface is called the superconducting energy gap. This energy is minimal
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when both electrons have opposed momenta and antisymmetric spin, hence a Cooper
pair has the form (k ↑,−k ↓).3 3The momentum is related to the k

vector via: p = ~k.
In other words the energetically favorable state is when

the Cooper pair has no effective momentum!4
4This does not mean that there can be
no current. The generalized
momentum is p = mv + qA: a finite
velocity is expected in the presence of
a magnetic vector potential.

Summing over the energy gain of all the
possible states of this form in respect to the probability of the occupancy gives us the
energy gap. We follow the BCS theory in assuming that the attractive potential V is
independent of the wavevector of a Cooper pair. The superconducting gap is:5

5Tinkham [4] p. 59.
∆ = V

∑
k

〈c−k↓ck↑〉, (2.1)

with ckσ the annihilation operator for an electron with wavevector k and spin σ.
Together these two annihilation operators destroy a Cooper pair. We sum over the
expected energy gained by destroying every possible state. The occupancy of these
is subject to Fermi-Dirac statistics. As the temperature increases the states with
unfavourable energies become more likely: lowering the expected energy gain. At
some critical temperature Tc the superconducting gap becomes zero and the material
will return to its regular state.

2.3 Bogoliubov-de Gennes

As a starting point for our understanding of superconductivity we use the Bogoliubov-
de Gennes equations:6 6Kopnin [1] p. 35.(

He ∆
∆∗ −H∗e

)(
u
v

)
= ε

(
u
v.

)
(2.2)

The diagonal consists of the Hamiltonian for a single electron He and a single hole
Hc. Exciting a hole is equivalent to exciting an electron with opposite momentum and
charge so Hh = −H∗e .7 7A hole is an abstract way of looking

at electron excitations. Exciting an
electron removes the electron from an
energetically favourable state; creating
an empty state or hole. Since the
existence of a hole is unstable we can
view it as an excited particle. It is
more convenient to consider a hole
moving through a material rather than
a sequence of electron pushing each
other forward.

The wavefunctions u and v describe the excitations of electrons
and holes respectively. When ∆ is zero this set of equations reduces to two separate
Schrödinger equations. This is equivalent to there being no superconductivity.

The Hamiltonian of a single electron is:

He = − ~2

2m

(
∇− ie

~
A

)2

+ Upot(r)− µ. (2.3)

We seek to simplify this Hamiltonian by making an approximation known as the semi-
classical or WKB approximation. This approximation aims at simplifying a differential
equation by writing the solution as an oscillating part multiplied by a function describ-
ing an amplitude. If the change in amplitude is gradual compared to the frequency
of oscillations then the oscillations will dominate the derivative. Double derivatives in
the amplitude are then of negligible importance in the whole differential equation. To
this end we introduce the phase factors:

φe = k · r− γ(r), φh = k · r + γ(r), (2.4)

with |k| = kF , the Fermi wavevector, and γ the Aharonov-Bohm phase:8 8Kregar [2].

γ =
e

~

∫ s2

s1

A · ds, (2.5)
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which we calculate along the particle trajectory. When this trajectory is a closed
loop the Aharonov-Bohm phase represents the number of flux quanta9 9One flux quantum Φ0 is defined as

h/2e with h = 2π~, it is the flux of one
Cooper pair (charge 2e) in a circular
motion.

enclosed by
the loop. The derivative along the trajectory of the Aharonov-Bohm phase cancels
out the dependency on the vector potential A in the Bogoliubov-de Gennes equations
since ∂leiγ = ie

~ Aeiγ .
We use the phase factors to separate the electron and hole wave equations in two

parts: (
u
v

)
= eiφe(r)

(
U(r)

0

)
+ eiφh(r)

(
0

V (r)

)
. (2.6)

After applying the semi-classical approximation we arrive at the Andreev equations:10 10We use Upot(r) ≈ 0 since we do not
intend on using a gate in the future
and µ ≈ EF = k2

F~2/2m since we are
at sufficiently low temperatures. We
give a more thorough derivation in the
appendix under WKB approximation.

−i~vF · ∇U + ∆V = εU, (2.7)
i~vF · ∇V + ∆∗U = εV. (2.8)

2.4 Quantum to classical

In the classical situation we know that electrons in a uniform magnetic field undergo a
circular motion with constant velocity due to the Lorentz force. We expect this motion
to satisfy the Andreev equations as well. In a conducting material, the so called N
region,11

11N for normal metal. In our case we
use graphene for its simple dispersion
relation (even though it is not a
metal).the superconducting gap is zero so the equations decouple. The only degree

of freedom is the angle θ allowing us to replace ∇ by 1
ρ∂θ with ρ the cyclotron radius.

Putting the approximated Hamiltonian back into the time dependent Schrödinger
equation yields a propagating wave differential equation:

Figure 2.1: A visualization of the real
part of the solution Ψ. We understand
the particle nature of an electron by
its Gaussian envelope. In the semi-
classical approximation we neglect the
fluctuations in the envelope in favor of
the fluctuations in the complex phase.

−vF
ρ
∂θΨ

′ = ∂tΨ
′,

where the approximated solution to the time dependent Schrödinger equation is:

Ψ = eiφ(θ)Ψ′

which describes a wave propagating along a circular trajectory; picking up a complex
phase on the way. It is this wave that corresponds with the classical notion of a particle
(see figure 2.1).

For graphene the dispersion relation12

12The dispersion relation is the
relation between the wave frequency ω
and the wavevector k. When this
relation is not linear the initial wave
will disperse and change shape.

is linear close to the Fermi energy. Wave
packets in graphene will behave similarly to light which also has a linear dispersion
relation. It is this property that inspires the loose classification of electrons in graphene
as ’relativistic’ or ’massless’.13

13Qinlong [3].

We consider photon like solutions to the differential
equation: form-retaining Gaussians which satisfy the Heisenberg uncertainty. For
an electron this requires that the uncertainty in momentum σp multiplied by the
uncertainty in position σr is larger than the Planck constant divided by two:

σrσp ≥
~
2
⇔ σrσk ≥

1

2
. (2.9)

We expect these uncertainties to be related to the Fermi wavelength14 14The Fermi wavelength λF is equal to
2π/kF .

and the Fermi
wavevector respectively. Assuming σrel ∼ λF and σk ∼ kF /4π we have wave packets
with minimal uncertainty.
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We are now able to describe an electron and its wavefunction for a circular segment
but what happens when it encounters an inhomogeneity? There are two instances
where this happens in our set-ups: the interface between the N region and an insulator
and the interface with a superconductor.

N
I

ee

x

Figure 2.2: I-N interface with incoming
electron (e) getting reflected off an in-
sulator. During reflection the complex
phase changes sign.

Specular reflection
At the interface between the N region and an insulator the superconducting gap ∆
is zero in both materials. As a result we can treat the Andreev equations (2.7) and
(2.8) as two separate differential equations just like before. The difference with the
previous assessment is that an electron is not able to exist in the insulating region.
The continuity condition on the wavefunction requires the wavefunction to be zero at
the boundary. This corresponds with the wave getting reflected with opposite polarity:
we add the constant π to the phase φ. After reflection the wave packet will continue
along a new circular trajectory.

Andreev reflection

N
S

h

e

x

Figure 2.3: S-N interface with incoming
electron (e) getting retro-reflected into
a hole (h). The momentum of the hole
is not exactly equal to that of the elec-
tron. This difference is negligibly small
compared to the Fermi energy: we treat
the incidence angle and angle of refrac-
tion as equal.

The second possible interface in our systems are between graphene and superconduc-
tors. We assume that the Fermi velocity is equal in both materials and there is no
insulating layer in between. In short we do not consider the possibility of possible
refraction/reflection from these sources. We address the interface in a length scale
where the cycloidal trajectories are approximately linear and the superconducting gap
is a step function:

∆(x) =

{
∆0eiφS/2 x < 0,

0 x > 0,
(2.10)

with ∆0 a constant gap energy and φS the superconducting phase. We choose the
x-axis to be paraxial with the S-N interface as shown in figure 2.3. Since the Fermi
velocity is equal in both materials there will be no refraction. If the particle is able to
enter the superconductor it will continue at the angle of incidence.15

15There is no field in a superconductor
due to the Meissner effect so the
electron trajectory is not subject to
the Lorentz force.

We parametrize
the solution along this angle:

−i~vF∂tU + ∆V = εU, (2.11)
i~vF∂tV + ∆∗U = εV. (2.12)

Since we assumed linearity vF retains its orientation in these equations. In the region
x > 0 the equations are once more decoupled so we get unnormalized solutions:(

U
V

)
N

∝ eiλN t

(
1
0

)
+ e−iλN t

(
0
a

)
(2.13)

with λN = ε/~vF . The constant a is a complex number which regulates the probability
of a hole getting reflected.

In the superconducting region the wave functions become decaying exponentials
for ε < ∆0. (

U
V

)
S

∝ e−λSt

(
U0e

iφS/2

V0e
−iφS/2

)
(2.14)
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with λS =
√

∆2
0 − ε2/~vF and U0 and V0 the superconducting coherence factors:16 16Kopnin [1] p. 53.

U0 =
1√
2

(
1 + i

√
∆2

0 − ε2
ε

)1/2

,

V0 =
1√
2

(
1− i

√
∆2

0 − ε2
ε

)1/2

.

Apparently an incoming electron is not able to enter the superconductor when it has
energy smaller than the superconducting gap. In retrospect this is not surprising:
the gap is defined as the energy an electron gains when forming a Cooper pair. This
electron had to start in some state that is now available to electrons coming in from
the N-region. It has to form a Cooper pair to proceed and this happens by pulling
another electron from the N-region. This electron leaves behind a hole: the reflected
hole in the non-coupled equation (2.13). The hole moves in the opposite direction as
the incident electron and so conserves momentum. This form of reflection is known as
Andreev reflection or retro-reflection (see figure 2.3).

2.5 Andreev bound states

h
e

N
S

S
N

Figure 2.4: The short Josephson junc-
tion is a rectangular geometry enclosed
by two wide superconducting contacts.
At zero field electron and holes are free
to bounce between the contacts and
form Andreev bound states.

The question on everyone’s mind now of course is what happens when we combine two
superconducting contacts to a 2d graphene geometry. A simple example is the long
Josephson junction seen in figure 2.4. At small fields the electrons and holes travel
between superconductors in linear trajectories and form Andreev bound states. A
bound state is a trajectory which allows electron and holes to be exchanged indefinitely.
At zero field in the long junction every starting position and angle results in a bound
state since the hole perfectly retraces the path of the electron and vice versa.

Each bound state has an energy associated with it. This energy results from
continuity of the wavefunctions at the interfaces. For linear trajectories in a small
magnetic field this energy does not depend directly on the Fermi wavevector because
the hole and electron trajectories have identical length. It depends on the Aharonov-
Bohm phase17

17When the hole perfectly retraces the
electron γe is equal to γh.

γ as well as on the phase difference between both superconductors:
φS2 − φS1 . We have:18

18Kopnin [1] p. 55.

ε = ±~(TS-S)−1

[
φS2
− φS1

− γ
2

∓ arcsin
ε

∆0
+ π

(
l ± 1

2

)]
, (2.15)

with TS-S the time it takes for an electron or hole to travel between contacts. For
short junctions this time is small and the energy is proportional to the cosine of
(φ2 − φ1 − γ)/2.

The energy of a bound states determines its occupancy and as such its ability to
carry current from one superconductor to another. Each bound state has a probability
of being occupied proportional to the Fermi function fn for energy εn. The total
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current density is proportional to the sum over all bound states:19 19Kopnin [1] p. 58.

j = − i~e
m

∑
n

[
fnu

∗
n(r)

(
∇− ie

~
A

)
un(r) + (1− fn)vn(r)

(
∇− ie

~
A

)
v∗n(r)− c.c.

]
,

(2.16)
with c.c. the complex conjugate.

We reuse the semi-classical approximation and only consider the derivatives in
respect to the phase factors φe and φh:

j = e
∑
n

(vF )n[fn|Un|2 − (1− fn)|Vn|2], (2.17)

where the Fermi velocity has an orientation depending on the bound state. Once again
we return to the semi-classical approximation and consider the complex phase in u
and v to dominate the derivative.

he

N
S

S
N

Figure 2.5: In high magnetic fields elec-
trons and holes follow circular trajec-
tories. For most starting angles they
do not form Andreev states because the
holes do not come back to the starting
position of the electrons.

Until now we have only discussed old theory. We wish now to expand the theory
to a situation with high magnetic field. Electrons and holes make circular motion in
a uniform magnetic field due to the Lorentz force. The trajectory an electron follows
when travelling from one superconductor to the second differs from the trajectory the
reflected hole follows. In figure 2.5 we see that forming an Andreev bound state is no
longer trivial. We need to make sure that holes come back to the same position as the
electrons started!

But what does it mean to come back to the original position? To answer this
we go back to our description of electrons and holes as Gaussian wave packets. The
uncertainty in the position and momentum of an electron allows its wavefunction to
overlap with that of the electron which is the Andreev reflection of the returning hole.
The probability of accepting a trajectory is equal to the overlap of the two wavefunc-
tions. The initial wavefunction ψi along the S-N interface is approximately equal to
A exp(−x2/4σ2

x) and the wavefunction of the returned Andreev reflected electron is
ψr = A exp(−(x−∆x)2/4σ2

x). ∆x is the distance between begin and end point along
the contact. The acceptance chance in position is:

Ppos =

∫
ψ∗rψi dx = A2

∫
exp

(
− 1

4σ2
x

[(x−∆x)2 + x2]

)
dx

= A2

∫
exp

(
− 1

4σ2
x

[2(x−∆x/2)2 + ∆x2/2]

)
dx

= e−∆x2/8σ2
xA2

∫
exp

(
− (x−∆x/2)2

2σ2
x

)
dx

= e−∆x2/8σ2
x .

We combine this with a similar derivation for the acceptance chance in respect to
momentum to acquire:

P (Andreev) = exp

(
−∆x2

8σ2
x

− ∆k2

8σ2
k

)
. (2.18)
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2.6 High field Andreev energies

S2

S1

•

•

Figure 2.6: A non-linear trajectory for
an electron from a superconductor S1
to a superconductor S2 in red with
corresponding hole trajectory in blue.
The trajectories have unequal length so
there will be a contribution from kF in
the complex phase.

The equation for the Andreev energy given by (2.15) is not valid for non-linear trajec-
tories. We need to go back to the Andreev equations and look at the solutions more
generally. Say we have some trajectory of an electron going from superconductor S1
to superconductor S2 with a hole returning to the same position at the same angle
as seen in figure 2.6. The length of the electron and hole trajectories are respectively
de and dh. The solutions to the Andreev equations in both regions allow for a phase
shift along the trajectory. In the N region we can shift both electron and hole phase
independently but in the S region they are coupled.

We shift the solutions at superconductor S1 so that the complex exponent in u and
v is real at the interface. It is also important to note that the superconducting phase
φS is not necessarily constant at the interface. This depends on the gauge choice for
A and the geometry of the superconducting contact. We study the consequences in
the Implementation chapter.

If A is the normalization constant in the N region and C1 in the S1 region then
continuity requires:20

20The superconducting coherence
factors switch places compared to
equation (2.14) since at the S1|N
interface a hole reflects to an electron
instead of an electron to a hole.

A

(
1
a

)
=

(
u
v

)
N|S1

=

(
u
v

)
S1|N

= C1

(
V0eiφS1/2

U0e−iφS1/2

)
, (2.19)

similary at the second interface with normalization C2 in the S2 region:

A

(
ei[φe+λNde]

aei[φh−λNdh]

)
=

(
u
v

)
N|S2

=

(
u
v

)
S2|N

= C2

(
U0eiφS2/2

V0e−iφS2/2

)
. (2.20)

By dividing the electron and hole wave equations by each other we drop the normal-
ization constants:

U0

V0
e−iφS1 = a =

V0

U0
e−iφS2 ei(φe−φh)+iλN (de+dh).

The quantity U2
0 /V

2
0 is purely a complex phase:

U2
0

V 2
0

=
ε+ i

√
∆2

0 − ε2

ε− i
√

∆2
0 − ε2

=
(ε+ i

√
∆2

0 − ε2)2

(ε− i
√

∆2
0 − ε2)(ε+ i

√
∆2

0 − ε2)

=
(ε+ i

√
∆2

0 − ε2)2

ε2 + (∆2
0 − ε2)

=

 ε

∆0
+ i

√
1−

(
ε

∆0

)2
2

= exp

[
2i arccos

(
ε

∆0

)]
.
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We equate the angles which is an implicit definition of the Andreev energy ε:

2 arccos

(
ε

∆0

)
= φS1 − φS2 + φe − φh +

ε

~vF
(de + dh) + 2πl, (2.21)

which reduces to the theoretical energies of equation (2.15) for linear trajectories.

2.7 Current

The last step before we can calculate the supercurrent is determining the normalization
constants A, C1, and C2. The requirement for normalization is:∫

(|u|2 + |v|2)dt = 1.

In the N-region the wavefunctions consist only of complex phase factors which do
not affect the integral: the contribution here is |A|2(de + dh).21 21The modulus of the complex

constant a is 1 since |U0/V0| = 1.
The contributions

from both S-regions are equal: |C1|2(2λS)−1(|U0|2 + |V0|2). Continuity of the modu-
lus of the wavefunctions at the interfaces requires: |A|2 = |C1|2|V0|2. The resulting
normalization is:

|A|2 =
1

de + dh + 2λ−1
S

=

√
∆2

0 − ε2

2~vF + (de + dh)
√

∆2
0 − ε2

. (2.22)

We use equation 2.17 to express the current density in an arbitrary geometry at high
fields in the N-region:

j = e
∑
n

(vF )n[fn|Un|2 − (1− fn)|Vn|2]

= −e
∑
n

(vF )n|An|2(1− 2fn)

= −e
∑
n

(vF )n|An|2 tanh

(
εn

2kBT

)
.

We integrate along the superconducting contact and exchange the sum for an integral
to get the total current:

I =

∫
j · dx (2.23)

= −e
∫

dx0

∫
dkx P (Andreev)(kx, x0)n̂ · vF (kx)|A(ε)|2 tanh

(
ε

2kBT

)
. (2.24)

The energy depends on x0 which is the location on the superconducting contact and
kx the wavevector alongside the contact. n̂· is the normal vector of the interface.

We cannot even solve this integral analytically for simple situations with high fields.
We require a numerical approach which finds all trajectories which result in valid An-
dreev states. For non-chaotic geometries an Andreev state has another Andreev state
close it which in turn has another Andreev state close to it et cetera. Contributions to
the current come from lines of Andreev states in kx, x0 space. Each state in this line
has an associated energy which, depending on its sign, interferes with other Andreev
states.
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2.8 Conclusion

We have found an expression for the current between two superconducting contacts
connected by a 2d geometry consisting of graphene. For high magnetic fields we do
not know what the Andreev bound states are and how to calculate the associated
energies. We require a numerical tool which can find these states however rare and
turbulent they might be.
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MCMC

We wish to calculate currents through various geometries as a function of the magnetic
field. The total current is an integral over all possible trajectories of an electron
through a geometry. In high fields only very few trajectories are valid. The valid
trajectories lie along narrow curves as a function of the starting position and direction.
A random walk in the form of a Markov chain is used to explore these regions and
produce sample trajectories. This kind of method is known as Markov chain Monte
Carlo (MCMC). The form we use is called the stretch method as incorporated by the
emcee Python package. The samples emcee produces are then used to calculate an
estimate of the current for a certain field. The final step consists of normalizing the
different estimators compared to each other. We use extended bridge sampling to this
end.

3.1 Introduction

Integrating over all trajectories is a difficult task. Most starting conditions will not
yield a valid trajectory; either never coming back or never reaching the second su-
perconductor at all. Depending on the geometry and magnetic field the chance of
acceptance is a discontinuous function with many snake-like regions of possible tra-
jectories. The rarity of non-zero areas is compounded by the highly oscillatory nature
of parts that do contribute to the current. Numerical integration is not an effective
tool in our situation. If the algorithm is able to find the areas with contributions to
the current it needs to have a step size smaller than half the oscillation period. The
result, if correct, will be purely the critical current of the system. Since we want to
investigate and understand what happens in various geometries this is hardly enough.
We desire knowledge on the precise structure of the allowed trajectories accompanied
with information about the phase.

3.2 Monte Carlo integration

A well known alternative to numerical integration is Monte Carlo integration. This
method of integration uses an average of function evaluations at random points as an
estimator for the value of an integral. More precisely, say we have a function φ which
we want to integrate over some bounded space A, we wish to know

∫
A
φ dx. Instead
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of perceiving this integral as the area, volume or a summation of φ we can look at it
through the lens of probability. We do so by adjusting the format of our integration
so it becomes an analogue for the expectation value:1 1MacKay [4] p. 357.

Φ = 〈φ(x)〉 ≡
∫

dxπ(x)φ(x), (3.1)

where π is a probability distribution.
A straightforward approach is simply taking π to be the uniform distribution in

respect to A. We need to make sure π integrates to 1 in our domain. For a uniform
distribution acquiring the normalization constant Z is as simple as evaluating

∫
A
dx.

Knowing Z allows us to write an expression for this π:

π(x) =

{
1/Z for x ∈ A,
0 for x 6∈ A.

Inserting this π in expression (3.1) turns it into the integral we wish to evaluate save
for a factor 1/Z. The advantage of this formulation is the possibility of estimating Φ
if we have access to a sufficient amount of independent samples from π: x1, ...,xN .
For uniform π these are readily available in any modern programming language. We
get an estimate for the value of the integral by multiplying the estimate Φ̂ by the
normalization constant Z:∫

A

φ dx = Z

∫
A

1

Z
φ dx = ZΦ ≈ ZΦ̂ =

Z

N

N∑
i=1

φ(xi), (3.2)

where Φ̂ converges to Φ as N goes to infinity.2 2In the future we will use Ei(φ) to
denote the expectation value of φ with
respect to πi.3.3 Importance sampling

Often contributions to the integral from φ will be local, centered around points or
lines. For most x the contribution to the integral will in practice be negligible. It is
inefficient to invest the same amount of computational effort into these ’boring’ regions
as into regions where φ is large. Preferably we are able to instruct our sampler on
which areas are more important and need to be sampled more frequently.

In light of this it does not make sense to choose a uniform distribution for π. If φ
is strictly positive and real the ideal probability to sample is in fact φ itself! There
will be no samples in regions where φ is zero and plenty in regions where φ is large.
In practice this is difficult. The most glaring difficulty is normalizing φ itself; which
is just as difficult as the initial problem. Only when we know

∫
B
φ dx for some B we

can use this method to estimate the integral for subsets A of B.
This ignores an even more fundamental issue: how do we even acquire independent

samples from φ? It turns out that this is practically impossible for multidimensional
distributions. Intuitively a way of circumventing this problem is using a sum of distri-
butions which we can sample and try to imitate our function φ. The main restriction
is that we need to have some idea how our function behaves. This is not obvious when
there is no explicit expression for φ.
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What we do know is that the acceptance chance of trajectories behaves like a col-
lection of snake like Gaussians. The acceptance is strictly positive and real, behaving
almost like a probability distribution. Unfortunately it suffers from the same issues
as mentioned before: we do not know how to get samples from it, let alone how to
normalize it. Luckily there is a solution at hand for the first issue.

3.4 Markov chain Monte Carlo

There exists a class of methods for getting samples from some unnormalized probability
distribution h with normalization constant Z (π = h/Z). These methods all share the
property that they rely on a random walk to produce samples. A Markov chain
performs this random walk so these methods are collectively known as Markov chain
Monte Carlo (MCMC). A Markov chain is a sequence of random variables ξn such that
the chance of moving to a new position ξn+1 depends only on the previous position.
This is the famous Markov property:3 3Zdzisław [5] p. 88.

P (ξn+1 = s|ξ0, ..., ξn) = P (ξn+1 = s|ξn).

•
•

Figure 3.1: A Markov chain walks along
the landscape of a probability distribu-
tion. It compares the current height of
the distribution to the height of a pos-
sible new position. If the new position
is located higher up the hill it is more
likely to accept the new position, oth-
erwise it stays in place.

We allow this chain to move through a landscape given by h where the chain will be
more likely to go to regions which have high values (see figure 3.1). Since this walk
is random and each step depends solely on the previous the chain will at some point
’forget’ its initial condition. In fact if we wait long enough the chain will forget all
its past moves except for a period leading up to the current position. If we take this
period to be T we can divide the whole chain in n equal parts with N = nT the total
length of the chain. Every of these n points in the path of the chain will be essentially
uncorrelated and will adhere to h. By using a Markov chain we are able to create n
(pseudo)-uncorrelated samples of h!

So far so good, but how long should we have to wait till we can call two positions
uncorrelated? What is the perfect T and how does this depend on the chance of
transition P? If we choose the transition chance badly T will have to be large to
compensate. For some P s the chain will not even behave according to h. If the
chain is only allowed to move in a grid pattern the samples we acquire will not follow
a continuous distribution. Two properties need to be satisfied for sampling with a
Markov chain:4 4MacKay [4] pp. 372-373.

1. The desired distribution π is an invariant distribution of the chain.

A distribution π is an invariant distribution of the transition probability Pt(y,x)
if:

π(y) =

∫
dxPt(y,x)π(x). (3.3)

2. The chain must be ergodic, that is:

p(t)(x)→ π(x) as t→∞, for any p(0)(x), (3.4)

with p(t)(x) the probability that the chain is at position x at time t.
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The first property demands that if we pick an infinite number of random samples x
from π then the average probability of moving to y from x is the same as randomly
picking y from π. This is far from a trivial property; say our transition probability is
given by a uniform distribution Pt = 1/Z:

π(y) =

∫
dxPt(y,x)π(x) =

∫
dx

1

Z
π(x) =

1

Z
.

This implies that π is constant, which is in general false. We have to be careful
choosing Pt.

A method of satisfying this property is using the sufficient requirement of detailed
balance. Detailed balance requires the transition probability to obey the rule:

Pt(xa,xb)π(xb) = Pt(xb,xa)π(xa).

Using this equality we can exchange π(x) for π(y) in the integrand of equation (3.3):

π(y) =

∫
dxPt(y,x)π(x) =

∫
dxPt(x,y)π(y) = π(y)

∫
dxPt(x,y) = π(y),

satisfying the first property.

Figure 3.2: A 2d probability distribu-
tion P ∗ with its mode oriented along
a line. The step size of the standard
Metropolis-Hastings method is confined
to a certain constant ε. Here this
step size is suboptimal, parallel to L
a larger step is better and perpendicu-
lar a smaller step. The Python package
Emcee serves to mitigate this problem.
Image from MacKay [4] p. 367.

Detailed balance itself is satisfied by usage of the Metropolis-Hastings accept
chance for moving the Markov chain.5 5MacKay [4] p. 366.Metropolis-Hastings proposes separating Pt
into two distinct probabilities: the probability of picking y as a possible next step:
Q(y,x) and the probability of accepting this y given x: p(y,x). Together these
probabilities constitute the same quantity as Pt. The Metropolis-Hastings acceptance
chance, formulated as:

p(y,x) = min

{
1,
Q(x,y)π(y)

Q(y,x)π(x)

}
.

Either p(y,x) or p(x,y) is equal to one, the ratio of the two will result in detailed
balance. If the move gets accepted the new position of the Markov chain will be y,
otherwise the new position will be x. A clear advantage of this formulation is that
only the ratio between π(x) and π(y) is important. The unnormalized distribution
h is frequently used in this case since the normalization constant Z disappears after
division.

The second condition for MCMC is ergodicity of the Markov chain. Intuitively this
means that a chain is able to move from any location to any other. For continuous
Gaussian steps ergodicity is achieved an infinite time scale. At finite time scales the
related concept of mixing time becomes a problem for multi-modal distributions. If
a Markov chain starts in one mode it is unlikely that it will be able to cross towards
all other modes within the sampling time. Effectively the chain will remember its
initial position because it stays in the initial mode; in contradiction with the required
Markov property.

For every MCMC algorithm using the Metropolis-Hastings acceptance chance the
most important degree of freedom is the step choice distribution Q. This distribution
decides the period required to get (pseudo)-uncorrelated samples. The simplest choice
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for Q is only allowing the chain to move in one dimension at a time. For a standard
deviation σ we draw a new position from a normal distribution around the current
position of the chain. This move is perfectly symmetric since moving back has the
same chance as moving to the proposal y: Q(y,x) = Q(x,y). Any location can be
reached in a number of steps equal to the dimensionality of π.6 6Disregarding the possibility that π is

actually zero at the cross points
required for moving to this new
position. In this case more steps are
required

We are free to choose any σ beforehand. Choosing a large σ allows the chain to
move quickly but has a large rejection rate; the chance of choosing a proposal in a low
probability region is high. The inverse: choosing a small σ, leads to a low rejection
rate but the chain will only be able to move with small steps. Both require a large
period between samples for uncorrelated results, the optimal value will be somewhere
in between.

This optimal value will differ per dimension: a narrow Gaussian centered along
a line as shown in figure 3.2 will require a small steps size perpendicular to the line
and a large one along it. If this line is not oriented in the direction of an axis it will
be impossible to take advantage of the proportions of the distribution in choosing σ.
This becomes even more difficult if the π is instead centered around a curve.

3.5 Emcee

There is an elegant solution to both our problems: using an ensemble of Markov chains.
Each individual chain of the ensemble will only have to visit a couple of modes of a
multi-modal distribution for the ensemble to be ergodic. Using uncorrelated chains for
the ensemble is possible but not necessary: we can use the current position for other
chains in the ensemble to decide the next step for a single chain. Since we only use
the current position of the ensemble we retain the Markov property, accordingly the
ensemble will still forget its past after a certain period.

During this project I have used a Python module which relies on a correlated
ensemble of chains for sampling: the emcee package.7 7Foreman et al. [1].This module proposes to move
each chain of the ensemble in series (so not parallel) and define the resulting position
the state of the ensemble at time t + 1.8 8Practically this means that a single

move of the ensemble is actually a
collection of K moves of the individual
chains

This is required for a correlated ensemble
because the move distribution Q becomes a conditional probability depending on the
other chains. If the other chains move as well the condition will change accordingly,
which results in the move back becoming impossible. The Metropolis-Hastings accept
chance will become zero, breaking the ergodicity requirement for the ensemble.

Emcee uses an ensemble of K Markov chains X = {x1, ..,xK}. For every k in
{1, ...,K} sequentially we evolve X by proposing a move for chain xk depending on
a randomly chosen chain xj with j 6= k. After a certain amount of iterations we
expect all chains to be in a mode of the distribution π. Assuming these modes are one
dimensional, that is they consist of curves in RN , then we expect all chains to align
with these curves. When there are many more chains than modes we can perceive
modal curves as a combination of linear segments, each segment containing multiple
chains. If we move xk along the linear superposition of itself and another chain in
the same segment then the chance is high that we will hit another point close to the
mode. A greater acceptance rate causes a decline in auto-correlation time improving
the performance of the MCMC algorithm. Unfortunately there is no easy way of
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Figure 3.4: The stretch move from xk
to a proposal y by taking a linear super-
position between xk and random xj . y
is chosen around xk using a bounded in-
verse root as a probability distribution.
Image from Goodman [2] p. 70.

picking a chain in the same segment without causing a bias. Emcee picks chains at
random and assumes that if we keep doing this we will get enough chains in the same
segment for computational gain.

The linear superposition of xk with some other chain xj is used for the so called
stretch move shown in figure 3.4. This move results in a proposal y using the formula:

y = xj + Z(xk − xj). (3.5)

Figure 3.3: When we stretch a proba-
bility distribution in one dimension by
a we need to reduce the height of the
stretched distribution by 1/a to retain
normalization. A stretch in N dimen-
sions by a requires a factor 1/aN for
normalization.

The random component of the stretch move is contained in Z. Z is a stochastic
variable drawn from the distribution g:

g(z) ∝
{ 1√

z
for z ∈

[
1
a , a
]
,

0 otherwise,

with a some constant greater than one.
All other chains besides xk retain their position resulting in a proposal Y with

only one chain changed. The Metropolis-Hastings accept chance p for the ensemble is:

p = min

{
1,
Q(Y,X)

Q(X,Y)

Π(Y)

Π(X)

}
= min

{
1,
q(y,xk)

q(xk,y)

π(y)
∏
j 6=k π(xj)

π(xk)
∏
j 6=k π(xj)

}
.

We are able to exchange the move distribution Q for the ensemble by the move
distribution q for a single chain. The stretch move (3.5) has a symmetry to it:
y−xj = Z(xk−xj). The important quantities are the distance to xj and the chance of
picking Z and respectively 1/Z.9 9For the move back we have to draw

1/Z from g.
The distance maps the distribution g to q: it stretches

or contracts the probability distribution q. This deformation needs to be corrected
in order to correctly express the ratio q(y,xk)/q(xk,y) (see figure 3.3). Fortunately
we stretch the distribution equally in all dimensions proportional to the distance. If
the dimensionality of our distribution is N we have to correct the probability of the
move to y by ||xk −xj ||N and the other way around by ||y−xj ||N = ZN ||xk −xj ||N .
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Combining this with the equality zg(z) = g(1/z) gives the Metropolis-Hastings accept
chance as:

p = min

{
1,
q(y,xk)

q(xk,y)

π(y)

π(xk)

}
= min

{
1,
g(Z)/||xk − xj ||N

g(1/Z)/||y − xj ||N
π(y)

π(xk)

}
= min

{
1, ZN−1 π(y)

π(xk)

}
.

As long as the starting position of the ensemble is irreducible in respect to dimension-
ality the ensemble can move to every position in a finite amount of steps. In respect to
the goals of this project this is sufficient to claim ergodicity. The Metropolis-Hastings
accept chance guarantees detailed balance so Emcee is a valid MCMC method.

3.6 Extended bridge sampling

Emcee allows us to sample an unnormalized distribution but does not give us infor-
mation regarding normalization. There is however a method for using the samples
generated by emcee for this purpose. Lelièvre [3] puts forth a method of relative nor-
malization in his book on free energy computation. In this book he explains how to
compare samples gathered for different energy levels. Energy levels close to each other
will show similar behaviour in their distributions. This can be exploited by looking at
the intersection of two related distributions: the bridge between them. The percentage
of samples of each distribution in the bridge is directly related to the percentage of
the volume the bridge takes up of the whole distribution.

Figure 3.5: Two unnormalized proba-
bility distributions in blue and green re-
spectively. Their shared area in cyan
can be used to compute their relative
normalization. Comparing the percent-
ages of samples from each distribution
which are in this area gives an estimate
for Z2/Z1.

For two one-dimensional
Gaussians this is clearly visible: figure 3.5 shows that the shared region in blue takes
up a larger part of the area of the orange Gaussian. Using the samples we can calculate
just what these two percentages are and how to calculate the respective normalizations
ratio Z2/Z1. We go back to the equation for the estimate (3.2) to derive the estimator
equation for this value:

Z2

Z1
=
Z2

Z1

∫
απ1π2 dx∫
απ1π2 dx

=

∫
απ1h2 dx∫
αh1π2 dx

=
E1(αh2)

E2(αh1)
≈

1
n1

∑n1

i=1 α(x1
i )h2(x1

i )
1
n2

∑n2

j=1 α(x2
j )h1(x2

j )
, (3.6)

with α an arbitrary function of our choosing which can stress a certain area. We
sum over the samples provided by the emcee algorithm for π1 and π2: x1

1, ...,x
1
n1

and
x2

1, ...,x
2
n2

respectively.
This expression is not magic and requires that there is a bridge between the two

distributions. As the bridge becomes smaller the product π1π2 will approach zero.
Surprisingly, numerical methods do not like dividing zero by zero. Anybody using this
method will have to be well aware this risk. We intend on sampling the conductance
for magnetic fields with small steps in between. For a step of one magnetic flux quanta
we do not expect radical changes in the way trajectories are distributed.

Lelièvre et al. [3] expands this method to N unnormalized probability distri-
butions hi: extended bridge sampling. Equation (3.6) becomes a matrix equation
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with Y = (y2, ...yN )T the normalization vector. Each yi is defined as the normaliza-
tion Zi/Z1. We use an iterative method suggested by Lelièvre which we work out
thoroughly in the appendix. We start by collecting all samples in one set: X =
{x1

1, ...,x
1
n1
, ...,xN1 , ...,x

N
nN
} with a total number of samples n =

∑
nj . Our initial

guess for Y is that all normalization constants are equal: Z1 = Z2 = ... = ZN ; all y1
i

are equal to one. The next iteration is given by:

yk+1
i =

n∑
m=1

hi(Xm)∑N
j=1 nj(y

k
j )−1hj(Xm)

. (3.7)

After each iteration we normalize all yk+1
i by the result found for yk+1

I with hI a
distribution where we expect a resonance effect. We can use regular Monte Carlo
integration to get an approximate normalization constant ZI for this field. The nor-
malization ratios given by extended bridge sampling can then be used to normalize all
other distributions.

3.7 Conclusion

We can now find valid trajectories in any geometry at any field. All that is left is to
test various geometries which are likely to support a current. Most likely geometries
have certain resonance fields where the current peaks. MCMC combned with extended
bridge sampling is perfect for simulating the decay of these currents around the peaks.
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Implementation

We convert the physics from the electron trajectories chapter to formulas we use
in our numerics. In particular this includes an explicit definition of the Andreev
acceptance chance and the Josephson current. Using the first formula we inspect
the autocorrelation of a Markov chain for a square and rectangular junction. Finally
we look at a circular junction for which almost all possible trajectories are Andreev
bound states. Accordingly we decide to sample this geometry uniformly and have zero
autocorrelation.

4.1 Introduction

We now have the tools and theory to calculate currents through junctions. Still we do
not have a clear picture of what we actually want to study. We want to construct a
junction with interference patterns at high fields, but how do we know what geometries
work well? Before looking into geometries we translate the physics to numerics; putting
it in a mold that our MCMC sampler emcee can understand.

4.2 Andreev accept chance

The Andreev accept chance cannot be given analytically as a function of the starting
angle and position. We require an algorithm which for certain starting coordinates
calculates the resulting trajectory. When this trajectory comes back to the original
superconductor we map the difference in location and angle to a probability according
to wave packet uncertainties. The trajectory does not stop here however; it can
continue bouncing until it finds a loop with a higher probability.

Theoretically this calls for trajectories with infinite length; an electron is bound to
return some time, right? There are however limitations on the ’life-time’ of a ballistic
trajectory. At some point an electron or hole scatters when it hits an impurity in
the conducting material. The expected length an electron travels before scattering is
the mean free path lm. In graphene the elastic mean free path exceeds a micron and
depending on the carrier density can reach values of 28 µm!1 1Banszerus et al. [1].We consider the mean
free path in our systems to be 2 µm and allow our trajectories to reach lengths of ten
micron. The decay in the probability of a trajectory is exponential. When we have
reached a length of 10 µm this probability has dropped to exp(−10/lm) = exp(−5) ≈
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0.005. We truncate the trajectory at this point to save computational power.
Next we need to choose the uncertainty in position and momentum in our trajec-

tory (σx and σk). As stated in the electron trajectory chapter the product of these
uncertainties must be smaller than 1/2 according to the Heisenberg uncertainty prin-
ciple. Due to the conical shape of the dispersion relation in graphene2

2The velocity is related to the
dispersion relation as v = ~−1∂kE(k).
Due to the conical dispersion relation
as seen in 4.1 the orientation of k is
perpendicular to the velocity. If the
uncertainty in the orientation θ is π
then the uncertainty in wavevector is
2kF (the other side of the cone).

Figure 4.1: Conical dispersion relation
of graphene. Image from Castro et al.
[3].

the uncertainty
in orientation of the trajectory is linearly related to the uncertainty in wavevector:
σk = 2kFσθ/π. If the uncertainty in position is related to the Fermi wavelength by
some factor a and we require minimal uncertainty then:

1

2
= σxσk = 2aλF kFσθ/π = 4aσθ.

For a = 1 the uncertainty is about 7 degrees. We have to balance this uncertainty
against the uncertainty in position we want. Our systems have length scales around 1
to 2 µm to satisfy the semi-classical approximation. We take the Fermi wavelength3

3The Fermi-wavelength of graphene
depends on the density of charge
carriers and can be adjusted by
doping. We have some liberty in
choosing this quantity.

to
be 10 nm so choosing a = 2 gives a relative uncertainty of about 1/100 compared to the
system. The uncertainty in orientation is then about 3.5 degrees. Both uncertainties
are reasonable when considering deterministic trajectories in non-chaotic systems.4

4A chaotic system is a system where a
small change in initial conditions
changes the result drastically. This
prevents finite-step approaches from
being a good approximation, hence
they are also called non-integrable
systems.

The Andreev acceptance chance for a trajectory is:

P (Andreev) =

n∑
i=1

P (Accept: i|Reject: j < i) =

n∑
i=1

p[i], (4.1)

with:

p[i] = exp

(
− [∆xi]

2

8σ2
x

− [∆ki]
2

8σ2
k

)1−
i−1∑
j=1

p[j]

 , (4.2)

= exp

(
− [∆xi]

2

32λ2
F

− (16∆θi)
2

)1−
i−1∑
j=1

p[j]

 , (4.3)

where every i corresponds to one possibility of forming an Andreev state.

4.3 Raytracing

All that is left for MCMC to work is having an algorithm which can generate the
distances and angles required to calculate the accept chances. To this end we wrote
a versatile raytracer which accepts any geometry build out of linear and circular arcs
(walls). It accepts both linear and circular trajectories and allows for both uniform
and Markov sampling.5 5We have made the code available at

[4].Figure 4.2 visualizes the method of raytracing. The algorithm calculates the in-
tersection between a circle representing the cyclotron of an electron and the lines and
circles which build up the geometry. For combinations of these arcs it is possible to do
this analytically. We have also investigated including an electric field but this requires
numerically calculating intersections. To keep the trajectory evaluation time low we
have opted to disregard electric fields.
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Algorithm 1 Calculating Andreev accept chance of electron trajectory
1: distance travelled ← 0
2: phase ← 0
3: walls ← {walls bordering the geometry}
4: while distance travelled < maximal distance do
5: shortest distance ← ∞
6: origin ← current position of trajectory
7: for wall in walls do
8: intersection ← calculate intersection(trajectory, wall)
9: distance ← |intersection - origin|

10: if distance < shortest distance then
11: shortest distance ← distance
12: closest wall ← wall
13: phase += phase over(shortest distance)
14: if closest wall == superconductor then
15: Andreev reflect trajectory
16: calculate Andreev accept chance
17: else
18: specular reflect trajectory
19: distance travelled += shortest distance

••

•

•

•

•

Figure 4.2: The raytracer calculates all
intersections with every wall (line seg-
ment) in the geometry. For every wall it
check whether the intersection is closer
to the origin than the previous closest
intersection.

The computational labour of the raytracing algorithm lies primarily in solving
quadratic equations and applying reflection and rotation matrices. This is in a sense
’dumb work’ for which Python is not ideally suited. There exists a module in Python
called Cython6 6Behnel et al. [2].which combines Python’s flexibility with the efficiency of C. It converts
specially formatted Python code to C and compiles it. We can then call functions
from this code in regular Python code. This is perfect in combination with the emcee
package since the computational load required for sampling is negligible. We achieve
speed gains of a factor 50 by purely implementing the raytracer in Cython!

4.4 Current

We go back to the Andreev energies and current as given in the chapter describing
electron trajectories:

I = −e
∫

dx0

∫
dkx P (Andreev)

n̂ · vF
√

∆2
0 − ε2

2~vF + (de + dh)
√

∆2
0 − ε2

tanh

(
ε

2kBT

)
,

with energies depending on the superconducting phases φS and the phases picked up
during the electron and hole trajectories: φe and φh:

2 arccos

(
ε

∆0

)
= φS1 − φS2 + φe − φh +

ε

~vF
(de + dh) + 2πl.

We collect all phases in one phase difference: ∆φ = ( 1
2 [φS1 − φS2 + φe − φh])%π. We

take the modulo such that the phase difference lies between 0 and π. The freedom in
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l allows us to make this adjustment since we disregard energies larger than the gap.
We write the energy now in terms of the gap: ε̃ = ε/∆0:

arccos ε̃ = ∆φ+ ε̃
∆0(de + dh)

2~vF
.

The value of ∆0(de + dh)/2~vF dictates which part of the implicit equation for
the energy dominates. We estimate this value using a superconducting gap of 3 · 10−4

eV.7 7Kittel [6] p. 367In electronvolt-seconds ~ is roughly 6.6 · 10−16 eV·s. For a trajectory length of
approximately 5 µm we have: ∆0(de + dh)/2~vF ≈ 1. This means we cannot use the
short junction approximation where this value is negligible.8 8In the short junction limit we can

neglect the linear part of the energy
equation and simply state
ε = ∆0 cos(∆φ).

Instead we approximate
the arccosine with its first order Taylor expansion. Our explicit formula for the energy
in respect to the gap becomes:

ε̃ =
π

4
− 1

2
∆φ. (4.4)

We disregard the bound state if |ε̃| > 1.
The last step is calculating the phase difference ∆φ. We separate φe and φh in

a summation of circle segments with radius R and center (bx, by) from θ1 to θ2. We
choose the gauge A = Bx ŷ:

φe,h = kFR(θ2 − θ1)∓ e

~

∫ s2

s1

A · dl̂ = kFR(θ2 − θ1)∓ π Φ

Φ0

∫ θ2

θ1

x(θ)
dy
dθ

dθ, (4.5)

using cilyndrical coordinates we have x = R cos θ + bx and y = R sin θ + by:

φe,h = kFR(θ2 − θ1)∓ π Φ

Φ0

[
R2

2

(
θ +

1

2
sin 2θ

)
+ bxR sin θ

]θ2
θ1

. (4.6)

When the electron part of trajectory has the same length as the hole part of the
trajectory the kF dependency drops out when taking the difference.

As mentioned in the electron trajectories chapter the superconducting phases φS
are not necessarily constant along the contacts. Weirdly put the superconducting
phase must depend on the gauge for the system to be gauge invariant. We can retrace
the cause back to the definition of momentum: p = mv + qA. There is no current
alongside the contact so the velocity in this direction must be zero. Therefore in the
semi-classical limit the follow equation must hold:9 9We use −i~∂t = p with the derivative

alongside the contact. We replace this
operator with the derivative in the
complex phase φS.

~∂tφS ≈ p = qA.

φS(t) = φS(0) +
q

~

∫
A · dt̂. (4.7)

We recognize the last part as the Aharonov-Bohm phase! The charge q is −e for an
electron and e for a hole. If we move this phase to φe and φh we effectively close
the loop relative to some linear reference trajectory between point t1 = 0 on the first
superconductor and t2 = 0 on the second superconductor. If the vector potential is
oriented perpendicularly to the contact this integral vanishes. For our gauge choice
this is true for contacts oriented along the x-axis.
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Finally we assume 2kBT >> ε so the hyperbolic tangent in the current integrand
becomes a sign function for the energy: tanh(ε/2kBT ) ≈ σ(ε̃). In our numerics we
approximate the current as:

I ≈ −e
∫

dx0

∫
dkx P (Andreev)

n̂ · vF
de + dh

σ(ε̃)
√

1− ε̃2

1 +
√

1− ε̃2
. (4.8)

4.5 Autocorrelation and geometries

Now we know how to calculate the Andreev accept chances and the associated trajec-
tory phases and currents we go back to MCMC. Every N steps we take a sample from
the current location from the Markov chain and use these to calculate an expectation
value for the current. The choice of N is a balance act: either we choose N too large
and we throw away computational time and accuracy or we choose N too small and
we risk biasing our estimator. How do we know which N is the right choice?

A measure for the correlation between instances of a random variable is surprisingly
called autocorrelation. If the autocorrelation is zero then the instances are indepen-
dent. For a chain of instances of a random variable such as a Markov chain we want
to know how the autocorrelation evolves as a function of N . Instead of looking at the
autocorrelation directly we use the autocovariance function and normalize with C(0):

C(T ) = lim
t→∞

cov(X[t+ T ], X[t]). (4.9)

Here X[t] is the instance of a random variable at time t. The limit t to infinity is
taken to remove any dependency on the starting condition of X. For a Markov chain
with M samples we approximate this function with:10 10Foreman-Mackey et al. [5].

C(T ) ≈ 1

M − T

M−T∑
m=1

(X[m+ T ]− 〈X〉)(X[m]− 〈X〉). (4.10)

Emcee has this approximation built in and we use it for further calculations. We
expect the autocorrelation time to depend on the geometry we sample in and the
magnetic field we use. We discuss three simple geometries: a square, a rectangle and
a circle. For each geometry we inspect the autocorrelation time for an ensemble of a
thousand walkers with a burn-in period of 1000 iterations.11 11This allows the Markov chains to

find modes of the distribution and so
prevents biasing due to the starting
positions.

The starting positions of
the chains are picked uniformly in angle-position space. We evolve the chains until we
have 20,000 independent samples in total per field. This is enough to quantitatively
compare the current between fields.
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Square

Figure 4.3: A square Josephson junc-
tion with its primary mode. An elec-
tron with a cyclotron radius equal to
half of the sides of the square makes a
perfect loop.

We start out with a simple geometry: a square of 2 µm by 2 µm. There is one obvious
mode which results in a valid Andreev state, namely a trajectory with cyclotron radius
equal to half of the sides which leaves the first superconducting contact in the center
at a right angle (see figure 4.3). This trajectory is entirely symmetric so dependencies
on kF drop out.

There are other modes: if the length of the side walls is an integer multiple of the
cyclotron diameter we have at least one Andreev bound state. When R = 1/n the
length of the total trajectory of a bound state is the sum of the corner circle segments
and the side circle segments:

l = 4(n− 1) · πR+ 4
π

2
R = 2π

2n− 1

n
.

The shortest trajectory is the same trajectory as the one shown in 4.3. Due to expo-
nential decay of the acceptance chance as a function of the trajectory length this is
the mode we expect to yield the highest current.

The autocorrelation for this mode drops quickly in the beginning for both the
angle and the position; see figure 4.4. Afterwards there is a long period of oscillatory
behaviour which settles down after about 800 steps. To be on the safe side we take a
step interval of a 1000 to guarantee independent samples. We evolve each chain for
21,000 steps to satisfy our desired sample amount.

Figure 4.4: The autocorrelation of a
Markov chain in a square geometry as
a function of the interval between in-
stances. The autocorrelation fluctu-
ates with an approximately constant
frequency with a noticeable decay after
800 steps.
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Rectangle

Figure 4.5: Two possibilities for An-
dreev modes in a rectangular junction
of 2 by 1 µm. The trajectory with the
least curvature is the shorter and as
such more likely to carry current.

The second basic geometry we look at is a rectangle with a contact width of 1 µm
and a length of 2 µm. We show two possible modes for Andreev states in figure 4.5.
It behaves very similarly to the square junction in this aspect in that these modes
become more unlikely as the curvature increases. The main difference is the magnetic
field at which a mode forms. By lowering the width of the geometry we lower the field
required to get a mode. If we were able to adjust the width while measuring we could
find the field this way!

Sadly this is not realistically possible. What is possible is calculating the autocor-
relation of a single Markov chain for the resonance mode of the geometry: figure 4.6.
The autocorrelation for this chain dies out more quickly than for the square geometry.
This is entirely reasonable; different chains explore different parts of position-angle
space. For this chain 600 steps is sufficient for quasi-independence. To prevent ar-
bitrariness per geometry we use the same settings as for the square geometry: 1000
steps per sample.

Figure 4.6: The autocorrelation for a
Markov chain in a 2x1 rectangular ge-
ometry. We judge 600 steps enough to
speak of independent samples for this
chain.
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Circle
The last geometry we discuss is the most interesting one: a circular geometry. It
allows for the same modes as the square geometry when the cyclotron radius is equal
to the geometry radius (see figure 4.7). The advantage of the circle geometry is that
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this mode is orientation independent. We can start from anywhere on the contact and
get a closed loop if the trajectory starts out paraxial to the contact. Since we have
more modes than in the square geometry we also expect a greater current given that
the modes do not interfere destructively.

Figure 4.7: A circular Josephson junc-
tion with its most obvious mode for a
cyclotron radius equal to the geometry
radius. In fact all trajectories that hit
both side walls once form a valid tra-
jectory.

At least that is how it would seem. In fact the circle geometry supports significantly
more modes. All trajectories that hit the side walls once or not at all before arriving at
the second superconducting contact form an Andreev bound state! Due to symmetry
any reflection of the electron trajectory will be mirrored by the hole trajectory in
respect to the center of the circle geometry (see figure 4.8). This mirroring fails when
a trajectory hits the same superconducting contact twice. We get well defined areas
where there are no Andreev bound states and areas where everything is an Andreev
bound state.

•

•

•

•

•

•

Figure 4.8: The left dashed circle repre-
sents an electron going out and the right
dashed circle represents a hole coming
in at the same angle and position. The
line connecting the intersections goes
through the center of the circle geom-
etry allowing for rotational symmetry.
The whole trajectory forms a perfect
Andreev state.

This characteristic complicates the sampling. In the square and rectangle geome-
tries the allowed states are very close to each other so the phase does not fluctuate a
lot. For the circle geometry we have a larger area to sample so we need significantly
more samples. We obtain these samples not with MCMC but with regular uniform
sampling. Since almost all trajectories are valid close to the resonance field we do not
need a sniper where a shotgun suffices. We use a tenfold compared to other geometries:
200,000 samples per field.

4.6 Conclusion

We are all set to actually sample the geometries and calculate the appropriate currents.
If we can prove that currents exist in high fields for these geometries we can build
composite geometries. If well executed the combined geometry sustains most modes
belonging to the basic geometries we have discussed. Together these modes give regular
peaks in current at certain magnetic field intervals: exactly what we are looking for.
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Results & discussion

The inclusion of the Fermi wavevector to the complex phase difference ∆φ results
in chaotic systems. We drop this quantity in favor of studying the Aharonov-Bohm
phase. This phase is non-chaotic or integrable when the trajectories that make up
the mode only reflect at right angles. For rectangles with dimensions with an integer
ratio these modes exist and allow a current for a small range of fluxes. Within this
range the Josephson current changes shape. We propose that this shape allows us to
pinpoint the magnetic field strength.

5.1 Introduction

It is time to actually start sampling the different geometries and calculate the currents.
Before we go to the results we have to start with a disclaimer. We have found that the
Fermi wavevector dependency of the phase ∆φ adds a significant amount of chaos to
the system. Every 10 nm (the Fermi wavelength) that the hole and electron trajectory
lengths differ adds 2π to the phase. A small change in the beginning conditions can
easily amount to length differences of more than 50 nm in systems with length scales
of 1 µm. This makes high field geometries highly chaotic and reduces any numerical
calculations of the current to pure noise.

Luckily all is not lost; the Aharonov-Bohm phase is integreable. The main modes
are symmetrical so the dependence on the Fermi wavevector drops out in a small
neighbourhood. If the drop in current as a result of chaos is comparable for all mag-
netic fields we can still calculate relative currents. In the results we do not express
the currents in quantitative units. Without considering kF any quantitative value is
meaningless.

We discuss the geometries in the same order as in the implementation chapter.
First we look at the location of Andreev states in position-angle space. The position
takes values in a range of 0 to 1 in respect to the superconducting contact with 0.5
the center of the contact. The angle takes values from 0 to π with π/2 indicating
a trajectory that leaves the contact at a right angle. Each Andreev state has an
associated Aharonov-Bohm phase between 0 and 2π. We use a periodical color scheme
to signify the phase in the results.

Depending on the interference pattern in the Aharanov-Bohm phases we find a
Jospehson current. In small field junctions this current is approximately a sine of the
superconducting phase difference between the contacts. When this phase difference is
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zero we expect no current to flow between the contacts. The level at which the current
satisfies these properties gives a measure for the amount of statistical noise.

Next we compare the maximal currents per field in a neighbourhood. It is at this
point that extended bridge sampling comes into play. The Josephson current plots
only show how well the Aharonov-Bohm phases align: the smaller the current, the
greater the destructive interference between Andreev states. These plots do not take
in account the probability of states; they only show which states are more probable in
this specific situation. Using the normalization constants provided by extended bridge
sampling we achieve a qualitative picture of the critical current (maximal current) as
a function of the magnetic field.

5.2 Square

Figure 5.1: The mode in a square geom-
etry: the trajectory leaves the contact
from the center at a right angle.

A square geometry of 2 µm by 2 µm has its main mode when the cyclotron radius
is equal to half of the side length. Accordingly we expect the current to peak at 800
Φ0 (flux quanta) as shown in figure 5.1. We have sampled 50 values in total around
this expected peak value. In figures 5.2a-5.2h we show how the interference patterns
develops for fluxes in the neighbourhood of the resonance. At the peak value of 800
Φ0 there is a large area of constant phase around the main mode. For the other plots
the destructive interference is greater since the oscillations at the fringes penetrate
further inward.

The Josephson currents between 790 and 810 Φ0 are continuous and resemble sine
functions to some degree. At superconducting phase differences of 0, π and 2π the
current is zero as we predicted. For fluxes greater than 820 Φ0 the sinusoidal relation
breaks down because new states start appearing. These new states live in the corners
of the geometry where they make multiple small bounces along the side walls to reach
the other contact. The current contribution from these states create the noise in figure
5.2h.

The unnormalized current peaks at a flux slightly larger than the predicted 800 (see
figure 5.3). On the other hand the relative normalization peaks at a flux smaller than
800 Φ0. Combining the two does result in a current peak close to the expected value.
Figures 5.2a-5.2h explain this competition. For lower fields the area of allowed states
is larger resulting in a larger relative normalization while for higher fields the fringes
disappear: removing sources of destructive interference. The optimum lies somewhere
in between; just under 800 Φ0.
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Figure 5.2(a): The Aharonov-Bohm inter-
ference pattern in a square junction for a
flux of 790 Φ0. On the sides there are two
lines with constant phase. These do not
contribute to the current since the trajec-
tory velocities close to 0 and π are perpen-
dicular to the superconducting contact.
Figure 5.2(b): The Josephson current in a
square junction for a flux of 790 Φ0. The
Josephson current is approximately sinu-
soidal as expected. Its zeros are correctly
predicted as 0, π, and 2π.

0 1 2 3 4 5 6
Superconducting phase in rad

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

Cu
rre

nt
 (u

nn
or

m
al

ize
d)

Josephson current for 790 flux quanta

Figure 5.2(c): The Aharonov-Bohm inter-
ference pattern in a square junction for a
flux of 800 Φ0. The center (in red) is con-
stant and relatively large compared to the
fringes. We expect the oscillations in the
fringes to interfere destructively; allowing
the center to carry a current.
Figure 5.2(d): The Josephson current in a
square junction for a flux of 800 Φ0. In-
stead of resembling a sine it has charac-
teristics of a block function: it changes
rapidly at the turning points to remain rel-
atively constant in between.
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Figure 5.2(e): The Aharonov-Bohm inter-
ference pattern in a square junction for a
flux of 810 Φ0. The interference pattern re-
sembles a smaller, mirrored version of the
Aharonov-Bohm phase for 790 Φ0.

Figure 5.2(f): The Josephson current in a
square junction for a flux of 810 Φ0.
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Figure 5.2(g): The Aharonov-Bohm inter-
ference pattern in a square junction for a
flux of 820 Φ0. At the corners of the geome-
try new states start appearing. These cor-
respond to trajectories which walk quasi-
linearly along the side walls to make a large
circular move back to the origin.
Figure 5.2(h): The Josephson current in a
square junction for a flux of 820 Φ0. The
new states appearing in the corners inter-
fere with the sinusoidal pattern creating a
significant amount of noise.
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Figure 5.3: The critical current in a
square junction for flux values close to
the resonance flux of 800 Φ0. For a
square junction resonance effects ap-
pear when the cyclotron radius is equal
to half of the side wall length. The
competition between normalization and
constructive interference results in a
current peak slightly below the ex-
pected resonance value of 800 Φ0.
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5.3 Rectangle

Figure 5.4: The two modes for a rect-
angular junction: the single bounce and
the double bounce.

Our second geometry is similar to our first. A square is just a special case of a rectangle
so we expect similar modes. Our rectangle has superconducting contact lengths of 1
µm and side walls of 2 µm. We look for equivalent modes to the mode we discovered
in the square geometry. We have two ways of interpreting the mode:

1. The square resonates when trajectories reflect from the middle of the side walls.
The electron and hole trajectories are perfectly symmetric and cover the minimal
amount of distance. We call this mode the "Single bounce mode".

2. The square resonates when trajectories reflect at 90◦. This restricts the allowed
dimensions of a rectangle geometry to integer ratios. For a 2x1 rectangle this
requires two bounces on the side walls. We call this the "Double bounce mode".

Single bounce mode
The first mode takes place for a cyclotron radius of 4/5 of half of the side wall length.
The field strength required is equivalent to a flux of 320 Φ0.12

12The area of the rectangle is half of
that of the square so the amount of
enclosed flux quanta is halved.

Figures 5.6a-5.6g show
the Andreev states centered around the same mode as for the square geometry. The
shape of the interference region differs however in orientation and structure. Depend-
ing on the sign of the magnetic field the region has a diagonal inclination. The constant
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phase region in the center of the interference region is also absent. Trajectories around
the main mode interfere destructively allowing small regions in the periphery to domi-
nate any current. These peripheral regions are prone to biased sampling since Markov
chains can easily get stuck.

We see the absence of a main current source in the Josephson currents as well.
There is an overall tendency to a triangular dependency on the superconducting phase.
Noise dominates however; any current that is present is small compared to the current
in the square geometry. This susceptibility to noise results from the reflection at the
side walls. Reflections at 90◦ are resilient when it comes to small perturbations of the
starting angle or position. For the rectangle the reflection angle is approximately 50◦

which compresses the region of constant phase in the center of the interference region
until it is indiscernible from the fringes.

The critical currents as plotted in figure 5.5 confirm our suspicions. There is no
trace of a pattern or structure in the current, whether normalized or unnormalized.
The normalization does have a clear preference for the expected mode at 320 Φ0. If
there is a current peak at all then the normalization is the source of it. This geometry
does not fit our needs: there is no response currentwise for any flux in the range of
300-340 Φ0.

Figure 5.5: The critical current in a
rectangular junction for values of the
flux close to the expected resonance flux
of 320 Φ0. The expected resonance is
absent since there is no constant phase
region.
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Figure 5.6(a): The Aharonov-Bohm inter-
ference pattern in a rectangular junction
for a flux of 315 Φ0. There is no region of
constant phase so destructive interference
dominates.

Figure 5.6(b): The Josephson current in a
rectangular junction for a flux of 315 Φ0.
It tends to follow a triangular relation to
the superconducting phase.
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Figure 5.6(c): The Aharonov-Bohm inter-
ference pattern in a rectangular junction
for a flux of 320 Φ0.

Figure 5.6(d): The Josephson current in a
rectangular junction for a flux of 320 Φ0.
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Figure 5.6(e): The Aharonov-Bohm inter-
ference pattern in a rectangular junction
for a flux of 325 Φ0.

Figure 5.6(f): The Josephson current in a
rectangular junction for a flux of 325 Φ0.
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Figure 5.6(g): The Aharonov-Bohm inter-
ference pattern in a rectangular junction
for a flux of 330 Φ0. There is an interest-
ing development in the interference region.
It is splitting in two regions: one moving
to the right and one moving to the left.
For higher fields this development results
in new modes.
Figure 5.6(h): The Josephson current in a
rectangular junction for a flux of 330 Φ0.
The noise has increased to such a degree
that the current has even lost any resem-
blance to a triangular pattern.
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Double bounce mode
The single bounce mode floundered due to its acute reflection angles. The double
bounce mode on the other hand consists purely of reflections at right angles. These
trajectories are more stable and hopefully carry a current.

In figures 5.8a-5.8h we have once more plotted the Aharonov-Bohm interference
patterns and the Josephson currents. Both the interference patterns and the currents
are familiar. They are nearly identical to the square geometry! For this mode a
rectangle is equivalent to lining up two square junctions. All trajectories pass through
the center so they enter the second square from an identical configuration of positions
and angles as required for a single square. As a result the normalization for the
rectangle junction has the same shape as for the square junction. Since this mode
requires a higher field strength the current peak is narrower (see figure 5.7).

Figure 5.7: The critical current in a
rectangular junction as a function of the
flux. There is a sharp peak at a flux of
795-803 Φ0 with a more gradual decay
for smaller values of the flux.
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Figure 5.8(a): The Aharonov-Bohm inter-
ference pattern in a rectangular junction
for a flux of 780 Φ0. The regions have oscil-
latory ’wings’ which interfere destructively.
The centers are relatively constant and re-
sult in a non-zero current.
Figure 5.8(b): The Josephson current in a
rectangular junction for a flux of 780 Φ0.
The shape follows a near perfect triangular
pattern. It obeys the expected zeros at the
phase differences 0, π, and 2π.
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Figure 5.8(c): The Aharonov-Bohm inter-
ference pattern in a rectangular junction
for a flux of 790 Φ0. The regions are join-
ing together into a pattern reminiscent of
the pattern in figure 5.2a.

Figure 5.8(d): The Josephson current in a
rectangular junction for a flux of 790 Φ0.
The shape is somewhere in between a rect-
angular and sinusoidal pattern.

0 1 2 3 4 5 6
Superconducting phase in rad

0.075

0.050

0.025

0.000

0.025

0.050

0.075

Cu
rre

nt
 (u

nn
or

m
al

ize
d)

Josephson current for 790 flux quanta

Figure 5.8(e): The Aharonov-Bohm inter-
ference pattern in a rectangular junction
for a flux of 800 Φ0. Similarly to figure
5.2c we find a large area of constant phase
in the center. There are however less os-
cillations at the fringes: less sources of de-
structive interference.
Figure 5.8(f): The Josephson current in a
rectangular junction for a flux of 800 Φ0.
The current rises steeply from its zeros and
has a relatively constant maximum. We
have seen this before for the square junc-
tion (see figure 5.2d).
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Figure 5.8(g): The Aharonov-Bohm inter-
ference pattern in a rectangular junction
for a flux of 810 Φ0. The corner modes are
sucking the center mode dry; their noise
obscures current through the junction.

Figure 5.8(h): The Josephson current in a
rectangular junction for a flux of 810 Φ0.
The overarching structure is triangular and
obeys the expected zeros.
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5.4 Circle

Figure 5.9: The two modes in the circle
junction. The first one reflects once off
each side wall and leaves the contact at
a right angle. The second Andreev re-
flects twice at each contact but leaves
the contact at a sharp angle, reducing
its current contribution.

The last geometry we study is the circular junction. For the resonance field such that
the cyclotron radius is equal to the geometry radius almost all trajectories are valid
Andreev states. We sample the trajectories uniformly instead of biasing with MCMC.
Due to the absence of biasing we do not need to normalize the currents relatively.
Quantitative normalization is still impossible: we still disregard kF .

The Aharonov-Bohm phase also offers extra trouble for the circular geometry. In
our gauge the integral over the contact is non-zero: the superconducting phase is
variable. We have corrected for this deficiency in figures 5.11a-5.11h. Depending
on where we choose our reference point the areas of constant phase move. We have
picked the middle of the contact as the reference point and include the integral over
the contact in the Aharonov-Bohm phase of the trajectory.

The interference plots show two regions of constant phase. Each belongs to one
of the modes in figure 5.9. The two are not necessarily in phase; in figure 5.11h
they successfully work together to reduce the Josephson current to zero for most
superconducting phase differences. The advantage of having two constant phase areas
shows itself in figure 5.10. The critical current shows oscillatory behavior as a function
of the flux.

Figure 5.10: The critical current in a
circular junction as a function of the
flux. There is oscillatory behavior due
to interference effects between two ar-
eas of constant phase in the Aharonov-
Bohm interference patterns.
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Figure 5.11(a): The Aharonov-Bohm in-
terference pattern in a circular junction
for a flux of 623 Φ0. There are two
’Bermuda triangles’ where even uniform
samples scare away from. There are two
centers of constant phase which interfere
with each other.
Figure 5.11(b): The Josephson current in
a circular junction for a flux of 623 Φ0.
Our gauge choice shifts the superconduct-
ing phase difference: the zeros of the cur-
rent are not at 0, π, and 2π.

0 1 2 3 4 5 6
Superconducting phase in rad

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Cu
rre

nt
 (u

nn
or

m
al

ize
d)

Josephson current for 623 flux quanta

Figure 5.11(c): The Aharonov-Bohm inter-
ference pattern in a circular junction for a
flux of 628 Φ0. We recognize this as the
resonance mode; all states besides the for-
bidden triangles are occupied by samples.
The two constant phase areas interfere con-
structively.

Figure 5.11(d): The Josephson current in
a circular junction for a flux of 628 Φ0.0 1 2 3 4 5 6
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Figure 5.11(e): The Aharonov-Bohm inter-
ference pattern in a circular junction for a
flux of 633 Φ0.

Figure 5.11(f): The Josephson current in
a circular junction for a flux of 633 Φ0.
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Figure 5.11(g): The Aharonov-Bohm in-
terference pattern in a circular junction for
a flux of 638 Φ0. The phase centers inter-
fere destructively.

Figure 5.11(h): The Josephson current in a
circular junction for a flux of 638 Φ0. The
destructive interference reduces the cur-
rent to noise around zero with two peaks.
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5.5 Discussion

In 1962 Brian David Josephson found a physical explanation for a slightly unusual
phenomenon: a finite current between two superconductors separated by a thin in-
sulator. Can we say the same now for two superconductors separated by a larger
geometry at high magnetic fields? The answer we give is: well... maybe... sometimes.

’Sometimes’ adheres to strict conditions on both the field and the geometry. Cur-
rent only flows close to resonance fields of the geometry. Trajectories that contribute
to current must reflect at right angles, independent of geometry. This limits possible
geometries to the basics: polygons with congruent angles and circles. The cyclotron
radius of the desired resonance field must fit an integer number of times in each vertice
of the polygon to get a closed trajectory.

Figure 5.12: A junction consisting
of two rectangular geometries with
slightly different dimensions. The
modes evolve differently as a function
of the field creating an interference ef-
fect between the two.

The challenge lies in choosing a geometry that destroys all modes that disturb
our main resonance modes. The circular junction fails in this regard and has noisy
Josephson currents due to the plethora of modes it sustains. The advantage the circular
junction has is its two modes which interfere with each other. Unlike the rectangular
geometries the circle has a clear oscillation in its critical current. If we squint really
hard we might even think to recognize a Fraunhofer pattern. Whether this oscillation
survives in the real world is not clear. Nevertheless, we are confident that there is a
current at the resonance field.

The second geometry of interest is the two by one rectangle. Compared to the
square the greater precision required for two successful bounces reduces the oscillation
in the fringes. We recognize this absence of interference in the crisp Josephson current.
From a triangular signal it gradually develops into a block like pulse. This pulse is
the current for a junction with constant Aharonov-Bohm phase:

I ∝ σ(ε̃)
√

1− ε̃2

1 +
√

1− ε̃2
, (5.1)

with ε̃ depending linearly on the superconducting phase difference.
Because we have neglected values for ε̃ larger than one the Josephson currents are

not perfectly symmetrical. Near the values 0 and 2π we lose signal. This asymmetry
is small and we conclude that our simplification has not altered our results to a great
degree.

By integrating the current and dividing by the critical current we get a measure
of how ’round’ the Josephson current is. We have an analytical expression for both a
traingular signal and the resonance signal. Intrapolating for fluxes in between gives
us a measure ’roundness’ in terms of flux. As such we can ’measure’ the field strength
by integrating the current in a real life set up.

A second possibility is artificially creating a second mode. We do this by attaching
another rectangular junction to the superconducting contacts but with slightly dif-
ferent dimensions. If the second rectangle has vertices slightly smaller than the first
its resonance field is slightly higher. For the same field trajectories in both junctions
acquire slightly different complex phases and interfere with each other. The oscilla-
tions in the critical current then indicate the in plane field. We do not suffer the same
amount of noise as for the circle. The geometry silences all but the two resonance
modes.
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5.6 Conclusion

We have successfully implemented the MCMC sampler emcee to acquire the Andreev
states in a square, rectangular, and circular junction. These states form Aharonov-
Bohm interference patterns in position-angle space. Depending on the area of constant
phase a Josephson current flows through the junction. We suggest experimentally
measuring the shape of the Josephson junctions in a rectangular geometry near the
resonance field. It is here that we expect the transition of the Josephson current from
a triangular pulse to a circular-rectangular one.
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Conclusion and outlook

We set out to find geometries which support supercurrent between two contacts at high
uniform magnetic fields. At these fields we cannot neglect the curvature of electron and
hole trajectories. As such we have reexamined the existing theory and supplemented
it to accommodate circular trajectories. We find that circular trajectories have strict
requirements for carrying current. Electron and hole trajectories must form a loop to
form an Andreev bound state.

Here lies the difficulty in calculating currents flowing through a junction. We have
no explicit equation which tells us whether a trajectory is an Andreev bound state or
not. For most fields and geometries these states are rare and difficult to find. For this
purpose we formulate the chance of accepting a trajectory as an unnormalized prob-
ability distribution. This formulation allows us to use statistical tools in estimating
the current.

We opt to use a Monte Carlo approach which uses Markov chains to sample prob-
ability distributions. The Python package emcee supplies a specialized variant of
Markov chain Monte Carlo sampling called the stretch move method. It uses an en-
semble of Markov chains to predict the curvature of a probability distribution. The
stretch move lowers the autocorrelation time of sampling by aligning the step with the
curvature.

We collect samples of Andreev states for different fluxes to estimate the critical
current as a function of the magnetic flux. For circular, rectangular and square ge-
ometries we find resonance effects around fields for which the cyclotron radius fits an
integer number of times in the geometrical length scales. An important requirement
for stability in the resonance is that trajectories reflect at right angles. At acute reflec-
tion angles small differences in starting conditions result in rapid oscillatory behavior
in the Aharonov-Bohm phase. These combinations of geometries and fields are chaotic
and do not support a current.

Of the geometries that do support resonance modes we recognize the rectangular
geometry as the most stable. Multiple bounces at right angles supress large deviations
from the resonance mode and the highly oscillatory phase they carry. The Aharonov-
Bohm interference pattern is constant and the Josephson current behaves according
to an analytical expression. We suggest relating the shape of the Josephson current to
the flux. Integrating the current then gives an accurate estimate of the applied field.

We recognize the need to verify the existence of resonance modes at high fields
experimentally. If confirmative we propose combining rectangular junctions of slightly
different sizes to create interference patterns in the supercurrent.
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Appendix

7.1 WKB approximation

The WKB approximation has its very imaginative name because it was developed
by Wentzel, Kramers, and Brillouin. It tries to remove the highest derivative of a
differential equation when the highest derivative has a small forefactor ε. In quantum
mechanics this role is reserved for ~. We attempt a similar method by splitting the
solution to the wave equation ψ in an oscilatory and an amplitudal part. Higher
derivatives in the amplitudal part do not survive the semi-classical limit of ~→ 0.

The Bogoliubov-de Gennes equations in the absence of an electric field are:

− ~2

2m

(
∇− ie

~
A

)2

u− µ+ ∆v = eU

~2

2m

(
∇+

ie

~
A

)2

v − µ+ ∆∗u = eV

We use the substitution as given in equation 2.6:(
u
v

)
= eiφe(r)

(
U(r)

0

)
+ eiφh(r)

(
0

V (r)

)
.

with |k| = kF .
We derive the first Andreev equation for U . The derivation for V is identical save

for the particle charge. The first derivative is:(
∇− ie

~
A

)
u = iu∇φe + eiφe∇U − ie

~
Au

= u

(
ik +

ie

~
A

)
+ eiφe∇U − ie

~
Au

= iku+ eiφe∇U,
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the magnetic vector potential drops out. The second derivative is:(
∇− ie

~
A

)2

u = ik(iku+ eiφe∇U) +

(
∇− ie

~
A

)
eiφe∇U

= −eiφe(|k|2U + k · ∇U) + eiφe

(
∇2U + i[∇U ][∇φe]−

ie

~
A∇U

)
= eiφe(k2

FU + 2k · ∇U +∇2U).

Conveniently the Bogoliubov-de Gennes equation also contains the chemical potential
µ which is roughly equal to k2

F~2/2m. This term cancels against the first term resulting
from the second derivative. We substitute the derivatives into the equation:1 1For the right choice of gauge the

magnetic vector potential is zero inside
the superconductor so φe = φh when
∆ 6= 0.εU = − ~2

2m
e−iφe

(
∇− ie

~
A

)2

u+ ∆V eiφh−iφe − µU

= − ~2

2m
∇2U − i~vF · ∇U + ∆V

We now apply the semi-classical approximation and drop the second derivative in U .
This is the only term multiplied with ~ squared and as such negligible in semi-classical
limit. The remaining equation is the first Andreev equation.

7.2 Extended bridge sampling

We start out using the estimator for the ratio as given by equation 3.6:

Z2

Z1
≈

1
n1

∑n1

i=1 α(x1
i )h2(x1

i )
1
n2

∑n2

j=1 α(x2
j )h1(x2

j )
.

This estimator becomes worse as the overlap between two probability distributions
becomes small. We expect this to happen for yi = Zi/Z1 with larger i. The alternative
is calculating the normalization ratio between neighbours and using products to define
yi: yi = Zi/Z1 = Zi/Zi−1 × ... × Z2/Z1. The error in each estimator is compounded
with each multiplication. We prevent this by turning the estimator equation into a
matrix with weight functions αij :

1 =

∑
j 6=i

∫
hihjαijdx

∑
j 6=i

∫
hihjαijdx

=
Z1

Z1

∑
j 6=i

∫
Zjhiπjαijdx

∑
j 6=i

∫
Ziπihjαijdx

=

E1(hiαi1) +
∑

j 6=i,j 6=1

Zj
Z1
Ej(hiαij)

Zi
Z1

∑
j 6=i

Ei(hjαij)
.
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We bring all dependencies on the normalization constants to one side and make the
substitutions ai =

∑
j 6=iEi(hjαij) and bij = Ej(hiαij):

bi1 = E1(hiαi1) =
Zi
Z1

∑
j 6=i

Ei(hjαij)−
∑

j 6=i,j 6=1

Zj
Zi
Ej(hiαij) (7.1)

= yiai −
∑

j 6=i,j 6=1

yjbij (7.2)

= (−bi2, ..., ai, ...,−biN ) · Y, (7.3)

with Ei the expectation value in respect to probability function πi.
We end up with the matrix equation as given by Lelièvre [1]:

A(α)Y = B(α), (7.4)

with:

A(α) =


a2 −b23 · · · −b2I
−b32 a3 · · · −b3I
...

...
. . .

...
−bI2 −bI3 · · · aI

 , B(α) =


b21

b31

...
bI1

 .

Using an estimator for the expectation values we can calculate every matrix element
and invert matrix A to acquire the normalization vector Y . There is still a degree
of freedom left to exploit: the weight functions αij . As Lelièvre states, we want to
choose α such so the asymptotic covariance matrix is minimal. This is true for:

αij(x) =
njy
−1
j∑N

l=1 nly
−1
l hl(x)

, (7.5)

implying that α does not depend on i. This choice for α results in an implicit equation
for Y . Instead of trying to solve for all yi we attempt an iterative approach. We start
with the assumption that every yi is one inserting these yi in α and solving the matrix
equation 7.4. This gives us a vector Y with new values for yi. We reuse these new
values to calculate a new value of Y until convergence is reached.2 2This is not guaranteed but in practice

the normalization constants
convergence quickly to a stable
distribution.

As an extra boon, this choice of α also allows us to circumvent matrix inversion
completely. We rewrite ai as 1−Ei(hiαii) by moving the sum inside the expectation
value. Inserting this in equation 7.1 after moving all variables to one side yields:

0 = yiai −
∑
j 6=i

yjbij

= yiEi

( ∑
j 6=i njy

−1
j hj∑N

l=1 nly
−1
l hl(x)

)
−
∑
j 6=i

yjEj

(
njy
−1
j hj(x)∑N

l=1 nly
−1
l hl(x)

)

= yi − Ei

(
nihi(x)∑N

l=1 nly
−1
l hl(x)

)
−
∑
j 6=i

Ej

(
njhj(x)∑N

l=1 nly
−1
l hl(x)

)

= yi −
N∑
j=1

Ej

(
njhj(x)∑N

l=1 nly
−1
l hl(x)

)
.
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The dependency on nj in the numerator disappears when replacing the expectation
value with an estimator. We now have an iterative procedure to acquire yi:

yk+1
i =

N∑
j=1

nj∑
i=1

(
hj(x

j
i )∑N

l=1 nl(y
k
l )−1hl(x

j
i )

)
.
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