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Abstract

The complexity of current mechanisms continues to increase and their users keep on demanding even
more. Current design methods are not sufficient to keep on fulfilling those requirements. Automated
design methods have shown to be a viable solution to keep up with the demands and research has started
to make this possible for mechanisms design. But there is a big difference in the predicted performance
before and the performance after manufacturing. To minimize the effects of production errors while
minimizing its computational costs we introduced a novel robust optimization method. In the genetic
programming algorithm we add uniform noise to the production dimensions. Every generation the fitness
of a mechanism is calculated with this noise and that fitness is added to a memory bank of that mechanism
until that memory is full. The average of the fitness values in the memory bank is used as the fitness
value to rank the mechanisms of a population. By changing the maximum bounds of the noise and the
maximum amount of values possible in the memory-bank we can influence the robustness of the final
mechanisms and computational costs of the algorithm. The optimal settings to get the most robust
design with the least computation cost was by keeping the noise between ± 2 times the ISO-2768-m norm
and limiting the maximum amount of fitness calculations in the memory-bank to 8. Further decrease
of the computational cost was achieved by directly calculating the incidence matrix from the incidence
string instead of the iterative method. We also improved the accuracy of the predicted performance by
introducing a better weight and moment of inertia calculation based on more accurate descriptions of
the shape of the mechanism. The combination of these adjustments resulted in automated mechanism
design method that generates robust mechanisms for a wide range of problems within an acceptable time
span.
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Chapter 1

Introduction

Most people cannot think of a world without the convenience brought by current mechanisms. Simple
designs, such as the wheel 1-1a, were once big improvements on the state of the technology and are now
taken for granted. We keep on demanding mechanisms with better performance, even for technology most
of us will never see, as for example with robotics such as in Figure 1-1b. To keep up with these demands we
keep on improving mechanisms and increase their complexity. But with this increase, designing becomes
more and more difficult.

(a) A bicycle wheel1, an example of a mechanism taken
for granted but essential in our current society.

(b) A robotic arm with reduced energy consumption by
Plooij[1], an example of a mechanism that tries to meet
the higher requirements for mechanisms in the future.

Figure 1-1: A couple of mechanism designs from different centuries.

To aid us in the design process we created tools such as geometry[3][4], technical drawings[5][6] and
Computer Aided Design tools[7]. However, at the center of the process we still rely on the human, which
introduces uncertainties such as biases through emotions or communication problems. By automating the
design process we can reduce these problems.

In the field of electric circuit design, this automation step that removes the human, has already started.
For example, the evolved balun circuit of Koza in Figure 1-2b from 2004, outperforms Lee’s balun circuit
patented in 2001 shown in Figure 1-2a with a factor four [8]. Yet these algorithms still need to be adapted
to work for mechanical systems.

1Meggiolan, Mario. "rim for a bicycle wheel and bicycle wheel comprising such a rim, figure 1" 2011, Espacenet[2]
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2 Introduction

According to Fireston[9], electronics and mechanics are comparable and the switch to automated me-
chanical system design should be possible. Several researchers such as Sims[10], Leger[11] and more
recently Staal[12] and Kuppens[13] have been working to prepare these tools for mechanism design. But
as Leger[11] and Hollinger[14] point out, the designs created with such algorithms will perform differently
in the real world than predicted by the automated design algorithms. To make sure these designs can be
practically implemented we need to reduce this reality gap.

(a) Balun circuit patented by Lee in 2001. (b) Balun circuit designed by evolutionary algorithm by
Koza in 2004.

Figure 1-2: Example of an evolved balun circuit which outperforms the patented balun circuit by a factor
four[8].

Brodback[15] has tried to bridge this reality gap by pulling the whole performance evaluation to the real
world. But this reduces the speed advantage current physics simulation tools offer[16], increasing the
optimization time significantly and therefore making this a solution that is not usable in practice.

Boeing [17] proposed a method of reducing the reality gap of physical simulations by solving the mechanisms
in different simulators. This method relies on the simulation results of several accurate and realistic
dynamical engines. As such simulations take time this will also increase the calculation time several folds,
making this option also not practical.

A more straightforward way of making sure that the predicted performance is close to the performance in
the real world is by using a more accurate physics engine. Even though this will surely reduce the reality
gap, it will never completely close it because it does not take into account the manufacturing process
itself. As the manufacturing process is never perfect, it will always have an effect on the performance of
the mechanism.

Therefore we should incorporate the effect of manufacturing errors in the automated mechanism design
algorithm. To investigate these possibilities, we did a literature survey in robust optimization[18]. Applying
such an algorithm will make sure that the performance of a manufactured design is as close as possible to
the prediction of the automated mechanism design algorithm.
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Problem statement
Implementing a method that reduces the effects of production errors, results in the following problem
statement:

"How can we create an evolutionary automated mechanism design program, that generates designs within
a limited time period, whose predicted performance is little influenced by manufacturing errors?"

With a limited time period we mean that the system should run in the same time-scale as the system on
which we build our algorithm. This will be the algorithm of Kuppens [13], which took two to six hours to
design a mechanism. If the system would take much longer the automated mechanism design would not
be a practical replacement for human design.

With little influence of manufacturing errors we mean that the effect of these errors on the predicted
performance of a mechanism from the new algorithm should be smaller than its effects on a mechanism
from the original algorithm of Kuppens[13]. How the effect of the manufacturing errors will translate to
the performance also depends on the dynamics of the mechanism. As we will verify the created algorithm
in a simulation environment, we need to make sure that the effect of the manufacturing errors of the
prediction is similar as to how these errors effect a real mechanism. Therefore we should make sure that
we use an accurate simulation environment.

In Chapter 2 we will explain the current state of evolutionary based automated mechanism design. A
method of reducing the calculation time by improving the incidence string calculation is introduced in
Chapter 3. In Chapter 4 we will discuss how we can increase the accuracy of the physics engine. The
main topic: reducing the effect of production errors on the performance, is discussed in Chapter 5. These
improvements will be tested in Chapter 6 where we will search for the optimal settings for use in the
evolutionary algorithm. To see if these adjustments can be used on a wider range of problems we will test
it on several design problems in Chapter 7. Finally, we will discuss the results in Chapter 8 and come to a
conclusion of this master thesis in Chapter 9.
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Chapter 2

Automated mechanism design

In this chapter we will explain how Kuppens[13] implemented automated mechanism design and look into
detail in how its evolutionary algorithm functions. Nothing new will be discussed but this way improvements
on the algorithm which are made in following chapters will be understood better. According to Kota [19] the
automated design method can be divided in two parts: the mathematical representation of the mechanisms
and the optimization algorithm. The mechanism representation is described in chapter 2-1 The second
part of the automated mechanism design method, the optimization algorithm, will be discussed in chapter
2-2

2-1 Mechanism representation
The mechanism representation creates the blueprints for the possible solutions. It is the translation of the
physical world to the mathematical world. As the Oxfords leaner’s Dictionary says about a mechanism: "a
set of moving parts in a machine that performs a task"[20], we will discuss the individual parts in Chapter
2-1-1, and how they combine to a moving set in Chapter 2-1-2.

2-1-1 Mechanical parts

Figure 2-1: Schematic representation of a
simple mechanism.

In this chapter we will present the parts that can be used by
the algorithm to create a mechanism. To keep the algorithm
simple we will use four elements that will allow us to gener-
ate basic mechanisms such as in Figure 2-1. The four used
elements are the ground, a mass, a hinge and a spring, as
introduced by Kuppens [13].

The ground is the representation of the fixed world as G1
in Figure 2-1. It can be seen as a body with infinite mass and
inertia. It will not be a part of the evolution process but will
function as a base for connections, so they can be anchored
in space.

Master of Science Thesis E. Kranendonk



6 Automated mechanism design

The mass is the building block for the mechanism and defined as M1-2 in Figure 2-1. To simulate its
dynamical response we need its weight, moment of inertia and center of mass. To calculate these we need
the shape of the element which is defined by the location of the hinges an springs connected to the mass
element.

The hinge connects two bodies together on a fixed point on these bodies with only a rotational freedom
as H1-2 in Figure 2-1. The location of the hinge can be optimized over the course of the algorithm.

The spring as S1 in Figure 2-1, is a linear spring as given in Equation 2-1. The spring force (Fspring) is
defined using the distance between the connection points u, the free length of the spring L0 and the spring
constant k. The free length and the spring constant are parameters that can be optimized alongside the
rest of the algorithm to find the most optimal spring. The spring force acts as a force on a point on two
bodies limiting their movement.

Fspring = k(L0 − u) (2-1)

2-1-2 Mathematical representation
As we now have a collection of parts we need a system that will combine them to function as a mechanism.
This combination makes it possible to simulate, calculate and optimize the mechanism so that it can fulfill
its task. Ideally this combination should be able to create a mathematical representation of every possible
solution that could be designed, while still being easily reconfigurable by the optimization algorithm and
being able to simulate the mechanical system it represents.

The method used by Schmidt[21] uses graph theory, which gives total freedom of the internal structure and
the components that can be used. In Figure 2-2a we see the graph representation of the simple mechanism
of Figure 2-1. This can then be rewritten in a more mathematically easily usable matrix form in Figure
2-2b, also called the incidence matrix. In here G represents the ground (or fixed world), the M a mass,
the H a hinge and the S a spring.

G1

M1

M2

H1

S1

H2

(a) Graph representation of a simple mechanism.

H1 H2 S1

G1 1 0 1
M1 1 1 0
M2 0 1 1

(b) The simple mechanism now de-
scribed using an incidence matrix.

Figure 2-2: Example of how the simple mechanisms from Figure 2-1 can be described using a
graph and an incidence matrix.

A simpler representation, that is more suitable for use in evolutionary algorithms, is the incidence string
introduced by Kuppens [13]. He gave every combination of how the ground and mass elements can be
connected its own identifier, according to the pattern in Figure 2-3. These values build a string with the
same length as the amount of columns in the incidence matrix. To differentiate between hinges and springs
a second string is added with labels for identification.

E. Kranendonk Master of Science Thesis



2-1 Mechanism representation 7

Figure 2-3: Graph of how the incidence value is created from the connections in the incidence matrix.

As an example, the incidence matrix of the simple mechanism from Figure 2-1 transforms to the incidence
matrix in the table in Figure 2-2b. The pattern of Figure 2-3 can also be seen in this matrix, as shown
in Table 2-1a. The corresponding incidence values create the incidence string in Table 2-1b. The third
value in is made red as it represents the spring as can be seen in Table 2-1a and makes it a complete
representation of the mechanism of Figure 2-1 into a simple incidence string.

H1 H2 S1

G1 1 0 1
M1 1 1 0
M2 0 1 1

(a) The simple mechanism de-
scribed using an incidence matrix.

1 3 2

(b) The simple mechanism de-
scribed using an incidence string.

Table 2-1: Mathematical representation of the simple mechanism in Figure 2-1.

To get from the incidence matrix to the incidence string values we use Equation 2-2, with I the incidence
value and v1 and v2 the respective rows in the incidence matrix that are connected, representing which
masses are linked, with v1 < v2. The other way around, to get from the incidence value to the positions in
the matrix, Kuppens[13] proposed to calculate all the options that are possible using Equation 2-5 which
we know that the system has to obey. This has only one valid solution but to find it, every possible option
has to be calculated.

I =
v2−2∑
i=1

i+ v1 (2-2)

floor(
√

2I + 3) ≥ v2 ≥ ceil(
√

2I) (2-3)

v2 = I −
(
v1 − 1

2

)
(2-4)

0 < v1 < v2 (2-5)

Another well known problem with converting a graph to an incidence matrix is isomorphism. This happens
when the same mechanisms can be described with multiple different incidence matrices. If in an algorithm
it is needed to calculate the fitness of a mechanism (that is represented using an incidence string) it is
possible that we are comparing one and the same mechanism, which will be wasted calculation time. It
will also decrease the diversity of the algorithm which can lead to other problems. To prevent unnecessary
calculation time, it is good to occasionally calculate the system for isomorphism.

Master of Science Thesis E. Kranendonk



8 Automated mechanism design

2-2 Optimization algorithm
In the previous chapter we showed the mathematical method of representing every mechanism created from
combining the ground, masses, hinges and springs. In this chapter we will discuss how we can optimize
this mathematical representation of a mechanism to our requirements.

There are many optimization algorithms that can search for the best solution in a particular system. Many
of such algorithms take a system that is already fully defined and only optimize its dimensions, this is
called parameter optimization. As our representation of a mechanism can take any shape or size and
therefore any number of parameters, algorithms that work with parameter optimization will not work for
our automated mechanism design method. According to Renner[22] the evolutionary algorithm has proven
itself useful in this case and it will also be the choice for our system.

Among Evolutionary Algorithms (EA) we can differentiate four families[23]. Evolutionary Strategy as
developed by Rechenberg[24] and Evolutionary Programming developed by Fogel are mainly parameter
optimization algorithms and therefore not usable for our application. J. Holland developed Genetic Al-
gorithm which incorporated cross-breeding in which new individuals are created from successful parents.
Genetic Programming from Cramer and Koza introduced a tree-structure or graph representation. This
last method has the most potential for mechanism design in general[22] and is described in more detail in
Chapter 2-2-1.

To differentiate among mechanisms and see which is better, we calculate how well the mechanism is
fulfilling the requirements and combine that to a single value: the fitness value. We will use this value as
a measure of the performance of a design.

A general problem among optimization algorithms is the danger of getting stuck in a local optimum while
this optimum does not fulfill all the requirements. In evolutionary algorithm the danger of getting stuck
in a local optimum can be reduced by maintaining a diverse population[25]. When the diversity is low the
optimization process is not able to generate a lot of novelty in new mechanisms. To maintain diversity
and enlarge the chance of ending in a better optimum or even in the global optimum there are several
methods which are discussed in Chapter 2-2-2. As a measure for the diversity we calculate the percentage
of non-isomorph mechanisms in a population for every generation, and at the end of the algorithm we take
the sum of all those values.

2-2-1 Genetic programming
Initial

population

Fitness
calculation

PopulationParent
selection

Child
creation

Final
population

Figure 2-4: Schematic representation of the
evolutionary algorithm.

In this chapter we will explain the working of the evolutionary
algorithm: genetic programming. In genetic programming,
and evolutionary algorithms in general, not a single mecha-
nism but a population of them is being optimized. The initial
population is filled with randomly generated individuals. For
every individual of the population its fitness is calculated, after
which the population is sorted based on this fitness value. Ev-
ery generation parents are selected from the population from
which a new mechanism, or child, is created. The fitness of
this child is calculated and placed back into the population
replacing a less fit mechanism. This cycle as seen in figure
2-4 is continued until it is decided to terminate the program
and see how the best individual in the final population func-
tions.

E. Kranendonk Master of Science Thesis



2-2 Optimization algorithm 9

The population is the backbone of the algorithm. It is the collection of all the individual mechanisms cre-
ated and evaluated by the algorithm. The population knows three phases, the first is the initial population
before the optimization is started. The second phase is to hold all the mechanisms while the algorithm
is optimizing them and the last population is the resulting list of mechanisms when the algorithm has
stopped optimizing.

The initial population is the first state of the population before the optimization algorithm starts. It
is filled with mechanisms which are a random arrangement of the mechanical components available. To
make sure that the starting diversity is as large as possible every mechanisms in the initial population is
unique (not isomorph).

The fitness calculation decides how well the solutions perform compared to the requirements. It
calculates the ‘fitness’ of the individuals in the population. It also sorts the mechanisms in order of fitness
for further optimization. The fitness functions used by Kuppens[13] are:

− Degrees of freedom
− Number of components
− Shape of followed path of the components
− Length of the followed path of the components

The parent selection decides which mechanisms are used for making the next generation of new mech-
anisms. It selects these mechanisms from the sorted population using a Pareto-front, a Roulette wheel, a
selection pool or directly using the fitness values.

The child creation uses the previous selected parents to breed a new mechanism. The new mechanism
is created using cross-breeding (recombining two survivors to create a new one) and/or mutation. Kuppens
[13] used two forms of mutation: removing a random element or changing the dimensions of the mechanism
a little. After the new child has been created, its fitness is calculated and it is fed back into the population
where it replaces one of the less fit mechanisms.

The final population are the individuals that have survived when the algorithm stops. The algorithm
can be set to stop after a fixed amount of generations, when the fitness value stops improving, or when a
certain fitness value is achieved.

Master of Science Thesis E. Kranendonk



10 Automated mechanism design

2-2-2 Maintaining diversity
In this chapter we discuss what we can do to try to reach the global optimum instead of a local optimum.
The global optimum is the best choice of all the possible solutions to a problem. A local optimum on the
other hand is a solution that is the best choice if we only look to mechanisms similar to it, but if we look
further away we can find better solutions. When searching for a solution to a problem the global optimum
is preferred above a local solution, but most optimization algorithms can get stuck at a local optima. To
decrease the chance of getting stuck in a local optima when using genetic programming, it is best to keep
the diversity of the population as high as long as possible[25]. Several methods exist that try to increase
the diversity over the generations.

The island model [26] splits the population in several smaller ones. The parent selection is then done
by only choosing from this smaller ’island’ population and their child will also be fed into this island. After
a fixed amount of generations there will be contact between the islands where a selected top few of the
mechanisms will be transfered from one island to another, this is called immigration.

By doing so, this method tries to let every population optimize for itself. And if one is stuck in a local
optima and the diversity is low it will get new genetic material in the form of a mechanism from the
other islands. This will give a small boost to the diversity but more importantly, there is a chance that
this new mechanism has new features that will enhance the population and pull it away from the local
optimum.

In this model we can define the amount of islands in the algorithm, the amount of generations between
immigrations and how many immigrants.

The diffusion model [27] reduces the speed with which some design choices are transferred through the
population. When the first parent is selected the second parent is selected in the neighbourhood and their
child will also be added within this neighbourhood. This way, if there are several promising designs within
a population, they will have more time to develop before mechanisms with higher fitness will force their
design options in those mechanisms. We can adjust this model to our preferences by defining the size of
this neighbourhood.

The extinction model [28] waits until the diversity is low. When a certain diversity threshold is reached
a large amount of the mechanism with the most isomorph sisters within a population is removed. These are
replaced by new mechanisms which are generated at random but are not isomorph to any other mechanism
in the population. As Kuppens[13] did not find a significant improvement using the method we will not
use it in our algorithm.

E. Kranendonk Master of Science Thesis



Chapter 3

Faster incidence string calculation

Kuppens[13] introduced the incidence string as improvement on the incidence matrix. To get from the
incidence matrix to the incidence string he used the method in Equation 3-1. In here I is the incidence
value and v1 and v2 are the rows in the incidence matrix corresponding to which masses are connected, with
v1 < v2. But to get from the incidence string back to the incidence matrix he used the method explained
in Chapter 2-1-2. In this chapter we will discuss a faster, analytic solution to the problem, proposed by
Kranendonk[18].

I =
v2−2∑
i=1

i+ v1 = 1
2(v2 − 2)(v2 − 1) + v1 (3-1)

3-1 Incidence matrix calculation
To create an analytic solution to the problem we need to be able to find the inverse of Equation 3-1. We
start by splitting the function in two parts: Iv2 and v1, as seen in Equation 3-2 with Iv2 in Equation 3-3.
In Figure 3-1 we have visualized v1 in black, v2 in red and Iv2 in green. As we can see, v1 is not-invertible,
hence Kuppens’[13] solution.

I = Iv2 + v1 (3-2)

Iv2 = 1
2(v2 − 2)(v2 − 1) (3-3)

In Figure 3-1 we can see that, if we assume v2 on a continues scale, we can calculate the incidence value
directly from v2 using Equation3-4, with f(v2) the continues edition of I and g(v2) the continues edition
of Iv2. From this function we can calculate the inverse, after which we convert it back to an integer by
rounding it to minus infinite resulting in Equation 3-5.

f(v2) = g(v2) + 1 (3-4)
v2 = floor(g−1(f(v2)− 1)) (3-5)
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12 Faster incidence string calculation

Figure 3-1: Graph of how the incidence values are created from the locations of v1 and v2 in the incidence
matrix, with v1 in black, v2 in red and Iv2 in green.

To solve g−1(v2), knowing Equation 3-3, we rewrite Equation 3-6 to Equation 3-7 which can be solved
using the ABC-formula to Equation 3-8. We know that the solutions for v2 can only be positive therefore
we have only to look to the positive side of this function. From this we get to Equation 3-9 using Equation
3-5.

g(v2) = 1
2(v2 − 2)(v2 − 1) (3-6)

0 = −v2
2 + 3v2 + 2g(v2)− 2 (3-7)

g−1(v2) = 11
2 ±

1
2

√
1 + 8g(v2) (3-8)

v2 = floor(11
2 + 1

2

√
1 + 8(f(v2)− 1)) (3-9)

Knowing that in our algorithm f will always be the integer I we can calculate v2 using Equation 3-10.
Using this in Equation 3-1 we can calculate v1 using Equation 3-11.

v2 = floor(11
2 + 1

2

√
1 + 8(I − 1)) (3-10)

v1 = I − 1
2(v2 − 2)(v2 − 1) (3-11)

3-2 Conclusion
Kuppens’[13] method had to estimate v1 and v2 three times after which the valid combination could be
picked. With only the two Equations 3-10 and 3-11 we have an analytic solution that will find v1 and v2
always in one calculation step. This will make the algorithm faster and reduce the amount of functions
needed in the automated mechanism design program.
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Chapter 4

Accuracy of the physics engine

The simulation method of Kuppens[13] does make a couple of assumption that reduces its accuracy. The
weight of the mass elements is chosen at random which can lead to very unrealistic values. After this
he defines the mass moment of inertia of the mass element as Imass = 1

2mmass. Which is unrealistic and
carries along the problems of the weight of the mass element. Kranendonk[18] proposed a method based
on the shape of the mass element which is explained in Chapter 4-1. With this we can create a better
weight estimation in Chapter 4-2. And in Chapter 4-3 we use this knowledge to have a more accurate
calculation of the moment of inertia.

4-1 Shape of the mass element
To increase the accuracy of the calculation of the weight and moment of inertia of the mass element, we
need an accurate estimation of its surface area which we will discusse in this chapter. In our algorithm
the shape of the mass element is defined by the connections that are linked to it, as can be seen in Figure
4-2a. The area this polygon spans is a good basis to calculate the surface area, but it has a problem. As
every mass element needs to be connected to an other mass element or to the ground, each mass element
will have at least one connection. If we want to manufacture the design, it needs space on the surface of
the mass element to mount it. Using the method in Figure 4-2a this space is not available at the locations
of the connections. If we enlarge the original polygon with half times the radius needed for the hinge
connection, we solve this problem.
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14 Accuracy of the physics engine

To enlarge the polygon we first sort the points on the angle as seen from the origin of the mass elements.
This way we ensure that there will be no line crossing, creating a free floating surface area as seen in
figure 4-1. After that, we check for every corner if it has an angle higher or lower than 180 degrees. At
the angles smaller than 180 degrees as seen at point H3 in Figure 4-2b we place two extra points on the
outside. Both perpendicular to each of the connecting lines and through the original point exactly half the
hinge radius from the incoming line, as can be seen at point H3 in Figure 4-2b. At the angle larger than
180 degrees we place one point further to the outside, so that this new point is at half the hinge radius
distance from previous lines. This can be seen in point H4 in Figure 4-2b. This way the lines enlarging
the polygon are parallel to its original lines.

H1

H2

H3

OM

H4

H5

x

y

Figure 4-1: When the points of the polygon are not
sorted, two lines of the polygon can cross creating a free
floating surface.

H1

H2

H3

OM

H4

(a) Polygon representation of a mass el-
ement.

H1

H2

H3

OM

H4
α

α

(b) Polygon representation of a mass ele-
ment, enlarged with half times the radius
needed to install the hinges and springs.

Figure 4-2: A normal polygon representation of the mass element and how we can enlarge it to
create surface for the hinge and spring connection to be installed.
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4-2 Weight of the mass elements 15

4-2 Weight of the mass elements
Now we have a surface area that is practical after manufacturing, we can use it to give an accurate estimate
of the weight. In Kuppens’[13] algorithm, the weight of a mass element was a parameter that was allowed
to freely mutate and change over the course of the algorithm. This can result in extremely heavy or light
elements which are not realistic to manufacture. We will now define the weight of the mass element
as a function of the surface area, the thickness and the density of the mass element. As our algorithm
works in two dimensions, it is possible to manufacture the resulting designs of sheets with known thickness
and a desired material with uniform density. By predefining this thickness and density at the start of the
algorithm we can use Equation 4-1 and 4-2 to calculate the weight of every mass element. In here mmass
is the weight, A the surface area, tthickness the thickness and ρ the density of the mass element. The
dimension of the mass element if defined by xi and yi with n the amount of corners of the polygon.

mmass = Atthicknessρ (4-1)

A = 1
2 |

n∑
i=1

(xi−1yi − xiyi−1) | (4-2)

4-3 Mass moment of inertia of the mass
elements

With the shape of the mass element and its weight we can now also give an accurate estimation of its
mass moment of inertia. In Kuppens’ algorithm the moment of inertia was defined with Imass = 1

2mmass.
By using Green’s theorem[29] in Equation 4-3, we can get a more accurate value, which will result in a
more accurate dynamical response during simulations. In Equation 4-3 Imass is the moment of inertia of
the mass perpendicular to the plane and through the center of mass. The ith point on the polygon is given
by x and y with n the last point on the polygon and mmass the weight of the mass. The points on the
polygon have to be listed in anti-clockwise order.

Imass = mmass
6

∑n
i=1(x2

i−1 + y2
i−1 + xi−1xi + yi−1yi + x2

i + y2
i )(xi−1yi − xiyi−1)∑n

i=1(xi−1yi − xiyi−1) (4-3)
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16 Accuracy of the physics engine

4-4 Discussion
In the estimation of the surface area in Chapter 4-1 we did not include the complete area needed to mount
the connection elements at the sharp angles. This was done to keep the simulation time small and it was
assumed that it would not have a large influence on the accuracy of the simulation results. It should be
investigated if this assumption is true, and also if there are better, computational efficient ways for solving
this problem.

A second point is, that with this improved weight and moment of inertia calculation we still are missing
a large part. The weight of the hinges themselves is not included in the calculation. Also the weight of
system connecting the hinge or bearings to the mass element will introduce errors in the simulation of the
mechanisms. We suggest that further research should be done to get a more accurate simulation, possible
in combination with shape optimization as proposed by Kranendonk[18].

With this new calculation method we now have to define the thickness and density of the material that
is going to be used for production of the design. This will give the manufacturer the freedom of choice
to use the material that is available at the moment, cheap, easy to handle or just aesthetically pleasing.
A downside is that optimizing the weight of the mass elements can result in a more favorable dynamical
response. Letting the thickness of the mass element freely mutate within a set of bounds, limiting it to
realistic values can be an improvement. Another option can be by letting the algorithm select materials
from a database with corresponding densities.

4-5 Conclusion
This new method of calculating the weight and mass moment of inertia of the mass elements gives more
realistic results as it is now based on its actual dimensions. Independent of how realistic the weight of
the mass element is, the current moment of inertia calculation is more accurate which will result in more
accurate simulation results.
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Chapter 5

Production tolerance influence

In this chapter we will explain how we can reduce the effect of production errors on the performance.
These production errors are an effect of the used manufacturing process and will alter the dimensions
of the design a little. These alterations will have an influence on the performance of the design. Some
designs are more effected by these alterations than others and the designs whose performance is only a little
influenced are called robust. With robust optimization we can try to optimize to a design that is robust to
these production errors. However, there is always a trade-off between robustness and performance[30], a
good balance has to be found. As a measure of performance of a design, we use the fitness value resulting
from our evolutionary algorithm.

Another way to cope with production tolerances when you have a design that is not robust, is by choosing
a more accurate and precise production method. This will increase the manufacturing cost while it is
possible that with another design this was not necessary. Besides that, it is difficult to remove errors that
are caused by assembling, wear, creep, etc. A more robust design would also be less influenced by those
errors.

In chapter 5-1 we will discuss the robust optimization algorithm. To be able to compare the different
settings of the method we need to create a measure of the robustness, this will be discussed in Chapter
5-2.

5-1 Robust optimization

In this chapter we discuss the robust optimization algorithms proposed by Kranendonk [31]. First we will
explain some of the robust optimization methods used today in Chapter 5-1-1. After that we will explain
in Chapter 5-1-2 how we can combine these methods to get a robust optimization method that functions
good in genetic programming. How this method can be used to influence the balance between robustness
and computational cost is handled in Chapter 5-1-3. And how we can influence the robustness independent
of the computational cost is discussed in Chapter 5-1-4.
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18 Production tolerance influence

5-1-1 Current methods

One of the first to investigate the robustness of a mechanical design was Tagushi[32]. To define the
robustness of a mechanism he calculated the fitness of a mechanism while adding noise to every design
parameter one by one. From this he calculated the signal-to-noise ratio which he than used as measure
of robustness. This method has to recalculate the dynamical response of a mechanism many times per
design parameter to see the effect of the noise. This will increase the computational cost of complicated
designs with at least a hundred fold due to the curse of dimensionality.

A more refined method is the expectancy measure as proposed by Tsutsui [33][30]. Instead of adding noise
to one design parameter at a time, he adds noise to all the parameters at the same time. He repeats this
with different noise settings and calculates its effect on the performance. This decreases the effect of the
curse of dimensionality and reduces computational costs but also reduces the accuracy of the robustness
measure.

However, in evolutionary algorithms, hundreds to tens of thousands of mechanisms need to be simulated
over the course of the algorithm to calculate their fitness. By using a robust optimization method that
significantly increases the calculation time we dramatically increase the time needed for the evolutionary
algorithm. A method specialized for use in evolutionary algorithms to minimize the computational cost
was created by Jin [34]. He uses the fitness values of the mechanisms in the population that are already
calculated to guess the local robustness of a mechanism. This method only works when the mechanisms
have the same construction which limits its use to parameter optimization algorithms. In our genetic
programming algorithm we work with graphs whose behavior can change completely even with small
changes in the construction of the graph. Therefore this algorithm cannot be used for our algorithm.

Beyer[35] and Thompson[36][37] observed that evolutionary algorithms already have a drive to robust
designs. Beyer suggested that this is because if a certain design is robust, designs similar to it will
also have a high fitness. Therefore they also have a high chance of being chosen as parent. Ideally we
should exploit this and combine it with a method that let us influence the robustness of the final design
directly.

5-1-2 Method for genetic programming

Initial
population

Fitness
calculation

PopulationParent
selection

Child
creation

Disturbed
fitness

calculation

Add to
memory

Final
population

Figure 5-1: Schematic representation of the evolu-
tionary algorithm with robust optimization.

As we just explained current robust optimization meth-
ods cannot be used in genetic programming or have a
high computational cost and are therefore not practical.
Now we will explain how we can combine those meth-
ods for specific use in genetic programming. Through
this combination we can directly influence the calcula-
tion time and robustness which is discussed in Chapters
5-1-3 and 5-1-4.

The method we propose works by giving every mecha-
nism in the evolutionary algorithm a memory-bank. The
production dimensions then get a light disturbance by
adding noise to them before the fitness of the mech-
anism is calculated. Every generation the fitness of a
mechanism is calculated and added to its memory bank
as shown in the right loop in Figure5-1. Comparison
of the mechanisms for parent selection is done by tak-
ing the average of the values that are present in the
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5-1 Robust optimization 19

memory-bank. Now if a mechanism has a couple of very bad fitness values it has a high chance of being
removed from the population before its memory-bank is full. This will reduce the computational cost of
the algorithm.

Adding noise to the production dimensions introduces a chance that the first fitness value is bad while
it could be possible that the mechanism as a whole is a good choice. If this mechanism, with only one
bad fitness value in its memory-bank, is compared to the rest of the population whose memory-banks are
already filled, it will have a lower chance of surviving that generation while it is not sure if it is a worse
choice than the others. To reduce this chance of skewed comparison, we let the first value in the memory
bank be the fitness value of the not-disturbed production dimensions.

This robust optimization method has two variables that can be altered to influence its functionality. First
we can alter the size of the memory-bank explained in Chapter 5-1-3. Secondly we can alter the noise that
is added to the production dimensions as discussed in Chapter 5-1-4

5-1-3 Fitness memory
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Figure 5-2: Survival chance of a mechanism in an al-
gorithm with 20% replacement per generation and equal
chance of being replaced every generation.

The first parameter that we can alter to influence
the robust optimization algorithm is the size of the
memory-bank. By increasing its size we will in-
crease the computational cost of the algorithm.
This increase in computational cost will have a
limit. This is because we can increase the memory-
bank size but the chance that a mechanism survives
for a long time in the population is small. The max-
imum computational cost is when every generation
the fitness of every mechanism in the population is
calculated.

The positive side of a bigger memory-bank is that
the average of those fitness values gives a more
accurate measure for the robustness of the mech-
anism. The root mean square error compared to
the real average decreases with n−

1
2 , with n the

amount of values in the memory[38]. With a more
accurate robust fitness value the final mechanism
will probably be more robust against production er-
rors. But there is a limit to the effectiveness of a large memory size. If two mechanisms are compared and
one has a large completely filled memory bank and the other only a hand full of values, the accuracy of
the less accurate mechanism will have the most influence. With the a renewal rate of 20% as proposed by
Kuppens[13] we can plot the survival of a mechanism over several generations in Figure 5-2. Thus with a
very large memory-bank size the effect of a higher accuracy is nearly gone. This means that by choosing
the correct memory-bank size we can directly influence the balance between the robustness of the final
design and the computational efficiency of the algorithm.
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5-1-4 Noise magnitude
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Figure 5-3: Maximum allowed production toler-
ances according to ISO-2768-m[39].

The second parameter with which we can influence the
robust optimization method, is the shape and size of
the noise that is added to the production parameters.
This will not increase the amount or difficulty of the
calculations needed in the algorithm and therefore it will
not influence the computational efficiency.

In the manufacturing process the maximum allowed size
of the errors are defined in the ISO-2768[39] norm. We
will focus on only the medium tolerance class (ISO-2768-
m) as given in Figure 5-3. We will use this as the basis
of the maximum allowed disturbance in the robust opti-
mization algorithm. The maximum dimensions of every
mass element in a mechanism are determined and used
as input to calculate the maximum allowed deviation us-
ing Figure 5-3. A new location of every hinge and spring
is then chosen uniformly distributed within the maximum allowed tolerances. The origin of the mass ele-
ments and the radius of the hinge, which defines the enlargement of the surface area of the element, are
also disturbed within these limits.

By multiplying the maximum allowed tolerances from ISO-2768-m we influence the noise added to the
production dimensions of the mechanism. If we increase this so called noise magnitude we increase the
chances that this has a bigger influence on the fitness of a mechanism. With this larger noise magnitude we
thus increase the chance that not-robust mechanisms will show this in the fitness calculations. But if we
keep on increasing it, it is to be expected that the average of the fitness values in the memory-bank are a
less accurate representation of the real robustness of the mechanism. Also robustness is always a trade-off
between performance and robustness of a mechanism[30]. Therefore if we enlarge the noise-magnitude too
much we can expect this will result in less fit final mechanisms.
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5-2 Robustness measure
In Chapter 5-1 we proposed a method for robust optimization for genetic programming. To verify the
effect of this method we need to compare the real robustness of the final mechanisms. As robustness
is the effect of variation of the dimensions on the performance, we can define the robustness using the
worst-case scenario measure in Equation 5-1. In here R is the robustness measure, (x, y) are the production
dimensions of the mechanism and δ is the noise on these dimensions. If true Gaussian noise is used in this
function the arms of the robustness distribution would go to infinite when n goes to infinite. But we are
only interested in the effect of the production tolerances which are limited to the ISO-2768-m[39] norm
as in Figure 5-3. Therefore we can assume that a robust mechanism will have limits on the minimum
and maximum fitness values if this noise is added. Also, as every value within the production tolerance is
allowed and we assume that they are as likely, we introduce a uniform distribution within the bounds as
was done in the robust optimization method.

R = max((F ((x, y) + δn))∞n=1)−min((F ((x, y) + δn))∞n=1) (5-1)

We now have a measure for defining the real robustness of a mechanism. But this requires an infinite
series to be calculated and will therefore not be practical. To get a good estimate of the real robustness
we will use a Monte Carlo simulation. As the accuracy of the robustness calculated using the Monte Carlo
method is defined with n− 1

2 [38] we need minimum of n = 400 simulations to get a 95% accuracy. With
n = 500 simulations we are on the safe side with an accuracy of 95.5%.

In Figure 5-4 we see the histograms of the fitness of two mechanisms using the Monte Carlo simulation.
These results are the final mechanisms from two non-robust evolutionary algorithm runs using the settings
in Table 6-1 working on the straight line problem explained in Chapter 6-2. As we can see in Figure 5-4
the robustness of the left mechanism is 0.12 and from the right mechanism 0.38. Also, the results from
the Monte Carlo method are normally distributed around the fitness value of the not-disturbed mechanism.
These are fairly good robustness values in respect to other results using the same settings. In Figure 5-5
and 5-6 we see such mechanisms with with higher robustness measures that resulted from the automated
mechanism design method with the same settings.

(a) Histogram of mechanism with original fit-
ness value of 16.52.

(b) Histogram of mechanism with original fit-
ness value of 24.71.

Figure 5-4: Histograms of two mechanisms from a not-robust optimized algorithm, each with 500
noisy fitness calculations. These mechanisms are robust as they have little deviation around the
original fitness value.
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In Figure 5-5a we see a normal distribution around the original fitness value of 20.26. Besides that we see
a couple of outliers around a fitness value of 21.15 which gives a big increase of the robustness measure.
This happens more often with the mechanism in Figure 5-5b. In this figure we see two similar sized peaks
at different fitness values. This probably means that if we build the mechanism with the dimensions within
the production tolerances we have two possible setups with each their own performance. But as those
performances are pretty similar this will probably not matter.

(a) Histogram of mechanism with original fit-
ness value of 20.26 with a couple of outliers
away from the original value.

(b) Histogram of mechanism with original fit-
ness value of 18.20 with a second peak around
a lower fitness value.

Figure 5-5: Histograms of two mechanisms from a not-robust optimized algorithm, each with 500
noisy fitness calculations. In these histograms we see that the noise introduces a second fitness
peak with different performance but still fairly robust.

As we can see in Figure 5-6, the robustness of the previous four mechanisms where still good compared
to these. The results from Monte Carlo method of the first four mechanisms were mostly spread around
the original fitness value and always quite close. But the fitness resulting from the simulations of the
mechanisms in Figure 5-6a and 5-6b start at the original fitness value and only increase from there. The
mechanism in Figure 5-6a with a robustness of 44.37 spreads from a value 30 to 75 with random peaks
and a large peak around 35.

(a) Histogram of mechanism with original fit-
ness value of 31.27.

(b) Histogram of mechanism with original fit-
ness value of 25.94.

Figure 5-6: Histograms of two mechanisms from a not-robust optimized algorithm, each with 500
noisy fitness calculations. These mechanisms are heavily influenced by the noise with random peaks
far from the original fitness value resulting in a not robust and thus unreliable mechanism.

The mechanism in Figure 5-6b with a robustness of 40.72 has more than half of the simulation results
around the fitness value of 63 while the fitness value of the original mechanism was at 25.9. This looks
like it was designed on a peak in the solution space where most of the valley around it had a fitness value
of 63.
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5-3 Conclusion
With the robust-optimization method explained in Chapter 5-1 we have a method that will function well
with genetic programming. In this method we can set the size of the memory-bank to get the optimal
balance between robustness of the final mechanism and the calculation efficiency of the algorithm. To
further influence the robustness of the final mechanism we can also change the size of the maximum
allowed noise magnitude.
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Chapter 6

Verification of robust optimization

In previous chapter we proposed a new way for robust optimization for genetic programming. In this chapter
we will try to verify this method and look for its optimal settings of memory size and noise magnitude. This
will be done by designing a straight line mechanism further explained in Chapter 6-2 with the evolutionary
algorithm settings from Chapter 6-1. The optimal size for the memory-bank is determined in Chapter
6-3. And the ideal noise magnitude is determined in Chapter 6-4. We will test the algorithm under the
combination of these settings in Chapter 6-5. As our goal was to create a more computationally efficient
method we will try to verify this in Chapter 6-6. Finally we will take a more detailed look at the working
of the mechanisms designed by the algorithm in Chapter 6-7.

6-1 Evolutionary algorithm settings
The settings of the evolutionary algorithm will determine its functioning and therefore capability of getting
to a good optimum. In this chapter we will choose the settings for the evolutionary algorithm. And at the
end we will determine the optimal settings under which we will test the robust optimization method.

Kuppens[13] compared several functions and settings for solving the straight-line problem which we will
use for verifying our algorithm. To maintain the diversity of the population he came to the conclusion that
the island model with 12 islands gave better results than 2 islands and the use of a diffusion model also
significantly improved the results. For this reason we will use the the diffusion model and island model in
our algorithm.

For the population we use seven times seven mechanisms for each island. Kuppens proposed the use of
twelve islands but he showed that with two islands the algorithm would still function. As our focus is to
compare the different settings and not to achieve the best solution, four islands will be the best trade-off
between calculation-time and functionality of the algorithm. Kuppens also showed that one migrant per
migration wave and 10 generations between the migrations gave good results which we will also use in our
algorithm. The diffusion model will use a neighbourhood raster of three by three mechanisms. For the
breeding of new mechanisms we also use the same settings as Kuppens: a crossover rate of 1, the mutation
rate of 0.05 which defines the chance if the production dimensions are changed and a loss rate of 0.03 if
an element of the mechanism is deleted. We will use the same amount of 10 mechanisms that are replaced
every generation (20% of the total population). A schematic overview of the settings can be found in
Table 6-1. All the experiments will be run 30 times to obtain a fair sample of the performance.
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Generations 600
Migrations 60

Islands 4
Migrants 1

Population size [7,7]
Neigbourhood size [3,3]
New mechanisms 10

Crossover rate 100 %
Mutation rate 5 %

Loss rate 3 %
Mass element thickness 0.01 [m]

Hinge radius 0.01 [m]
Material density 1180 [kg/m3]

Table 6-1: Settings for the evolutionary algorithm based on experiments done by Kuppens[13].

We now have the settings of the evolutionary algorithm but we also need the settings for the robust
optimization method. The relative error of the estimated mean compared to the real mean of the memory-
bank decreases with: n−1/2 [38], with n the amount of values in the memory. If we want a accuracy of
95% we need 400 values in the memory-bank. As this is two third of the total amount of generations, the
chance that the algorithm will fill up a memory is very small. This will also remove the whole purpose
of this method of robust-optimization which was reduced computational costs. The survival chance of a
mechanism through one generation is around 80% if we assume that every mechanism has equal chance
to be replaced by a new mechanism. The chance of surviving multiple generations is given by Equation
6-1 which is plotted in Figure 5-2. In here gn is the amount of generations and rsurvival is the chance of a
mechanism surviving that many generations.

rsurvival = 0.8gn (6-1)

Comparing an accurate calculation of the robustness (meaning many values in the memory-bank) with a in-
accurate calculation (just a few values in the memory-bank) will make the inaccurate calculation dominant
in the comparison of robustness. Therefore we can expect that that a large memory bank will have little
effect on the robustness of the final mechanism while it will have a large effect on the computational
efficiency. If we want the comparison to be meaningful we need to calculate the chance that there are
still mechanisms in the population with similar filled memory banks. With a survival rate of 80%, using
Equation 6-1 we can expect that of the 196 mechanisms (4 islands and 49 mechanisms per island) in the
algorithm only one will still be present after 24 generations. This is assuming equal chance of survival of
all the mechanisms which is not true as we know that mechanisms with a higher fitness value have a higher
survival chance. To see if these high survivors have an effect on the robust optimization we want to measure
a memory-bank size higher than 24 values. We can also expect that with small memory-bank sizes, little
changes will have a big effect on the robustness of the final mechanism. Therefore it is interesting to do
more experiments with small memory sizes. As we want to keep the needed calculation time reasonable we
will limit the amount of experiments to six memory-bank sizes. The different settings for the memory sizes
to be tested will be: 1, 4, 8, 16, 24 and 32. In here we have no robust optimization when the memory-bank
size is 1 as the first fill will be the fitness value of a not-disturbed mechanism. The memory-bank size
walks with steps of 8 to a size of 32 giving us the extra large memory size. An extra low size of 4 is also
introduced to see the effects in that region more precisely.
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The second setting of the robust optimization method we need to test is the noise magnitude. As we
want to create the robust solutions to ISO-2768-m tolerances[39], we should test the system if it works
with noise of that size, thus a magnitude of 1. The ISO-2768-m norm has a higher relative effect at lower
dimensions. Therefore to see the effects of the robust optimization more clearly we need to look to small
mechanisms. For this purpose we will give an optimization drive for mechanisms of around 1 meter which
we will discuss in more detail in Chapter 6-2. As the final mechanisms will try to follow this requirement,
we can expect that the elements which make up the mechanism, are smaller but in the order of magnitude
of this 1 meter window. According to the ISO-2768-m norm [39] dimensions between 0.4 and 1 meter are
allowed to have a deviation within ±0.8mm of the base dimension. This results in an allowed deviation of
0.16% to 0.4%. To maintain reasonable calculation times for the experiments we also limit ourselves here
to 6 settings for the noise magnitude. A linear increase of the noise magnitude from 0 to 5 with steps of
1 gives us a maximum noise magnitude of 5 which means an allowable error of ±4mm. This results in an
allowed deviation of 0.8% to 2%. This is the same size as the very coarse tolerance class in the ISO-2768-v
norm [39], which is the highest tolerance class in the norm. Therefore noise magnitude settings for the
robust optimization will be: 0, 1, 2, 3, 4 and 5 times the ISO-2768-m norm which ranges from no deviation
to the maximum norm which gives a good representation of a real mechanism.

Running the algorithm for the six chosen memory sizes and noise magnitudes would mean running 36
experiments. We can reduce this amount to 26 experiments as the a memory size of 1, or noise magnitude
of 0, all mean a non-robust evolutionary algorithm. The algorithm will be run on a machine with two
E5-2665 cpu’s (8 cores, 2.40GHz, L3 20Mb cache) and 32Gb ECC PC3-12800 memory. This means that
the system needs 32.5 to 97.5 days of computing if we run the algorithm in parallel (8 cores are available
for our use and we need 4 cores per experiment). This is too long given the amount of time available for
this project. For that reason we will run all the memory-bank settings with one noise magnitude, and all
the noise magnitude settings with one memory-bank size. The fixed noise magnitude for the memory-bank
settings will be the center of the noise magnitude settings if we exclude the zero (which is the non-robust
optimization). This is a noise magnitude of 3. In Chapter 6-3 we will discuss the experimental results of
the different memory-bank sizes. For the fixed memory-bank size for the noise magnitude settings we use
the same reasoning which results in a memory-bank size of 16, whose results will be discussed in Chapter
6-4. If it appears that the setting for optimal working combination has not yet been tested we will also
experiment with this setting in Chapter 6-5. To see if our proposed robust optimization method has a
higher calculation efficiency than the expectancy measure of Tsutsui [33] we will compare this in Chapter
6-6. The 10 different robust optimization experiments, 1 optimal robust optimization experiment and 1
computational cost experiment will result in 15 to 45 days of non-stop calculating on two machines.
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6-2 Straight line fitness functions
In this chapter we will discuss the optimization problem with which we will try to verify the robust
optimization algorithm. In his work, Kuppens[13] used the straight-line problem to compare design choices
for his algorithm. Because our algorithm is based on his, we have many elements in common. This makes
the straight-line problem a good choice for optimizing our algorithm as it has already proven itself to
be compatible with a similar algorithm. Kuppens used four measures to translate the requirements of a
straight line mechanism to mathematical functions. The curvature of the line, the length of the line, the
complexity of the mechanism and the degrees of freedom of the mechanism. We will add one extra fitness
function to the straight-line problem: the size of the mechanism. At the end of this chapter we will show
how we combine these fitness functions to one fitness value for the complete mechanism. The plots of the
fitness functions can be seen in Figure B-1 in Appendix B. The mechanisms are simulated for 5 seconds
with a step size of 0.05 seconds using a Runge-Kutta 4th order solver.

Line curvature
To find the point on a mechanism that best approximates a straight line, Kuppens’[13] calculated the
curvature of the trajectory of every point on the mechanism. He defined the curvature of line by standing
on a data point and look to the angle between the two connected lines. Using Equation 6-2 he calculated
the measure for the curvature of the complete line κ which, if you want a straight line should be zero.
Here t is the nth point on the trajectory. The trajectory of the point on the mechanism with the lowest
curvature is than chosen as the input trajectory for further calculations.

κ(t) = x′(t)y′′(t)− y′(t)x′′(t)
(x′(t)2 + y′(t)2)2/3 (6-2)

rcorrelation = |
∑n

t=1(xt − x̄)(yt − ȳ)√∑n
t=1(xt − x̄)2∑n

t=1(yt − ȳ)2 | (6-3)

EStraight = |rcorrelation − rDesired| (6-4)

This method has its limits, the moment a line travels back over its own trajectory it will be registered as
a 180 degree curvature at the end-point. In normal observation you only count the curvature between the
turning points and not the turning itself. We propose using the absolute value of the correlation coefficient
of the data points rcorrelation in Equation 6-3 as a measure of straightness of the line as done by Stojmenović
[40]. In here n is the total amount of points in the trajectory. If the absolute value of the correlation is
1 the line will be perfectly straight while the trajectory could have traveled several times over the same
path. This results in the error function for the straightness of a trajectory EStraight in Equation 6-4 with
rDesired the desired correlation.
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Line length
We have now defined the curvature of a line, but if the trajectory travels no distance the mechanism will not
be practical. Therefore we need a method for measuring the length of the trajectory. Kuppens introduced
a fitness function that created a measure of the length of the trajectory. This measure calculates the
distance between all the data points and sums them using Equation 6-5.

Ltrajectory =
n∑

t=1

√
x′(t)2 + y′(t)2 (6-5)

ELength = |LTrajectory − LDesired| (6-6)

This length measure has the same limitation as the curvature of Kuppens discussed before. If it travels
back over its own path it will keep on adding this to the total distance. But we want the maximum length
of the path, without the extra length if it travels back over itself. By cutting the line in segments wherever
the derivatives of the horizontal and vertical trajectory crosses zero, we have the lengths between the
change of direction. This does not take in account that not every time the trajectory changes direction it
will travel back over exactly the same path. But if it does not travel back exactly the same its straightness
will also be low resulting in a low total fitness, making this inaccuracy less important. The error function
for the length ELength is given in Equation 6-6 where the desired length LDesired is 1 meter.

Complexity
A low complexity, or in other words few elements, is wanted as it will make the manufactured mechanism
less prone to errors and easier to produce. The complexity of a mechanism will be defined by the sum
of the amount of mass elements, amount of hinge elements and amount of spring elements. This is the
same method as used by Kuppens [13] and described in Equation 6-7. In here C is the measure for
complexity, nM the number of mass elements, nH the number of hinge elements and nS the number of
spring elements. This results in the error function in Equation 6-8 with EComplex the error and CDesired the
desired complexity which is 0 to always have a drive to a less complexity.

C = nM + nH + nS (6-7)
EComplex = |C − CDesired| (6-8)
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Degrees of freedom
With a low degree of freedom we will reduce the possibility that the optimal trajectory is a fluke. If the
degree of freedom of the mechanism is 1 we know the trajectory will only be able to follow its prescribed
path resulting in a more practical mechanism. A low degree of freedom will also drive the algorithm to
design a simpler mechanism. The degrees of freedom (DOF) of a mechanism is calculated by means of
the dimension of the nullspace of the Jacobian of the constraint vector Dk as done by Kuppens[13]. In
Equation 6-9 we give the error function EDOF of the degrees of freedom with DOFDesired the desired value.
Ideally the desired value should be 1, but due to some errors during the experiments we used a DOFDesired
of 2. As we are not trying to get the best straight line mechanism but are only interested in the comparison
between different settings this will not influence our results.

EDOF = |DOF −DOFDesired| (6-9)

Mechanism size
In Chapter 5-2 we calculate the measure of robustness by adding uniform noise to the production dimen-
sions. This noise is shaped according to the ISO-2768-m norm[39] which has a higher relative effect when
the dimensions of the mechanism are smaller. This means that the measure of robustness is better visible
when a mechanism is small. Therefore it is preferable that we add an extra requirement that tries to
force the dimensions of the mechanism down. This will be done by looking to the distance between the
lowest and highest point in the mechanism at the start of the simulation, horizontal and vertical, as seen
in Equation 6-10 and 6-11. We combine these in the error function ESize in Equation 6-12. In here the
preferred horizontal and vertical dimensions for the mechanism (LDesiredHor and LDesiredVer) will both be 1
meter.

LHor = max(xi)−min(xi) (6-10)
LVer = max(yi)−min(yi) (6-11)

ESize = 1
2(|LHor − LDesiredHor|+ |LVer − LDesiredVer|) (6-12)

Combining the fitness functions
Our algorithm works with one value that represents the fitness of the whole mechanism which is then used
in the parent selection. Therefore we need to combine the previously found error functions to one value.
By assigning each error function a weight in the weight vector w̄ in Equation 6-13 and multiplying it with
the vector with the error functions we get this single value F . The weights vector for our straight line
problem will be w̄ = [80, 40, 30, 20, 10]T .

F = [w̄]T


EStraight
ELength
EComplex
EDOF
ESize

 (6-13)
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6-3 Optimal memory size
In this chapter we will determine the optimal size of the memory bank for our robust optimization method.
The optimal memory size is where it has the best robustness while having the lowest computational cost. If
this is a memory size larger than 1 we will also have verified that this method works as a robust optimization
method in automated mechanism design.

As we explained in Chapter 6-1 we will test the robust optimization method using the settings in Table
6-1, a noise magnitude of 3 and over the six memory sizes: 1, 4, 8, 16, 24 and 32. In Chapter 6-3-1 we will
present the results of the experiments. These results will be discussed in Chapter 6-3-2 and the conclusion
is in Chapter 6-3-3

6-3-1 Experimental results
In Figure 6-1a we see the distribution of the robustness of each of the sizes of the memory-bank. To
improve the visibility at higher memory sizes, a zoomed in version is given in Figure 6-1b. The robustness
at a memory size of 1 has two outliers of more than 9.900. These outliers do not originate from the normal
calculation but are caused by an error in the simulation when the fitness was calculated. Possible causes
for such errors can be extreme accelerations or if singularities have appeared while solving the differential
equations. In both cases the algorithm is ordered to stop the simulation and give these high fitness values.
These errors do have real world counterparts. If the accelerations are too large this means some forces
are extremely high which will be able to damage the mechanism. And a singularity happens when the
mechanisms too gets into a singular position, which can give problems to its real functioning. We should
also try to avoid mechanisms that give these errors as they will create problems in a real mechanism.
Therefore we cannot simply remove these points from the data as they still hold valid information. For the
statistical calculation to work we will replace these values with the max allowed value from the z-scores[41].
This is a value of 3.29 times the standard deviation which is 72.21.
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(a) Robustness of the best mechanisms from the exper-
iments with different memory sizes. In here a lower ro-
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(b) Zoomed in robustness of the best mechanisms from
the experiments with different memory sizes.

Figure 6-1: Box-plots of the robustness of the six experiments with different sizes memory-bank. We can
see here that the larger memories often show better robustness.
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32 Verification of robust optimization

Using a Shapiro-Wilks test for normality we concluded that the robustness data from the experiments is not
a normal distribution (all memory sizes p<0.001). A logarithmic transformation was used which results are
shown in Figure 6-2. The transformation did get the data normal or close to normal. A one-way ANOVA
test shows that with F(5,174)=2.83 p=0.0174 there is a significant difference between robustness of the
different memory sizes. A Tukey post-hoc test showed that there is significant difference between the
means from memory size of 1 compared to 8 (p=0.0355) and also between 1 compared to 16 (p=0.0073).
This is a good sigh as this means that our algorithm works and does create more robust mechanisms. No
other differences were significant.
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(b) Fitness of the best mechanisms from the experiments
with different sizes memory-banks. We do not see any
change in the fitness of these mechanisms.

Figure 6-2: Box-plots of the robustness measures and fitness values from the experiments with different
sizes memory-banks.

As stated by Beyer[30], to gain a more robust design you often have to sacrifice fitness. To verify this
for our algorithm the results of the fitness values are given in Figure 6-3b. An one-way ANOVA test was
conducted to examine the effect of memory size on the fitness of the best mechanisms from the robust
optimization algorithm. With a F(5,174)=1.17 p=0.3247 the test did not find any statistical difference
between the groups with different memory sizes. This is positive as apparently our algorithm does create
more robust mechanisms without reducing their fitness.

With the increase of the memory size we expect that the algorithm has to simulate more mechanisms. This
will result in larger calculation times. The algorithm was tested on a system where also other processes
were running. As the run-time of the algorithm does not only depend on its own settings but also on
the hardware and software of the system and the other processes running on it, we cannot use the logged
run-time as a reliable basis for comparison. In the algorithm, the simulation is the most time-consuming
part. Therefore we can use the amount of times a simulation is done as a measure of how calculation
heavy the algorithm is. In here we have to take into account that a simulation can be stopped before
finished if it generates errors. From here on we will call the amount of times the simulation is called in
the algorithm ’function calls’. In Figure 6-3a we see the distribution of the amount of function calls per
algorithm run for every memory size tested.
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The data was tested for normality using a Shapiro-Wilks test which showed that all but one were not normal
with p<=0.001. Transforming the data did not result in an approximately normal distribution. There-
fore we applied the Kruskal-Wallis H-test which showed a significant difference between the groups with
χ2(5)=74.96 p<0.0001. Dunn’s post-hoc test was performed to show which groups differed. Compared
to the memory size of 1, the groups with memory size 8, 16, 24 and 32 differ significantly with p<0.001.
And compared to the memory size of 4, the groups with memory size 16 (p=0.0066), 24 (p=0.0002) and
32 (p<0.0001) differed significantly. Among the other memory sizes no significant differences were found.
This means that compared to the memory sizes of 16 and higher, a memory size of 1 and 4 does decrease
the computational cost, while among them no significant difference is visible. However a memory size of
8 is only significantly more heavy in computation than a memory size of 1. We have to take into account
that a memory size of 8 and 16 are both more robust than mechanisms created with a memory size of 1 and
between them no difference can be seen. This means that mechanisms from an automated mechanisms
design method with a memory size of 8 does not create less robust mechanisms than with a memory size
of 16, while it shows more favorable computational efficiency. Therefore a memory size of 8 is the best
choice for robust optimization according to this data.

In Chapter 2-2-2 we showed that a evolutionary algorithm with a higher diversity is preferred to prevent
getting stuck in unwanted local optima. To see if the robust optimization method has any effect on the
diversity of the algorithm we plotted that data in Figure 6-3b. An one-way ANOVA test showed that there
was no significant difference between the groups with F(5,174)=0.74 p=0.5731. With this we do not have
to fear that the robust optimization algorithm does decrease the chances of the algorithm to search for
the optimal point.
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(b) Distribution of the diversity over the course of the
algorithms for each size of memory

Figure 6-3: Box-plots of the robustness measures and fitness values for different sizes of memory banks.
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6-3-2 Discussion
In the data of the function calls in Figure 6-3a we see that the increase in the smaller memory sizes smooths
out at higher memory sizes. This was to be expected as we explained in Chapter 5-1-3. There we showed
that only a few mechanisms will survive for longer than 24 generations. Which means that a memory size
of more than 24 will probably just mean that every generation every mechanism will fill one space in the
memory-bank. Therefore we did not expect any increase in computational cost from a memory size of
24.

During the statistical tests we transformed the robustness measure to get normal distributed data. But not
all data had a normal distribution, therefore we should keep in mind that this can influence the accuracy
of the used test.

6-3-3 Conclusion
We showed that with a memory size of 8 or 16 the algorithm will create significant more robust mechanisms.
With this we have shown that our robust optimization algorithm works. Besides the better robustness we
did not see any change in diversity or fitness, which is good as this means that our algorithm does not
decrease the chance of finding the optimal mechanism or decrease the performance of that mechanism.
A downside that we expected was that the algorithm did show an increase in computational costs from
a memory size of 8 or higher. As we said earlier we are looking for the highest robustness for the lowest
computational cost. Both a memory size of 8 and 16 fulfill this task of better robustness but a memory
size of 16 is more computational heavy than a memory size of 4 and 1 while a memory size of 8 is only
more computational heavy than a memory size of 1. This makes an automated mechanism design system
with a memory size of 8 the best choice.
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6-4 Optimal noise magnitude
In this chapter we will determine the optimal bounds for the noise on the production dimensions. Here
the optimal value for the noise magnitude is also the one with the best robustness while having the lowest
computational cost.

As we explained in Chapter 6-1 we will test the robust optimization method using the settings in Table
6-1, a memory size of 16 and for the six noise magnitudes: 0, 1, 2, 3, 4 and 5 times the ISO-2768-m norm
[39]. In Chapter 6-4-1 we will present the results of these experiments. They will be discussed in Chapter
6-4-2 and the conclusion is in Chapter 6-4-3

6-4-1 Experimental results
The results of the experiments with different noise magnitudes are given in Figure6-4a. To increase the
visibility between the experiments with higher noise magnitudes we included a zoomed in version of the
data in Figure 6-4b. In the data with no noise (which is the same as no robust optimization) we again
found a couple of outliers higher than 9.900. We replaced them with values 3.29 times the standard
deviation as explained in Chapter 6-3-1. We tested the robustness distribution for normality using Shapiro-
Wilks and found the data to be not normal ( p<0.001 for all noise magnitudes). Transforming the data
with a logarithmic function made it a normal or approximately normal distribution and is shown in Figure
6-5a. A one-way ANOVA test was done showing that there is significant difference between the groups
with F(5,175)=3.25 and p=0.0079. A Tukey post-hoc test showed significant difference between a noise
magnitude of 0 (no robust optimization) compared to a noise magnitude of 2 with p=0.0216, a noise
magnitude of 3 with p=0.0049 and a noise magnitude of 5 with p=0.0271.
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(b) Zoomed in robustness of the best mechanisms over
different noise magnitudes.

Figure 6-4: Box-plots of the robustness of the six experiments with different noise magnitudes. We see a
trend that with higher noise magnitudes the mechanisms become more robust.

As we explained in Chapter 5-1-4 we here also want to know if we need to sacrifice robustness for fitness.
The data in Figure 6-5b shows the fitness values of the mechanisms created with different noise magnitudes.
Using a one-way ANOVA test we did not find significant difference between the groups with F(5,174)=1.13
and p=0.3477.
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To see if different noise magnitudes influence the diversity during the evolutionary algorithm we plotted
the data in Figure 6-6b. Using a one-way ANOVA test we did not find significant difference between the
groups with F(5,174)=0.54 p=0.7441).
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(a) Robustness of the best mechanisms for different noise
magnitudes after data transformation using the logarith-
mic function.

10

15

20

25

30

35

40

0 1 2 3 4 5
Noise magnitude

F
itn

es
s

(b) Fitness of the best mechanisms for different noise
magnitudes. In here we do not see any difference in fitness
between the groups.

Figure 6-5: Box-plots of the robustness measures and fitness values for different noise magnitudes.

Noise magnitude p-value

1 0.03
2 <0.001
3 <0.001
4 0.035
5 <0.001

Table 6-2: Shapiro-Wilks test re-
sults of the distribution of the func-
tion calls for the different noise
magnitudes which shows that the
data is not normal distributed.

We expected in Chapter 5 that changing the noise magnitude would not
influence the computational efficiency. To verify this we will use the
function calls of the simulation function in our algorithm, which is given
in Figure 6-6a, as a measure for computational efficiency. The noise
magnitude of 0 is the same as no robust optimization which means that
it worked with a memory size of 1. For this reason a noise magnitude of 0
is not included in the comparison between the amount of functions calls
over the different noise magnitudes. We tested the data for normality
using Shapiro-Wilks, which showed that all noise magnitudes were signif-
icantly not normal as shown in Table 6-2. Transforming the data did not
give better results. Therefore a Kruskal-Wallis test was performed which
showed no difference between the groups with χ2(5)=1.48 p=0.8296.
This is as expected and a good sign, as it means that we can influence
the robustness of the designed mechanisms without sacrificing compu-
tational efficiency. With this the only result that is influenced by the noise magnitude is the robustness
making this an ideal method of influencing the robust optimization method. The noise magnitudes of 2,
3 and 5 have better robustness than a noise magnitude of 0, but between them we found no difference.
It is possible that changing the noise magnitude did influence the algorithm on points we did not see or
measure, therefore we should choose the noise magnitude that has the best robustness while having the
least changes compared to the normal automated mechanism design. The result of this is that a noise
magnitude of 2 is the most optimal setting according to our data.

E. Kranendonk Master of Science Thesis



6-4 Optimal noise magnitude 37

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
5

0 1 2 3 4 5
Noise magnitude

F
un

ct
io

n 
ca

lls
 [f

re
q]

(a) Distribution of the amount of function calls per al-
gorithm run for each noise magnitude. If we exclude the
noise magnitude of 0, we do not see difference between
the groups.
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(b) Distribution of the diversity over the course of the
algorithms for each noise magnitude, which shows no dif-
ference between the different noise magnitude settings.

Figure 6-6: Box-plots of the function calls and diversity of the evolutionary algorithm for different noise
magnitudes.

6-4-2 Discussion
If the noise magnitude is chosen even larger than we did now it is possible that other problems will emerge.
We can expect that with an extremely large noise magnitude the fitness will drop because the construction
of the mechanism would completely change due to the noise. Further tests can be done but if this has any
meaning is doubtful because the decrease in the robustness measure already smooths out. The reason for
this flattening of the robustness at higher noise magnitudes is not clear. A possible cause can be that with
the higher noise magnitudes do not give more information about the robustness of a mechanism.

In the data analysis we should take into account that during the transformation of the robustness data not
all data was completely normal distributed. Therefore it is possible that the test results from the one-way
ANOVA are less accurate.

6-4-3 Conclusion
Mechanisms from a robust optimization algorithm with a memory size of 16 and noise magnitude of 2, 3 or
5 have significantly better robustness than a from a robust optimization algorithm with a noise magnitude
of 0 (meaning no robust optimization). No significant change in fitness, function calls or diversity has
been found. As the noise magnitudes of 2, 3 and 5 have the same results we will choose the one with the
least adjustment to the original algorithm as optimal. With the noise magnitude of 2 having the lowest
bounds for the noise that will be the best choice.
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6-5 Robust optimization with optimal settings
In previous chapters we have shown that for the experiments we ran, a memory size of 8 and a noise
magnitude of 2 were the optimal settings. However it is possible that the combination of these two do not
hold the same results. Therefore we will test the robust optimization method with these settings against
the normal evolutionary algorithm.

6-5-1 Experimental results
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Figure 6-7: Distribution of the transformed robust-
ness of the best mechanisms of the normal algorithm
and the robust optimization with optimal settings.

The test results of the robust optimization method with
a memory size of 8 and noise magnitude of 2 are com-
pared to the automated mechanism design method with
no robust optimization. The robustness was tested for
normality using Shapiro-Wilks test and were found to
be not normal with p<0.001. Transforming the data
did result in an approximately normal distribution and is
shown in Figure 6-7. Using Student’s t-test we saw that
the robustness of the robust optimization was significant
different with p=0.0019. This is good as it shows that
the found optimal settings do result in mechanisms with
a better robustness as was expected. The fitnesses of
these mechanisms are given in Figure 6-8a. We tested
them using Student’s t-test and found no difference be-
tween them with p=0.9038. Before we found that the
better robustness did come at a price of computational
efficiency. We plotted the function calls in Figure 6-8b
to see if this is still the case with these settings. The data was found to be not normally distributed
and transforming did not work. Therefore we used a Mann-Whitney U-test which showed a significant
difference with p<0.0001. This shows that the robust optimization method with these settings does give
more robust solutions but as expected that we do need to sacrifice computational efficiency. The upside
is that this method does not reduce the fitness of the resulting mechanisms.
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Figure 6-8: Distribution of the robustness of the six experiments with different sizes memory-banks.
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6-5-2 Discussion
It is possible that there is interaction between the two variables. But we know from previous tests that
a two-way ANOVA with higher settings will not result in significant differences. And a test with lower
settings will not have any meaning is we will than compare three times a non-robust optimization against
one robust optimization. It is possible that a larger sample size can increase the significance of the results
with which such a test becomes possible. However this will take at least a 30 days computing which is not
available for us at this moment.

6-5-3 Conclusion
We have shown that the robust optimization method with the optimal settings that determined in Chapter
6-3 and Chapter 6-4 does create more robust mechanisms. This without sacrificing fitness but it does
increase the computational efficiency.
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6-6 Direct memory filling
We now have verified that our method does give more robust mechanisms. But the reason for how we
designed it, was that it should reduce the computational cost compared to the conventional methods such
as the expectancy measure while resulting in mechanisms with the same robustness. In this chapter we
will test the expectancy measure and analyze the results.

6-6-1 Experimental results
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Figure 6-9: Distribution of the amount of function
calls of our robust optimization and the robust opti-
mization where the memory is filled in the first gen-
eration. It shows that our method is computational
more efficient.

To compare our robust optimization to the the ex-
pectancy measure we will use the data from Chapter
6-5 which had a memory size of 8 and noise magnitude
of 2. The expectancy measure of a mechanism will be
calculating with the same amount of data points as the
memory size of our method. This way they will have the
same accuracy, as explained in Chapter 6-1. In practice
this will mean that we compare our algorithm, where
the memory is filled with one sample every generation,
against the expectancy measure, where the whole mem-
ory is filled directly in the first generation.

Our main objective for using a different robust optimiza-
tion method was a lower computational cost. Therefore
we will first look to the difference between the amount
of function calls as seen in Figure 6-9. The distribu-
tion of the function calls was found to be not normal
with p=0.024 for our method and p<0.001 for the di-
rect memory filling method using Shapiro-Wilks tests. Transformation did not work, therefore we used
Mann-Whitney U-test which showed that the means were significant different with p<0.0001. This clearly
shows that our method is computationally more efficient than the conventional expectancy measure. The
same comparison with a memory of 4 and noise magnitude of 2 resulted in a p=0.7506 using a Mann-
Whitney U-test. And a comparison with a memory of 16 and noise magnitude of 3 resulted in a p<0.0001.
Both of them did not show any significant difference between the fitnesses or robustnesses of the final
mechanisms. This showed that with a smaller memory size the computational efficiency gain decreases
while there is no effect seen on robustness or performance.

However, a different method for robust optimization can also result in different mechanisms. Therefore
we we also test the fitness of the mechanisms in Figure 6-10a. Using Student’s t-test wit p=0.4187
we did not see a significant difference in the fitness values of the mechanisms created with the different
methods. Another difference can be that the conventional method will result in more robust mechanisms.
This robustness in Figure 6-10 found not normal distributed using the Shapiro-Wilks test with p<0.001
for both methods. Transforming using the logarithmic function did get it approximately normal. Using
the Student’s t-test with p=0.3775 we did not see a significant difference in robustness between the two
methods. With this we can say that we have created a computational more efficient method that generates
mechanisms with similar robustness and fitness.
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(a) Fitnesses of the final mechanisms for our robust
optimization and the conventional robust optimiza-
tion.
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(b) Robustness of the final mechanisms for our ro-
bust optimization and the conventional robust opti-
mization.

Figure 6-10: Box-plots of the fitness and robustness of our robust optimization and the robust optimization
where the memory is filled in the first generation. As they are both not significant different we do not need to
sacrifice robustness or fitness for our increase in computational efficiency.

In the problem statement we defined the requirement that we wanted to create a method that would
produce more robust mechanisms within the time of the same order of magnitude as Kuppens did. As we
explained earlier, it will not be able to compare the real run-times of our algorithm as this is influenced not
only by the algorithm, but also the computational system, the software and the other processes running on
the system. Still we will show the real calculation times in Figure 6-11. In here we see that the algorithm
without robust optimization but with our improvements from previous chapters did take 0.4 and 1.4 hours
to compute. The robust optimization method with a memory size of 8 and noise magnitude of 2 did take
between the 1.4 and 2.4 hours. This is higher than without robust optimization which we already expected
but still lower than the 2 to 6 hours seen by Kuppens. The robust optimization where the memory is filled
in the first generation did take between the 2.3 and 3.7 hours to compute. This increase in computational
time is what we expect if we looked to the amount of function calls of the different automated mechanism
design methods.
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Figure 6-11: Box-plot of the time needed for the automated mechanism design method
to come with a mechanisms. This is measured for the algorithm without robust opti-
mization, our robust optimization and the optimization method where the memory is
filled in the first generation. We can clearly see the increase of calculation-time needed
for each method.
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6-6-2 Discussion
With the smaller memory size we saw a reduction in the computational gain we achieved with our robust
optimization. This is probably because with a smaller memory, a larger percentage of the total population
will reach a completely filled memory-bank. This means that those mechanisms with a completely filled
memory bank did have the same amount of simulations as when their memory was filled in their first
generations. This reduces the difference between the two methods.

We still need to take into account that our transformed robustness is only approximately normal distributed.
This can mean that the results from our statistical tests are less accurate.

6-6-3 Conclusion
With the comparison between our method and the expectancy measure we have shown that our method
is computationally more efficient. These improved results on the conventional method do not come at a
cost for fitness or robustness making this a good method for designing robust mechanisms.
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6-7 Resulting mechanisms
The strength of the algorithm has been discussed in previous chapters. In this chapter we will discuss the
resulting mechanisms themselves. The problem that the algorithm had to solve was to find a mechanism
that could draw a straight line. Known solutions for this problem can roughly be divided in four categories:
4-bar mechanisms, true straight line mechanisms, pendula and other. Straight line approximations using
4-bars are the Roberts Mechanism, Watt’s linkage, Chebyshev linkage, Chebyshev’s Lambda Mechanism
and Hoeckens linkage (not relevant for us as it uses a slider which is not available in our algorithm).
More complex systems such as Peaucellier-Lipkin linkage (8-bar), Hart’s Inversor and Hart’s A-frame (both
6-bars) can replicate true straight lines. If our algorithm would replicate such a mechanism it would show
that it can be used as a design-tool alongside a human. When a pendulum has a long enough arm is will
approximate a straight line, therefore we include this as the third category. The final category contains
all other solutions that can reproduce approximations of a straight line, for example a falling mass. To
compare the systems we classified the final mechanisms from each experiment in Table 6-3 and 6-4.

Memory size 1 4 8 16 24 32

Pendulum 18 15 11 14 13 16
4 bar mechanism 10 9 15 13 15 11

Other 2 6 4 3 2 3

Table 6-3: Classification of best mechanism of each of the 30 runs per memory size.

Noise magnitude 0 1 2 3 4 5

Pendulum 18 17 13 14 12 15
4 bar mechanism 10 9 13 13 15 11

Other 2 4 4 3 3 4

Table 6-4: Classification of best mechanism of each of the 30 runs per noise magnitude.

We see that every design option except a true straight line mechanism is among the final mechanisms of
the algorithm. We do not see a direct preference for a specific solution to the problem. This makes the
results from our algorithm less reproducible. A good sign is that the distribution over the categories is
roughly the same for every setting in robust optimization. This means that our algorithm does not have
much influence on the resulting mechanisms.

Examples of the resulting mechanisms are given in Figure 6-12 and 6-13. This includes the Roberts
Mechanism in Figure 6-12a, Chebyshev linkage in Figure 6-12b, Chebyshev’s Lambda Mechanism in Figure
6-12c, Watt’s linkage 6-13a and the pendulum in Figure 6-13b In Figure 6-13c we see even an approximation
of Harts Inversor.

Among the solutions one mechanism stood out. As we said before, there are a couple of true straight line
mechanisms. The mechanism in Figure 6-13c infringes upon Hart’s Inversor. Its line is not yet perfectly
straight but it is possible that if the algorithm was allowed to continue optimizing it would result in a true
straight line mechanism.

Most of the mechanisms belonging to the category other were double pendula with a specific own frequency
that made it always fall back along the same straight path as shown in Figure 6-14a. These double pundula
often used a large amount of springs to ensure this own frequency. This often let to straighter lines than
a normal pendula but have an increased complexity.
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(a) Robberts mechanism
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(b) Chebyshev linkage
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(c) Chebyshev Lambda mechanism

Figure 6-12: Several very good approximation of well known straight line mechanisms.
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(a) Watt’s linkage
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(b) Pendulum
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(c) Approximation of Hart’s Inver-
sor

Figure 6-13: Several approximation of well known straight line mechanisms.

The algorithm even came up with some more sophisticated mechanisms that fulfill the requirements very
well for which we could not find any literature reference. One of them is the 6-bar mechanism shown in
Figure 6-14b. It uses the same inverted parallelogram as Hart did for his true straight line mechanisms but
it does not infringe upon his designs. This shows that our algorithm can be used to find novel solutions
for existing problems.
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(a) Forced double pendulum
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(b) 6-bar mechanism

Figure 6-14: Two original solutions to the straight line problem.
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6-7-1 Discussion
Kuppens[13] did an experiment with similar settings. But he did not include robust optimization and had
no fitness function size of the mechanism. His resulting mechanisms were mainly pendula while we have
a wide range of different solutions. As we did not see a change in the final mechanisms with different
settings that will probably not be the cause. The fitness function for the size of the mechanism does drive
the system to design smaller mechanisms. True pendula are especially a good choice when the trajectory
is far from the central axis. This is not really possible with the limitation on the size of the mechanism.
Another cause for the lack of pendula can be that we asked for 2 degrees of freedom.

These 2 degrees of freedom can also be the cause that we did not see any perfect pendula. Every
pendulum consisted of multiple mass elements as can be seen in Figure 6-13b or had other surplus elements.
Experiments with a fitness function asking for a 1 degree of freedom could show if this was the cause. But
as this takes more than 30 days to compute, this will not be possible within our project.

6-7-2 Conclusion
We have shown that with robust optimization the automated mechanism design program can create a wide
variety of straight-line mechanism. It does not only produce mechanisms exactly the same as designs used
for many decades in the industry. It also comes up with novel solutions that could be used.
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6-8 Discussion
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Figure 6-15: Function calls per generation of an au-
tomated mechanism design algorithm without robust
optimization not showing extreme peaks.

In the data from the experiments one particular event
stood out. If we looked at the amount of function calls
of the simulation function, most of the plots looked like
in Figure 6-15. But occasionally the amount of func-
tion calls had extreme peaks ranging in the thousands
of function calls in one generation as seen in the plots
in Figure 6-16. The occurrence of these events can also
be noticed when the algorithm is running. At these mo-
ments the algorithm can freeze for several hours in one
generation. A possible explanation can be that within
some populations, crossover has a very low chance of
creating new mechanisms that fulfill the requirements.
These requirements are if a mechanisms is connected to
the ground, if all mass-elements are connected to each
other, if more than one degree of freedom and if the simulation succeeds.
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(a) Function calls per generation with extreme peaks
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(b) Function calls per generation with extreme peaks
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(c) Function calls per generation with extreme peaks
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(d) Function calls per generation with extreme peaks

Figure 6-16: Function calls per generation from four experiments using the automated mechanism
design program without robust optimization showing extreme peaks.

The most straightforward method of solving such a problem is by counting how many times the algorithm
has tried to create a new mechanism with crossover. When this exceeds a certain value we create a
mechanism without crossover. Two methods of creating a mechanism without crossover are possible: by
taking a parent and using only mutation, or by creating a mechanism completely from scratch with random
parameters.
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The peaks in function calls have a trend of appearing the same time as when that population has a low
diversity. This can be seen in Figure 6-17 which are the diversity plots belonging to the plots in Figure
6-16. For example in Figure 6-16a in combination with 6-17a following the green line which represents
an island. Here we see a drop in diversity around the 100’th generation, and a extreme in function calls
around the same time.

At a point of low diversity the algorithm will most likely lock in a local optimum. As Kuppens[13] pointed
out if we want to find the global optimum we need to try to keep the diversity high. He also tried the
extinction method which increased diversity by replacing a part of the most common mechanism with new
random mechanisms.

Knowing this, it is logical for our problem to choose the solution that increases the diversity if it is low.
Therefore the second solution which replaces the mechanism with a new random one is the better choice.
The other option has a higher chance of making small adjustments to the existing mechanisms which can
fine-tune the best mechanism of that moment. But the low diversity means that that specific mechanism
is well represented in the population. That means that it will already be used a lot for creating new
mechanisms and more fine-tuning will probably have little influence.
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(a) Diversity per generation corresponding to Figure
6-16a
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(b) Diversity per generation corresponding to Figure
6-16b
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(c) FDiversity per ggeneration corresponding to Fig-
ure 6-16c
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(d) Diversity per generation corresponding to Figure
6-16d

Figure 6-17: Diversity per generation from the four experiments in Figure 6-16 using the automated
mechanism design program without robust optimization. These plots show a drop in diversity corre-
sponding with the extreme peaks of function calls.

Another problem surfaced with the creation of the fitness functions for the straight line mechanism. When
programming the fitness functions a lot of systems had to be fine-tuned before it worked properly. A
systematic method that can reduce the difficulty, uncertainty and time needed for this process is needed.
In the experiments done later we used a different method that tries to solve these problems as explained
below. This method consists of two parts: converting the requirements to mathematical functions and
combining those functions.
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To translate a requirement to a mathematical function we need two things. First we need a measure of
the requirement which can be calculated by the algorithm. And secondly we need the desired value of
that measure. A fitness function needs to be continues and always have a slope towards the optimum
so that every adjustment translates in knowledge about reaching the optimum. This directly implies that
the function needs to be unbounded which also removes possible errors that can occur if extreme values
are given as input. Our algorithm tries to minimize the fitness value of a mechanism. Therefore our
fitness functions should be zero at the desired point and positive otherwise. As we need to combine
several different fitness functions they should be normalized so that you know between which values the
you can expect a value. The normalization we applied will give a 0 when perfect and 1.2 when at its worst
value.

By defining the measure as a physical or understandable value we can intuitively define our desires around
it. As the requirements define what is optimal we can also use it to define which values around it are still
acceptable and from when on it becomes unusable. Also, if the fitness measure is understandable we can
define what reasonable the maximum value is that it can reach. As an example the requirements for the
size of a mechanism are given in Table 6-5.

low maximum not wanted tolerable desired tolerable not wanted high maximum

Fitness value 1.2 1 0.1 0 0.1 1 1.2
size of the mechanism -0.2 0 0.2 1 1.3 1.7 10

Table 6-5: Input settings for the fitness function which defines the requirements for the total dimension
of the mechanism, between these values the function will be linear.
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Figure 6-18: Fitness function of the size of a mech-
anism based on the values from Table 6-5.

Fishburn[42] and later Fan[43] showed that an good fit-
ness function should be in the form of E−1 with E the
error (real value minus the desired). This was based on
an evolutionary optimization algorithm that searched for
the highest fitness value which can go to infinite. As our
has 0 fitness as a lower limit we will create a plateau
around the desired value which is acceptable for the re-
quirements. If we use the fitness values given in Table 6-5
and linearize the fitness function between these points,
we get the Figure 6-18.

We now have a systematic method of translating the re-
quirement to a mathematical function. These functions
still need to be combined to a single value with which
the algorithm can work. Kuppens[13] did this by tuning
the weights from Equation 6-13. At the basis of tuning
these weights is that we know what the physical meaning of the several fitness functions are. We can use
this to rank them on how important we think they are for our problem with 1 the most important and
going up to less important. Sometimes we can not choose between which functions are more important
which will result in functions with the same rank. From experience with tuning the straight line problem
we saw that making the most important fitness function weights at least twice the next weight and letting
the less important fitness function weights slowly decrease often works good (such as [80, 40, 30, 20, 10]
for the straight line problem). By using w = r−1.5 with w the fitness function weight and r the rank of
the fitness function, we get an approximation of the tuned weights we have seen before and it will roughly
follow Fishburn’s [42] advice. Another choice for combining the fitness functions can be the use of a Pareto
front, using this in our algorithm should be investigated.

E. Kranendonk Master of Science Thesis



6-9 Conclusion 49

As a short literature survey did not hold much information, this proposed method is mostly based on
experience. But as we want to further reduce the influence of the human on the design methods this
will be an important part. Proper research should be done to automate the fitness function creation
process.

In Chapter 6-2 we explained how to use the correlation coefficient as a measure for the straightness of a
line. This measure is based on the work of Stojmenović [40]. He also proposed several other measures for
straightness which could work better but this has not been investigated.

6-9 Conclusion
In this chapter we have verified that our robust optimization algorithm for genetic programming can
generate robust mechanisms. This without sacrificing fitness or diversity. Our method will increase the
computational costs but we have shown that it is less computational heavy than conventional robust
optimization, while it will result in mechanisms with the same robustness and fitness. The optimal settings
to get a good balance between robustness and computational efficiency are a memory size of 8 and noise
magnitude of 2.

Master of Science Thesis E. Kranendonk



50 Verification of robust optimization

E. Kranendonk Master of Science Thesis



Chapter 7

Test-cases

In Chapter 6 we have shown that the robust optimization method we proposed works for a straight line
optimization problem. But an automated mechanism design method has to function for a wide variety of
problems. In this chapter we will take all the improvements and use it to find solutions to a couple of
different problems. The settings for the robust evolutionary mechanism design method are given in Table
7-1 and every design problem is run 10 times.

During the first couple of runs with these test-cases the system sometimes froze for hours. We suspected
the source of the problem to be the extreme peaks in function calls as discussed in Chapter 6-8. Therefore
we limited the attempts to use crossover for creating a new mechanism to 100, after this a new random
mechanism was created as child. After this modification the problem did not occur anymore.

To reduce the time needed to tune the fitness function settings, we used the method proposed in Chapter
6-8. The settings for this are further elaborated in their respective chapters.

Generations 1000
Migrations 100

Islands 8
Migrants 1

Population size [10,10]
Neigbourhood size [3,3]
New mechanisms 20

Crossover rate 100 %
Mutation rate 5 %

Loss rate 3 %
Mass element thickness 0.01 [m]

Hinge radius 0.01 [m]
Material density 1180 [kg/m3]

Table 7-1: Settings for the evolutionary algorithm.
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The first problem we will solve using the automated mechanism design method with robust optimization,
is the straight line problem in Chapter 7-1. This has already been attempted during the verification in
Chapter 6 but this time it will be done using more optimal algorithm settings and the altered fitness
function tuning method. Secondly we will try to find a mechanism that can draw elliptic curves in Chapter
7-2. This has already been attempted by Kuppens[13]. Finally in Chapter 7-3 we will try to solve a problem
proposed by a colleague who needed a mechanism that would increase the input frequency.

7-1 Straight line problem
As already explained in Chapter 6, the straight line problem tries to find a mechanism that draws a straight
line. During the verification step we already solved this many times. However the settings used then were
not ideal but good enough to compare the results between each other. This was done to preserve calculation
time. In this chapter we will first define new fitness functions using the method explained in Chapter 6-8.
After that we will solve the problem using the more optimal settings from Table 7-1, a memory size of 4
and noise magnitude of 2.

Fitness functions
The fitness functions for the straight line problem use the same measures as explained in Chapter 6-2.
The difference in the fitness function is how the error is translated to a fitness value. This is done as
explained in Chapter 6-8. For this method we use the input values from Table 7-2. The corresponding
plots of these the resulting fitness functions are given in Appendix E in Figure E-1. These fitness functions
are combined to a single value by appointing weights to them. This is done by first ranking the functions
as done in Table 7-2 and than calculating the weights using w = r−1.5 which results in the weights
[55.7 19.7 10.7 7.0 7.0].

max low not wanted tolerable desired tolerable not wanted max high rank

Fitness value 1.2 1 0.1 0 0.1 1 1.2
Straightness 0 0.75 0.95 1 1.05 1.25 1.5 1

Trajectory length 0 0.5 0.8 1 2 5.5 10 2
Complexity -63 -20 -7 0 7 20 63 3

Degrees freedom -2 -1 0 1 2 6 7 4
Size of the mechanism -0.2 0 0.2 1 1.3 1.7 10 4

Table 7-2: Input settings of the fitness functions for the straight line problem, between these values the
functions are linear.
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Experimental results
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Figure 7-1: The fitness values of the final mecha-
nisms from the 10 runs for the straight line problem.

The problem was solved 10 times and the resulting fitness
values of the best mechanisms are shown in Figure 7-1.
How the mechanisms are developed over the course of
the algorithm can be seen in Figure 7-2a where we plot-
ted the fitness of the best mechanisms for every genera-
tion of all the 10 runs of the algorithm. We see that every
run still improved the fitness of their best mechanism af-
ter 600 generations. Especially the red and turquoise
algorithm runs show major improvements in their later
generations. We see in Figure 7-2b that these runs of
the algorithm also had a higher diversity for a longer
time than the other runs. If this made the improvement
in their later generations possible or has the same cause
as the late improvement is not clear.
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(a) The fitness values of the best mechanism of every
generation.
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(b) The diversity for each generation.

Figure 7-2: The fitness values and the diversity over the generations from the 10 runs for the straight
line problem.
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After classification of the final mechanisms we found seven pendula, one 4-bar mechanism (Chebyshev’s
Lambda mechanism) and two other. This is a better match with the results Kuppens[13] saw with his
experiments. None of the mechanisms do create good approximations of a straight line. It is possible that
we have a biased view as we only did 10 runs with the algorithm. The other possible cause can be that
the fitness function that asked for 2 degrees of freedom applied a drive that reduced possibility of getting
stuck in a local optimum.

-0.5 0 0.5 1 1.5 2

Distance [m]

-0.5

0

0.5

1

1.5

2

D
is

ta
nc

e 
[m

]

Time: 0.25 sec

(a) A pendulum.

-0.5 0 0.5 1 1.5

Distance [m]

-0.5

0

0.5

1

1.5

D
is

ta
nc

e 
[m

]

Time: 0.05 sec

(b) A Chebyshev’s Lambda mech-
anism.
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(c) A 8-bar mechanism.

Figure 7-3: Three of the mechanisms created by the automated mechanism design method solving the
straight line problem.
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7-2 Elliptic trajectory problem
Kuppens[13] tested his algorithm on a problem that tried to find a mechanism that would follow a elliptic
trajectory. He found mechanisms that did a good approximation of an ellipse. With this he showed that
this problem can function as a good test method for our automated mechanism design method. We will
first explain how we calculate the fitness values. After that we will show the results and discuss the designed
mechanisms.

Fitness functions

To calculate the fitness value for the elliptic trajectory problem we need to have a measure of how elliptic a
trajectory is. Kuppens used the feature based approach of Coros [44]. As we will use the systematic fitness
function tuning method from Chapter 6-8 we need to have a feeling what the values from the elliptic
trajectory measure mean. The measure from Coros has several more tuning parameters inside which
removes every connection it has with a real world value. This makes it impossible for us to determine if
the value is tolerable and what we can expect as a maximum value. Therefore we cannot use this measure.
Kuppens also proposed the modified Hausdorff distance[45] and the Fréchet distance[46]. But they have
the same problem that the resulting values are difficult to understand.

In previous chapter we showed a method that can find a mechanism for a straight line. By defining the
ellipse in terms of polar coordinates and than dividing it through its radius we can define the ellipse as
a straight line. With this we can use a measure of straightness with which we have a feeling how it will
behave and which values are acceptable. A problem with this method is that if only a part of an ellipse is
recreated, it will not see this as an error. For this reason we also introduce a fitness function that gives the
percentage of how much the trajectory encircles the center. In the straight line problem we had the fitness
function for the length of the trajectory. This fitness function is to make sure that the final straight line
is of a usable size. For the ellipse it would make more sense to use the surface area instead. The fitness
functions for the complexity, degrees of freedom and size of the mechanism are exactly the same as for the
straight line problem.

The settings to translate these measures to fitness values is given in Table 7-3. The resulting plots of
these fitness function can be found in Appendix E in Figure E-2. Combining these fitness values was
also done by ranking the fitness functions. The ranks as given in Table 7-3 resulted in the weights
[53.0 18.8 4.7 10.2 6.6 6.6] with which the fitness functions are combined to one fitness value. The other
input settings for the algorithm are given in Table 7-1, a memory size of 4 and noise magnitude of 2.

max low not wanted tolerable desired tolerable not wanted max high rank

Fitness value 1.2 1 0.1 0 0.1 1 1.2
Ellipse -0.5 -0.3 -0.05 0 0.05 0.3 0.5 1

Trajectory circumvent -2π -0.3π 0π 0.25π 0.5π 0.8π 2π 2
Area ellipse 0 0.05 0.1 0.2 0.5 1 2 5
Complexity -63 -20 -7 0 7 20 63 3

Degrees freedom -2 -1 0 1 2 6 4 5
Size of the mechanism -0.2 0 0.2 1 1.3 1.7 10 4

Table 7-3: Input settings of the fitness functions for the elliptic trajectory problem, between these values
the functions are linear.
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Figure 7-4: The fitness values of the final mech-
anisms from the 10 runs for the elliptic trajectory
problem.

We ran the automated mechanism design method 10
times solving the elliptic trajectory problem. The fitness
values of the resulting mechanisms are given in Figure
7-4. How the fitness values evolved over the generations
is plotted in Figure 7-5a. If we compare this with the
fitness from the straight line problem from Figure 7-2a
we see some differences.

The first thing is that the fitness of most of the runs
stops improving after 400 generations. If we look to
the diversity of the algorithm for every generation as is
given in Figure 7-5b we also see that it dropped a lot
faster than the diversity of the straight line problem in
Figure 7-2b. A possible cause for this fast decrease in
diversity and stop of improvement of the fitness can be
the method used to build the fitness functions or our
method of creating a measure of how elliptic a trajectory
is.

The second thing we can see in Figure 7-5a is a lot of spikes downwards. This is probably caused by the
robust optimization algorithm. If the first fitness value in the memory is low and better than the best
mechanism before it will show as a drop in the fitness plot. But if its second fitness calculation does
result in an average fitness value higher than that of the best mechanism of previous generation, that
mechanism will again be registered as best and the plot of the fitness value will go back up. At the end
of the algorithm you see that this jiggering becomes smaller and happens less often. This is probably
because most mechanisms in the population are similar to the best mechanism which will result in child
mechanisms that are also similar and therefore more robust.
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(a) The fitness values of the best mechanism of every
generation.
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(b) The diversity for each generation.

Figure 7-5: The fitness values and the diversity over the generations from the 10 runs for the elliptic
trajectory problem.
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The designs from the automated mechanisms design method resulted in four double pendula, five 4-bar
mechanisms and the 7-bar mechanism in Figure and 7-6c. An example of the double pendula is given
in Figure 7-6a. It is clear that this design will not result in a usable mechanism to draw elliptic lines.
The 4-bar mechanisms, such as given in Figure 7-6b will make better mechanisms. Still the resulting
trajectories are only rough approximations of an ellipse. They resemble the trajectory of a Chebyshev’s
Lambda mechanism which can be explained as their 4-bar setup is also an infringement on that design.
The extra bars in Figure 7-6b are locked in a triangle and do not contribute to the movement.
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(a) A double pendulum which does
not make a good elliptic trajectory
following mechanism.
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(b) A Chebyshev’s Lambda mecha-
nism that follows approximately an
elliptic curve with a flat side.
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(c) A 7-bar mechanism that follows
approximately an elliptic curve.

Figure 7-6: Three of the mechanisms created by the automated mechanism design method solving the
elliptic trajectory problem.
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7-3 Frequency multiplier problem
When looking for good test cases for our algorithm, a colleague suggested that we tried to solve a problem
he had. He was looking for a mechanism that could double the input frequency without changing the
amplitude of the input. As the previous two test-cases were trajectory problems, this proposed challenge
is a good addition as it focuses more on the dynamics of a mechanism. To let the automated mechanism
design method solve this problem we fist explain how we defined the fitness functions. After that we will
show the results and discuss the final mechanisms.

Fitness functions
The mechanism that has to increase the input frequency will be used as a part of a larger design. Therefore
it would be practical that the input and output of the mechanism are connected to the ground. Knowing
this, only mechanisms with two or more connections to the ground will be a feasible solution. The
algorithm will be able to find solutions without changes but to reduce the computation time we made
sure that a mechanism did have this minimum required connections to the ground before we calculated its
fitness.

At the center of the problem is the demanded increase of the input frequency to the output. To determine
the best frequency ratio among the available connections to the ground we calculated for every of those
connections the changes in direction and the time between those changes. The time that occurred most,
and was larger than a minimum of 0.2 seconds, is then chosen as the frequency of that connection. After
that the couple of connections with a ratio closest to the desired ratio was determined and used as the
first fitness function for this problem.

The second demand was that the amplitude would stay the same. For this we calculated this ratio for the
couple of connections found before. Finally to make sure that the resulting mechanism is also practical
we need a minimum amplitude which is also introduced as a fitness function. These three functions
combined with the drive for low complexity, one degree of freedom and a desired size of the algorithm are
used as input for our algorithm. The settings for these functions are given in Table 7-4 and the resulting
plots of these fitness functions are given in Appendix E in Figure E-3. Combining these fitness values
was also done by ranking the fitness functions. The ranks as given in Table 7-4 resulted in the weights
[51.2 9.9 18.1 6.4 4.6 9.9] with which the fitness functions are combined to one fitness value. The other
input settings for the algorithm are given in Table 7-1, a memory size of 8 and noise magnitude of 2.

max low not wanted tolerable desired tolerable not wanted max high rank

Fitness value 1.2 1 0.1 0 0.1 1 1.2
Frequency ratio 0 0.8 1.2 1.5 2 2.5 10 1
Amplitude ratio 0 0.2 0.5 1 2 4 20 3

Amplitude 0 0.15π 0.3π 0.5π 0.8π 1.2π 2π 2
Complexity -63 -20 -7 0 7 20 63 4

Degrees freedom -2 -1 0 1 2 6 7 5
Size of the mechanism -0.2 0 0.2 1 1.3 1.7 10 3

Table 7-4: Input settings of the fitness functions for the frequency multiplier problem, between these
values the functions are linear.
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Figure 7-7: The fitness values of the final mecha-
nisms from the 10 runs for the frequency multiplier
problem.

The frequency multiplier problem was solved 10 times
using our automated mechanism design method. The
fitness of the resulting mechanisms can be seen in Figure
7-7. In Figure 7-8a we see how the fitness developed
over the generations. In here we can clearly see similar
aspects as we did see for the elliptic trajectory problem.
We see the same peaks downwards which are probably
the effects of the robust optimization. And we also see
that the fitness stops improving quite fast compared to
the straight line problem. However in contrast to the
elliptic trajectory problem we still see some improvement
of the fitness in the later generations.

In Figure 7-8b we see the diversity over the generations.
It looks like this decreased even faster than the diversity
of the elliptic trajectory curve which corresponds with
the slow fitness improvements in Figure 7-8a.
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(a) The fitness values of the best mechanism of every
generation.
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(b) The diversity for each generation.

Figure 7-8: The fitness values and the diversity over the generations from the 10 runs for the frequency
multiplier problem.

Two of the mechanisms designed by our automated mechanisms design algorithm working on the frequency
multiplier problem are shown in Figure 7-9 and 7-10. The algorithm designed six 4-bar mechanisms that
positioned themselves in a singular position in which they switched the bar which would be on top. This way
they constantly switch between a long and a short swing. At the end of the simulation one will have more
long swings and the other more short swings. As we used the mode to calculate the dominant frequency
of a hinge these mechanisms will have a good frequency ratio but are not usable as a real mechanisms for
our problem. This means that our method of defining the frequency ratio can be improved.
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Three of the other mechanisms did follow the setup as seen in Figure 7-9. The working of these mecha-
nisms are similar to the working of a piston. This is a beautiful method for fulfilling the frequency ratio
requirement. A big downside is that this method does not fulfill the amplitude requirement. The driving
hinge will always travel a smaller trajectory (or amplitude). This makes this mechanism useful if the
amplitude requirement is not that strict.
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(a) Starting point of the mecha-
nism.
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(b) Mid point of the mechanism.
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(c) End point of the mechanism.

Figure 7-9: Mechanism designed by our algorithm solving the frequency multiplier problem.
The last mechanism our algorithm designed is seen in Figure 7-10. It works by unfolding two bars and
than folding them back up, repeating this method on and on. This solves the frequency ratio requirement
as it always doubles the input frequency. The amplitude ratio requirement is also solved. We can even
influence the amplitude ratio by changing the dimensions of the smaller two bars (or triangles here) in
contrast to the big bar. The amplitude itself cannot be bigger than 0.5π as otherwise the smaller bars will
get locked in an overstretched position. But with an additional mechanism after the output the amplitude
can be increased to the current demands making this an easily solvable problem. The only downside of
this design is that it will only work for frequency ratios of 2. With this design we have shown that we can
also get good working mechanisms for dynamical problems. We expected before running the automated
mechanism design method that a solution would be a mechanism that exploits a singular position. We
also thought that only very small points in the solution space would be able to do this and therefore we
suspected that it would be a big challenge for our algorithm. Still it was able to find a mechanism that
solves the problem in the first 10 runs.
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(a) Starting point of the mecha-
nism.
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(b) Mid point of the mechanism.
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(c) End point of the mechanism.

Figure 7-10: Mechanism designed by our algorithm solving the frequency multiplier problem.
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7-4 Discussion
The straight line mechanism clearly showed continues improvement of the fitness value over the course
of the algorithm. However, with the elliptic trajectory problem and the frequency multiplier problem, this
improvement slowed down very early. They also showed a steep drop in diversity in the first few generations
while the diversity of the straight line problem slowly decreased over the generations. This drop of diversity
is probably the cause of the very slow improvement of their fitness in the later generations. It is possible that
this decrease of diversity is caused by our choice of fitness functions or fitness measures. But another very
likely reason can be our method of tuning those fitness functions. Further research should be done to find
a method that optimizes the working of the algorithm with minimal manual tuning of parameters.

7-5 Conclusion
Our robust optimization for automated mechanisms design has shown to find good solutions for the
straight line problem and frequency multiplier problem. This was achieved with minimal tuning of the
fitness function parameters. The results from the elliptic trajectory problem shows promise but also makes
clear that we need to improve the algorithm. Still overall we see that our automated mechanisms design
method is applicable for a wider range of problems.
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Chapter 8

Discussion

The problem with current automated mechanism design methods is the gap between the resulting design
and how it will function after manufacturing. To reduce this problem we did three improvements.

The first improvement was decreasing its computational costs by improving the incidence value calcula-
tion.

Secondly we improved the accuracy of the simulation by adding a better weight and inertia calculation
for the mass elements. With this we introduced the material thickness and density as input settings for
the algorithm reducing its design freedom. By letting the system choose its own thickness or density it is
possible that better solutions can be found. If this is introduced it should be taken in account that these
values should maintain within realistic bounds. The accuracy of the weight can be improved further by
adding the weight of the hinges, springs and other small parts. However it is doubtful that this increased
accuracy will be an overall improvement as it will also increase the computational cost. What will be a big
improvement on the simulation accuracy is adding friction in the hinges. This will mean we will remove
energy from the system which needs to be countered by adding actuators as an element. A successor
working on our algorithm should investigate this option.

Our third and biggest improvement was the robust optimization which reduced the effect of production
errors on the performance. As solution we proposed a new method of robust optimization specially designed
for use in the genetic programming. In here we have based the shape of the noise magnitude on the ISO-
2768-m norm [39]. As we did not investigate other shapes of these bounds we do not know the effects of it,
or if it is even necessary. The sudden steps in the allowed error can introduce instability or other problems.
The effect of the shape of the noise should be investigated further, for example by using ISO-268 for hinges
or simplifying the system by using a linear noise magnitude. Besides that we now have only influenced
the production dimensions of the mass elements, hinges and springs of the mechanisms. Other dimensions
such as the thickness, density and spring stiffness, and in future versions maybe even the friction coefficient
and wear, also have an effect on the performance of a mechanism. The effect on the fitness by disturbing
those dimensions should be investigated. We now measured this effect by taking the difference between
the outer most fitness value of the disturbed fitness calculations. This choice is heavily influenced by the
total amount of fitness calculations done. If we choose for example the 3-sigma of the distribution we
could reduce its influence on the amount of fitness calculations.
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The comparison between the different settings of our algorithm is also influenced by the amount of ex-
periments done per setting. We did only 30 of such experiments for each algorithm setting. Increasing
this amount of experiments can show other effects of the robust optimization such as interaction of the
variables which we were not able to check with our current data. This, and testing more different memory
sizes and noise magnitudes, can results in better settings for our robust optimization algorithm but was
not possible in our current time frame.

While making these adjustments to the algorithm some other things surfaced. A major problem we found
was tuning the fitness functions in such a way that the algorithm would converge to a good solution. This
required a lot of testing with the algorithm. This testing and evaluating the results removes the purpose
of our algorithm as we could just have designed a good mechanisms in that time. We proposed and tested
a method which did the tuning systematic and removed the need for testing. The results of this method
were not satisfying as it probably decreased the convergence rate to a good solution. It is very important
that a good method for systematic or even automatic fitness tuning is found to make this automated
mechanisms design method usable. Other options on calculating the fittest mechanism, such as the pareto
front, should be investigated.

Finally we noticed some extreme peaks in the plots of the function calls as explained in Chapter 6-8. We
limited them by giving the breed function an upper bound of 100 after which it will stop trying to use
crossover to create a child mechanism. We presumed that this was due to a low diversity which made it
difficult for the crossover function to create valid mechanisms. As this is only a possible cause the real
source of this problem should be investigated.
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Chapter 9

Conclusion

We showed that we can make an evolutionary automated mechanism design program that generates
practical designs whose performance will have minimal change when production tolerances are considered,
without sacrificing much calculation time.

The minimization of the performance change due to production tolerances was achieved by a novel robust
optimization method specifically useful in genetic programming. By letting this method update the fitness
of the mechanism with noisy fitness values every generation, we showed that we can achieve the best results
with a fitness memory-bank size of 8 fitness values. The fitness values in that memory-bank are calculated
using noisy dimensions which show the best result when the noise is limited to 2 times the ISO-2678-m
norm. This made the final mechanisms significantly more robust while minimizing the calculation costs
which stayed between the 1.4 and 2.4 hours. By simplifying the incidence value calculation we further
decreased the calculation time of the algorithm. And by improving the weight and moment of inertia
calculations we increased the accuracy of the simulation of the mechanisms.

Master of Science Thesis E. Kranendonk



66 Conclusion

E. Kranendonk Master of Science Thesis



Appendix A

Used symbols

Master of Science Thesis E. Kranendonk



68 Used symbols

Symbol Units Description First use

A m2 Surface area of mass element Equation 4-1
C − Complexity Equation 6-7
E − Error Equation 6-4
F − Fitness function Equation 5-1
Fspring N Spring force Equation 2-1
f − Continues alternative of I Equation 3-4
Gn − Ground element Chapter 2-1-1
g − Continues alternative of Iv2 Equation 3-4
gn − Amount of generations Equation 6-1
Hn − Hinge connection Chapter 2-1-1
I − Incidence value Equation 2-2
Iv2 − Incidence value v2 part Equation 3-2
Imass kgm2 Mass moment of inertia Equation 4-3
i − []th value in a row Equation 2-2
k N/m Spring constant Equation 2-1
L0 m Free length Equation 2-1
Ld m Length of trajectory Equation 6-5
LHor/Ver m Horizontal or vertical size of mechanism Equation 6-10
LDesired − Desired value in fitness function Equation 6-6
LTrajectory − Desired value in fitness function Equation 6-6
Mn − Mass element Chapter 2-1-1
mmass kg Weight of mass element Equation 4-1
n − Numbering Equation 2-3
nM/H/S m Number of masses, hinges or springs Equation 6-7
OM − Origin of polygon Figure 4-1
u m Distance Equation 2-1
R − Robustness Equation 5-1
rsurvival % Survival chance Equation 6-1
Sn − Spring connection Chapter 2-1-1
t − Time step Equation 6-2
tthickness m Thickness of mass element Equation 4-1
vn − Vertex number Equation 2-2
w̄ − Vector with fitness weights Equation 6-13
xi m Horizontal location of connection Equation 4-1
yi m Vertical location of connection Equation 4-1
α rad Angle Figure 4-2b
δ − Noise Equation 5-1
κ rad Curvature Equation 6-2
ρ kg/m3 Density of mass element Equation 4-1
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(a) Fitness function for the line curvature
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(b) Fitness function for the length of the line
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(c) Fitness function for the complexity of the mech-
anism
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(d) Fitness function for the degrees of freedom of
the mechanism
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(e) Fitness function for the size of the mechanism in
one dimension
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Figure B-1: Plots of the fitness functions for the straight-line problem used to verify the robust optimization
method.
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Statistical tests memory-size

Fitness one-way ANOVA:
1 Source SS df MS F Prob>F
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 Columns 170 .36 5 34.0727 1 .17 0 .3247
4 Error 5057 .3 174 29.0649
5 Total 5227.66 179

Diversity one-way ANOVA:
1 Source SS df MS F Prob>F
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 Columns 5.92155e+07 5 1.18431e+07 0 .74 0 .5931
4 Error 2 .7779e+09 174 1 .5965e+07
5 Total 2.83712e+09 179

Robustness (transformed) one-way ANOVA:
1 Source SS df MS F Prob>F
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 Columns 55 .183 5 11.0367 2 .83 0 .0174
4 Error 678.056 174 3 .8969
5 Total 733.239 179
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Robustness (transformed) post-hoc Tukey:
1 1 .0000 2 .0000 −0.2188 1 .2337 2 .6861 0 .1491
2 1 .0000 3 .0000 0 .0605 1 .5130 2 .9655 0 .0355
3 1 .0000 4 .0000 0 .3075 1 .7600 3 .2125 0 .0073
4 1 .0000 5 .0000 −0.2247 1 .2278 2 .6803 0 .1530
5 1 .0000 6 .0000 −0.2981 1 .1544 2 .6069 0 .2086
6 2 .0000 3 .0000 −1.1731 0 .2794 1 .7319 0 .9941
7 2 .0000 4 .0000 −0.9261 0 .5264 1 .9788 0 .9070
8 2 .0000 5 .0000 −1.4583 −0.0058 1 .4466 1 .0000
9 2 .0000 6 .0000 −1.5317 −0.0792 1 .3733 1 .0000

10 3 .0000 4 .0000 −1.2055 0 .2470 1 .6995 0 .9967
11 3 .0000 5 .0000 −1.7377 −0.2852 1 .1673 0 .9935
12 3 .0000 6 .0000 −1.8111 −0.3586 1 .0939 0 .9816
13 4 .0000 5 .0000 −1.9847 −0.5322 0 .9203 0 .9030
14 4 .0000 6 .0000 −2.0581 −0.6056 0 .8469 0 .8428
15 5 .0000 6 .0000 −1.5259 −0.0734 1 .3791 1 .0000

Function calls Kruskal-Wallis:
1 Source SS df MS Chi−sq Prob>Chi−sq
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 Columns 203516.3 5 40703.3 74 .96 9 .4836e−15
4 Error 282468.7 174 1623 .4
5 Total 485985 179

Function calls post-hoc Dunn’s:
1 1 .0000 2 .0000 −67.3228 −27.9333 11.4562 0 .4396
2 1 .0000 3 .0000 −96.1895 −56.8000 −17.4105 0 .0004
3 1 .0000 4 .0000 −114.6228 −75.2333 −35.8438 0 .0000
4 1 .0000 5 .0000 −125.7562 −86.3667 −46.9772 0 .0000
5 1 .0000 6 .0000 −135.0562 −95.6667 −56.2772 0 .0000
6 2 .0000 3 .0000 −68.2562 −28.8667 10.5228 0 .3851
7 2 .0000 4 .0000 −86.6895 −47.3000 −7.9105 0 .0066
8 2 .0000 5 .0000 −97.8228 −58.4333 −19.0438 0 .0002
9 2 .0000 6 .0000 −107.1228 −67.7333 −28.3438 0 .0000

10 3 .0000 4 .0000 −57.8228 −18.4333 20.9562 0 .9396
11 3 .0000 5 .0000 −68.9562 −29.5667 9 .8228 0 .3466
12 3 .0000 6 .0000 −78.2562 −38.8667 0 .5228 0 .0564
13 4 .0000 5 .0000 −50.5228 −11.1333 28.2562 0 .9996
14 4 .0000 6 .0000 −59.8228 −20.4333 18.9562 0 .8736
15 5 .0000 6 .0000 −48.6895 −9.3000 30.0895 1 .0000
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Statistical tests noise magnitude

Fitness one-way ANOVA:
1 Source SS df MS F Prob>F
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 Columns 160 .56 5 32.1128 1 .13 0 .3477
4 Error 4957.14 174 28.4893
5 Total 5117 .7 179

Diversity one-way ANOVA:
1 Source SS df MS F Prob>F
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 Columns 3.47647e+07 5 6.95295e+06 0 .54 0 .7441
4 Error 2.23134e+09 174 1.28238e+07
5 Total 2.26611e+09 179

Robustness (transformed) one-way ANOVA:
1 Source SS df MS F Prob>F
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 Columns 59 .344 5 11.8688 3 .25 0 .0079
4 Error 636.151 174 3 .656
5 Total 695.495 179
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Robustness (transformed) post-hoc Tukey:
1
2 1 .0000 2 .0000 −0.2967 1 .1102 2 .5171 0 .2156
3 1 .0000 3 .0000 0 .1385 1 .5454 2 .9523 0 .0216
4 1 .0000 4 .0000 0 .3531 1 .7600 3 .1669 0 .0049
5 1 .0000 5 .0000 −0.1686 1 .2383 2 .6452 0 .1216
6 1 .0000 6 .0000 0 .1028 1 .5097 2 .9165 0 .0271
7 2 .0000 3 .0000 −0.9717 0 .4352 1 .8421 0 .9510
8 2 .0000 4 .0000 −0.7571 0 .6498 2 .0567 0 .7762
9 2 .0000 5 .0000 −1.2788 0 .1281 1 .5350 0 .9998

10 2 .0000 6 .0000 −1.0074 0 .3995 1 .8063 0 .9660
11 3 .0000 4 .0000 −1.1923 0 .2146 1 .6215 0 .9980
12 3 .0000 5 .0000 −1.7140 −0.3071 1 .0997 0 .9894
13 3 .0000 6 .0000 −1.4427 −0.0358 1 .3711 1 .0000
14 4 .0000 5 .0000 −1.9286 −0.5217 0 .8852 0 .8984
15 4 .0000 6 .0000 −1.6572 −0.2504 1 .1565 0 .9959
16 5 .0000 6 .0000 −1.1355 0 .2714 1 .6783 0 .9940

Function calls Kruskal-Wallis:
1 Source SS df MS Chi−sq Prob>Chi−sq
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 Columns 2799 .7 4 699 .93 1 .48 0 .8296
4 Error 278437.8 145 1920.26
5 Total 281237.5 149

Function calls post-hoc Dunn’s:
1 1 .0000 2 .0000 −31.5383 −0.1333 31.2716 1 .0000
2 1 .0000 3 .0000 −34.7383 −3.3333 28.0716 1 .0000
3 1 .0000 4 .0000 −37.0716 −5.6667 25.7383 0 .9999
4 1 .0000 5 .0000 −43.1049 −11.7000 19.7049 0 .9705
5 2 .0000 3 .0000 −34.6049 −3.2000 28.2049 1 .0000
6 2 .0000 4 .0000 −36.9383 −5.5333 25.8716 0 .9999
7 2 .0000 5 .0000 −42.9716 −11.5667 19.8383 0 .9727
8 3 .0000 4 .0000 −33.7383 −2.3333 29.0716 1 .0000
9 3 .0000 5 .0000 −39.7716 −8.3667 23.0383 0 .9977

10 4 .0000 5 .0000 −37.4383 −6.0333 25.3716 0 .9999
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Plots from test-cases

Master of Science Thesis E. Kranendonk



76 Plots from test-cases

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Correlation

0

0.2

0.4

0.6

0.8

1

1.2

F
itn

es
s 

va
lu

e

(a) Fitness function for the line curvature

0 2 4 6 8 10 12

Trajectory Length [m]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

F
itn

es
s 

va
lu

e
(b) Fitness function for the length of the line
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Figure E-1: Plots of the fitness functions for the straight-line problem used in first the test-case.
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(d) Fitness function for the complexity of the mech-
anism
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(e) Fitness function for the degrees of freedom of
the mechanism
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(f) Fitness function for the size of the mechanism in
one dimension

Figure E-2: Plots of the fitness functions for the elliptic trajectory problem used in first the test-case.
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(b) Fitness function for the amplitude ratio
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(c) Fitness function for the amplitude length
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(d) Fitness function for the complexity of the mech-
anism

0 1 2 3 4 5 6 7 8

Degrees of freedom

0

0.2

0.4

0.6

0.8

1

1.2

1.4

F
itn

es
s 

va
lu

e

(e) Fitness function for the degrees of freedom of
the mechanism
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(f) Fitness function for the size of the mechanism in
one dimension

Figure E-3: Plots of the fitness functions for the frequency multiplier problem used in third the test-case.
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