

WATER - CATCHER

A 3D printed building component to mitigate water stress in developing countries

Index

URBAN POPULATION SHARE

SLUM POPULATION

"In 2018, 844 million people still lacked a basic drinking water service" (UN, 2018)

"40% of produced plastic is estimated to be single-use" (Parker, 2019)

Problem statement

 $\mathsf{I}($

Research question

"How can AM (Additive Manufacturing) with rPET be used to design an atmospheric water harvesting system that can be integrated into a building component and therefore mitigate water stress in semi-arid regions?"

Research objective

"The design of a mono-material modular building component, optimized for atmospheric water harvesting and for Additive Manufacturing with recycled PET plastic. The design has to be adaptable to different climatic conditions, be easily manufacturable locally and on demand."

Research methodology

13

Research methodology

RESEARCH CONTEXT

Biomimetic inspiration

02

<u>Lb</u>

Radiative condensers

02

1/

RESEARCH CONTEX

Condensation process

Radiative heat loss $P = LE + Q_{cond} + Q_{conv}$ Latent heat transfer Conduction heat gain Convection heat gain

03

<u>18</u>

FOUNDATION KNOWLEDGE

Condensation process

03

19

FOUNDATION KNOWLEDG

RE - DESIGN

Fog collectors

Fog collection process

$$\eta_{tot} = \eta_{ACE} \eta_{capt} \eta_{drain}$$

$$\eta_{ACE} = \varphi \chi$$

$$\chi = (1-(1-s)^N)$$
 Incident fog fraction

$$arphi = \sqrt{rac{C_D}{k}}$$
 Filtered fog fraction

Fog collection process

03

RESEARCH CONTEXT

FOUNDATION KNOWLEDGE PRE - DESIGN

Case study definition

Choice of a country:

- availability of weather data
- similar precedents in literature

Choice of a location:

- population
- favourable weather conditions

03

ARCH CONTEXT FOUNDATION KNOWLE

The state of the s

Additive Manufacturing

Plastic flakes and granulate from waste

Additive Manufacturing

Fluid morphology - 3d printed facades

Pre-design for AM

RESEARCH CONTEXT FOUNDATION KNOWLEDGE PRE - DESIGN

Pre-design for AM

FOUNDATION KNOWLEDGE

03

PRE - DESIGN

04

RESEARCH CONTEXT

FOUNDATION KNOWLEDGE

PRE - DESIGN

DESIGN

Nucleation rate tests

3]

RESEARCH CONTEXT

FOUNDATION KNOWLEDGE

PRE - DESIGN

DESIGN

Nucleation rate tests

FOUNDATION KNOWLEDGE

#	Profile	Description	Area (mm2)	Average sky view [%]	Sample weight [g]	Printed length [m]	Printing time [min]	Collected water mass [g]	Collected mass/printing time	Sky view/Area	Sky view/Printing time
#1		Flat sample	2500	100	2,82	0,94	21	0,21	0,010	0,040	4,76
#2		Ondulated (Sharp)	3905,12	86	3,4	1,13	27	0,69	0,026	0,022	3,19
#3		Ondulated (Round)	4037,19	71,68	3,5	1,15	27	0,64	0,024	0,018	2,65
#4	mmmm	Ondulated (Square)	5500	72	4,22	1,39	36	0,59	0,016	0,013	2,00
#5		Ondulated (Concave)	4103	84	3,41	1,14	27	0,7	0,026	0,020	3,11
#6		Витру	2500	100	3,84	1	23	0,30	0,013	0,040	4,35

04

RESEARCH CONTEXT

32

Nucleation rate tests

#	Pattern	Laplace Curvature		Number of	Area (mm2)		Sample weight	Printing time	Collected	Collected mass/printing	Sky view/Printing
		△r Ridges [mm]	∆r Grooves	ridges		view [%]	[g]	[min]	water mass [g]	time	time
#1		2	0	12	3305	86	2,72	27	0,44	0,016	3,185
#2		2	0	6	2759	94	2,72	25	0,45	0,018	3,760
#3		2	2	12	3483	84	2,73	26	0,47	0,018	3,231
#4		2	2	6	2809	93	2,72	26	0,46	0,018	3,577
#5		2	4	12	3868	81	2,75	26	0,39	0,015	3,115
#6		2	4	6	3100	87	2,73	27	0,45	0,017	3,222

DESIGN

04

RESEARCH CONTEXT FOUNDATION KNOWLEDGE PRE - OISSIGN

Radar charts

Radar charts

DESIGN

RESEARCH CONTEXT FOUNDATION KNOWLEDGE PRE - DESIGN

5

04

RESEARCH CONTEXT FOUNDATION KNI

FOUNDATION KNOWLEDGE

PRE - DESIGN

DESIGN

Single-layer collectors

#	Pattern picture	Description	Area (mm2)	Shade coefficient [%]	Sample weight [g]	Printing time [min, sec]	Collected water mass [g]	Collected mass/printing time
1		Straight lines	2500	15	1,13	4,26	0,11	0,026
2		Wavy lines, with 6 bumps	2500	15	1,32	5,15	0,11	0,021
3		Straight lines with protrusions on one side	2500	15	1,37	6,47	0,07	0,011
4		Radial pattern	2500	15	1,27	5,56	0,24	0,043
5		Wavy lines, with 12 bumps	2500	15	1,82	7,08	0,17	0,024
б		Straight lines with facing protrusions	2500	15	1,62	6,22	0,11	0,018

3D-Infill Collectors

#	Description	Solidity [%]	Print quality	Structural capacity	Shape flexibility	Print time [min]	Print length [m]	Mass [g]	Final mass [g]	Collected mass [g]	Collected mass/time
#1	Infill collector. Gyroid	12	++	++	++	34	2	8,76	9,33	0,57	0,017
#2	Infill collector. Primitive	12	-	++	+	38	1,89	8,67	9,23	0,56	0,015
#3	Infill collector. Diamond	12	+	++	++	35	1,95	8,39	8,91	0,52	0,015

RESEARCH CONTEXT

FOUNDATION KNOWLEDGE

PRE - DESIGN

Multi-layer collectors

#	Description	Solidity [%]	Print quality	Structural capacity	Shape flexibility	Print time [min]	Print length [m]	Mass [g]	Final mass [g]	Collected mass [g]	Collected mass/time
#0	Hollow specimen. Tested for reference	0	/	/	/	11	0,56	1,58	1,59	0,01	0,001
#1	Multilayer harp collector. 4 layers	40	+	-	+	16	0,82	2,39	2,77	0,38	0,024
#2	Multilayer radial collector. 4 layers	40	+	-	-	16	0,7	3,72	4	0,28	0,018
#3	Infill collector. Lines.	40	++	+	++	100	6,57	19,91	20	0,09	0,001
#4	Infill collector. Gyroid	40	++	++	++	86	3,23	12,83	13,66	0,83	0,010

RESEARCH CONTEXT

40

FOUNDATION KNOWLEDGE PRE - DESIGN DESIGN

Functional surfaces definition

Multilayer Harp Collector

Interception efficiency

Gyroid Infill Collector Interception efficiency

Printing quality Shape adaptability

Printing efficiency

Multilayer Radial Collector

Interception efficiency

Linear Infill Collector

Interception efficiency

DESIGN

RESEARCH CONTEXT FOUNDATION KNOWLEDGE PRE - DESIGN

Structural capacity

Functional surfaces definition

Multilayer Harp Collector Interception efficiency Printing quality Shape adaptability Printing efficiency Structural capacity

Multilayer Radial Collector Interception efficiency Printing quality Shape adaptability Printing efficiency Structural capacity

Component Design Workflow

Component Design Workflow

04

GROUND

DESIGN

04

40

FOUNDATION KNOWLEDGE

RESEARCH CONTEXT

PRE - DESIGN

RESEARCH CONTE

FOUNDATION KNOWLEDGE

PRE - DESIGN

FOUNDATION KNOWLEDGE

PRE - DESIGN

DESIGN

Orientation Studies

Orientation Studies

RESEARCH CONTEXT

<u> 50</u>

FOUNDATION KNOWLEDGE

PRE - DESIGN

DESIGN

Orientation Studies

Average SVF: 1,00

Average SVF: 0,61

	Fog [I/hm2]	Dew [I/hm2]	Total [I/hm2]	Weighted total [I/hm2]
Vertical	2,2	1,9E-03	2,2	4,4E-02
Horizontal	1,8	1,5E-02	1,8	4,9E-02

Final Design

04

Same optimal part orientation

Minimum amount of functions

52

Schematic Design

Fog Section Design

Fog Section Design

RESEARCH CONTEXT

ככ

FOUNDATION KNOWLEDGE

PRE - DESIGN

DESIGN

Dew Section Design

04

Dew Section Design

FOUNDATION KNOWLEDGE

PRE - DESIGN

DESIGN

Schematic Design Result

<u>ეგ</u>

Final Design

Final Design

04

Printing Settings Definition

#9
Layer height: 0.3 mm
Wall count: 1
Wall speed: 80
Inf%: 60
Inf speed: 80

Time: **9h36min** Mass: 444g

Inf flow: 120%

Length: 133.84m

#10
Layer height: 0.9 mm
Wall count: 1
Wall speed: 60
Inf%: 60
Inf speed: 80
Inf flow: 120%

Time: 4h23min Mass: 1280g Length: 385.71m

RESEARCH CONTEXT

FOUNDATION KNOWLEDGE PRE - DESIGN DESIGN

FARCH CONTEXT FOUNDATION KNOWLEDGE PRE-DESIGN DESIGN DESIGN THAT EVALUATION

RESEARCH CONTEXT FOUNDATION KNOWLEDGE PRE - DESIGN DESIGN FINAL EVALUATION

RESEARCH CONTEXT FOUNDATION KNOWLEDGE PRE - DESIGN DESIGN FINAL EVALUATION

	Date	Time	Te [C]	RH [%]	DewPT [C]	vwind [m/s]	Rain [I/m2]	Cloud coverage	Dew [I/m2]	Theoretical value [I/m2]	α rad [W/m2K]	arad theory [W/m2K]	%
	01/05/2021	07:00	3,5	91,8	2,0	1,9	0	0,12	3,4E-02	4,20E-03	4,3	4,0	108%
[13/05/2021	07:00	8,4	93,8	7,2	0,0	0	0,25	2,0E-03	4,98E-03	4,5	4,2	107%
[20/05/2021	07:00	7,7	96,6	7,0	0,0	0	1	1,0E-02	7,36E-05	4,5	4,2	108%

RESEARCH CONTEXT FOUNDATION KNOWLEDGE PRE - DESIGN DESIGN DESIGN FINAL EVALUATION

RH [%]	Etheory [W/m2K]	Ecorrected [W/m2K]	%
90%	2,22E-02	2,40E-02	108%
85%	1,54E-02	1,72E-02	112%
80%	8,44E-03	1,02E-02	121%
Vw [m/s]	Etheory [W/m2K]	Ecorrected [W/m2K]	
1	2,22E-02	2,40E-02	108%
2	2,29E-02	2,52E-02	110%
3	2,15E-02	2,41E-02	112%
Te [C]	Etheory [W/m2K]	Ecorrected [W/m2K]	
15	2,22E-02	2,40E-02	108%
13	2,20E-02	2,37E-02	108%
10	2,11E-02	2,27E-02	108%

100% —			
RH	90%	85%	80%
Vw	1	2	3
Te	15	13	10

RESEARCH CONTEXT FOUNDATION KNOWLEDGE PRE - DESIGN DESIGN DESIGN CONTEXT FOUNDATION KNOWLEDGE PRE - DESIGN DESIGN

Case Study Performance Simulation

	January	February	March	April	May	June	July	August	September	October	November	December	Total
Dew yield [I/m2]	0,67	0,93	0,70	0,64	8,22	15,67	9,38	14,18	18,54	10,21	1,59	1,46	82,19
Dew yield [I/module]	0,23	0,32	0,24	0,22	2,79	5,33	3,19	4,82	6,30	3,47	0,54	0,50	27,95

Case Study Performance Simulation

	Num. screens	Shade coefficient	Area [m2]	Flow [m3/s]	Vref [m/s]	Total efficiency	J [l/hm2]	%
Standard collector	4	0,6	0,08	/	3	0,29	1,58	100%
Water-catcher	4	0,6	0,08	0,106	1,325	0,97	2,31	146%

	January	February	March	April	May	June	July	August	September	October	November	December	Total
Fog yield [I/m2]	38,93	12,62	93,94	3,92	11,08	4,77	8,69	6,39	21,23	66,09	38,24	31,93	337,81
Fog yield [I/module]	3,11	1,01	7,51	0,31	0,89	0,38	0,70	0,51	1,70	5,29	3,06	2,55	27,02

Case Study Performance Simulation

Mater world [1 /modu	Water deman	d = 50 litres	Water demand = 32 litres		
Water yield [I/modu	Required area [m2]	Required modules	Required area [m2]	Required modules	
Yearly supply scenario	113	332	72	212	
Summer supply scenario 0,26		66	195	42	125

Water yield [I/modu	la]	Water deman	d = 50 litres	Water demand = 32 litres		
water yielu (i/iliuuu	Required area [m2]	Required modules	Required area [m2]	Required modules		
Yearly supply scenario	34	99	21	63		

DEW + FOG + RAIN

RESEARCH CONTEXT PRE - DESIGN DESIGN FOUNDATION KNOWLEDGE

FINAL EVALUATION

Economic Feasibility Evaluation

RESEARCH CONTEXT FOUNDATION KNOWLEDGE PRE - DESIGN DESIGN DISTORM FINAL EVALUATION

Solar disinfection

Chlorination

Sanitation method	Equipment		Basic water cost	Sanitation additional cost	Total cost [euro/1]
	Cost	Units	[euro/I]	[euro/I]	
Solar disinfection	0	euros	0,008	0	0,008
Chlorination	0,17	euros/bottle	0,008	0,0002	0,0082

/

FINAL EVALUATION

1 BOTTLE = 33g

PRE - DESIGN

1 WATER-CATCHER = 77 bottles

FINAL EVALUATION

RESEARCH CONTEXT FOUNDATION KNOWLEDGE

DESIGN

115,5 L 372 L

RESEARCH CONTEXT

* Durability of 2 years

FINAL EVALUATION

Conclusion and next steps

- + Flexible workflow for the design and fabrication of a water-catcher
- Design of a solution easy to replicate with a mid-size 3d-printer
- **★** Significant reduction of required surface to provide minimum water supply
- **Competitive solution in the field of atmospheric water harvesting**

Conclusion and next steps

DESIGN

- Water storage
- Modules interlocking
- Condenser back insulation

FABRICATION

- Customized printing setup
- Waste polymers testing

EVALUATION

- Computer model refinement
- Local outdoor testing
- Controlled environment testing

01

FINAL EVALUATION

PRE - DESIGN

Conclusion and next steps

<u>83</u>

Conclusions

FINAL EVALUATION

RESEARCH CONTEXT FOUNDATION KNOWLEDGE

Thank you for the attention

Questions

Printing Settings Definition

RESEARCH CONTEXT FOUNDATION KNOWLEDGE PRE - DESIGN DESIGN

Printing Settings Definition

DESIGN

ÖÖ

RESEARCH CONTEXT FOUNDATION KNOWLEDGE PRE - DESIGN

Printing Settings Definition

RESEARCH CONTEXT FOUNDATION KNOWLEDGE PRE - DESIGN DESIGN