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a b s t r a c t

This paper proposes a nonlinear estimator for the robust reconstruction of process and sensor faults
for a class of uncertain nonlinear systems. The proposed fault estimation method augments the
system dynamics with an ultra-local (in time) internal state–space representation (a finite chain of
integrators) of the fault vector. Next, a nonlinear state observer is designed based on the known parts
of the augmented dynamics. This nonlinear filter (observer) reconstructs the fault signal as well as
the states of the augmented system. We provide sufficient conditions that guarantee stability of the
estimation error dynamics: firstly, asymptotic stability (i.e., exact fault estimation) in the absence of
perturbations induced by the fault model mismatch (mismatch between internal ultra-local model
for the fault and the actual fault dynamics), uncertainty, external disturbances, and measurement
noise and, secondly, Input-to-State Stability (ISS) of the estimation error dynamics is guaranteed in
the presence of these perturbations. In addition, to support performance-based estimator design, we
provide Linear Matrix Inequality (LMI) conditions for L2-gain and L2 − L∞ induced norm and cast
the synthesis of the estimator gains as a semi-definite program where the effect of model mismatch
and external disturbances on the fault estimation error is minimized in the sense of L2-gain, for an
acceptable L2 − L∞ induced norm with respect to measurement noise. The latter result facilitates a
design that explicitly addresses the performance trade-off between noise sensitivity and robustness
against model mismatch and external disturbances. Finally, numerical results for a benchmark system
illustrate the performance of the proposed methodologies.

© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Process reliability is essential in many engineering systems,
uch as high-tech equipment, energy systems, automotive
echnology and health applications. Predictive maintenance tech-
ology is a key enabler for improving process reliability. A fun-
amental element for predictive maintenance is fault estimation.
hat is, we do not only need to know the presence and source
f the fault (fault detection and isolation, see Chen and Patton
2012), Ding (2008) and Hwang, Kim, Kim, and Seah (2009), and

✩ The material in this paper was partially presented at 2022 IEEE 61st Con-
ference on Decision and Control (CDC) 2022, Dec 6. Web link: https://ieeexplore.
ieee.org/document/9992945. This paper was recommended for publication in
revised form by Associate Editor Angelo Alessandri under the direction of Editor
Thomas Parisini.

∗ Corresponding author.
E-mail addresses: f.ghanipoor@tue.nl (F. Ghanipoor), C.G.Murguia@tue.nl,

urguia_rendon@sutd.edu.sg (C. Murguia), P.MohajerinEsfahani@tudelft.nl
P.M. Esfahani), N.v.d.Wouw@tue.nl (N. van de Wouw).
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references therein) but also its nature/severity (fault estimation).
As an example, suppose the fault is small and/or slowly increasing
in magnitude (slow compared to the system time scale). In this
case, if accurate estimates of fault-induced signals are available
the fault severity can be quantified and predictive maintenance
can be scheduled accordingly. The latter is only possible if we
estimate fault signals (at least their magnitude) using avail-
able information (inputs, measured outputs, and system models).
Therefore, this paper focuses on the problem of fault estimation
for a class of uncertain nonlinear systems.

Existing Literature: Available methods for fault estimation can
e divided into three categories:
(1) Linear Systems: Numerous fault estimation methods have

een developed for linear dynamical systems (see, e.g., Liu, Cao,
nd Shi (2012) and Liu and Shi (2013) for results on linear
tochastic and switching systems). However, most practical sys-
ems, such as those in robotics, transportation systems, power
etworks, manufacturing, and water distribution, are nonlinear

n nature.
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(2) Nonlinear Systems/Linear Filters: Methods for nonlinear
systems are still under development, see, e.g., De Persis and
Isidori (2001), Ghanipoor, Murguia, Mohajerin Esfahani, and van
de Wouw (2023a), Ossmann (2016) and Zhu, Yang, Wang, and
Wang (2015). For fault estimation in nonlinear systems, linear
or nonlinear filters can be developed. Some of the existing lit-
erature on fault detection for nonlinear systems can be adapted
to address the fault estimation problem (Varga, 2017). For in-
stance, Mohajerin Esfahani and Lygeros (2015) provide a linear
filter for fault detection of nonlinear systems in which the linear
filter is designed by minimizing the nonlinearity effect on the
filter output subject to a bound on the effects of fault on the
filter output. In this result, by constraining the mapping from the
fault to the filter output, the fault signal can be estimated. Similar
results can be found in Pan, Palensky, and Mohajerin Esfahani
(2021) where instead of minimizing the nonlinearity effect, the
output mismatch of the actual and simulation-based system is
minimized to provide robustification against model mismatch.

(3) Nonlinear Systems/Nonlinear Filters: For fault estimation
in nonlinear systems, also nonlinear filters can be used (Guzman,
López-Estrada, Estrada-Manzo, & Valencia-Palomo, 2021; Han,
Liu, Gao, & Wei, 2019; Jiang, Staroswiecki, & Cocquempot, 2006;
Veluvolu, Kim, & Lee, 2011). Most of the existing results construct
nonlinear observers by incorporating nonlinear dynamics of the
system as nonlinear filters for fault estimation. Because these
results consider nonlinear dynamics in the filter structure, they
can capture the behavior of nonlinear systems accurately and as a
consequence provide better fault estimation. However, to provide
such filters, due to nonlinearities, some assumptions on the class
of systems and faults are required. Below we discuss some of
these results.

As discussed in Jiang et al. (2006), the authors address the
fault estimation problem for nonlinear systems with uniformly
Lipschitz nonlinearities, process faults only (i.e., no sensor faults),
and assume the so-called matching condition (the rank of the
fault distribution matrix is invariant under left multiplication by
the output matrix) is satisfied. An adaptive filter is provided that
approximately reconstructs the actuator fault vector in this con-
figuration. Although the matching condition makes the problem
tractable, it significantly reduces the class of systems that can
benefit from the results. In Vo, Dao, Ahn, et al. (2021), a fault
estimation scheme is introduced for both sensor and process
faults using Nonlinear Unknown Input Observers (NUIO), adap-
tive Radial Basis Function Neural Networks (RBFNN), and assum-
ing the matching condition is satisfied. The authors prove that
their scheme provides boundedness of fault estimation errors.

In Zhu et al. (2015), the matching condition does not need to
be satisfied. However, they do not consider model uncertainty,
external disturbances, and measurement noise. The authors con-
sider Lipschitz nonlinearities, simultaneous sensor and process
faults, and adopt a standard fault observability condition (Hou
& Patton, 1998) on the linear part of the dynamics. Therein, the
problem is tackled using the notion of intermediate observers,
consisting of two dedicated observers, one that estimates the
fault and the other the state. Their scheme guarantees bounded
fault estimation errors. In van der Ploeg, Alirezaei, van de Wouw,
and Mohajerin Esfahani (2022), simultaneous additive and mul-
tiplicative process faults are considered in the scope of discrete-
time system models. They address the fault estimation problem
by decoupling process nonlinearities and perturbations from the
estimation filter dynamics and using regression techniques to
approximately estimate fault signals. Decoupling nonlinearities
leads to linear filters for which linear methods can be used to
reconstruct fault signals. However, decoupling conditions impose
strong assumptions on the system dynamics, which significantly

limits the applicability of these results. j

2

We remark that all the above-mentioned results for uncertain
nonlinear systems guarantee approximate reconstruction of fault
vector only, i.e., they ensure bounded estimation errors, which,
if small enough, still lead to a potentially good estimate of the
true fault. Not having internal state–space representations of fault
vector makes it challenging to enforce zero error fault estimation.
We propose a fault estimation scheme for process and sensor
faults that allows to guarantee zero error in the absence of un-
certainty, external disturbances, and measurement noise for some
classes of faults and ensures robust fault estimate in the presence
of perturbations, all without requiring a matching condition.

This scheme incorporates an internal representation of the
fault vector, where we use the notion of ultra-local models
(Fliess & Join, 2013; Sira-Ramírez, Luviano-Juárez, Ramírez-Neria,
& Zurita-Bustamante, 2018) phenomenological models valid for
short time intervals. We then extend the system dynamics with
the (internal) ultra-local state–space of the fault vector to con-
struct an augmented dynamics. Based on the known parts of
the augmented dynamics, a nonlinear observer is proposed to
estimate the states of the original system and the ultra-local fault
(internal) system. We derive the error dynamics of the observer
in which the fault model mismatch (mismatch between actual
internal system and its model), uncertainty mismatch (mismatch
between actual uncertainty and its model), external disturbances,
and measurement noise enter as external perturbations. The
fault estimation problem is reformulated as a robust (against the
mentioned perturbations) state estimation problem in the error
dynamics. The main contributions of this paper are as follows:

(a) Comprehensive Problem Setting: Existing research on fault
estimation for Lipschitz nonlinear systems has often
skipped the comprehensive problem setting including
time-varying process and sensor faults, modeling uncer-
tainties, disturbances, and measurement noise (Han et al.,
2019; Jiang et al., 2006; van der Ploeg et al., 2022). Our con-
tribution lies in presenting a fault estimation approach tai-
lored to address all these challenges for Lipschitz nonlinear
systems.

(b) Exact Fault Estimation Guarantee: Existing studies for Lip-
schitz nonlinear systems primarily focus on achieving an
approximate reconstruction of the fault vector (Jiang et al.,
2006; Vo et al., 2021; Zhu et al., 2015). In contrast, our
proposed method stands out by offering a fault estimation
framework that not only guarantees exact fault estimation
for a class of time-varying faults (polynomial in time) when
uncertainty, external disturbances, and measurement noise
are absent. In addition, it ensures robust fault estima-
tion with explicit, computable performance bounds in the
presence of perturbations.

(c) Optimization-Based Fault Estimation Scheme: Our ap-
proach introduces a computationally tractable algorithm to
synthesize the fault estimator’s design parameters. This is
achieved through the solution of semi-definite programs,
where we minimize the L2-gains from perturbations
induced by fault, uncertainty model mismatches, and ex-
ternal disturbances to the fault estimation error. Addition-
ally, we uphold stability conditions while simultaneously
constraining desired upper bounds on the L2 − L∞ in-
duced norms from measurement noise perturbations to the
fault estimation error (Theorem 1). These computationally
tractable design conditions provide a means to perform
performance trade-off analyses in terms of robustness with
respect to different disturbances/perturbations.

This paper is a generalized version of the preliminary result
ublished in the conference paper (Ghanipoor, Murguia, Moha-

erin Esfahani, & van de Wouw, 2022). Compared to Ghanipoor
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t al. (2022), here we address a more general problem setting by
onsidering state-dependent faults, external disturbances, model
ncertainties and measurement noise. Furthermore, the fault es-
imate is robustified against perturbations induced by fault and
ncertainty model mismatches, external disturbances, and mea-
urement noise in the L2 sense for a desired worst-case noise
mplification in the L2 − L∞ sense.
The remainder of this paper is organized as follows. In Sec-

ion 2, problem formulation is presented, first in a high level
ense and then with precise mathematical details. The proposed
ethod for the fault estimator design is described in Section 3.

n Section 4, the method is applied to a benchmark example in
imulation. Section 5 presents the conclusion and final remarks.

otation. The symbol R+ denotes the set of nonnegative real
umbers. The n × n identity matrix is denoted by In or simply
y I if n is clear from the context. Similarly, n × m matrices
omposed of only zeros are denoted by 0n×m or simply by 0 when
heir dimensions are clear. For positive definite (semi-definite)
atrices, we use the notation P ≻ 0 (P ⪰ 0). For negative
efinite (semi-definite) matrices, we use the notation P ≺ 0
P ⪯ 0). The ℓ2 vector norm (Euclidean norm) and the matrix
orm induced by the ℓ2 vector norm are both denoted as ∥ · ∥

nd the ℓ∞ vector norm is showed by ∥ · ∥∞. We use L2(0, T )
(or simply L2) to denote vector-valued functions z : [0, T ] →

Rk satisfying ∥z(t)∥2
L2

:=
∫ T
0 ∥z(t)∥2dt < ∞. For a vector-

valued signal f defined for all t ≥ 0, ∥f ∥L∞
:= supt≥0 ∥f (t)∥

and f (r) shows the entry-wise rth-time total derivative. For a
differentiable function W : Rn

→ R we denote by ∂W
∂e the

ow-vector of partial derivatives and by Ẇ (e) the total derivative
f W (e) with respect to time (i.e., ∂W

∂e
de
dt ). We often omit time

ependencies for notation simplicity. The notation (f , d) stands
or the column vector composed of the (vector or scalar) elements
and d.

. Problem formulation

Consider the nonlinear system⎧⎨⎩
ẋ = Ax + Buu + Sgg(Vgx, u, t)
+ Sηη(Vηx, u, t) + Bf f (x, u, t) + Bωω,

y = Cx + Df f (x, u, t) + Dνν,

(1a)

here t ∈ R+, x ∈ Rn, y ∈ Rm, and u ∈ Rl are time,
state, measured output and known input vectors, respectively,
and function g : Rnvg × Rl

× R+
→ Rng is a nonlinear

known vector field. Function η : Rnvη × Rl
× R+

→ Rnη

denotes unknown modeling uncertainty. Signals ω : R+
→ Rnω

and ν : R+
→ Rmν are unknown bounded disturbances; the

former with unknown frequency range and the latter with high
frequency content (e.g., related to measurement noise). Function
f : Rn

× Rl
× R+

→ Rnf denotes the unknown fault vector,
which contains both process and sensor faults. Note that f can
represent any types of additive or multiplicative faults. Matrices
(A, Bu, Sg , Vg , Sη, Vη, Bf , Bω, C,Df ,Dν) are of appropriate dimen-
sions, n,m, l, nvg , ng , nvη , nη, nω, nf ,mν ∈ N. Matrix Bf denotes
the process fault distribution matrix while matrix Df represents
the contribution of the fault signal to sensor measurements.
Matrices Sg and Sη are used to indicate in which equation(s)
the nonlinearity g and the uncertainty η appear explicitly, and
matrices Vg and Vη to indicate which states play a role in the
nonlinearity and uncertainty, respectively.

The objective of this paper is to estimate the fault vector f
using the real time input, output data and the available known
models. In the system (1a), clearly the uncertainty η(·) is un-
known, which challenges fault estimation. We can either robus-
tify the fault estimate error against the complete uncertainty
3

or use an approximated model of it (obtained, e.g., using data-
based methods) and robustify the fault estimate error against the
remaining (smaller) uncertainty model mismatch. Without loss of
generality, we assume that we can write η(·) in (1a) as:

η(Vηx, u, t) = ηlx (Vηx, u, t) + δηlx (Vηx, u, t), (1b)

where δηlx (Vηx, u, t) := η(Vηx, u, t) − ηlx (Vηx, u, t) and ηlx (·)
denotes any prior (possibly inaccurate) approximation, we may
have of η. If we do not have such an approximated model, we
just take ηlx = 0 and carry out further designs considering the
complete η.

Let us state the assumptions on the system (1), which stand
throughout this paper.

Regularity Assumptions: The following assumptions are required
to ensure that the problem is well-posed as is common in the
existing literature (Han et al., 2019; Jiang et al., 2006; Keliris,
Polycarpou, & Parisini, 2016; Sontag, 2008):

• Assumption 1 (State and Input Boundedness). The state vari-
able x and the input u are bounded over any finite time
interval.

• Assumption 2 (Cr Fault Vector). The fault vector f (x(t),
u(t), t) in (1) is r times differentiable with respect to time,
i.e., the total time derivatives f (1)(x(t), u(t), t), f (2)(x(t),
u(t), t), . . . , f (r)(x(t), u(t), t) exist and are continuous.

• Assumption 3 (Bounded Disturbances). The disturbance vec-
tors ω and ν in (1) are bounded on any finite time interval,
and ν is differentiable, i.e., the derivative ν̇(t) with respect
to time exists, is continuous, and is bounded over any finite
time interval.

We aim to robustify the fault estimate error against unknown
bounded external disturbances (low or high frequency) and (fault
and uncertainty) model mismatches. For fault estimation, we
consider nonlinear filters with the following structure:{
ż =h(z, u, y; θ ),

f̂ =φ(z, y; θ ),
(2)

where z ∈ Rnz is the internal state of the filter with nz ∈ N.
Functions h : Rnz × Rl

× Rm
→ Rnz and φ : Rnz × Rm

→ Rnf

characterize the filter structure, θ denotes design parameters.
Define the fault estimate error as

ef := f̂ − f .

Later, it will be shown that, for the fault estimator design
proposed in Section 2.3, the fault estimation error dynamics,
explicated in Eq. (11) in Section 2.4, exhibits (δηlx , ω, f (r), ν, ν̇) as
a perturbation input. Now, having that in mind, we can state the
problem we aim to solve at a high abstraction level.

Problem 1a (Fault Reconstruction — Abstract Level). Consider the
uncertain nonlinear system (1) with known input and output
signals, u(t) and y(t), and the nonlinear fault estimator filter (2).
For given r , design the filter parameters θ such that:

(1) Stability: The estimation error dynamics is input-to-state
stable with respect to the perturbation input (δηlx , ω, f (r), ν, ν̇);

(2) Disturbance Attenuation: For ν = 0, the L2-gain from
(δηlx , ω, f (r)) to ef = f̂ − f is bounded by some known c1 > 0,
for t ≥ 0;

(3) Noise Rejection: For (δηlx , ω, f (r)) = 0, the L2−L∞ induced
gain from (ν, ν̇) to ef = f̂ − f is bounded by some known c2 > 0,
for t ≥ 0.
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We can further state the above problem as optimal filter
design in the sense of disturbance attenuation or noise rejection.
Now, we want to restate Problem 1a, mathematically precisely.
To this end, in what follows first, we discuss the fault estimator
filter architecture.

2.1. Ultra local fault representation

Let us introduce some preliminaries which are required to
present the fault estimator filter architecture. The fault
f (x(t), u(t), t) in (1a) is an implicit function of time, for all x(t)
and u(t). For instance, the fault f = u(t)x(t)2, even though this
f is an explicit function of (x(t), u(t)), it can be considered to be
an implicit function of time, given the fact that x(t) and u(t) are
functions of time. Given this observation, we can write an entry-
wise rth order Taylor time-polynomial approximation at time t
of f as f̄ = a0 +a1t +· · ·+ar−1t r−1 with coefficients ai ∈ Rnf , i =

0, . . . , r − 1. This model can be written in state–space:⎧⎪⎨⎪⎩
̇̄ζj = ζ̄j+1, 0 < j < r,
̇̄ζr = 0,

f̄ = ζ̄1,

(3)

where ζ̄j ∈ Rnf . Clearly, in the above model we have f̄ (r) = 0,
which might not be the case for actual fault signal f . Under
Assumption 2, the actual internal state–space representation of
the fault f is as follows:⎧⎪⎨⎪⎩

ζ̇j = ζj+1, 0 < j < r,

ζ̇r = f (r),
f = ζ1,

(4)

where ζj ∈ Rnf . As you see, the accuracy of the approximated
model (3) increases as f (r) goes to zero (entry-wise), and it is
exact for f (r) = 0 (since we have ζ̇r = ζ̇

(r)
1 = f (r) = 0, see

(4)). Model (3) is used to construct a fault estimator filter that
ultra-locally (Fliess & Join, 2013; Sira-Ramírez et al., 2018) acts
as a self-updating polynomial spline approximating the actual
value of the fault. To design such a filter, in the following section,
we extend the system state, x(t), with the states of the actual
fault internal state ζj(t), j ∈ {1, . . . , r}, and augment the sys-
tem dynamics in (1) with (4). We then design a nonlinear filter
(observer) for the augmented system to simultaneously estimate
x and ζj using model (3). We remark that the number of the
faults derivatives, r , added to the approximated model (3) (and
(4)) is problem-dependent, and an optimal selection of r would
depend on the frequency characteristics of the fault. Increas-
ing r results in higher-dimensional augmented dynamics and
thus high-dimensional observers as well. However, having larger
observers also provides more degrees of freedom for optimal
synthesis.

2.2. Augmented dynamics

Based on the fault model introduced above, define the aug-
mented state vector xa := (x, ζ1, ζ2, . . . , ζr ) and write the aug-
mented dynamics using (1) and (4) as{
ẋa =Aaxa + Buaua + Sgaga(Vgaxa, ua, t) + Bωaωa, (5a)

y =Caxa + Dνν,

4

where

Aa :=

⎡⎢⎢⎢⎢⎣
A Bf 0 . . . 0
0 0 Inf . . . 0
...

...
...

. . .
...

0 0 0 . . . Inf
0 0 0 . . . 0

⎤⎥⎥⎥⎥⎦ , Bua :=

[
Bu
0

]
,

Sga :=

[
Sg Sη

0 0

]
, Vga :=

[
Vg 0
Vη 0

]
, ga(·) :=

[
g(·)
ηlx (·)

]
,

Bωa :=

⎡⎣ Sη Bω 0
0 0 0
0 0 Inf

⎤⎦ , ωa :=

⎡⎣ δηlx (·)
ω

f (r)(·)

⎤⎦ ,

Ca :=
[

C Df 0
]
, ua := u.

(5b)

Note that we have stacked the uncertainty model ηlx (·) with
the known nonlinearity g(·); however, if the uncertainty model
is linear (see, e.g., the example in Section 4), it has to be stacked
with the linear part of the augmented system Aa. Here we con-
sider a more generic case where the uncertainty model is a
globally Lipschitz nonlinear function.

Assumption 4 (Globally Lipschitz Nonlinearity). The function
ga(Vgaxa, ua, t) in (5a) is globally Lipschitz uniformly in ua(t) and
t , i.e., there exists a known positive constant α satisfying

∥ga(Vga x̂a, ua, t) − ga(Vgaxa, ua, t)∥ ≤ α∥Vga (x̂a − xa)∥, (6)

for all xa, x̂a ∈ Rn+rnf , ua ∈ Rl, and t ∈ R+.

Note that in the above assumption, due to structure of Vga , ga(·)
is function x (not xa) and therefore the assumption is equivalent
to g(Vgx, u, t) and ηlx (Vηx, u, t) being globally Lipschitz uniformly
in u(t) and t for all x, x̂ ∈ Rn, u ∈ Rl, and t ∈ R+.

2.3. Fault estimator

In this section, considering the fault estimator general struc-
ture in (2), inspired from observer-based approaches, we propose
h(·) and φ(·) as⎧⎪⎨⎪⎩

h(z, u, y; θ ) =Nz + Gua + Ly
+ MSgaga(Vga x̂a + J(y − Cax̂a), ua)

φ(z, y; θ ) =C̄(z − Ey)
(7a)

with x̂a = z − Ey,

C̄ :=
[

0nf ×n Inf 0nf ×nf (r−1)
]
, (7b)

and matrices {N,G, L,M} are defined as

N := MAa − KCa, G := MBua ,

L := K (I + CaE) − MAaE, M := I + ECa.
(7c)

The algebraic relations in (7c) are critical to nullify the effect of
some signals on the fault estimation error (see (10)). Furthermore,
filter dimension nz equals n + rnf and matrices E, K , and J are
filter gains to be designed which can be collected as θ = {E, K , J}.
In the following section, we analyze the fault estimator error
dynamics.

2.4. Fault estimator error dynamics

Consider the augmented state estimate x̂a and define estima-
tion error as
e :=x̂a − xa = z − xa − Ey = z − Mxa − EDνν,

ˆ ¯
(8)
ef =f − f = Ce.
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he related estimation error dynamics can then be written as
ollows:
̇ = Ne + (NM + LCa − MAa)xa + (G − MBua )ua

+ MSga
(
ga(Vga x̂a + J(y − Cax̂a), ua) − ga(Vgaxa, ua)

)
− MBωaωa + (NE + L)Dνν − EDν ν̇.

(9)

Given the algebraic relations in (7c), it can be verified that
G − MBua = 0, NM + LCa − MAa = 0, and NE + L = K . Therefore,
(9) can be written as

ė =Ne + MSgaδga − MBωaωa + Bνaνa (10a)

with
δga := ga(Vga x̂a + J(y − Cax̂a), u) − ga(Vgaxa, u),

Bνa :=
[

KDν, −EDν

]
, νa :=

[
ν⊤, ν̇⊤

]⊤
.

(10b)

By collecting all perturbations, error dynamics (10a) can be
written as

ė = Ne + MSgaδga + B̄ωa ω̄a, (11a)

where

B̄ωa :=
[

−MBωa Bνa

]
,

ω̄a :=
[

ω⊤
a ν⊤

a

]⊤
=

[
δη⊤

lx ω⊤ f (r)
⊤

ν⊤ ν̇⊤

]⊤

.

(11b)

Recall from Problem 1a that we require the estimation error
dynamics to have a certain Input-to State Stability (ISS) property.
In the following definition, we define ISS for the estimation error
dynamics (11).

Definition 1 (Input-to-State Stability). The error dynamics (11) is
said to be ISS if there exist a class KL function β(·) and a class K
function µ(·) such that for any initial estimation error e(t0) and
any bounded input ω̄a, the solution e(t) of (11) exists for all finite
t ≥ t0 and satisfies

∥e(t)∥ ≤ β (∥e (t0)∥ , t − t0) + µ( sup
t0≤τ≤t

∥ω̄a(τ )∥). (12)

Now, we have all the machinery required to restate Prob-
lem 1a in a mathematically precise manner for the uncertain
nonlinear system in (1).

Problem 1b (Fault Reconstruction). Consider the uncertain nonlin-
ear system (1) with known input and output signals, u(t) and y(t).
Furthermore, consider the internal fault dynamics (4), its Taylor
approximation (3), the augmented dynamics (5), the nonlinear
fault estimator filter (2) with functions defined in (7), and let
Assumption 4 be satisfied. Design the filter gain matrices θ =

{E, K , J} such that we have:
(1) Stability: The estimation error dynamics (11) is ISS with

respect to input ω̄a = (ωa, νa);
(2) Disturbance Attenuation: for ν = ν̇ = 0, it holds that

J1(θ ) := sup
(δηlx ,ω,f )

∥ef ∥L2

∥(δηlx , ω, f (r))∥L2

(13)

is bounded by some known c1 > 0;
(3) Noise Rejection: for δηlx = ω = f (r) = 0, it holds that

J2(θ ) := sup
ν

∥ef ∥L2

∥(ν, ν̇)∥L∞

(14)

is bounded by some known c2 > 0.

Under Assumptions 1–4, Problem 1b amounts to find fault
estimator gains that guarantee a bounded estimation error e(t) in
5

(11); for ω̄a = 0, e(t) goes to zero asymptotically (internal stabil-
ity); when ν = 0 the L2-gain of the mapping from (δηlx , ω, f (r)) to
ef (the fault estimation error) is upper bounded by some c1 > 0;
and when (δηlx , ω, f (r)) = 0, the L2 −L∞ induced gain (or energy
to peak norm (Scherer & Weiland, 2000, pp.)) from (ν, ν̇) to ef is
upper bounded by some c2 > 0.

In what follows, we provide the solution to Problem 1b.

3. Fault estimator design

The solution to Problem 1b is given in the following three
subsections with the same order of the problem parts (i.e., 1.
stability, 2. disturbance attenuation, and 3. noise rejection).

3.1. ISS estimation error dynamics

In this section, we derive Linear Matrix Inequality (LMI) con-
ditions for designing the matrices θ of the filter functions in
(7). As a stepping stone, we present a sufficient condition for
asymptotic stability of the origin of the estimation error dynamics
(11) when the perturbation vector ω̄a = (ωa, νa) equals zero
(internal stability). Moreover, we prove the boundedness of the
estimation error in the presence of the perturbation using the
input-to-state stability concept (Sontag, 2008).

We remark that ω̄a is a function of x(t), u(t) and t , so it
is an implicit function of time. Furthermore, note that ω̄a is
bounded over any finite time interval due to Assumptions 1–
3 (see Remark 1 for further details). The boundedness of ω̄a,
ogether with the ISS of the estimation error dynamics in (11),
mplies boundedness of the estimation error over any finite time
nterval and the asymptotic stability of the origin of (11) when
¯ a = 0. Moreover, if ω̄a is bounded uniformly in t; ISS guarantees
he existence of an ultimate bound on the estimation error.

emark 1 (Boundedness Assumptions). We have ω̄a =

δηlx , ω, f (r), ν, ν̇). Note that, by the extreme value theorem (Prot-
er, Charles Jr, et al., 2012, Thm. 3.12), the uncertainty model mis-
atch δηlx (x(t), u(t), t) and the fault model mismatch

(r)(x(t), u(t), t) are bounded over any finite time interval due to
ontinuity and bounded driving terms (Assumptions 1 and 2).
oreover, the other terms in ω̄a (i.e., ω(t), ν(t), and ν̇(t)) are
lso bounded by Assumption 3. Therefore, ω̄a is bounded over
ny bounded time interval under the required assumptions.

The next proposition formalizes an LMI condition that guaran-
ees an ISS estimation error dynamics (11) with respect to input
¯ a.

roposition 1 (ISS Estimation Error Dynamics). Consider the error
ynamics (11) and let Assumption 4 hold with Lipschitz constant
. Suppose there exist matrices P ∈ Rnz×nz , with P ≻ 0, R ∈
nz×m,Q ∈ Rnz×m, and J ∈ Rnvg ×m satisfying the matrix inequality[
X11 X12
∗ −I

]
≺ 0, (15a)

here, matrices X and X12 are defined as

11 :=S11 + α(V⊤

gaVga − V⊤

ga JCa − C⊤

a J⊤Vga )

12 :=

[ √
2α

(
(P + RCa)Sga

)⊤

√
α(JCa)⊤

]⊤ (15b)

ith

11 :=A⊤

a P + A⊤

a C
⊤

a R⊤
− C⊤

a Q⊤
+ PAa (15c)
+ RCaAa − QCa,
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nd the remaining matrices in (5b). Then, the estimation error
ynamics in (11) is ISS with respect to input ω̄a. Moreover, when
= 0 (no nonlinearity) the condition in (15a) transforms to

11 ≺ 0, (15d)

hat is a necessary and sufficient condition for ISS with respect to
nput ω̄a.

roof. The proof can be found in Appendix A. ■

emark 2 (LMI Feasibility). If Df in (1a) is full row rank (i.e., there
are as many sensor faults, fy, as sensors), the LMI in (15a) is
lways infeasible (observability is lost) Edwards and Spurgeon
2000), Edwards and Tan (2006) and Frank and Wunnenberg
1989). The standard practice to circumvent this issue is to as-
ume rank[Df ] < m Edwards and Spurgeon (2000), Edwards and
an (2006) and Frank and Wunnenberg (1989). Note that this is
nly a necessary condition and it does not guarantee the LMI in
15a) to be feasible (this has to be checked on a case-by-case
asis).

In what follows, we shift our attention from the error dy-
amics (11) to its equivalent (10), to characterize fault estima-
ion robustness against disturbances with unknown frequency
ange (δηlx , ω, f (r)) (external disturbances, and fault and uncer-
ainty model mismatches) and disturbances with high frequency
ontent (ν, ν̇) (measurement noise and its derivative). Because
δηlx , ω, f (r)) and (ν, ν̇) have different frequency characteristics,
obustness strategies for each of these perturbations are different.

.2. L2 Performance criterion

To maximize the performance of the reconstruction scheme,
e seek to minimize the effect of (δηlx , ω, f (r)) (treated as an

arbitrary energy bounded external disturbance) on the fault esti-
mation error ef . We assume ν is zero (consequently νa = 0) in the
error dynamics (10) since we apriori know that the measurement
noise has high frequency content and thus we consider the effect
of νa in the next section. To this end, we seek to minimize the L2-
gain from (δηlx , ω, f (r)) to the fault estimation error ef . We could
use the ISS formulation in Proposition 1 to cast an optimization
problem where we minimize the ISS gain and treat the LMI in
(15a) as an optimization constraint. By doing so, we would be
reducing the effect of (δηlx , ω, f (r)) on the complete vector of es-
timation errors e (state, and fault and fault derivatives estimation
errors). Note, however, that the filter’s purpose is to reconstruct
fault vector only, so the performance in state estimation and the
error of higher-order fault derivatives is not relevant.

Definition 2 (L2-gain (van der Schaft, 1992)). We say that the
estimation error dynamics (10), assuming ν = 0 with input
ωa(t) = (δηlx , ω, f (r)) and output ef (t) (fault estimation error
as in (8)) has a L2-gain less than or equal to λ if the following
inequality is satisfied

∥ef (t)∥2
L2

:=

∫ T

0
∥ef (t)∥2dt ≤ λ2

∫ T

0
∥ωa(t)∥2dt,

for all T ≥ 0 and ωa(t) ∈ L2(0, T ).

The following proposition formalizes an LMI-based condi-
tion guaranteeing that (10) has the finite L2-gain property from
(δηlx , ω, f (r)) to the fault estimation error ef (see Definition 2).

Proposition 2 (L2-gain LMI). Consider the error dynamics (10) and

let Assumption 4 hold with Lipschitz constant α. Suppose there exist

6

matrices P ≻ 0, R, Q , J , and scalar ρ ≥ 0 satisfying⎡⎣ X11 + aC̄⊤C̄ −(P + RCa)Bωa X12
∗ −ρaI 0
∗ ∗ −I

⎤⎦ ⪯ 0, (16a)

for some given a > 0, X11, X12 as defined in (15b), C̄ in (7b), and
the remaining matrices in (5b). Then, J1(·) in (13) is upper bounded
by

√
ρ, i.e., the L2-gain of (10) with ν = 0 from (δηlx , ω, f (r)) to the

ault estimation error ef is upper bounded by
√

ρ. Moreover, when
= 0 (no nonlinearity) the condition in (16a) transforms to[
S11 + C̄⊤C̄ (P + RCa)Bd1

∗ −ρI

]
⪯ 0, (16b)

hat is a necessary and sufficient condition for
√

ρ to be the upper
bound for the L2-gain from (δηlx , ω, f (r)) to the fault estimation
error ef .

Proof. The proof can be found in Appendix B. ■

3.3. L2 − L∞ Induced norm performance criterion

The other terms affecting the fault reconstruction are mea-
surement noise and its derivative with high frequency content
(ν, ν̇). Therefore, we assume disturbances with unknown fre-
quency range (δηlx , ω, f (r)) = 0 in the error dynamics (10) and
seek to minimize the effect of disturbances with high frequency
content (ν, ν̇) on the fault estimate error ef . Here, we should
select an appropriate performance criterion to characterize the
effect of (ν, ν̇) on the estimation error dynamics (10). Because
(ν, ν̇) consists of disturbances with bounded energy, we consider
L2-norm for that and since it leads to abrupt changes in fault
estimates ef , we use L∞-norm for fault estimation error ef to
have a filtering effect. In other words, we minimize the effect of
abrupt changes and push the maximum amplitude in the fault
estimate error signal down to have a smooth fault estimate.
Therefore, we seek to minimize the L2 −L∞ induced norm from
(ν, ν̇) to fault estimation error ef . Moreover, one can note that the
L2−L∞ induced norm is widely used in the literature for filtering
(see Ahn, 2013; Shen, Wu, & Park, 2015; Shen, Zhu, Zhang, & Park,
2016; Song, Zhang, Park, & Huang, 2016; Zhang et al., 2017).

Definition 3 (L2−L∞ Induced Norm). We say that the estimation
error dynamics (10) assuming (δηlx , ω, f (r)) = 0 with input
νa(t) = (ν, ν̇) and output ef (t) (fault estimation error as in (8)) has
a L2 − L∞ induced norm less than or equal to γ if the following
inequality is satisfied

∥ef ∥2
L∞

:= sup
t≥0

∥ef (t)∥2
≤ γ 2

∫
∞

0
∥νa(t)∥2dt,

for all νa(t) ∈ L2(0, ∞).

In the following proposition, we give a Lyapunov-based suffi-
cient LMI condition for having a bounded L2 −L∞ induced norm
of the mapping from (ν, ν̇) to the fault estimation error ef .

Proposition 3 (L2 − L∞ Induced Norm LMI). Consider the error
dynamics (10) and let Assumption 4 hold with Lipschitz constant
α. Suppose there exist matrices P ≻ 0, R, Q , J , and scalar σ ≥ 0
satisfying⎡⎢⎣ X11 H12 0 X12

∗ −b2I T⊤
ν J⊤ 0

∗ ∗ −I 0
∗ ∗ ∗ −I

⎤⎥⎦ ⪯ 0, (17a)

[
P C̄⊤

]
⪰ 0, (17b)
∗ σ I
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12 := [ QDν, −RDν ], (17c)

ν = [ Dν 0 ], (17d)

or some given scalar b, X11, X12 as defined in (15b), C̄ in (7b), and
he remaining matrices in (5b). Then, J2(·) in (14) is upper bounded
y

√
bσ , i.e., the L2 − L∞ induced norm of (10) with ωa = 0 from

ν, ν̇) to the fault estimation error ef is upper bounded by
√
bσ .

oreover, when α = 0 (no nonlinearity) the condition in (17a)
educes to[

S11 H12
∗ −I

]
⪯ 0, (17e)

that is a necessary and sufficient condition for
√

σ to be the upper
ound for the L2 − L∞ induced gain from (ν, ν̇) to the fault
stimation error ef .

roof. The proof can be found in Appendix C. ■

emark 3 (Extension). Although due to the nature of signals un-
nown frequency range (δηlx , ω, f (r)) and high frequency content
ν, ν̇), we have proposed L2-gain and L2 − L∞ induced gain
esults, respectively, we can apply L2 − L∞ induced norm norm
o (δηlx , ω, f (r)), or the other way around. For example, applying
L2 − L∞ induced norm to (δηlx , ω, f (r)) can be useful when an
ncertainty with high-frequency content appears in δηlx . This
ase is, however, not considered here.

emark 4 (Exact Estimation). The developed methodology can
uarantee zero estimation error for zero ω̄a = (δηlx , ω, f (r), ν, ν̇),
.e., when the rth-time derivative of the fault vector vanishes
i.e., time polynomial signals with a degree less than r), and the
isturbances (the uncertainty model mismatch δηlx , the external
isturbance ω, and the measurement noise ν) are zero. This
ollows directly from the ISS property that the origin of the
stimation error dynamics in (11) is asymptotically stable if ω̄a =

. See simulation results in Ghanipoor et al. (2022).

emark 5 (Fault Internal Model). It is worth highlighting that
he fault internal model introduced in (3), with r as a design
arameter, allowing the addition of as many terms as needed
rom the Taylor series, can be generalized for a wide class of
ault signals. However, if there exists prior knowledge about the
ault signal, such as a specific known frequency, the internal
ault model can be adapted accordingly (Dong, Pan, Pequito, &
ohajerin Esfahani, 2023). By doing so, the proposed method can
uarantee exact fault estimation for the class of faults for which
he model is exact.

Propositions 1–3 provide sufficient conditions that we exploit
o solve Problem 1b (filter synthesis) in what follows. So far, we
ave presented analysis tools to characterize the performance
f a given filter of the form (2) with functions in (7). In the
ollowing section, we provide a tool to design the filter matrices
= {E, K , J} in (7), in an optimal way in the sense of achieving a
esired trade-off between the L2-gain and L2 −L∞ induced-gain
ntroduced above.

.4. Optimal fault estimator design

Using Proposition 2, we can formulate a semi-definite program
here we seek to minimize the L2-gain from unknown frequency
ange disturbances ωa = (δηlx , ω, f (r)) to fault estimation error
f . Similarly, using Proposition 3, we can formulate another semi-
efinite program where we seek to minimize the L2−L∞ induced
orm from disturbances with high frequency content νa = (ν, ν̇)

o ef . However, in the presence of both unknown perturbations

7

ωa and νa), the L2-gain and L2 − L∞ cannot be minimized
imultaneously due to conflicting objectives. To attenuate the
ffect of high-frequency disturbances on the estimation error,
relatively slow (low-gain) filter is required, which does not

eact to every small and fast change in the measured output.
n the other hand, to reduce the effect of ωa on the estimation
rror, a high-gain filter is preferred, which tries to estimate the
ault as accurately as possible. It follows that there is a trade-off
etween estimation performance the noise sensitivity. To address
his trade-off, we can minimize the L2-gain and constrain the
2 − L∞ induced gain. The same tools allow minimizing the
2 − L∞ norm for a constrained L2-gain (as a dual problem).
oreover, we add the ISS LMI in (15a) as a constraint to these
rograms to enforce input to state stability of the estimation error
ynamics (as having bounded signal norms does not guarantee
tability Khalil, 2002).

heorem 1 (Optimal Fault Estimator). Consider the augmented dy-
amics (5), the fault estimator filter (2) with h(·) and φ(·) as defined
n (7), and the corresponding estimation error dynamics (10)–(11).
et Assumption 4 be satisfied. To design the parameters of the fault
stimator, solve the following convex program

min
P,R,Q ,J,ρ,σ

ρ

s.t.
[

X11 X12
∗ −I

]
≺ 0,⎡⎣ X11 + aC̄⊤C̄ −(P + RCa)Bωa X12

∗ −ρaI 0
∗ ∗ −I

⎤⎦ ⪯ 0,⎡⎢⎣ X11 H12 0 X12
∗ −b2I T⊤

ν J⊤ 0
∗ ∗ −I 0
∗ ∗ ∗ −I

⎤⎥⎦ ⪯ 0,

[
P C̄⊤

∗ σ I

]
⪰ 0,

P ≻ 0, ρ, σ ≥ 0, σ ≤ σxmax

(18)

ith given scalars a, σxmax > 0 and b, X11, X12 as defined in (15b),
ωa and Ca in (5b), H12 in (17c), Tν in (17d), and C̄ in (7b). Denote

the optimizers as P⋆, R⋆, Q ⋆, J⋆, ρ⋆ and σ ⋆. Then, the following
arameters of (7), θ = θ ⋆

= {E⋆
= P⋆−1

R⋆, K ⋆
= P⋆−1

Q ⋆, J⋆}
uarantees the following:

(1) The estimation error dynamics in (11) is ISS with respect to
input ω̄a = (ωa, νa). In addition, the ISS property guarantees
the asymptotic stability of the origin of the estimation error
dynamics for ω̄a = 0. Moreover, if ω̄a is bounded uniformly
in t; ISS implies the existence of an ultimate bound on the
estimation error;

(2) J1(·) in (13) is upper bounded by
√

ρ⋆, i.e., the L2-gain of (10)
with ν = 0 from ωa = (δηlx , ω, f (r)) to the fault estimation
error ef is upper bounded by

√
ρ⋆;

(3) J2(·) in (14) is upper bounded by
√
bσ ⋆, i.e., the L2 − L∞

induced norm of (10) with ωa = 0 from νa = (ν, ν̇) to ef is
upper bounded by

√
bσ ⋆.

roof. Theorem 1 follows from the above discussion and Propo-
itions 1–3. ■

Note that, for numerical tractability, we replace X11 in the
irst strict inequality and P ≻ 0 in the last strict inequality with
11 + ϵI (it becomes non-strict inequality) and P − ϵI ⪰ 0, with
given ϵ > 0, respectively (see Ghanipoor et al., 2022 for the

elation of ϵ and ISS-gain). Furthermore, the scalar parameters
and b in Theorem 1 are tuned for the minimal L2-gain with

espect to disturbances ωa for an acceptable L2 − L∞-gain for
oise νa by a line search. To facilitate the implementation of the
roposed scheme, the steps to implement it are given as follows:



F. Ghanipoor, C. Murguia, P.M. Esfahani et al. Automatica 171 (2025) 111920

d
e

3

u
b
K
s
t
t
w
m
t
t

d
I
w

η

w
s

d

B

A
a
i
r
(

R
s
t
h
b
p
a
m

4

b
2
P
a
b
J

J

w
a
a
F
t
m
i
g
m
m
b
J
N

(1) Reformulate the system dynamics in the form of (1);
(2) Select the number of fault derivative augmentation r in (4);
(3) Construct the known part of augmented dynamics (5)

based on the known model in (1) and (4);
(4) Construct filter (2) with functions in (7) as fault estimator,

given the known matrices in Step 3;
(5) Solve the semi-definite program in Theorem 1 to design the

fault estimator parameters in Step 4.

Remark 6 (Limitations). The limitations of the proposed method
are listed as:

• Same Distribution Matrices for Fault and Disturbance:
If the system in (1) has the same fault and disturbance
distribution matrices (i.e., the same Bω and Bf in (1a)), we
cannot provide an accurate estimate of the fault (while
exploiting robust control techniques, we cannot induce a
low L2-gain with respect to same entry disturbance). This is
a challenging open problem that is, in general, impossible to
address without assuming known ‘‘signal’’ characteristics of
the fault and disturbance entering the dynamics through the
same channel (e.g., frequency/power content, stochasticity,
and even closed-form expressions for faults). We remark,
however, that our approach allows for the estimation of
combined fault and disturbance signals. Moreover, some
existing work, such as van der Ploeg et al. (2022), explores
this challenge for linear time-varying systems. In van der
Ploeg et al. (2022), regression methods are used to isolate
two same entry faults. It is important to note that this is
different from fault estimation. The assumption made in van
der Ploeg et al. (2022) is that the faults are piece-wise
constant and a similar condition of persistently excitation
exists in one of the fault signals.

• Pre-Defined Fault Estimation Performance: By the pro-
posed scheme, we cannot provide a pre-defined perfor-
mance for fault estimation. We only minimize the effect of
perturbations and find an optimal fault estimate in terms
of the gains from disturbances and noise to fault estimation
error. However, the accuracy of fault estimates might not be
acceptable in some cases, depending on system characteris-
tics and disturbance levels.

In what follows, we discuss the uncertainty model and how
ifferent types of models affect the provided solution of the fault
stimation problem.

.5. Discussion on uncertainty models

To obtain an uncertainty model of the form ηlx in (1b), we can
se results in e.g., Brunton, Proctor, and Kutz (2016), Quaghe-
eur, Nopens, and De Baets (2021) and Yazdani, Lu, Raissi, and
arniadakis (2020). Available methods allow fitting parametric
tatic functions, which might be state or output dependent. To use
hese results in the context of fault estimation, we have to assume
hat there is some time window during the system operation in
hich no fault occurs and that data is collected for this healthy
ode. The collected data can be used to learn uncertainty models

o have a more accurate system description (valid at least for
rajectories close to the training data set) for fault estimation.

Based on (1b), we have assumed that we have the state depen-
ent uncertainty model ηlx (·) to develop the results of this paper.
n the case of an output dependent uncertainty model ηly (·), (1b)
ill change as follows:

(Vηx, u, t) = ηly (Tηy, u, t) + δηly (x, u, t), (19)

here δηly (x, u, t) := η(Vηx, u, t) − ηly (Tηy, u, t). Matrix Tη is a
election matrix that the user selects to specify what particular
 m

8

Fig. 1. Benchmark system schematic.

outputs drive the model. If we use this ηly (·) instead of the state
ependent ηlx (·) in (1b), (5b) modifies as follows:

ua :=

[
Bu Sη

0 0

]
, ua :=

[
u

ηly (Tηy, u, t)

]
,

Sga :=

[
Sg
0

]
, Vga :=

[
Vg 0

]
, ga(·) := g(·),

ωa :=

[
δη⊤

ly ω⊤ f (r)
⊤

]⊤

.

(20)

s you can see above (see ga(·) in (20)), ηly (·) does not act as
nonlinearity for the augmented system (as ηlx does in (5b));

nstead, it acts as a known input signal. The latter affects the
equired assumption for the application of this uncertainty model
see Remark 7).

emark 7 (Uncertainty Model Selection). In Assumption 4, the
tate-dependent uncertainty model ηlx must be globally Lipschitz
o ensure the boundedness of the fault estimator. On the other
and, the output-dependent model ηly relaxes this requirement
y only requiring ηly to be continuous. The latter comes at the
rice of lower model accuracy when the system uncertainty is not
n explicit function of the system output (i.e., Vηx might contain
ore states than those measured in the output).

. Simulation results

In this section, we evaluate the proposed method using a
enchmark example for FDI (Ghanipoor et al., 2022; Keliris et al.,
016; Reppa, Polycarpou, & Panayiotou, 2013; Zhang, Parisini, &
olycarpou, 2005). The system dynamics (a single-link robotic
rm with a revolute elastic joint, see Fig. 1 for a schematic) can
e described as follows:

bq̈l + Flq̇l + (ks + ∆ks) (ql − qm)

+ mg(c + ∆c) sin (ql) = ω,

mq̈m + Fmq̇m − (ks + ∆ks) (ql − qm) = kτu,

here ql and qm are the angular position of the link and the
ngular position of the motor, respectively. Constants Jb and Jm
re the moments of inertia of the link and the motor, and Fl and
m are the viscous coefficients associated with friction acting at
he link and the motor, respectively. The flexibility in the joint is
odeled by a spring with a spring coefficient ks, the inaccuracy

n the spring coefficient is denoted by ∆ks, m is the link mass,
is the gravity constant, c is the height of the link center of
ass, ∆c is the inaccuracy in the height of the link center of
ass, kτ is the amplifier gain, and u is the torque input delivered
y the motor. Units are in SI, and the parameters values are:
b = 4.5 kg m2, Jm = 1 kg m2, Fl = 0.5 N m s/rad, Fm = 1
m s/rad, ks = 2 N m/rad, ∆ks = −0.25k,m = 4 kg, g = 9.8

2
/s , c = 0.5 m, ∆c = 0.25c and kτ = 1. The torque input is
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et to u = 2sin(0.25t), and ω = 0.03sin(0.1t) is an exogenous
nknown (torque) disturbance affecting the link.
Let x1 := q̇m, x2 := qm, x3 := q̇l, x4 := ql, and for the fault

scenario, we consider the actuator fault; then, the system can be
written in the form of (1a)⎧⎪⎨⎪⎩
ẋ = Ax + Buu + Sgg

(
Vgx

)
+ Sηη

(
Vηx

)
+ Bωω + Bf f ,

y = Cx + Df f + Dνν,

(21)

here x := [x1, x2, x3, x4]⊤ is the state vector,

A =

⎡⎢⎢⎣
−

Fm
Jm −

ks
Jm

0 ks
Jm

1 0 0 0
0 ks

Jl
−

Fl
Jl

−
ks
Jl

0 0 1 0

⎤⎥⎥⎦ ,

Bu =

[
kτ
Jm

0 0 0
]⊤

, C =

[
0 1 0 0
0 0 0 1

]
,

Sg =
[

0 0 −
mgc
Jl

0
]⊤

, Vg =
[

0 0 0 1
]
,

Sη =

[
1 0 0 0
0 0 1 0

]⊤

, Vη =

[
0 1 0 0
0 0 0 1

]
,

Bω =
[

0 0 1 0
]⊤

, Dν = I,

Bf =
[

1 0 0 0
]⊤

, Df =
[

0 0
]⊤

.

The nonlinearity is given by g (Vx) = sin (x4), which is Lips-
chitz with constant α = 1. The uncertainty is η(Vηx) = [

∆ks
Jm

(x4 −

2), ∆ks
Jl

(x2 − x4) −
mg∆c

Jl
sin(x4)]⊤, which is induced by the uncer-

tainty on the stiffness and the location of the center of mass of the
link. We set initial conditions as x(0) = [0.01, 0.01, 0.01, 0.01]⊤.

We have the following linear state- and output-dependent
ncertainty models:

lx (Vηx; Θx) =ΘxVηx,
ηly (Tηy; Θy) =ΘyTηy,

(22)

here Tη is the identity matrix (since the uncertainties are de-
pendent on both outputs). Matrices Θx and Θy are parame-
ers of state- and output-dependent models with appropriate
imensions, respectively.
Considering the system in (21) and either of state and output

ependent uncertainty models in (22), we construct augmented
ystem (5a) with r = 1, using (5b) or its modified version (20)
for state and output dependent uncertainty models, respectively.
Next, we design two actuator fault estimators of the form (7), one
for each of cases considering state- and output-dependent uncer-
tainty models, by solving the semi-definite problem in Theorem 1.
The initial condition of the filters in simulation is taken as the
zero vector. A sinusoidal actuator fault with the same frequency
of input is simulated (i.e., fx = 0.1sin(0.25(t − 25))).

We evaluate two aspects of the proposed methods:

(1) Effect of the learning models for uncertainty in a noise-free
case.

(2) Effect of robustification of fault estimate against noise.

.1. Model learning for uncertainty

To indicate the performance of the proposed fault estimation
pproaches (two cases considering two uncertainty models) in a
oise-free situation, we compare those approaches with the case
n which we neither use the uncertainty model in the design of
he fault estimator nor robustify the fault estimation error against
erturbations induced by uncertainty (see the fault estimator
iven in Ghanipoor et al., 2022). Fig. 2 depicts the actual fault and
9

Fig. 2. The actual actuator fault and its estimates.

ts estimates for three different approaches (two proposed meth-
ds plus one without any model for uncertainty). It can be seen
hat the estimated actuator faults using both proposed estimators
ollow the actual fault properly. Note that the fault estimate
ccuracy for this system does not change that much using either
f the uncertainty models. However, this observation cannot be
eneralized since the fault estimation accuracy depends on the
sed uncertainty model (i.e., state- or output-dependent model)
n the fault estimator filter and the gain from the uncertainty
ismatch to fault estimate error. The combination of these two

actors might not result in similar fault estimate accuracy for
very system.

.2. Robustification against noise

In this section, we aim to show that the fault estimation
erformance and the noise attenuation are always a trade-off,
nd that the proposed synthesis approach allows us to make
his trade-off in a constructive manner. Therefore, in the sim-
lation of this section, the measurement noise ν is generated
rom a uniform distribution with an amplitude of five percent
f the output signals for both sensors. Note that in the result of
his section the modeling uncertainty is available and the state-
ependent uncertainty model is used in the fault estimator. To
how the trade-off between fault estimation performance and
oise attenuation, we consider the filter of the form (7), which
an be designed in three different ways as follows:

(1) Only minimizing the L2-gain from ωa to ef in (10) (assum-
ing νa = 0), subject to the ISS LMI in (15a).

(2) Only minimizing the L2 − L∞ induced gain from νa to ef
in (10) (assuming ωa = 0), subject to the ISS LMI in (15a).

(3) Minimizing the L2-gain, subject to an upper bound for
L2 −L∞ induced norm and the ISS LMI in (15a) (proposed
method in Theorem 1).

he first case of the above-mentioned scenarios is depicted in
ig. 3. One can see that the effect of noise is dominant in fault
stimate, and this is due to the fact that by only minimizing
2-gain, we obtain a high-gain filter, which amplifies the noise
ffect. In contrast, by only minimizing L2 − L∞ induced norm,
low-gain filter is found, which (almost) perfectly filters noise
ffect but sacrifices fault estimation performance. Fig. 4 shows
he result for this filter in dashed-black. The method proposed
n this paper can provide a trade-off between the two previous
olutions. Fig. 4 depicts the result using the proposed method
n Theorem 1, see the dashed-red line. It can be observed that
e have a decent trade-off between fault estimate performance
nd noise attenuation. Note that by tuning the upper bound for
2 − L∞ induced norm from νa to the fault estimate ef , one
an increase noise filtering at the cost of reducing fault estimate
ccuracy.
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Fig. 3. The actual actuator fault and its estimates using the optimal L2-gain
ith respect to disturbance ωa estimator.

Fig. 4. The actual actuator fault and its estimates using different optimal criteria.

. Conclusion

This paper proposes a method for the estimation of time-
arying actuator and sensor faults in uncertain nonlinear systems.
he fault estimator exploits an internal, ultra-local in time, model
or the fault vector which allows us to guarantee zero fault esti-
ation error for a class of faults in the absence of perturbations.
he fault estimator can be designed by solving a semi-definite
rogram. Herein, the effect of (fault and uncertainty) model mis-
atches, and external disturbances on the fault estimation error

s minimized in the sense of L2-gain, for an acceptable L2 − L∞

induced norm with respect to measurement noise. This allows
to design fault estimators that exhibit a favorable performance
trade-off in the presence of these different perturbations chal-
lenging fault estimation. Simulations for a benchmark system
illustrate the performance and potential of the proposed ap-
proach. Future work could include experimental validation of the
proposed method.
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Appendix A. Proof of Proposition 1

Let us first introduce the following lemma, which is used to
ensure ISS using an ISS Lyapunov function.

Lemma 1 (ISS Lyapunov Function (Khalil, 2002, Thm. 4.19)). Con-
sider the error dynamics (11) and let W (e) be a continuously differ-
entiable function such that

α1(∥e∥) ≤ W (e) ≤ α2(∥e∥),

̇ (e) ≤ −W3(e), ∀ ∥e∥ ≥ ξ (∥ω̄a(t)∥),

here α1(·) and α2(·) are class K∞ functions, ξ (·) is a class K
unction, and W3 is a continuous positive definite function. Then,
he estimation error dynamics (11) is ISS with ISS gain µ(∥ω̄a∥) =
−1
1 (α2(ξ (∥ω̄a∥))).

Let W (e) := e⊤Pe be an ISS Lyapunov function candidate.
hen, it follows from (10) (equivalent to (11)) and the Lipschitz
onditions for the known nonlinearity in (6) that
̇ (e) ≤e⊤∆e + ω̄⊤

a T̄
⊤Mν T̄ ω̄a + 2e⊤PB̄ωa ω̄a (A.1)

ith ω̄a, B̄ωa as defined in (11b),

:=N⊤P + PN + 2αPMSgaS
⊤

gaM
⊤P

+ α(Vga − JCa)⊤(Vga − JCa),
(A.2)

nd

ν := T⊤

ν J⊤JTν, Tν := [ Dν 0 ], T̄ := [ 0 I2m ]. (A.3)

̇ =e⊤
(
N⊤P + PN

)
e + 2e⊤PMSgaδg

− 2e⊤PMBωaωa + 2e⊤PBνaνa

≤e⊤
(
N⊤P + PN

)
e

+ 2
e⊤PMSga

α∥(Vga − JCa)e + JDνν∥

− 2e⊤PMBωaωa + 2e⊤PBνaνa

≤e⊤
(
N⊤P + PN

)
e

+ α
(
2
e⊤PMSga

2
+ ∥(Vga − JCa)e∥2

+ ∥JTννa∥
2 )

− 2e⊤PMBωaωa + 2e⊤PBνaνa

=e⊤
(
N⊤P + PN + 2αPMSgaS

⊤

gaM
⊤P

+ α(Vga − JCa)⊤(Vga − JCa)
)
e

+ ν⊤

a

(
T⊤

ν J⊤JTν

)
νa

− 2e⊤PMBωaωa + 2e⊤PBνaνa

=e⊤∆e + ω̄⊤

a T̄
⊤Mν T̄ ω̄a + 2e⊤PB̄ωa ω̄a

(A.4)

See Ghanipoor, Murguia, Mohajerin Esfahani, and van de Wouw
2023b) for more details of (A.4) derivation. Now, inequality (A.1)
which is the same as (A.4)) by taking the norm of the right-hand
ide of inequality implies the following inequality:
̇ (e) ≤ − (1 − χ )λmin(−∆)∥e∥2

− χλmin(−∆)∥e∥2

+ ∥T̄⊤Mν T̄∥∥ω̄a∥
2
+ 2∥e∥∥PB̄ωa∥∥ω̄a∥

(A.5)

for any χ ∈ (0, 1) and λmin(·) the minimum eigenvalue of its
ymmetric argument. Now, a class K function ξ (ω̄a) exists such
hat we have
̇ (e) ≤ − (1 − χ )λmin(−∆)∥e∥2, ∀ ∥e∥ ≥ ξ (∥ω̄a∥),

(ω̄a) exists since the second quadratic term in ∥e∥ can dominate
he third and fourth terms in (A.5) for large enough ∥e∥. ξ (ω̄a) can
e found by solving the following second-order inequality for ∥e∥

2 ¯⊤ ¯ 2 ¯
λmin(−∆)∥e∥ ≥∥T MνT∥∥ω̄a∥ + 2∥e∥∥PBωa∥∥ω̄a∥
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ince an explicit expression for the ISS gain is not needed in this
aper, we do not give a closed-form solution for ξ (.).
Therefore, the conditions in Lemma 1 are satisfied if ∆ is a

negative definite matrix. Hence, under such condition system (11)
is ISS with input ω̄a. Based on the above analysis, the proposition
formalizes an LMI condition (∆ ≺ 0) that guarantees an ISS
estimation error dynamics (11).

As the final step, we want to prove that ∆ ≺ 0 is equivalent
to (15a)–(15b). Using ∆ defined in (A.2), (7c), and the Schur
complements on ∆ ≺ 0, we can derive (15a) with X11 and X12
in terms of the original observer gains {E, K , J} as

X11 := N⊤P + PN + α(V⊤

gaVga − V⊤

ga JCa − C⊤

a J⊤Vga ),

X12 :=
[ √

2αPMSga
√

αC⊤
a J⊤

]
with N and M as defined in (7c). By applying the change of
ariables as R := PE,Q := PK on the above expanded X11 and
12, the linear inequality (15a)–(15b) can be concluded.
When α is zero (no nonlinearity), it holds that ∆ = N⊤P +

N and, therefore, we only require N⊤P + PN to be negative
efinite, which by change of variables transforms to S11 ≺ 0
s necessary and sufficient condition for ISS of the linear error
ynamics (Khalil, 2002, Col. 5.2). This concludes the results of the
roposition.

ppendix B. Proof of Proposition 2

Let us first introduce the following Lemma, which is required
o prove the result of Proposition 2. In the following lemma, we
tate a Lyapunov-based sufficient condition for having such a
ounded L2-gain property.

emma 2 (L2-gain Inequality). Consider (10) with ν(t) = 0 and
uppose there exists a continuously differentiable positive semi-
efinite function W (e) satisfying

̇ (e) ≤ a(λ2ω⊤

a ωa − e⊤

f ef ), (B.1)

ith a, λ > 0 and the fault estimation error ef as in (8). Then, the
2-gain from ωa to ef in (10) is less than or equal to λ.

roof. The proof is similar to the proof of Theorem 5.5 in Khalil
2002). Clearly, by integrating (B.1) over a finite time (0, τ ), we
ave

(e(τ )) − W (e(0)) ≤ aλ2
∫ τ

0
∥ωa∥

2dt − a
∫ τ

0
∥ef ∥2dt.

sing W (e) ⪰ 0 and neglecting the initial condition, the above
nequality can be written as

τ

0
∥ef ∥2dt ≤ λ2

∫ τ

0
∥ωa∥

2dt

onsidering Definition 2, the above inequality concludes the re-
ult in the lemma. ■

For the purpose of L2-gain analysis, we define W (e) := e⊤Pe
ith positive definite matrix P . Then, we can guarantee that the
2-gain inequality in (B.1) holds for the time-derivative Ẇ (e)

evaluated along solutions of the error-dynamics (10), by using
(A.4) (and assuming ν = 0), as follows:

Ẇ (e) ≤ e⊤∆e − 2e⊤PMBωaωa

≤ a(λ2ω⊤ω − e⊤C̄⊤C̄e).
a a

11
The above inequality can be written as

e⊤(∆ + aC̄⊤C̄)e − 2e⊤PMBωaωa − aλ2ω⊤

a ωa ≤ 0,

for which we can give the following sufficient matrix inequality[
∆ + aC̄⊤C̄ −PMBωa

∗ −aλ2I

]
⪯ 0.

If we follow the same procedure in the proof of Proposition 1,
and define a change of variable as ρ := λ2, the equivalent LMI
condition (16a) can be concluded.

When α is zero (linear case), the LMI condition (16a) using the
Schur complement is equivalent to (16b). This LMI is necessary
and sufficient condition for the L2-gain of (10) (with δg = 0 for
his linear case) from ωa to the fault estimation error ef to be
upper bounded by

√
ρ, as given in Scherer and Weiland (2000,

Prop. 3.12).

Appendix C. Proof of Proposition 3

For the purpose of L2 − L∞-gain analysis, we define W (e) :=

e⊤Pe with positive definite matrix P . Then, we can impose the
quadratic performance inequality

Ẇ (e) ≤ b2ν⊤

a νa. (C.1)

Using (A.4) (and assuming ωa = 0), (C.1) can be written as
follows:

Ẇ (e) ≤ e⊤∆e + 2e⊤PBνaνa + ν⊤

a Mννa ≤ b2ν⊤

a νa.

he above inequality can be written as
⊤∆e + 2e⊤PBνaνa + (Mν − b2I)ν⊤

a νa ≤ 0,

or which we can give the following sufficient matrix inequality

∆ PBνa

∗ Mν − b2I

]
⪯ 0.

ince Mν = T⊤
ν J⊤JTν is not linear in the design variable J , we use

he Schur complement again to obtain the following equivalent
nequality:

∆ PBνa 0
∗ −b2I T⊤

ν J⊤
∗ ∗ −I

⎤⎦ ⪯ 0.

f we follow the same procedure in the proof of Proposition 1, the
quivalent LMI condition (17a) can be concluded. This completes
he proof that the condition (17a) in the proposition implies the
atisfaction of (C.1). Besides, by integrating (C.1) over a finite time
0, τ ) and neglecting the initial condition, we have

(τ )⊤Pe(τ ) ≤ b2
∫ τ

0
ν⊤

a νadt.

f we multiply both sides by γ 2 and impose a lower bound to
nable bounding the error on the fault estimate (ef = C̄e), we
ave

⊤(τ )C̄⊤C̄e(τ ) ≤ γ 2e⊤(τ )Pe(τ ) ≤ (γ b)2
∫ τ

0
ν⊤

a νadt. (C.2)

hen, it follows from the first part of the above inequality that
e need

⊤(τ )(P −
C̄⊤C̄

2 )e(τ ) ≥ 0.

γ
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sing the Schur complement, the following LMI implies the sat-
sfaction of the above inequality:

P C̄⊤

∗ σ I

]
⪰ 0,

where σ := γ 2. Now, by imposing the above LMI, (C.2) indeed
holds. Therefore,

sup
τ≥0

e⊤(τ )C̄⊤C̄e(τ ) ≤ sup
τ≥0

(γ b)2
∫

∞

0
ν⊤

a νadt

=(γ b)2
∫

∞

0
ν⊤

a νadt

which concludes the result in the proposition for nonlinear case.
When α is zero (linear case), the LMI condition (17a) using the

Schur complement is equivalent to (17e). Then, (17b) and (17e)
are necessary and sufficient conditions for the L2 − L∞ induced
norm of (10) (with δg = 0 for this linear case) from νa to the
fault estimation error ef to be upper bounded by

√
σ , as given

n Scherer and Weiland (2000, Prop. 3.15).

eferences

hn, Choon Ki (2013). L2 − L∞ Elimination of overflow oscillations in 2-D
digital filters described by Roesser model with external interference. IEEE
Transactions on Circuits and Systems II: Express Briefs, 60(6), 361–365.

runton, Steven L., Proctor, Joshua L., & Kutz, J. Nathan (2016). Discovering gov-
erning equations from data by sparse identification of nonlinear dynamical
systems. Proceedings of the National Academy of Sciences, 113(15), 3932–3937.

Chen, Jie, & Patton, Ron J. (2012). Robust model-based fault diagnosis for dynamic
systems: vol. 3, Springer Science & Business Media.

De Persis, Claudio, & Isidori, Alberto (2001). A geometric approach to nonlinear
fault detection and isolation. IEEE Transactions on Automatic Control, 46(6),
853–865.

ing, Steven X. (2008). Model-based fault diagnosis techniques: design schemes,
algorithms, and tools. Springer Science & Business Media.

ong, Jingwei, Pan, Kaikai, Pequito, Sergio, & Mohajerin Esfahani, Peyman (2023).
Robust multivariate detection and estimation with fault frequency content
information. preprint available at arXiv:2310.04922.

dwards, Christopher, & Spurgeon, Sarah K. (2000). A sliding mode observer
based FDI scheme for the ship benchmark. European Journal of Control, 6(4),
341–355.

dwards, Christopher, & Tan, Chee Pin (2006). A comparison of sliding mode
and unknown input observers for fault reconstruction. European Journal of
Control, 12(3), 245–260.

Fliess, Michel, & Join, Cédric (2013). Model-free control. International Journal of
Control, 86, 2228–2252.

Frank, P. M., & Wunnenberg, J. (1989). Robust fault diagnosis using unknown
input observer schemes. In Fault diagnosis in dynamic systems, (pp. 47–97).
Prentice Hall.

Ghanipoor, Farhad, Murguia, Carlos, Mohajerin Esfahani, Peyman, & van de
Wouw, Nathan (2023a). Linear fault estimators for nonlinear systems: An
ultra-local model design. IFAC-PapersOnLine, 56(2), 11693–11698.

Ghanipoor, Farhad, Murguia, Carlos, Mohajerin Esfahani, Peyman, & van de
Wouw, Nathan (2023b). Robust fault estimators for nonlinear systems: An
ultra-local model design. preprint available at arXiv:2305.14036.

Ghanipoor, Farhad, Murguia, Carlos, Mohajerin Esfahani, Peyman, & van de
Wouw, Nathan (2022). Ultra local nonlinear unknown input observers for
robust fault reconstruction. In 2022 IEEE 61st conference on decision and
control (pp. 918–923). IEEE.

Guzman, J., López-Estrada, F.-R., Estrada-Manzo, Víctor, & Valencia-
Palomo, Guillermo (2021). Actuator fault estimation based on a
proportional-integral observer with nonquadratic Lyapunov functions.
International Journal of Systems Science, 52(9), 1938–1951.

Han, Jian, Liu, Xiuhua, Gao, Xianwen, & Wei, Xinjiang (2019). Intermediate
observer-based robust distributed fault estimation for nonlinear multiagent
systems with directed graphs. IEEE Transactions on Industrial Informatics,
16(12), 7426–7436.

Hou, M., & Patton, R. J. (1998). Input observability and input reconstruction.
Automatica, 34, 789–794.
12
Hwang, Inseok, Kim, Sungwan, Kim, Youdan, & Seah, Chze Eng (2009). A survey
of fault detection, isolation, and reconfiguration methods. IEEE Transactions
on Control Systems Technology, 18(3), 636–653.

Jiang, B., Staroswiecki, M., & Cocquempot, V. (2006). Fault accommodation
for nonlinear dynamic systems. IEEE Transactions on Automatic Control, 51,
1578–1583.

Keliris, Christodoulos, Polycarpou, Marios M., & Parisini, Thomas (2016). An
integrated learning and filtering approach for fault diagnosis of a class
of nonlinear dynamical systems. IEEE Transactions on Neural Networks and
Learning Systems, 28(4), 988–1004.

Khalil, Hassan K. (2002). Nonlinear systems: vol. 115, (3rd ed.). Prentice Hall.
Liu, Ming, Cao, Xibin, & Shi, Peng (2012). Fuzzy-model-based fault-tolerant

design for nonlinear stochastic systems against simultaneous sensor and
actuator faults. IEEE Transactions on Fuzzy Systems, 21(5), 789–799.

Liu, Ming, & Shi, Peng (2013). Sensor fault estimation and tolerant control for
Itô stochastic systems with a descriptor sliding mode approach. Automatica,
49(5), 1242–1250.

Mohajerin Esfahani, Peyman, & Lygeros, John (2015). A tractable fault detection
and isolation approach for nonlinear systems with probabilistic performance.
IEEE Transactions on Automatic Control, 61(3), 633–647.

Ossmann, Daniel (2016). Enhanced detection and isolation of angle of attack
sensor faults. In AIAA guidance, navigation, and control conference (p. 1135).

Pan, Kaikai, Palensky, Peter, & Mohajerin Esfahani, Peyman (2021). Dynamic
anomaly detection with high-fidelity simulators: A convex optimization
approach. IEEE Transactions on Smart Grid, 13(2), 1500–1515.

Protter, Murray H., Charles Jr, B., et al. (2012). A first course in real analysis.
Springer Science & Business Media.

Quaghebeur, Ward, Nopens, Ingmar, & De Baets, Bernard (2021). Incorporating
unmodeled dynamics into first-principles models through machine learning.
IEEE Access, 9, 22014–22022.

eppa, Vasso, Polycarpou, Marios M., & Panayiotou, Christos G. (2013). Adaptive
approximation for multiple sensor fault detection and isolation of nonlinear
uncertain systems. IEEE Transactions on Neural Networks and Learning Systems,
25(1), 137–153.

cherer, Carsten, & Weiland, Siep (2000). Linear matrix inequalities in control.
In Lecture notes, dutch institute for systems and control, Delft, the Netherlands:
vol. 3, (no. 2).

hen, Hao, Wu, Zheng-Guang, & Park, Ju H. (2015). Reliable mixed passive and
filtering for semi-Markov jump systems with randomly occurring uncertain-
ties and sensor failures. International Journal of Robust and Nonlinear Control,
25(17), 3231–3251.

hen, Hao, Zhu, Yanzheng, Zhang, Lixian, & Park, Ju H. (2016). Extended dissipa-
tive state estimation for Markov jump neural networks with unreliable links.
IEEE Transactions on Neural Networks and Learning Systems, 28(2), 346–358.

Sira-Ramírez, Hebertt, Luviano-Juárez, Alberto, Ramírez-Neria, Mario, & Zurita-
Bustamante, Eric William (2018). Active disturbance rejection control of
dynamic systems: a flatness based approach. Butterworth-Heinemann.

Song, Bo, Zhang, Ya, Park, Ju H., & Huang, Huan (2016). L2 − L∞ Filtering
for stochastic systems driven by Poisson processes and Wiener processes.
Applied Mathematics and Computation, 276, 407–416.

Sontag, Eduardo D. (2008). Input to state stability: Basic concepts and results.
In Nonlinear and optimal control theory (pp. 163–220). Springer.

van der Ploeg, Chris, Alirezaei, Mohsen, van de Wouw, Nathan, & Mohajerin Es-
fahani, Peyman (2022). Multiple faults estimation in dynamical systems:
Tractable design and performance bounds. IEEE Transactions on Automatic
Control.

an der Schaft, Arjan J. (1992). L2-Gain analysis of nonlinear systems and
nonlinear state feedback H∞ control. IEEE Transactions on Automatic Control,
37(6), 770–784.

arga, Andreas (2017). Solving fault diagnosis problems, In Studies in systems,
decision and control: vol. 84, (1st ed.). (pp. 8–9). Berlin, Germany: Springer
International Publishing.

eluvolu, Kalyana C., Kim, M. Y., & Lee, Dongik (2011). Nonlinear sliding mode
high-gain observers for fault estimation. International Journal of Systems
Science, 42(7), 1065–1074.

o, Cong Phat, Dao, Hoang Vu, Ahn, Kyoung Kwan, et al. (2021). Robust fault-
tolerant control of an electro-hydraulic actuator with a novel nonlinear
unknown input observer. IEEE Access, 9, 30750–30760.

azdani, Alireza, Lu, Lu, Raissi, Maziar, & Karniadakis, George Em (2020).
Systems biology informed deep learning for inferring parameters and hidden

dynamics. PLoS Computational Biology, 16(11), Article e1007575.

http://refhub.elsevier.com/S0005-1098(24)00414-X/sb1
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb1
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb1
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb1
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb1
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb2
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb2
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb2
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb2
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb2
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb3
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb3
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb3
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb4
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb4
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb4
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb4
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb4
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb5
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb5
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb5
http://arxiv.org/abs/2310.04922
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb7
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb7
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb7
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb7
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb7
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb8
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb8
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb8
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb8
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb8
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb9
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb9
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb9
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb10
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb10
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb10
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb10
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb10
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb11
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb11
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb11
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb11
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb11
http://arxiv.org/abs/2305.14036
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb13
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb13
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb13
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb13
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb13
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb13
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb13
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb14
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb14
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb14
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb14
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb14
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb14
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb14
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb15
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb15
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb15
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb15
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb15
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb15
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb15
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb16
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb16
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb16
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb17
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb17
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb17
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb17
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb17
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb18
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb18
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb18
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb18
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb18
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb19
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb19
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb19
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb19
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb19
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb19
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb19
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb20
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb21
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb21
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb21
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb21
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb21
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb22
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb22
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb22
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb22
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb22
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb23
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb23
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb23
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb23
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb23
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb24
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb24
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb24
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb25
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb25
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb25
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb25
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb25
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb26
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb26
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb26
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb27
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb27
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb27
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb27
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb27
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb28
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb28
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb28
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb28
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb28
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb28
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb28
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb29
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb29
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb29
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb29
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb29
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb30
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb30
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb30
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb30
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb30
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb30
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb30
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb31
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb31
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb31
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb31
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb31
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb32
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb32
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb32
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb32
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb32
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb33
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb33
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb33
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb33
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb33
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb34
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb34
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb34
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb35
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb35
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb35
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb35
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb35
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb35
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb35
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb36
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb36
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb36
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb36
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb36
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb37
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb37
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb37
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb37
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb37
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb38
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb38
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb38
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb38
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb38
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb39
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb39
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb39
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb39
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb39
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb40
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb40
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb40
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb40
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb40


F. Ghanipoor, C. Murguia, P.M. Esfahani et al. Automatica 171 (2025) 111920

Z

s
U
a
I
a
m

hang, Jie, Ma, Lifeng, Liu, Yurong, Lyu, Ming, Alsaadi, Fuad E, & Bo, Yuming
(2017). H∞ and L2 − L∞ finite-horizon filtering with randomly occur-
ring gain variations and quantization effects. Applied Mathematics and
Computation, 298, 171–187.

Zhang, Xiaodong, Parisini, Thomas, & Polycarpou, Marios M. (2005). Sensor bias
fault isolation in a class of nonlinear systems. IEEE Transactions on Automatic
Control, 50(3), 370–376.

Zhu, Jun-Wei, Yang, Guang-Hong, Wang, Hong, & Wang, Fuli (2015). Fault
estimation for a class of nonlinear systems based on intermediate estimator.
IEEE Transactions on Automatic Control, 61(9), 2518–2524.

Farhad Ghanipoor received his M.Sc. degree in Me-
chanical Engineering from Sharif University of Technol-
ogy, Iran, in 2019. Currently, he is a Doctoral Candidate
at the Dynamics and Control (DC) group of the Mechan-
ical Engineering Department at Eindhoven University of
Technology (TU/e). He has been a visiting researcher
at EPFL in Switzerland in 2024. His current research
interests revolve around control, fault diagnosis, and
the application of machine learning for cyber–physical
systems, safety, and security.

Carlos Murguia is an Assistant Professor in Dynamics
and Control at Eindhoven University of Technology
(TU/e), The Netherlands, and a Senior Research Fel-
low at Queensland University of Technology, Brisbane,
Australia. He received his Ph.D. degree in Mechani-
cal Engineering specialized in Dynamical Systems and
Control from TU/e in 2015. He has served as post-
doctoral research fellow (2015–2019) at the Singapore
University of Technology and Design (Singapore); the
University of Melbourne (Australia); and the University
of California (USA), Los Angeles. He has been a visiting

cientist at Princeton University, the University of Texas at Austin, and the
niversity of Texas at Dallas. Carlos is a member of the Institute of Electrical
nd Electronics Engineers (IEEE); the IEEE Control Systems Society (CSS); and
nternational Federation of Automatic Control (IFAC). His research revolves
round control and information theory and physics-aware optimization and
achine learning for cyber–physical systems safety, security, and privacy.
13
Peyman Mohajerin Esfahani received the B.Sc. and
M.Sc. degrees in electrical engineering at Sharif Univer-
sity of Technology, Iran, in 2005 and 2007, respectively,
and the Ph.D. degree in control from ETH Zurich,
Switzerland in 2014. Between 2014 and 2016, he held
several research appointments at EPFL, ETH Zurich, and
MIT. He joined TU Delft in October 2016 as an assistant
professor. He is currently an associate professor at the
Delft Center for Systems and Control and a co-director
of the Delft-AI Energy Lab. His research interests
include theoretical and practical aspects of decision-

making problems in uncertain and dynamic environments, with applications to
control and security of large-scale and distributed systems.

He currently serves as an associate editor of Operations Research, Mathe-
matical Programming, Transactions on Automatic Control, and Open Journal of
Mathematical Optimization. He was one of the three finalists for the Young
Researcher Prize in Continuous Optimization awarded by the Mathematical
Optimization Society in 2016, and a recipient of the 2016 George S. Axelby
Outstanding Paper Award from the IEEE Control Systems Society. He received
the ERC Starting Grant and the INFORMS Frederick W. Lanchester Prize in 2020.
He is the recipient of the 2022 European Control Award.

Nathan van de Wouw obtained his M.Sc.-degree (with
honors) and Ph.D.-degree in Mechanical Engineering
from the Eindhoven University of Technology, The
Netherlands, in 1994 and 1999, respectively. He cur-
rently holds a full professor position at the Mechanical
Engineering Department of the Eindhoven University
of Technology, The Netherlands. He has been working
at Philips Applied Technologies, The Netherlands, in
2000 and at The Netherlands Organization for Applied
Scientific Research, The Netherlands, in 2001. He has
been a visiting professor at the University of California

Santa Barbara, U.S.A., in 2006/2007, at the University of Melbourne, Australia, in
2009/2010 and at the University of Minnesota, U.S.A., in 2012 and 2013. He has
held a (part-time) full professor position the Delft University of Technology, The
Netherlands, from 2015–2019. He has also held an adjunct full professor position
at the University of Minnesota, U.S.A, from 2014–2021. He has published the
books ‘Uniform Output Regulation of Nonlinear Systems: A convergent Dynamics
Approach’ with A.V. Pavlov and H. Nijmeijer (Birkhauser, 2005) and ‘Stability
and Convergence of Mechanical Systems with Unilateral Constraints’ with R.I.
Leine (Springer-Verlag, 2008). In 2015, he received the IEEE Control Systems
Technology Award ‘‘For the development and application of variable-gain control
techniques for high-performance motion systems’’. He is an IEEE Fellow for his
contributions to hybrid, data-based and networked control.

http://refhub.elsevier.com/S0005-1098(24)00414-X/sb41
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb41
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb41
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb41
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb41
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb41
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb41
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb42
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb42
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb42
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb42
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb42
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb43
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb43
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb43
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb43
http://refhub.elsevier.com/S0005-1098(24)00414-X/sb43

	Robust fault estimators for nonlinear systems: An ultra-local model design
	Introduction
	Problem Formulation
	Ultra Local Fault Representation
	Augmented Dynamics
	Fault Estimator
	Fault Estimator Error Dynamics

	Fault Estimator Design
	ISS Estimation Error Dynamics
	L2 Performance Criterion
	L2-L∞ Induced Norm Performance Criterion
	Optimal Fault Estimator Design
	Discussion on Uncertainty Models

	Simulation Results
	Model Learning for Uncertainty
	Robustification against Noise

	Conclusion
	Acknowledgments
	Appendix A. Proof of Proposition 1
	Appendix B. Proof of Proposition 2
	Appendix C. Proof of Proposition 3
	References


