<]
TUDelft

Delft University of Technology

HeadPrint
Detecting anomalous communications through header-based application fingerprinting

Bortolameotti, Riccardo; Van Ede, Thijs; Continella, Andrea; Hupperich, Thomas; Everts, Maarten H.;
Rafati, Reza; Jonker, Willem; Hartel, Pieter; Peter, Andreas

DOI
10.1145/3341105.3373862

Publication date
2020

Document Version
Final published version

Published in
SAC 2020

Citation (APA)

Bortolameotti, R., Van Ede, T., Continella, A., Hupperich, T., Everts, M. H., Rafati, R., Jonker, W., Hartel, P.,
& Peter, A. (2020). HeadPrint: Detecting anomalous communications through header-based application
fingerprinting. In SAC 2020: Proceedings of the 35th Annual ACM Symposium on Applied Computing (pp-
1696-1705). Association for Computing Machinery (ACM). https://doi.org/10.1145/3341105.3373862

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1145/3341105.3373862
https://doi.org/10.1145/3341105.3373862

RIGHTS

HeadPrint: Detecting Anomalous Communications through
Header-based Application Fingerprinting

Riccardo Bortolameotti
University of Twente
r.bortolameotti@utwente.nl

Thomas Hupperich
University of Muenster
thomas.hupperich@wi.uni-muenster.de

Willem Jonker

University of Twente
w.jonker@utwente.nl

ABSTRACT

Passive application fingerprinting is a technique to detect anoma-
lous outgoing connections. By monitoring the network traffic, a
security monitor passively learns the network characteristics of the
applications installed on each machine, and uses them to detect the
presence of new applications (e.g., malware infection).

In this work, we propose HEADPRINT, a novel passive fingerprint-
ing approach that relies only on two orthogonal network header
characteristics to distinguish applications, namely the order of the
headers and their associated values. Our approach automatically
identifies the set of characterizing headers, without relying on a
predetermined set of header features. We implement HEADPRINT,
evaluate it in a real-world environment and we compare it with the
state-of-the-art solution for passive application fingerprinting. We
demonstrate our approach to be, on average, 20% more accurate
and 30% more resilient to application updates than the state-of-the-
art. Finally, we evaluate our approach in the setting of anomaly
detection, and we show that HEADPRINT is capable of detecting
the presence of malicious communication, while generating signifi-
cantly fewer false alarms than existing solutions.

KEYWORDS

application fingerprinting, network security, anomaly detection

ACM Reference Format:

Riccardo Bortolameotti, Thijs van Ede, Andrea Continella, Thomas Hup-
perich, Maarten H. Everts, Reza Rafati, Willem Jonker, Pieter Hartel, and An-
dreas Peter. 2020. HeadPrint: Detecting Anomalous Communications through
Header-based Application Fingerprinting. In The 35th ACM/SIGAPP Sympo-
sium on Applied Computing (SAC "20), March 30-April 3, 2020, Brno, Czech Re-
public. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3341105.
3373862

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SAC °20, March 30-April 3, 2020, Brno, Czech Republic

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6866-7/20/03...$15.00
https://doi.org/10.1145/3341105.3373862

i,

Thijs van Ede
University of Twente
t.s.vanede@utwente.nl

Maarten H. Everts
University of Twente
maarten.everts@utwente.nl

Pieter Hartel
Delft University of Technology
pieter.hartel@tudelft.nl

1696

Andrea Continella
UC Santa Barbara
conand@cs.ucsb.edu

Reza Rafati
Bitdefender
rrafati@bitdefender.com

Andreas Peter
University of Twente
a.peter@utwente.nl

1 INTRODUCTION

Data breaches are a major concern for enterprises across all indus-
tries due to the severe financial damage they cause [25]. Although
many enterprises have full visibility of their network traffic (e.g.,
using TLS-proxies) and they stop many cyber attacks by inspect-
ing traffic with different security solutions (e.g., IDS, IPS, Next-
Generation Firewalls), attackers are still capable of successfully
exfiltrating data. Data exfiltration often occurs over network covert
channels, which are communication channels established by attack-
ers to hide the transfer of data from a security monitor.

Detecting data exfiltration over network covert channels is diffi-
cult because the exfiltration can have many shapes and patterns in
the network traffic, which make it problematic to model its charac-
teristics. For example, an attacker can obfuscate data and exfiltrate
it in small chunks over a long period of time, or she can transmit all
the information at once. Characterizing exfiltration patterns over
the HTTP protocol becomes even harder, because it mostly contains
heterogeneous content. It is not a coincidence that malware often
uses HTTP [19, 31, 38] for its communication, since the protocol
allows any application to insert arbitrary values in many parts of
the messages (e.g., Cookie, Body, URI, etc.).

For these reasons, researchers proposed different anomaly-based
detection techniques [3, 5, 9, 29], which focus on modeling the nor-
mal traffic rather than modeling the possible patterns of exfiltration
attempts. Data exfiltration attacks are detected by identifying traf-
fic deviating from the normal model. The DECANTeR [5] system
proposed passive application fingerprinting (PAF) as a solution to
detect anomalous outbound traffic. The idea behind a PAF system
is to passively monitor the traffic of a machine and to learn the
network characteristics of each application (i.e., software) commu-
nicating from that machine. These network characteristics are used
to create application fingerprints. Once the fingerprints are created,
the system monitors the machine’s traffic. An alert is triggered
when the system observes network messages with characteristics
deviating from installed applications. An anomaly may represent an
attempt of exfiltration, or C&C communication, of a newly installed
(malicious) application. Since network security devices often do not
have access to the victim machines, it is important that fingerprints
are generated by only passively observing their traffic. This work

https://doi.org/10.1145/3341105.3373862
https://doi.org/10.1145/3341105.3373862
https://doi.org/10.1145/3341105.3373862

RIGHTS

focuses on PAF because it has shown better detection performance
than other existing techniques [5].

DECANTeR generates many false alerts, and it assumes a con-
tinuous human intervention to investigate false alerts in order to
update the fingerprints. The problem of investigating many false
alerts is known as alert fatigue, where operators in a Security Op-
eration Center are overlooking real security issues because of too
many false alarms. The problem of false alarms is well known also
in academic literature [30]. The cause of the false alarms in DE-
CANTeR is the fingerprinting method based on a small set of fixed
and hand-picked features, which intrinsically causes the following
limitations: 1) low accuracy in identifying application messages
for which these features are not discriminative (e.g., web scripts in
browser traffic); and 2) the fixed selection cannot deal with dynamic
changes introduced by application updates.

In this work, we propose a novel fingerprinting technique that
makes PAF for anomaly detection more practical by reducing the
false alerts and by removing the need for human intervention, while
still being able to detect malicious connections. We present HEAD-
PRINT, a technique to fingerprint outbound HTTP traffic generated
by real-world applications. HEADPRINT automatically infers the
relevant characteristics of applications traffic by only examining
the protocol headers of their messages. The idea is that headers in-
trinsically include the semantics of network messages and so allow
to discriminate different applications. Specifically, our approach is
based on two different types of information: 1) header sequences
(i.e., the order of the header fields), and 2) the values associated
with the header fields. We apply a technique based on entropy to
automatically recognize the headers that are most discriminating
for a certain application. Finally, after generating fingerprints, our
algorithm evaluates how similar new messages are to a specific
application fingerprint, and learns the optimal decision function to
determine whether the message belongs to that application. The au-
tomated identification of characterizing headers, together with the
combination of two orthogonal message characteristics, namely the
header sequences and the values associated with them, represent
the technical novelty of our work.

We implement HEADPRINT and we evaluate its performance
in terms of fingerprinting accuracy, resilience to application vari-
ations like software updates, and detection performance in the
setting of passive application fingerprinting for anomaly detection.
The evaluation was performed with a dataset containing real-world
network traffic from an international organization. We have com-
pared the results of HEADPRINT with the current state-of-the-art,
DECANTeR [5], showing a significant improvement in all aspects
of the evaluation. On average, our fingerprinting technique shows
an improvement of 20% in accuracy and 30% in update resilience.
Regarding the detection performance, HEADPRINT generates sig-
nificantly fewer false alerts, while being able to detect malicious
HTTP communication correctly. Finally, HEADPRINT does not rely
on the assumption of a human operator that manually monitors
and updates the fingerprints.

2 HEADPRINT

The intuition behind our fingerprinting technique is that the net-
work messages of an application share similar header values, and

Ay

1697

header sequences over time. In other words, we can distinguish ap-
plications by learning what values an application associates with
each specific header (i.e., header values), and by learning in what
order the headers are inserted in each application message. These
characteristics complement each other: while the header values
capture the semantics of the applications, the header sequences
catch their implementation details.

2.1 Overview

In HEADPRINT, each application fingerprint is represented by two
distinct models: a header-value entropy model and a header sequence
model. The process of generating a fingerprint for an application a
works as follows: (1) we collect the set of messages M generated
by application a; (2) we create from M the two different models
VAL, and SEQ,, which represent the fingerprint of the application
F, = (VALg, SEQy).

Once the fingerprint is generated, we can evaluate whether a
new message ¢ has been generated by application a by comparing
t with the models of F,. This process is performed in two steps.
First, we evaluate how similar the header values and the header
sequence t are with the respective models VAL, and SEQ, in F,. We
achieve this by using tailored similarity functions, which output
scores between 0 and 1 (= identical). Second, a decision function d
checks whether both scores are above (automatically determined)
thresholds. If so, it attributes the message ¢ to the application a.

2.2 Header-Value Entropy Model

The header-value entropy model VAL, for application a consists of a
set of (h, V) tuples, where h is a header field and V is the multiset of
values assigned to h, for all messages M. The underlying assumption
for this model is that an application a generates messages such that
the values corresponding to certain headers often reoccur. Hence,
we expect that a new message t from application a also contains
header values that have previously been observed, and are therefore
contained in VAL .

Unfortunately, not all header values exhibit recurring behavior.
When a header field value changes very often, it is likely that a
new message from the same application will also contain a different
value for the same header field. Non-recurring headers are not char-
acteristic for an application, therefore the header-value entropy
model identifies and discards them. In order to recognize if a header
h and its corresponding values V are characteristic for the appli-
cation, we compute the entropy H(-) for the values in V. We use
entropy because it is a measure for unpredictability. If the entropy
is low, the values in V can be considered “predictable;” i.e., they are
likely to reoccur over time, and that the tuple (h, V) is considered
characterizing for the application. In case of high entropy values,
the tuple is discarded. Consequently, we define VAL, as the set of
(h, V) tuples, where H(V) < a, and « is a threshold that defines the
highest entropy value V can have to be considered “predictable”.

To check whether a new message t has similar values to applica-
tion a, we evaluate value_sim(t,VAL,) € [0, 1], which is a similarity
function for categorical data. It evaluates how similar the values
in message t are to the historical messages of application a (i.e.,
represented by VAL,). The function identifies the subset of head-
ers {h;} that represents the intersection between the headers in

RIGHTS LI

t and in VAL,. For each header in {h;}, if the value correspond-
ing to h; in message ¢ is present in the historical values V; where
(hi, Vi) € VALg, then we consider the value to be a match. The
similarity score is the number of matches divided by the number
of headers in {h;}. This technique for computing the similarity for
categorical data is called Overlap [4].

2.3 Header Sequence Model

The header sequence model SEQ, consists of the set of header se-
quences of all messages M observed for application a, where a
header sequence is defined as the list of headers occurring in a mes-
sage. The underlying assumption of this model is that application
a uses a specific header sequence when it generates its messages.
Therefore, we expect that a new message ¢ from application a uses
a similar (if not the same) header sequence that has previously been
observed from a.

Although the majority of applications uses a fixed set of header
sequences for their communications, this is not true for all appli-
cations. For instance, the header sequences of browser messages
sometimes depend on third-party JavaScript code, which injects
additional headers, thereby making it very hard (if not impossible)
to find an exact match. Nonetheless, most of the time these new
header sequences are still similar (to a certain degree) with those
previously observed from the same application. For this reason, the
concept of similarity for the header sequences is effective.

To evaluate whether a new message ¢ has a similar header se-
quence to application a, we compute seq_sim(t, SEQ,) € [0,1], a
function that computes a similarity score between the header se-
quence of t and each sequence in SEQ,. We use the sequence sim-
ilarity metric proposed by Bakkelund [1], which is based on the
longest common subsequence (LCS) problem. The similarity score
is defined as the length of the LCS between the two sequences,
divided by the length of the longest sequence. In other words, the
larger the longest common subsequence between two sequences is,
the more similar the sequences are. After we compute the scores,
we return the maximum. We choose to rely on LCS because subse-
quences are not required to occupy consecutive positions within
the original sequences, while this is not the case for the longest
common substring problem. It is difficult to predict where new
headers can be observed in a header sequence, because it may de-
pend on specific web application scripts. Therefore, LCS can still
identify two messages as similar despite new headers are inserted,
because previously known headers occur with the same relative
order, thereby generating a long subsequence.

2.4 Decision Function

When we compare a message t with a fingerprint F,, we first
compute two distinct scores x and y, which are the output of
value_sim() and seq_sim(), respectively. These scores are then eval-
uated by a decision function d(x,y) € {0, 1}, which determines
whether ¢ is a message of application a or not.

In other words, d is a binary classifier for a two dimensional plane,
where value_sim() and seq_sim() similarity scores represent the
axes (i.e., x and y, respectively). The classifier decides whether the
point (x, y) is in an area of the plane where messages are considered
to match the fingerprint, or not. Figure 1 shows the distribution

Ay

1698

Example of different decision functions

T
1.0 ! o o oo °
I
1
\
.
Lo & e 8°§ 88 !
\
0.8 \ o oo !
s $
* x \ s° .
€ °
‘% 0.6 1 N
o .
é X X X X °
=] X% S
x ~
1 X .
go4q ¥ 20
x x % x i
* e
x e
0.2 g S
@ Firefox
004 %X X Other Apps
0.0 0.2 0.4 0.6 0.8 1.0

value_sim

Figure 1: Distribution of messages after they have been com-
pared with the fingerprint of Firefox. Crosses represent mes-
sages from applications other than Firefox. Dots represent
messages from Firefox. The straight and dashed lines repre-
sent two possible decision functions.

of the scores of messages when compared with the fingerprint
of an instance of Firefox. The green crosses represent messages
from all the applications installed on the host that are not Firefox,
while the blue circles represent messages from Firefox. When ¢ is
compared with the fingerprint of its application, we expect a point
in the top-right part of the plane as both similarity functions should
yield scores approaching to 1. Given that the models underlying
the fingerprint of most applications differ vastly from each other, a
high similarity score is only produced when a message is compared
to the fingerprint of the application it originated from. Hence, we
can create a general decision function d for all fingerprints.

As shown in Figure 1, there can be different ways to determine
a function d. We propose and evaluate two different approaches:
1) Static-rules, where we use a threshold-based decision function
(i.e., similar to d1() in Figure 1) that we define according to our
domain knowledge; 2) ML-classifiers, where we train a classifier
using machine learning (e.g., similar to d2() in Figure 1).

Choosing the Decision Function. We can define a static rule
as a decision function because messages receive a high similarity
score when evaluated against their application fingerprint and low
otherwise, thereby creating a predictable distinction. In this work,
we chose to evaluate threshold-based rules that consider a similarity
score (x,y) to be amatch if x > X and y > Y, where X and Y are
two thresholds.

Although a predetermined function has the advantage of neither
requiring a learning phase nor being computationally expensive,
it is likely a sub-optimal solution in terms of classification per-
formance. At the expenses of an ad-hoc learning phase, machine
learning can be used to learn a decision functions from the data,
which likely provides a more precise solution. However, to prop-
erly learn a decision function, we need to obtain a representative
dataset for a binary classification problem, where the positive class
represents the scores of messages compared with their application
fingerprint, and the negative class represents the score of messages
compared with other applications fingerprints.

RIGHTS

The generation of such a dataset is independent from the fin-
gerprinting approach itself, and it can be achieved in two different
ways, looking at the available resources. One method is to generate
a dataset by analyzing many applications offline. Although this
setup can provide a precisely labeled dataset, it can require a lot of
resources. Alternatively, the dataset can be built by monitoring the
traffic for a set of hosts. This setup requires fewer resources, and it
can contain data contextualized to the network where the system
would ultimately be deployed, but the dataset is unlabeled. In this
case the User-Agent can be used as groundtruth, since it commonly
represents a unique string identifying a specific application. Con-
sequently, when a message is compared with a fingerprint having
a similar User-Agent value (e. g., variations of version should be
taken into account due to updates), the similarity score (x,y) is
labeled with 1 (positive class), and 0 otherwise (negative class). In
this work, we use the latter approach.

3 HEADPRINT FOR ANOMALY DETECTION

The anomaly detection setting works as follows: (1) during a train-
ing phase, we passively learn the fingerprints of applications in-
stalled on a machine; (2) during testing phase (i.e., when the system
is live) we verify for each message whether it matches with any
known fingerprint, and, in case no match is found, the message
is considered anomalous, since it is generated from an unknown
application. An alert is triggered when a set of anomalous messages,
which share the same destination, transmit more than a certain
amount of data, which is defined by a threshold T. Please note that
the training is always passive, thus no access on the host is required.

3.1 Threat Model

We assume a network monitor is deployed in an enterprise envi-
ronment to monitor and extract network information from servers
and workstations. The monitor sends this information to a back
end system responsible for analyzing the network information and
identifying anomalies in the traffic. This is a common setup in prac-
tice. We assume that the attacker cannot compromise the monitor
and the back end system. We also assume the malware uses HTTP
to communicate over the network. HTTP is still one of the most
used protocols by malware [19, 31, 38]. A main reason for this is
the fact that HTTP traffic is usually not blocked by firewalls and
malware can camouflage the data exfiltration within huge volumes
of benign HT TP traffic. HEADPRINT can be applied to HTTPS in en-
terprise scenarios where TLS-proxies are being deployed to inspect
encrypted traffic. This scenario is rather popular in enterprises
where data exfiltration is a major concern.

3.2 Training Fingerprints

We assume the training phase to be trusted, meaning we expect
that machines are not compromised during the training period. In
practice, the training phase can be assisted by deployed security
tools, which can help identify malicious hosts, thereby avoiding
the generation of fingerprints for known malware communication.

3.2.1 Convergence. A distinctive aspect of HEADPRINT is how it
automatically determines the required amount of data needed to
train a certain application’s fingerprint. Intuitively, the amount of
training data affects the robustness of our fingerprints in terms of

Ay

1699

fingerprinting accuracy. However, this parameter strongly depends
on the complexity of the application that HEADPRINT fingerprints.
For instance, some applications always produce the same network
traffic, and hence can be accurately fingerprinted after a few mes-
sages, while others (e.g., browsers) might have a very dynamic
network behavior. Therefore, similarly to [8], HEADPRINT divides
the training phase in intervals, repeatedly tests the generated finger-
prints after each interval, and stops the training when new training
data does not add information to the fingerprint. We call this a
converged state. In practice, we achieve this by testing the freshly
generated fingerprints at intermediate steps, HEADPRINT can un-
derstand when it collected enough data to model the application’s
network behavior. In practice, we say that an application reaches
convergence when we do not see any prediction mistake for its
fingerprints for K consecutive intervals.

More precisely, HEADPRINT performs the following steps: (1)
collecting the data of an application for a certain time interval i; (2)
splitting the collected data in training and testing datasets using
70-30 split while preserving the chronological order of the requests;
(3) training the fingerprint and tests it; (4) if there are no prediction
mistakes a success counter sc is increased by 1, otherwise sc is set to
0; (5) moving to the next interval i + 1; (6) finally, when sc reaches a
convergence threshold K (i.e., the minimum number of consecutive
successful iterations), the system stops the training and returns the
generated fingerprints for that application. The data collected in
each interval is aggregated with the previously collected data from
other intervals. Also, because some applications might never reach
convergence, we set a maximum number of intervals.

3.2.2 Training Fingerprints. HEADPRINT monitors a host traffic
and it clusters web requests with “similar” User-Agent values,
and it applies the aforementioned training process to each cluster.
User-Agent values are commonly used by benign applications as
unique identifiers to be correctly recognized by web servers. Since
we assume the training phase to be trusted, no application would
actively try to mimic other applications values. Thus, it is likely
that requests generated by the same application, within a specific
time interval (e.g., training period), have the same, or similar (e.g.,
version number increased) User-Agent value. The training process
stops when a fingerprint F,, = (VALg;, SEQ,) is trained for each
cluster. The set F = {Fg,} represents the set of fingerprints of
a machine. HEADPRINT requires a specific training timeout that
forces it to stop generating new clusters, otherwise, in the unlikely
case new applications are regularly installed, HEADPRINT would
keep producing new clusters, thereby never ending the training.
We set this timeout to 5 days.

3.3 Testing New Messages

In anomaly detection we are interested in identifying messages
originating from unknown applications. We achieve this by com-
paring each new message t against all fingerprints in F. If ¢ does
not match with any fingerprint, then we consider ¢ to be gener-
ated by an unknown application. From now on we refer to these
messages as anomalous messages. The comparison between a mes-
sage t and a fingerprint F,;, € F is achieved by computing
test(t, Fq;) € {True, False}. The function returns True only if the

RIGHTS

decision function d, as defined in Section 2.4, returns 1 for the
similarity scores between t and Fy,.

Alerts. Due to the high volume of HTTP traffic and its heterogene-
ity, the system triggers an alert only when it observes anomalous
messages transmitting an amount of data greater than a threshold
T within a certain period of time (e. g., five days). Anomalous mes-
sages are aggregated per destination into clusters. Destinations are
represented by domains (i.e., SLD and TLD) and destination IPs.
Domain names are identified through the Host header field. Each
cluster has an attribute describing the amount of data transmitted
toward the destination by the messages within the cluster. Every
time a new message is added to the cluster, we update the data
transmitted with the minimum edit distance between the new mes-
sage and the previous messages. This way of computing outgoing
information was proposed in [5]. Once the data transmitted exceeds
a threshold T, an alert is generated containing all the messages as
evidence. To avoid duplicated alerts, we verify if the new alerts
share messages with previous alerts. If so, we merge the two alerts
together. We check both domains and IPs to make it harder for
attackers to exfiltrate data without being detected, because it forces
them to use multiple domains and IPs if they want to avoid detec-
tion. The idea is to deter evasion techniques such as Fast-flux [20].

4 IMPLEMENTATION

We describe the implementation details of HEADPRINT, such as how
we chose the decision functions based on thresholds and machine
learning. We implemented HEADPRINT entirely in Python.

Threshold-based Decision Functions. We know that (most of
the time) a message obtains a high similarity score when it is tested
with the fingerprint of the same application. However, a perfect
match does not always occur, because messages may use different
headers or values over time. Moreover, we observed that scores from
the header-value entropy model are usually lower than the header
sequence model. Thus, we verify the performance of HEADPRINT
using two different threshold-based decision functions: 1) we use
0.7 as value for both thresholds; 2) we use 0.65 for the header value
scores and 0.75 for the header sequence score. These values have
been chosen after an empirical evaluation on a small subset of
data, and they allow us to compare the differences in classification
performance by using equal thresholds for both scores, and two
different values where the header-value score has a lower threshold.

Machine Learning-based Decision Functions. We followed the
steps in Section 2.4 to create a training dataset to train different
classifiers, which we use to evaluate our fingerprinting approach.
Specifically, we did the following: (1) we randomly selected a sub-
set of 60 hosts out of 302 from our organization dataset, in order
to obtain a representative dataset with a diversity of applications
that might be analyzed by our tool after being deployed; (2) we
used the approach discussed in Section 3.2 to train the fingerprints
(see the training setup in Section 5), and we use the remaining
data for testing; (3) we tested each message against the host fin-
gerprints, and we labeled the score (x, y) with 1 if the User- Agent
value in the fingerprint is similar to the one in the message, and
0 otherwise'; (4) we grouped together all scores with label 1 and

!We consider two values to be similar if the Python library function
difflib.SequenceMatcher().ratio returns a value greater or equal than

Ay

1700

label 0, respectively; (5) we under-sampled the overly represented
negative class, which had almost 20 times more datapoints than
the positive class, by randomly picking samples with replacement
using RandomUnderSampler from the imblearn.under_sampling
Python library; (6) we used the obtained (balanced) dataset of
2M datapoints to train three different classifiers: Adaboost, Near-
estNeighborsClassifier (with k=5) and SGD?, using the sci-kit li-
brary [23]. We chose these classifiers because they cover both the
linear and non-linear case, and they can be trained in a short amount
of time despite millions of datapoints. Finally, we note that other
classifiers can be used with HEADPRINT, as long as they can work
with two numerical features.

5 EVALUATION

We evaluated our approach using a dataset, represented as a set of
Bro [22] HTTP logs, obtained from the network of an international
organization. The logs contain only HTTP metadata, more precisely
the HTTP headers without the body of the messages. Only outgo-
ing traffic generated by clients in the network is included; server
responses are not present. The dataset contains the network traffic
of 302 hosts, from three different subnets, for a period of 40 days,
for a total of 3.87 million HTTP requests. The collected traffic was
generated only by hosts with static IPs, in order to be able to cor-
rectly identify hosts over time. Hosts represent mostly workstations
in the premises of the organization, and servers. Traffic has been
captured on port 80 towards external network addresses. In other
words, HTTP traffic within internal services has been excluded.
HTTP messages without headers are filtered out.

5.1 Experiment Setup

To evaluate the fingerprint accuracy and the update resilience, we
need a labeled dataset to verify whether messages and fingerprints
correspond to the same application. Considering the large size of
the dataset, it was not practical to manually label each individual
message. Moreover, we could not install an agent on each machine
to help labeling the data, because we did not have access to the
machines. Thus, we decided to consider a message and a fingerprint
to belong to the same application, if their User-Agent values are
similar. As discussed in Section 3.2, User-Agent values are often
used as unique identifiers by benign applications. Thus, we use
these values to label the traffic of different applications. Although
the User-Agent is used as groundtruth, fingerprints cannot rely
only on its value, because the User-Agent value changes over time
due to software updates. This would lead to many false alarms, and
the solution would not be practical.

In our experiments, we use the following HEADPRINT parame-
ters. Regarding the training phase, we use a limit of 20 intervals
of 6 hours each for the training (5 days in total), and a conver-
gence threshold K equal to 3. We picked these values after a small-
scale empirical evaluation, which showed that these parameters do
not significantly affect the performance of our tool. Regarding the
header-value entropy model, we performed some empirical tests to

0.9. The similarity function is an elaborated version of a pattern- matching algorithm
based on the gestalt approach [27].
2In our evaluation we have used all default parameters of the scikit library.

RIGHTS LI

WIN_UPDATE AGENT
SPOTIFY_WIN

THUNDERBIRD_WIN

Other Apps

MSCRYPTO_API6.1

MSCRYPTO_API10

Adoujug

CHROME_WIN
CHROME_MAC

FIREFOX_WIN

Browsers

CHROME_LIN

MSIE_WIN

Figure 2: Heatmap representing the entropy of header val-
ues for 10 popular HTTP header and 10 different applica-
tions, including five different browsers. White cells, where
entropy is equal -1, mean that the header has never been
used by the application. When entropy is equal 0, it means
the application uses a constant value for the header.

choose an « value that is representative for predictable header val-
ues. We tested different values and observed which headers where
considered predictable. Using domain knowledge we decided to
choose a = 1, as it returned the most representative results. Overall,
our approach has evaluated more than 3.4M messages, and used
about 430k messages for training. Please note that in our evaluation
HTTP BODY, Method, Version and URI are not considered HTTP
headers. For a fair comparison, since DECANTeR evaluates finger-
prints and not individual messages, if a fingerprint is considered
a true positive (TP), then we consider the amount of messages ob-
served by DECANTER to create that specific fingerprint to be TP as
well. The same method was applied in [5] to compare DECANTeR
to other techniques.

5.2 Characterizing Application Headers

Header Values. Applications associate different values to HTTP
headers. Figure 2 shows how 10 distinct applications associate val-
ues differently to the headers. The heatmap shows the entropy of
header values observed by applications (rows) for common HTTP
headers (columns). Blank cells represent an entropy value of —1,
which means the header was not observed for that application. We
can see that different applications use different headers and their
values are more predictable (i.e., light cells) or less predictable (i.e.,
dark cells). HEADPRINT is capable of identifying these differences
in headers usage, and it embeds their values in each application
fingerprint, thereby achieving a more accurate characterization of
the application. Header values may change over time for some ap-
plication. In case of software updates, headers such as User-Agent
can change [13, 33]. These updates do not disrupt our approach, in
case enough training data is collected, because most of the headers
remain the same, yielding still a high similarity score.

Header Sequences. The majority of applications fingerprints in
our dataset have a single header sequence, which are on average
composed of four or five headers. Another large amount of appli-
cations shows fewer than ten header sequences. Since HTTP has
a limited set of commonly used headers, this can lead to potential

Ay

1701

collisions, meaning that two or more applications on the same ma-
chine share one or more header sequences. Indeed, we found cases
of collision in our dataset. Thus, header sequences should be used
together with other features to distinguish applications.

Collisions are rare among browsers, even if their fingerprints are
characterized by a large number of header sequences. This has two
reasons: few browsers are installed on each host, and browsers from
different vendors use standard headers (e.g., Host, User-Agent,
Connection, Accept) in different orders. Hence, header sequences
a good metric to distinguish browsers’ messages. The reason behind
the large number of sequences is twofold: (1) browsers implement
complex functionalities, uncommon for other applications, which
require special HTTP headers, and (2) web pages can influence (e.g.,
via JavaScript) the headers of browser messages. Fortunately, these
header sequence changes do not disrupt our approach, because
unforeseen header sequences for new browser requests show a
logarithmic behavior. Thus, the more the browser communicates,
the rarer it becomes to find new header sequences. Moreover, if
enough samples are included in the fingerprint generation, new
header sequences show high similarity scores.

5.3 Fingerprinting Accuracy

We consider a message to be: true positive (TP) if the returned finger-
print with maximum score corresponds with the application gen-
erating the message; false positive (FP), if the returned fingerprint
does not correspond with the application generating the message;
false negative (FN) if no fingerprint is returned (i.e., the decision
functions identified all similarity scores to be too low to match any
fingerprint), but the fingerprint of the originating application is
known; and true negative (IN) if no fingerprint is returned, and
indeed there is no fingerprint for the originating application be-
cause it is unknown (i.e., not present in the training). Precision is
computed as TP/(TP + FP), Recall as TP/(TP + FN), and Accuracy
as (TP + TN)/(TP + TN + FP + FN).

HEADPRINT evaluates a message against multiple fingerprints,
and returns only one fingerprint. The system is accurate if it returns
the fingerprint of the correct originating application. Thus, HEAD-
PRINT can be adjusted to return only the fingerprint that yielded the
highest score. Since (1,1) is the maximum score possible, the high-
est similarity score (x,y) can be defined as the closest point (e. g.,
using the Euclidean distance) to (1,1). Similarly for DECANTeR,
we evaluate the fingerprint with highest similarity score. For a fair
comparison, we assume DECANTeR does not rely on the operator
to update the fingerprints.

Our evaluation shows that HEADPRINT is overall more accurate
than DECANTeR. Table 1 shows the classification performance of
both HEADPRINT, using different classifiers, and DECANTeR. Most
importantly, the recall of HEADPRINT is on average significantly
higher. A low recall indicates that many messages from an applica-
tion do not match its corresponding fingerprint. This means that
DECANTeR cannot consistently identify the traffic of a trained ap-
plication. The reason behind the low recall is the few hand-picked
features DECANTeR fingerprints rely upon. These few features
show their limitations in case of software updates, where small
changes in the network messages are enough to cause misclassi-
fication. Additionally, DECANTeR does not classify correctly the

RIGHTS LI

Table 1: Classification performance of HEADPRINT and DE-
CANTeR for the generic use-case of application fingerprint,
where we measured if messages were correctly associated
with their application fingerprint.

Decision Precision [%] Recall [%] Accuracy [%]
Function

Thr. 0.7-0.7 99.20 91.03 91.04
Thr. 0.65-0.75 99,19 93.46 93.21
Adaboost 98.89 96.16 95.44
NearestNeighbor5 98,45 92.16 91.40
SGDHingeL2 99.30 90.68 90.74
DECANTeR 99.62 73.47 75.09

traffic generated by web scripts run in browser. This is a problem
that the authors noticed in the original work. HEADPRINT does not
suffer these issues as much, as shown by the high Recall, because it
relies on two orthogonal message characteristics, which overcome
the limitations of one another. When the header value changes, the
order of the headers remains consistent. Viceversa, when new head-
ers appear and the header sequence is affected, the header values
remain rather consistent. Moreover, HEADPRINT does not rely on a
small set of predefined features to model the message content, but
it automatically identifies the most characterizing content directly
from the traffic of each application.

Although DECANTeR shows an overall higher Precision, mean-
ing that when it associates a message to a fingerprint, the message
is more likely to be generated by that application. However, the
difference with HEADPRINT is small (1.2% for the worst performing
model). HEADPRINT shows overall a better performance trade-off
by showing both a high Recall and Precision, independently from
the decision function. This is also reflected by the higher Accuracy,
which is often a good overall performance indicator. Adaboost has
higher accuracy than other classifiers. Adaboost identifies non-
linear patterns that helps it optimizing the classification perfor-
mance, which is not possible to do with threshold-based functions.

To conclude, this evaluation shows that HEADPRINT is an accu-
rate solution for fingerprinting application traffic with an accuracy
of 95.44% with the most accurate model. Moreover, HEADPRINT is
significantly more accurate than DECANTeR, and it is therefore a
better approach for passive application fingerprinting.

5.4 Update Resilience.

In this experiment we evaluate how HEADPRINT and DECANTeR
performs in case of application updates, where the traffic of ap-
plications changes over time [13, 33]. We consider only those ap-
plications that did not contain an update during their fingerprint
generation, but only during testing. Specifically, we consider all
messages having a User-Agent value different, but similar, (e.g.,
increased version number) than the one used in training. We then
verified whether each message was correctly assigned to its applica-
tion fingerprint or not. The total number of messages in our dataset
generated by updated application is 962,915.

In our analysis, HEADPRINT correctly associates the 92% of up-
dated application messages to the originating fingerprinting. This is

Ay

1702

Browser Update

10 . e woeoe L]
A ep O " [k] !
08 e oo i 'l s
oo .
LS o e
X L] L]
£ o
@ 0.6
[
v
c x x X x °
7}
g el
. %X X
@ %41 ¥
o x x x x
*
x
0.2 ;
004 x
0.0 0.2 0.4 0.6 04 & frerox
)) .) " @ Firefox Updated Version
value_sim M OtherApps

Figure 3: Similarity scores in case of browser update.

the best case scenario, represented by the Adaboost classifier. In the
worst case scenario represented by the SGD classifier, HEADPRINT
correctly associates the 75% of updated application messages. On
the other hand, DECANTeR can associate only 54% of the messages.
The main reason why DECANTeR poorly performs in this task is
the few hand-picked features it relies upon, which cannot capture
the characteristics of an application after being updated. The rea-
son why HEADPRINT is resilient to updates is shown in Figure 3.
Software updates permanently change some of the header values
that are always in application messages, as shown by the red cir-
cles. However, updates do not seem to affect the header sequences.
HEADPRINT correctly identifies update application messages, be-
cause the similarity scores remain high (i.e., top-right area of the
plane) and the decision functions can make the correct decision.
Updating HEADPRINT’s Fingerprints. The fingerprints of HEAD-
PRINT can be updated over time, thereby improving their accuracy
and resilience against traffic variations. For instance, whenever
a message is considered similar to a fingerprint, we can add the
header values and the header sequence in the models, and regener-
ate the fingerprint. However, we decided not to investigate such
updating mechanism, because HEADPRINT is used in adversarial
settings. Thus, an attacker can try to abuse weaknesses in the up-
dating process in order to ensure her evasion. We consider the
design of a secure updating mechanism, for a detection model in
adversarial setting, as a separate research question.

5.5 Detection Capabilities

We compare the detection capabilities of our approach and DE-
CANTeR, and we assume DECANTEeR leverages the help of an
operator to update the system. We analyze our dataset using our
implementation of HEADPRINT, and the publicly available imple-
mentation of DECANTeR®. Since our dataset was collected from a
real network, and not from an experimental setup, it is not labeled.
In other words, we did not have access to the groundtruth. Thus,
we do not know what connections or hosts are malicious or benign.
This is a typical setting for these experiments on real-world traffic.
Hence, we decided to label the dataset with the help of a threat
intelligence provider. We match the URLs and destination IPs of

Shttps://github.com/rbortolameotti/decanter

RIGHTS

our dataset against their indicators of compromise (I0Cs). IOCs is
information extracted by (often automated) large scale malware
analyses. Messages that match an IOC are marked as suspicious,
benign otherwise. Suspicious messages are removed from the train-
ing set. Finally, we manually analyze, with the help of the threat
intelligence provider, the alerts generated by the two systems.

We acknowledge that our labeling approach can neither guar-
antee the training set to be uncorrupted nor guarantee that all
infected hosts are correctly identified, because threat intelligence
is not perfect. We inspected the messages matching the IOCs to the
best of our abilities, and we found no clear evidence of malicious
communication, but only suspicious network behavior. We consider
our labeling approach a best-effort to analyze our solution with a
dataset of a real-world network traffic.

Alert Thresholds. The results in Table 2 show that for HEAD-
PrINT, the higher the threshold the smaller is the number of alerts.
Adaboost shows better performance than other classifiers. For Ad-
aboost, the lowest threshold triggers 2,355 alerts, which represents
1.04% of all messages. With higher exfiltration thresholds, such as
5,000 or 7,500 bytes, the number of alerts decreases to 345 (0.3%)
and 212 (0.2%), respectively. This trend holds for all classifiers. The
percentage of messages considered anomalous is below 0.5% for
rather small thresholds. For example, if we consider Adaboost with
a threshold of 5KB for five days of exfiltration, we would obtain
345 alerts over 35 days (10 alerts per day on average), which is sig-
nificantly lower than the average 80 alerts per day of DECANTeR.

The threshold does not affect as much the number of alerts gener-
ated by DECANTeR, because DECANTEeR has additional checks that
trigger alerts independently from the threshold. These checks often
generate false alerts when DECANTeR mislabels benign browser
traffic. Table 2 shows that even with considerable human effort in
updating the system, DECANTeR generates more (false) alerts (i.e.,
false positives) compared with HEADPRINT. This result is the direct
consequence of not being able to correctly identify applications traffic,
and it is represented by the Recall value in Table 1.

Detection of Suspicious Hosts. We manually inspected the alerts
generated by HEADPRINT and DECANTeR. For HEADPRINT we
analyzed the scenario that has Adaboost as classifier and a threshold
of 5KB. We opted for this threshold because it is low enough to
potentially detect exfiltration attempts. To check whether our alerts
actually came from infected machines, we leveraged two sources
of threat intelligence: VirusTotal and a threat intelligence provider.
The former did not show any malicious behavior, whereas the latter

Table 2: Number of alerts generated by different classifiers.

Decision ‘ Alert Thresholds (kB)

Function | 1 25 5 75 10 20 50 100
T. (0.7,0.7) 4343 1428 746 476 346 154 44 18
T. (0.65,0.75) 3296 1117 580 354 262 113 33 12
Adaboost 2355 721 345 212 157 67 17 9
NearestNeigh. 4218 1288 588 375 270 109 30 11
SGDHingel2 4543 1474 759 486 350 153 46 17
DECANTeR 2861 2739 2666 2609 2580 2544 2512 2486

A

1703

provided us with 18 indicators of compromise for our dataset. Note
that an indicator of compromise may indicate a compromise.

The indicators provided by the third-party company involved
requests generated by 13 different hosts. For 5 of these hosts we
were able to confirm that the indicators were false positives. For the
other 8 hosts, we inspected the alerts generated by both HEADPRINT
and DECANTeR. For HEADPRINT we found evidence of suspicious
behavior of 2 of these hosts, while with DECANTeR we found 3 sus-
picious hosts. These hosts generated traffic associated with browser
hijackers or generic adware. The alerts included HTTP requests
transmitting several thousands bytes encoded in the URI. For the 5-
6 remaining hosts flagged by IOCs, we did not find any evidence of
suspicious behavior, but we cannot exclude that they were infected.
After analyzing the indicators, we inspected all the remaining alerts.
For HEADPRINT we identified 3 other hosts showing suspicious con-
nections, which did not show suspicious behavior according to the
indicators. One of these hosts showed highly suspicious behavior
(i.e., unknown software uploading 50Kb-100Kb of data toward cloud
services), which certainly worth of extra investigation. On the other
hand, DECANTeR found 5 hosts showing anomalous connections,
such as sequences of POSTs to suspicious destinations, and large
quantities of anomalous fingerprints from the same host but with
many different (and inconsistent) User-Agent values.

Overall, both systems show similar capabilities in detecting
anomalous HTTP traffic, as it was reflected by the TNR in Table 1.
Although DECANTeR identifies more anomalies than HEADPRINT
with Adaboost, which is an important aspect of NIDS, it also gener-
ates more false alerts, which is also a crucial aspect in NIDS [30].
In practice, a NIDS runs multiple detectors, thus it is important
that each detector does not trigger many false alerts to avoid alert
fatigue. Thus, our approach provides a better performance trade-off
for a practical solution, because HEADPRINT detects anomalous con-
nections while triggering significantly fewer false alerts and without
requiring any human intervention.

Malware Experiment. We evaluate HEADPRINT with dataset con-
taining data exfiltrating malware (DEM) provided by DECANTeR,
in order to show the capabilities of HEADPRINT to identify malicious
connections. We followed the same steps discussed in [5]: 1) we
trained the fingerprints from traffic generated by a (non-infected)
VM, and 2) we tested the traffic of malicious samples, executed in
the same VM, against the trained fingerprints.

In this analysis HEADPRINT detected 78% (i.e., 49 samples out
of 59) of malicious samples. 13 samples were missed because they
did not generate enough data to reach the threshold of 1Kb needed
to trigger the alert. More importantly, malicious messages did not
match the trained fingerprints. Thus, the reason why HEADPRINT
missed the samples was due to the short-lived execution of malware
in the virtual environment (i.e., little data was generated). This result
confirms the ability of HEADPRINT to detect malicious connections.

5.6 Detection of Mimicry Attempts

We consider the scenario where a malware generates network mes-
sages following a predefined format that correctly uses header
sequences and values of a known application. In this experiment
we assume malware tries to mimic browser messages, since they
are common applications and generate heterogeneous traffic. We

RIGHTS

assume that malware implements these formats before infecting
its victim. Messages contain header values that are common for
each specific header (e.g., User-Agent string common during the
time of data capture). We compare the mimicry messages against
the fingerprints of each host, and we consider the mimicry to be
successful if the message matches with at least one fingerprint.

Table 3 shows the percentage of hosts for which HEADPRINT
would have identified the mimicry attempt. The results show that
HEADPRINT works against this type of mimicry attacks. First, even
if the mimicked message represents exactly the format of a known
application, if the target application of the mimicry is not installed,
then mimicked messages are flagged as anomalous. Second, the
values used in the mimicked message headers may differ from
those used by the same browser of the compromised system. For
example, the user may run an old version of an application which
the malware did not expect.

6 LIMITATIONS

Encryption. HEADPRINT does not work on encrypted data, be-
cause the header and their values cannot be observed. Therefore,
HEADPRINT can analyze all web traffic in network environments,
such as enterprises, where TLS-proxies are available. Although
TLS-proxies are not an optimal solution due to their security and
privacy concerns [11], they are still being deployed in enterprise
environments to enhance network visibility and to protect the most
sensitive parts of their networks, by inspecting the traffic with
advanced security solutions. Finally, HTTP is still a commonly
used protocol for malicious communications [19, 31, 38], therefore,
HEADPRINT can still be used to analyze plaintext traffic to detect
such threats.

Evasion. HEADPRINT is capable of detecting mimicry attempts
where the attacker chooses a priori the characteristics of the ap-
plication to mimic. However, the attacker can evade detection by
exfiltrating data very slowly, such that the threshold is never ex-
ceeded. This limitation is inherent in any threshold-based detection
system. The problem of detecting low-throughput data exfiltration
(i-e., low throughput covert channels) is known to be particularly
hard to solve [37], because the attacker has a large number of op-
tions to hide its data within the messages.

Passive application fingerprinting (PAF) assumes that malicious
communications show deviating network characteristics from the
application installed on the monitored hosts. A piece of malware
can break the fundamental assumption of PAF, by creating network
messages that are not distinguishable from the installed applica-
tions. This can be achieved either by using an installed application

Table 3: Percentage of hosts where a mimicry would fail.

‘ Mimicry Failure [%]

Classifiers
‘ Chrome Firefox Safari
Threshold 0.7-0.7 97.68 87.09 80.46
Threshold 0.67-0.75 74.83 80.13 74.83
Adaboost 76.82 64.24 57.95
NearestNeighbors5 76.82 67.22 59.93
SGDHingeL2 98.68 85.76 80.46

Ay

1704

(e.g., headless browser) to communicate, or by mimicking the traffic
observed from installed applications. The former requires specific
applications to be installed, thus it cannot be applied to any sce-
nario (e.g., browser may not be installed on a server). The latter
requires network card access to read the traffic of the compromised
system. Both these techniques break the assumption behind PAF.
This limitation affects any anomaly detection system that assumes
that malicious messages show different characteristics from the
normal traffic of the infected machine [3, 5, 29]. Although these
techniques are difficult to detect for anomaly-based NIDS, they can
still be mitigated using complementary solutions [6].

7 RELATED WORK

Mobile Application Fingerprinting Several works have been
proposed to classify mobile apps traffic. Dai et al. [10] proposed
an emulator to analyze mobile apps, which also extracts app fin-
gerprints combining invariant strings in URLs and domains. Xu et
al. [34] introduced a similar approach that uses a concatenation
of hostname and key-value pairs in the query of URI to generate
fingerprints. Moreover, their approach improves the fingerprints
by adding information as soon as new patterns of the same app are
identified. Miskovic et al. [18] introduced AppPrint, which similarly
evolves its fingerprints, but it uses different application identifiers
to generate the seeding fingerprint and a different method to corre-
late new flows belonging to the application. Yao et al. [35] proposed
to fingerprint applications using a set of rules that combines ap-
plication identifiers and their position within headers. Taylor et
al. [32] proposed AppScanner, an approach that leverages statistical
features about applications flows to classify applications traffic,
thereby extending their classification to encrypted traffic.

These fingerprinting techniques are not passive, because they
require a controlled environment to generate the application traffic
and create the fingerprints from it. Therefore, they are not suitable
for passive application fingerprinting. Furthermore, the features
used in mobile application fingerprinting are not suitable to model
common workstation applications such as browsers (e.g., features
based on URIs and hostname), and other chosen features (e.g., ad-
vertisement identifiers) can be found only in mobile traffic.

Browser Fingerprinting Browser fingerprinting, which goal is
mainly to track web users across the Internet, has also received a
lot of attention in research [2, 7, 12, 14, 15]. Most of these finger-
printing techniques require active fingerprinting, meaning that a
server crafts a specific response in order to identify patterns that
may identify a specific browser. For example, JavaScript code can
be embedded in the page to retrieve extra information from the
application or the host to make the fingerprint unique.

These techniques are not applicable for two reasons: firstly, they
cover only browsers which is a subset of applications running
on workstations, secondly in our network monitoring use-case
the fingerprint has to work passively, meaning that there is no
possibility to query applications for extra information.

Other fingerprinting techniques Automatic malware signatures
generation is another variant of well studied “application” finger-
printing [21, 24, 26, 36]. Essentially, malware are applications and
signatures are characteristics of the network behavior of such ap-
plications. The goal of these techniques is to identify matching

RIGHTS LI N

requests that are certainly generated by malicious software, but not
all requests, which is our goal.

OpenApplD [16] is an application detection language provided
by Cisco [17] and used in popular IDSs such as SNORT [28], which
provides rules to identify clients, web application, and application
protocols. However, OpenAppID cannot be used in our setting be-
cause it does not automatically infers fingerprints from observed
traffic, but it requires administrators to manually generate the sig-
natures to recognize the applications. Moreover, these signatures
heavily rely on the User-Agent value. Therefore, the rules are not
robust to applications variations such as updates, and likely to
generate false positives in the setting of anomaly detection.

8 CONCLUSIONS

In this work we proposed HEADPRINT, a novel approach for passive
application fingerprinting examining protocol headers to differen-
tiate between various applications. Overall, HEADPRINT achieves
overall better performance than the current state-of-the-art, while
not suffering from the same practical limitations. Specifically, our
method shows capabilities in detecting malicious communications,
while raising significantly fewer alerts and not requiring human
intervention to be maintained. Thus, HEADPRINT brings PAF for
anomaly detection closer to practice. Lastly, although HEADPRINT
has been evaluated on HTTP, its underlying fingerprinting tech-
nique is protocol agnostic and may be applied to other protocols as
well (e.g., TLS Handshake Protocol). We consider the applicability
of HEADPRINT to other protocols as future work.

REFERENCES

[1] Daniel Bakkelund. 2009. An LCS-based string metric. Olso, Norway: University of
Oslo (2009).

Kéroly Boda, Adam Maté Foldes, Gabor Gydrgy Gulyas, and Sandor Imre. 2011.
User tracking on the web via cross-browser fingerprinting. In Nordic Conference
on Secure IT Systems. Springer, 31-46.

Kevin Borders and Atul Prakash. 2004. Web tap: detecting covert web traffic. In
Proc. of the conference on Computer and Communications Security.

Shyam Boriah, Varun Chandola, and Vipin Kumar. 2008. Similarity Measures
for Categorical Data: A Comparative Evaluation. In Proc. of the International
Conference on Data Mining.

Riccardo Bortolameotti, Thijs van Ede, Marco Caselli, Maarten H Everts, Pieter
Hartel, Rick Hofstede, Willem Jonker, and Andreas Peter. 2017. DECANTeR:
DEteCtion of Anomalous outbouNd HTTP TRaffic by Passive Application Finger-
printing. In Proc. of the ACM Annual Computer Security Applications Conference.
Riccardo Bortolameotti, Thijs van Ede, Andrea Continella, Maarten Everts,
Willem Jonker, Pieter Hartel, and Andreas Peter. 2019. Victim-Aware Adaptive
Covert Channels. In Proc. of the Conference on Security and Privacy in Communi-
cation Networks (SecureComm). Orlando, FL.

Yinzhi Cao, Song Li, and Erik Wijmans. 2017. (Cross-)Browser Fingerprinting
via OS and Hardware Level Features. In Annual Network and Distributed System
Security Symposium (NDSS).

Andrea Continella, Yanick Fratantonio, Martina Lindorfer, Alessandro Puccetti,
Ali Zand, Christopher Kruegel, and Giovanni Vigna. 2017. Obfuscation-Resilient
Privacy Leak Detection for Mobile Apps Through Differential Analysis. In Proc.
of the Network and Distributed System Security Symposium (NDSS).

Manuel Crotti, Maurizio Dusi, Francesco Gringoli, and Luca Salgarelli. 2007.
Traffic classification through simple statistical fingerprinting. Computer Commu-
nication Review 37, 1 (2007), 5-16.

Shuaifu Dai, Alok Tongaonkar, Xiaoyin Wang, Antonio Nucci, and Dawn Song.
2013. Networkprofiler: Towards automatic fingerprinting of android apps. In
Proc. of the IEEE INFOCOM Conference.

Zakir Durumeric, Zane Ma, Drew Springall, Richard Barnes, Nick Sullivan, Elie
Bursztein, Michael Bailey, J. Alex Halderman, and Vern Paxson. 2017. The Security
Impact of HTTPS Interception. In Proc. of the Annual Network and Distributed
System Security Symposium (NDSS).

Peter Eckersley. 2010. How unique is your web browser?. In International Sym-
posium on Privacy Enhancing Technologies Symposium. Springer, 1-18.

[9

=

[10

[11]

[12]

.1?

1705

[13

[14

=
i)

[16

(17

[18

=
)

[20]

[21

[22]

[23

[24

[25

[26]

[27]

[28

(30]

[31

(32

[33

&
=)

[35

[36

[37

[38

Electronic Frontier Foundation. [n. d.]. Kaspersky User-Agent Strings - NSA. ([n.
d.]). https://www.eff.org/it/node/86529

Steven Englehardt and Arvind Narayanan. 2016. Online Tracking: A 1-million-site
Measurement and Analysis. In Proc. of the ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, October 24-28, 2016. 1388-1401.
David Fifield and Serge Egelman. 2015. Fingerprinting Web Users Through Font
Metrics. In Proc. of the Financial Cryptography and Data Security International
Conference (FC).

Martin Roesch. [n. d.]. Cisco Announces OpenAppID, the Next Open Source
Game Changer in Cybersecurity. ([n. d.]). https://blogs.cisco.com/security/
cisco-announces-openappid- the- next-open- source-game-changer-in-cybersecurity
Martin Roesch. [n. d.]. Firepower Management Center Configuration Guide.
([n. d.]). https://www.cisco.com/c/en/us/td/docs/security/firepower/
610/configuration/guide/fpmc- config-guide-v61/application_detection.html?
bookSearch=true

Stanislav Miskovic, Gene Moo Lee, Yong Liao, and Mario Baldi. 2015. AppPrint:
automatic fingerprinting of mobile applications in network traffic. In International
Conference on Passive and Active Network Measurement. Springer, 57-69.
MITRE. [n. d.]. Commonly Used Ports, MITRE. ([n. d.]). https://attack.mitre.org/
techniques/T1043/

Jose Nazario and Thorsten Holz. 2008. As the net churns: Fast-flux botnet
observations. In Malicious and Unwanted Software, 2008. MALWARE 2008. 3rd
International Conference on. IEEE, 24-31.

Terry Nelms, Roberto Perdisci, and Mustaque Ahamad. 2013. ExecScent: Min-
ing for New C&C Domains in Live Networks with Adaptive Control Protocol
Templates. In Proc. of the USENIX Security Symposium.

Vern Paxson. 1999. Bro: a system for detecting network intruders in real-time.
Computer networks 31, 23-24 (1999), 2435-2463.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825-2830.
Roberto Perdisci, Wenke Lee, and Nick Feamster. 2010. Behavioral Clustering
of HTTP-Based Malware and Signature Generation Using Malicious Network
Traces. In Proc. of the USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2010, April 28-30, 2010, San Jose, CA, USA. 391-404.
Ponemon Institute. [n. d.]. 2018 Cost of a Data Breach Study by Ponemon. ([n.
d.]). https://www.ibm.com/security/data-breach

M Zubair Rafique and Juan Caballero. 2013. Firma: Malware clustering and
network signature generation with mixed network behaviors. In International
Workshop on Recent Advances in Intrusion Detection. Springer, 144-163.

John W Ratcliff and David E Metzener. 1988. Pattern-matching-the gestalt ap-
proach. Dr Dobbs Journal 13, 7 (1988), 46.

Martin Roesch. 1999. Snort: Lightweight Intrusion Detection for Networks. In
Proc. of the Conference on Systems Administration (LISA-99), Seattle, WA, USA,
November 7-12, 1999. 229-238.

Guido Schwenk and Konrad Rieck. 2011. Adaptive detection of covert commu-
nication in http requests. In Computer Network Defense (EC2ND), 2011 Seventh
European Conference on. IEEE, 25-32.

Robin Sommer and Vern Paxson. 2010. Outside the Closed World: On Using Ma-
chine Learning for Network Intrusion Detection. In Proc. fo the IEEE Symposium
on Security and Privacy (S&P).

Aditya K. Sood, Sherali Zeadally, and Richard J. Enbody. 2016. An Empirical
Study of HTTP-based Financial Botnets. IEEE Trans. Dependable Sec. Comput. 13,
2 (2016), 236-251.

Vincent F Taylor, Riccardo Spolaor, Mauro Conti, and Ivan Martinovic. 2016. App-
scanner: Automatic fingerprinting of smartphone apps from encrypted network
traffic. In Proc. of the IEEE European Symposium on Security and Privacy.
Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. 2018.
FP-STALKER: Tracking Browser Fingerprint Evolutions. In IEEE S&P 2018-39th
IEEE Symposium on Security and Privacy. IEEE, 1-14.

Qiang Xu, Yong Liao, Stanislav Miskovic, Z Morley Mao, Mario Baldi, Anto-
nio Nucci, and Thomas Andrews. 2015. Automatic generation of mobile app
signatures from traffic observations. In Proc. of the IEEE INFOCOM Conference.
Hongyi Yao, Gyan Ranjan, Alok Tongaonkar, Yong Liao, and Zhuoqing Morley
Mao. 2015. Samples: Self adaptive mining of persistent lexical snippets for classi-
fying mobile application traffic. In Proc. of the Annual International Conference on
Mobile Computing and Networking. ACM, 439-451.

Ali Zand, Giovanni Vigna, Xifeng Yan, and Christopher Kruegel. 2014. Extracting
probable command and control signatures for detecting botnets. In Symposium
on Applied Computing, SAC.

Sebastian Zander, Grenville J. Armitage, and Philip Branch. 2007. A survey of
covert channels and countermeasures in computer network protocols. IEEE
Communications Surveys and Tutorials 9, 1-4 (2007), 44-57.

Apostolis Zarras, Antonis Papadogiannakis, Robert Gawlik, and Thorsten Holz.
2014. Automated generation of models for fast and precise detection of HTTP-
based malware. In Privacy, Security and Trust (PST), 2014 Twelfth Annual Interna-
tional Conference on. IEEE, 249-256.

https://www.eff.org/it/node/86529
https://blogs.cisco.com/security/cisco-announces-openappid-the-next-open-source-game-changer-in-cybersecurity
https://blogs.cisco.com/security/cisco-announces-openappid-the-next-open-source-game-changer-in-cybersecurity
https://www.cisco.com/c/en/us/td/docs/security/firepower/610/configuration/guide/fpmc-config-guide-v61/application_detection.html?bookSearch=true
https://www.cisco.com/c/en/us/td/docs/security/firepower/610/configuration/guide/fpmc-config-guide-v61/application_detection.html?bookSearch=true
https://www.cisco.com/c/en/us/td/docs/security/firepower/610/configuration/guide/fpmc-config-guide-v61/application_detection.html?bookSearch=true
https://attack.mitre.org/techniques/T1043/
https://attack.mitre.org/techniques/T1043/
https://www.ibm.com/security/data-breach

	MAIN MENU
	Go to Previous View
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 12.60 points
 Normalise (advanced option): 'original'

 32

 D:20200106120622
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 12.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryList_V1
 qi2base

