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Estimation Network Design framework for efficient distributed optimization

Mattia Bianchi and Sergio Grammatico

Abstract— Distributed decision problems feature a group of
agents that can only communicate over a peer-to-peer network,
without a central memory. In applications such as network
control and data ranking, each agent is only affected by a
small portion of the decision vector: this sparsity is typically
ignored in distributed algorithms, while it could be leveraged
to improve efficiency and scalability. To address this issue,
our recent paper [1] introduces Estimation Network Design
(END), a graph theoretical language for analysis and design of
distributed iterations. END methods can be tuned to exploit the
sparsity of specific problem instances, reducing communication
overhead and minimizing redundancy, yet without requiring
case-by-case convergence analysis. In this paper, we showcase
the flexibility of END in the context of distributed optimization.
In particular, we study the sparsity-aware version of many
established algorithms, including ADMM, AugDGM and Push-
Sum DGD. Simulations on an estimation problem in sensor
networks demonstrate that END algorithms can boost conver-
gence speed and greatly reduce the communication cost.

I. INTRODUCTION

Modern big data optimization problems in network control
and machine learning are typically partially separable [2]:
the cost function is the sum of N individual costs, each
depending only on a small portion of the overall optimization
variable. This structure is widely exploited in parallel algo-
rithms [2], [3] – where multiple distinct processors share the
computation cost, but having access to a common memory.
Yet, this is not the case for distributed scenarios – where
the processors (or agents) are constrained to communicate
uniquely with some neighbors over a communication net-
work. In fact, most distributed optimization methods entail
the agents reaching consensus on the entire optimization
vector [4], [5], even when each agent eventually only uses a
few components of the solution, as in resource allocation and
network control [6]. This may result in prohibitive memory
and communication requirements, and in poor scalability if
the decision vector grows with the network size.

Efficient solutions are known for problems where the
local cost functions only directly couple each agent to its
communication neighbors [6]–[9]. Notably, this requires that
the communication graph matches the interference graph
(describing the coupling among the agents in the cost or
constraints). This is possible if the communication graph
can be freely chosen [10]; but it is not usually the case for
wireless and ad-hoc networks, where remote nodes cannot be
connected directly. We are interested in the latter case, where
the communication graph is given and cannot be designed.

M. Bianchi is with the Automatic Control Laboratory, ETH
Zürich, Switzerland (mbianch@ethz.ch). S. Grammatico is with the
Delft Center for Systems and Control, TU Delft, The Netherlands
(s.grammatico@tudelft.nl). This work is supported by NWO
(OMEGA 613.001.702), by ERC (COSMOS 802348), by ETH Zürich funds.

In this setup, partially-separable problems were addressed
via distributed dual methods, by Mota et al. [11] and later by
Alghunaim et al. [12], [13]: in this approach, each component
of the optimization variable is estimated by a suitably chosen
cluster of agents only. Unfortunately, the dual formulation
is only effective over undirected communication networks.
Other works [14], [15] rely on the concept of locality, which
result in improved efficiency, but at the cost of accuracy.

To deal with these challenges, in our recent work [1],
we introduced END, a graph-theoretic language to describe
how the estimates of any variable of interest (e.g., opti-
mization vector, dual multipliers, cost gradient) are allocated
and combined among the agents in a generic distributed
algorithm. END allows assigning the estimate of each com-
ponent of the variable of interest to a subset of the agents,
according to the sparsity structure of a given problem and
given communication graph – without resorting to a case-
by-case convergence analysis. Leveraging sparsity is espe-
cially convenient in repeated or time-varying problems (e.g.,
distributed estimation and model predictive control (MPC)
[11]), where the one time-cost of efficiently assigning the
estimates yields improved iterative online performance.

Contributions: In this paper, we tailor the END frame-
work, developed in [1] for distributed games, to the case of
distributed optimization problems. Our analysis unifies and
generalizes several recent approaches. For the case of dual
algorithms, our setup retrieves the formulation in [11], [13]
(see Proposition 1). Here we present a novel sparsity-aware
ADMM, but one can obtain the END version of virtually any
dual algorithm (Section III-A). Further, compared to [11],
[13], our framework has broader applicability:

(i) it can be used for primal methods. To illustrate, we
present the END version of the ABC method [5], en-
compassing many established algorithms. As an example,
we derive a gradient-tracking iteration where each agent
only needs to estimate a fraction of the cost gradient –
the END counterpart of AugDGM [16] (Section III-B);

(ii) it works on directed graphs. Specifically, we present the
sparsity-aware version of the Push-Sum DGD algorithm
[17], that is guaranteed to converge over time-varying
and column stochastic graphs (Section III-C).

It will be clear that, thanks to our powerful stacked notation,
the analysis of END algorithms presents little complication
compared to their sparsity-unaware counterparts. Yet, the
impact in terms of flexibility and performance is remark-
able. We illustrate numerically this point on an estimation
problem for wireless sensor network, where END decreases
the communication cost by more than 90% (Section IV).

2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy 
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A. Background and notation

1) Basic notation: N is the set of natural numbers, includ-
ing 0. R (R≥0) is the set of (nonnegative) real numbers. 0q ∈
Rq (1q ∈ Rq) is a vector with all elements equal to 0 (1); Iq ∈
Rq×q is an identity matrix; the subscripts may be omitted
when there is no ambiguity. ei denotes a vector of appropriate
dimension with i-th element equal to 1 and all other elements
equal to 0. For a matrix A ∈ Rp×q , [A]i,j is the element on
row i and column j; null(A) := {x ∈ Rq | Ax = 0n} and
range(A) := {v ∈ Rp | v = Ax, x ∈ Rq}. If A = A⊤ ∈
Rq×q , λmin(A) =: λ1(A) ≤ · · · ≤ λq(A) =: λmax(A) denote
its eigenvalues. diag(A1, . . . ,AN ) is the block diagonal
matrix with A1, . . . ,AN on its diagonal. Given N vectors
x1, . . . , xN , col(x1, . . . , xN ) := [x⊤1 . . . x

⊤
N ]⊤. ⊗ denotes the

Kronecker product. Given a positive definite matrix Rq×q ∋
Q ≻ 0, ⟨x | y⟩Q = x⊤Qy os the Q-weighted inner product,
∥·∥Q is the associated norm; we omit the subscripts if Q = I.
Given a function ψ : Rq → R := R ∪ {∞}, its set-valued
subdifferential operator is denoted by ∂ψ : Rq ⇒ Rq : x 7→
{v ∈ Rq | ψ(z) ≥ ψ(x) + ⟨v | z − x⟩,∀z ∈ Rq}.

2) Graph theory: A (directed) graph G = (V, E ) consists
of a nonempty set of vertices (or nodes) V = {1, 2, . . . , V }
and a set of edges E ⊆ V × V . We denote by N (v) :=
{u | (u, v) ∈ E} and N (v) := {u | (v, u) ∈ E} the set
of in-neighbors (or simply neighbors) and out-neighbors of
vertex v ∈ V , respectively. A path from v1 ∈ V to vT ∈ V
of length T is a sequence of vertices (v1, v2, . . . , vT ) such
that (vt, vt+1) ∈ E for all t = 1, . . . , T − 1. G is strongly
connected if there exist a path from u to v, for all u, v ∈
V; in case G is undirected, namely if (u, v) ∈ E whenever
(v, u) ∈ E , we simply say that G is connected. The restriction
of the graph G to a set of vertices VA ⊆ V is defined as
G|VA := (VA, E∩(VA×VA)). We also write G = (VA,VB, E )
to highlight that G is bipartite, namely V = VA ∪ VB and
E ⊆ VA × VB. We may associate to G a weight matrix
W ∈ RV×V compliant with G , namely wu,v := [W]u,v >
0 if (v, u) ∈ E , wu,v = 0 otherwise. G is unweighted if
wu,v = 1 if (v, u) ∈ E . Given two graphs GA = (VA, EA)
and GB = (VB, EB), we write GA ⊆ GB if GA is a subgraph
of GB, i.e., if VA ⊆ VB and EA ⊆ EB; we define GA ⋃

GB :=
(VA ∪ VB, EA ∪ EB). A time-varying graph (Gk)k∈N, Gk =

(V , Ek) is Q-strongly connected if
⋃(k+1)Q−1

t=kQ Gt is strongly
connected for all k ∈ N.

II. END FOR DISTRIBUTED OPTIMIZATION

We first recall the general END framework [1], that de-
scribes the information structure in any distributed algorithm.
It is characterized by:
1) a set of agents I := {1, 2, . . . , N};
2) a given (directed) communication graph GC = (I, EC),

over which the agents can exchange information: agent i
can receive data from agent j if and only if j ∈ N C(i);

3) a variable of interest y ∈ Rny , partitioned as y =
col((yp)p∈P), P := {1, . . . , P}, yp ∈ Rnyp ;

4) a given interference graph GI = (P, I, E I), E I ⊆ P×I,
specifying which components of y are indispensable for

each agent: p ∈ N I(i) means that agent i needs (an esti-
mate of) yp to perform some essential local computation;1

5) a bipartite estimate graph GE = (P, I, EE), EE ⊆ P×I.
Since agents might be unable to access y, each agent
estimates some of the components yp’s, as specified by
the estimate graph: agent i keeps an estimate yi,p ∈ Rnyp

of yp if and only if p ∈ N E(i);
6) P directed design graphs {GD

p }p∈P , GD
p = (N E(p), ED

p ).
GD
p describes how the agents that estimate yp exchange

their estimates: agent i can receive yj,p from agent j if
and only if i ∈ N D

p (j);

Specifically, in this paper, we apply the END framework to
the distributed optimization problems

min
y∈Rny

∑
i∈I fi(y), (1)

where fi : Rny → R is a private cost function of agent i.
We choose the variable of interest in the END framework to
coincide with the optimization variable2. Hence, we partition
the optimization variable as y = col((yp)p∈P).

The common approach [17], [18] to solve (1) over a
communication network GC is to assign to each agent i ∈ I
a copy ỹi := col((yi,p)p∈P) ∈ Rny of the whole decision
variable and to let the agents exchange their estimates with
every neighbor over GC; in END notation, we write this as3

EE = P × I, GD
p = GC (∀p ∈ P). (2)

Yet, in several applications, like network control and data
ranking [2], each cost function fi depends only on some of
the components of y, as specified by an interference graph
GI: fi depends on yp if and only if p ∈ N I(i) ⊆ P . With
some abuse of notation, we highlight this fact by writing

fi(y) = fi((yp)p∈N I(i)). (3)

Clearly, the standard choice (2) for the graphs GE and
{GD

p }p∈P does not take advantage of the structure in (3). In
fact, agent i only needs (yp)p∈N I(i) to evaluate (the gradient
of) its local cost fi; storing a copy of the whole vector y
could be unnecessary and inefficient – especially if GI is
sparse and ny is large.

A. Problem-dependent design, unified analysis

Let us emphasize that the graphs GC and GI are fixed
and part of the problem formulation. In contrast, the graphs
GE and {GD

p }p∈P are design choices, although with some
constraints.

Standing Assumption 1: GE and GD
p are chosen such that

GI ⊆ GE and GD
p ⊆ GC for all p ∈ P . □

In particular, GI ⊆ GE means that each agent estimates at
least the components of y which are indispensable for local
computation. Moreover, since the estimates are exchanged

1For ease of notation, assume N I(p) ̸= ∅ for all p ∈ P .
2Except for Section III-D, where we instead select the dual variable

as variable of interest; see also [1] for different possible choices (e.g.,
aggregative values) in variational problems.

3In the following, we refer to (2) as the “standard” choice, as it is the
most widely studied scenario. With Gc = GD

p we also imply WC = WD
p .
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over GD
p and communication can only happen over GC, it

must hold that GD
p ⊆ GC. In addition, we will always need

some level of connectedness for each graph GD
p , to ensure

that the agents can reach consensus on the estimates of yp,
as for instance in the following condition.

Assumption 1: For each p ∈ P , GD
p is undirected and

connected. □
Designing GE and {GD

p }p∈P to satisfy Standing Assump-
tion 1 and Assumption 1 is not difficult if GC is itself
undirected and connected: one trivial choice is (2). Yet,
one wishes to also consider efficiency specifications (e.g., in
terms of memory allocation, communication or bandwidth)
by imposing extra (soft) constraints on GE and {GD

p }p∈P .
We present a simple design example in Figure 1 and refer to
[1, App. A] for a detailed discussion. An optimal design
is in general computationally expensive. Nonetheless, the
performance advantages in terms of algorithm execution can
be well worth the (one-time) cost of an efficient algorithm
design, especially in repeated problems [11], [19] (where
the same distributed problem is solved multiple times for
different values of some parameters/measurements).

Further, while this design procedure is very problem and
goal dependent, it does not affect the analysis of END algo-
rithms. By simply postulating some connectedness property,
as in Assumption 1, we can unify the convergence analysis
of standard algorithms (that use (2)) with that of methods
specifically devised for problems with unique sparsity.

B. END Notation
We next introduce the stacked END notation, crucial in our

analysis. For all p ∈ P , let Np :=
∣∣N E(p)

∣∣ be the number
of copies of yp. Recalling that that yi,p is the estimate of yp
kept by agent i, we define:

yp := col((yi,p)i∈N E(p)) ∈ RNpnyp , ∀p ∈ P; (4)

y := col((yp)p∈P) ∈ Rny , (5)

where ny :=
∑

p∈P Npnyp . Note that yp collects all the
copies of yp kept by different agents. We denote

WD := diag((WD
p ⊗ Inyp

)p∈P), (6)

where WD
p is the weight matrix of GD

p . Let

Cp := {yp ∈ RNpnyp | yp = 1Np ⊗ v, v ∈ Rnyp}, (7)

be the consensus space for yp (where all the estimates of yp
are equal); C :=

∏
p∈P Cp be the overall consensus space;

C(y) := col((1Np ⊗ yp)p∈P). (8)

For each p ∈ P , for each i ∈ N E(p), we denote by

ip :=
∑

j∈N E(p), j≤i 1 (9)

the position of i in the ordered set of nodes N E(p). For all
i ∈ N E(p), we denote by Ri,p ∈ Rnyp×Npnyp the matrix
that selects yi,p from yp, i.e., yi,p = Ri,pyp.

Sometimes it is useful to define agent-wise quantities,
indicated with a tilde. Let

ỹi := col((yi,p)p∈N E(i)), ỹ := col((ỹi)i∈I) ∈ Rny , (10)

where ỹi collects all the estimates kept by agent i.

(a)

(b)

Fig. 1: (a) A simple example of END design from [1]. On the
left, the given communication and interference graphs, with I =
{1, 2, 3, 4, 5} and P = {1, 2}. On the right a possible choice for
the design graphs and the corresponding estimate graphs.
(b) We focus on the design of GD

1 . The given efficiency specification
is to minimize the number of copies of y1 (i.e., the number of
nodes in GD

1 ), but provided that GD
1 is connected and Standing

Assumption 1 is met. A solution to this design problem can be
obtained by solving an Unweighted Steiner Tree problem [20], for
which distributed off-the-shelf algorithms are available [20]. Note
that agent 2 has to estimate y1 (i.e., 1 ∈ N E(2)), even though agent
2 is not directly affected by y1 (i.e., 1 /∈ N I(2)): otherwise, the
information could not travel between nodes 1 and 3, which are not
communication neighbors.

III. DISTRIBUTED OPTIMIZATION ALGORITHMS

In this section, we leverage the END framework to extend
several distributed optimization algorithms by exploiting
partial coupling. We recall the cost-coupled problem in (1):

min
y∈Rny

f(y) :=
∑

i∈I fi((yp)p∈N I(i)), (11)

where fi is a private cost function of agent i, and we choose
the optimization variable y = col((yp)p∈P) as the variable of
interest in the END; with some usual overloading, we write

fi(y) = fi((yp)p∈N E(i)) = fi((yp)p∈N I(i)). (12)

Let Y⋆ be the solution set of (11), assumed to be nonempty.

A. END dual methods

Under Standing Assumption 1, we can recast (11) by
introducing local estimates and consensus constraints.The
following reformulation is not novel, and in fact it was
employed for the dual methods in [11]–[13].

Proposition 1: Let Assumption 1 hold. Then, problem
(11) is equivalent to:{

min
ỹ∈Rny

∑
i∈I fi(ỹi) = fi((yi,p)p∈N E(i))

s.t. yi,p = yj,p ∀p ∈ P,∀(i, j) ∈ ED
p .

(13)

□
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If GD
p = GC for all p ∈ P , then (13) reverts to the

formulation used in standard dual methods [21]–[23]: these
algorithms require each agent to store a copy of the whole
optimization vector. Instead, choosing a sparse GD

p can con-
veniently reduces the number constraints in (13). Regardless,
due to its structure (i.e., separable costs and coupling con-
straints compliant with GD

p , hence with the communication
graph), the problem in (13) can be immediately solved via
several established Lagrangian-based algorithms (provided
that the functions fi’s are sufficiently well-behaved). In
practice, this allows one to extend most (virtually all) the
existing dual methods to the END framework.

Example 1 (END ADMM): Let Assumption 1 hold, and
assume that fi is proper closed convex, for all i ∈ I.
Applying the alternating direction method of multipliers
(ADMM) in [22] to (13)4 results in the iteration

ỹk+1
i = argmin

ỹi

{
fi(ỹi) +

∑
p∈N E(i)

∑
j∈N D

p (i)

(
∥yi,p∥2

−⟨zi,j,p,yi,p⟩
)}

(14a)

zk+1
i,j,p = (1− α)zki,j,p − αzkj,i,p + 2αyk+1

j,p , (14b)

where zi,j,p is an auxiliary variable kept by agent i, for
each i ∈ I, p ∈ N E(i), j ∈ N D

p (i). Then, for any
α ∈ (0, 1), yi,p converges to y⋆p , where y⋆ = col((y⋆p)p∈P)
is a solution of (11), for all i ∈ I and p ∈ N E(i). Note
that performing the update (14b) requires agent i to receive
data from its neighbor j ∈ N D

p (i) (while (14b) requires no
communication). If GD

p = GC for all p ∈ P , then the method
retrieves the standard ADMM for consensus optimization
[22, Eq. (13)]. Yet, in general (14) requires the agents to
store and exchange less (auxiliary) variables. □

While Proposition 1 would hold even if the graphs GD
p ’s are

only strongly connected, distributed algorithms to efficiently
solve (13) typically require undirected communication.

B. END ABC algorithm

In this subsection, we propose an END version of the ABC
algorithm, recently developed in [5]. For differentiable costs
fi’s, let us consider the iteration: (∀i ∈ I)(∀p ∈ N E(i))

yk+1
i,p = −zk

i,p +
∑

j∈N E(p)

[Ap]ip,jpy
k
j,p − γ[Bp]ip,jp∇yp

fj(ỹ
k
j )

(15a)

zk+1
i,p = zk

i,p +
∑

j∈N E(p)

[Cp]ip,jpy
k+1
j,p , (15b)

where zi,p ∈ Rnyp is a local variable kept by agent i; for
all p ∈ P , Ap,Bp,Cp are matrices in RNp×Np ; γ > 0 is a
step size; and we recall the notation in (9). Note that if the
matrices Ap,Bp,Cp’s are compliant with the corresponding
graphs GD

p ’s (e.g., Ap = Bp = Cp = WD
p ), then the iteration

4After decoupling the constraints in (13) by introducing auxiliary bridge
variables as {yi,p = h(i,j),p, h(i,j),p = h(j,i),p, h(j,i),p = yj,p}; the
approach is standard and we refer to [22] for a complete derivation.

(15) is distributed. We can rewrite (15) in stacked form as

yk+1 = Ayk − γB∇yf(y
k)− zk (16a)

zk+1 = zk +Cyk+1, (16b)

where A := diag((Ap ⊗ Inyp
)p∈P), B := diag((Bp ⊗

Inyp
)p∈P), C := diag((Cp ⊗ Inyp

)p∈P) belong to Rny×ny ,
z := col((zp)p∈P) with zp := col((zi,p)i∈N E(p)), and
f(y) :=

∑
i∈I fi(ỹi). If GD

p = GC for all p, and Ap, Bp, Cp

are independent of p, then (16) retrieves the ABC algorithm
[5, Eq. 3].

We next characterize the asymptotic behavior of (16) for
appropriately chosen A, B, C (all the proofs are in appendix).
We recall the notation in (7)-(8).

Theorem 1: Let D := diag((Dp ⊗ Inyp
)p∈P), for some

{Dp ∈ RNp×Np}p∈P . Assume that fi is L-smooth and
convex for each i ∈ I, and that:
(a) A = BD and B ≽ 0, D ≻ 0;
(b) (∀y ∈ C) Dy = y, By = y;
(c) C ≽ 0, null(C) = C ;
(d) B and C commute: BC = CB;
(e) I− 1

2C−
√
BD

√
B ≽ 0.

Let y⋆ ∈ Y⋆, y⋆ := C(y⋆), and consider the merit function

M(y) := max{∥Π⊥y∥∥∇yf(y
⋆)∥, |f(y)− f(y⋆)|}. (17)

Then, for any y0 ∈ Rny , z0 = 0ny , γ ∈ ( λmin(D)
L ), the

sequence (yk)k∈N generated by (16) satisfies

M
(
yk
avg

)
≤ O( 1k ), (18)

for all k ∈ N, where yk
avg := 1

k

∑k
t=1 y

t. □
It is shown in [5] that many celebrated schemes for con-

sensus optimization can be retrieved as particular instances of
the ABC algorithm, by suitably choosing the matrices A, B,
C [5, Tab. 2]: EXTRA [24], NEXT [18], DIGing [4], NIDS
[25], and others. Theorem 1 allows the extension of each of
these methods to the END framework. We only discuss an
example below; for the other schemes, the analysis can be
carried out analogously, see also [5, §III.A].

Example 2 (END AugDGM): The following gradient-
tracking algorithm is the END version of [16, Alg. 1]:
(∀i ∈ I)(p ∈ N E(i))

yk+1
i,p =

∑
j∈N D

p (i)

[WD
p ]ip,jp(y

k
j,p − γvk

j,p)

vk+1
i,p =

∑
j∈N D

p (i)

[WD
p ]ip,jp(v

k
j,p +∇ypfj(ỹ

k+1)−∇ypfj(ỹ
k)),

or, in stacked form,

yk+1 = WD(yk − γvk) (20a)

vk+1 = WD(vk +∇yf(y
k+1)−∇yf(y

k)); (20b)

we impose y(0) = 0, v(0) = WD∇yf(y
0). Here, vi,p

represents an estimate of ∇yp

∑
j∈I fj(y)/Np kept by agent

i. Note that agent i only estimates and exchanges the
components of the cost gradient (and of the optimization
variable) specified by N E(i), instead of the whole vector
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as in [16, Alg. 1] – the two algorithms coincide only if
WD

p = WC for all p ∈ P . By eliminating the v variable
in (20), we obtain

yk+2 = 2WDyk+1 − (WD)
2
yk

− γ(WD)
2
(∇yf(y

k+1)−∇yf(y
k)).

(21)

Instead, eliminating z from (16) we get

yk+2 = (I− C+A)yk+1 −Ayk

− γB(∇yf(y
k+1)−∇yf(y

k)).
(22)

which retrieves (21) for A = B = (WD)
2
, C = (I−WD)

2
.5

This choice satisfies the conditions in Theorem 1, with D =
I, under Assumption 1 and doubly stochasticity.6

Corollary 1: Let Assumption 1 hold; assume that
WD

p1Np
= 1Np

, WD
p = WD

p
⊤, for all p ∈ P , and that fi is

L-smooth and convex, for all i ∈ I. Then, for any γ ∈ (0, 1
L )

the rate (18) holds for (20). □
Theorem 1 requires a recovery procedure (i.e., (18) holds

for the running average only), as e.g. in [26], but pointwise
convergence could be shown for several special cases of
(16), see e.g. [16]. We note that Theorem 1 enhances cus-
tomizability with respect to [5, Th. 24], even in the standard
scenario (2) (the sparsity-oblivious case), by allowing for
non-identical blocks Ap’s, Bp’s, Cp’s – corresponding to
integrating different methods for the components of y.

Remark 1 (Linear convergence): For certain design
choices, the ABC algorithm achieves linear convergence
when each function fi is strongly convex in y [18, Th. 15].
Interestingly, it can be analogously shown that the END
ABC (16) converges linearly under a weaker assumption,
namely strong convexity of each fi with respect to ỹi only.
Note that this condition requires GE = GI, which is only a
viable choice in specific cases [1, App. A]. □

C. END Push-sum DGD
Techniques to solve optimization problems over switching

or directed graphs also find their counterpart in the END
framework. As an example, here we generalize the push-sum
subgradient algorithm in [17, Eq. (1)].

Let the agents communicate over a time-varying network
(GC,k)k∈N, GC,k = (I, EC,k). Given a fixed estimate graph
GE ⊇ GI, for each p ∈ P we consider a time-dependent
design graph (GD,k

p )k∈N, GD,k
p = (N E(p), ED,k

p ) ⊆ GC,k (note
that the set of nodes is fixed in GD,k

p ). For all i ∈ I and
p ∈ N E(i), agent i performs the following updates:

qk+1
i,p =

∑
j∈N E(p)[W

D,k
p ]ip,jpq

k
j,p (23a)

wk+1
i,p :=

∑
j∈N E(p)[W

D,k
p ]ip,jpz

k
j,p (23b)

gk+1
i,p ∈ ∂ypfi(ỹ

k+1
i ), yk+1

i,p :=
wk+1

i,p

qk+1
i,p

(23c)

zk+1
i,p = wk+1

i,p − γkgk+1
i,p , (23d)

5In fact, the sequence (yk) generated by (16) coincide with that generated
by (20) for the given initialization.

6Note that the properties of WD
p ’s easily translate to WD due to the

block structure in (6). For instance, under the stated conditions, clearly
null(I −WD

p )
2 = range(1Np ) and null(I −WD)2 = C .

initialized at z0
i,p ∈ Rnyp , q0i,p = 1. With respect to [17,

Eq. (1)], agent i keeps one scalar qi,p for each p ∈ N E(i)
(instead of one overall), but does not store and exchange the
variables zi,p ∈ Rnyp for p /∈ N E(i).

Assumption 2: For all k ∈ N and p ∈ P , it holds that:
(i) Self-loops: for all i ∈ N E(p), (i, i) ∈ ED,k

p ;
(ii) Column-stochasticity: 1⊤

Np
WD,k

p = 1⊤
Np

;
(iii) Finite weights: [WD,k

p ]ip,jp ≥ ν > 0, ∀(i, j) ∈ ED,k
p . □

Assumption 3: There exists an integer Q > 0 such that,
for all p ∈ P , (GD,k

p )k∈N is Q-strongly connected. □
Example 3 (Choosing time-varying design graphs): As-

sume GC ⊆
⋃(k+1)Q−1

t=kQ GC,k, for all k ∈ N and some
strongly connected graph GC. Choose some graphs (GD

p )p∈P
that satisfy Standing Assumption 1 and such that each GD

p

is strongly connected. Then, Assumption 3 holds by settihg
GD,k
p = GD

p

⋂
GC,k, for all p ∈ P and all k ∈ N. □

Theorem 2: Let Assumptions 2 and 3 hold. Assume that,
for all i ∈ I, fi is convex and there is L > 0 such that
∥gi∥ ≤ L, for all y ∈ Rny and gi ∈ ∂yfi(y). Let (γk)k∈N be
a positive non-increasing sequence such that

∑∞
k=0 γ

k = ∞,∑∞
k=0(γ

k)2 <∞. Then, the sequence (yk)k∈N generated by
(23) converges to C(y⋆), for some y⋆ ∈ Y⋆. □

D. Constraint-coupled distributed optimization

Finally, we study a different, constraint-coupled problem: min
xi∈Rnxi ,i∈I

∑
i∈I fi(xi)

s.t.
∑

i∈N I(p) Ap,ixi − ap,i = 0, ∀p ∈ P

(24a)

(24b)

for a given interference graph GI = (P, I, E I), where fi and
{Ap,i ∈ Rnyp×nxi , ap,i ∈ Rnyp}p∈N I(i) are private data kept
by agent i; and the constraints (24b) are not compliant with
the communication graph GC, namely N I(p) ̸⊆ N C(i) for
any i. Differently from what we did with the cost-coupled
problem in (11), here we choose as the variable of interest
the dual variable associated with the constraints in (24b),
y = col((yp)p∈P) ∈ Rny . Typical distributed methods to
solve (24) require each agent to store a copy of the entire
dual variable (and possibly of other variables in Rny , e.g., an
estimate of the constraint violation) [27], [28]. END primal-
dual or dual methods can improve efficiency by exploiting
the sparsity of GI. For instance, (a simplified version of) the
algorithm in [1, Eq. (31)] can be directly used to solve (24).
Alternatively, let us consider the dual of (24):

max
y∈Rny

∑
i∈I φi((yp)p∈N I(i)), (25)

φi(y) := minxi∈Rnxi fi(xi) +
∑

p∈N I(i)⟨yp,Ap,ixi − ap,i⟩;
note that (25) is in the form (11). In fact, (25) was
solved in [12] via the reformulation (13); this approach
has the disadvantage of requiring undirected communication.
Nonetheless, (25) can also be solved over directed (time-
varying) networks, e.g., via the iteration in (23).7

7If each fi is convex with compact domain, where the subgradients of
the local dual function φi can be computed as gk

i,p = Ap,ix
⋆
i (ỹ

k
i )−ap,i,

with x⋆
i (ỹi) ∈ argminxi∈Rnxi fi(xi)+

∑
p∈N I(i)⟨yi,p,Ap,ixi−ap,i⟩.
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Fig. 2: Distribution of sources (red) and sensors (blue). Sensors
in the red circle receive signal from source p. Sensors in the blue
circle can receive data by (but not necessarily send to) sensor i.

IV. ILLUSTRATIVE APPLICATION

In this section we study numerically a regression problem
with sparse measurements [2], [13], arising from distributed
estimation in wireless and ad-hoc sensor networks. Let us
consider some sensors {1, 2, . . . , N} =: I and some sources
{1, 2, . . . , P} =: P , spatially distributed on a plane in the
square [0, 1]× [0, 1], as illustrated in Figure 2. Each source p
emits a signal ȳp ∈ R, sensed by all the sensors in a radius
rs > 0; in turn, each sensor i measures

hi := Hi col((ȳp)p∈N I(i)) + wi, (26)

where hi ∈ Rnhi , Hi is a known output matrix, wi is the
measurement noise. Sensor i can send information to all the
peers in a radius ric (e.g., proportional to the sensor specific
power); this induces a directed communication network
GC = (I, EC) among the sensors, which we assume to be
strongly connected.

1) Linear regression: In our first simulation, the sensors’
goal is to collaboratively solve the least square problem

min
y∈RP

∑
i∈I

∥∥∥hi −Hicol((yp)p∈N I(i))

∥∥∥2 , (27)

where N I(i) is the set of sources positioned less than rs
away from sensor i. Problem (27) is in the form (11). We
seek a solution via algorithm (23) (with fixed communication
graph), comparing the performance for two choices of the
design graphs:
• Standard: GD

p ’s are chosen as in (2): with this choice, (23)
boils down to the standard Push-sum DGD [17].

• Customized: each GD
p is designed to exploit the sparsity

in (27). In particular, we aim at optimizing the memory
allocation for the estimates, by minimizing the number of
nodes in GD

p , provided that GD
p must be strongly connected

(and Standing Assumption 1 must be satisfied). Design-
ing such a GD

p corresponds to (approximately) solving a
Strongly Connected Steiner Subgraph Problem [29] (where
GD
p is a subgraph of GC)8.

We set N = 100, P = 20, and randomly generate
sensor/sources positions as in Figure 2. We choose rs =
0.2, and draw each ric uniformly in [rmin

c , rmin
c + 0.1]. For

all i ∈ I, we fix nhi
= 10, we generate Hi by first

8We use all the available edges, i.e., GD
p = GC|N E(p).

10
0

10
3

10
6

10
-2

10
0

10
2

0.05 0.1 0.15 0.2 0.25
10

-4

10
-3

10
-2

10
-1

Fig. 3: Linear regression via algorithm (23), for different values
of the minimum sensor communication radius rmin

c and stopping
criterion V(y) ≤ 10−2 (bottom), and the trajectories obtained with
rmin

c = 0.1 (top). A larger rmin
c induces a denser graph GC.

uniformly drawing entries in [0, 1] and then normalizing
the rows to unitary norm, we draw each element of wi

from an unbiased normal distribution with variance 0.1;
each signal ȳp is uniformly randomly chosen in [0, 1];
the step size is set as γk = k−0.51 in (23).9 The ad-
vancement is evaluated via the merit function V(y) :=
max{∥diag(( 1

Np
I)p∈P)Π⊥y∥∥∇yf(y

⋆)∥,|f(Π∥y)−f(y⋆)|},
where y⋆ = C(y⋆) and y⋆ solves (27). Figure 3 shows the
results for different values of rmin

c . For rmin
c = 0.1, the

customized method is 15 times faster then the standard one.
Increasing rmin

c only marginally reduces the per-iteration
communication cost of the customized method. In fact,
already for rmin

c = 0.25, the graph GC|N I(p) is strongly
connected for all p ∈ P , so GE = GI can be chosen (in
other terms, each agent only estimates and exchanges the
components of y that directly affect its local cost, while it
also has to estimate other components for smaller rmin

c ). In
this situation, the customized method achieves a reduction
of the communication cost (where sending a variable to all
the neighbors on GC has a cost of 1, in a broadcast fashion)
of over 99.9%.

2) LASSO: Next, we assume that only 30% of the sources
emits a signal at a given instant (the vector ȳ is sparse).
The sensors collaboratively solve the following problem,
regularized to promote sparsity,

min
y∈RP

∥y∥1 +
∑
i∈I

∥∥∥hi −Hicol(yp)p∈N I(i)

∥∥∥2 ,
where ∥ · ∥1 is the ℓ1 norm. By defining fi((yp)p∈N I(i)) =

∥hi − Hicol((yp)p∈N I(i))∥
2 +

∑
p∈N I(i)

1
|N I(p)| |yp|, we re-

trieve the form (11). We set N = 10, P = 20, rmin
c =

9Although the bounded subgradient assumption in Theorem 2 fails,
boundedness of the sequences generated by (23), and hence convergence,
can be established based on coercivity of the cost function.
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Fig. 4: LASSO via algorithm (23), and different source ranges rs.

0.1, nhi
= 1 for all i, generate random positions for

the sensors and sources, and choose the other parameters
as above, for both the standard and customized methods.
Figure 4 compares the results for different values of rs. For
larger rs, the interference graph GI is denser, and the gap
between customized and standard method decreases: in fact,
for rs = 0.8 the two algorithms coincide, as GI is complete.
Nonetheless, when GI is sparse, the customized algorithm
saves up to 99% of the communication cost.

In conclusion, while requiring some initial computational
effort to choose the design graphs GD

p , the sparsity-aware
method results in substantial efficiency improvement – es-
pecially if the estimation problem is solved repeatedly, e.g.,
each time new signals are received from the sources.

V. CONCLUSION

We have shown that the END framework [1] can be
applied to a variety of distributed optimization problems, to
enhance efficiency by accounting for the intrinsic sparsity
in the agents coupling. Besides revisiting dual methods, we
derived the END (i.e., sparsity aware) version of the very
general ABC method and of Push-sum DGD; and we showed
how to efficiently tackle constraint-coupled problems with
sparse constraints, even over directed graphs. Our simula-
tions show that END algorithms can substantially reduce the
computational and communication cost, while introducing
little complication in the convergence proof with respect to
their sparsity-unaware counterparts.

As sparsity-aware END algorithms require some initial
design effort for the allocation of the estimates, their use is
particularly recommended for problems with special struc-
ture [1, App. A.4], or repeated/time-varying problems like
distributed estimation and MPC. Future work should focus on
computationally efficient and distributed methods to perform
the allocation of the estimates online, thus avoiding the need
for any a priori design.

A. Proof of Theorem 1

We adapt the proof of [5, Th. 24]. We note that z0 =
0ny ∈ range(B); by the conditions (a) and (d), the update in
(16), and an induction argument, we have yk, zk ∈ range(B),

for all k ≥ 1. Hence, we rewrite (16) as

yk = Byk, zk = γBzk (28a)

yk+1 = Dyk − γ(∇yf(y
k) + zk) (28b)

zk+1 = zk + 1
γCy

k+1 (28c)

for all k ≥ 1. Let Φ(y, z) := f(y)+⟨y, z⟩; the form in (28)
can be exploited to prove the following lemma.

Lemma 1: Let (yk,yk, zk) be a sequence generated by
(28). Then, for all y ∈ C , z ∈ C⊥, it holds that:

Φ(yk+1
avg , z)− Φ(y, z) ≤ 1

2kh(y, z),

where h(y, z) := 1
γ ∥y

0 − y∥2D + γ
∥B−Π∥∥

λ
∥z∥2 and λ :=

min{(λ2(Cp))p∈P}. □
Proof: The proof is analogous to that of [5, Lemma 23],

and omitted here. Note that [5] uses a matrix notation (i.e.,
y ∈ RI×n), while we need a stacked notation (as the vectors
(yi)i∈I are not homogeneous in size). Nonetheless, (28)
matches [5, Eq. (33)], which allows us to repeat all the steps
in [5, Lem. 23] (with the only precaution of replacing J ,
span(1m), λ2(C) in [5] with Π∥, C , λ ).
For all z ∈ C⊥ (so that ⟨z,y⋆⟩ = 0), setting y = y⋆

in Lemma 1, together with the definition of Φ, yields
f(yk

avg)−f(y⋆)+⟨yk
avg, z⟩ ≤ 1

2kh(y
⋆, z). Further choosing

z = 2
Π⊥yk

avg

∥Π⊥yk
avg∥

∥z⋆∥, with z⋆ := −∇yf(y
⋆), leads to

f(yk
avg)−f(y⋆)+2∥z⋆∥

∥∥Π⊥y
k
avg

∥∥ ≤ 1
2kh(y

⋆, 2z⋆). (29)

By convexity and since z⋆ ∈ C⊥ (by optimality conditions),
it holds that f(yk

avg) − f(y⋆) ≥ −⟨yk
avg − y⋆, z⋆⟩ =

−⟨Π⊥y
k
avg, z

⋆⟩ ≥ −∥Π⊥y
k
avg∥∥z⋆∥; the latter inequality and

(29) imply M(yk
avg) ≤ 1

2kh(y
⋆, 2z⋆). ■

B. Proof of Theorem 2
Note that, for each p ∈ P , (23) is the standard perturbed

push-sum protocol [17, Eq. (4)], with perturbation term
−γkgk+1

i,p . Therefore, since gk+1
i,p is uniformly bounded by

assumption and by the choice of (γk)k∈N, we can apply [17,
Lem. 1] to infer that, for all i ∈ I, p ∈ N E(i)

lim
k→∞

∥yk
i,p − z̄k

p∥ = 0, (30)∑∞
k=0 γ

k∥yk
i,p − z̄k

p∥ = 0, (31)

where z̄k
p := 1

Np

∑
i∈N E(p) z

k
i,p ∈ Rnyp , for all k ∈ N. Let

us also define z̄k := col((z̄k
p)p∈P) ∈ Rny . By (23) and

Assumption 2(ii), it follows that

z̄k+1
p = z̄k

p − γk 1
Np

∑
i∈N E(p) g

k+1
i,p . (32)

We next show that limk→∞ z̄k = y⋆ ∈ Y⋆; then, the theorem
follows by (30). The main complication with respect to the
proof of [17, Th. 1] is that we need a modification of [17,
Lem. 8] to cope with the non-homogeneity of the estimates.

Lemma 2: For all y⋆ ∈ Y⋆, for all k ∈ N, it holds that

∥z̄k+1 − y⋆∥2D ≤ ∥z̄k − y⋆∥2D − 2γk(f(z̄k)− f(y⋆))

+ 4Lγk
∑
i∈I

∑
p∈N E(i)

∥z̄k
p − ỹk+1

i,p ∥

+ (γk)2NL2,
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where D := diag((NpInp
)p∈P). □

Proof: By (32), we have

∥z̄k+1 − y⋆∥2D = ∥z̄k − y⋆∥2D
− 2γk

∑
p∈P

〈
z̄k
p − y⋆p,

∑
i∈N E(p) g

k+1
i,p

〉
+ (γk)2

∑
p∈P

1
Np

∥∥∥∑i∈N E(p) g
k+1
i,p

∥∥∥2.
(33)

The third addend on the right-hand side of (33) is bounded
above by (γk)2NL2. For the second addend, we have∑

p∈P

〈
z̄k
p − y⋆p,

∑
i∈N E(p) g

k+1
i,p

〉
=

∑
i∈I

∑
p∈N E(i)

〈
(z̄k

p − yk+1
i,p ) + (yk+1

i,p − y⋆p), g
k+1
i,p

〉
(a)

≥
∑
i∈I

−L∥col((z̄k
p)p∈N E(i))− ỹk+1

i ∥+ fi(ỹ
k+1
i )− fi(y

⋆)

(b)

≥
∑
i∈I

−2L∥col((z̄k
p)p∈N E(i))− ỹk+1

i ∥+ fi(z̄
k+1)− fi(y

⋆),

where in (a) we used that gk+1
i ∈ ∂ỹi

fi(ỹ
k+1
i ) and convexity

of fi, and (b) follows by adding and subtracting (inside the
sum) fi((z̄k+1

p )p∈N E(i)) = fi(z̄
k+1) and by L-Lipschitz

continuity of fi. The result follows by substituting the bound
back into (33).
We finally note that, due to (31) and the choice of (γk)k∈N,
the inequality in Lemma 2 satisfies all the conditions of [17,
Lem. 7], in the norm ∥ · ∥D; hence we can conclude that
z̄k → y⋆, for some y⋆ ∈ Y⋆. ■
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