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Abstract

The yield curve represents market supply and demand implied expectations of future interest
rates and is calibrated from the most liquidly traded interest rate derivatives like cash deposits,
forward rate agreeents, swaps and futures. Due to the daily margining mechanism of futures
contracts, interest rate futures require the substraction of a convexity adjustment in order for
them to be used in curve calibration. It is common practice to use externally computed convexity
adjustments, which treats the convexity adjustment as a black-box parameter. We will argue the
inherent relationship between the convexity adjustment and cap/floor volatility smiles and derive
a nested calibration algorithm for the simultaneous calibration of the yield curve to futures and
the convexity adjustment to cap/floor volatility surfaces. This introduces dependencies of the
yield curve to to option volatilities and we will argue that for simple interest rate derivatives the
implied vegas are negligible.

Keywords: Futures, Interest rates, Yield curve, Volatility smile, Calibration, Greeks
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Glossary

(Q, D) Risk neutral numeraire pair.

(QM , P (·,M)) M-forward measure numeraire pair.

C
(i)
t Convexity adjustment corresponding to the spot Libor rate with accruing period [Ti, Ti+1].

When used individually (without superscript), the accruing period is [T,M ].

F
(i)
t Forward overnight rate with accruing period [Ti, Ti+1]. When used individually (without

superscript), the accruing period is [T,M ].

F
(i)
Ti

Spot overnight rate with accruing period [Ti, Ti+1]. When used individually (without super-
script), the accruing period is [T,M ].

Fut
(i)
t Eurodollar Futures rate with accruing period [Ti, Ti+1]. When used individually (without

superscript), the accruing period is [T,M ].

L
(i)
t Forward Libor rate with accruing period [Ti, Ti+1]. When used in the context of caplets, the

accruing period is [T ′i , T
′
i+1]. When used individually (without superscript), the accruing

period is [T,M ].

L
(i)
Ti

Spot Libor rate with accruing period [Ti, Ti+1]. When used in the context of caplets, the
accruing period is [T ′i , T

′
i+1]. When used individually (without superscript), the accruing

period is [T,M ].

P (t, T ) Libor curve discount factor, single-curve framework.

P (O)(t, T ) Overnight curve discount factor, multi-curve framework.

P (τ)(t, T ) Libor curve discount factor, multi-curve framework, tenor = τ .

St Libor forward swap rate at time t defined over a Libor swap over n floating payments of the
spot Libor over time structure T0 < ... < Tn and m fixed payments of the swap rate over
T ′0 < ... < T ′m..

T ′i Fixed leg or caplet maturity time structure.

Ti Curve calibration instrument maturities and settlements, [T,M ] used when talking about one
accruing period.

C Fixed convexity adjustments or convexity adjustment vector used in curve calibration. .

σ
(θ)
P θ-shifted at the money caplet volatility vector used in convexity adjustment calibration..

σ(θ)(K) Caplet volatility spine point vector, used in absolute strike volatility stripping. Given

T ′1 < ...T ′n the maturities of the underlying caplets σ
(θ)
T ′i

(K) corresponds to the caplet with

underlying spot Libor having accruing period [T ′i , T
′
i+1].

III



σ(θ) θ-shifted at the money caplet volatility surface..

σ(θflat)(K) Flat cap volatility spine point vector, used in absolute strike volatility stripping..

τ ′i Tenor corresponding to loan period [T ′i , T
′
i+1], when used in the context of caplets.

τi Tenor corresponding to accruing period [Ti, Ti+1]., τ is used for accruing period [T,M ]. .

P(O) Overnight spine point vector.

P(τ) Libor spine point vector, multi-curve framework, tenor = τ .

P Libor spine point vector, single-curve framework.

Q Rate quote vector in a curve calibration context.

θflat Cap flat implied volatility shifting parameter.

θ Caplet implied volatility shifting parameter.

ti Daily marking to market time structure, used in the context of Futures or overnight rate
enrollment dates.
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Acronyms

ARRC Alternative Reference Rates Committee.

ATM At the money.

CMS Constant maturity swap.

CSA Credit support annex.

ETP Exchange traded product.

EUR Euro.

FRA Forward rate agreement.

FVA Funding valuation adjustment.

IBA ICE Benchmark Administration.

ICAP Name: ICAP. Description: Broker of interest rate options settled in London..

ICE Intercontinental Exchange Group.

ISDA International swaps and derivatives association.

Libor London interbank offered rate.

LMM Libor Market Model.

OIS Overnight indexed swaps.

OTC Over the counter.

SABR Stochastic alpha beta rho.

USD United States dollar.
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Chapter 1

Introduction

In this chapter we will introduce the connection between interest rates, discounting and the yield
curve. After which we introduce our research-topic about constructing the yield curve from interest
rate futures.

1.1 Interest rates

When a loan is issued an interest rate is charged depending on the duration of the loan, the diffi-
culty for the lender to obtain the funds and the risk profile the lender associates with the borrower.
Interest rates determine market supply and demand for loan provision and on a fundamental level
represent the cost of borrowing and lending. Because the cost of borrowing and lending affects
all aspects of the economy a vast market exists in interest rate derivatives, traded for purposes
ranging between hedging, speculation and arbitrage:

Instruments Outstanding notionals
OTC market Forward rate agreements (FRAs) $ 67 Trillion

Swaps $ 326 Trillion
Options $ 42 Trillion

Exchange Futures $ 38 Trillion
Futures options $ 55 Trillion

Table 1.1: Volumes on interest rate derivatives, H2 2018, source: bis.org

The bulk of interest rate derivatives is formed by fixed-income instruments like forward rate agree-
ments and swaps1 that serve the purposes of fixing future funding rates and converting a floating
liabilities to a fixed ones. More generally these practices fall under the hedging of interest rate
exposures.

Providing loans and issuing structured products like mortgages is the main business of banks for
which they respectively either use capital provided by depositors/investors or loans from other
banks. Because of this the rates charged for borrowing and lending between banks further trans-
late into the average rate the banks charge for the funding of their clients. As a consequence
benchmark interest rates have been created to serve as an estimate for the average interbank cost
of borrowing and lending to be used as a reference in various traded interest rate derivatives.

The most used reference rate is given by the Libor rate2. It is produced once a day by the Inter-
continental Exchange (ICE) and regulated by the Financial Conduct Authority. There are a total

1Structure of these instruments will be explained in Section 2.5.
2London interbank offered rate.
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of 35 Libor rates posted each day; interest rates are compiled for loans with seven different matu-
rities (or due dates) for each of 5 major currencies, including the Swiss franc, the euro, the pound
sterling, the Japanese yen, and the U.S. dollar. Each morning, just before 11 a.m. Greenwich
Mean Time, the ICE Benchmark Administration (IBA) asks a panel of contributor banks (usually
11 to 18 large, international banks) to answer the following question: “At what rate could you
borrow funds, were you to do so by asking for and then accepting interbank offers in a reasonable
market size just prior to 11 a.m. London time?” Only banks that have a significant presence in
the London market are considered for membership on the ICE Libor panel, which is determined
annually. Exact details about the different Libor-like indices can be found in [24]. We will use
the accroym Libor for all Libor-like indices even though not all rate estimates are provided by
the ICE Libor panel. The spot Libor rate, is quoted as a simply compounded rate over multiple
tenors3: overnight, 1 week, 1 month, 2 months, 3 months, 6 months and 12 months, with a spot
lag of 2 business days4. There are multiple Ibor-like benchmark rates like the Euribor, which is
also a reference rate of average unsecured loans in the Euro currency next to the Euro Libor. The
Euribor is provided by a panel of up to 49 reference banks computed by the European Banking
Federation (EBF) and posted over 5 tenors: 1 week, 2 weeks, 3 months, 6 months and 12 months.
We will refer to Ibor-like rates in general by the abbreviation Libor for the rest of the thesis.

Reflecting average interbank offered rates, it is not an unusual assumption to see the Libor rate
as a proxy for the funding rates charged to AA-rated5 companies. This assumption is not entirely
true however due to lower credit quality banks being eliminated from the consortium of banks
polled for Libor rate quotes, therefore Libor rates are in general lower than funding rates used to
discount obligations issued by AA-rated companies, see [11] for more details on the credit spreads
between yields of corporate bonds and treasury bonds6 or for a more recent article see [15]. There
are several more things one needs to be aware off when using the interpretation of the Libor rate
as the average unsecured interbank offered lending/borrowing rate. Banks that default or have
deteriorating credit-qualities can be eliminated from the consortium of banks in the Libor panel
and replaced by better credit-quality banks, while high-credit quality banks stay. Therefore the
trimmed average spot rate is biased negatively because lower credit-quality banks are left out in
estimation, see [35] for more details.

Nevertheless, Libor rates are the arguably the most important interbank reference rates and deriva-
tives indexed to the Libor rates are traded in the largest volumes and new contracts are still being
issued today. There are other rates to be aware of. In the United States banks are required to
hold a certain balance with the Federal Reserve and can charge them overnight from other banks
with an excess, this rate is called the Fed Funds rate. The Euro and GBP markets do not have
the same mechanism as the US does for Federal funds, but overnight rates that are proxies for
riskfree borrowing in those currencies do exist as given in the Table below:

Currency OIS-rate
EUR Eonia
USD Fed Funds
JPY Tonar
GPB Sonia
CHF Saron

Table 1.2: Benchmark interbank offered interest rates

3Loan duration.
4For loans with periods longer than overnight the spot rate usually corresponds to the rate charged over the

period starting 2 business days in the future for a length corresponding to the tenor.
5Standard & Poors rating, see https://www.standardandpoors.com/en_US/web/guest/article/-/view/

sourceId/504352.
6Note that giving a fixed interest rate loan to a company is equivalent to buying a bond from them, given the

same repayment agreements if the company defaults.
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These rates are also called overnight rates. They are the bext proxies for ’risk-free’ interest rates
in their corresponding currencies and are also the rates paid over outstanding collateral in over
the counter interbank deals as specified in the CSA as part of the ISDA master agreement7.

Finally since the Libor scandal following the mortgage crisis of 2007 efforts have been put in place
to find a replacement for the Libor in all currencies, due to its exposure to manipulation. In 2014
The Financial Stability Board (FSB) published a report about a major reform of reference rates8.
In June 2017 the US Alternative Reference Rates Committee (ARRC) identied a treasuries repofi-
nancing rate, which they called Secured Overnight Funding Rate (SOFR), as the best replacement
for Libor. Similar decisions were made by regulators in other countries. In the UK, Libor will be
replaced with reformed SONIA, while CHF OIS and swap markets have transitioned from TOIS to
SARON, a secured overnight rate based on repo trades. More about these rates and consequences
on the interest rate market in general will be discussed in Chapter 5.

1.2 Yield curve

Due to the opportunity cost of capital, interest rates determine the time dependent value of future
cash flows, which can be visualized in a curve that maps maturity to a discount factor. This is
also called the discount curve, used to discount the value of contracts containing future cash flows
issued by specific entities. The relationship between discounting and interest rates is given in the
following illustration. When entity 1 provides a loan to entity 2, the computation of the rate
charged depends on several factors: The risk entity 1 assigns to entity 2 of no or lower payback
(Credit risk). The difficulty for entity 1 to obtain funds for entity 2 (Liquidity risk). Rates for
which entity 2 could obtain funds from other entities. (Supply and demand)

Credit and liquidity risk are the 2 main driving forces behind the supply and demand of loans
and are generally summarized as a credit-spread, see Morini [35] for more details. When entity
2 issues an obligation to entity 3 then the value of this obligation is dependent on the rate that
is charged by entity 1 for the following reason: Entity 2 can borrow from entity 1 to fund the
obligation it owes to entity 3. Consequently, the present value of the obligation is the discounted
payoff using the funding curve of entity 2. Otherwise, entity 2 or entity 3 is provided with an
arbitrage opportunity9.

If both entities 2 and 3 write each other obligations the netted present value is dependent on the
funding curves of both. Direct discounting works when the obligation is some deterministic value,
if it is not, then the its forward value must be used, which will be explained in Section 2.4.

In practice the funding rates of various entities that issue obligations are unknown and therefore
are estimated from benchmarks like the Libor and the overnight rate. Resulting in the Libor and
overnight curves. Figure 1.1 is an example of the 3-month EUR Libor curve:

7See http://www.rbc.com/investorrelations/_assets-custom/pdf/covered-bonds-Program/

covered-bond-swap-agreements/Credit_Support_Annex_covered_2015_05_19.pdf.
8See https://www.fsb.org/2014/07/r_140722/.
9An opportunity to make risk free profit. Arbitrage will be formally explained in Section 2.1.
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Figure 1.1: 3-month Euro Libor discount curve.

Bank issued fully collateralised derivatives are discounted using the overnight rate curve, though
mentions are made about possibilities of using alternative reference rates to fund collateral, see
[34]. Corporations need a rate that is more representative for their funding costs or credit quality.
Therefore most fixed income instruments are issued referencing future Libor rates and are priced
using the Libor curve. See Chapter 5 of [2] for more details.

Finally, one must denote the difference between borrowing and lending rates. In the context of
bank issued derivatives the borrowing/investing problem should not be considered in isolation but
globally. The banks are usually on the same side of the cash balance (lender or borrower) in
a consistent way. Simplifying, the saving banks are permanently cash-rich from their customers’
savings while the investment bank make investments and need to borrow cash also on a permanent
basis. The cash needs of the derivative book are quite modest with respect to the general cash of
the banks. The cash entering in the replication arguments for derivatives are small relative to the
total cash borrowed or loaned. Consequently from a netting perspective an option desk of a cash
rich bank will never borrow money, the bank is simply investing less cash. In an investment bank
the desk never invests cash, but is simply borrowing less. We will not distinguish borrowing and
lending rates for the rest of the thesis. See [23] for more details.
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1.3 Research topic

Due to the large volume of Libor linked derivatives the Libor curve is important for pricing newly or
already issued Libor rate derivatives. The Libor and overnight curves are constructed by stripping
the implied discount factors from the most liquidly traded10 overnight/Libor rate derivatives such
as deposits, FRAs, swaps and futures11, as visible in Table 1.1. Because these instruments only
provide discount factors for a discrete number of maturities, an interpolation procedure is used
to estimate the resulting discount factors in between, which will be explained in detail in Chapter 3.

The Libor rate underlying Eurodollar futures span the same time frame12 of maturities as FRAs
and therefore are an additional source of information for the inference of the Libor curve. Fu-
tures are in general more liquid and more transparent than FRAs. Even though in Table 1.1,
FRAs are shown to have a higher outstanding notional than futures, futures trading volumes are
concentrated among several standardized contracts, of which the 3 month futures contract (over
Libor rates that have a loan period of 3 months) has starting date on the third Wednesday of
every quarter month of the year is the most traded13. Furthermore, due to being exchange-traded
futures rates are transparently visible at all times. FRA-rates do not have the same exposure to
supply and demand due to being traded over the counter. Therefore, it can be argued that using
futures for curve calibration gives a curve that is more aligned with supply and demand.

The convexity adjustment is the extra value that a futures contract on a rate has over a forward
contract due to receiving intermediate margining payments effective in a futures contract over not
receiving them. Due to the margining mechanism inherent in futures contracts14 the values of can
not be transformed into Libor rate discount factors without taking into account a convexity adjust-
ment. Quantifying the adjustment requires one to have a notion about market expected benefit
of receiving the underlying intermediate payments of the futures contract, which in turn requires
a model for Libor forward rate dynamics. Several models have been developed in literature: A
standard methodology in the single-curve setup was introduced by Kirikos and Novak [30], who
calculated the risk-neutral expectation of Libor explicitly, using the Hull-White [27] one-factor
model calibrated to ATM cap volatilities. More advanced approaches have then been proposed by
Piterbarg and Renedo [39] and Jaeckel and Kawai [29], who investigated the impact of volatility
skews on futures convexity adjustments in the context of the Libor Market Model (LMM), respec-
tively using stochastic-volatility and shifted-lognormal dynamics. Mercurio considers 3 models for
the convexity adjustment in the multi-curve framework using Gaussian overnight rate dynamics
and the Libor market model with a fixed correlation. One where the overnight rate volatility is
deterministic, 2 where the Libor-overnight forward rate basis spread is deterministic [33].

The single-curve and multi-curve frameworks will be addressed in Section 1.2. Because fast re-
calibration is important for a curve calibration algorithm we will limit our attention to simple
short-rate models and calibrated to at the money caplet volatilities, after which we will study the
influence of the smile using the replication method. We will not look into Libor market model
or stochastic volatility approaches, for they require calibration of not only volatility but also
correlation parameters. We will focus on answering the following 3 questions:

1. How can a curve and volatility-dependent convexity adjustments be integrated into a curve
calibration algorithm?

2. How much do the convexity adjustments vary given stressed market scenarios?

10The best representation of market supply and demand for future interest rates.
11The instruments and the stripping procedure will be explained in detail in Section 2.5
12This will be further specified in 2.5.
13Second London bank business day before 3rd Wednesday of the contract month. Trading in expiring contracts

terminates at 11:00 a.m. London time on the last trading day for CME traded Eurodollar futures, with underyling
the 3-month USD Libor. See https://www.cmegroup.com/trading/interest-rates/stir/eurodollar_contract_

specifications.html for more details.
14Which will be explained in Section 2.6.

5

https://www.cmegroup.com/trading/interest-rates/stir/eurodollar_contract_specifications.html
https://www.cmegroup.com/trading/interest-rates/stir/eurodollar_contract_specifications.html


3. Due to the dependence of the curve on option volatilities, how large are the vegas of linear
instruments?

Our end result is an algorithm that allows for dual integration of volatility-dependent convexity
adjustments and futures in curve calibration without the use of externally computed convexity
adjustments.

1.4 Research outline

In Chapter 2 we will introduce the necessary pricing prerequisites like the no-arbitrage pricing
framework that allows us to formally define the various yield curves, forward rates, futures rates
and the convexity adjustment. We will also introduce the various calibration instruments, the
intuition behind the convexity adjustment and the caplet volatility surface. In Chapter 3 we
introduce the Libor curve calibration procedure in the single-curve framework using fixed convexity
adjustments. In Chapter 4 we will start off by using short rate models (Ho-Lee and Hull-White,
[27]), to calibrate convexity adjustments to at the money caplet volatilities and introduce the
replication method to calibrate the convexity adjustment to the entire caplet volatility surface in
the single-curve framework. We will compare the 2 models and stress test the resulting convexity
adjustments under various market scenarios. Finally we will check whether the implied vegas of
various instruments are worth hedging. In Chapter 5 we will look at what can be researched
further like extension into the multi-curve framework including alternative reference rates.
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Chapter 2

Prerequisites

In this chapter we will introduce several mathematical prerequisites to understand the pricing
arguments made in later chapters. We start by recapping the no-arbitrage-pricing framework, the
risk neutral measure, using the overnight rate as the proxy for the risk-free rate and in particular
the change of numeraire technique. After this we will mathematically define the Libor/overnight
curves and how the mortgage crisis of 2007 resulted in the adaptation of the multi-curve framework.
We will specify how the Libor curve connects to Libor deposit, forward and swap rates used for
calibration, we will leave out overnight curve calibration instruments. After this we will formally
introduce futures and the convexity adjustment as the difference between expectations of the spot
Libor under different measures. We will introduce the volatility smile and the caplet volatility
surface, used for modelling of the convexity adjustments. The link between convexity adjustments
and the volatililty surfaces will be explained in Chapter 4. We will work in the single-curve
framework for the rest of the thesis.

2.1 No arbitrage pricing framework

Prices are driven by supply and demand, which in turn are driven by market participant expec-
tations of both the future values of assets as well as the opportunity cost of capital. Because
expectations require a notion of the future probability distributions of asset values, it makes sense
to model asset movements as stochastic processes. No arbitrage pricing is about stripping implied
probability distributions of asset derivatives from the prices of liquidly traded instruments, which
requires assumption about dynamics1 of the underlying assets. In 1976 Black and Scholes derived
the Black-Scholes equation in order to price European call options under lognormal dynamics of
the underlying asset, see [5], where both the volatility and the risk free interest rate are assumed to
be constant. Since then the theory has been expanded drastically, continuous time market pricing
is described in [42] or [7] in the context of interest rate derivatives. The most important tool in
these market models is the risk neutral measure, as will be further defined further in this section.
The following assumptions are made about the market:

Trading can happen at any time. There are K + 1 traded assets (A
(0)
t , ..., A

(K)
t ) in the market

following some stochastic processes, with P the underlying probability measure. Furthermore,

we assume that asset A
(0)
t is positive and pays no dividend. There exists risk free continuously

compounded rate rt for which market participants can loan and borrow, also called the risk-free
rate, which will be further specified in Section 2.3. Any multiple of any asset can be bought both
long and short2. A trader can short an asset to a counter-party by having an agreement with a
third party, like a bank, from which it can borrow funds to buy the underlying asset in order to

1Often parametric, where the dynamics are uniquely determined by some stochastic process like the Brownian-
Motion and some finite set of parameters.

2Long means buying the asset and shorting means selling it.
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sell it to the counter-party. The underlying agreement is that the trader owes the third party the
value of the asset instead of the initially borrowed funds. There are no transaction costs. This
assumption is made for computational convenience. In practice there are transaction costs but
decrease as the market becomes more and more efficient, partially due to instruments like ETPs3

which allow people to trade in commodities without physically buying the underlying. The final
assumption is market completeness4.

Without loss of generality we define the discounted price process:

Z
(i)
t =

A
(i)
t

A
(0)
t

, (2.1)

with numeraire A
(0)
t . A martingale is specified by the underlying probability space (Ω,Σ,P), with

{Ft} being a filtration of the underlying Brownian-Motion. See [28], [2] or [7] for more details.
No-arbitrage pricing rests on the assumption that there exists some measure Q equivalent5 to P
such that any discounted asset is a martingale. This means for any 0 ≤ t ≤ T :

Z
(i)
t = EQ[Z

(i)
T |Ft]. (2.2)

Under given market assumption we can define the numeraire pair:

Definition 2.1.1 (Numeraire pair). Given A(0) and Q as defined by Equation (2.2) we define
(QA, A(0)) as a numeraire pair. Here A(0) is a strictly positive asset and Q the corresponding
martingale measure.

This further defines the risk free numeraire pair rate rt:

Definition 2.1.2 (Risk neutral numeraire pair). Given Dt = exp

(
t∫

0

rudu

)
and QD as defined

by Equation (2.2) we define (Q, D) as the risk neutral numeraire pair.

Note that a continuously compounded risk free rate does not exist in the market. The best proxy
is given by the overnight rate as has been specified in Section 1.1. Overnight rates are quoted
on every business day as simply compounded rates, let t > 0 and 0 = t0 < t1 < ... < tn such
that t ∈ [tn−1, tn], let Fi be the spot overnight rate with accruing period [ti, ti+1]. This gives the
following defining property for the risk neutral numeraire:

Dtn = exp

 tn∫
0

rudu

 =

n−1∏
i=0

(1 + Fi(ti+1 − ti)). (2.3)

Note that this property underspecifies the risk-free rate for t ∈ (ti, ti+1). This gives us room for
modelling, which will be further specified in Chapter 4, for now we will just assume its existence.

The following definitions are important:

Definition 2.1.3 (Self financing strategy). A self financing strategy is given by a portfolio holding

strategy θ such that θt = (θ
(0)
t , ..., θ

(K)
t ) and for V θt =

K∑
i=0

θ
(i)
t A

(i)
t the following holds:

dV θt =

K∑
i=0

θ
(i)
t dA

(i)
t (2.4)

3Exchange traded products.
4Completeness means that any contract with a future payoff can be replicated by a portfolio of assets traded in

the market.
5This means that the 2 measures agree on which events they give 0 probability.
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This means that movement in the portfolio is only caused by internal rebalancing of the assets
and no money is added or removed from the portfolio. Market completeness can be translated
to the statement that any payoff VT is the result of some self financing strategy θ. We can now
define arbitrage:

Definition 2.1.4 (Arbitrage). An arbitrage is given by a self financing strategy θ where V θt = 0
but P(V θT ≥ 0) = 1 and P(V θT > 0) > 0.

This means there exists a portfolio holding strategy that initially costs nothing, can not grow
negative but can grow positive. The existence of the measure Q can be combined with the
following fundamental results, see [22] or [42], we will not prove them here.

Theorem 2.1.5 (First fundamental theorem of asset pricing). Given the existence of a martingale
measure Q as given in (2.2), there is no arbitrage in the market.

Theorem 2.1.6 (Second fundamental theorem of asset pricing). The market is complete if and
only if the martingale measure is unique.

The existence of the measure Q can intuitively be justified the following way, let {T0, T1, ..., Tn}
be some discretization of the interval [0, T ]. We can reweigh the movement density functions fP,i
of every asset at every time point to a density function fQn,i with measure Qn such that

EQn [Z(i)(Tj)] = Z(i)(Tj−1),

holds for every i ∈ {0, ...,K} and j ∈ {1, ..., n} and should always be possible because the move-
ment upwards and downwards is always possible. Considering in practice trading can only happen
at a discrete set of times6, assuming existence of a continuous time martingale measure will not
lead to problems in practice. The theorems show that given a complete market, if a martingale
measure Q exists it is unique and there is no arbitrage. This leads to the following fundamental
result:

Theorem 2.1.7 (Fundamental pricing formula). Let (Q, A0) be a numeraire pair as given in
Definition 2.1.1, for any contract with payoff VT at time T its price at time t is given by Vt =

EQ
[A(0)

t

A
(0)
T

VT

∣∣∣Ft

]
.

Proof. Assume that
Vt

A
(0)
t

> EQ
[ VT
A

(0)
T

∣∣∣Ft

]
then one can sell the contract and take a self financing

position in assets that replicates VT
7 and pocket the difference8 creating an arbitrage, the argument

is analogous for Vt < EQ
[A(0)

t

A
(0)
T

VT

∣∣∣Ft

]
.

We will not introduce any cross currency instruments, therefore for the rest of the thesis we will
work in a single currency market and look at Libor and overnight curves in one currency9.

6Seperated by microseconds or less.
7Which exists because the market is complete.
8A discounted self financing strategy is a martingale under Q, therefore its discounted value at time t is given

by EQ
[ VT
A

(0)
T

∣∣∣Ft

]
, therefore Vt >

K∑
i=0

θ
(i)
t A

(i)
t for θ the corresponding self financing strategy.

9EUR and USD.
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2.2 Measure change

Note that we only specified that the numeraire is some positive tradeable asset, therefore any
strictly positive tradeable asset implies a unique numeraire pair. Using the theorem of Radon
Nykodym, see [2], [28] or [7], this leads to the following fundamental result:

Theorem 2.2.1. Let t ≤ T . Given 2 numeraire pairs (QB , B) and (QA, A) given a FT -
measurable, square integrable random variable VT (defining a payoff at time T ) the following results

holds: AtEQA
[ VT
AT
|Ft

]
= BtEQB

[ VT
BT
|Ft

]
, which implies due to the theorem of Radon-Nikodym:

dQV

dQA
=
A0

AT

BT

B0
. Such that:

dQB

dQA
(t) = EQA

[A0

AT

BT

B0
|Ft

]
=

At

AT

BT

Bt

Proof. See A.3.

dQA

dQB
is also called a Radon-Nikodym derivative. We will use this results multiple times throughout

the thesis to change between measures. Using Theorem 2.2.1 we will introduce 2 frequently used
measures, dependent on the risk neutral measure, given by:

Definition 2.2.2 (Forward measure). Let M ≥ T . Let (Q, D) be the risk neutral numeraire
pair, as given by Definition 2.1.2, and let (QM , P (O)(·,M) be the M-forward measure numeraire
pair with the defining property P (O)(t,M) = EQ[Dt/DM |Ft]. By market completeness, given the
risk neutral measure (Q, D) the numeraire pair (QM , P (O)(·,M) is unique. The Radon-Nykodym
derivative between measure Q and QM is given by:

∂Q
∂QM

(t) =
DTP (t,M)

DtP (T,M)
. (2.5)

The forward measure and risk-neutral measure are the martingale measures corresponding to the
forward rate and the futures rate, after assuming futures marking to market happens continuously
instead of daily, see 2.6 for more details.

2.3 Yield curves

Under the most simple market model with a fixed risk free interest rate rt = r as described by
Black [5], the corresponding time t discount curve has a very simple expression:

T 7→ P (t, T ) = exp(−r(T − t)). (2.6)

Which is equivalent to assuming a constant short rate equal to r. Due to using the overnight rate
as the proxy for the rt, the rate is time-dependent.

As has been mentioned in Section 1.2, bank issued fully collateralised derivatives are discounted
using the overnight rate. This leads to the time t overnight curve:

Definition 2.3.1 (Overnight curve).

T 7→ P (O)(t, T ). (2.7)

Unsecured funding curves of banks are represented by the Libor and before the mortgage crisis of
2007, the spread between overnight and Libor rates was negligible, but increased significantly in
August 200710:

10After the freezing of the assets of PNB Paribas, the biggest bank of France at the time.
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Figure 2.1: Development of the spread between overnight index. Source: Federal Reserve Bank of
St. Louis.

In Figure 2.1 the 1-month, 3-month and 6-month Libor forward and overnight forward rates are
compared, see 2.4 for forward rate definitions.

Therefore, before 2007 a single-curve framework was used for both pricing, forecasting forward
rates and discounting, that assumed no difference between Libor and overnight curves. After 2007
the Libor has lost its interpretation as the correct rate for discounting of collateralised bank issued
derivatives but is still used to price Libor indexed derivatives, which will be specified in Section
2.5. Furthermore, Libor rate derivatives are traded indexing Libor rates for one tenor, with the
exception of basis-swaps or other more exotic instruments. Therefore, for modelling convenience
the Libor curves are seperated per tenor as will be specified in Section 2.4.

This leads to multiple Libor τ -curves:

Definition 2.3.2 (Libor discount curve).

T 7→ P (τ)(t, T ) = exp(−y(τ)
T−t(T − t)). (2.8)

With the corresponding time t yield curve:

Definition 2.3.3 (Libor yield curve).

T 7→ P (τ)(t, T ) = exp(−y(τ)
T−t(T − t)), (2.9)

the corresponding time t yield curve. One way to visualize the τ -Libor curve is as the funding curve
of an average Libor bank, that approximately loans for the spot Libor rate in τ time increments11.
Whenever we will use P (·, ·) or y without a superscript we will be referring to the τ -Libor (yield)
curve, with the value of τ clear from the context. If not so we will explicitly state this. See [1], [7]
or [2] for more details on the multi-curve framework.

11There are several fallacies to this assumption like the fact that any Libor bank runs the risk of leaving the
Libor panel when its credit-quality deteriorates or that banks tend to provide artificial quotes to the panel in times
of illiquid Deposit markets, see [35] for more details.
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2.4 Forward rates

We will now introduce Libor and overnight forward rates, which unlike current spot Libor rates,
reflects market expectations for future spot Libor rates. Libor discount factors can be derived
by a replication argument from forward rates in the single-curve framework. After which this
relationship is inherited in the multi-curve framework, which will be further explained in Section
2.5.2. Given any derivative with payoff VM at time M and some time t funding curve T 7→
P (O)(t, T ). Its forward value of V Ft is defined such that:

V Ft P
(O)(t,M) = EQ

[
Dt

DM
VM |Ft

]
= P (O)(t,M)EM [VM |Ft] ,

Which implies:
V Ft = EM [VM |Ft] . (2.10)

Knowing the forward value is useful for 2 reasons: It is the fair to agree fixed value to be exchanged
for the payoff VM at time M . Doing this type of deal is a way to fix the payment for the receival
of a future asset. The present value can be computed requiring only one discount factor.

Choosing the spot Libor LT as the underlying payoff12 results in the forward rate Lt. In order
to understand how a curve can be inferred from calibration instruments we need to link forward
rates to discount factors of that funding curve. We can link the spot Libor rate LT at time T with
tenor τ to the time T Libor curve by the relationship:

1

1 + τLT
= P (T,M),

which rewrites to:

LT =
1

τ

( 1

P (T,M)
− 1
)
. (2.11)

The forward rate is given by Lt = EM [LT |Ft] . This expression is not directly known, but can be
connected to Libor discount factors using a replication argument in the single-curve framework13.
Borrow P (t,M) to pay back 1 at time M . Simultaneously lend P (t, T ) to receive back 1 at time
T and reinvest again to receive back 1 + τLT at time M .

This strategy is visualized in the below diagram:

t T M

P (t, T )

P (t,M)

1

1

1 + τLT

1

.

Figure 2.2: Libor forward rate defining payment structure.

Costs for entering this strategy are P (t,M) − P (t, T ), and replicate the payout LT τ at time M .
By no-arbitrage pricing this implies:

P (t,M)− P (t, T ) = τEQ
[
Dt

DM
LT |Ft

]
12Fixed at an earlier time T < M .
13We assume the Libor curve equals the overnight curve.
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= P (t,M)τEM [LT |Ft] (2.12)

Combining Equation (2.12) and the forward rate Lt given by Equation (2.10) gives the following
closed form expression of the Libor forward rate in terms of Libor discount factors:

Definition 2.4.1 (Libor forward rate).

Lt =
1

τ

( P (τ)(t, T )

P (τ)(t,M)
− 1
)
.

This replication argument works in the multi-curve framework because the strategy given by 2.12
is uncollateralised and represents loaning for the spot Libor in τ -increments to fund both strate-
gies. We will leave out the superscript (τ) due to working in the single-curve framework for the
rest of the thesis.

Equivalently the overnight forward rate with start T and maturity M at time t can be defined by:

Definition 2.4.2 (Overnight forward rate).

Ft =
1

τ

( P (O)(t, T )

P (O)(t,M)
− 1
)

2.5 Calibration instruments

We will focus on the Libor curve calibration instruments here, after which we will specify the
calibration procedure in Chapter 3. Libor rate indexed instruments used for calibration are the
following:

1. Cash deposits.
The rates charged in the Libor market for unsecured interbank loans, to which only high-
credit quality banks have access, see [35] for more details. Closely linked to spot Libor rates
due to being the actual rates charged in unsecured loans. Deposits are uncollateralised and
represent unsecured interbank loans in their purest form. Traded for maturities ranging
between 1 day and 12 months and quoted via the corresponding deposit rate, as will be
specified in Section 2.5.1.

2. Forward rate agreements.
Agreement for the exchanges of a prespecified fixed rate for the receival of the spot Libor
LT at start T , with LT fixed usually 2 business days before the starting date, discounted by
the Libor to maturity, see Section 2.5.2. FRAs are fully collateralised, therefore discounted
using the overnight curve. When referring to the 3-month spot Libor, FRAs are traded for
maturities between 3 months14 and 10 years and quoted via the corresponding FRA rate, as
will be specified in Section 2.5.2.

3. Fixed-for-floating swaps.
Agreement for a stream of fixed rate payments (fixed leg) for a stream of spot Libor rate
payments (floating leg). Fully collateralised, therefore discounted using the overnight curve.
When referring to the 3-month spot Libor, swaps are traded for maturities between 1 year
(with a 2 business day settlement-start lag) and 60 years and quoted via the corresponding
swap rate, as will be specified in Section 2.5.3.

These instruments are also called linear instruments because these instruments are vanilla deriva-
tives with payoffs depending linearly on the underlying spot Libor rates. Deposits are uncollat-
eralised, while FRAs and swaps are collateralised and therefore discounted using the overnight
curve.

14With a 2 business day spot lag, with the corresponding FRA rate starting in 2 business days and maturing 3
months later. See [24].
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2.5.1 Cash deposits

Figure 2.3 is an example of a strip of deposit quotes with different underlying Euro Libor15 rates:

Figure 2.3: Euro Libor deposit rate quotes, 11 of December 2012, source: Reuters.

Here the quote represents the asked Libor rate for entering a loan with the corresponding starting
and maturity dates. There are several things to consider:

• Time is counted in business days (in the U.S. usually 252).
Let T1 be the maturity of the deposit, let T0 be the settlement date of the start given in
days, time is quoted under the following convention:

τ(T0, T1) =
T1 − T0

ACT
.

ACT is usually 252 or 256 in case only business days are counted. Similarly 360 or 365 in
case all days are counted.

• The underlying is the Spot Libor rate

• The quote is given in percentages per year under some compounding convention (usually
simple).

• The settlement rule column stands for whether the settlement is made directly or in the
future, with spot standing for future which is usually 2 business days from now. We will
denote this date by T0.

• Business day convention is given in Following or Modified following.
Following means that any payment made in the weekend is considered to happen on the next
business day. Mod. Following means the same only if that next business day is in the next
month the payment is considered to have been made on the previous business day.

These conventions hold across all Libor linked calibration instruments. For more specific details
on quoting and payment structure conventions see [24], [32] or [44].

Libor rate cash deposits represent uncollateralised loan/borrowing rates for which interbank funds
are provided. When a notional N deposit is agreed between a borrower and a lender the lender
agrees to lend N now16 and receive N(1 + τL(0,M)) back at time M , which holds inversely for
the borrower.

15Euro Libor instruments are traded in the European market.
16As visible in Figure 2.3 the actual day of start will be 2 days after fixing, we will ignore this payment delay for

the rest of the thesis but incorporate in when working with real data.

14



Given the deposit rate L(0,M) with maturity M the value of the deposit for the lender is given
by:

V lenderdeposit(0) = N(P (0,M)(1 + τL(0,M))− 1). (2.13)

The loan is uncollateralised, therefore determines the corresponding Libor discount factor. Simi-
larly for the borrower:

V borrowerdeposit (0) = N(1− P (0,M)(1 + τL(0,M))). (2.14)

The lender and borrower agree on a rate such that neither pays a premium to the other. Therefore
the quoted rate is the rate such that the deposit (for both lender and borrower) has value starting
value 0, leading to the equation:

P (0,M)(1 + τL(0,M))− 1 = 0. (2.15)

Deposit rates are quoted in the market as is visible in Figure 2.3. Which gives the Libor discount
factor directly. As was mentioned at the start of this Section spot Libor rates and deposit rates are
closely linked due to the fact that in general banks that are part of the Libor panel are also part
of the Libor deposit market, when this market is illiquid banks part of the Libor panel provide
artificial rate quotes, see [35] for more details. Therefore, dependent on liquidity of the Libor
deposit market, for calibration of the corresponding Libor curve either the spot rate or the deposit
rate should be used. After the deposit is entered the present value of the interest payback is given
by:

P (t,M)(1 + τK). (2.16)

With strike K equalling the time 0 agreed deposit rate L(0,M).

2.5.2 Forward rate agreements

Given a spot Libor rate LT with start T and maturity M . A fixed value is agreed today to be
exchanged for the Libor17 at start, discounted towards maturity. Below is a diagram of the payoff:

0 T M

τ(LT −K)

1 + τLT

Figure 2.4: FRA contract payoff diagram.

A FRA is fully collateralised, therefore discounted using the overnight curve. Let (Q, D) and
(QT , P (O)(·, T )) be respectively the risk neutral and the T-forward measure numeraire pairs as
specified in Section 2.2.
In the single-curve framework where the overnight and Libor curves are assumed to be equal,
this translates into the spot Libor rate LT being a proxy for the risk free money market account
between T and M :

1 + τLT =
DM

DT
.

Resulting in a payoff with equivalent present value to the payoff given by Figure 2.4:

0 T M

τ(LT −K)

Figure 2.5: FRA contract, single-curve equivalent payoff diagram.

17The maturity can range between 2 days to 10 years or more.
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The present value of a payer-FRA can be determined to be:

V payerFRA (t) = NτEQ
[
Dt

DT

LT −K
1 + τLT

|Ft

]
= NτP (O)(t, T )ET

[
LT −K
1 + τLT

|Ft

]
= NτP (O)(t, T )ET

[
LT −K
1 + τLT

|Ft

]
= NτP (O)(t, T )− PO(t, T )ET

[
1 + τK

1 + τLT
|Ft

]
. (2.17)

τ without reference stands for τ(T,M). Note that the spot Libor LT is observed and fixed 2
business days before the accruing period starts, similarly to deposit rates. Analogously for the
receiver:

V receiverFRA (t) = NτP (O)(t, T )ET
[
K − LT
1 + τLT

|Ft

]
. (2.18)

In the single-curve framework the receiver FRA reduces to:

V receiverFRA (t) = N (P (t,M)(1 + τK)− P (t, T )) , (2.19)

which is equivalent to giving out a loan at time T for fixed interest rate K until time M , in the
multi-curve framework the present value is given by Equatin (2.22).

If a FRA is entered at time t, one pays no premium to enter it. Therefore the FRA has 0 present
value and K equals the FRA rate Lt. This leads to the following equation:

P (O)(t, T )ET
[

1 + τLt
1 + τLT

|Ft

]
= P (O)(t, T ). (2.20)

Let FT be the overnight rate with start T and M specified by the equation:

1

1 + τFT
=

DT

DM
.

We define B, the Libor-OIS basis-spread the following way:

Definition 2.5.1 (Multiplicative Libor-OIS-basis-spread). Given t ∈ [0, T ], the multiplicative
Libor-OIS basis-spread is given by B, such that:

1 + τBt =
1 + τLt

1 + τFt
.

For any t ∈ [0, T ].

By measure change, theorem 2.2.1 we can change to the M-forward measure:

P (O)(t, T ) = P (O)(t,M)EM
[

1 + τLt
P (O)(T,M)(1 + τLT )

|Ft

]
= P (O)(t,M)EM

[
(1 + τLt)(1 + τFT )

1 + τLT
|Ft

]
= P (O)(t,M)(1 + τLt)EM

[
1 + τFT
1 + τLT

|Ft

]
. (2.21)

Consequently, in the multi-curve framework the present value of a receiver-fra is given by:

V receiverFRA (t) = N

(
P (O)(t,M)(1 + τK)EM

[
1 + τFT
1 + τLT

|Ft

]
− P (O)(t, T )

)
, (2.22)

Giving the following definition for the Libor FRA rate:
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Definition 2.5.2 (Libor FRA rate).

Lt =
1

τ

( P (O)(t, T )

P (O)(t,M)

1

EM
[

1+τFT
1+τLT

|Ft

] − 1
)

(2.23)

It can be directly denoted that definitions 2.4.1 and 2.5.2 are equivalent in the single-curve frame-

work. In the multi-curve framework basis specification is necessary for EM
[

1+τFT
1+τLT

|Ft

]
, after

which for convenience purposes the Libor curve is again defined by equating the definitions 2.4.1
and 2.5.2. FRA rates and forward rates are theoretically equivalent, in practice depending on the
liquidity of the FRA market18 the offered FRA rate may be different than the forward rate implied
by a curve calibrated from more liquid instruments like Futures or low maturity swaps, therefore
we will define FRA rates to be the rates visible in the FRA market and forward rates the implied
FRA rates by a Libor curve.

2.5.3 Fixed-for-floating swaps

The fixed-for-floating swaps exchange multiple spot Libor rate payments19 for fixed rate payments
20. Again these instruments are fully collateralised.
The floating leg21 structure is given by: t < T0 < ... < Tn = T , tenor τi = Ti+1 − Ti, i ∈
{0, ..., n− 1}.
Fixed leg structure is given by: t < T ′0 < ... < T ′m = T , tenor τ ′i = T ′j+1 − T ′j , j ∈ {0, ...,m− 1}.
LTi is usually fixed at TFi , 2 business days before Ti. A payer-swap22 with strike K and notional
N has present value:

V payerswap (t) = N(

n−1∑
i=0

τiP
(O)(t, Ti+1)L

(i)
t −K

m−1∑
i=0

τ ′jP
(O)(t, T ′j+1)). (2.24)

Analogously for the receiver swap:

V receiverswap (t) = N(K

m−1∑
i=0

τ ′jP
(O)(t, T ′j+1)−

n−1∑
i=0

τiP
(O)(t, Ti+1)L

(i)
t ). (2.25)

Below a payoff diagram is visible for a swap:

0 T0 T1 T2 Tn−1 Tn

τ0LT0 τ1LT1
τn−1LTn−1

Figure 2.6: Floating leg.

0 T ′0 T ′1 T ′2 T ′m−1 T ′m

τ ′0K τ ′1K τ ′n−1K

Figure 2.7: Fixed leg.

When issued, the strike is chosen equal to the swap rate, giving this contract 0 value, which
implies:

N
( n−1∑
i=0

τiP
(O)(t, Ti)L

(i)
t − St

m−1∑
j=0

τ ′jP
(O)(t, T ′j+1)

)
= 0. (2.26)

18The higher the maturity the lower the liquidity
19The floating leg payments.
20The fixedleg payments.
21Given spot Libor L(Ti−1, Ti), the loan accrues over the period [Ti−1, Ti].
22Standing for a swap where the holder pays the fixed rate.
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Which gives swap rate St:

St =

n−1∑
i=0

τiP
(O)(t, Ti)L

(i)
t

m−1∑
j=0

τ ′jP
(O)(t, T ′j+1)

. (2.27)

In the single-curve framework given no payment or reset delays the floating leg of the swap rate
simplifies to:

St =
P (0, T0)− P (0, Tm)
m−1∑
j=0

τ ′jP (t, T ′j+1)

. (2.28)

Which can again be used to directly solve for the Libor discount factors, using the following
Equation:

P (0, T0)− P (0, Tm)− St
m−1∑
j=0

τ ′jP (t, T ′j+1) = 0. (2.29)

In the multi-curve framework one can combine Equation (2.29) with Definition 2.4.1 and the
overnight curve to determine higher maturity Libor discount factors.

2.6 Futures

Deposits, FRAs and swaps are forward contracts that agree on the delivery of an underlying23 at
some future time for a predetermined price, futures contracts are their exchange traded alternatives
with the following characteristics:

1. Forward contracts are traded over the counter based on personally agreed terms between the
2 counter-parties. Exchange traded contracts are standardized and any exchange participant,
with a sufficient margin-account balance, can trade them.

2. They have a daily margining mechanism.
A futures contract holder deposits an initial margin, proportional to the value of the agreed
deliverable. Daily movements in the value of the futures contract are either added to or
subtracted from the contract holder’s account.24. This daily payment mechanism reduces
counter-party credit risk by settling the exposures counter-parties on both the long and short
side have towards each other daily. The counter-parties do not know who they are exposed
to and in case one of the parties defaults, the exchange finds another counter-party to sell
the short or long side contract to, without any effect on the non-defaulting counter-party.

3. They allow leverage.
The initial margin required to be deposited for purchase of the futures contract is never as
large as the agreed exposure to the underlying. Around 1/10th as is visible for crude oil
futures or 1/20th as visible for the E-mini S&P 500 index.25. Forward contracts allow for
leverage too, depending on collateral agreements.

Eurodollar futures are futures contracts on the Libor rate and are standardized with a 3 month
tenor with start/payment dates on the third Wednesday of every third month of the year26.

23Could be any asset or a derivative.
24This depends on variation and maintanance margin agreements. No rebalancing is necessary in case of under-

lying movements lower than the variation margin and no deposits are necessary if the margin account balance is
above a maintanance margin.

25For more examples visit cmegroup.com, barchart, ICE or literature like Hull [26].
26March,June,September,December. There are also 1 month, 6 month and 1 year Futures, visit CME group,

barchart of ICE for more examples.
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An Eurodollar futures contract with the spot Libor LT with start T and maturity M the under-
lying, is structured to have a payoff of Nα(1− LT ). N is called the notional and α is a constant
dependent on payment convention, also called the accruing factor. The following conventions hold
for 3M USD futures27:

1. The contract is quoted as 100(1− Fut0), where Fut0 is the underlying futures rate.

2. The accruing factor α is 1
4 .

The accruing factor reweighs the futures rate by the tenor of the corresponding 3-month
spot Libor rate, which is approximately 1

4 under usual time-unit conventions like ACT/360,
see Section 2.5.

3. The notional N is $1.000.000. Consequently, increase of 1 basis point28 of the futures rate
leads to decrease of the underlying contract value by $25.

4. The tick-size is 0.25 bp, which means that changes in the underlying futures rate are only
registered in 0.25 basispoint increments, or equivalently for $6.25 movements of the under-
lying contract.

We leave out details about maintanance and variation margins. For more details about Eurodollar
futures see [1] or [24]. No premium is paid to enter an Eurodollar Futures contract, and the daily
remargining happens the following way, let 0 = t0 < ... < tn = T . For every i 6= 0 at ti the
payment Nα(1− Futti)−Nα(1− Futti−1

) = Nα(Futti−1
− Futti) is made. At final time T the

payout is Nα(Futtn−1
− Futtn) = Nα(Futtn−1

− LT ).
Consequently, a long futures contract gives the holder an exposure of

Nα(1− Futti), (2.30)

therefore if the futures rate moves by 1 basis point the holder of the contract loses Nα basis points
of the corresponding currency. We define the futures rate the following way:

Definition 2.6.1. Let 0 = t0 < ... < tn = T be the n days of payment before starting time
T . Let (Q, D) be the risk-neutral numeraire pair as given in (2.1.2). We define the discretely
marked-to-market futures rate as the unique price process such that for every t ∈ [ti−1, ti] satisfies
the equation:

EQ
[ n∑
j=i

Dt

Dtj

(Fut(d)(t ∨ tj−1)− Fut(d)(t ∨ tj))|Ft

]
= 0. (2.31)

Such that
Fut(d)(tn) = LT .

Below is a payoff diagram of the Eurodollar futures contract:

t0 t1 tn−1 T M

p1 pn−1 Nα(Fut
(d)
T−∆t − LT )

Figure 2.8: Eurodollar futures contract payoff diagram.

With pi = Nα(Fut
(d)
ti−1
− Fut(d)

ti ).
This definition makes sense because no premium is paid to enter a futures contract with the
daily marking-to-market and the delivery of Nα(1−LT ) at time T , therefore by the fundamental
pricing formula, Theorem 2.1.7, the net value of all the future payments should be 0. In practice

27Source: CME.
28One hundredth of a percent.
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receiving/paying the margin resettlements daily or even in 3 month increments29 differs little from
receiving it continuously. Therefore for computational convenience we can model the futures rate
under continuous marking-to-market, which gives the following definition for the futures rate:

Definition 2.6.2. Given the conditions used in definition 2.6.1, for any t ∈ [0, T ] we define the
continuously marked-to-market futures rate as the unique process Futt that satisfies the equation:

EQ

 T∫
t

Bt
Bu

dFutu|Ft

 = 0, (2.32)

with (Q, D) the risk neutral numeraire pair, as given by 2.1.2 and Futtn = LT .

Equation (2.32) has solution
Futt = EQ[LT |Ft]. (2.33)

See [40] or [12] for a proof or [2] for an informal proof. For the rest of the thesis we will assume
continuous marking-to-market. We could convert futures rates to their implied forward rates by
substracting a convexity adjustment given by:

Ct = Futt − Lt = EQ [LT |Ft]− EM [LT |Ft] . (2.34)

Using the convexity adjustment to price a Receiver-FRA, see (2.19), now gives the analogous
equation:

V receiverFRA (0) = N (P (0,M)(1 + τ(Fut0 − C0))− P (0, T )) , (2.35)

Which links the Eurodollar futures rate, with a convexity adjustment to the underlying Libor
curve in the single-curve framework.

2.6.1 Convexity

Convexity is described in various ways throughout literature. Assuming parallel yield shifts, Hull
[26] describes it as error for hedging bond yield risk using only the first order derivative of the bond
to the yield30. Pelsser describes it as the currency or payment timing induced mismatch when
the forward value as given in Equation (2.10) is paid out in a different currency or at a different
time [37]. For Eurodollar futures and similarly for CMS31-derivatives, the convexity adjustment is
seen as the induced drift from measure change. With the change from the forward-measure to the
risk-neutral measure in the former and change from the annuity measure to the forward measure
in the latter.

Let (Q, D) and (QM , P (·,M)) be the risk neutral and M-forward numeraire pairs, given by re-
spectively 2.1.2 and 2.2.2, the following expression for the futures rate is useful:

Fut0 = EQ[LT ] = EQ
[
D0

DM

DM

D0
LT

]
= P (O)(0,M)EM

[
DM

D0
LT

]
(2.36)

Final equation follows from 1 = EQ
[
DM
D0

D0

DM

]
= P (O)(0,M)EM

[
DM
D0

]
. Similarly the Libor forward

rate can be written as:

L0 = EM [LT ] =
P (O)(0,M)

P (O)(0,M)
EM [LT ]

29See [39], [29] or [28].
30Also called duration.
31Constant maturity swaps.
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= P (O)(0,M)EM
[
DM

D0

]
EM [LT ] (2.37)

This gives final expression for the futures rate convexity adjustment:

C0 =
CovM

(
DM
D0

, LT

)
P (O)(0,M)

(2.38)

The covariance identity given by 2.38 is a well known identity in literature, see [28], [1] or [29].
The expression can be further decomposed into:

C0 =
EM

[
DM
DT

DT
D0
LT

]
− EM

[
DM
DT

DT
D0

]
EM [LT ]

P (O)(0,M)

=
EM

[
DM
DT

DT
D0
LT

]
− EM

[
DM
DT

DT
D0

]
EM [LT ]

P (O)(0,M)

=
EM

[
EM

[
DM
DT
|FT

]
DT
D0
LT

]
− EM

[
EM

[
DM
DT
|FT

]
DT
D0

]
EM [LT ]

P (O)(0,M)

=
EM

[
(1 + τFT )DTD0

LT

]
− EM

[
(1 + τFT )DTD0

]
EM [LT ]

P (O)(0,M)

=
CovM

(
DT
D0

(1 + τFT ), LT

)
P (O)(0,M)

(2.39)

Equation (2.39) is particularly useful because it reveals the dependency of the futures rate convex-
ity adjustment on the joint distributions of LT , FT and DT under the M -forward measure. Caplet
volatility surfaces, as will be explained in Section 2.7 provide information about the underlying
distribution of LT in the forward measure32, which leads to expressions for the convexity adjust-
ment after modelling correlations and variances of FT and DT . Due to working in the single-curve
framework we can limit our attention to the joint distribution of LT and DT . We will finish the
prerequisites by summarizing caplet volatility stripping.

2.7 Caplet volatility surface

Caplet volatilities are not known directly due to caplets not being traded individually, but in bas-
kets called caps. Caplet volatility stripping is well known in literature, see [46] or [26], but requires
knowing the Libor curve for construction of the surface. We include it in the thesis to show how
the magnitude of convexity adjustments has little effect on the curve and consequently the caplet
volatility surface, therefore it is ’safe’ to assume a unique caplet volatility surface, which we will
show in this section.

2.7.1 Caplet volatility stripping

Caplets are European call options on the Libor forward rate. In practice caplets are only traded
in baskets, such a basket is called a cap. When looking at 3M Libor caps, they are traded with
maturities ranging between 1 and 30 years, with a 3 month caplet frequency, meaning that given
a 1 year cap it has 4 underlying caplets with maturities of 3, 6, 9 and 12 months, while caps are
traded in general in 1 year frequencies33. As a result there are less caps traded than there are

32see [27] for more details about the link between the volatility smile and asset distributions.
333MEUR caps are traded for maturities {1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 25, 30}, same for 3M USD caps

with only the 1.5 year cap missing. This can be explained by market supply and demand for whole year maturity
caps and.
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underlying caplets. Let 0 ≤ T ′0 < T ′1 < ... < T ′n be the corresponding caplet time structure, with
T ′1, ..., T

′
n corresponding to caplet maturities34. Given numeraire pair (Q, D) the present value of

a caplet with accruing period [T ′i , T
′
i+1] paid out at Ti+1 is given below:

Vcaplet,i(0) = τ ′iEQ
[ D0

DTi+1

(L
(i)
T ′i
−K)+

]
= τ ′iP (0, Ti+1)ET

′
i+1 [(L

(i)
T ′i
−K)+].

Here the spot Libor L
(i)
T ′i

is fixed at TFi usually 2 business days before T ′i , analogously to swaps.

We define the corresponding Libor forward rate as L
(i)
t for t ≤ T ′i . Quotes of caps are provided for

a subset of caplet maturities T ′I1 < T ′I2 < ... < T ′n, giving n2 < n different caps, via their implied

flat volatilities: (m,K) 7→ σ
(θflat)
m (K) such that T ′Im is the corresponding highest caplet maturity.

his leads to the corresponding cap valuation, given a cap with maturity T ′Im :

Vcapm(0) =

Im−1∑
i=0

Vcaplet,i(0) =

Im−1∑
i=0

P (0, T ′i+1)τ ′iET
′
i+1 [(L

(i)
T ′i
−K)+] (2.40)

Note we can rewrite (2.40) with θ > 0 being the forward rate shift parameter corresponding to
caplets:

Vcapm(0) =

Im−1∑
i=0

Vcaplet,i(0) =

Im−1∑
i=0

P (0, T ′i+1)τ ′iET
′
i+1 [((L

(i)
T ′i

+ θ)− (K + θ))+] (2.41)

Computing the expectation ET
′
i+1 [((L

(i)
T ′i

+ θ) − (K + θ))+] depends on forward rate dynamics.

Using lognormal dynamics leads to Black’s formula, as specified by A.1, with v = σ
(θ)
T ′i

(K) and

T − t = T ′i gives:

Vcapm(0) =

Im−1∑
i=0

Vcaplet,i(0) =

Im−1∑
i=0

τ ′iP (0, T ′i+1)Black(L
(i)
0 + θ,K + θ, σ

(θ)
T ′i

(K), T ′i ). (2.42)

with σ
(θ)
T ′i

(K) being the caplet volatility. Caplet flat volatilities are defined such that for every

Im ∈ {I1, I2, ..., n}:

Vcapm(0) =

Im−1∑
i=0

τ ′iP (0, T ′i+1)Black(L
(i)
0 + θflat,K + θflat, σ

(θflat)
m (K), T ′i ). (2.43)

With θflat > 0 being the forward rate shift parameter corresponding to flat cap volatilities. In
Figures 2.10 and 2.12 we show the difference between the flat volatility and caplet volatility term
structure for 4 caps with strikes 0%, 5% and maturities 3 and 12 years, using the stripped caplet
volatility surface given by Figure 2.15 and the flat volatility surface given by 2.13 for the Euro
currency. Firstly the 3 year maturity :

34T ′0 is in 2 business days and T ′i+1 − T ′i is 3 months in the case of 3 month caplets, where T ′i+1 is also corrected
to be on a business day depending on the convention.
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Figure 2.9: Flat volatility and caplet volatility term structure corresponding to a 3 year maturity
caplet. K = 0%.

Figure 2.10: Flat volatility and caplet volatility term structure corresponding to a 3 year maturity
caplet. K = 5%.

Additionally for the 12 year maturity:

Figure 2.11: Flat volatility and caplet volatility term structure corresponding to a 12 year maturity
caplet. K = 0%.
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Figure 2.12: Flat volatility and caplet volatility term structure corresponding to a 12 year maturity
caplet. K = 5%.

Note that the 3 month caplet is deterministic, with underlying volatility 0. We have linearly
extrapolated the caplet volatility termstructure up to the first cap maturity of 1 year, with the 3
month caplet volatility equal to 0.

2.7.2 Absolute strike stripping

It is directly visible from Equation (2.43) that a strike K cap contains information about the
strike K caplet volatilities for all underlying caplets. Provided a shifting parameter θ and a Libor
curve35 allows, after collecting all caps that are traded for the same strike36 K, to solve for the
corresponding strike K caplet volatility term structure. Because there are more caplet volatilities
than there are caps an interpolation procedure can be assumed to obtain a caplet volatility term
structure that exactly prices back all caps. Doing this for every absolute strike and interpolating
the corresponding term structure gives us back the caplet volatility surface.

Given one absolute strike K equations (2.43) and (2.42) lead to the following system:

GK = ĜK(σ(θ)(K). (2.44)

• GK is the vector of strike K cap values derived from the quoted flat implied volatilities, see
(2.43).

• σ(θ)(K) = (σ
(θ)
T ′I1

(K), ..., σ
(θ)
T ′n

(K)) is the vector of the n2 caplet volatilities.

• ĜK maps caplet volatilities to the corresponding vector of cap values with strike K, see
(2.42) with shifting parameter vector θcaplet.

Solving σ(θ)(K) for every absolute strike K uniquely defines the caplet volatility surface after spec-
ifying an interpolation routine, given by the funtion f . We use linear term structure interpolation
for the caplet volatility surface as detailed below with cubic spline interpolation of the volatility
smile, this will be further addressed in chapter 4:

σ
(θ)
T (K) =

σ
(θ)
T ′Ii+1

(K)
T − T ′Ii

T ′Ii+1
− T ′Ii

+ σ
(θ)
T ′Ii

(K)
T ′Ii+1

− T
T ′Ii+1

− T ′Ii
,if T ∈ (T ′Ii , T

′
Ii+1

)

f(σ
(θ)
T (Ki), σ

(θ)
T (Ki+1), σ

(θ)
T (Ki−1),K, T ) ,if K ∈ (Ki,Ki+1).

(2.45)

Solving Equation (2.44) can again be done using any rootfinding algorithm like Newton-Rhapson,
but during implementation it becomes apparent that the Jacobian of ĜK JGK is ill-conditioned.
Therefore, we use the Levenberg-Marquardt algorithm, see [14] for more details.

35Assuming we know the Libor curve, from which the corresponding Libor forward rates L
(i)
0 are inferred.

36Absolute strike.
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In Figure 2.13 we show the 3MEUR and 3MUSD flat volatility surfaces using datasets B.3 and
B.4:

(a) 25th January 2018 3MEUR flat cap volatility surface, θflat = 0.03.

(b) 25th January 2018 3MUSD flat cap volatility surface, θflat = 0.

Figure 2.13: 25th January 2018 3MEUR and 3MUSD flat cap volatility surfaces, for absolute
strikes, bilinearly interpolated.

We use historical flat cap volatility data provided by a broker, see B.3 and B.4. The data provided
gives the flat cap volatilities for both the 3M Euro Libor and the 3M USD Libor on the 25th of
January 2018, provided by the options broker ICAP. Solving for the corresponding caplet volatility
surfaces37 results in:

37Given by the corresponding Libor curves from Chapter 3.
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(a) 25th January 2018 3MEUR stripped caplet volatility surface, θ = 0.03.

(b) 25th January 2018 3MUSD stripped caplet volatility surface, θ = 0.01.

Figure 2.14: 25th January 2018 3MEUR and 3MUSD caplet volatility surfaces stripped using
absolute strikes.

These caplet volatility surfaces reprice all caps up to 1/100th of a basispoint. It can be denoted
that for both surfaces there is a visible oscillating behavior in the maturity direction. By rewriting
(2.44) into an optimization problem and adding a smoothness and weighing penalty we obtain the
following optimization problem:

argmin
σ(θ)(K)

(GK − ĜK(σ(θ)(K)))>(GK − ĜK(σ(θ)(K))) + λσ(θ)(K)>Pσ(θ)(K). (2.46)

With λ a weighting constant and P the penalty matrix, see A.4. Solving for the corresponding
caplet volatility surfaces results in:

26



(a) 25th January 2018 3MEUR stripped caplet volatility surface, θ = 0.03.

(b) 25th January 2018 3MUSD stripped caplet volatility surface, θ = 0.01.

Figure 2.15: 25th January 2018 3MEUR and 3MUSD caplet volatility surfaces stripped using
absolute strikes with smoothness penalty. λ = 0.0003 and both surfaces reprice the caps within
an error of 1 basispoint. Curves used given in Figure 3.2.

We will use the surfaces given by Figure 2.15 in Chapter 4 when using short-rate model implied
convexity adjustments.

We have stripped the surface assuming that the Libor curve is known. The Libor curve is un-
known, but the at the money strikes (or equivalently the swap rates) are provided up to a ba-
sispoint. Therefore we will test our proprietarily calibrated Libor curve, see Figure 3.2 without
convexity adjustments and compare the implied swap rates to the at the money strikes, in case
the difference is small enough we will proceed to use the corresponding implied forward rates.
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2.7.3 Hagan’s formula

As will be noticed in Section 4.4.3 using linear or even cubic spline interpolation of the caplet
volatility smile leads to unfeasible probability density functions of the underlying forward rates.
Alternatively we can use Hagan’s formula to parametrise the surface given in Figure 2.14. Let

L̂
(i)
0 = L

(i)
0 + θ and K̂ = K + θ be the θ-shifted strike and forward rate with accruing period

[Ti, Ti+1]. Hagan’s formula is given by:

σSABR,(θ)(L
(i)
0 ,K) =

αTi

(L̂
(i)
0 K̂)(1−βTi )/2

(
1 +

(1−βTi )2
24 log2

(
L̂

(i)
0

K̂

)
+

(1−βTi )4
1920 log4

(
L̂

(i)
0

K̂

)
+ . . .

) · z

x(z)

·

[
1 +

(
(1− βTi)2

24

α2
Ti

(L̂
(i)
0 K̂)1−βTi

+
1

4

ρTiβTiνTiαTi

(L̂
(i)
0 K̂)(1−βTi )/2

+
2− 3ρ2

Ti

24
ν2
Ti

)
T + . . .

]
,

(2.47)
with:

z =
νTi
αTi

(L̂
(i)
0 K̂)(1−βTi )/2 log

(
L̂

(i)
0

K̂

)
, (2.48)

and

x(z) = log

(√
1− 2ρTiz + z2 + z − ρTi

1− ρTi

)
. (2.49)

Hagan’s formula is an approximation of the volatility smile given that the underlying shifted

forward rate L
(i)
t + θ moves under SABR dynamics, see [19]. We will use the formula for both

interpolation and extrapolation of the underlying volatility smile, calibrated using Figure 2.15. We
calibrate Hagan’s formula by fixing βTi = 0.5 and using an optimizer to solve for αTi , βTi , ρTi such
that the difference between the corresponding caplet volatility smile given by 2.15 and Hagan’s
formula implied smile is at most 2%, we do this for every cap maturity, resulting in n parameter sets
for n cap maturities. The termstructure is interpolated using linear SABR parameter interpolation.
Giving:

αT =
Ti+1 − T

hi
αTi +

T − Ti
hi

αTi+1
,

for T ∈ [Ti, Ti+1] and hi = Ti+1 − Ti, with analogous equations for parameters βT , ρT and νT .

In case of the European caplet volatility surface given in Figure 2.15 Hagan’s formua implied smile
reprices all caps used in the absolute strike calibration used to strip the caplet volatility surface
within 1 basis-point. Better calibration is in general not possible to a smile with 12 spine points
due to the limitted degrees of freedom of the SABR model having only 4 parameters.
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Figure 2.16: SABR surface calibrated to the 3MEUR caplet volatility surface with penalty in
Figure 2.15.

When using the replication method to value convexity adjustments we will be required to ex-
trapolate the caplet volatility surface for strikes near the lower boundary −θ, see Section 4.4.3.
Extending the strike boundaries of the caplet volatility surface it becomes visible that the surface
becomes unfeasible for low strikes near the lower boundary −θ = −0.03:

Figure 2.17: Surface given by Figure 2.16, extrapolated between −θ + 0.001 and b′ + 0.1.

This is a well-known shortcoming of Hagan’s formula, see [18]. This problem can be solved by
increasing the underlying shifting parameter. In Figure 2.18 we display the underlying absolute-
strike stripped European volatility surfaces using θs of 6% and 10% respectively after stripping
the caplet volatility surface analogously to those in Figure 2.15:
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(a) 25th January 2018 3MEUR stripped caplet volatility surface, θ = 6%.

(b) 25th January 2018 3MEUR stripped caplet volatility surface, θ = 10%.

Figure 2.18: SABR surfaces calibrated to the 3MEUR caplet volatility surface with penalty in
Figure 2.15. θ = 6% and 10% respectively. Extrapolated between −0.029 and b′ + 0.1, which is
the same for Figure 2.17.

What can also directly be denoted is that the volatility surfaces decrease when the shifting param-
eter increases, this makes sense from the perspective that the volatility surfaces in Figures 2.18
corresponds to the implied volatilities using shifted Libor forward rates following the stochastic
differential equation:

dL
(θ)
t = (L

(θ)
t + θ)σ(θ)dWM

t .

Given θ2 >> θ1 and given that implied volatilities are derived by calibrating the dynamics to

the same option prices it makes sense that L
(θ1)
T and L

(θ2)
T should be approximately equal in

distribution due to both being governed by lognormal dynamics. From this follows σ(θ1) > σ(θ2)

in order to compensate for L
(θ1)
t + θ1 < L

(θ2)
t + θ2. We will use the 10% shifted caplet volatility

surface for in the replication method in Section 4.4 and 2.15 when using short-rate models in
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Section 4.3.

2.7.4 Curve dependence of the volatility surface

Given the curves implied by dataset B.1, without convexity adjustments and dataset B.2, with
quoted convexity adjustments, computed using Algorithm 1 and cubic spline interpolation of
intermediate discount factors, see Chapter 3, we compare the implied swap rates to the at the
money strikes below:

Maturity in years ATM strikes Implied swap rates
1 -0.003 -0.0031
1.5 -0.0025 -0.0026
2 -0.0016 -0.0018
3 0.0003 0.0000
4 0.0022 0.0019
5 0.0038 0.0035
6 0.0051 0.0050
7 0.0063 0.0062
8 0.0074 0.0073
9 0.0084 0.0084
10 0.0094 0.0093
12 0.0109 0.0110

Table 2.1: 3MEUR, 25-1-2018

Maturity in years ATM strikes Implied swap rates
1 0.0211 0.0205
2 0.0231 0.0227
3 0.0242 0.0241
4 0.0248 0.0247
5 0.0252 0.0252
6 0.0255 0.0256
7 0.0258 0.026
8 0.0261 0.0263
9 0.0263 0.0265
10 0.0266 0.0268
12 0.0269 0.0272
15 0.0272 0.0276

Table 2.2: 3MUSD, 25-1-2018

Strikes and swap rates only deviate by a few basispoints, therefore we will perform the stripping
using the fixed convexity adjustment curve. Because the effect of convexity adjustments on forward
rates is in the order of basispoints, as will be show in chapters 4, we will use the stripped caplet
volatility surfaces using curves calibrated with fixed convexity adjustments for the rest of the
thesis38. The surface is given by given by Figure 2.18 when using dataset B.1.

38Fixed convexity adjustments are provided in datasets B.1 and B.2.
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Chapter 3

Yield curve calibration basics

Having introduced the Libor curve intuitively in chapter 2 we will show how the curve is calibrated
from deposits, FRAs and swaps and analogously from futures with fixed convexity adjustments.
We will work in the single-curve framework where the Libor curve is assumed to be equal to the
overnight curve and argue the extension into the multi-curve framework in Chapter 5.

3.1 Curve calibration in the single-curve framework

Combining Equations (2.24), (2.19) and (2.13) for a set of N instruments of all 3 categories pro-
vides us with a system of N equations, which defines a subspace for the possible values of N2

possible Libor discount factors used in the various equations. Let 0 < T0 < ... < TN be the
corresponding time structure of maturities1, let Q be the corresponding set of instrument rates.

In case N2 = N we can solve system uniquely obtaining the vector of discount factors P =
(P (0, T0), ..., P (0, TN )). The Libor curve can be further inferred by assuming an interpolation
procedure for P (0, T ) for T ∈ (Ti, Ti+1), we will consider linear discount curve and cubic-spline
interpolation in this Section given by:

P (0, T ) =
Ti+1 − T

hi
P (0, Ti) +

T − Ti
hi

P (0, Ti+1). (3.1)

With hi = Ti+1 − Ti. We will consider alternative interpolation routines in Section 3.3. It makes
intuitive sense that a discount factor for some intermediate year should be a weighted average of
the discount factors at spine points dates, given by Ti and Ti+1. In case the maturities, starting
dates and fixed leg payment dates of Libor rates underlying the FRAs and swaps do not align,
then N2 > N , in which case our Libor discount factors are not unique.

By pre-specifying the interpolation procedure our Libor curve is uniquely determined (for matu-
rities up to the largest calibration instrument maturity) by the N discount factors at spine point
dates Ti. This leads to a system of N equations with N unknowns with an interpolation dependent
unique solution:

NPV1(P, Q1) = 0 (3.2)

... (3.3)

NPVn(P, Qn) = 0. (3.4)

1Working with a strip of FRA-rates or futures rates with maturity range T1 < ... < Tn with n < N it is usual
to use a deposit/spot rate as your very first instrument with maturity T0. We will stick to this convention in later
chapters.
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Such that:

NPVi(P, Qi) =


P (0, Ti)(1 + τi−1Qi)− 1 = 0 Qi is a deposit rate.
P (0, Ti)(1 + τi−1Qi)− P (0, Ti − τi−1) = 0 Qi is a FRA-rate.
i−1∑
j=0

τjL
(j)
0 P (0, Tj+1)−Qi

Ii−1∑
j=0

τ ′jP (0, T ′j+1) = 0 Qi is a swap-rate.
(3.5)

Given floating-leg tenor structure 0 < T1 < ... < Ti, the corresponding fixed leg payments are
made on 0 < T ′1 < ... < T ′Ii with τ ′j = T ′j+1 − T ′j . All n equations then give:

NPV(P,Q) = 0. (3.6)

Here P = (P (0, T1), ..., P (0, TN )) is the solution vector of Libor discount factor spine points with Q
the length N vector of calibration instrument rates. Equivalently when calibrating using futures
rates instead of FRA rates, with fixed convexity adjustments C, using Equation (2.35) leads
analogously to:

NPV(P,C,Q) = 0. (3.7)

Equations (3.6) and (3.7) can be solved by any multivariate root finding algorithm. We will be
using the Newton-Rhapson algorithm:

Algorithm 1: Newton-Rhapson algorithm for solving equation (3.6).

Data: Q,C
1 P(0) = 1;
2 ε = 10−14;
3 while ||P(n) −P(n−1)|| > ε do

4 P(n) = P(n) − JNPV
−1(P(n−1))NPV(P(n−1));

5 end

With ε = 10−15, P(0) = 1 and NPV(·) = NPV(Q,C, ·) when using futures rates or NPV(·) =
NPV(Q, ·) when using FRA rates and JNPV the corresponding discount factor Jacobian, given by:

JNPV(P) =


NPV1(P)
∂P (0,T1) ... NPV1(P)

∂P (0,TN )

...
...

NPVN (P)
∂P (0,T1) ... NPVN (P)

∂P (0,TN )


Finally we will use short the hand notation:

Psolve(P(0),C), (3.8)

For the calibrated discount factor vector P resulting from Algorithm 1, with starting vector
P(0) = 1, linear discount factor interpolation2 and fixed convexity adjustments3. What can be
quickly denoted is that using linear discount factor interpolation the system 3.7 reduces to a matrix
equation given by:

NPV(Q,C,P) = A(C,Q)P− b = 0.

Consequently the system can be solved using any linear equation solver. The Newton-Rhapson
algorithm converges after one iteration using initial spine point vector P(0) = 1:

P(1) = P(0) −A(C,Q)−1(A(C,Q)P(0) − b)

From which follows:
P(1) = A(C,Q)−1b, (3.9)

2Unless explicitly stated otherwise.
3C = 0 unless explicitly stated otherwise.
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which is the solution of A(C,Q)P = b.

Using alternative interpolation routines introduces non-linearity into the system (3.7), conse-
quently the Newton-Rhapson algorithm will take more iterations to converge, as we will see in
Section 3.3. We will construct 2 curves using datasets B.1 and B.2, from the 25th of January
2018 for deposit, forward rate agreements and swaps under the following conventions, as have
been mentioned in 2.5.1: Quotes are given in percentages. Time unit is given under the ACT/360
modified following convention. Floating swap legs have 3 month frequency. Fixed swap legs have
1y frequency. Linear interpolation is used over the discount curve between the spine points.
We will calibrate using the implied FRA rates, which is equivalent to using the futures rates with
fixed convexity adjustments. Below we display both discount curves:

Figure 3.1: 25th of January 2018, 3MEUR discount curve. 1 iterations.

Figure 3.2: 25th of January 2018, 3MUSD discount curve. 1 iterations.

The curves are defined between maturities of 0 and 60 years and are constructed within 1 Newton-
Rhapson iteration.
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3.2 Calibration in the multi-curve framework

In the multi-curve-framework in general the overnight curve and higher tenor Libor curves are
solved in order, specified by the systems:

NPV(O)(P(O),Q(O)) = 0.

and the conditional system:

NPV(τ)(P(τ),P(O),Q(τ),C) = 0.

This is done using both Libor and overnight rate instruments. Given the addition of spread instru-
ments like basis-swaps, structured similarly to the fixed-for-floating swap introduced in Section
2.3, introduce dependencies between the 2 curves and the overnight curve can not be solved on its
own. This leads to a system where the overnight and Libor curves are solved globally, analogously
to (3.7):

NPV(P(O),P(τ1), ...,P(τn),C,Q) = 0. (3.10)

Considering a multi-curve framework with only the overnight and 3-month curve gives the system:

NPV(P(O),P(3m),C,Q) = 0, (3.11)

Overnight curves are calibrated using deposits, OIS or basis-swaps, see [1]. Analogously to Equa-
tion (3.5) we can derive:

NPVi(P
(O),P(3m), Ci, Qi) =

P (τ)(0, Ti)(1 + τi−1Qi)− 1 = 0 Qi is a 3m deposit rate.
P (τ)(0, Ti)(1 + τi−1(Qi − Ci))− P (τ)(0, Ti − τi−1) = 0 Qi is a 3m futures rate.
i−1∑
j=0

τjL
(j)
0 P (O)(0, Tj+1)−Qi

Ii−1∑
j=0

τ ′jP
(O)(0, T ′j+1) = 0 Qi is a 3m swap-rate.

i−1∑
j=0

τjF
(j)
0 P (O)(0, Tj+1)−Qi

Ii−1∑
j=0

τ ′jP
(O)(0, T ′j+1) = 0 Qi is a OIS-swap rate.

i−1∑
j=0

τjL
(j)
0 P (O)(0, Tj+1)−

i−1∑
j=0

τj(F
(j)
0 +Qi)P

(O)(0, Tj+1) = 0 Qi is a basis-swap rate.

(3.12)

With L
(j)
0 and F

(j)
0 given by Definitions 2.4.1 and 2.4.2 with accuing period [Tj , Tj+1]. Details

about OIS (overnight indexed swaps) and basis-swaps can be found in [1]. We will ignore the
multi-curve framework for the rest of the thesis and mention it again in Further Research 5.
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3.3 Alternative interpolation routines

In this section we will look at hidden assumptions behind using linear discount factor interpolation.
Below are the forward Libor rate curves4 corresponding to Figure 3.2:

Figure 3.3: 25th of January 2018, 3MEUR forward curve.

Figure 3.4: 25th of January 2018, 3MUSD forward curve.

Oscillating forward rates are a well known consequence of linear discount curve interpolation, see
[2] for more details. Which can be solved by imposing alternative interpolation schemes. We use
cubic splines, which rests on imposing continuous second order derivatives of yield curve spine
points, see Appendix A.6 for details. Using the defining equation for the yield:

exp(−y(T )T ) = P (0, T ),

which can be rewritten to:

y(T ) = − log(P (0, T ))

T
,

our yield curve is fully determined on [0, TN ] given y = (y(0), y(T0), ..., y(TN )) = (y−1, y0, ..., yN )
using Equation (A.19) after imposing values for y−1, y

′′
−1 and y′′N . We using ’natural cubic splines’

specified by y′′−1 = y′′N = 0.

y−1 is further specified by Equation (A.21) we get the following forward curves with smooth
corresponding discount curves:

4Given by the mapping T 7→ 1
τ

(
P (0,T−τ)
P (0,T )

− 1
)

ising Equation (2.4.1) with t = 0 and T > τ .
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Figure 3.5: 25th of January 2018, 3MEUR forward curve.

Figure 3.6: 25th of January 2018, 3MUSD forward curve.

Both curves converge after 10 iterations, which is when |P(n) −P(n−1)| < 10−15. Cubic spline
interpolation results in smooth discount and forward rate curves, but is computationally more
expensive for calibration than using linear discount curve interpolation. What can be noted is
that in Figures 3.4 the forward curves do not oscillate in the maturity strip calibrated from futures
and deposits5. When forecasting high maturity forward rates it therefore becomes important to
use a non-oscillating interpolation routine like cubic-splines, but on the flipside curve calibration
is significantly slower6. We will analyze convexity adjustments and implied forward rates within
the maturity strip calibrated from futures rates. Therefore for computational convenience we will
use linear discount factor interpolation the rest of the thesis.

5For maturities up to 3 years.
6For both the EUR and USD curves calibration took 25 seconds and 10 iterations, implemented in Python.

37



Chapter 4

Convexity in the single-curve
framework

Having done basic yield curve calibration in Chapter 3 we can now start with modelling the Libor
futures rate convexity adjustment and extend the calibration algorithm 1. We will derive a model-
dependent mapping from the Libor curve and caplet volatility surface to the vector of convexity
adjustments corresponding to futures rates used in calibration. This will allow us to solve for
the convexity adjustments and the curve simultaneously. We will look at the resulting convexity
adjustments using data-sets B.1 and B.2 for the 3-month Euro Libor and USD Libor curves after
which we will stress test our curve calibration routine and convexity adjustments under high rate
and high volatility scenarios. We start calibrating convexity adjustments to their corresponding
at the money caplet volatilities using one factor short-rate models, after which we will combine a
mapping function1 approach with the replication method in order to calibrate convexity adjust-
ments to arbitrary caplet volatility surfaces. We will use the corresponding volatility surfaces 2.15
and 2.18. We will finish by looking at the significance of the implied vega-profiles of linear Libor
derivatives in hedging.

4.1 Criteria for the convexity adjustment model

Having established a curve calibration algorithm where Eurodollar futures can be used given known
convexity adjustments in Chapter 3, the algorithm can naturally be extended to include modelled
convexity adjustments, that are dependent on the underlying curve and a volatility surface. Let
LT be a spot Libor rate with accruing period [T,M ]. In the single-curve framework the Libor
and the overnight curve are not distinguished and consequently the convexity adjustment can be
written the following way after rewriting Equation (2.39):

C0 =
CovM (DT , (1 + τLT )LT )

P (0,M)
, (4.1)

In the single-curve framework we can limit our attention to the joint distribution of LT and DT .

4.1.1 Literature about convexity in the single-curve framework

The simplest models for the convexity adjustment are Gaussian one factor short-rate models, see
[2] like Ho-Lee and Hull-White, see [30] or [17]. They provide us with direct closed form expres-
sions for the convexity adjustment, after calibrating the constant parameters to the corresponding
at the money caplet volatility. These simple models fix underlying assumptions about the corre-
lation between LT and DT in the M -forward measure. In [40] it has been shown empirically that

1This will be explained in detail in 4.4.
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even though a condition that guarantees positive convexity adjustments in Gaussian one factor
short-rate models hold in practice, negative convexity adjustments were still observed for 3 month
futures rates during the period between the year 2000 and 2004, using data collected from the
British Banker’s Association.

More complex expressions have been derived in the Libor market model, decomposing discretely2

marked to market futures rates into their underlying variances and correlations. Piterbarg and
Renedo [39] derive a closed form Taylor-based expression of the Libor forward rates in terms of
futures rates with the same accruing periods and the underlying covariance matrix between the
Libor forward rates. After decomposing covariances into correlations and standard deviations of
Libor forward rates the standard deviation parameters are estimated using a seperate stochastic
volatility model per forward rate and the correlation parameters are calibrated from a Libor mar-
ket model. The replication method is avoided for the comptutation of the standard deviations.
Jaeckel [29] similarly derives an expansion based expression of futures rates in terms of forward
rates, but is not calibrated using stochastic volatility models.

Because we use futures rate convexity adjustments for curve calibration we are not interested in
complex Libor market model based models that require joint calibration of volatility and cor-
relation parameters. We are interested in simple models that do not give unfeasible convexity
adjustments under stressed market scenarios but are rich enough to be calibrated to the entire
corresponding caplet volatility smile. We will consider convexity adjustments implied by one factor
short-rate models and the replication method in Section 4.3 and 4.4.

4.2 Calibration algorithm

The vector C used to solve Equation (3.7) exists of a vector of fixed convexity adjustments. In
Sections 4.3 and 4.4 we will derive functional expressions for convexity adjustments in terms of
the underlying Libor curve and the caplet volatility surface, given by:

C(P, σ
(θ)
P ), (4.2)

when using solely the at the money caplet volatilities term-structure, where the curve determines
the corresponding at the money strikes and

C(P, σ(θ)), (4.3)

when using the caplet volatility surface surface. We use stripped caplet volatility surfaces, as has
been explained in Section 2.7.

To simplify we introduce short hand notation

C(P), (4.4)

for both expressions (4.2) and (4.3). Combining this with Equation (3.7) allows us to define a new
system from which to solve for Libor discount factors:

NPV(Q,C(P),P) = 0, (4.5)

with NPV is given by Equation (3.7). Q is the vector of deposit, futures and swap rates used in
calibration. P is the vector of Libor discount factor spine points. C(P) converts the curve and
caplet volatility surface to the vector of convexity adjustments corresponding to the futures rates
used in Equation (3.7). Note that our calibrated curve P from Equation (4.4) now depends on
either the term-structure of at the money caplet volatilities or the entire volatility surface, which

2In 3 month increments when pricing 3 month futures, as has been mentioned in Section 2.6.
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will be further specified in Section 4.6 where we look at the implied vegas of Linear Libor curve
instruments.

Equation (4.5) can again be solved using the Newton-Rhapson algorithm, Implementing it directly
is however quite tedious due to the underlying Jacobian of NPV(Q,C(P),P) to discount factor
spine points depending on partial derivatives of the valuation function NPV and C, changing
C would require additional implementation of ∇C. Since we will only be modelling C a much
simpler approach is using a Picard style iteration of the form:

NPV(Q,C(0),P(1)) = 0

NPV(Q,C(P(1)),P(2)) = 0

...

NPV(Q,C(P(n−1)),P(n)) = 0 (4.6)

Starting with C0 = 0. This leads to an alternative calibration algorithm where in every step the
curve is calibrated using Algorithm 1 and the convexity adjustments are adjusted accordingly after
which the curve is calibrated again until the difference between subsequent convexity adjustments
are below some error bound ε2:

Algorithm 2: Nested calibration algorithm for solving equation (4.5).

Data: Q,C,σ
(θ)
P

1 C(0) = 0;

2 P(0) = 1;
3 ε2 = 10−12;

4 while ||C(n) −C(n−1)|| > ε2 do
5 P(n) = Psolve(P(n−1),C(n−1));

6 C(n) = C(P(n));

7 end

Psolve is given by Equation (3.8). We will use the short-hand notation for the spine point vector
resulting from algorithm 2 by:

Psolve,nested(P(0), σ(θ)) (4.7)

The model used to relate convexity adjustments to the caplet volatility surface σ
(θ)
P , are made

clear from the context.

Finally due to using linear discount factor interpolation we can derive conditions on the function
C that guarantees convergence and uniqueness of the curve resulting from algorithm 2. Unicity
is non-trivial due to the dependence of the function C on the underlying curve introduce non-
linearity into the system (4.5). In A.7 we provide the conditions using the Banach fixed point
theorem.

4.3 The one factor short-rate model

Let (Q, D) be the risk neutral measure numeraire pair as specified by (2.1.2). Given a time t Libor
curve, we define the instantaneous forward rate such that:

f(t, T ) = −
∂

∂T
ln(P (t, T )), (4.8)

which can be rewritten to:

P (t, T ) = exp
(
−
∫ T

t

f(t, u)du
)
. (4.9)
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As explained in section 4.4 of Piterbarg [2] the Gaussian model is given by the following assumption
on the dynamics of the instantaneous forward rate:

df(t, T ) = αtdt+ σf (t, T )dWQ
t . (4.10)

Note that the starting curve given by T 7→ f(0, T ) is determined by the initial yield curve due
to equation (4.8). Because P (t, T ) is a tradeable strictly positive asset (buying a collateralised
contract that pays out 1 at time T ), the following martingale property holds for t < s < T :

P (t, T ) = EQ
[
Dt

Ds
P (s, T )|Ft

]
.

Using the martingale property Heath, Jarrow and Morton have linked the instantaneous forward
rate and short rate by the definition rt = f(t, t), giving the following dynamics:

drt = θtdt+ σf (t, t)dWQ
t . (4.11)

such that the discount factor P (t, T ) for t < T is given by EQ[exp(−
∫ T
t
rudu)|Ft]. Where αt is

dependent on σf and T 7→ f(0, T ) due to the martingale property:

αt = σf (t, T )σP (t, T ). (4.12)

Furthermore, σf (t, T ) =
∂

∂T
σP (t, T ) and σP is some deterministic function of t and T . θt is a

function dependent on the short rate rt, the initial instantaneous forward curve T 7→ f(0, T ) and
σf , see [7] for more details.

Note that instantaneous forward rate dynamics imply discount curve dynamics, which can be
derived by using (4.9):

dP (t, T ) = d
(

exp(−
∫ T

t

f(t, u)du)
)

= P (t, T )d
(
−
∫ T

t

f(t, u)du
)

= P (t, T )[rtdt−
∫ T

t

σf (t, u)dudWQ
u ].

The third equation follows after applying the Leibniz rule and because the dimensions of change
for f(t, u) are t and WQ

t for any u ≥ t. After imposing σP (t, t) = 0 we get:

dP (t, T )/P (t, T ) = rtdt− σP (t, T )dWQ
t . (4.13)

Therefore σP can be defined as the discount curve volatility function. The discount curve dynamics

allow us to derive forward bond rate dynamics by using Ito’s formula: Gt =
1

P (t, T,M)
=

P (t, T )

P (t,M)
,

dGt = d
P (t, T )

P (t,M)

=
[dP (t, T )

P (t,M)
−
dP (t,M)P (t, T )

P (t,M)2
+
d〈P (t,M)〉P (t, T )

P (t,M)3
−
dP (t, T )dP (t,M)

P (t,M)2

]
=

P (t, T )

P (t,M)

[dP (t, T )

P (t, T )
−
dP (t,M)

P (t,M)
+
d〈P (t,M)〉
P (t,M)2

−
dP (t, T )dP (t,M)

P (t, T )P (t,M)

]
= Gt

[
[σP (t,M)− σP (t, T )]dWQ

t + [σ2
P (t,M)− σP (t,M)σP (t, T )]dt

]
.
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The final equality follows from (4.13), which gives:

dGt/Gt = (σP (t,M)− σP (t, T ))σP (t,M)dt+ (σP (t,M)− σP (t, T ))dWQ
t (4.14)

We can note now for the Libor forward rate:

Lt =
1

τ

(
Gt − 1

)
. (4.15)

Because the Libor forward rate is a martingale under the M -forward measure so is Gt which
implies by Girsanov’s theorem, with

dWQ
t + σP (t,M)dt = dWM

t , (4.16)

see Equation (4.34) in [2]:

dGt/Gt = (σP (t,M)− σP (t, T ))dWM
t . (4.17)

Which combined with (4.15) determines the dynamics of the shifted Libor forward rate3:

Lt +
1

τ
=

1

τ
Gt =

1

τ

P (t, T )

P (t,M)
,

.

d
(
Lt +

1

τ

)
/
(
Lt +

1

τ

)
= (σP (t,M)− σP (t, T ))dWM

t . (4.18)

This allows us to get the following expression using Ito:

LT + 1/τ = (L0 + 1/τ)

exp
( T∫

0

[σP (u,M)− σP (u, T )]dWM
u −

1

2

T∫
0

[σP (t,M)− σP (t, T )]2dt
)

(4.19)

and

σT =

√√√√√ 1

T

T∫
0

|σP (u,M)− σP (u, T )|2du. (4.20)

σT is the corresponding the implied volatility with shifting parameter 1/τ . This allows us to derive
the present value of a 1/τ -shifted Libor caplet with start T , strike K and tenor τ using Black’s
formula, see A.1:

Vcaplet,1/τ (0) = τP (0,M)EM [(LT −K)+]

= τP (0,M)EM [([LT + 1/τ ]− [K + 1/τ ])+]

= τP (0,M)Black(L0 + 1/τ,K + 1/τ, σT , T ) (4.21)

Equation (4.20) now allows us to calibrate model parameters, depending on the choice of σP , to
a 1/τ -shifted caplet volatility. In general at the money caplet volatility is used. This choice is
not motivated by liquidity, due to caplets not being directly traded, as has been shown in Section
2.7, but provided that we have a θ-shifted caplet volatility surface we need a way to transform
θ-shifted caplet volatility surfaces to the specific 1

τ .

The implied volatility represents the option price implied forward looking volatility of returns of
the underlying forward rate Lt for t ∈ [0, T ], with T the starting date underlying the spot Libor
LT . Because of the observation of negative forward rates in the market, θ is generally chosen high

3We look at the shifted Libor forward rate because unlike the Libor rate it cannot be negative because that
would imply one of the implied discount factors is negative, which makes no sense.
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enough to ensure that L0 + θ and expected shifted forward rates are positive, but low enough to
retain the transparent relationship to the implied volatility of forward rate returns as much as
possible. For the 3-month USD Libor and Euro Libor curves we will use the volatility surfaces
given in Figures 2.15 with shifting parameters of 1% and 3% respectively.

Let L0 be the forward Libor rate with accruing period [T,M ] and tenor τ , let P (0,M) be the time
M Libor discount factor. As will shown in Equation (4.20) one factor short-rate model parameters
are related to caplet volatilities with a particular shifting parameter 1/τ . Therefore given a caplet
volatility surface with an arbitrary shifting parameter θ we want to obtain the 1/τ -shifted caplet

volatility given that we know the θ-shifted caplet volatility. Let σ
(θ)
T (L0) be the at the money

caplet volatility with shifting paremeter θ corresponding to a caplet with underlying the spot
Libor rate with start T and maturity M , let σ be the 1/τ -shifted at the money caplet volatility
with expiry T . The following approximation holds for σ:

σ =
L0 + θ

L0 + 1
τ

σ
(θ)
T (L0) (4.22)

Proof. See A.5.

The approximation is O(σ3) accurate and can be validated by adding an extra Taylor term in the
proof of approximation (4.22) given by:

(σ̂ − 1

6
σ̂3) =

L0 + θ

L0 + 1
τ

(σ
(θ)
T (L0)− 1

6
σ

(θ)
T (L0)3). (4.23)

Here σ̂ is solved from (4.23) and σ is solved from (4.22). Using Equations (4.23) and (4.22) now
results in:

σ̂ − 1

6
σ̂3 = σ − 1

6

(
L0 + 1/τ

L0 + θ

)2

σ3.

Defining f(x) = x− 1
6x

3 −
[
σ − 1

6

(
L0+1/τ
L0+θ

)2

σ3

]
From which follows:

f(σ̂)− f(σ) = −1

6

(
1−

(
L0 + 1/τ

L0 + θ

)2
)
σ3

We can find an upper bound for |σ̂ − σ| using the mean value theorem:

σ̂ − σ =
f(σ̂)− f(σ)

f ′(y)
,

with y between σ and σ̂.

From the magnitudes of θ, τ, L0 and σ
(θ)
T (L0) we can find an upper bound for |σ̂ − σ|. As a test

case we will look at the 10% shifted 3MEUR caplet volatility surface in Figure 2.18 and the curve

given in Figure 3.6 we can see: L0 + 3% ≤ 0.05, θ = 0.1, 1
τ = 4 and σ

(θ)
T (L0) + 10% ≈ 0.45. This

gives following from Equation (4.23):

σ =
0.15

4.05
0.45 ≈ 0.016.

We increase the forward rates by 3% and the volatilities by 10% to compute |σ−σ̂| under a stressed
market scenario, given that the difference is small clearly under the base scenario the difference is
small. Which gives, ignoring the O((f(σ̂)− f(σ))2) term:

f(σ)− f(σ̂) = −1

6

(
1−

(
4.05

0.15

)2
)

(0.016)3 ≈ 5 · 10−4.
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This finally gives:

|σ̂ − σ| < 5 · 10−4

1− 1
2y

2
≈ 5 · 10−4.

Because y ≈ 0.016. Finally, given that partialBlack
∂σ (σ̂ − σ)

Using more Taylor terms in (4.23) gives analogous results. Therefore, Equation (4.22) allows one
to accurately relate the θ-shifted at the money caplet volatility to the 1/τ -shifted at the money
caplet volatility of the same strike. How a different strike θ-shifted caplet volatility could be used
is unclear. The present value of a futures rate with start T and tenor τ can be derived to be:

Fut0 = EQ[LT ] =
1

τ
(EQ[GT ]− 1) =

1

τ

( P (0, T )

P (0,M)
eΩ(0,T ) − 1

)
(4.24)

using the risk neutral dynamics of Gt (4.14), with

Ω(0, T ) =

∫ T

0

(σP (u,M)− σP (u, T ))σP (u,M)du. (4.25)

Which gives the following formula for the convexity adjustment:

C0 = Fut0 − L0 =
1

τ

P (0, T )

P (0,M)
(eΩ(0,T ) − 1). (4.26)

Using Taylor we can derive a lower bound for the convexity adjustment given by:

C0 ≥
1

τ

P (0, T )

P (0,M)
Ω(0, T ).

Using a simple Ho-Lee short-rate model it can be shown that the underlying correlation between
LT and DT is positive, see A.10.

Given a positive correlation of LT and DT positive convexity adjustments make sense intuitively
due to a positive correlation implying that one tends to expect in case of a change of expecta-
tions of the underlying spot Libor rate the pre-settlement interest rates changes too, therefore the
margin paid out by the futures contract can be invested for a higher rate, or funded for a lower
rate. Negative convexity adjustments are a result of negative correlation between pre-settlement
interest rates and the spot Libor rate.

Given tenorstructure 0 < T0 < ... < Tn corresponding to futures rates {Fut(0)
0 , ..., Fut

(n−1)
0 }, we

define C
(i)
0 by Equation (4.36) using T = Ti and M = Ti+1. Therefore, Equations (4.22), (4.20)

and (4.26) are the defining links between the convexity adjustments and at the money caplet
volatilities of arbitrary shift when assuming a one factor Gaussian short-rate model. Evaluation
of C(P) in Equation 2 now happens in 2 steps:

1. Θmodel(P, σ
(θ)
P ) converts θ-shifted at the money caplet volatility vector and curve implied

forward rates to 1/τ -shifted at the money caplet volatilities using Equation (4.22) and sub-
sequently Equation (4.20) to calibrate a model parameter vector directly to the 1/τ -shifted
at the money caplet volatilities.

2. Finally C(P) is given by CSR(P,Θmodel(P, σ
(θ)
P )) = (C

(0)
0 , .., C

(n−1)
0 ), which calibrates the

curve and model parameter vector to the vector of convexity adjustments using Equations
(4.25) and (4.26).

Using simple constant parameter short-rate models like Ho-Lee or Hull-White calibrates n seperate
short-rate models to the corresponding n at the money caplet volatilities, resulting in dependence
between the convexity adjustment to only its corresponding at the money. One may argue that
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a better approach would be to use a time-dependent short-rate model where one calibrates the
convexity adjustment to the term-structure of at the money caplet volatilities instead of solely
individual, see for any example [33] or [7].

We will not do this because calibrating a time-dependent more advanced short-rate model to the
term structure of volatilities is done for simulation or the pricing of exotic interest rate derivatives,
this is not important for curve calibration.
Performing the calibration using algorithm 2 for the 3-month EUR an USD Libor curves, using
datasets B.1 and B.2 with the corresponding caplet volatility surfaces given in Figure 2.15. In
Figures 4.1 and 4.2 we show the corresponding forward rate curves with and without convexity
adjustments, using the Ho-Lee model with constant parameters, see Equation (A.8), limitted
between 0 and the highest futures rate maturity4:

Figure 4.1: 25th of January 2018, 3MEUR forward rate curves. 4 iterations.

Figure 4.2: 25th of January 2018, 3MUSD forward rate curves. 5 iterations.

Differences beween the 2 curves are hardly visible, in Figure 4.4 we show the corresponding con-
vexity adjustments:

4See 3.4 for the full forward rate curves without convexity adjustments.
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Figure 4.3: 25th of January 2018, 3MEUR convexity adjustments.

Figure 4.4: 25th of January 2018, 3MUSD convexity adjustments.

Note that USD futures rates range around 2.5% for maturities below 4 years while European
futures rates range around 0%, see B.1 and B.2. This explaines the difference in magnitude of the
convexity adjustments after comparing Equations (4.26) and (4.24).

We will not formally check curve uniqueness using the criterium A.25, but provide ∂Ci
∂P (0,Tj)

for

the convexity adjustments in Figure 4.4 for the starting flat curve P = 1 and the calibrated curve
using dataset B.1 with their corresponding caplet volatility surfaces given in Figure 2.15, which
results in the following spine-point derivatives ∂Ci

∂P (0,Tj)
:
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1.144 years 2.144 years 3.138 years
0,402 0 0 0
0,652 0 0 0
0,898 -0,00485 0 0
1,144 0,004849 0 0
1,399 0 0 0
1,648 0 0 0
1,895 0 -0,00706 0
2,144 0 0,00706 0
2,396 0 0 0
2,645 0 0 0
2,891 0 0 0,000812
3,138 0 0 -0,00081

1.144 years 2.144 years 3.138 years
0,402 0 0 0
0,652 0 0 0
0,898 -0,00246 0 0
1,144 0,002465 0 0
1,399 0 0 0
1,648 0 0 0
1,895 0 -0,0105 0
2,144 0 0,010496 0
2,396 0 0 0
2,645 0 0 0
2,891 0 0 -0,01407
3,138 0 0 0,014072

Table 4.1: 3MEUR ∂Ci
∂P (0,Tj)

using the Ho-Lee model with respectively a calibrated and a flat 1

Libor curve. Columns are the 4th, 8th and 12th convexity adjustments with the last one being
the largest used in calibration. Rows are curve spine-point maturities in years.

It can be clearly denoted that for the 2 choices of spinepoints the condition ∂Ci
∂P (0,Tj)

< 4an+2q/n ≈
0.211 is satisfied with a = 0.975, q = 0.9 and n = 12 for both a flat 1 and a calibrated spine-point
vector P. Due to crudeness of criterium (A.25) and the non-oscillating nature of the convexity
adjustment expression (A.9), it makes sense to assume uniqueness of the curve resulting from (4.5)
using (A.9).
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There exists no objective reference to compare our resulting convexity adjustments to. We can
nevertheless perform several tests to look at how different models and different market scenarios
affect the convexity adjustments, we will start by comparing our convexity adjustment between
using the Ho-Lee and the Hull-White model, the 2 models are equivalent except for the Hull-White
model having an additional mean-reversion parameter λ, see A.15, we calibrate the volatility
parameter and fix λ to 0,1 and 2. For λ = 0 the model is equivalent to the Ho-Lee model:

Figure 4.5: 25th January 2018, 3MEUR convexity adjustments using respectively the Ho-Lee
model (λ = 0) and the Hull-White model with λ = 1 and λ = 2.

Figure 4.6: 25th January 2018, 3MUSD convexity adjustments using respectively the Ho-Lee
model (λ = 0) and the Hull-White model with λ = 1 and λ = 2.

λ appears to have a decreasing effect on the convexity adjustments. Other short-rate models
could be used, but it has been denoted in [29] that using for an example the Black-Karasinski or
Black-Derman-Toy models continuously marked to market convexity adjustments can be shown
to be positively infinite. We are interested in calibrating convexity adjustments to the volatility
smile and will not spend more time on short-rate models.
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4.4 Replication method

For this we will combine the Carr-Madan replication method with a mapping function approach,
inspired by the TSR5-method used to model the annuity-forward measure Radon-Nykodym deriva-
tive, see Chapter 16 of [2] or [20]. Using any deterministic, twice differentiable function f allows
us to express the expectation the following way:

EM [f(LT )] =

∞∫
−∞

f(x)ψL0(x)dx

≈
b∫
a

f(x)ψL0(x)dx (4.27)

The density ψL0(x) can be obtained from second partial derivatives of underlying European call
or put payoffs to the strike, see A.8 for proof. In literature out of the money calls and puts are
used, giving density function:

ψL0(x) =


∂2

∂K2
P (L0,K)|K=x x > L0

∂2

∂K2
C(L0,K)|K=x x ≤ L0

(4.28)

See A.9 for a justification. We use short hand notation

C(L0, x) = Black(L0 + θ, x+ θ, σ
(θ)
T (x), T )

P (L0, x) = Blackp(L0 + θ, x+ θ, σ
(θ)
T (x), T )

With Black and Blackp Black’s formulas corresponding to call and put payoffs, see A.1, with

forward rate L0, time to maturity T , strike K, caplet volatility σ
(θ)
T (K) and shifting parameter θ.

After partially integrating the right-hand-side of Equation (4.27) twice we obtain:

EM [f(LT )] = f (L0) + f(b)
∂

∂K
C(L0, b)− f(a)

∂

∂K
P (L0, a)

+ f ′(a)P (L0, a)− f ′(b)C(L0, b)

+

L0∫
a

f ′′(x)P (L0, x)dx+

b∫
L0

f ′′(x)C(L0, x)dx. (4.29)

We do not consider the possibilities of L0 > b or L0 < a, which is not necessary when choosing
the boundaries wide enough.
We will use (4.29) after finding a mapping function f such that:

Fut0 = EM [f(LT )].

5Terminal swap rate
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4.4.1 Mapping functions

Using the single-curve covariance identity (4.1) makes the following expression of the futures rate
useful:

Fut0 = P (0,M)EM
[
DT

D0
(LT + τL2

T )

]
= P (0,M)EM

[
DT

D0

]
EM

[
LT + τL2

T

]
+ v1

= P (0, T )ET
[
DT

D0
P (T,M)

]
EM

[
LT + τL2

T

]
+ v1

= P (0, T )ET
[
DT

D0

]
ET [P (T,M)]EM

[
LT + τL2

T

]
+ v1 + v2

=
P (0,M)

P (0, T )
EM

[
LT + τL2

T

]
+ v1 + v2 (4.30)

v1 depends on the T -forward correlation between DT and P (T,M) = 1
1+τLT

and v2 depends on

the correlation between DT and LT +τL2
T . The following mapping function results from assuming

independence between LT and DT .

Definition 4.4.1 (Independence mapping function). Assuming v1 = v2 = 0 simplifies Equation
(4.30), for time 0 to:

Fut0 ≈
1

1 + τL0
EM

[
LT + τL2

T

]
= EM [f(LT )LT ] .

With f(x) =
1 + τx

1 + τL0
, after noting

P (0,M)

P (0, T )
=

1

1 + τL0
, using Equation (2.4.1).

In more generality finding some function f such that:

Fut0 = EQ[LT ]

= EM
[
∂Q
∂QM

LT

]
≈ EM [f(LT )LT ] . (4.31)

allows one to use the underlying caplet volatility smile to evaluate the futures rate. In the context
of CMS-derivatives the mapping function approach is used to find an expression for the Radon-
Nykodym derivative from the annuity6 to the corresponding forward measure in terms of the
underlying swap rate, which is a martingale under the annuity measure, see Chapter 16 of [2] for
more details. Approximation (4.4.1) can be seen as the consequence of assuming independence
between LT and DT and obviously does not capture the underlying correlation structure between
LT and DT which is one of the determining factors of the futures convexity adjustment. An
alternative model would be to use some parametric form for f and impose several conditions to
derive the underlying parameters. One example is a polynomial model:

f(LT ) ≈ (β0 + β1LT + ...+ βnL
n
T )(1 + τLT ). (4.32)

f(LT ) represents the Radon-Nykodym derivative of the risk-neutral to M-forward measure change,
given some constants {βTi}. The constants can be derived by imposing several feasibility condi-
tions:

6The annuity measure is specified by numeraire A(t) =
m−1∑
i=0

τ ′jP (t, T ′j+1), given some payment timestructure

0 < T ′0 < ... < T ′m as given in Equation (2.24) with t < T ′0.
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1. No arbitrage:
1 = EQ[1],

which implies after measure change:

1 = EM [f(LT )].

2. Reprice futures:
Fut0 = EQ[LT ], (4.33)

which implies after measure change:

Fut0 = EM [f(LT )LT ].

3. Reprice futures options:
FutOption0,K = EQ[(LT −K)+],

which implies after measure change:

FutOption0,K = EM [f(LT )(LT −K)+].

4. Consistency:
1

τ

(
P (t, T )EM [f(LT )|Ft]− 1

)
= Lt.

Which follows by combining the no arbitrage condition with equation (2.4.1).

Provided that we can calibrate to futures and their corresponding volatility smile at n points we
have n+ 1 degrees of freedom. In turn allowing us to calibrate β0, .., βn, L0 to
{Fut0, FutOption0(K1), ..., FutOption0(Kn)} using n strikes. Provided we use n futures rates

{Fut(i)0 } in calibration over tenor structure 0 ≤ T0 < T1 < ... < Tn one step further could be
to use swaption volatilities, containing information about underlying correlations between the
forward rates, see [39]. This may be something to look into in further research. Using high order
polynomials means that we will use the replication method to price high order monomials:

EM [LnT ].

It is clear that the higher n the more the underlying spot rate distribution depends on the under-
lying tails, therefore smile shapes for high/low strikes. In [21] a closed form solution is derived
for quadratic CMS-caplets in the SABR model. This could analogously be used to price EM [L2

T ]
after the SABR model to the underlying caplet volatility smile and possibly be extended to price
back higher order monomial expectations EM [LnT ]. This is also something to look into in further
research. There are several more feasibility conditions:

1. Realism:
f should be strictly positive on at least [a, b].

2. Negative convexity adjustments:

C0 = EQ[LT ]− EM [LT ]

= EM [(f(LT )− 1)LT ]. (4.34)

Should allow for negative values.

We will look at the simple independence mapping function given in (4.4.1).
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4.4.2 Independence mapping function

Using mapping function (4.4.1), Equation (4.29) can be rewritten:

Fut0 = L0 +
b+ τb2

1 + τL0

∂

∂K
C(L0, b)−

a+ τa2

1 + τL0

∂

∂K
P (L0, a)

+
1 + 2τa

1 + τL0
P (L0, a)−

1 + 2τb

1 + τL0
C(L0, b)

+
1

1 + τL0

L0∫
a

2τxP (L0, x)dx+
1

1 + τL0

b∫
L0

2τxC(L0, x)dx (4.35)

This finally gives for the convexity adjustment:

C0 =
b+ τb2

1 + τL0

∂

∂K
C(L0, b)−

a+ τa2

1 + τL0

∂

∂K
P (L0, a)

+
1 + 2τa

1 + τL0
P (L0, a)−

1 + 2τb

1 + τL0
C(L0, b)

+
1

1 + τL0

L0∫
a

2τxP (L0, x)dx+
1

1 + τL0

b∫
L0

2τxC(L0, x)dx (4.36)

This again provides us, analogously to Equation (4.26), an expression for the convexity adjustment

in terms of the corresponding θ-shifted caplet volatility smile K 7→ σ
(θ)
T (K) and Libor curve.

4.4.3 Smile parametrisation

In Figure 4.7 we consider the caplet volatility smiles and implied forward rate densities, using the
3MEUR Libor caplet volatility surface, see 2.18, with shifting parameter θ = 0.1. We use a Libor
curve calibrated using with dataset B.1 and 0 convexity adjustments:
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(a) Caplet volatility smiles.

(b) Libor forward rate densities.

Figure 4.7: Libor forward rate densities over [a′, b′].

In order for Equation (4.27) to be accurate a needs to be chosen smaller than a′ = −0.0075, which
is the lowest strike for the stripped 3MEUR caplet volatility surface given by Figure 2.15. b also
needs to be chosen larger than b′, which is not visible from Figure 4.7. Given that the caplet

volatility smile K 7→ σ
(θ)
T (K) is only known for K ∈ [a′, b′], a′ being the lowest absolute strike,

−0.75% in case of the European surface, see Figure 2.15, we will need an extrapolation routine
of the smile for b ≥ b′ or a ≤ a′. In Figures 2.15 and 2.16, we have respectively considered a
penalized linear smile interpolation and fitting Hagan’s formula on the underlying smile.
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We will consider 3 smile extrapolation routines: Linear interpolation and constant extrapola-

tion, where constant extrapolation means that for K > b′: σ
(θ)
T (K) = σ

(θ)
T (b′) and for K < a′:

σ
(θ)
T (K) = σ

(θ)
T (a′). We will also consider cubic spline interpolation and sloped extrapolation, see

A.6 for more details. And finally Hagan’s formula, see Figure 2.16.

Details about cubic-spline interpolation in context of the volatility smile are provided in A.6. Below
we show the underlyiing probability density functions and smiles when using linear interpolation,
cubic-spline interpolation and Hagan parametrisation, The underlying is the Libor forward rate
with maturity 3.14 years corresponding to the highest maturity futures rate used in calibration:

(a) Implied volatility densities.

(b) Implied volatility smiles.

Figure 4.8: Probability density functions and smiles.

Figure 4.8 shows the probability densities under base market scenarios, see Figure 4.10. Plots are
made after calibrating a Libor curve with 0 convexity adjustments and using a central difference
estimator for the underlying probability densities. The biggest thing to notice here is that using
both the linear and cubic-spline interpolation routines cause oscillations in the underlying density
function. Even though the underlying smile is second order smooth when using cubic-spline
interpolation. in Figure 4.9 we display the smiles and densities under stressed market scenarios,
with elevated volatilities by 10%:
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(a) Implied volatility densities.

(b) Implied volatility smiles.

Figure 4.9: Probability density functions and smiles. Stressed market scenario, see 4.10.

The discontinuities and oscillations are worse. This shows that there is more to correct smile
parametrisation than solely continuity or smoothness and choosing either linear or cubic-spline
interpolation exposes one to arbitrage. Analogously the way linear discount curve interpolation
leads to oscillations in the forward rate curve between swap maturities.
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In order to have a more formal notion about what choice of [a, b] is wide enough we will compute
the probabilities QM (LT ≥ b) and QM (LT ≤ a) under stressed market scenarios. This will ensure
that our boundaries are chosen wide enough under any feasible scenario for rates and volatilities. In
Figure 4.10 we display our futures rates and volatility smiles under normal and stressed scenarios:

(a) Implied Libor futures rates.

(b) Implied volatility smiles.

Figure 4.10: Stressed futures rates and volatility smiles.

We will select b using stressed volatilities and 3% increased rates, while using only stressed volatil-
ities for the selection of a. Below are the results for a range of b and a values:

b = b′ b = b′ + 0, 15 b = b′ + 0.4 b = b′ + 0.65 b = b′ + 0.9 b = b′ + 1.4

Base, QM (LT > b) 0.000062 3 · 10−6 0 0 0 0
Stressed, QM (LT > b) 0.32991 0.05667 0.00702 0.00129 0.00051 0.00005

Table 4.2: Cummulative distributions for varrying b.

a = a′ a = −0.03 a′ = −0.06 a′ = −0.09 a′ = −0.099 a′ = −0.09995

Base, QM (LT < a) 0.02996 0.00044 1.4 · 10−5 1 · 10−6 0 0
Stressed, QM (LT < a) 0.32991 0.05667 0.007015 0.001287 0.000512 0.00005

Table 4.3: Cummulative distributions for varrying a.

We choose a = −θ + 0.00005 = −0.09995 and b = b′ + 1.4 = .5 such that QM (LT > b) and
QM (LT < a) are under a basis-point under stressed market conditions, below we show convexity
adjustment levels under the various values of a and b:
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(a) Convexity adjustments for various values of b, a = −θ + 0.00005.

(b) Convexity adjustments for various values of a, b = b′ + 1.4.

Figure 4.11: Effect on the convexity adjustments for using various boundaries, using the indepen-
dence mapping function given by (4.36) and algorithm 2.

This shows the importance of choosing sufficiently wide boundaries a and b, also note that negative
convexity adjustments are not possible due to (4.4.1) rewriting to:

EM [L2
T τ + LT ]

1 + τL0
− L0 =

EM [L2
T τ + LT ]− (L2

0τ + L0)

1 + τL0
≥ 0,

due to Jensen’s inequality. Showing the importance of smile parametrisation.
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4.5 Convexity adjustments stress tests

In this section we will compare the convexity adjustments resulting from algorithm 2 using the Ho-
Lee model (A.8) and the replication method using the independence mapping (4.36), boundaries
[a, b] = [−0.09995, 1.5], linear discount curve interpolation and the corresponding Hagan’s formula
parametrised caplet volatility surfaces given in 2.18 and the dataset B.1: below we show the base
level convexity adjustments:

Figure 4.12: Convexity adjustments using Ho-Lee model and the replication method.

The replication method convexity adjustments are lower than those implied by the Ho-Lee model,
which makes sense due to one assuming independence between pre-settlement Libor rates and
the spot Libor rate and the other positive dependence, see A.10. In Figures 4.13 and 4.14 we
display the corresponding discount and forward rate curves between 0 and the highest futures rate
maturity:

Figure 4.13: Discount curves using the Ho-Lee model and replication method.
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Figure 4.14: Forward rate curves using the Ho-Lee model and replication method.

Differences between forward or discount curves are hardly visible.
Checking curve uniqueness using (4.36) for is done analogously as was done in Table 4.1:

1.144 years 2.144 years 3.138 years
0,402 0 0 0
0,652 0 0 0
0,898 0,001392 0 0
1,144 -0,00139 0 0
1,399 0 0 0
1,648 0 0 0
1,895 0 0,003397 0
2,144 0 -0,0034 0
2,396 0 0 0
2,645 0 0 0
2,891 0 0 0,004607
3,138 0 0 -0,00461

1.144 years 2.144 years 3.138 years
0,402 0 0 0
0,652 0 0 0
0,898 0,000646 0 0
1,144 -0,00065 0 0
1,399 0 0 0
1,648 0 0 0
1,895 0 0,004075 0
2,144 0 -0,00408 0
2,396 0 0 0
2,645 0 0 0
2,891 0 0 0,007042
3,138 0 0 -0,00705

Table 4.4: 3MEUR ∂Ci
∂P (0,Tj)

using the replication method with respectively a calibrated and a flat

1 Libor curve. Columns are the 4th, 8th and 12th convexity adjustments with the last one being
the largest used in calibration. Rows are curve spine-point maturities in years.

Again the condition A.25 is satisfied pointwise when using the flat and calibrated curve.

4.5.1 Rate level

The following convexity adjustments are calibrated after increasing all the underlying rates in
dataset B.1 by 3%. The difference between high and low futures rates is visible in Figure 4.10.
This increases the corresponding convexity adjustments, which is similar to what we saw with the
convexity adjustments in (4.4) using the USD dataset:
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Figure 4.15: Convexity adjustments using Ho-Lee model and replication method. Futures rates
increased by 3%.

In Figures 4.16 and 4.17 we display the corresponding discount and forward rate curves between
0 and the highest futures rate maturity:

Figure 4.16: Discount curves using Ho-Lee model and replication method. Futures rates increased
by 3%.

Figure 4.17: Forward rate curves using Ho-Lee model and replication method. Futures rates
increased by 3%.

The difference between the forward or discount curves are more visible compared to Figures 4.14
and 4.13.
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4.5.2 Smile level

Here we show the effects of increasing the caplet volatility surface by 10%, see Figure 4.10. The
smile is a consequence of recalibrating Hagan’s formula to smiles higher by 10%.

Figure 4.18: Convexity adjustments using Ho-Lee model and replication method. Volatility level
increase.

In Figures 4.19 and 4.20 we display the corresponding discount and forward rate curves between
0 and the highest futures rate maturity:

Figure 4.19: Discount curves using Ho-Lee model and replication method. Caplet volatilities
increased by 10%.

Figure 4.20: Forward rate curves using Ho-Lee model and replication method. Caplet volatilities
increased by 10%.
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Importance of the convexity adjustment becomes apperent in Figures 4.20 and 4.19.

4.5.3 Smile and rate level

Here we show the compounded effects of increasing futures rate by 3% and the caplet volatility
surface by 10%, see 4.10:

Figure 4.21: Convexity adjustments using Ho-Lee model and replication method. Rate and volatil-
ity level increase.

Figure 4.22: Discount curves using Ho-Lee model and replication method. Futures rates increased
by 3% and caplet volatilities increased by 10%.

Figure 4.23: Forward rate curves using Ho-Lee model and replication method. Futures rates
increased by 3% and caplet volatilities increased by 10%.
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We can conclude that taking into account the convexity adjustments becomes more important
under stressed market scenarios.

4.6 Vega profiles

Solving a Libor curve using volatility-dependent convexity adjustments in algorithm 2 introduces
volatility dependence into the Libor curve. Consequently, the prices of all Libor curve deriva-
tives become volatility-dependent. We are curious how large these vegas can become in stressed
market scenarios. We will use the caplet volatility surface 2.16 for the replication method model
and volatility surface 2.15 for the Ho-Lee model with dataset B.1 and look at the vega profiles of
deposits, FRAs and swaps, with the following specifications:

Notional set at 10.000. We will consider the Lender-Deposit with value given by (2.13), maturity
set at 3 months. We will consider Lender-FRAs and Payer-swaps given by (2.19) and (2.24),
maturities set at 2 years. For the short-rate model algorithm we will use the Ho-Lee model with
the corresponding convexity adjustment expression given by Equation (A.8). For the replication
method we will use the independence model with convexity adjustment given by (4.36), constant
surface extrapolation, [a, b] = [−0.029, 2].

Since we are using a caplet volatility surface parametrised using Hagan’s formula, see Figure 2.18,
the sensitivities to individual strike and maturity volatilities can be computed analytically by using
an inverse derivative and chain rule combination after denoting that every instrument’s value is a
function of the yield curve and the yield curve is a function of the underlying SABR parameters,
the procedure goes the following way, let I be an instrument7 present value dependent on spine
point vector P, the corresponding vega to the caplet volatility with strike K and fixing date Ti is
given by:

∂I(P)

∂σSABR,(θ)(L
(i)
0 ,K)

= ∇I(P)·

 ∂P

∂αTi

(
∂σSABR,(θ)(L

(i)
0 ,K)

∂αTi

)−1

+
∂P

∂βTi

(
∂σSABR,(θ)(L

(i)
0 ,K)

∂βTi

)−1

+ ...


(4.37)

We compute
∂P

∂αTi
for αTi using a central difference estimator by using Equation (4.7), giving:

∂P

∂αTi
=

1

h
1 · (Psolve,nested(P(0), σ

(θ)
+ )−Psolve,nested(P(0), σ

(θ)
− )),

with h = 10−4 and σ
(θ)
+ is equal to the caplet volatility surface implied by parameter vectors

{αTj}, {βTj}, {ρTj}, {νTj} and curve P, where αTi is increased by h. Analogously σ
(θ)
− is equal to

the caplet volatility surface implied by parameter vectors {αTj}, {βTj}, {ρTj}, {νTj} and curve P,

where αTi is decreased by h. Analougously partial derivatives
∂P

∂βTi
,
∂P

∂ρTi
and

∂P

∂νTi
are computed.

Furthermore,
∂αTi

∂σSABR,(θ)(L
(i)
0 ,K)

is not known, but
∂σSABR,(θ)(L

(i)
0 ,K)

∂αTi
is, so we use the in-

verse derivative theorem that states that on some invertible neighbourhood of σSABR,(i) to its
parameters the partial derivative of the inverse function is the multiplicative inverse of the partial
derivative.

We will look at sensitivities of Libor curve derivatives to movements in caplet volatilities corre-
sponding to the first 12 fixing dates (3 months up to 3 years). We will look at sensitivities to

7For an example a fixed-for-floating swap given by Equation (2.29).

63



caplet volatilities of every absolute8 strike when using the replication method and only to at the
money strike caplet volatilities when using the Ho-Lee model.
Consequently, we will display the vega profile of a Libor curve derivative where the Libor curve
is calibrated using Ho-Lee model-dependent convexity adjustments by a barchart and a Table of
sensitivities to the term-structure of at the money caplet volatility with cap maturities. The vega
profile of a Libor curve derivative where the Libor curve is calibated using the replication method
is a matrix, with the absolute strikes on one axis and the caplet maturities the other, we will again
use cap maturities and display the profiles using a heatmap and a Table.

Finally the risk profiles will also computed under stressed market scenarios, with rates being higher
by 3% and caplet volatilities higher by 10%, see A.11.

4.6.1 Cash deposits

We will consider the present value of 3 month lender deposits, see Equation (2.16). We start by
plotting replication method implied vega profiles where we look at sensitivities to movements of
volatilities per individual strike, sensitivities are calculated using Equation (4.37):

Figure 4.24: Individual vegas, replication method model.

0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0

-0,75% 0 0 0 0 0 0 0 0 0 0 0 0
-0,50% 0 4,44E-12 0 0 0 0 0 0 0 0 0 0
-0,25% 0 2,22E-12 0 0 0 0 0 0 0 0 0 0
0,00% 0 0 0 0 0 0 0 0 0 0 0 0
0,25% 0 0 0 0 0 0 0 0 0 0 0 0
0,50% 0 0 0 0 0 0 0 0 0 0 0 0
1,00% 0 0 0 0 0 0 0 0 0 0 0 0
1,50% 0 0 0 0 0 0 0 0 0 0 0 0
2% 0 0 0 0 0 0 0 0 0 0 0 0
3% 0 0 0 0 0 0 0 0 0 0 0 0
5% 0 0 0 0 0 0 0 0 0 0 0 0
10% 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.5: Individual vegas, replication method model. Table, xE − y means x · 10−y

8Absolute strikes are given by [−0.75%,−0.5%,−0.25%, 0, 0.25%, 0.5%, 0.75%, 1%, 2%, 3%, 5%, 10%], see 2.7 for
details about the absolute strikes.
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Here we display the vega profiles implied by a constant parameter Ho-Lee model and the replication
method model:

Figure 4.25: Parallel smile vegas, Ho-Lee model.

0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0

ATM 0 2,18E-07 0 0 0 0 0 0 0 0 0 0

Table 4.6: Individual vegas, Ho-Lee model. Table

Note that in dataset B.1 the first futures rates has a start of approximately 2 months and a
maturity of 5 months in the future (between March 2018 and June 2018). Consequently the
convexity adjustment depends on the 2-month fixing caplet volatility. Which consequently explains
the dependency on solely the 3-month fixing caplet volatility smiles. Furthermore, increasing the
at the money caplet volatility in the Ho-Lee model seems to have a bigger effect on the underlying
deposit than the sum of all the sensitivities in the replication method model. Other observations
are mentioned in Section ??.

65



4.6.2 FRAs

We will consider the present value of 2 year lender FRAs, see equation (3.6), sensitivities are
calculated using Equation (4.37).

Figure 4.26: Individual vegas, replication method model.

0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0

-0,75% 0 1,56E-08 1,57E-08 1,57E-08 1,55E-08 1,43E-08 5,43E-07 1,26E-06 6,99E-07 1,56E-08 1,57E-08 1,57E-08
-0,50% 0 1,56E-08 1,57E-08 1,57E-08 1,56E-08 5,99E-09 2,27E-07 9,86E-07 9,19E-07 1,56E-08 1,57E-08 1,57E-08
-0,25% 0 1,56E-08 1,57E-08 1,57E-08 1,57E-08 -5,9E-09 3,36E-06 6,88E-06 2,9E-06 1,56E-08 1,57E-08 1,57E-08
0,00% 0 1,56E-08 1,57E-08 1,57E-08 1,55E-08 3,04E-09 2,42E-06 5,94E-06 3,48E-06 1,56E-08 1,57E-08 1,57E-08
0,25% 0 1,56E-08 1,57E-08 1,57E-08 1,55E-08 1,56E-08 1,57E-08 8,57E-07 1,19E-06 1,56E-08 1,57E-08 1,57E-08
0,50% 0 1,56E-08 1,57E-08 1,57E-08 1,58E-08 -1,3E-08 1,27E-06 1,87E-06 1,56E-08 1,56E-08 1,57E-08 1,57E-08
1,00% 0 1,56E-08 1,57E-08 1,57E-08 1,57E-08 -5,2E-08 1,38E-05 3,3E-05 1,84E-05 1,56E-08 1,57E-08 1,57E-08
1,50% 0 1,56E-08 1,57E-08 1,57E-08 1,55E-08 1,56E-08 1,57E-08 2,03E-06 2,83E-06 1,56E-08 1,57E-08 1,57E-08
2% 0 1,56E-08 1,57E-08 1,57E-08 1,55E-08 1,56E-08 1,57E-08 1,57E-08 1,56E-08 1,56E-08 1,57E-08 1,57E-08
3% 0 1,56E-08 1,57E-08 1,57E-08 1,55E-08 1,45E-08 2,2E-07 4,74E-07 2,46E-07 1,56E-08 1,57E-08 1,57E-08
5% 0 1,56E-08 1,57E-08 1,57E-08 1,55E-08 1,03E-08 1,52E-06 4,47E-06 3,23E-06 1,56E-08 1,57E-08 1,57E-08
10% 0 1,56E-08 1,57E-08 1,57E-08 1,55E-08 1,54E-08 1,11E-07 3,34E-07 2,69E-07 1,56E-08 1,57E-08 1,57E-08

Table 4.7: Individual vegas, replication method model. Table
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Here we display the vega profiles implied by a constant parameter Ho-Lee model and the replication
method model:

Figure 4.27: Parallel smile vegas, Ho-Lee model.

0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0

ATM 0 -1,2E-09 -1,1E-09 -9,9E-10 1,41E-09 -4,1E-07 6,66E-05 0,000171 0,000105 -1,2E-09 -1,2E-09 -1,2E-09

Table 4.8: Individual vegas, Ho-Lee model. Table

The 2 year maturity FRA is a contract over the spot Libor with a start of 1 year and 9 months
and a maturity of 2 years in the future. The strange dependency structure can be explained by a
maturity mismatch between the underlying caplets and the futures:

0 3M 6M 1Y 9M 2Y 2Y 3M

0 2M 5M 1Y 8M 1Y 11M 2Y 2M

2Y 3M

Figure 4.28: Tenor structures of respectively caplets and futures rates.

Increasing the 1Y9M maturity caplet volatility affects the interpolated caplet volatilities used
to compute the convexity adjustments of the 1Y11M maturity futures rates and consequently
the 2Y maturity implied forward rate. Similarly the 2Y3M maturity caplet volatility affects the
interpolated caplet volatilities used to compute the convexity adjustments of the 2Y2M maturity
futures rates and consequently the 2Y maturity implied forward rate.
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4.6.3 Swaps

We will consider the present value of 2 year Payer swaps, see Equation (2.24), sensitivities are
calculated using Equation (4.37)

Figure 4.29: Individual vegas, replication method model.

0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0

-0,75% 0 -2,2E-08 -4E-08 -1,7E-07 -2,1E-07 -2,5E-07 -1,2E-06 -1,8E-06 -7E-07 -2,2E-08 -2,2E-08 -2,2E-08
-0,50% 0 -4,9E-07 -1,7E-06 -2,4E-06 -2,7E-06 -3,5E-06 -2,8E-06 -1,2E-06 -9,2E-07 -2,2E-08 -2,2E-08 -2,2E-08
-0,25% 0 -5,2E-07 -2E-06 -3,8E-06 -5,8E-06 -8E-06 -1,1E-05 -1E-05 -2,9E-06 -2,2E-08 -2,2E-08 -2,2E-08
0,00% 0 -2,2E-08 -2,2E-08 -2,2E-08 -3,7E-07 -2,5E-06 -7,2E-06 -8,3E-06 -3,5E-06 -2,2E-08 -2,2E-08 -2,2E-08
0,25% 0 -2,2E-08 -2,2E-08 -2,2E-08 -2,2E-08 -2,2E-08 -2,2E-08 -8,6E-07 -1,2E-06 -2,2E-08 -2,2E-08 -2,2E-08
0,50% 0 -2,2E-08 -3,6E-07 -3,4E-06 -8,2E-06 -1,1E-05 -9,4E-06 -3,2E-06 -2,2E-08 -2,2E-08 -2,2E-08 -2,2E-08
1,00% 0 -2,2E-08 -1,1E-07 -1,4E-06 -5,5E-06 -1,7E-05 -4E-05 -4,7E-05 -1,8E-05 -2,2E-08 -2,2E-08 -2,2E-08
1,50% 0 -2,2E-08 -2,2E-08 -2,2E-08 -2,2E-08 -2,2E-08 -2,2E-08 -2E-06 -2,8E-06 -2,2E-08 -2,2E-08 -2,2E-08
2% 0 -2,2E-08 -2,2E-08 -2,2E-08 -2,2E-08 -2,2E-08 -2,2E-08 -2,2E-08 -2,2E-08 -2,2E-08 -2,2E-08 -2,2E-08
3% 0 -2,2E-08 -2,4E-08 -1,2E-07 -2,5E-07 -3,5E-07 -6,4E-07 -6,8E-07 -2,5E-07 -2,2E-08 -2,2E-08 -2,2E-08
5% 0 -2,2E-08 -2,6E-08 -2,8E-07 -7,1E-07 -1,4E-06 -3,9E-06 -6E-06 -3,2E-06 -2,2E-08 -2,2E-08 -2,2E-08
10% 0 -2,2E-08 -2,2E-08 -5,3E-08 -8,3E-08 -8,2E-08 -2,4E-07 -4,3E-07 -2,7E-07 -2,2E-08 -2,2E-08 -2,2E-08

Table 4.9: Individual vegas, replication method model. Table
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Here we display the vega profiles implied by a constant parameter Ho-Lee model and the replication
method model:

Figure 4.30: Parallel smile vegas, Ho-Lee model.

0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0

ATM 0 -3,7E-06 -1,6E-05 -3,9E-05 -6,8E-05 -0,00012 -0,00021 -0,00024 -0,0001 1,49E-09 1,49E-09 1,49E-09

Table 4.10: Individual vegas, Ho-Lee model. Table

2 year swaps have 8 underlying floating Libor payments and 2 underlying fixed rate payments.
Consequently, they depend on the caplet volatilities corresponding to the first 9 maturity caplet
volatilities.

There are several general observations that can be made. In all cases the Ho-Lee sensitivities are
higher than those implied by the replication method, even when bumping the entire corresponding
volatility smile, which can again be explained due to the larger magnitude of Ho-Lee implied
convexity adjustments compared to replication method convexity adjustments. Stressed market
scenarios imply higher caplet sensitivities, see A.11, nevertheless sensitivities never exceed 10
basispoints, see Figure A.10. Conclusively, holding a 1 million Euro notional position in a linear
Libor derivative even under stressed market scenarios one should not expect higher than a 1
Eurocent deviations for every basispoint move of the underlying caplet volatility, therefore the
induced vega risks of linear instruments are negligible.
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Chapter 5

Conclusions and further research

Our main goal was to derive a curve calibration algorithm that can simultaneously calibrate the
Libor curve with volatility dependent convexity adjustments, which we have, given 2 combined
with Equations (4.36) and (A.8). We have translated the convexity adjustment into the depen-
dency of the underlying distributions of pre-settlement realised interest rates given by DT

Dt
and

the spot Libor rate LT , we have further looked at how the convexity adjustment can be mod-
elled using simple one-factor short-rate models, which assume positive correlation between DT

Dt
and the spot Libor rate LT , see (A.37). We have compared our resulting convexity adjustments
to a replication method model that assumes independence between DT

Dt
and the spot Libor rate

LT . Equation (4.30) implies a positive relationship between convexity adjustments and the un-
derlying correlation between pre-settlement interest rates and the spot Libor rate. Ho-Lee shows
higher convexity adjustments than the replication method model. Which makes sense due to the
underlying assumptions about the covariance between pre-settlement interest rates and the spot
Libor rate. The nested calibration algorithm 2 converges after 5-10 convexity adjustment itera-
tions, with stopping criterium |C(n) −C(n−1)| < 10−12 and 10−14 for Psolve. Choice of a high
enough boundary is important due to the unfeasible effects observed for the convexity adjustments
in Figures 4.11b and 4.11a. Due to the maturity mismatch between futures and caplets, when
using caplet volatilities to forecast the corresponding forward rate via the convexity adjustment in
curve calibration it will have dependencies on the surrounding caplet volatilities too, as has been
observed in Section 4.6.2. Finally due to small vegas observed in Sections 4.6 and A.11 we can
conclude that modelling volatility dependent convexity adjustments introduces negligible vegas
when pricing Libor rate derivatives.

There are 3 main topics of interest for further research. Firstly, an extension into the multi-
curve framework of joint calibration of the overnight and 3-month Libor curves is possible. From
Equation (3.12), provided an exact solution exists it becomes clear that the Libor curve on the
interval [T0, Tn] is not dependent on the overnight curve. Therefore, Libor curve calibration
using futures remains the same, the only difference being that the convexity adjustment now also
dependent on both curves. Given that we can find functional forms of the convexity adjustment

of the form: C(P(3m),P(O), σ
(θ)
P ). We can extend the nested calibration algorithm 2 into the

multi-curve framework. Finally, Libor rate derivatives are still being issued in large volumes, even
though banks in the Libor panel will no longer be encouraged to provide Libor sport rate quotes
after 2021, []. Therefore an extension into a multi-curve framework with overnight, Libor and
alternative reference rate curves is necessary, see for an example [34].
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[29] P. Jäckel and A. Kawai. The future is convex. Wilmott Magazine, 15, 2005.

[30] G. Kirikos and D. Novak. Convexity conundrums: Presenting a treatment of swap convexity in the
hall-white framework. Risk magazine, 10:60–61, 1997.

[31] A. Lyashenko and F. Mercurio. Looking forward to backward-looking rates: A modeling framework
for term rates replacing libor. Available at SSRN 3330240, 2019.

[32] J. Mayle and S. I. Association. Standard Securities Calculation Methods: Fixed Income Securities
Formulas for Price, Yield, and Accrued Interest. Number v. 1 in Standard Securities Calculation
Methods: Fixed Income Securities Formulas for Price, Yield, and Accrued Interest. Securities Industry
Association, 1993.

[33] F. Mercurio. The present of futures: valuing eurodollar-futures convexity adjustments in a multi-curve
world. Available at SSRN 2987832, 2017.

[34] F. Mercurio. A simple multi-curve model for pricing sofr futures and other derivatives. 2018.

[35] M. Morini. Understanding and Managing Model Risk: A practical guide for quants, traders and
validators. John Wiley & Sons, 2011.

[36] M. Musiela and M. Rutkowski. Martingale methods in financial modelling, 2005, 2005.

[37] A. Pelsser. Efficient methods for valuing interest rate derivatives. Springer Science & Business Media,
2013.

[38] V. Piterbarg. Funding beyond discounting: collateral agreements and derivatives pricing. Risk,
23(2):97, 2010.

[39] V. Piterbarg and M. Renedo. Eurodollar futures convexity adjustments in stochastic volatility models.
Available at SSRN 610223, 2004.

[40] V. Pozdnyakov and J. M. Steele. On the martingale framework for futures prices. Stochastic Processes
and their Applications, 109(1):69–77, 2004.

[41] S. Shreve. Stochastic calculus for finance I: the binomial asset pricing model. Springer Science &
Business Media, 2012.

[42] S. E. Shreve. Stochastic calculus for finance II: Continuous-time models, volume 11. Springer Science
& Business Media, 2004.

[43] J. Sidenius. Libor market models in practice. Journal of Computational Finance, 3(3):5–26, 2000.

[44] M. L. Stigum and F. L. Robinson. Money market and bond calculations. Irwin Professional Publ.,
1996.

[45] N. Vaillant. Convexity adjustments between futures and forward rates using a martingale approach.
Probability tutorials, 1999.

[46] R. White and I. Yukinori. Eight ways to strip your caplets: An introduction to caplet stripping.
OpenGamma Quantitative Research, 2014.

72



Chapter A

Appendix

A.1 Black’s formula

Lemma A.1.1 (Black’s formula). Let LT be a spot Libor rate with accruing period [T,M ], let Lt be the
corresponding forward rate specified by the dynamics:

dLt/(Lt + θ) = σtdW
M
t .

Where θ is chosen such that Lt+θ is strictly positive. Then theM -forward expectation of the corresponding
Libor caplet is given by:

EM [((LT + θ)− (K + θ))+|Ft] = (Lt + θ)Φ(d+)− (K + θ)Φ(d−) = Black(Lt + θ,K + θ, v, T − t).

With d± =
ln
(
Lt+θ
K+θ

)
± v2(T − t)/2

v
√
T − t

and v =

√
1

T − t
T∫
t

σ2
udu.

Proof. See [7] or [2] for proof.

A.2 One factor short rate model examples

A.2.1 Ho-Lee

We will start with the Ho-Lee model, which assumes σf (t, T ) is a positive deterministic function of time

σf (t) independent of the maturity T . After imposing σP (t, t) = 0 we get σP (t, T ) =
T∫
t

σf (t, u)du =

σf (t)(T − t). This gives short rate dynamics:

drt = θtdt+ σtdWtQ. (A.1)

Here θt = Where θt depends on σt due to martingale relationships, note:

v2 =
1

T

∫ T

0

(σP (u,M)− σP (u, T ))2du

=
1

T

∫ T

0

(σf (u)(M − u)− σf (u)(T − u))2du

=
τ2

T

∫ T

0

σf (u)2du (A.2)

and

Ω(0, T ) =

∫ T

0

(σP (u,M)− σP (u, T ))σP (u,M)du

=

∫ T

0

σf (u)τσf (u)(M − u)du
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=

∫ T

0

σf (u)2τ(M)du−
∫ T

0

σf (u)2τudu

=

∫ T

0

σf (u)2duτ(M)−
∫ T

0

σf (u)2uduτ (A.3)

This implies for the Futures rate using the Ho-Lee model:

Fut0 =
1

τ

( P (0, T )

P (0,M)
exp

(∫ T

0

σf (u)2duτ(M)−
∫ T

0

σf (u)2uduτ
)
− 1
)
. (A.4)

Choosing σf (t) = σf constant gives us for the caplet lognormal volatility, Ω and the futures rate:

v = σfτ. (A.5)

Ω(0, T ) =
σ2
f

2
Tτ(T + 2τ). (A.6)

Fut0 =
1

τ

( P (0, T )

P (0,M)
exp

(σ2
f

2
Tτ(T + 2τ)

)
− 1
)
. (A.7)

Giving convexity adjustment:

C0 =
1

τ

P (0, T )

P (0,M)

(
exp

(σ2
f

2
Tτ(T + 2τ)

)
− 1
)
. (A.8)

Using (A.5), the corresponding forward rate L0 converted to Libor discount factors using Equation (2.4.1),
T the starting date of the underlying spot Libor and the corresponding θ-shift at the money caplet volatility
σ

(θ)
T (L0) the resulting convexity adjustment is given by:

CHL(T, σ
(θ)
T (L0), L0) =

1

τ

P (0, T )

P (0,M)

(
exp

(
σ

(θ)
T (L0)2

2τ

(
L0 + θ

L0 + 1
τ

)2

T (T + 2τ)

)
− 1

)

=
1

τ

P (0, T )

P (0,M)

(
exp

(
σ

(θ)
T (L0)2

2τ

(
(1− (1− τθ)P (0,M)

P (0, T )

)2

T (T + 2τ)

)
− 1

)
(A.9)

Analogously an expression for the convexity under the Hull-White model can be obtained.

A.2.2 Hull-White

The Hull-White model is specified by:

σf (t, T ) = σ(t) exp(−λ(t)(T − t)),

σ(t) and λ(t) are positive deterministic functions and intuitively the Hull-White model volatility σf (t, T )
captures the tendency of the instantaneous forward rate volatility to increase close to the start of the
accruing period. After imposing σP (t, t) = 0 we get

σP (t, T ) =

T∫
t

σf (t, u)du =
σ(t)

λ(t)
[1− exp(−λ(t)(T − t))].

Which leads to:

v2 =
1

T

∫ T

0

(σP (u,M)− σP (u, T ))2du

=
1

T

∫ T

0

(σ(u)

λ(u)
[1− exp(−λ(u)(M − u))]− σ(u)

λ(u)
[1− exp(−λ(u)(T − u))]

)2

du

=
1

T

∫ T

0

σ2(u)

λ2(u)
[exp(−λ(u)(T − u))− exp(−λ(u)(M − u))]2du (A.10)

and

Ω(0, T ) =

∫ T

0

(σP (u,M)− σP (u, T ))σP (u,M)du
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=

∫ T

0

σ(u)2

λ(u)2
[exp(−λ(u)(T − u))− exp(−λ(u)(M − u))][1− exp(−λ(u)(M − u))]du. (A.11)

For constant λ and σ we get the following caplet lognormal volatility, Ω and futures rate:

v =

√
σ2

2λ3T
(1− exp(−2λT ))(1− exp(−λτ))2. (A.12)

Ω(0, T ) =
σ2

λ3
[1− 1

2
(1 + exp(−λT )) exp(−λτ)](1− exp(−λT ))(1− exp(−λτ)). (A.13)

Fut0 =
1

τ

( P (0, T )

P (0,M)
exp

(σ2

λ3
[1− 1

2
(1 + exp(−λT )) exp(−λτ)](1− exp(−λT ))(1− exp(−λτ))

)
− 1
)
.

(A.14)

C0 =
1

τ

P (0, T )

P (0,M)

(
exp

(σ2

λ3
[1− 1

2
(1 + exp(−λT )) exp(−λτ)](1− exp(−λT ))(1− exp(−λτ))

)
− 1

)
.

(A.15)

A.3 Change of numeraire

Due to market completeness the value of any FT -measurable payoff B(T )V (T ) is unique, therefore:

B(t)EBt
[
B(T )Y (T )

B(T )
|Ft

]
= A(t)EAt

[
B(T )Y (T )

A(T )
|Ft

]
. (A.16)

Which implies:

EBt [Y (T )|Ft] = EAt
[
Y (T )

B(T )A(t)

B(t)A(T )
|Ft

]
. (A.17)

Which proves the result. Theorem 1.4.2 of [2].

A.4 Penalty matrices

Given the optimization problem (2.46) we chose our penalty matrices to be: λP = λ2
1A
>
1 A1 + λ2

2A
>
2 A2

With λ1A1 = λ1


0 ... ... 0

−1 1
... 0

...
. . .

. . . 0
0 ... −1 1

 and λ2A2 = λ2


0 ... ... ... 0
0 ... ... ... 0
1 −2 1 ... 0

0
. . .

. . .
. . . 0

0 ... 1 −2 1

.

Here λ1 = λ2 = 0.0003, such that both volatility surfaces reprice the corresponding caps within 1 basis-
point, the choice of these weighing constants is completely arbitrary and depends on the stability of the
underlying optimization problem and depends on the tradeoff between repricing error and smoothness. λ1

penalizes high second order derivatives, while λ2 penalizes high first order derivatives, in order to ensure
a smooth termstructure in the time direction. See [46] for more details.

A.5 Shift transformation

Black’s formula is given in A.1. The present value of the caplet is given by:

P (0,M)τBlack(L0 + θ, σ
(θ)
T (L0), L0 + θ, T ).

The 1/τ caplet volatility is given by the equation:

Black(L0 + θ, σ
(θ)
T (L0), L0 + θ, T ) = Black(L0 + 1/τ, σ

(1/τ)
T (L0), L0 + 1/τ, T ).
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Writing out Black’s formula gives:

(L0 + 1/τ)(N(d+(x, 1/τ)−N(d−(x, 1/τ)) = (L0 + θ)(N(d+(x2, θ)−N(d−(x2, θ))

With x = σ
(θ)
T (L0) and x2 = σ

(1/τ)
T (L0) and with d±(x, θ) =

ln
(
L0+θ
L0+θ

)
± x2(T )/2

x
√
T

= ±x
√
T/2. With N

the standard normal cummulative distribution function. Note this further gives for x > 0:(
2N

(
x
√
T

2

)
− 1

)
=

L0 + θ

L0 + 1/τ

(
2N

(
x2

√
T

2

)
− 1

)
.

Note the following holds for x > 0:

2N(x)− 1 = 2

x∫
0

1√
2π

exp

(
−1

2
u2

)
du

=
2√
2π

∞∑
i=0

x∫
0

(
− 1

2
u2
)i

i!
du

=
2√
2π

∞∑
i=0

(
−1

2

)i
x2i+1

i!(2i+ 1)

=
1√
2π

(x− 1

6
x3 +O(x5))

Using the approximation 2N (x)− 1 = 1√
2π
x proves the result.

A.6 Cubic spline interpolation

A.6.1 Curve cubic spline interpolation

Let 0 < T0 < ... < TN , with discount curve spine point vector given by (1, P (0, T0), ..., P (0, TN )). Let y
given by Equation (2.3.3) be the corresponding yield curve with spine-point vector y = (y(0), .., y(TN )).
Let y′ and y′′ be the corresponding derivative vectors at the spine points. Cubic-splines interpolation
rests on imposing a second order differentiable yield curve with continuous second order derivatives:

y′′(T ) =

(
y′′ (Ti)

Ti+1 − T
Ti+1 − Ti

+ y′′ (Ti+1)
T − Ti
Ti+1 − Ti

)
if T ∈ [Ti, Ti+1]. (A.18)

After integrating twice and imposing continuity at the spine points of y′ and y we get the known equation
for the yield curve on [0, TN ]:

y(T ) =
(Ti+1−T)3

6hi
y′′i + (T−Ti)3

6hi
y′′i+1 + (Ti+1 − T )

(
yi
hi
− hi

6
y′′i

)
+ (T − Ti)

(
yi+1

hi
− hi

6
y′′i+1

)
,

if T ∈ [Ti, Ti+1], (A.19)

with hi = Ti+1 − Ti, y′′ is obtained from y by equations for i ∈ {0, ..., N − 1}:

hi−1

6
y′′i−1 +

hi−1 + hi
3

y′′i +
hi
6
y′′i+1 =

1

hi−1
yi−1 −

(
1

hi−1
+

1

hi

)
yi +

1

hi
yi+1. (A.20)

Cubic spline interpolation fully determines the yield curve on [0, TN ] after specifying y, y−1, y
′′
−1 and y′′N .

The choice of y′′−1 = y′′N = 0 corresponds to ’natural’ cubic splines, which make sense from the perspective
that at points 0 and TN there should be no instantaneous change of the underlying yield curve slope.

y−1 corresponds to the virtual yield curve point such that exp(−y−10) = P (0, 0) = 1 and can be chosen
freely. Choosing y−1 correctly is not obvious, but what can be denoted in the below plot that by choosing
y−1 = 0 we get oscillations in the initial parts of the forward curves, as visible in Figures A.1 and A.2:
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Figure A.1: 3MEUR forward curve.

Figure A.2: 3MUSD forward curve.

The effect is moderate for the European curve, but much worse for the USD curve. This effect can be
explained by looking at the corresponding yield curves:

Figure A.3: 3MEUR yield curve.
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Figure A.4: 3MUSD yield curve.

and denoting due to the differing levels of y0 and y−1 imposing y−1 = 0 creates a yield curve interpolation
procedure with a very high first order derivative on [0, T0], which sticks initially on the interval [T0, T1]
creating an oscillation because y1 and y0 are on very similar levels unlike y0 and y−1. This problem can
be solved by imposing a straight line through the yield curve on [0, T1], giving the following condition for
y−1:

y−1 = y0 − h−1
y1 − y0

h0
. (A.21)

Resulting in the forward curves visible in Figure 3.6 and the corresponding non-oscillating yield curves:

(a) 3MEUR yield curve

(b) 3MUSD yield curve.

Figure A.5: 25th of January 2018, yield curves, cubic spline interpolation with y(0) given by
(A.21).
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A.6.2 Smile cubic spline interpolation

Provided a volatility smile like the one given in Figure 2.15, with known strike vector (K1, ...,Kn−1) and
smile spine-point vector (σ1, .., σn−1) we introduce ghost points σ0 at K0 = a and σn at Kn = b, such
that σ′′n = σ′′0 = 0 and σ0 extends such that both the sets (K0, σ0), (K1, σ1) and (K2, σ2) lay on a straight
line in the (K,σ) plane, see (A.21). Doing the same for (Kn−2, σn−2), (Kn−1, σn−1) and (Kn, σn) gives
an unfeasible smile where σ(K) blows up for K > Kn depending on σn−1 and σn−2. We induce a slope

penalizer p = 5 such that σK =
K−Kn−1

p

σn−1−σn−2

Kn−1−Kn−2
+ σn−1 for K ≥ Kn−1.

A.7 Curve uniqueness

The Banach fixed point theorem states:

Lemma A.7.1 (Banach fixed point theorem). Given some function F : Rn → Rn. Given the existence
of some domain Σ ⊂ Rn such that for any P1, P2 ∈ Σ the following holds:

||P1 − P2|| ≤ q||F (P1)− F (P2)||,

with q ∈ [0, 1) then for any norm || · || the Picard iteration scheme: Pn = F (Pn−1) gives a converging
sequence with unique solution P given any starting point P0 in Σ.

Proof. Firstly we show the existence of a limit. Note: ||Pn − Pn−1|| ≤ q||F (Pn)− F (Pn−1)|| = q||Pn−1 −
Pn−2|| ≤ qn−1||P1 − P0||. Given that q ∈ [0, 1) the sequence Pn clearly converges to some limit P . Using
different initial values P̂0 and P0 uniqueness follows from noting lim

n→∞
||P̂n−Pn|| = lim

n→∞
||F (P̂n)−F (Pn)|| ≤

q lim
n→∞

||P̂n − Pn||. Which only holds if lim
n→∞

||P̂n − Pn|| = 0.

Assuming linear discount factor interpolation we can denote that the discount spine point vector solution
of (4.5) is given implicitly by:

P = A(C(P),Q)−1b = F(P),

analogously to Equation (3.9). We will limit our attention to the discount curve determined by the first
deposit and futures rate, which will be generalised at the end of this appendix, giving the system1:(

1 + τ−1dep1 0
−1 1 + τ0(Fut1 − C1(P))

)(
P (0, T1)
P (0, T2)

)
=

(
1
0

)
,

with:

• P = (P (0, T0), P (0, T1)).

• C(P) = (C1(P), C2(P)).

• b =

(
1
0

)
.

• A(C(P),Q) =

(
1 + τ−1dep1 0
−1 1 + τ0(Fut1 − C1(P))

)
.

We define F such that:
F(P) = A(C(P),Q)−1b

Note F(P) =(
1

1+τ−1dep1
0

1
(1+τ−1dep1)[1+τ0(Fut1−C1(P))]

1
[1+τ0(Fut1−C1(P))]

)(
1
0

)
=

(
1

1+τ−1dep1
1

(1+τ−1dep1)[1+τ1(Fut1−C1(P))]

)
Existence and uniqueness of the curve resulting from the nested calibration routine given by (4.6) now
follows from the Banach fixed point theorem if we can prove:

||F(P1)− F(P2)|| ≤ q||P1 −P2|| (A.22)

for some q ∈ [0, 1) for all Pi in some feasible domain Σ for the spine-point vector.
Now note:

||F(P1)− F(P2)||1
1Assuming the deposit maturity equals the futures rate starting date, if the starting date is earlier, little changes

in this proof.
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=
1

1 + τ−1dep1

∥∥∥∥ 1

1 + τ0(Fut1 − C1(P2))
− 1

1 + τ0(Fut1 − C1(P1)

∥∥∥∥
1

. (A.23)

Be the mean value theorem we can rewrite the criterium (A.22) to:∥∥∥∥ 1

1 + τ−1dep1

τ0
[1 + τ0(Fut1 − x)]2

∥∥∥∥
1

(C1(P2)− C1(P1)) ≤ q‖P2 −P1‖1, (A.24)

which is implied by:

|∇C1(P1) · (P2 −P1)|
||P2 −P1||1

≤ q[1 + τ0(Fut1 − x)]2(1 + τ−1dep1)/τ0

for some x between C1(P2) and C1(P1). Which is again implied by:

max(|∇C1(P1)|) ≤ q[1 + τ0(Fut1 − x)]2(1 + τ−1dep1)/τ0

|v| is the corresponding vector v with absolute values of the corresponding scalars. Given feasible val-
ues for (1 + τ−1dep1)(1 + τ0(Fut1 − x)), in very unrealistic scenarios for deposit rates and forward
rates of −10%, provided τi ≈ 1/4 when calibrating the 3-month curve, the condition is implied by
max(|∇C1(P1)|) ≤ 4q · 0.9753.

Which gives very crude criterium: | ∂C1
∂Pi

(P)| < 4a3q, for any P ∈ Σ and any i ∈ {1, 2} that guarantees

(A.22), with a = 0.975 and some q < 1.
Using n futures rates with tenor-structure T1 < ... < Tn and deposit rate with maturity T0 in calibration
the criterium can be generalised to: n| ∂Cj

∂Pi
(P)| < 4an+2q any j ∈ {1, ..., n} and i ∈ {1, ..., n + 1} that

guarantees convergence and unicqueness of the curve, with a = 0.975. Using some feasible subset of Rn+1

for the spine point vector, we choose (0, 2]n+1. Finally the criterium can be summarized as:∣∣∣∣∂Cj∂Pi

∣∣∣∣ (P) < 4an+2q/n for any j ∈ {1, ..., n}, i ∈ {1, ..., n+ 1}, (A.25)

for any P ∈ Σ = (0, 2]n+1 with q < 1 and a = 0.975. Criterium can be relaxed by choosing Σ smaller or
a larger.

A.8 Libor forward rate density

∂

∂K
EM

[
(Lt −K)+|Ft

]
= lim

∆K→0

∞∫
K+∆K

(x− (K + ∆K))f(x)dx−
∞∫
K

(x−K)f(x)dx

∆K

= lim
∆K→0

−∆K
∞∫

K+∆K

f(x)dx−
K+∆K∫
K

(x−K)f(x)dx

∆K

= −
∞∫
K

f(x)dx. (A.26)

from which follows:

∂2

∂K2
EM

[
(Lt −K)+|Ft

]
= −

∂

∂K

∞∫
K

f(x)dx

= lim
∆K→0

−
K∫

K+∆K

f(x)dx

∆K

= f(K) (A.27)

Result follows analogously using a put payoff.
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A.9 Out of the money choice for density functions

Carr and Madan have derived, see [9], for any κ:

f(LT ) = f(κ) + f ′(κ)((LT − κ)+ − (κ− LT )+) +

∞∫
κ

f(x)(LT − x)+dx+

κ∫
−∞

f(x)(x− LT )+dx. (A.28)

Which implies, after choosing κ = L0:

EM [f(LT )] = f(L0) +

∞∫
L0

f(x)P0(L0, x)dx+

L0∫
−∞

f(x)P0(L0, x)dx. (A.29)

≈ f(L0) +

b∫
L0

f(x)P0(L0, x)dx+

L0∫
a

f(x)P0(L0, x)dx (A.30)

Such that:

∣∣∣∣∣EM [f(LT )]−

(
f(L0) +

b∫
L0

f(x)P0(L0, x)dx+
L0∫
a

f(x)P0(L0, x)dx

)∣∣∣∣∣ < ε2.

Given an upper bound ε1 for the induced error in approximation (4.27). Combining Equations (4.29) and
(A.30) finally gives∣∣∣∣f(b)

∂

∂K
C(L0, b)− f(a)

∂

∂K
P (L0, a) + f ′(a)P (L0, a)− f ′(b)C(L0, b)

∣∣∣∣ < ε1 + ε2 (A.31)

This means that both the values aswell as strike derivatives of the calls and puts have to be negligible at
the boundaries for arbitrary choices of f , which is the case when choosing out of the money calls and puts
for the density ψL0 .

A.10 Ho-Lee M-forward measure correlation

Let (Q, D) and (Q, P (·,M)) be the risk neutral and M -forward numeraire pairs given by Equations (2.2.2)
and (2.1.2). We assume the induced drift after measure change is given by (4.16). We know from Equations
(4.10) and (4.12):

rs = f(s, s) = f(0, s) +

s∫
0

σf (u, s)σP (u, s)du+

s∫
0

σf (u, s)dWQ
u (A.32)

f(0, ·) depends on the Libor curve P (0, ·). This gives after imposing D0 = 0:

DT = exp

 T∫
0

rsds


= exp

 T∫
0

f(0, s) +

s∫
0

σf (u, s)σP (u, s)duds+

T∫
0

s∫
0

σf (u, s)dWQ
u ds


= exp

 T∫
0

f(0, s) +

s∫
0

σf (u, s)σP (u, s)duds+

T∫
0

T∫
u

σf (u, s)dsdWQ
u


= exp

 T∫
0

f(0, s) +

s∫
0

σf (u, s)σP (u, s)duds+

T∫
0

σP (u, T )dWQ
u


= exp

 T∫
0

f(0, s) +

s∫
0

σf (u, s)σP (u, s)duds−
T∫

0

σP (u, T )σP (u,M)du+

T∫
0

σP (u, T )dWM
u

 (A.33)
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We choose:

AD = exp

 T∫
0

f(0, s) +

s∫
0

σf (u, s)σP (u, s)duds−
T∫

0

σP (u, T )σP (u,M)du


and

AL = (L0 + 1/τ) exp

−1

2

T∫
0

[σP (u,M)− σP (u, T )]2du

 .

Such that, see Equation (4.19):

LT + 1/τ = AL exp

 T∫
0

σP (u,M)− σP (u, T )dWM
u


and

DT = AD exp

 T∫
0

σP (u, T )dWM
u


Using Equations (A.33) and Equation (4.19) we can now derive:

CovM (LT , DT ) = CovM (LT , DT )

= EM [LTDT ]− EM [LT ]EM [DT ]

= ADALEM
exp

 T∫
0

σP (u,M)dWM
u


−ADALEM

exp

 T∫
0

σP (u,M)− σP (u, T )dWM
u

EM
exp

 T∫
0

σP (u, T )dWM
u


= ADAL exp

1

2

T∫
0

σP (u,M)2du

−ADAL exp

1

2

T∫
0

σP (u,M)− σP (u, T )]2 + σP (u, T )2du


(A.34)

Further notice:

σL =

√
EM [L2

T ]− EM [LT ]2

= AL

√√√√√EM

exp

2

T∫
0

σP (u,M)− σP (u, T )dWM
u

− EM

exp

 T∫
0

σP (u,M)− σP (u, T )dWM
u

2

= AL

√√√√√exp

2

T∫
0

[σP (u,M)− σP (u, T )]2du

− exp

 T∫
0

[σP (u,M)− σP (u, T )]2du



= AL exp

1

2

T∫
0

[σP (u,M)− σP (u, T )]2du


√√√√√
exp

 T∫
0

[σP (u,M)− σP (u, T )]2du

− 1

 (A.35)

and

σD =

√
EM [D2

T ]− EM [DT ]2

= AD

√√√√√EM

exp

2

T∫
0

σP (u, T )dWM
u

− EM

exp

 T∫
0

σP (u, T )dWM
u

2
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= AD

√√√√√exp

2

T∫
0

σP (u, T )2du

− exp

 T∫
0

σP (u, T )2du



= AD exp

1

2

T∫
0

σP (u, T )2du


√√√√√
exp

 T∫
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This gives:

CorrM (LT , DT ) =
CovM (LT , DT )
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A.11 Stressed vega profiles

Here we show, analogously to Section 4.6 the vega profiles of instruments depending on the 3M Euro Libor
curve under stressed rates and volatilities, see Figures 4.10 for clarification.

A.11.1 Cash deposits

Firstly cash deposits:

Figure A.6: Individual vegas, replication method model.

0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0

-0,75% 0 0 0 0 0 0 0 0 0 0 0 0
-0,50% 0 0 0 0 0 0 0 0 0 0 0 0
-0,25% 0 0 0 0 0 0 0 0 0 0 0 0
0,00% 0 0 0 0 0 0 0 0 0 0 0 0
0,25% 0 0 0 0 0 0 0 0 0 0 0 0
0,50% 0 0 0 0 0 0 0 0 0 0 0 0
1,00% 0 0 0 0 0 0 0 0 0 0 0 0
1,50% 0 0 0 0 0 0 0 0 0 0 0 0
2% 0 6,6E-07 0 0 0 0 0 0 0 0 0 0
3% 0 7,71E-07 0 0 0 0 0 0 0 0 0 0
5% 0 1,81E-09 0 0 0 0 0 0 0 0 0 0
10% 0 0 0 0 0 0 0 0 0 0 0 0

Table A.1: Individual vegas, replication method model. Table
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Here we display the vega profiles implied by a constant parameter Ho-Lee model and the replication
method model:

Figure A.7: Parallel smile vegas, Ho-Lee model.

0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0

ATM 0 4,09E-06 0 0 0 0 0 0 0 0 0 0

Table A.2: Individual vegas, Ho-Lee model. Table

A.11.2 FRAs

Secondly Receiver-FRAs:
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Figure A.8: Individual vegas, replication method model.

0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0

-0,75% 0 9,99E-11 8,88E-11 -1E-09 -5,4E-09 -2,7E-08 1,89E-06 5,21E-06 3,46E-06 9,99E-11 1,01E-10 1,01E-10
-0,50% 0 9,99E-11 1,01E-10 1,01E-10 9,99E-11 9,99E-11 1,01E-10 1,01E-10 9,99E-11 9,99E-11 1,01E-10 1,01E-10
-0,25% 0 9,99E-11 -2,7E-10 -4,4E-10 9,99E-11 9,99E-11 1,01E-10 1,01E-10 9,99E-11 9,99E-11 1,01E-10 1,01E-10
0,00% 0 9,99E-11 -2,8E-09 -2,5E-08 -5,6E-08 -8,6E-08 3,77E-07 6,33E-07 9,99E-11 9,99E-11 1,01E-10 1,01E-10
0,25% 0 9,99E-11 1,01E-10 4,77E-11 -1E-08 -8,3E-08 6,35E-06 1,4E-05 6,75E-06 9,99E-11 1,01E-10 1,01E-10
0,50% 0 -8,4E-11 -5,2E-09 -1,1E-08 -5,3E-09 9,99E-11 1,01E-10 1,72E-06 2,4E-06 9,99E-11 1,01E-10 1,01E-10
1,00% 0 -1,2E-09 -4,3E-08 -1,4E-07 -2E-07 -3,2E-07 6,26E-06 1,29E-05 5,04E-06 9,99E-11 1,01E-10 1,01E-10
1,50% 0 -1,6E-08 -6,8E-08 -1,1E-07 -1,1E-07 -1,7E-07 5,54E-06 1,47E-05 9,17E-06 9,99E-11 1,01E-10 1,01E-10
2% 0 -6,3E-08 -1,8E-07 -2,5E-07 -3E-07 -5,3E-07 1,45E-05 3,16E-05 1,43E-05 9,99E-11 1,01E-10 1,01E-10
3% 0 -1,6E-07 -5E-07 -7E-07 -7,7E-07 -1,2E-06 3,17E-05 7,27E-05 3,64E-05 9,99E-11 1,01E-10 1,01E-10
5% 0 -4,9E-08 -3E-07 -7E-07 -9,5E-07 -1,7E-06 5,01E-05 0,000117 6,07E-05 9,99E-11 1,01E-10 1,01E-10
10% 0 -1,2E-09 -1,4E-07 -5,8E-07 -9,9E-07 -1,9E-06 7,17E-05 0,000175 9,87E-05 9,99E-11 1,01E-10 1,01E-10

Table A.3: Individual vegas, replication method model. Table
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Here we display the vega profiles implied by a constant parameter Ho-Lee model and the replication
method model:

Figure A.9: Parallel smile vegas, Ho-Lee model.

0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0

ATM 0 -4,7E-07 -2,1E-06 -4,8E-06 -7,5E-06 -1,6E-05 0,000596 0,001454 0,000814 -2,2E-12 -2,2E-12 -2,2E-12

Table A.4: Individual vegas, Ho-Lee model. Table

A.11.3 Swaps

Finally fixed-for-floating swaps:
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Figure A.10: Individual vegas, replication method model.

0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0

-0,75% 0 -1,5E-10 -1,7E-09 -1,5E-07 -7,5E-07 -2,3E-06 -5,5E-06 -7,1E-06 -3,5E-06 -1,5E-10 -1,5E-10 -1,5E-10
-0,50% 0 -1,5E-10 -1,5E-10 -1,5E-10 -1,5E-10 -1,5E-10 -1,5E-10 -1,5E-10 -1,5E-10 -1,5E-10 -1,5E-10 -1,5E-10
-0,25% 0 -1,5E-10 -4,8E-08 -7,1E-08 -1,5E-10 -1,5E-10 -1,5E-10 -1,5E-10 -1,5E-10 -1,5E-10 -1,5E-10 -1,5E-10
0,00% 0 -1,5E-10 -3,8E-07 -3,4E-06 -7,6E-06 -8,8E-06 -5,6E-06 -1,1E-06 -1,5E-10 -1,5E-10 -1,5E-10 -1,5E-10
0,25% 0 -1,5E-10 -1,5E-10 -7,1E-09 -1,4E-06 -7E-06 -1,8E-05 -2E-05 -6,7E-06 -1,5E-10 -1,5E-10 -1,5E-10
0,50% 0 -2,5E-08 -7E-07 -1,5E-06 -7,3E-07 -1,5E-10 -1,5E-10 -1,7E-06 -2,4E-06 -1,5E-10 -1,5E-10 -1,5E-10
1,00% 0 -1,8E-07 -5,6E-06 -1,9E-05 -2,8E-05 -3,2E-05 -3E-05 -1,9E-05 -5E-06 -1,5E-10 -1,5E-10 -1,5E-10
1,50% 0 -2,1E-06 -9E-06 -1,4E-05 -1,5E-05 -1,7E-05 -2E-05 -2E-05 -9,2E-06 -1,5E-10 -1,5E-10 -1,5E-10
2% 0 -8,4E-06 -2,3E-05 -3,3E-05 -4E-05 -5,2E-05 -6E-05 -4,6E-05 -1,4E-05 -1,5E-10 -1,5E-10 -1,5E-10
3% 0 -2,1E-05 -6,5E-05 -9,2E-05 -0,0001 -0,00012 -0,00013 -0,00011 -3,6E-05 -1,5E-10 -1,5E-10 -1,5E-10
5% 0 -6,5E-06 -4E-05 -9,2E-05 -0,00013 -0,00016 -0,0002 -0,00017 -6,1E-05 -1,5E-10 -1,5E-10 -1,5E-10
10% 0 -1,7E-07 -1,8E-05 -7,7E-05 -0,00013 -0,00018 -0,00026 -0,00025 -9,9E-05 -1,5E-10 -1,5E-10 -1,5E-10

Table A.5: Individual vegas, replication method model. Table
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Here we display the vega profiles implied by a constant parameter Ho-Lee model and the replication
method model:

Figure A.11: Parallel smile vegas, Ho-Lee model.

0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0

ATM 0 -6,5E-05 -0,00028 -0,00065 -0,00104 -0,00156 -0,00217 -0,00206 -0,00081 2,08E-12 2,08E-12 2,08E-12

Table A.6: Individual vegas, Ho-Lee model. Table
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Chapter B

Market data

Instrument
Rates,
with futures

Rates,
with implied FRA

Start Maturity Test spine points Convexity

Cash 21Mar18 -0,327 -0,33 29-1-2018 21-3-2018 1.0 MAR18 0,0000
MAR18 100,3225 -0,32 21-3-2018 21-6-2018 1,0005 JUN18 0,0000
JUN18 100,3125 -0,31 20-6-2018 20-9-2018 1,0013 SEP18 0,0000
SEP18 100,2975 -0,30 19-9-2018 19-12-2018 1,0021 DEC18 0,0000
DEC18 100,2525 -0,25 19-12-2018 19-3-2019 1,0029 MAR19 0,0000
MAR19 100,1625 -0,16 20-3-2019 20-6-2019 1,0035 JUN19 0,0000
JUN19 100,0525 -0,05 19-6-2019 19-9-2019 1,0039 SEP19 0,0000
SEP19 99,9425 0,06 18-9-2019 18-12-2019 1,0040 DEC19 0,0000
DEC19 99,8325 0,17 18-12-2019 18-3-2020 1,0039 MAR20 0
MAR20 99,7275 0,27 18-3-2020 18-6-2020 1,0035 JUN20 0
JUN20 99,6175 0,38 17-6-2020 17-9-2020 1,0028 SEP20 0
SEP20 99,5125 0,49 16-9-2020 16-12-2020 0,1002 DEC20 0
DEC20 99,4075 0,59 16-12-2020 16-3-2021 1,0006

4Y 0,1905 0,19 29-1-2018 25-1-2022 0.9991
5Y 0,3545 0,35 29-1-2018 25-1-2023 0.9923
6Y 0,4965 0,50 29-1-2018 25-1-2024 0.9821
7Y 0,6205 0,62 29-1-2018 27-1-2025 0.9700
8Y 0,7345 0,73 29-1-2018 27-1-2026 0.9565
9Y 0,839 0,84 29-1-2018 26-1-2027 0.9415
10Y 0,934 0,93 29-1-2018 25-1-2028 0.9253
12Y 1,0965 1,10 29-1-2018 25-1-2030 0.9083
15Y 1,277 1,28 29-1-2018 25-1-2033 0.8727
20Y 1,437 1,44 29-1-2018 26-1-2038 0.8192
25Y 1,494 1,49 29-1-2018 27-1-2043 0.7402
30Y 1,5115 1,51 29-1-2018 27-1-2048 0.6767
40Y 1,5185 1,52 29-1-2018 25-1-2058 0.6235
50Y 1,489 1,49 29-1-2018 25-1-2068 0.5333
60Y 1,471 1,47 29-1-2018 25-1-2078 0.4673

0.4088

Table B.1: 25th of January 2018, 3M Euribor
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Instrument
Rates,
with futures

Rates,
with implied FRA

Start Maturity Test spine points Convexity

Cash 21Mar18 1,76031 1,76031 29-1-2018 21-3-2018 1

MAR18 98,1425 1,85 21-3-2018 21-6-2018 0,9973 MAR18 SP 0,0214
JUN18 97,9325 2,06 20-6-2018 20-9-2018 0,9926 JUN18 SP 0,0824
SEP18 97,7875 2,19 19-9-2018 19-12-2018 0,9874 SEP18 SP 0,1720
DEC18 97,6525 2,35 19-12-2018 19-3-2019 0,9820 DEC18 SP 0,2895
MAR19 97,5775 2,42 20-3-2019 20-6-2019 0,9763 MAR19 SP 0,4344
JUN19 97,4925 2,49 19-6-2019 19-9-2019 0,9702 JUN19 SP 0,6061
SEP19 97,4375 2,56 18-9-2019 18-12-2019 0,9641 SEP19 SP 0,8038
DEC19 97,3725 2,62 18-12-2019 18-3-2020 0,9580 DEC19 SP 1,0270
MAR20 97,3525 2,63 18-3-2020 18-6-2020 0,9517 MAR20 SP 1,2751
JUN20 97,3325 2,67 17-6-2020 17-9-2020 0,9453 JUN20 SP 1,5474
SEP20 97,3125 2,68 16-9-2020 16-12-2020 0,9391 SEP20 SP 1,8435
DEC20 97,2775 2,70 16-12-2020 16-3-2021 0,9328 DEC20 SP 2,1628

4Y 2,472 2,472 29-1-2018 25-1-2022 0,9266
5Y 2,521 2,521 29-1-2018 25-1-2023 0,9054
6Y 2,562 2,562 29-1-2018 25-1-2024 0,8810
7Y 2,596 2,596 29-1-2018 27-1-2025 0,8568
8Y 2,628 2,628 29-1-2018 27-1-2026 0,8328
9Y 2,655 2,655 29-1-2018 26-1-2027 0,8092
10Y 2,68 2,68 29-1-2018 25-1-2028 0,7862
12Y 2,72 2,72 29-1-2018 25-1-2030 0,7635
15Y 2,755 2,755 29-1-2018 25-1-2033 0,7196
20Y 2,788 2,788 29-1-2018 26-1-2038 0,6590
25Y 2,788 2,788 29-1-2018 27-1-2043 0,5693
30Y 2,776 2,776 29-1-2018 27-1-2048 0,4950
40Y 2,753 2,753 29-1-2018 25-1-2058 0,4328
50Y 2,721 2,721 29-1-2018 25-1-2068 0,3321
60Y 2,721 2,721 29-1-2018 25-1-2078 0,2593

0,19711631

Table B.2: 25th of January 2018, 3M USD Libor
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Maturity
\ Strike

-0,75% -0,50% -0,25% 0,00% 0,25% 0,50% 1,00% 1,50% 2% 3% 5% 10%
ATM
strikes

ATM
volatilities

25-1-2019 6,33 4,26 5,37 8,43 10,77 12,74 15,97 18,59 20,8 24,39 29,91 42,11 -0,3 4,55
25-7-2019 7,19 5,06 5,67 8,12 10,11 11,81 14,64 16,93 18,85 21,97 26,46 33,19 -0,25 5,68
25-1-2020 8,79 6,3 6,44 8,81 10,62 12,19 14,8 16,92 18,7 21,57 25,67 31,76 -0,16 7,39
25-1-2021 11,63 9,03 8,41 10,41 11,75 12,84 14,71 16,31 17,7 20 23,34 28,33 0,03 10,59
25-1-2022 13,62 11,14 10,16 11,65 12,65 13,46 14,89 16,2 17,38 19,39 22,4 26,95 0,22 12,53
25-1-2023 14,89 12,7 11,62 12,67 13,41 14,02 15,09 16,06 16,94 18,48 20,85 24,55 0,38 13,73
25-1-2024 15,68 13,79 12,75 13,47 14,02 14,47 15,25 15,94 16,56 17,63 19,32 22,13 0,51 14,5
25-1-2025 16,34 14,66 13,65 14,11 14,51 14,84 15,42 15,93 16,39 17,21 18,53 20,81 0,63 15
25-1-2026 16,81 15,28 14,3 14,57 14,84 15,07 15,49 15,86 16,2 16,82 17,89 19,82 0,74 15,28
25-1-2027 17,14 15,71 14,76 14,9 15,06 15,21 15,48 15,73 15,96 16,4 17,22 18,86 0,84 15,4
25-1-2028 17,33 16 15,08 15,11 15,19 15,27 15,42 15,56 15,68 15,94 16,51 17,82 0,94 15,4
25-1-2030 17,47 16,29 15,43 15,32 15,28 15,25 15,22 15,19 15,16 15,16 15,33 16,15 1,09 15,21
25-1-2033 17,4 16,37 15,58 15,35 15,2 15,08 14,87 14,69 14,54 14,32 14,21 14,66 1,27 14,77
25-1-2038 17,09 16,21 15,5 15,18 14,93 14,72 14,38 14,08 13,84 13,49 13,19 13,39 1,42 14,13
25-1-2043 16,8 15,99 15,33 14,96 14,67 14,42 14 13,66 13,38 12,98 12,63 12,73 1,47 13,68
25-1-2048 16,53 15,77 15,13 14,74 14,42 14,14 13,69 13,32 13,02 12,6 12,22 12,29 1,49 13,33

Table B.3: Flat 3M Euribor shifted lognormal cap volatility surface, 25th of January 2018, ICAP.
shifting parameter is 3 percent.

Maturity
\ Strike

-0,50% -0,25% 0,00% 0,25% 0,50% 0,75% 1,00% 2% 2% 3% 3% 4%
ATM
strikes

ATM
volatilities

25-1-2019 93,6 85,9 78,5 71,5 57,35 45,08 36,46 23,72 13,51 13,51 15,87 21,55 2,11 13,42
25-1-2020 68,4 65 63,5 61,8 48,83 40,09 34,05 25,29 17,84 16,36 15,78 16,39 2,31 16,73
25-1-2021 69,2 68,7 67,8 66,5 52,4 43,25 37,01 28,2 21,28 19,15 18,65 19,73 2,42 19,34
25-1-2022 72,2 71,9 71,3 70,2 55,69 46,04 39,55 30,57 23,87 21,28 20,53 21,14 2,48 21,34
25-1-2023 74,7 74,5 74 73,1 58,53 48,35 41,58 32,39 25,79 22,89 21,91 22,15 2,52 22,83
25-1-2024 76 76 75,6 74,8 60,35 49,8 42,86 33,59 27,1 24,01 22,81 22,71 2,55 23,81
25-1-2025 75,9 76,1 75,8 75,1 61 50,29 43,33 34,13 27,8 24,6 23,24 22,83 2,58 24,29
25-1-2026 75,7 75,9 75,7 75,1 61,34 50,52 43,55 34,42 28,23 24,97 23,48 22,81 2,61 24,54
25-1-2027 75,3 75,6 75,5 75 61,51 50,58 43,6 34,54 28,48 25,17 23,57 22,69 2,63 24,62
25-1-2028 74,9 75,2 75,1 74,7 61,49 50,48 43,51 34,52 28,56 25,23 23,53 22,46 2,66 24,57
25-1-2030 74,1 74,5 74,5 74,1 61,66 50,39 43,37 34,44 28,62 25,24 23,4 22,07 2,69 24,4
25-1-2033 73,2 73,5 73,4 73,1 62,1 50,29 43,11 34,15 28,43 25 23,03 21,45 2,72 23,97
25-1-2038 71 71,2 71 70,6 62,28 49,65 42,25 33,27 27,69 24,23 22,15 20,38 2,75 23,05

Table B.4: Flat 3M USD Libor shifted lognormal cap volatility surface, 25th of January 2018,
ICAP. shifting parameter is 0 percent.
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