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1 Introduction

Rendezvous problems and search games (with two players) are related problems. In a

rendezvous problem the players like to meet as soon as possible, while in a search game

one of them tries to avoid the meeting as long as possible. So in a rendezvous problem the

players have a common interest and in a search game the players have conflicting interests.

We consider in this thesis a rendezvous problem on a discrete labeled interval and a search

game on a star with players having motion detection abilities.

This thesis consists of two parts. The first part (Chapter 2) is about the rendezvous

problem on a discrete labeled interval. This problem was first introduced by Alpern in [1].

Most results for this problem are summarized in [4], Chapter 13. This thesis contains new

results extending the results in [4]. The work was done in Delft in February 2008 until May

2008 and in July 2008. Moreover a part of the results in Chapter 2 were presented at the 13th

International Symposium on Dynamics Games and Applications in Wroc law, Poland.

The second part of this thesis (Chapter 3) is about a search game on a star with players

having motion detection abilities. This problem was proposed by Prof. S. Gal (University

of Haifa, Israel) and until now no results were available. The work on this problem was

done in June 2008 in Haifa resulting in (numerical) solutions for the game and insight in its

asymptotic behavior.
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2 Rendezvous search on a discrete labeled interval

2.1 Introduction to rendezvous search

In a rendezvous search problem two people (who we will call players or searchers) are both

placed in a known search region Q according to known independent distributions supported

on Q. They will move at unit speed and their common goal is to meet as soon as possible.

The solution to the problem describes for both searchers a search strategy such that their

expected meeting time is minimized. The rendezvous search problem in this form was first

introduced by Alpern in [1].

0 2 2(n-2) 2(n-1)2(n-1)-11

bbbbb b b

Figure 2.1: Discrete interval with 2n − 1 nodes labeled as 0, 1, . . . , 2(n − 1).

We will consider a rendezvous search problem in which the search region is a discrete

interval with 2n − 1 nodes labeled as 0, 1, . . . , 2n − 2. So in our problem the players have a

common labeling of the nodes. Alpern describes in [4] also problems in which the searchers

do not have a common labeling of the search region. The distance between two consecutive

nodes is one and thus the searchers move each time step from one node to another. We

assume the searchers can initially only be placed on the n even numbered nodes. In Figure

2.1 the discrete interval is showed and the marked nodes are even numbered nodes. Since the

searchers move at unit speed they will be on even numbered nodes at even times and on odd

numbered nodes at odd times, which ensures that they will always meet on an node and not

between two nodes. This assumption was first made by Howard in [7] and he showed that in

this way the discrete problem is a good discretization method for a continuous version of the

rendezvous problem on a labeled interval.

Most work of Alpern and Howard concerning the rendezvous problem on the discrete

labeled interval is summarized in [2] and [4], Chapter 13. Some additional results by Howard,

Chester and Tütüncü can be found in [5] and [6]. Next we introduce the mathematical

notation which will be used throughout this chapter. The notation is based on the notation

used in [4].

2.1.1 Mathematical notation

Consider again a discrete interval with 2n− 1 nodes such as defined above. Define Ne as the

set of even nodes such that

Ne = {0, 2, . . . , 2(n − 1)} .

We will often use an index j with j = 0, . . . , n − 1, such that j corresponds to the even node

2j ∈ Ne. In this section we consider two versions of our rendezvous problem, namely an

asymmetric version and a symmetric version. In the asymmetric rendezvous problem Γa(p, q)

two players are placed independently on Ne according to respectively p and q, where p and q

are both distributions supported on Ne. As mentioned before, the players have the common
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goal to meet as soon as possible by adopting some search strategy. In the symmetric problem

Γs(p) two players are placed independently on Ne, but now according to the same distribution

p supported on Ne. Again the players have the common goal to meet as soon as possible, but

now they must adopt the same search strategy. It is convenient to interpret p as a vector in

R
n with elements p0, p1, . . . , pn−1. Then pj for j = 0, . . . , n − 1 is the probability that the

corresponding player is initially placed on node 2j ∈ Ne. In the same way it is possible to

interpret q as vector in R
n.

A search strategy describes a path in time starting on node 2j at time t = 0 for each

even node 2j ∈ Ne. Let S denote the set of all search strategies which can be adopted by

an individual player. Then a strategy s ∈ S describes for each 2j ∈ Ne a path such that

sj(0) = 2j and sj(t + 1) = sj(t) ± 1. In this way we model the assumption that each time

step a player must move to an adjacent node. So consider for instance a rendezvous problem

with n = 4. Then Ne = {0, 2, 4, 6} consists of four even points and a strategy s ∈ S could

look like 



s0(0) = 0, s0(1) = 1, s0(2) = 2, s0(3) = 3, . . .

s1(0) = 2, s1(1) = 3, s1(2) = 4, s1(3) = 3, . . .

s2(0) = 4, s2(1) = 5, s2(2) = 4, s2(3) = 3, . . .

s3(0) = 6, s3(1) = 5, s3(2) = 4, s3(3) = 3, . . .

(2.1)

It is convenient to interpret the paths s0(·), . . . , sn−1(·) as paths of a set of agents {s0, . . . , sn−1}
of a player, with agent j starting at even node 2j ∈ Ne. These paths can also be drawn in

a picture, see Figure 2.2 for the picture corresponding to the example strategy. The lines
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Figure 2.2: Search strategy represented in a picture

represent the paths of the different agents at the first three time steps. Here we used only

solid lines, because in this case no group of agents split up after meeting. However in general

to distinguish the paths it may be necessary to use different colors or line styles in such figures

(for instance in Figure 2.3). The next step is to define the notion of meeting time and meeting

time matrix. We will first do this for the more general asymmetric problem and then adapt

the definitions to the symmetric problem.

Consider the asymmetric problem Γa(p, q) and consider a pair of strategies (f, g) ∈ S ×S
such that player I adopts strategy f ∈ S and player II adopts strategy g ∈ S. Then the

meeting time mf,g(i, j) of agent fi and agent gj is defined as

mf,g(i, j) = min {t ≥ 0 | fi(t) = gj(t)} . (2.2)
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So this defines the first time at which agents fi and gj are on the same node. Notice this is

equivalent to the time at which player I and player II meet each other under the assumption

that player I is initially placed on node i and player II on node j. Hence the expected meeting

time T̂ of player I and player II can be written as function of the chosen search strategies in

the following way

T̂ (f, g) =
∑

0≤i,j≤n−1

mf,g(i, j)piqj = pTM(f, g)q,

where the meeting time matrix M(f, g) is defined as a n×n-matrix with mf,g(i, j) being the

element on the (i + 1)th row and (j + 1)th column. For the symmetric rendezvous problem

Γs(p) we can introduce the following simplified notation:

T̂ (f) ≡ T̂ (f, f), M(f) ≡ M(f, f), mf (i, j) ≡ mf,f (i, j).

The expected meeting time T̂ (f) is then given by

T̂ (f) =
∑

0≤i,j≤n−1

mf (i, j)pipj = pT M(f)p. (2.3)

Notice that for any strategy s′ ∈ S the meeting time matrix M(s′) is symmetric, because for

all i, j ∈ {0, . . . , n−1} we have ms′(i, j) = ms′(j, i) . Consider for instance again the strategy

s such as defined in equation (2.1). For that strategy we have ms(0, 0) = 0, ms(0, 1) = 3,

ms(1, 2) = 2, etc. Computing all meeting times for this example results in the meeting time

matrix

M(s) =




0 3 3 3

3 0 2 2

3 2 0 1

3 2 1 0


 .

In both the asymmetric and the symmetric rendezvous problem each player can either

adopt a pure search strategy such that he always plays that strategy or he can adopt a mixed

search strategy in which he assigns a probability to each pure strategy. The next lemma

shows that we can assume that the players will not adopt mixed strategies.

Lemma 2.1 For the asymmetric rendezvous problem Γa(p, q) and the symmetric problem

Γs(p), we can assume that the players will always adopt pure strategies.

Proof: Consider the asymmetric problem Γa(p, q). Suppose player I adopts a mixed strategy

such that he plays the pure strategy f i ∈ S with probability πi and suppose player II adopts

a mixed strategy such that he plays the pure strategy gj ∈ S with probability ρj. The

expected meeting time for a specific combination of pure strategies is described in (2.2) and

consequently the expected meeting for this pair of mixed strategies is equal to

∑

i,j

πiρj T̂ (f i, gj).
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Now define i′, j′ such that T̂ (fi′ , gj′) ≤ T̂ (f i, gj) for all i, j, then

T̂ (f i′ , gj′) ≤
∑

i,j

πiρjT̂ (f i, gj)

and hence the pure pair (f i′ , gj′) results in an expected meeting time smaller than or equal

to the expected meeting time for the mixed pair of strategies. Consequently we can assume

that the players will always adopt pure strategies in Γa(p, q). Using the same arguments with

p = q, ρj = πj and gj = f j proves the same result for Γs(p). �

We introduced notation in the section and moreover we just proved in Lemma 2.1.1 we

can assume that the players will adopt pure strategies. Now we can define what is meant

by an optimal solution for the rendezvous search problem. Remember in such a problem

the players would like to meet as soon as possible, so the expected meeting time has to be

minimized. In the asymmetric rendezvous problem Γa(p, q) a pair of strategies (f, g) ∈ S ×S

minimizing T̂ (f, g) is called optimal. In the same way, in the symmetric rendezvous problem

Γs(p) a strategy f ∈ S which minimizes T̂ (f) is called optimal. Next we will outline the

contents of the remaining part of this chapter.

2.1.2 Outline of the chapter

Both the symmetric and the asymmetric rendezvous problem as described above are still

unsolved. Only for special distributions (like the uniform distribution) the optimal solution

is known. All other known results describe ways to simplify the search for optimal solutions

by restricting respectively S and S × S to smaller sets. For information about the known

results, see [2], [5] and [7].

In Section 2.2 we consider the symmetric rendezvous problem and relate search strategies

in S to proper binary trees. Next we use this relation to derive a recurrence relation describing

the solution of the symmetric rendezvous problem for any distribution, such that this problem

can be easily solved using the computer.

After that, we consider in Section 2.3 the more general asymmetric rendezvous problem

Γa(p, q). We introduce the term sticky pairs and describe an algorithm to approach the

optimal pair of strategies for any p, q. Moreover we solve the asymmetric problem for a

particular class of distribution in which p and q are defined such that the players are likely to

start at opposite ends of the interval. Finally, we compare Γa(p, p) with Γs(p) and investigate

whether the players can profit from being allowed to adopt distinct strategies.

In Section 2.4 the results from Section 2.2 and 2.3 are summarized and some ideas for

future research are discussed.

2.2 Symmetric rendezvous problem

In the symmetric rendezvous problem Γs(p) two players are placed independently on the set of

even nodes Ne according to a given distribution p. Their common goal is to adopt a strategy

f ∈ S such that T̂ (f) is minimized. It is already known (see [2] and [7]) that the search for

optimal strategies can be simplified by restricting S to a smaller set containing at least one
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optimal strategy. This restriction has nice properties, which we can use to derive a recurrence

relation for solving the symmetric problem numerically. This algorithm is the main result of

this section. Besides this result we will also prove some known results in a new way, which

might eventually lead to new results in the future.

2.2.1 Restricting the set of strategies

The first restriction we can make, starts with an observation made in [7]. Consider the agents

starting at opposite ends of the interval and call these agents respectively the left sweeper

and the right sweeper just as in [7]. Since there are no agents starting left to the left sweeper

or right to the right sweeper, it is optimal for the left sweeper to move always to the right

and for the right sweeper to move always to the left. In this way the sweepers meet on node

n − 1 at time n − 1. So the set of strategies S can be restricted such that s0(t) = t and

sn−1(t) = 2(n − 1) − t for all s ∈ S. Moreover it seems reasonable that a strategy cannot be

optimal if one of the agents passes a sweeper. This leads to the following result, which was

already proven in [7].

Theorem 2.2 (see [7]) The symmetric rendezvous problem Γs(p) has an optimal strategy

in which no agent passes one of the sweepers.

Proof: Consider a strategy in which some agents pass a sweeper. Since there exist an agent

who passes a sweeper at least one meeting takes place left to the left sweeper or right to

right sweeper, namely the meeting with the other sweeper. Then modify this strategy such

that every agent will follow a sweeper to the center when meeting him. Then any meeting

which took place left to left sweeper or right to the right sweeper will now take place strictly

earlier. Other meetings will take place at the same time as before. Therefore the modified

strategy gives a lower expected meeting time than the original one. Hence Γs(p) has an

optimal strategy in which no agent passes a sweeper. �

Consequently the set S can be further restricted such that for all strategies s ∈ S and for

all i ∈ {0, . . . , n − 1} holds

{
si(t) = s0(t) =⇒ ∀t′ > t : si(t

′) = s0(t′),
si(t) = sn−1(t) =⇒ ∀t′ > t : si(t

′) = sn−1(t′).

Assume from now on that S consists of strategies corresponding to the restrictions above.

Moreover notice these restrictions also imply that at time n− 1 all agents are in the center of

the interval on node n − 1. Hence the meeting time of two agents is at most n − 1 and thus

the minimal expected meeting time for Γs(p) is less than or equal to n−1 for any distribution

p supported on Ne. For more restrictions it is useful to introduce two other properties from

[2]. In that article the properties are defined for general networks, but in this section the

corresponding definitions for the symmetric problem on the interval will be given.

Definition 2.1 (see [2], Definition 2) A strategy s ∈ S is sticky if for any time t, and

any i, j ∈ {0, . . . , n − 1} holds,

si(t) = sj(t) =⇒ ∀t′ > t : si(t
′) = sj(t

′).
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So in a sticky strategy two agents stay together once they have met. For the symmetric

rendezvous problem the following result is known.

Theorem 2.3 (see [2], Theorem 2) Consider an instance of the symmetric rendezvous

problem Γs(p) with arbitrary distribution p. Then there exists an optimal strategy s ∈ S,

which is sticky.

A formal proof of this theorem is given in [2], here we will only explain the intuitive idea

behind the proof. Suppose two players have both adopted the strategy given in Figure 2.3.

Notice then the agents starting at nodes 2 and 4 will meet on node 3 at time 1, but do not
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Figure 2.3: Non-sticky symmetric strategy

join each other. Moreover at time 1, they both have not met the other two agents yet. So it

should be optimal for them to choose the same path between time 1 and 3.1 Thus the players

should play according to a sticky search strategy. In this example at least one of the two

strategies in Figure 2.4 will be at least as good as the strategy in Figure 2.3. So Definition
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Figure 2.4: Possible improvements to the non-sticky strategy in Figure 2.3

2.1 gives a further restriction to the set of strategies S. Next we define the property geodesic

which gives a necessary condition for a strategy to be optimal. In [2] the property is defined

for pairs of strategy such that it is also applicable to the asymmetric rendezvous problem. In

this section we only give the definition for the symmetric rendezvous problem. Later on, in

Section 2.3, we will give the full definition such as given in [2].

1In some cases it may also be optimal for them to act according to Figure 2.3. However there certainly
exists an optimal strategy such that they take the same path after time 1.
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Definition 2.2 (see [2], Definition 1) A strategy s ∈ S is geodesic if for any even node

2i ∈ {0, . . . , n−1} and any consecutive meetings at times t0 and t1 when agent si meets some

distinct agents sj (at time t0) and sj′ (at time t1) of the another player (who has also adopted

s), we have |si(t1) − si(t0)| = t1 − t0.

In [4] the following result is mentioned for symmetric (and the asymmetric) rendezvous

problem on the interval, however without really proving it.

Lemma 2.4 Consider a geodesic strategy s ∈ S, then an agent si can only change direction

when meeting an agent of the other player.

Proof: Consider a strategy s ∈ S and suppose agent si changes direction at time τ without

meeting another agent. Every agent starts initially at some even node and will meet another

agent at time 0, namely the agent of the other player which is initially placed at the same even

node. At time n−1 the agent will meet one of the sweepers. Therefore at time τ agent si will

always be between two consecutive meetings at times t0 and t1. Since si changes direction

between times t0 and t1 we must have |si(t1) − si(t0)| < t1 − t0 and thus s is not geodesic.

Consequently if s is geodesic, then an agent can only change direction when meeting another

agent. �

Next a theorem which uses the notion of geodesic strategies and gives a necessary condition

for a strategy to be optimal.

Theorem 2.5 (see [2], Theorem 1) Consider a symmetric rendezvous problem Γs(p) with

pj > 0 for j = 0, . . . , n−1. If a strategy s ∈ S is optimal for this problem, then s is a geodesic

strategy.

For a formal proof of this theorem see [2]. Again we will only give the intuitive idea

behind the proof. Suppose in the symmetric rendezvous problem Γs(p) with pj > 0 for all

j ∈ {0, . . . , n− 1} the searchers will play according to the strategy showed in Figure 2.5. The
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Figure 2.5: Non-geodesic symmetric strategy

agents starting at nodes 2, 4 and 6 all change direction without meeting another agent at some

time. The agents starting at nodes 4 and 6 are together at this time, but they have already

met in the previous time step. So from Lemma 2.4 it is obvious that the strategy in Figure

2.5 is not a geodesic strategy. In the figure it is not difficult to see how the strategy could be

improved. The agent starting at node 2 should go to the left in the first time step and the



10

agents starting at nodes 4 and 6 should go to the right in the second time step. Applying these

modifications results in the strategy showed in Figure 2.6. Notice this strategy is geodesic

and all meetings between pairs of agents will take place earlier than or at the same time

as the corresponding meetings in the original strategy. Moreover we assumed pj > 0 for all

j = 0, . . . , n − 1 and hence the modification improves the expected meeting time. If pj = 0
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Figure 2.6: Improvement to the non-geodesic strategy in Figure 2.5

for some j ∈ {0, . . . , n − 1}, then the modification does not necessarily improve the expected

meeting time (it can remain unchanged), but the expected meeting time will certainly not

increase. Now the following corollary is a direct consequence of Theorems 2.3 and 2.5.

Corollary 2.6 Define the subset Sopt ⊂ S as the set of strategies in S which are both sticky

and geodesic. Then there exists an optimal strategy s ∈ S for Γs(p) such that s ∈ Sopt.

Proof: Theorem 2.3 tells us that there exists an optimal strategy for Γs(p) which is sticky.

Moreover if pj > 0 for all j = 0, . . . , n−1, then such a strategy needs to be geodesic according

to Theorem 2.5. If pj = 0 for some j ∈ {0, . . . , n − 1}, then it is possible to modify every

strategy such that it becomes geodesic without increasing the expected meeting time. Hence

there exists an optimal strategy which is in Sopt. �

Consequently if we are looking for an optimal strategy for Γs(p) we can restrict ourselves

to strategies in Sopt. Moreover for small n we can show that it is not possible to restrict

ourselves to a smaller subset of Sopt. This can shown by constructing the optimal strategy

for a big number of random distributions and observing that after some time each strategy

in Sopt was at least once the unique optimal strategy. For large n we can not perform this

experiment, because the size of Sopt grows exponentially, as we will show later on. However

we may expect that for all n we cannot restrict ourselves to a smaller subset of Sopt. This

idea is summarized in the following conjecture.

Conjecture 2.7 Consider a strategy f ∈ Sopt defined for a symmetric problem on Ne. Then

there exists a probability distribution p supported on Ne such that f is the unique optimal

strategy for the symmetric rendezvous problem Γs(p).

2.2.2 Relating strategies to proper binary trees

Figures 2.2-2.6 contain example of strategies. These strategies can be either sticky, geodesic

or both. The strategies which are both sticky and geodesic (Figures 2.2, 2.4, 2.6) and thus
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contained in Sopt, share an important feature which turns out to hold for all strategies in Sopt.

In the next subsection we will use this feature to derive a recurrence relation for solving the

symmetric problem numerically.

Consider again Figures 2.2, 2.4 and 2.6. Removing all axes and labels and adding vertices

to the meeting points and all possible starting locations (the even nodes on the horizontal

axis) results in four trees, see Figure 2.7. These trees are all proper binary trees, which means

b b b b
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b

b

(c) from Figure 2.4 (right)

b b b b b
b

b

b
b

(d) from Figure 2.6

Figure 2.7: Trees constructed from strategies in Figures 2.2 and 2.4, 2.6.

that every vertex (except the leafs) has exactly two children. This is not surprising, because

in a meeting point always exactly two groups of agents meet and in a sticky strategy we know

groups of agents will not split up after meeting. So the described method for constructing a

tree from a strategy results in a proper binary tree for all strategies in Sopt. Notice that in this

context the orientation of the trees is important, so the trees in Figures 2.7(b) and 2.7(c) are

assumed to be different trees. By removing all vertices from the trees in Figure 2.7 and again

bc

bc

bc
bc

bcbc

bc

bc
bc

bc
bc

bc bc

b b b b b b b

b

b

b

b

b

b

Figure 2.8: Drawing an arbitrary proper binary tree just as the ones in Figure 2.7

adding all axes and labels the original time-space plots for the strategies can be reconstructed.

So the process of construction a proper binary tree from a sticky geodesic strategy is reversible.

Moreover every proper binary tree can be drawn such that the corresponding sticky geodesic

strategy is obvious: for an arbitrary proper binary tree draw the leafs on a horizontal line with

the distance between two consecutive leafs equal to 2, next draw all edges with straight lines

making an angle of 45 degrees with the horizontal line on which the leafs are placed. For an

example of this procedure, see Figure 2.8. Consequently each proper binary tree corresponds

to a strategy in Sopt, which leads to the following lemma.
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Lemma 2.8 The method for constructing a proper binary tree from a sticky geodesic strategy

describes a one-to-one correspondence between Sopt and B, where B is the set of all proper

binary trees.

Proof: Take an arbitrary proper binary tree B ∈ B and construct a strategy f ∈ Sopt from

it such as described above. Then constructing a tree from f again results in B. Since B was

chosen arbitrarily, there exists a one-to-one correspondence between Sopt and B. �

A proper binary tree representing a strategy can also be interpreted in a more intuitive

way. Consider a strategy f ∈ Sopt with corresponding tree B ∈ B for a symmetric rendezvous

problem played on n even nodes. Assume B is drawn in the same way as the trees in Figure

2.7. Number the leafs of B from left to right with 0, . . . , n− 1 and next place agent fj in the

leaf with number j for 0 ≤ j ≤ n− 1. Let the agents move at equal speed (without staying or

returning) towards the root of the tree, then the agents will meet in exactly the same order as

the agents in the rendezvous search on the interval where the players both adopt f . To obtain

the same expected time we only have to give the agents an equal speed such that they arrive

at the meeting points (branching points of B) at times equal to the times at which meetings

in the interval problem take place. The exact value of the speed is not really important (
√

2

to be precise), we can just attach time labels with the correct meeting time to the branching

points. Of course we need to know at which time the meetings occur and that information is

given by Lemma 2.9.

Lemma 2.9 Consider a strategy s ∈ Sopt and assume t ≤ n − 1. Next consider a meeting

between two groups of agents, then this meeting takes place at time t if and only if exactly

t + 1 agents are involved in the meeting.

Proof: Take an arbitrary strategy s ∈ Sopt and remember that such a strategy is both

sticky and geodesic.

⇒ Suppose two groups of agents meet at time t. Since s is a sticky strategy agents will not

split up once they have met. Therefore the agents involved in the considered meeting

at time t were placed in consecutive even nodes at time 0. Let agent sL be the left most

of these agents (so the agent with the smallest index in the group). In the same way

let agent sR be the right most of these agents. Notice that agents sL and sR cannot be

in the same group, because then using s is sticky we know all agents would have met

before time t. So this also implies that agents sL and sR meet at time t.

The agents starting left to agent sL are not involved in the meeting at time t. Moreover

s is assumed to be a sticky strategy. So agent sL will not meet any agent starting left

to him before the considered meeting at time t takes place. Then it follows by Lemma

2.4 that once agent sL moves to the left before time t he will certainly continue to move

to the left until time t, because he will certainly not meet any agent starting left to

him until time t. However if agent sL moves to the left at time t − 1 he cannot meet

an agent right to him (and in particular agent sR) at time t and hence agent sL will

certainly move to right in the first t time steps. In the same way it follows that agent

sR moves to the left in the first t time steps. So agents sL and sR move towards each
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other as fast as possible and will meet at time t. Thus initially the distance between

them must be equal to 2t. The distance between two consecutive even nodes is equal

to 2 and hence exactly t + 1 agents will be involved in the considered meeting at time

t; namely agents sL, sR and all agents starting in between them.

This holds for all meetings and thus it shows that if a meeting takes place at time t,

then exactly t + 1 agents are involved in the meeting.

⇐ Consider a meeting in which exactly t + 1 agents are involved. If this meeting takes

place at time t′ 6= t, then we just showed that exactly t′ + 1 6= t + 1 agents would be

involved in the meeting. Hence the meeting must take place at time t.

These two results hold for all strategies s ∈ Sopt. Hence combining the two results proves the

lemma. �

We can use this lemma to attach time labels to the nodes of the proper binary tree from

Figure 2.8, which results in Figure 2.9. Notice the leafs of the tree are labeled with a zero,

because they correspond to the placement of the players in the interval and that event takes

place at time zero.

bc0bc0 bc0bc0 bc0bc0 bc0
bc1
bc2

bc1
bc2
bc3

bc6

Figure 2.9: Time labels attached to the nodes of the tree from Figure 2.8

Lemma 2.8 shows the one-to-one correspondence between the set of sticky geodesic strategies

and the set of proper binary trees. Now consider a symmetric rendezvous problem on the

interval played with N even nodes, so Ne = {0, 2, . . . , 2(N − 1)}. Then obviously there is an

one-to-one correspondence between the sticky geodesic strategies for this particular problem

and the set of proper binary trees with exactly N leafs.

Starting at the root of a proper binary tree the tree has to split exactly N −1 times to end

with N leafs. So a proper binary tree with N leafs has exactly N − 1 branching points and

hence the number of such trees is given by the (N − 1)th Catalan number (see [10], Page 627,

Fact 5). The Catalan numbers grow exponentially (see A.1) and hence solving the symmetric

rendezvous problem by just analyzing all possible strategies (the brute force approach) takes

too much time already for relatively small values of N . In the next subsection we will discuss

a way to avoid this problem.
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2.2.3 Recurrence relation for the symmetric problem

In the previous subsection we showed a one-to-one correspondence between sticky geodesic

strategies and proper binary trees. We also showed how to interpret a proper binary tree as a

strategy for the symmetric rendezvous problem on the interval. We can use this construction

method to derive a recurrence relation describing the solution of the symmetric rendezvous

problem.

Consider the symmetric rendezvous problem Γs(p) with a fixed distribution p supported

on Ne and suppose f ∈ Sopt is an optimal strategy for this problem. Let S(a,b)
opt ⊂ Sopt denote

the set of strategies such that there exists a meeting in which agents (and no other agents)

starting at even nodes 2a, 2(a + 1), . . . , 2b ∈ Ne are involved. Next let f (a,b) ∈ S(a,b)
opt denote

the best strategy for Γs(p) contained in S(a,b)
opt . The strategy f (a,b) ∈ S(a,b)

opt contains a meeting

in which agents (and no other agents) starting at even nodes 2a, 2(a + 1), . . . , 2b ∈ Ne are

involved. Define h(a, b) as the contribution of their mutual meetings to T̂ (f (a,b)).

By definition, the set S(0,n−1)
opt is equal to Sopt. Hence f (0,n−1) is an optimal strategy for

Γs(p). The contribution of the mutual meetings of all agents to the expected meeting time is

just the expected meeting time and thus T̂ (f) = T̂ (f (0,n−1)) = h(0, n− 1). The next theorem

describes a recurrence relation which can be used to compute h(0, n − 1).

Theorem 2.10 Consider the symmetric rendezvous problem Γs(p) with a fixed distribution

p supported on Ne. Let S(a,b)
opt , f (a,b) and h(a, b) be defined as above, then h(a, a) = 0 and for

a < b we have

h(a, b) = min
a≤k<b

{h(a, k) + h(k + 1, b) + 2(b − a) (pa + . . . + pk) (pk+1 + . . . + pb)} . (2.4)

Proof: First consider the case where a = b. Notice h(a, a) can be seen as the meeting

between the agents of both players starting at the same even node 2a. By definition these

agents meet immediately and hence the contribution of this meeting to the optimal value of

Γs(p) is zero, which gives h(a, a) = 0 for a = 0, . . . , n − 1. Next consider a < b. Let B ∈ B
be the proper binary tree corresponding to f (a,b) and attach time labels to the nodes such

as described in the previous subsection. Moreover number the leafs from left to right with

numbers j = 0, . . . , n − 1, such that agent f
(a,b)
j will start in the leaf with number j in the

corresponding search problem on B. Now we can use B to compute values for the rendezvous

problem on the interval using the arguments from the previous subsection. So from now on

we will consider in this proof the rendezvous search problem on B.

Suppose the meeting between the agents starting at leafs with numbers a, . . . , b takes

place at branching point v of B. Next let w1 and w2 be the children of v such that the agents

starting at leafs with numbers a, . . . , k̄ pass w1 and agents starting at leafs with numbers

k̄ + 1, . . . , b pass w2 (also see Figure 2.10). According to Lemma 2.9 the time label (the

meeting time) attached to v is b − a. Next the probability that the actual meeting between

the two players takes place at v is equal to

2 (pa + . . . + pk̄)
(
pk̄+1 + . . . + pb

)
.
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b b b b

k+1a bk

b

b

b

v

w

w
2

1

Figure 2.10: Schematic view of a part of the binary tree B

Hence h(a, b) is the sum of h(a, k̄), h(k̄ + 1, b) and the contribution to h(a, b) resulting from

the meeting on v at time b − a, which gives

h(a, b) = h(a, k̄) + h(k̄ + 1, b) + 2(b − a) (pa + . . . + pk̄)
(
pk̄+1 + . . . + pb

)
.

We defined f̄ as a minimizing strategy in S(a,b)
opt and thus the previous expression is equal to

h(a, b) = min
a≤k<b

{h(a, k) + h(k + 1, b) + 2(b − a) (pa + . . . + pk) (pk+1 + . . . + pb)} ,

which proves the theorem. �

Now we can apply Theorem 2.10 with a = 0 and n − 1 to obtain a recurrence relation

describing the solution for a rendezvous search problem on Ne.

Corollary 2.11 Consider a rendezvous search problem Γs(p) with p supported on Ne. Then

solving (2.4) with a = 0 and b = n − 1 gives the optimal value for Γs(p).

min
0≤k<n−1

{h(0, k) + h(k + 1, n − 1) + 2(n − 1) (p0 + . . . + pk) (pk+1 + . . . + pn−1)} . (2.5)

Moreover an optimal strategy can be obtained by analyzing “the minimizing k’s” each time

(2.4) is evaluated for some a, b.

Proof: Take a = 0 and b = n − 1. All strategies in Sopt contain a meeting in which agents

starting at 0, 2, . . . , 2(n−1) are involved and hence S(a,b)
opt = Sopt. Of course this meeting is the

one in which the two sweepers meet and thus after this meeting the players have certainly met.

Hence computing h(0, n − 1) using (2.4) gives the optimal value for Γs(p). The minimizing

k’s describe the structure of the proper binary tree corresponding to a minimizing strategy.

So an optimal strategy can be obtained by analyzing these k’s. �

In general the symmetric rendezvous problem can only be solved numerically using (2.4).

However in some cases the solution can be obtained analytically. In the next subsection we

will give such an example.
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2.2.4 Analytical solutions to the recurrence relation

In [7] the symmetric rendezvous problem Γs(p) with p being a distribution supported on Ne

such that 0 < p0 < p1 < . . . < pn−1 is solved.2 In the unique optimal strategy for this

particular problem all agents move to the right until meeting the right sweeper. Once an

agent meets the right sweeper he follows him on his way to the center of the interval.

The proofs given in [7] are constructive proofs. Starting with an arbitrary strategy the

proofs describe how a strategy can be improved each time step unless an optimal strategy is

found. Using (2.4) the solution for this particular class of distribution can also be derived in

a more analytical way. This is shown in the next example.

Example 2.1 Consider the symmetric rendezvous problem Γs(p) with p being an distribution

supported on Ne such that 0 < p0 < p1 < . . . < pn−1. Then using (2.4) we can find

h(a, b) = 2
b−1∑

j=a

pj(b − j) (pj+1 + . . . + pb) (2.6)

and hence the minimal expected meeting time is equal to

h(0, n − 1) = 2
n−2∑

j=0

pj(n − 1 − j) (pj+1 + . . . + pn−1) . (2.7)

In the unique optimal strategy for this particular problem all agents move to the right until

meeting the right sweeper. Once an agent meets the right sweeper he follows him on his way

to the center of the interval.

Proof: We will prove (2.6) by induction. Evaluating (2.6) for b = a gives an empty sum and

hence h(a, a) = 0 which is indeed correct. Next assume (2.6) holds for 0 ≤ a ≤ m < n − 1.

Then applying (2.4) to h(a,m + 1) gives h(a,m + 1) = min{X(k) | a ≤ k < m + 1} with

X(k) = h(a, k) + h(k + 1,m + 1) + 2(m + 1 − a)

k∑

i=a

m+1∑

j=k+1

pipj .

Notice the assumption concerning (2.6) holds for any choice of a and is hence also applicable

to h(k + 1,m + 1). Since X(a) < X(k) for a < k < m + 1 (see A.2 for the proof) we have

h(a,m + 1) = X(a) and hence

h(a,m + 1) = h(a, a)︸ ︷︷ ︸
= 0

+h(a + 1,m + 1) + 2(m + 1 − a)

a∑

i=a

m+1∑

j=a+1

pipj .

2Actually, the problem solved in [7] is the asymmetric rendezvous problem Γa(p, q) with p, q supported on
Ne such that 0 < p0 < p1 < . . . < pn−1 and 0 < q0 < q1 < . . . < qn−1.
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By assumption, h(a + 1,m + 1) is given by (2.4) and thus

h(a,m + 1) = 2
m∑

j=a+1

pj(m + 1 − j) (pj+1 + . . . + pm+1) + 2(m + 1 − a)
m+1∑

j=a+1

papj ,

= 2

m∑

j=a

pj(m + 1 − j) (pj+1 + . . . + pm+1) ,

which is equal to (2.6) with b = m + 1. Then using induction we have now proved that (2.6)

holds for all a, b where 0 ≤ a ≤ b ≤ n− 1. It follows from the definition of h that the optimal

value for Γs(p) is equal to h(0, n − 1), which validates (2.7).

The computation in A.2 shows for all a, b that k = a is the unique minimizing k in the

evaluation of (2.6). Hence if the optimal strategy contains a meeting between agents (and no

other agents) starting at 2a, 2(a + 1), . . . , 2b, then in this meeting two groups of agents meet.

First a group consisting of a single agent starting at 2a and secondly a group consisting of the

agents starting at nodes 2(a + 1), . . . , 2b. So starting this analysis with a = 0 and b = n − 1

shows that every agent moves to the right until meeting the right sweeper (the agent starting

at node 2(n − 1)). This proves the structure of the optimal strategy. �

If the strict inequalities in Example 2.1 are relaxed such that p0 ≤ p1 ≤ . . . ≤ pn−1, then

(2.7) is still correct. However now this value could be obtained by different strategies, because

there might exist a, b such that the minimizing k in the evaluation of (2.4) is not unique. So

the strategy described in Example 2.1 is still optimal in this relaxed problem, but there might

exist other optimal strategies. If we have a symmetric rendezvous search problem in which

p0 ≥ p1 ≥ . . . ≥ pn−1, then we can derive the same kind of formulas by using a symmetry

argument.

Next we will give another example in which we assume an uniform distribution for the

placement of the players. The optimal value can be computed using Example 2.1. As we

mentioned above, in this case there might exist more than one optimal strategy. Alpern

showed in [2] (Theorem 5) that every strategy in Sopt is optimal for the symmetric rendezvous

problem with uniform distribution. The next example in combination with Lemma 2.12

provides an alternative proof for that theorem.

Example 2.2 Consider the symmetric rendezvous problem Γs(p̄) with p̄ being an uniform

distribution supported on Ne. So p̄j = 1
n

for j = 0, . . . , n − 1. Then the minimal expected

meeting time (also see [7]) is equal to

2

n2

n−1∑

m=1

m2 =
(2n − 1)(n − 1)

3n
. (2.8)

Moreover in this particular problem every sticky geodesic strategy has expected meeting time
(2n−1)(n−1)

3n
and thus every sticky geodesic strategy is an optimal strategy for Γs(p̄).

Proof: The uniform distribution satisfies p̄0 ≤ p̄1 ≤ . . . ≤ p̄n−1. Hence we can apply (2.7)
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with p̄j = 1
n

for j = 0, . . . , n − 1, which results in

2

n−2∑

j=0

p̄j(n − 1 − j) (p̄j+1 + . . . + p̄n−1) = 2

n−2∑

j=0

(n − 1 − j)2

n2
=

2

n2

n−1∑

m=1

m2.

In Lemma 2.12 we will prove that for each f ∈ Sopt the sum of the elements in the meeting

time matrix M(f) is equal to 2
∑n−1

m=1 m2. Hence we find

T (f) = p̄T M(f)p̄ =
2

n2

n−1∑

m=1

m2, for all f ∈ Sopt.

So every sticky geodesic strategy is an optimal strategy for Γs(p̄). �

We still have to prove a lemma concerning the sum of the elements in a meeting time

matrix. In this lemma we prove that the sum of the elements of all meeting time matrices

corresponding to a strategy in Sopt is the same.

Lemma 2.12 Take an arbitrary strategy f ∈ Sopt, then the sum of all elements in the meeting

time matrix M(f) is equal to 2
∑n−1

k=1 k2.

Proof: Take an arbitrary strategy f ∈ Sopt and let B ∈ B be the proper binary tree

corresponding to f . Next let V denote the set of all nodes of B and define M(v) for some

v ∈ V as the set of agents being together in v. So if v is branching point of B, then M(v) is

the set of all agents meeting in v. On the other hand if v is a leaf of B, then M(v) corresponds

to the placement on the interval of a single agent and hence contains only one agent. Let

N(v) be the number of agents in M(v), so N(v) = #M(v). Finally define σ(v) for some

v ∈ V as the sum of the mutual meeting times for the agents meeting in M(v), hence

σ(v) =
∑

i,j∈M(v),j≥i

mf (i, j).

Now we want to prove that for any v ∈ V holds

σ(v) =

N(v)−1∑

k=1

k2. (2.9)

Notice a leaf in the tree must corresponds to an event at time zero (the placement of an agent

on the interval). So in any leaf v ∈ V holds N(v) = 1 and σ(v) = 0, which implies (2.9) is

valid for all leafs of the tree. Now take an arbitrary branching point w ∈ V with children

w1, w2 ∈ V. Then M(w1) and M(w2) are disjunct sets and M(w) = M(w1) ∪ M(w2).

Moreover assume (2.9) is valid for w1 and w2. The strategy f is sticky, so the agents in

M(w1) have not met the agents in M(w2) yet and thus the number of meetings in w is

N(w1)N(w2). Moreover according to Lemma 2.9 the meeting between M(w1) and M(w2)

takes place at time N(w) − 1. Now we know that the sum of the mutual meeting times for
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the agents in M(w) is equal to

σ(w) = N(w1)N(w2) (N(w) − 1) + σ(w1) + σ(w2),

= N(w1)N(w2) (N(w) − 1) +

N(w1)−1∑

k=1

k2 +

N(w2)−1∑

k=1

k2,

= N(w1)N(w2) (N(w) − 1) +

N(w1)−1∑

k=1

k2 −
N(w)−1∑

k=N(w2)

k2 +

N(w)−1∑

k=1

k2.

Then use N(w) = N(w1) + N(w2) and thus N(w1) = N(w) − N(w2) to obtain

σ(w) = N(w2) (N(w) − N(w2)) (N(w) − 1)+

N(w)−N(w2)−1∑

k=1

k2−
N(w)−1∑

k=N(w2)

k2+

N(w)−1∑

k=1

k2. (2.10)

For positive integers a, b with a < b holds (see A.3)

b−1∑

k=a

k2 −
b−a−1∑

k=1

k2 = a(b − a)(b − 1).

Since N(w2) < N(w) we can apply this relation with a = N(w2) and b = N(w) to conclude

that the sum of the terms on the right hand side of (2.10) except the last one, is equal to zero

and consequently

σ(w) =

N(w)−1∑

k=1

k2.

Then applying induction to the branching points of the tree proves that (2.9) holds for all

v ∈ V. Let vr be the root of the tree, then and M(vr) is the set of all agents and h(vr) = n.

Consequently, applying (2.9) to vr proves the theorem, because

∑

0≤i,j≤n−1

mf (i, j) =
∑

0≤i<j≤n−1

mf (i, j) +
∑

0≤j<i≤n−1

mf (i, j) +

n−1∑

i=0

mf (i, i), (2.11)

= σ(vr) + σ(vr) +

n−1∑

i=0

0, (2.12)

= 2

n−1∑

k=1

k2. (2.13)

�

For an arbitrary distribution we have no way to solve (2.4) analytically. However we can

always solve the symmetric rendezvous problem numerically for an arbitrary distribution by

using (2.4). In the next subsection we will discuss some numerical results.
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2.2.5 Numerically solving the recurrence relation

In this subsection we will first describe a way to solve the symmetric rendezvous problem

(and thus h(0, n − 1)) numerically using (2.4). After that we will numerically verify a result

of Chester and Tütüncü (see [5]). Finally we will give some other numerical examples from

which we may be able to make useful observations.

The way we used to compute h(0, n−1) numerically is as follows. By definition h(a, a) = 0

for a = 0, . . . , n − 1. This knowledge can be used to compute h(a, a + 1) for a = 0, . . . , n − 2

and these values can be stored. Next it is possible to compute h(a, a + 2) for a = 0, . . . , n− 3

and again these values can be stored. Repeatedly applying such a step will finally result in

the value of h(0, n − 1) and hence the solution for the considered rendezvous problem. It is

possible to construct an optimal strategy from all stored subvalues. In the next small example

we take n = 4 and the probability distribution consists of simple fractions. We will compute

h(0, 3) by hand to visualize the method described above. In general n can be large and the

probability distribution will not always be a nice one. Thus in general it will be very hard

(or impossible) to do the computations by hand, but relatively easy using the computer.

Example 2.3 Consider a symmetric rendezvous problem Γs(q) in which n = 3 and q is given

by

q0 =
1

6
, q1 =

1

4
, q2 =

1

12
, q3 =

1

2
.

Initially we have h(0, 0) = h(1, 1) = h(2, 2) = h(3, 3) = 0. Then we find

h(0, 1) = 2 · 1

6
· 1

4
=

1

12
, h(1, 2) = 2 · 1

4
· 1

12
=

1

24
, h(2, 3) = 2 · 1

12
· 1

2
=

1

12
.

Next we compute

h(0, 2) = min{h(0, 0) + h(1, 2) + 4q0(q1 + q2), h(0, 1) + h(2, 2) + 4q2(q0 + q1)},

= min

{
0 +

1

24
+ 4 · 1

6
· 1

3
,

1

12
+ 0 + 4 · 1

12
· 5

12

}
,

= min

{
19

72
,

2

9

}
=

2

9

and in the same way

h(1, 3) = min{h(1, 1) + h(2, 3) + 4q1(q2 + q3), h(1, 2) + h(3, 3) + 4q3(q1 + q2)},

= min

{
0 +

1

12
+ 4 · 1

4
· 7

12
,

1

24
+ 0 + 4 · 1

2
· 1

3

}
,

= min

{
2

3
,

17

24

}
=

2

3
.

Then finally we can find

h(0, 3) = min

{
3

2
,

13

8
,

31

18

}
=

3

2
.

All computed values are given in the table below. So for instance h(1, 2) = 1
24 as we computed
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above.
h 0 1 2 3

0 0 1
12

2
9

3

2

1 0 1
24

2

3

2 0 1

12

3 0

By analyzing which term is the minimizing one and starting at h(0, 3) we can construct a

binary tree representing an optimal strategy. For instance for h(0, 3) the minimizing term is

the first one. Since the first term is the sum of h(0, 0), h(1, 3) and some other value we can

mark h(0, 0) and h(1, 3). Moreover we could draw a line between the value of h(0, 3) and the

values corresponding to respectively h(0, 0) and h(1, 3). Next we can analyze h(1, 3), etc. In

this example this will eventually result in the binary tree given in Figure 2.7(a). Hence (2.1)

is an optimal strategy for Γs(q).

In this last example the value of h(a, b) for all a, b with 0 ≤ a < b ≤ n − 1 has to be

computed. This is true in general and hence (2.4) has to be evaluated O(n2) times to obtain

the value of h(0, n − 1). Moreover all computed values have to be stored, because they are

needed later on to construct an optimal strategy. So we also need to store O(n2) values.

Both the computation time and the amount of memory grows quadratically. Remember that

the size of strategies in Sopt for a problem on n even nodes is given by the (n − 1)th Catalan

numbers. This means that if we have to evaluate all possible strategies to find an optimal

strategy we have to evaluate more than 1010 strategies for n = 21. However for the numerical

method based on the recurrence relation (2.4) we can find the answer for n = 2048 in about

five minutes.

In the previous subsection Examples 2.1 and 2.2 show two analytical examples for a

particular sets of distributions. The analytical results in [5] are also about such a particular

set of probability distributions. In [5] these distributions are called symmetric and strictly

monotone distributions. Such distributions are symmetric around the center of the considered

discrete interval. Moreover the probability of starting at some node decreases when moving

away from the center. Translating Definition 2.1 in [5] to our notation results in the following

definition.3

Definition 2.3 Consider a rendezvous problem defined on the set of even nodes Ne. Let p

be a distribution supported on these n even nodes. Then p is called symmetric and strictly

monotone if

◮ pi = pn−1−i for i = 0, 1, . . . , n − 1,

◮
∣∣n−1

2 − i
∣∣ <

∣∣n−1
2 − j

∣∣ =⇒ pi > pj > 0.

Now consider a symmetric rendezvous problem Γs(p̃) with p̃ being a symmetric and strictly

monotone distribution. Then it is proven in [5] that in the optimal solution of Γs(p̃) all agents

always move to center of the interval (except when an agent is exactly at the center). Suppose

from this point that p̃ is defined by the circles in Figure 2.12. Notice p̃ fulfils the two criteria

3In [5] the interval is labeled as −n,−n + 2, . . . ,−2, 0, 2, . . . , n − 2, n. Such a labeling is more practical for
this particular problem. However we will stick to the the labeling we used throughout this chapter.
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in Definition 2.3. Moreover p̃j ≥ 0 for j = 0, . . . , n − 1 and
∑n−1

j=0 p̃j = 1, which shows that

p̃ is indeed a probability distribution. Solving Γs(p̃) numerically for n = 51 results in the
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Figure 2.11: An optimal strategy for Γs(p̃) with n = 51

strategy given in Figure 2.11. So Figure 2.11 shows an optimal strategy for Γs(p̃) with n = 51.

Indeed all agents move to the center of the interval (except when one of them is exactly at

the center). This was already proved analytically in [5] as we mentioned before.
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Figure 2.12: Some distributions supported on the set of even nodes for n = 51.

The other two distributions in Figure 2.12 (crosses and dots) are also distributions for

the symmetric rendezvous problem with n = 51. Let q denote the distribution defined by

the dots and r the distribution defined by the crosses. These two distributions are also

symmetric around the center of the interval. However both do not fulfill the second property

in Definition 2.3. Notice distributions q, r are related by

ri =
log10

(
qi + 21

20

)
∑n−1

j=0 qj

, for j = 0, . . . , n − 1.
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The logarithm is an increasing function on the positive numbers and thus the peaks of those

two distributions are at the same places. Moreover the sign of qj − qj−1 is equal to the sign

of rj − rj−1 for i = 1, . . . , n − 1. An optimal strategy for both Γs(q) and Γs(r) is depicted in
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Figure 2.13: Optimal strategy corresponding both the crosses and the dots from Figure 2.12

Figure 2.13. This example (and a lot of other such examples) lead to the following still open

questions.

◮ Consider a symmetric rendezvous problem Γs(p) with p supported on Ne such that p

is symmetric around the center of the interval. Does Γs(p) always have an (almost)

symmetric optimal strategy? ‘Almost’ means that for an odd number of the even nodes

the agent at the central node has to move and hence ‘disturbs’ the symmetry. Notice

this occurs for instance in Figure 2.13 where n = 51.

◮ Consider two symmetric rendezvous problems Γs(p) and Γs(q) with p, q supported on

Ne such that p and q are both symmetric around the center of the interval. Moreover

assume the sign of pj − pj−1 to be equal to the sign of qj − qj−1 for j = 1, . . . , n − 1.

Then do Γs(p) and Γs(q) have the same optimal strategies? Or do they have at least

one optimal strategy in common?

This example shows we can get new ideas for rules describing optimal strategies from the

numerical solutions. We cannot prove these rules as of yet.

2.3 Asymmetric rendezvous problem

In this section we will consider the asymmetric rendezvous problem Γa(p, q). In this problem

two players are placed independently on the set of of even nodes Ne according to a given

distribution p for player I and q for player II. Their common goal is to adopt respectively

strategies f, g ∈ S such that T̂ (f, g) is minimized. Again the search for optimal strategies

can be simplified by restricting S2 := S ×S to a smaller set using sweepers and the notion of

geodesic strategies (see [2] and [7]). In the next subsection we will discuss those restrictions

and we will also show that it is also possible to generalize the idea of sticky strategies to the
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asymmetric problem. After that we will consider an algorithm for the asymmetric problem

and two restricted versions of this problem.

2.3.1 Restricting the set of strategies

After the introduction of sweepers in Section 2.2 on the symmetric rendezvous problem, the

set S was redefined as the set all strategies in which agents cannot pass both the left and

the right sweeper. The same arguments can be applied to the asymmetric problem and thus

there exists no pair of strategies which is possibly optimal, but not in S2. For the symmetric

problem it was possible to restrict the set S using the properties sticky and geodesic. The

original definition for geodesic such as given in [2] is defined for pairs of strategies and gives a

restriction for the asymmetric problem. On the other hand the original definition for sticky is

only defined for strategies and not for pairs of strategies. However it is possible to generalize

the idea of sticky strategies to sticky pairs of strategies as we will show in this section.

Definition 2.4 (see [2], Definition 1) A pair (f, g) ∈ S2 is geodesic if for any even

node 2i ∈ {0, . . . , n − 1} and any consecutive meetings at times t0 and t1 when agent fi

meets some distinct agents gj (at time t0) and gj′ (at time t1) of the other player, we have

|fi(t1) − fi(t0)| = t1 − t0. The corresponding condition must also hold for g.

In [4] the following result is mentioned. This corollary gives the same result as Lemma

2.4, but now for the asymmetric problem.

Lemma 2.13 An agent in a geodesic pair (f, g) can only change direction when meeting an

agent of the other player.

Proof: Consider a strategy pair (f, g) ∈ S2 and suppose agent fi changes direction at time

τ without meeting an agent of the other agent. Every agent starts initially at some even node

and meets another agent at time 0, namely the agent of the other player starting at the same

even node. At time n−1 the agent meets one of the sweepers. Therefore at time τ agent fi will

always be between two consecutive meetings with agents of the other player at times t0 and

t1. Since fi changes direction between times t0 and t1 we must have |fi(t1)− fi(t0)| < t1 − t0

and thus (f, g) is not geodesic. Consequently if (f, g) is geodesic, then an agent of the player

adopting f can only change direction when meeting an agent of the other player. In the same

way we can show that this result also holds for agents of the player who adopts strategy g.

Hence any agent in a geodesic pair (f, g) can only change direction when meeting an agent of

the other player. �

Next a theorem which gives a necessary condition for a pair of strategies to be optimal.

Theorem 2.14 (see [2], Theorem 1) If a pair (f, g) ∈ S2 is optimal for the asymmetric

rendezvous problem Γa(p, q) with pi > 0 and qj > 0 for i, j = 0, . . . , n − 1, then (f, g) is a

geodesic pair of strategies.

Again we will not give the proof, but we will give an example just as in Section 2.2. In

Figure 2.14 a non-geodesic pair of strategies is given. This pair is not geodesic, because the

agent of player I starting at node 4 changes direction after one time step without meeting an
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Figure 2.14: Non-geodesic pair of strategies

agent of player II. Also the agent of player II starting at node 6 changes direction without

meeting an agent of player II at time 1. The first meeting for the agent of player I starting at

node 4 after time 0 is the meeting with the right sweeper. So it is certainly an improvement

for this agent to move directly towards the right sweeper. Such an observation can also be

made for the agent of player II starting at node 6. Applying these improvements leads to the

geodesic pair represented in Figure 2.15. In this improved pair of strategies all meetings take

place earlier than or at the same time as in the original one.
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Figure 2.15: Geodesic pair of strategies improving the non-geodesic pair from Figure 2.14

Now consider the asymmetric problem with two agents of player I who meet at some

time t and who have met the same set of agents of player II up to time t. Then it seems

reasonable that they will move on together, because at time t they face the same optimization

problem for the remaining part of their path. This idea leads to a generalization of sticky

strategies to sticky pairs of strategies. First define the set of g-agents that a particular f -agent

i ∈ {0, . . . , n − 1} has met up to time t by

Mf,g(i, t) = {j | mf,g(i, j) ≤ t} .

Using these sets the term ‘sticky’ as defined in [2] for individual strategies can be generalized

to pairs of strategies as follows.

Definition 2.5 A pair (f, g) ∈ S × S is called a sticky pair if for any time t, and for all

i, j ∈ {0, . . . , n − 1} holds

fi(t) = fj(t) ∧ Mf,g(i, t) = Mf,g(j, t) =⇒ ∀t′ > t : fi(t
′) = fj(t

′) (2.14)
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and

gi(t) = gj(t) ∧ Mg,f (i, t) = Mg,f (j, t) =⇒ ∀t′ > t : gi(t
′) = gj(t

′). (2.15)

So in a sticky pair two agents of a player who are on the same node at a certain time τ

and have met the same agents of the other players up to that time, will move on together.

In such a case they will face the same optimization problem at time τ for determining the

remaining part of their path. So it seems reasonable that for asymmetric rendezvous problem

there exists an optimal sticky pair of strategies. In the next theorem this is proven.

Theorem 2.15 For any asymmetric rendezvous problem Γa(p, q) there exists an optimal

sticky pair of strategies.

Proof: Take an arbitrary pair (f, g). First notice fi(0) 6= fj(0) and gi(0) 6= gj(0) for all

i, j ∈ {0, . . . , n− 1} with i 6= j. So it is obvious that (2.14) and (2.15) hold for (f, g) at t = 0

for all i, j ∈ {0, . . . , n−1}. Now suppose (2.14) and (2.15) hold for t ≤ τ −1 (with τ ≥ 1) and

for all i, j ∈ {0, . . . , n − 1}. Then we will show that there exists a pair (f̃ , g̃) fulfilling (2.14)

and (2.15) for t ≤ τ and for all i, j ∈ {0, . . . , n − 1}, such that T̂ (f̃ , g̃) ≤ T̂ (f, g). Consider

the following cases:

◮ If (f, g) satisfies (2.14) and (2.15) for t ≤ τ and for all i, j ∈ {0, . . . , n− 1}, then we can

take (f̃ , g̃) = (f, g).

◮ Next investigate whether or not there exist x, y ∈ {0, . . . , n − 1}, such that

fx(τ) = fy(τ), Mf,g(x, τ) = Mf,g(y, τ), ∃τ ′ > τ : fx(τ ′) 6= fy(τ ′).

If not take f̃ = f and proceed to take next point. If there exist such x, y, then notice

that the contribution of agent x after time τ to T̂ (f, g) is

C1 =
∑

k∈{0,...,n−1}\Mf,g(x,τ)

mf,g(x, k)pxqk

and the contribution of agent y after time τ to T̂ (f, g) is

C2 =
∑

k∈{0,...,n−1}\Mf,g(y,τ)

mf,g(y, k)pyqk.

If C1 ≥ C2, then define f̃ = f and set f̃x(t) = fy(t) for t > τ . If C1 < C2, then define

f̃ = f and set f̃y(t) = fx(t) for t > τ . Now for the pair (f̃ , g) the definition of sticky

pairs holds for x and y. Moreover T̂ (f̃ , g) ≤ T̂ (f, g). Repeat this step until (f̃ , g) fulfils

(2.14) for t ≤ τ and for all i, j ∈ {0, . . . , n − 1}.

◮ Finally we have constructed a pair (f̃ , g) such that (2.14) holds for t = τ and for all

i, j ∈ {0, . . . , n − 1}. Now investigate whether or not there exist x, y ∈ {0, . . . , n − 1},

such that

gx(τ) = gy(τ), Mg,f (x, τ) = Mg,f (y, τ), ∃τ ′ > τ : gx(τ ′) 6= gy(τ ′).
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If not take g̃ = g. On the other hand if there exist such x, y, then with the same kind of

arguments as above we can construct a new pair (f̃ , g̃) such that T̂ (f̃ , g̃) ≤ T̂ (f̃ , g) and

(2.15) holds for x and y. Notice g̃ is equal to g for t ≤ τ , thus M
f̃ ,g̃

(i, τ) = M
f̃ ,g

(i, τ)

for all i ∈ {0, . . . , n − 1}. This implies that (2.14) also holds for (f̃ , g̃) and for all

i, j ∈ {0, . . . , n − 1}. Repeat this step until (f̃ , g̃) fulfils (2.15) for t ≤ τ and for all

i, j ∈ {0, . . . , n − 1}.

Since each case can only occur a finite number of times, this gives a way to construct a

pair (f̃ , g̃) which fulfils (2.14)-(2.15) for t ≤ τ and for all i, j ∈ {0, . . . , n − 1}, such that

T̂ (f̃ , g̃) ≤ T̂ (f, g). Now apply induction to t, then we have proven that we can construct a pair

(f̃ , g̃) fulfilling (2.14)-(2.15) for all t and for all i, j ∈ {0, . . . , n−1}, such that T̂ (f̃ , g̃) ≤ T̂ (f, g).

Hence for any asymmetric rendezvous problem Γa(p, q) there exists an optimal sticky pair of

strategies. �

Notice this result also holds on general networks, because nowhere in the proof details

concerning the discrete search region are used. Now consider the pair of strategies in Figure

2.16. At time 1 the agents of player II starting at nodes 4 and 6 have met the same set of
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Figure 2.16: Non-sticky pair of strategies

agents of player I and hence they should stay together. However they split up at time 2 and

so the pair of strategies in Figure 2.16 is not a sticky pair. If those two agents do not split

up at time 2, then the pair of strategies will be a sticky pair. So the pair in Figure 2.16 can

be modified in at least two ways (the agents of player II starting at nodes 4 and 6 can both

move to the left or to the right at time 2) such that the resulting pair is a sticky pair. It is
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Figure 2.17: Pair of strategies which possibly improves the pair from Figure 2.16

obvious that at least one of those modifications will result in a pair which is at least as good
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as the original pair in Figure 2.16 (this is exactly what is proven in Theorem 2.15). The same

kind of arguments also hold for the agents of player I starting at nodes 4 and 6 and meeting

at time 1. Then finally we will obtain four possible modifications from which at least one is

as good as the original pair from Figure 2.16. One of these possibilities is depicted in Figure

2.17.

Corollary 2.6 showed that in the symmetric problem we can restrict ourselves to Sopt. Such

a corollary also exists for the asymmetric problem and is a direct consequence of Theorems

2.14 and 2.15.

Corollary 2.16 Define the subset S2
opt ⊂ S2 as the set of all pairs of strategies in S2 which

are both sticky and geodesic. Then there exists a optimal pair of strategies (f, g) ∈ S2 for

Γa(p, q) such that (f, g) ∈ S2
opt.

Proof: Theorem 2.15 tells us that there exists an optimal pair of strategies for Γa(p, q)

which is sticky. Moreover if pi > 0 for all i = 0, . . . , n − 1 and qj > 0 for all j = 0, . . . , n − 1,

then such a strategy needs to be geodesic according to Theorem 2.14. If pi = 0 for some

i = 0, . . . , n− 1 or qj = 0 for some j = 0, . . . , n− 1, then it is possible to modify every pair of

strategies such that it becomes geodesic without increasing the expected meeting time. Hence

there exists an optimal strategy which is an element of the set S2
opt ⊂ S2. �

Consequently if we are looking for an optimal strategy for Γa(p, q) we can restrict ourselves

to strategies in S2
opt. It would be nice if it is possible to characterize S2

opt by some set of trees or

graphs similar to the relation between Sopt and proper binary trees in the symmetric problem

from section 2.2, but we were not able to find such a characterization for S2
opt.

For small n we counted the number of sticky geodesic pairs of strategies in the hope

to find a known integer sequence (like the Catalan numbers for the symmetric problem),

which would maybe give a hint for an alternative representation of the strategies in S2
opt.

However Sloane’s online database of integer sequences4 does not contain a sequence containing

2, 4, 37, 908, 66314, . . .. Notice for n = 6 we had to test for 6, 250, 000 pairs of strategies

n symmetric problem asymmetric problem

2 1 2
3 2 4
4 5 37
5 14 908
6 42 66314

Table 2.1: Number of (pairs of) strategies in respectively Sopt and S2
opt for small n

whether or not the pair was an element of S2
opt. For n = 7 this number already grows to

26, 244, 000, 000 which would take too much time. In general the number of pairs we should

test is (
n−1∏

i=0

(
n − 1

i

))2

.

4http://www.research.att.com/∼njas/sequences/
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Just as for the symmetric problem we can determine for small n the optimal pair of

strategies for a big number of random distributions by trying all possible pair, and observe

that S2
opt can probably not be restricted to smaller set. Again (compare to Conjecture 2.7)

we state a conjecture based on this experiment.

Conjecture 2.17 Consider a pair of strategies (f, g) ∈ S2
opt defined for an asymmetric

rendezvous problem on Ne. Then there exist probability distributions p, q supported on Ne

such that (f, g) is the unique optimal pair of strategies for the asymmetric rendezvous problem

Γa(p, q).

The experiment leading to this observation is in some sense more difficult than the

experiment performed in Section 2.2, because for some pairs of strategies it takes a lot of

effort to find distributions such that the concerning pair is the unique optimal one. For

instance take n = 5 and consider a pair of strategies (f, g) ∈ S2
opt which is not optimal for the

asymmetric problem Γa(p̄, p̄) with p̄ being the uniform distribution on five even points. Then

the experiment leads to the observation that one can expect to take between 105 and 106

random choices for the distributions before finding p, q such that (f, g) is optimal for Γa(p, q).

To explain why a pair can be in S2
opt but is not optimal for the asymmetric problem with
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Figure 2.18: In S2
opt, but not optimal for the asymmetric problem with uniform distributions

uniform distribution we will now introduce the notion of strictly geodesic pairs of strategies

(the term was first used by Howard in [6]).

Definition 2.6 A pair of strategies (f, g) ∈ S2
opt is called strictly geodesic if an agent who

is not moving together with a sweeper, will only change direction at some time when he has

met all the agents he could have possibly met at that time.

Howard proved in [6] that a pair of strategies in S2
opt is optimal for the asymmetric problem

with uniform distributions if and only if that pair is strictly geodesic. For instance the pair

of strategies in Figure 2.18 is not strictly geodesic, because the agent of player I starting at

node 2 changes direction at time 2 while he has not met all agents he could possibly have

met (the agents of player II starting at nodes 4 and 6). So Figure 2.18 shows an example of

a pair in S2
opt which is not optimal for the asymmetric problem with uniform distributions.

However for the following distributions the pair in Figure 2.18 is the unique optimal pair of
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strategies.

p =
[

3619
10000 , 740

10000 , 123
10000 , 3530

10000 , 1988
10000

]T
,

q =
[

835
10000 , 5053

10000 , 3451
10000 , 651

10000 , 46
10000

]T
.

This particular example also shows that S2
opt cannot be restricted to the smaller set of

sticky and strictly geodesic pairs of strategies, because the pair in Figure 2.18 is not a strictly

geodesic pair of strategies. We had to take a problem on five even nodes to give such an

example, because every strategy pair in S2
opt for a problem with at most four even nodes

is always strictly geodesic. For n ≤ 3 this is trivial. For n = 4 we can verify that all 37

strategy pairs (see Table 2.1) in S2
opt are optimal pairs for the asymmetric problem with

uniform distribution and so by Howard’s result in [6] it follows that each of these pairs is

strictly geodesic.

At this point we know that if we are looking for an optimal pair of strategies for an

instance of the asymmetric rendezvous problem, we can restrict ourselves to the set S2
opt

of sticky and geodesic pairs of strategies. Although we have this restriction, solving the

asymmetric rendezvous problem for arbitrary distributions remains a difficult problem. In

general even the restricted set of pairs of strategies is too large to compute the expected

meeting time for all pairs and we are also not able to characterize S2
opt by some set of trees

or graphs like for the symmetric problem. However we are still interested in the optimal pair

of strategies for such problems. In the next subsection we will give algorithm which tries to

find an optimal pair of strategies.

2.3.2 Algorithm for constructing equilibrium pairs of strategies

Consider an optimal pair of strategies (f, g) ∈ S2
opt for the asymmetric rendezvous problem

Γa(p, q), where both p and q can be any distribution supported on Ne. In other words,

there exists no pair of strategies which is better than (f, g) and thus for all s ∈ S we have

T̂ (f, g) ≤ T̂ (f, s) and T̂ (f, g) ≤ T̂ (s, g).

On the other hand suppose we have a pair (f ′, g′) ∈ S2
opt for Γa(p, q) such that for all

s ∈ S holds T̂ (f, g) ≤ T̂ (f, s) and T̂ (f, g) ≤ T̂ (s, g) . We will call such a pair of strategies an

equilibrium pair.5

Definition 2.7 Consider a asymmetric rendezvous problem Γa(p, q) with p, q being arbitrary

distributions supported on Ne. Then a pair of strategies (f ′, g′) ∈ S2
opt is called an equilibrium

pair if and only if for all s ∈ S holds

T̂ (f ′, g′) ≤ T̂ (f ′, s), and T̂ (f ′, g′) ≤ T̂ (s, g′). (2.16)

So if the players have adopted an equilibrium pair of strategies, then they cannot improve

the expected meeting time unilaterally. We can ask ourselves whether or not the expected

meeting time for all equilibrium pairs is equal? This question is important, because we will

5Notice the similarity to the definition of Nash equilibria for non-cooperative games, see [9] for more details.
Also compare to (3.1) in Section 3.1.
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present an algorithm to construct such equilibrium pairs. Since an optimal pair of strategies is

an equilibrium pair itself, a positive answer to the question would imply that the algorithm will

construct an optimal pair of strategies. The algorithm tries to find unilateral improvements to

a given strategy pair, such that after a finite number of steps we find a strategy pair satisfying

(2.16). We will now present the algorithm.

1. Choose an initial strategy f ∈ S for player I. (Of course we can also start

with choosing an initial strategy for player II. Then we have to replace

player I by player II and player II by player I everywhere in the description

of the algorithm.)

2. Construct the set of strategies S̃g =
{
s ∈ S | (f, s) ∈ S2

opt

}
. If S̃g = ∅, then

repeat this step with another choice for f .

3. Compute for all strategies in s ∈ S̃g the expected meeting time T̂ (f, s) and

let player II adopt a strategy g such that

g ∈ arg min
{
T̂ (f, s) | s ∈ S̃g

}
.

So the best strategy found so far is T (f, g).

4. Construct the set S̃f =
{
s ∈ S | (s, g) ∈ S2

opt

}
. This set is nonempty,

because it contains at least (f, g). Now take a strategy f ′ ∈ S̃f such

that

f ′ ∈ arg min
{
T̂ (s, g) | s ∈ S̃f

}
.

If T̂ (f ′, g) = T̂ (f, g), then (f, g) is an equilibrium pair and the algorithm

stops. If not, then set f equal to f ′ and continue with the next step.

5. Construct the set S̃g =
{
s ∈ S | (f, s) ∈ S2

opt

}
. This set is nonempty,

because it contains at least (f, g). Now take a strategy g′ ∈ S such that

g′ ∈ arg min
{

T̂ (f, s) | s ∈ S̃g

}
.

If T̂ (f, g′) = T̂ (f, g), then (f, g) is an equilibrium pair and the algorithm

stops. If not, then set g equal to g′ and return to step 4.

Notice in step 2 we do not have to consider all strategies in S2
opt to construct S̃g, because

we can construct all strategies g such that (f, g) ∈ S2
opt by analyzing the paths of the agents of

player I. Such analysis gives information about which meetings must take place at certain time

and certain location (because an agent of player I changes direction), and also about where

and when agents of player II can change direction (because an agent can only change direction

when meeting an agent of the other player). The same argument holds for constructing the

sets in steps 4 and 5. The algorithm will certainly find an equilibrium pair after a finite number

of steps. This follows from the observation that if the algorithm stops the constructed pair is

always an equilibrium pair. Moreover we have a finite number of strategy pairs and each time

a strategy is replaced by a new one the expected meeting time decreases. Thus the algorithm

will certainly stop in finite time.
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Now return to the question we asked ourselves before. Is an equilibrium pair always

an optimal pair? Unfortunately the answer is no. Hence the algorithm does not solve the

asymmetric rendezvous problem, because we do not know whether the algorithm will converge

to an optimal pair of strategies or to another equilibrium pair.

Example 2.4 Consider an asymmetric rendezvous problem Γa(p, q) with

p =
[

2143
10000 , 2994

10000 , 1405
10000 , 2673

10000 , 785
10000

]T
,

q =
[

2799
10000 , 1778

10000 , 2657
10000 , 2042

10000 , 724
10000

]T
.

Applying the algorithm with one of the two in strategies in Figure 2.19 as initial strategy for

Player I and also for Player II after changing roles, results in all four cases in the equilibrium

pair depicted in Figure 2.20 with expected meeting time 2.05693553. However the minimal

expected meeting time for the players is 2.05265804 which they can obtain by adopting to

strategy pair in Figure 2.21.
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Figure 2.19: Initial strategies chosen for both player I and II in Example 2.4
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Figure 2.20: Equilibrium point resulting from all four runs of the algorithm

In the above examples the algorithm does not converge to an optimal pair of strategies but

to another equilibrium pair. However it is good to realize that the equilibrium point to which

the algorithm converges depends strongly on the chosen initial strategy. For instance if we

had chosen either the left strategy or the right strategy in Figure 2.21 for respectively player

I or player II as initial strategy, then the algorithm would have converged to the optimal

pair. Moreover in this example the algorithm converged to the same equilibrium pair for all

four considered initializations. However this is certainly not a general rule. On the contrary,
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Figure 2.21: Optimal pair of strategies for Example 2.4

most of the time the equilibrium pairs will differ. The relative gap in Example 2.4 between

the expected meeting time for the constructed equilibrium pair and the optimal pair is small

(only 0.2%). We will do a number of simulations for randomly chosen distributions p and q to

see whether this is general behavior. In the same experiment we will also count how often the

constructed equilibrium pair differs from the optimal pair using the same four initialization

as in Example 2.4. The results are listed in Table 2.2. For each value of n we have run the

n constructed pair is not optimal average relative error maximal relative error

4 0 - -
5 165 0.53% 2.3%
6 600 0.48% 2.36%

Table 2.2: Results for 10000 simulations with randomly chosen distributions for n = 4, 5, 6.

algorithm 10000 times. The second column gives the number of runs in which we found an

equilibrium pair not equal to an optimal pair. The third and fourth column give for these

pairs respectively the average and the maximal relative error. For n > 6 we cannot run

this experiment, because it takes too much time to find the optimal pair. Nevertheless this

experiment gives rise to some interesting questions.

◮ For n = 4 we found an optimal strategy in all runs. Is it possible to prove that the

algorithm in combination with the four chosen initializations always gives the optimal

strategy?

◮ For n = 5 and n = 6 the relative errors remains more or less constant. Does this

observation also hold in general for n ≥ 5 ? So in other words, is the error independent

of n?

◮ Can we construct a set of initializations (for instance based on p and q) such that the

average and/or maximal relative error are smaller?

The first question is answered. After another 100000 runs for n = 4 we found one particular

example in which the constructed optimal pair was not an optimal one. In that case the

relative error was about 0.02%. The other two question are unanswered, but still interesting.

For n = 50 the algorithm still can be executed in a reasonable time. So a positive answer to

the second question will give us a way to approximate the minimal expected meeting time
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for Γa(p, q) (with p, q arbitrary distributions) at least up to n = 50. Until now we assumed

an asymmetric rendezvous problem with arbitrary distributions and tried to derive general

properties. In the next subsections we will approach the problem from another point of view.

We will first restrict the problem such that the problem may become easier and then we will

analyze the restricted (and hopefully simplified) problem.

2.3.3 Asymmetric rendezvous problem with players likely to start at opposite

ends of the interval

In the subsection we will analyze the asymmetric rendezvous problem Γa(p, q) for a particular

class of distributions p, q. Assume in the remaining part of this subsection that p, q are

distributions supported on Ne such that

min{piqj | 0 ≤ j < i ≤ n − 1} > max{piqj | 0 ≤ i < j ≤ n − 1} (2.17)

At first sight it may not be immediately clear what this restriction for p and q means. So

we will first explain (2.17). After that, we will show what pair of strategies is optimal for

Γa(p, q). For this problem no solution can be found in the known literature and thus this is

a new result.

First notice computing pqT (assume p, q are column vectors) gives a n × n-matrix, which

can be interpreted as a joint probability table for the distributions p and q. And thus if p and

q fulfil (2.17), then the minimum of all elements below the diagonal of this joint probability

table is larger than the maximum of all elements above its diagonal.

Example 2.5 Take n = 4 and

p = [0.02, 0.03, 0.05, 0.9], q = [0.8, 0.1, 0.09, 0.01],

then

pqT =




0.0160 0.0020 0.0018 0.0002

0.0240 0.0030 0.0027 0.0003

0.0400 0.0050 0.0045 0.0005

0.7200 0.0900 0.0810 0.0090


 .

The minimal value of the elements below the diagonal is 0.0050 and the maximal of the

elements above the diagonal 0.0027. So this particular choice of p, q fulfils (2.17). Here p and

q were chosen such that player I and II are likely to start at respectively the right end and the

left end of the interval.

We can consider another case in which the probability for the players of starting at

respectively the right and the left end is less extreme. Take again n = 4 and now we take

p = [0.12, 0.19, 0.33, 0.36]T , q = [0.42, 0.3, 0.2, 0.01]T ,
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then

pqT =




0.0504 0.0360 0.0240 0.0096

0.0798 0.0570 0.0380 0.0152

0.1386 0.0990 0.0660 0.0264

0.1512 0.1080 0.0720 0.0288




Observe that also this choice of p, q fulfils (2.17). In both choices for p and q we considered

so far, we have p0 < p1 < p2 < p3 and q0 > q1 > q2 > q3. So we could think that all such

distribution fulfil (2.17), however that is not the true, as will be showed in the next case. Also

this time we take n = 4 and for p, q we take

p = [0.01, 0.02, 0.48, 0.49]T , q = [0.45, 0.44, 0.06, 0.05]T .

Then

pqT =




0.0045 0.0044 0.0006 0.0005

0.0090 0.0088 0.0012 0.0010

0.2160 0.2112 0.0288 0.0240

0.2205 0.2156 0.0294 0.0245




and hence this choice of p, q does not fulfil (2.17).

A lot of distribution pairs of the form p0 < p1 < . . . < pn−1 and q0 > q1 > . . . > qn−1 fulfil

(2.17). However certainly not all distribution pairs of this form will fulfil (2.17). For each

n > 4 for instance we can construct such an example from the third case in Example 2.5. 6

After explaining (2.17), we will now show that in Γa(p, q) it is optimal for the first player

to move to the left until meeting the left sweeper and for the second player to move to the

right until meeting the right sweeper. Let (sL, sR) ∈ S2
opt denote this pair of strategies. It is

easy to see that this pair is indeed an element of S2
opt, because all agents only change direction

when meeting a sweeper and thus (sL, sR) is both a sticky pair and a geodesic pair. To show
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Figure 2.22: The pair (sL, sR) ∈ S2
opt for n = 4

that (sL, sR) is an optimal pair of strategies for Γa(p, q) we first need the meeting time matrix

M(sL, sR). For n = 4 the pair (sL, sR) is depicted in Figure 2.22. It is not hard to see that

6First, the idea was that (2.17) holds for all distribution pairs of the form 0 < p0 < p1 < . . . < pn−1 and
q0 > q1 > . . . > qn−1 > 0. However the third case in Example 2.5 shows this idea was not correct.
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the corresponding meeting is equal to




0 3 3 3

1 0 3 3

2 1 0 3

3 2 1 0


 .

In general the following lemma describes the structure of the meeting time matrix and gives

also information about the sum of the elements in the matrix.

Lemma 2.18 The strategies sL and sR describe for respectively player I and player II a path

in time for each even node on the discrete interval 0, 1, . . . , 2(n− 1). There are n even nodes

and hence the meeting time matrix M(sL, sR) is an n × n matrix, then for 0 ≤ i, j ≤ n − 1 :

msL,sR
(i, j) =





0, for i = j,

n − 1, for i < j,

i − j, for i > j.

(2.18)

Moreover the sum of the elements of M(sL, sR) is equal to

∑

0≤i,j≤n−1

msL,sR
(i, j) =

n(2n − 1)(n − 1)

3
. (2.19)

(See equation (2.2) for the definition of msL,sR
(i, j).)

Proof: First of all, msL,sR
(i, i) corresponds for i = 0, . . . , n − 1 to a meeting between the

agents of player I and player II starting at the same even node. It is obvious that this meeting

occurs at time 0 and hence msL,sR
(i, i) = 0 for i = 0, . . . , n − 1.

Secondly consider msL,sR
(i, j) for the case in which i < j. In this case the agent of player

I starts at node 2i and the agent of player II starts at node 2j. Notice the agent of player I

starts left to the agent of player II. The agent of player I moves to the left until meeting the

left sweeper and hence he will meet the left sweeper before meeting the agent of player II. In

the same way, the agent of player II moves to the right until meeting the right sweeper and

hence he will meet the right sweeper before meeting the agent of player I. So the agents of

player I and player II meet in this case when the sweepers meet, which implies they will meet

at time n − 1 Thus for i < j we find msL,sR
(i, j) = n − 1.

In the remaining case we consider msL,sR
(i, j) for i > j. In this case the agent of player I

starts right to the agent of player II. We will again use that the agent of player I moves to the

left until meeting the left sweeper and the agent of player II moves to the right until meeting

the right sweeper. This implies that the two agents move initially towards each other until

they meet (after that they immediately split up and continue their way to meet respectively

the left and right sweeper). The initial distance between the two agents is 2(i − j) and thus

they will at time i − j, which implies msL,sR
(i, j) = i − j for i > j.
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So now we have proved (2.18). Next we can compute the sum of the elements of M(sL, sR).

∑

0≤i,j≤n−1

msL,sR
(i, j) =

n−1∑

i=0

i−1∑

j=0

msL,sR
(i, j) +

n−1∑

i=0

n−1∑

j=i+1

msL,sR
(i, j) +

n−1∑

i=0

msL,sR
(i, i),

=

n−1∑

i=0

i−1∑

j=0

(i − j) +

n−1∑

i=0

n−1∑

j=i+1

(n − 1),

=

n−1∑

i=0

{
i(i + 1)

2
+ (n − i − 1)(n − 1)

}
.

It can be showed that this last expression is equal to n(2n−1)(n−1)
3 and consequently the sum

of the elements of M(sL, sR) is indeed given by (2.19), which completes the proof. �

Now we know more details about the meeting time matrix M(sL, sR) we can prove that

(sL, sR) is an optimal pair of strategies for Γa(p, q). Before we proof this result in Theorem

2.20 we need some other useful observations summarized in the following lemma.

Lemma 2.19 Consider a pair of strategies (f, g) ∈ S2
opt for an asymmetric rendezvous

problem on the set Ne. Consider the meeting time matrix M(f, g), then

(i) all diagonal elements of M(f, g) are equal to zero,

(ii) |i − j| ≤ mf,g(i, j) ≤ n − 1, for i 6= j,

(iii) the sum of the elements of M(f, g) is greater than or equal to n(2n−1)(n−1)
3 .

Proof:

(i) The diagonal elements of M(f, g) correspond to a meeting of agents starting at the same

location. These agents meet immediately and thus all diagonal elements of M(f, g) are

equal to zero.

(ii) The element mf,g(i, j) with i 6= j corresponds to a meeting between agent fi of player

I and agent gj of player II (starting at distinct locations). The initial distance between

these two agents is 2|i− j| and hence they cannot meet before time |i− j|. Moreover the

left and the right sweeper meet at time n − 1 and hence agents fi and gj cannot meet

after time n − 1. Combining these two observations yields |i − j| ≤ mf,g(i, j) ≤ n − 1

(iii) Consider the problem Γa(p̄, p̄) with p̄ being a uniform distribution supported on Ne (so

p̄j = 1
n

for j = 0, . . . , n − 1). Then Howard proved (see [7], Page 553) that (sR, sR) is

an optimal pair of strategies for Γa(p̄, p̄). Using (2.8) we know T̂ (sR, sR) = (2n−1)(n−1)
3n

.

So the expected meeting time T̂ (f, g) is larger than or equal to this value. Then

(2n − 1)(n − 1)

3n
≤ T̂ (f, g) = p̄T M(f, g)p̄ =

1

n2

n−1∑

i=0

n−1∑

j=0

mf,g(i, j)

and thus the sum of the elements of M(f, g) is greater than of equal to n(2n−1)(n−1)
3 .

�
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Finally we are now able to prove the theorem, where will make use of Lemmas 2.18 and 2.19.

Theorem 2.20 Consider the asymmetric rendezvous problem Γa(p, q) with p, q supported on

Ne such that pi > 0, qj > 0 for i, j = 0, . . . , n − 1, and

min{piqj | 0 ≤ j < i ≤ n − 1} > max{piqj | 0 ≤ i < j ≤ n − 1}. (2.20)

Then (sL, sR) is the unique optimal strategy for this problem.

Proof: Consider an arbitrary pair of strategies (f, g) ∈ S2
opt such that (f, g) 6= (sL, sR).

Notice for M(sL, sR) we know that all elements above the diagonal are equal to n − 1 (see

Lemma 2.18). Moreover Lemma 2.19 tells us that in a meeting matrix the maximum value

of an element above the diagonal is n − 1. Consequently, we find

mf,g(i, j) − msL,sR
(i, j) ≤ 0, for all 0 ≤ i < j ≤ n − 1. (2.21)

We also know for M(sL, sR) that all elements below the diagonal are equal to i− j (again see

Lemma 2.18). This time Lemma 2.19 tells us that in a meeting matrix the minimal value of

an element below the diagonal is given by the row number minus the column number. Thus

this results in the following relation

mf,g(i, j) − msL,sR
(i, j) ≥ 0, for all 0 ≤ j < i ≤ n − 1. (2.22)

Next we can conclude from Lemma 2.18 and Lemma 2.19 that the sum of the elements in

M(f, g) is greater than or equal to the sum of the elements in M(sL, sR) and thus

n−1∑

i=0

n−1∑

j=0

(mf,g(i, j) − msL,sR
(i, j)) ≥ 0 (2.23)

Combining (2.21), (2.22) and (2.23) shows

n−1∑

i=0

i−1∑

j=0

(mf,g(i, j) − msL,sR
(i, j))

{
= 0, for (f, g) = (sL, sR)

> 0, for (f, g) 6= (sL, sR)
. (2.24)

Remember we chose (f, g) 6= (sL, sR). Now to complete the proof of this lemma we have to

compute T̂ (f, g) − T̂ (sL, sR), which can also be written as

T̂ (f, g) − T̂ (sL, sR) = pT M(f, g)q − pT M(sL, sR)q,

=

n−1∑

i=0

n−1∑

j=0

mf,g(i, j)piqj −
n−1∑

i=0

n−1∑

j=0

msL,sR
(i, j)piqj ,

=

n−1∑

i=0

n−1∑

j=i+1

(mf,g(i, j) − msL,sR
(i, j))︸ ︷︷ ︸

≤ 0, by (2.21)

piqj +

n−1∑

i=0

i−1∑

j=0

(mf,g(i, j) − msL,sR
(i, j))︸ ︷︷ ︸

≥ 0, by (2.22)

piqj .

In the last step we used that the diagonal elements of a meeting matrix are always zero.
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Next using the information provided by (2.21) and (2.22), we find

T̂ (f, g) − T̂ (sL, sR) ≥ max{piqj | 0 ≤ i < j ≤ n − 1} ·
n−1∑

i=0

n−1∑

j=i+1

(mf,g(i, j) − msL,sR
(i, j))

+ min{piqj | 0 ≤ j < i ≤ n − 1} ·
n−1∑

i=0

i−1∑

j=0

(mf,g(i, j) − msL,sR
(i, j))

︸ ︷︷ ︸
>0, by (2.24)

.

After that by using the assumption on p and q (see (2.20)), we can conclude that

T̂ (f, g) − T̂ (sL, sR) > max{piqj | 0 ≤ i < j ≤ n − 1} ·
n−1∑

i=0

n−1∑

j=i+1

(mf,g(i, j) − msL,sR
(i, j))

+ max{piqj | 0 ≤ i < j ≤ n − 1} ·
n−1∑

i=0

i−1∑

j=0

(mf,g(i, j) − msL,sR
(i, j)) ,

= max{piqj | 0 ≤ i < j ≤ n − 1} ·
n−1∑

i=0

n−1∑

j=0

(mf,g(i, j) − msL,sR
(i, j))

︸ ︷︷ ︸
≥0, by (2.23)

,

> 0.

Thus for (f, g) 6= (sL, sR) we find T̂ (f, g) − T̂ (sL, sR) > 0 and hence (sL, sR) is the unique

optimal pair of strategies for Γa(p, q). �

Using the structure of the meeting time matrix M(sL, sR) such as described in 2.18 we

find that

T̂ (sL, sR) = ptM(sL, sR)q =

n−1∑

i=0

i−1∑

j=0

(i − j)piqj + (n − 1)

n−1∑

i=0

n−1∑

j=i+1

piqj

is the minimal expected meeting time for Γa(p, q). If (2.20) is not a strict inequality, then we

can prove using the same reasoning as above that T̂ (f, g)− T̂ (sL, sR) ≥ 0 for an arbitrary pair

(f, g) not equal to (sL, sR). Hence in that case (sL, sR) is still an optimal pair of strategies

for Γa(p, q), however not necessarily the unique one.

Intuitively the result proven in this chapter is also correct, because distribution pairs

fulfilling (2.20) are such that it is likely for player I to start at the right end of the interval

and for player II to start at the left of the interval. So it seems reasonable that player I prefers

to move to the left as long as possible and player II prefers to move to the right as long as

possible.

In this subsection we solved the asymmetric rendezvous problem for a particular class

of distributions. In the next subsection we will consider another restricted version of the

asymmetric problem, which can also be seen as an extension of the symmetric problem from

Section 2.2.
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2.3.4 Asymmetric rendezvous problem with equal distributions

In the asymmetric rendezvous problem Γa(p, q) the players are in general placed on the interval

according to different distributions. However we could think of situations in which players

may adopt different strategies, but where it is not likely that the distributions for the starting

position will differ. For instance if the circumstances prior to the rendezvous problem are equal

for both players. Therefore we will restrict ourselves in this subsection to problems of the

form Γa(p, p) where p can be any distribution supported on Ne. In this restricted asymmetric

rendezvous problem the players can still adopt different strategies, but now they are placed

independently according to the same distribution like in the symmetric rendezvous problem

from Section 2.2. Another way of looking to this problem is to interpret it as an extension

of the symmetric problem in which the players are still placed on interval according to the

same distribution, but now they are allowed to adopt different strategies. If we compare the

problems Γa(p, p) and Γs(p) for some p, then it is interesting to know how much the players can

profit from being allowed to adopt different strategies. We have done an numerical experiment

and answered this question for many arbitrarily chosen distributions. The results7 are listed

n # of simulations
# of times profitable to
adopt different strategies

average relative
difference

maximal relative
difference

4 > 108 0 (0%) - -
5 5 · 107 580 (0.0012%) 0.0196% 0.0902%
6 ≈ 2.6 · 106 119 (0.0046%) 0.0231% 0.0808%

Table 2.3: Results for experiment in which we compare Γa(p, p) and Γs(p) for a large number
of distributions p and for n = 4, 5, 6.

in Table 2.3 and are rather surprising. It turns out that in most cases it is not profitable for

the players to adopt distinct strategies. Moreover in the very few cases that it is profitable,

the difference with the optimal symmetric strategy is very small. For n = 4 it seems that

it is never beneficial to adopt different strategies. Indeed, we will conclude this observation

later on from a more general result (see Corollary 2.22). Of course it would be very nice to

know whether or not the observed behavior for n = 5, 6 also holds for large n, because then

for any distribution p we could approach the optimal solution of Γa(p, p) by solving Γs(p).

This question is still unanswered, but in Theorem 2.21 we will prove an equality which relates

pairs of strategies for Γa(p, p) to strategies for Γs(p) and hence might be useful for answering

the question.

First consider Figure 2.23. The plot left of the equality sign shows a time-space plot

representing a strategy pair for an asymmetric problem in which player I plays according to

the solid lines and player II according to the dotted lines. The grey circles indicate where

and when meetings between agents occur. Both plots right to the equality sign are time-

space plots representing a strategy for a symmetric problem. Again the grey circles indicate

meetings between agents. The ‘2x’ close to some circle means that at that particular circle

two meetings between agents take place. Here the occurrence of the ‘2x’ is obvious, because

7Notice the average relative difference is the only the average of the differences larger than zero. In other
words, only for the cases in which it is beneficial for the players to adopt different strategies.
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Figure 2.23: Relation between asymmetric strategy pair and symmetric strategy for two
locations

the plots represent a strategy for a symmetric problem. If in such a problem agent i of player

I meets agent j of player II, then agent i of player II also meets agent j of player I which

results for i 6= j in two meetings at the same place at the same time. Now observe that the

strategies on the right hand side are combinations of paths in the strategy pair on the left

hand side. Next notice if we take twice the strategy pair on the left hand side and once the

two strategies on the right hand side, then on both sides of the equality sign exactly the same

number (four) of meetings occur. Moreover the places and times at which the meetings occur

are exactly the same on both sides. In Figure 2.24 a more complicated example is given.
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Figure 2.24: Relation between asymmetric strategy pair and symmetric strategy for three
locations

Again the plot with both solid and dotted lines is a pair of strategies and the plots with only

solid lines represent a strategy adopted by both players. Also in this figure the strategies are

all composed from paths in the strategy pair. In this example we had to add a symmetric

strategy to the left hand side to compensate for meetings that occurred too much on the right

hand side.

These two examples give an intuitive idea how we can add and subtract strategies and

strategy pairs, which has formalized by the following theorem.8

8In the next theorem and also the corollaries after that we assume n ≥ 4, because for n ≤ 3 the results are
trivial.
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Theorem 2.21 Consider the asymmetric rendezvous problem Γa(p, p) where p can be any

distribution supported on Ne. Assume n ≥ 4 and suppose the players adopt strategy pair

(f, g) ∈ S2. Next consider the symmetric rendezvous problem Γs(p) and suppose the players

adopt a strategy composed from paths in (f, g). Let x for i = 0, . . . , n − 1 be a ‘zero and

one vector’ in R
n with the coordinates numbered as 0, . . . , n − 1 and representing a composed

strategy such that

xj =

{
1, if the agent starting at 2j ∈ Ne takes the path of agent fj,

0, if the agent starting at 2j ∈ Ne takes the path of agent gj .

Define the expected meeting time T̂ (x) as if x is the strategy in S represented by x. Let ei

for i = 0, . . . , n − 1 denote a unit vector in R
n with elements numbered as 0, . . . , n − 1 such

that ei
j = δij for j = 0, . . . , n− 1. Moreover let 1 denote a vector in R

n containing only ones.

Then we have the following relation between T̂ (f, g) and a number of composed strategies.

2T̂ (f, g) + (n − 4)T̂ (g) =

n−2∑

i=1

T̂ (ei)

Proof: Let M(x) be the meeting time matrix corresponding to x. Notice x is composed

from paths in strategies f and g. Hence we can express M(x) in terms of the meeting time

matrices M(f), M(g) and M(f, g) by selecting the right values from the matrices. This can

be done as follows:

M(x) = D(x)M(f)D(x) + D(1− x)M(g)D(1 − x) + D(x)
{
M(f, g) + M(g, f)T

}
D(1− x),

where D(y) is defined as a diagonal matrix with y on the diagonal. Note D(1−ei) = I−D(ei)

where I is the n × n identity matrix. If we choose x = ei in the above expression for M(x)

with i = 0, . . . , n − 1 and use

◮ a meeting time matrix always has zeroes on the diagonal (see Lemma 2.19),

◮ M(g) is a symmetric matrix,

◮ M(f, g) = M(g, f)T ,

then we find

M(ei) = D(ei)M(f)D(ei)︸ ︷︷ ︸
= 0

+D(1− ei)M(g)D(1 − ei) + D(ei)
{
M(f, g) + M(g, f)T

}
D(1 − ei),

= M(g) + D(ei)
{
M(f, g) + M(g, f)T

}
− D(ei)

{
M(f, g) + M(g, f)T

}
D(ei)

︸ ︷︷ ︸
= 0

− D(ei)M(g) − M(g)D(ei) + D(ei)M(g)D(ei)︸ ︷︷ ︸
=0

,

= M(g) + 2D(ei)M(f, g) − 2D(ei)M(g).
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Next summing over all i = 0, . . . , n − 1 results in

n−1∑

i=0

M(ei) = nM(g) + 2

(
n−1∑

i=0

D(ei)

)
M(f, g) − 2

(
n−1∑

i=0

D(ei)

)
M(g),

= 2M(f, g) + (n − 2)M(g). (2.25)

Now remember that e0 corresponds to a strategy in which the agent starting at node 0 takes

the path of the corresponding f -agent and the other agents take the path of the corresponding

g-agent. However it makes no difference whether the agent starting at zero takes the path

from f or the path from g, because in both cases he takes the path of the left sweeper.

Consequently we have M(e0) = M(g). Using the same arguments but now for the right

sweeper, we also find M(en−1) = M(g). Hence (2.25) is equivalent to

n−2∑

i=1

M(ei) = 2M(f, g) + (n − 4)M(g).

Next notice
n−2∑

i=1

T̂ (ei) =
n−2∑

i=1

pT M(ei)p = pT

(
n−2∑

i=1

M(ei)

)
p

and consequently

n−2∑

i=1

T̂ (ei) = pT (2M(f, g) + (n − 4)M(g)) p,

= 2T̂ (f, g) + (n − 4)T̂ (g)

which completes the proof. �

Using this theorem it is now not difficult to explain why it is not beneficial for two players

to adopt different strategies in the restricted asymmetric problem Γa(p, p) with n = 4 (also

see Table 2.3).

Corollary 2.22 Consider an asymmetric rendezvous problem Γa(p, p) with p an arbitrary

distribution supported on Ne and assume n = 4. Take an arbitrary (f, g) ∈ S2
opt, then there

exists a strategy in s ∈ S such that T̂ (s) ≤ T̂ (f, g). Moreover s is a combination of the paths

in f and g.

Proof: Applying Theorem 2.21 with n = 4 gives

2T̂ (f, g) = T̂ (s′) + T̂ (s′′),

with s′, s′′ ∈ Sopt both combinations of paths of f and g. Because of the equality we have

either T̂ (s′) < T̂ (f, g), T̂ (s′′) < T̂ (f, g) or T̂ (s′) = T̂ (s′′) = T̂ (f, g). Thus there exists always

a strategy s ∈ S, such that s is a combination of paths in f, g and such that T̂ (s) ≤ T̂ (f, g).

�
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The last proof in this chapter will be another consequence of Theorem 2.21. The results

in Table 2.3 show that for n = 5 and n = 6 in most cases an optimal solution for Γs(p) is also

an optimal solution for Γa(p, p). Moreover for n = 4 we just proved in Corollary 2.22 that

an optimal solution for Γs(p) is always an optimal solution for Γa(p, p). However we have

no general result which tells us whether or not an optimal solution for Γs(p) is optimal for

Γa(p, p), but we can prove that it is always an equilibrium pair.

Corollary 2.23 Assume n ≥ 4 and consider the asymmetric problem Γa(p, p) with p an

arbitrary distribution supported on Ne. Let s ∈ Sopt be an optimal strategy for the symmetric

problem Γs(p), then (s, s) ∈ S2
opt is an equilibrium pair for Γa(p, p).

Proof: Suppose s is an optimal strategy for Γs(p), but (s, s) is not an equilibrium pair for

Γa(p, p). Then there exists a strategy s′ ∈ S such that T̂ (s′, s) < T̂ (s). Using Theorem 2.21

we find that there exists strategies s1, . . . , sn−2 ∈ S such that

2T̂ (s′, s) + (n − 2)T̂ (s) =

n−2∑

i=1

T̂ (si).

Since s is an optimal strategy for Γs(p) we have T̂ (s) ≤ T̂ (si) and thus

2T̂ (s′, s) =

n−2∑

i=1

T̂ (si) − (n − 2)T̂ (s) ≥ T̂ (s1) + T̂ (s2).

Notice we have chosen s1 and s2 on the right hand side, but could have chosen si and sj for

any i, j ∈ {1, . . . , n − 2} with i 6= j. Moreover we can conclude that either T̂ (s1) ≤ T̂ (s′, s),

T̂ (s2) ≤ T̂ (s′, s) or both. Hence s cannot be the optimal strategy for Γs(p), because we

assumed T (s′, s) < T̂ (s). Notice we now have a contradiction and thus if s is an optimal

strategy for Γs(p), then (s, s) is an equilibrium pair for Γa(p, p). �

2.4 Conclusion

This chapter contains an overview of all known results for the rendezvous problem on the

labeled interval. However more importantly, in this chapter also a number of new results

(both analytical and numerical) for rendezvous problems on the discrete interval are derived.

In Section 2.2 we proved an one-to-one correspondence between sticky geodesic strategies

and proper binary trees. We used this result to derive a recurrence relation describing

the minimal expected meeting time of the symmetric rendezvous problem Γs(p) for any p.

This recurrence relation provides us with an relatively easy way for numerically solving the

symmetric rendezvous problem.

After that in Section 2.3, we considered the more general asymmetric rendezvous problem.

We generalized the definition of sticky strategies to sticky pairs of strategies. We used these

sticky pairs in an algorithm for approaching the optimal strategy pair of the asymmetric

rendezvous problem Γa(p, q) where both p and q can be any distribution. In this section we

also considered two restricted problems. In the first one we solved the asymmetric problem
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with players likely to start at opposite ends of the interval. Next we compared the restricted

asymmetric problem Γa(p, p) to the symmetric problem Γs(p) where we found some surprising

numerical results. We also showed how we can express a strategy pair for Γa(p, p) as a

combination of strategies for Γs(p).

We can conclude that rendezvous search problems on the discrete labeled interval (and

also on other search spaces) remain difficult problems. The results in this chapter are a

nice contribution to the research in this area. However there are still many open questions to

answer. For instance, it would nice to know whether there exists an one-to-one correspondence

between S2
opt and some set of set of trees or graphs. Such a relation might lead to an algorithm

for solving the asymmetric problem on the interval. Also the conjectures stated in this chapter

are open questions as of yet. Another ideas for future research is to generalize the results

in this chapter to rendezvous problems on trees, graphs, a continuous interval, rendezvous

problem in which the players are not placed independently, etc.
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3 Search game on a star with players having motion detection

abilities

3.1 Introduction to the search game

In the previous chapter we considered a rendezvous search problem on a known search region

(a finite interval in our case). In this problem two players located in the search region have

the common goal to meet as soon as possible. One could also think of a related problem

in which one of them likes to avoid the meeting as long as possible. In fact such problems

(‘Princess and Monster’ games) were introduced by Isaacs in [8] before rendezvous search

problems were considered.9 In a ‘Princess and Monster’ game a monster and a princess are

located on a known region and the monster’s goal is to catch the princess as soon as possible.

Of course the princess does not like to be caught by the monster and hence her objective is

to maximize the expected capture time. It is important to notice that the monster and the

princess will not have any visual contact and thus the monster can only catch the princess

when he is ‘close enough’. The ‘Princess and Monster’ game is an example of a search game.

In general, a search game is a problem in which a searcher (the monster) and a hider (the

princess) are located on a known region. The searcher is allowed to move at some bounded

speed and his objective is to catch the hider as soon as possible by adopting a search strategy.

The hider can be either mobile or immobile and his objective is to maximize the expected

time to be captured by the searcher by adopting some hiding strategy. Both a search strategy

and a hiding strategy can be a pure strategy or a mixed strategy. In a pure strategy the

searcher always plays the same strategy and in a mixed strategy he assigns a probability to

each pure strategy.

Next we have to describe what we will call a solution to our problem. Therefore we will

informally introduce the concept of saddle-point equilibria in the context of search games.10

Let p and q be vectors representing mixed strategies with probabilities assigned to each

pure strategy of respectively the searcher and the hider. Next suppose f(p, q) is a function

describing the expected time at which the searcher will capture the hider as a function of p

and q. Now a pair (p, q) is called a saddle-point equilibrium if and only if for all other mixed

strategies p′ and q′ holds

f(p, q′) ≤ f(p, q) ≤ f(p′, q). (3.1)

We will call such a pair (p, q) with value f(p, q) a solution for our search game. The strategies

p and q are optimal strategies for respectively the searcher and the hider.

After some remarks we can now introduce our problem in which the search region is a

star with n arcs of length 1
2 . We will assume n ≥ 3, because else we just have an interval with

the searcher starting at one the ends (for n = 1) or in the center (for n = 2). Initially the

searcher is located in the origin O of the star and the hider at one of the n ends of the arcs

according to a uniform distribution. Assume the searcher will catch the hider if and only if

they are at exactly the same position. Such a meeting does not necessarily have to take place

in the origin or at the end of an arc, but can also take place halfway an arc. Our problem

9Also see [3] for the ‘Princess and Monster’ game on an interval.
10Such an equilibrium can interpreted as a Nash equilibrium for a zero-sum game (also see [9] and [11]).
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Figure 3.1: Star with origin O and n arcs of length 1
2 .

will be in discrete time and each time step the searcher can either

◮ ambush the hider by staying in the origin of the star,

◮ or move at unit speed to the end of one of the n arcs and then back to the origin.

We will call the first strategy ambush and the second strategy search. The hider also has two

options each time step. He can either

◮ stay at his current position,

◮ or move at unit speed to the origin and then to the end of one of the n − 1 remaining

arcs.

We will refer to these strategies as respectively stay and move. Notice the searcher and

the hider make their moves simultaneously. In this chapter we will consider two models for

this search game on the star. First in Section 3.2 we will consider a simple model in which

both the searcher and the hider have no memory. In this model the searcher does not take

the number of arcs he has searched already into account, when he decides his strategy for

the next time step. We will conclude that this model is too simple. After that in Section

3.3 we will analyze an extended model in which we add information such that the searcher

and the hider both know in how many arcs the hider can possibly stay (from the searcher’s

point of view). For this extended model we derived a number of results, both analytical and

numerical.

3.2 Simple model without memory

We will discuss a simple model without memory, such that each time step the searcher and

the hider will play the same game until the hider is caught. In general we cannot assume that

the searcher and the hider will adopt pure strategies. So we introduce variables p and q with

0 ≤ p, q ≤ 1, such that in each time step

◮ the searcher searches with probability p and ambushes with probability 1 − p,

◮ the hider stays with probability q and moves with probability 1 − q.
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Now the question is which p and q are optimal? As mentioned in the introduction of this

chapter we are looking for saddle-point equilibria. So p and q are optimal if and only if they

are a saddle-point equilibrium.

Let T (p, q) be a stochastic variable denoting the time at which the searcher will catch the

hider as function of p and q. To compute the expected capture time E [T (p, q)] at which the

searcher captures the hider we can condition on the strategies chosen in the first time step. If

the hider is not caught after the first time step, then in the next time step the searcher and

the hider will play the same game as in the first time step. Hence in that case the expected

capture time after one time step is E [T (p, q)] + 1. Conditioning on the strategies played in

the first time step results in the following four conditional expectations.

◮ In the first place suppose in the first time step the searcher ambushes and the hider

stays. Then obviously the searcher does not catch the hider and hence in this case the

expected capture time is E [T (p, q)] + 1.

◮ Secondly, suppose in the first time step the searcher ambushes and the hider moves.

Then the hider runs into the searcher’s trap at the origin at time 1
2 . Hence the expected

capture time in this case is 1
2 .

◮ Next suppose in the first time step the searcher searches and the hider stays. If the

searcher takes the arc in which the hider stays, then he catches the hider at the end

of the arc at time 1
2 . Else he returns to origin without catching the hider. Hence the

expected capture time in this case is

1

n
· 1

2
+

n − 1

n
(E [T (p, q)] + 1) =

2n − 1

2n
+

n − 1

n
E [T (p, q)] .

◮ Finally, suppose in the first time step the searcher searches and the hider moves. If the

searcher takes the arc from which the hider starts, he catches him halfway that arc after
1
4 time steps. If not, then the hider is not safe yet. After 3

4 time steps he can still run

into the searcher, who is returning to the origin from the end of an arc (this cannot be

the arc just left by the hider) at that moment. Hence in this case the expected capture

time is

1

n
· 1

4
+

n − 1

n

(
1

n − 1
· 3

4
+

n − 2

n − 1
(E [T (p, q)] + 1)

)
=

n − 1

n
+

n − 2

n
E [T (p, q)] .

The expected capture times for the four possible combinations of pure strategies which

can be played in the first time step, are summarized in Table 3.1. Combining all conditional

Searcher Hider Probability Conditional expectation

ambush stay (1 − p)q E [T (p, q)] + 1
ambush move (1 − p)(1 − q) 1

2
search stay pq 2n−1

2n
+ n−1

n
E [T (p, q)]

search move p(1 − q) n−1
n

+ n−2
n

E [T (p, q)]

Table 3.1: Conditional expectations for the four possible combinations of pure strategies



50

0
0.2

0.4
0.6

0.8
1 0

0.2
0.4

0.6
0.8

1
0

2

4

6

8

q
p

E
[T

(p
,q

)]

Figure 3.2: E [T (p, q)] plotted for n = 5 as function of p and q

expectations results in the following implicit formula for E [T (p, q)],

E [T (p, q)] = (1 − p)q (E [T (p, q)] + 1) +
(1 − p)(1 − q)

2
+ pq

(
2n − 1

2n
+

n − 1

n
E [T (p, q)]

)

+ p(1 − q)

(
n − 1

n
+

n − 2

n
E [T (p, q)]

)
.

Solving for E [T (p, q)] results in

E [T (p, q)] =
n

n(1 − p)(1 − q) − p(q − 2)
− 1

2
. (3.2)

In Figure 3.2 this expression for E [T (p, q)] is plotted for n = 5 as function of p and q. For

p = 0 and q = 1 the value tends to infinity, which is correct because it corresponds to the

situation where the searcher will always ambush and where the hider will always stay. Hence

in that case the hider is never caught. However we are more interested in values of p and q

such that both the searcher and the hider cannot unilaterally change the expected capture

time. So we are looking for a pair p, q such that for all p′, q′ with 0 ≤ p′, q′ ≤ 1 holds

E
[
T (p, q′)

]
≤ E [T (p, q)] ≤ E

[
T (p′, q)

]

Such a pair (p, q) with expected capture time E [T (p, q)] is a saddle-point equilibrium and

hence a solution for our problem as we already mentioned before in Section 3.1. Next we will

prove that in the unique optimal solution for the search game considered in this section the

searcher will always search and the hider will always stay.



51

Theorem 3.1 Consider the search game such as defined in this section. Then in the unique

solution for this problem the searcher will always search and the hider will always stay. The

expected time at which the hider is caught by the searcher is n − 1
2 .

Proof: Differentiating (3.2) with respect to q gives

∂

∂q
E [T (p, q)] =

n2(1 − p) + np

(n(1 − p)(1 − q) − p(q − 2))2 > 0, for all p, q ∈ [0, 1].

This derivative shows that for q < 1 the hider can always increase the expected capture time

by increasing the probability of staying, no matter what strategy the searcher plays. Thus in

a solution for the problem q will equal to be 1. (Notice this result could also be observed from

Figure 3.2.) Next we have to find the best response of the searcher to this hider’s strategy.

Therefore consider

E [T (p, 1)] =
n

p
− 1

2
.

So if q = 1, the searcher can either always stay (p = 0) and never catching the hider or always

search (p = 1) and expect to catch the hider after E [T (1, 1)] = n − 1
2 time steps. Hence in

the unique solution to problem the searcher will always search and the hider will always stay.

Then the expected time at which the hider is caught by the searcher is n − 1
2 . �

This result can also immediately be concluded from Table 3.1, because for both pure

strategies the searcher can play it is beneficial for the hider to stay. In real life it seems

reasonable that the searcher will alternate between searching and ambushing instead of

searching all the time. So probably the simple search game considered in this section is

too simple to model realistic behavior. In reality the searcher can probably distinguish the

arcs (as if they are labeled for him) and count how many times he has visited an arc without

catching the hider. Moreover if the hider will not move for too long, then at some moment

there is only one arc left where he can possibly stay from the searcher’s point of view. So

intuitively it would be optimal for the hider to move to another arc every now and then.

In the next section we discuss an extended model in which we try to include some of these

intuitive ideas.

3.3 Extended model with motion detection

3.3.1 Introduction to the extended model

Consider again the star with n arcs of length 1
2 . In the previous section we considered a model

in which both the searcher and the hider have no memory. In that model they played the

same game at each time step until the hider was caught by the searcher. In this section we

will assume that both the searcher and the hider have some motion detecting abilities such

that after each time step they know whether the opponent has moved or not. Example 3.1

shows that such an assumption is not unrealistic.

Example 3.1 Consider a fox trying to catch a rabbit which can hide in a number of holes.

The fox can either wait outside the hole and try to lure the rabbit, or the fox can search in
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one of the holes. The rabbit can hide in one of his holes or he can try to run to a safer place.

This small example is a game with a searcher (the fox) and a hider (the rabbit), which can be

modeled as a search game on a star. The place outside where the fox tries to lure the rabbit,

is the origin of the star and the end of each arc represents a hole. If the rabbit stays in his

hole, then it can notice the fox searching through vibrations in the ground, some sound, etc.

On the other hand if the fox is searching a hole and meanwhile the rabbit moves to another

hole, then it is reasonable to assume that the fox can hear or smell this. So if we model this

problem in discrete time, then both the fox and the rabbit have the ability to know after each

time step whether or not the other has moved.

This example shows that our extended model could be realistic and hence it supports the

decision to put effort in analyzing this model. In the extended model the searcher and the

hider will play a stochastic game (see [11]) with n states numbered as 1, . . . , n. In each state

they will play a subgame denoted as Γn(k), for k = 1, . . . , n where n is the number of arcs

and k is the number of arcs where the hider can possibly stay from the searcher’s point of

view. So Γn(k) is the subgame in which the searcher has restricted the set of arcs where the

hider can stay from n arcs to only k arcs. Initially the searcher has no information about

the position of the hider and thus k = n at time zero. In other words, the games starts in

subgame Γn(n). The stochastic game played by the searcher and the hider is the collection

Γn = {Γn(k) | k = 1, . . . , n} where initially subgame Γn(n) is played.

b

b

b

O

k arcs where the hider can stay

b

b

n-k arcs where the hider cannot stay

Figure 3.3: Subgame Γn(k) where k arcs (from n in total) are left in which the hider can
stay.

Just as in the simple model from Section 3.2 both the searcher and the hider have two

options. Again the searcher can either ambush or search, and the hider can either stay or

move. In Section 3.2 we introduced variables p and q to model their choice. Now their

choice can be based on the subgame that is played. So we introduce vectors p,q ∈ R
n with

0 ≤ pk, qk ≤ 1 for k = 1, . . . , n, such that in subgame Γn(k)

◮ the searcher searches with probability pk one of the k arcs where the hider can stay and

ambushes with probability 1 − pk,

◮ the hider stays with probability qk and moves to the end of another arc with probability

1 − qk.
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If the pair (p,q) is chosen such that it is a saddle-point equilibrium, then p and q are

optimal strategies for Γn. Define vn(k) as the expected capture time at which the hider is

caught in case the game would start in subgame Γn(k) and the players respectively adopt

strategies p and q. We call vn(k) the value of Γn(k). Moreover vn ≡ vn(n) is called the value

of the game Γn. In Lemma 3.5 the uniqueness of the values and the existence of optimal

strategies is proved using Shapley’s theorem (see [11]).

Next suppose a subgame Γn(k) is played and the hider is not caught. Then the stochastic

game proceeds to another subgame based on the actions of the searcher and the hider.11 On

the other hand, if the searcher catches the hider, then the game ends. For k = 1 it is not hard

to determine the value vn(1), see the next lemma. After this lemma we will analyze vn(k) for

2 ≤ k ≤ n.

Lemma 3.2 In subgame Γn(1) the searcher will always search (p1 = 1) and the hider will

always stay (q1 = 0) for any n. The value vn(1) of this subgame is equal to 1
2 .

Proof: In subgame Γn(1) there is only one arc left in which the hider can stay. So the

searcher will certainly search that arc and thus p1 = 1. Then the hider can choose either to

move and be captured after 1
4 time steps or to stay and be captured after 1

2 time steps. The

hider wants to maximize the expected capture time and thus he will certainly stay. Hence

q1 = 1 and vn(1) = 1
2 . �

For 2 ≤ k ≤ n we restrict ourselves to stationary strategies, which prescribe the same

behavior for both players every time the same subgame is played. In that way we can express

vn(k) in terms of the values of other subgames by assuming Γn(k) is played at the first time

step and then conditioning on the strategies played in Γn(k). Remember we assumed both

the searcher and hider to have some motion detecting abilities, such that after each time step

they do know the opponents’ action in the last turn.

◮ In the first place suppose the searcher ambushes in Γn(k) and the hider stays in Γn(k).

Then the searcher does not catch the hider in this subgame. Moreover both the searcher

and the hider do not move (and by assumption they know it from each other!) and thus

the state does not change. So in the next time step Γn(k) is played another time and

thus in this case we find vn(k) = vn(k) + 1.

◮ Secondly, suppose the searcher ambushes in Γn(k) and the hider moves in Γn(k). Then

the searcher certainly catches the hider after 1
2 time steps and hence in this case we find

vn(k) = 1
2 .

◮ Next suppose the searcher searches in Γn(k) and the hider stays in Γn(k). Then the

searcher chooses one of the k arcs in which the hider can possibly stay and hence he

catches the hider with probability 1
k

after 1
2 time steps. With probability k−1

k
he does

not catch the hider, but then he knows there are only k − 1 arcs left where the hider

can possibly stay and thus the game will proceed to Γn(k − 1). So in this case we find

11In Shapley’s definition in [11] the game proceeds from subgame to subgame according to transition
probabilities. Moreover he introduces for each subgame a stopping probability. We define our stochastic
game in a slightly different form, but we could reformulate it in Shapley’s notation.
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for vn(k),

vn(k) =
1

k
· 1

2
+

k − 1

k
· (vn(k − 1) + 1) =

2k − 1

2k
+

k − 1

k
vn(k − 1).

◮ Finally suppose the searcher searches in Γn(k) and the hider moves in Γn(k). Then the

searcher again chooses one of the k arcs in which the hider can possibly and hence he

catches the hider with probability 1
k

after 1
4 time steps. With probability k−1

k
he chooses

the wrong arc, but then the hider is not safe yet. At the moment the hider reaches the

origin, with probability 1
n−1 he will choose the arc from which the searcher is returning

and hence run into the searcher after 3
4 time steps. If the hider is not caught in this step,

then the game proceeds to Γn(n − 1) because the searcher has detected the movement

of the hider and hence at this point the searcher only knows that the hider cannot stay

in the arc from which he just returned. Combining all these observation leads in this

case to

vn(k) =
1

k
· 1

4
+

k − 1

k

(
1

n − 1
· 3

4
+

n − 2

n − 1
(vn(n − 1) + 1)

)
,

=
4kn − 3n − 5k + 4

4k(n − 1)
+

(k − 1)(n − 2)

k(n − 1)
vn(n − 1).

In Table 3.2 these four results are summarized in a payoff 12 table for Γn(k) with 2 ≤ k ≤ n.

In such a table the expected capture time for each pair of pure strategies is given. To find the

Γn(k)
Hider

stay move

Searcher
search 2k−1

2k
+ k−1

k
vn(k − 1) 4kn−3n−5k+4

4k(n−1) + (k−1)(n−2)
k(n−1) vn(n − 1)

ambush vn(k) + 1 1
2

Table 3.2: Payoff table for subgame Γn(k) with 2 ≤ k ≤ n.

expected capture time for mixed strategies, we only have to take a combination of the values

in Table 3.2 corresponding to the probabilities in the mixed strategy. Here we added labels

in Table 3.2 indicating the searcher is the row player and the hider is the column player.

However normally we will omit these labels.

Of course we want to know the solution of the problem. Before we try to find the solution

in subsection 3.3.3 for n = 3, 4, 5 and in subsection 3.3.4 for general n, it is useful first to

prove some properties of the extended model in subsection 3.3.2.

12In this section we will often use the more general term payoff to denote the capture time corresponding
to some search and hiding strategies.
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3.3.2 Properties of the extended model

All four lemmas in this subsection will be used in subsections 3.3.3 and 3.3.4. Below, a brief

description of each lemma is given. After that, the lemmas are presented and proved one by

one. Between the proofs of Lemma 3.5 and Lemma 3.6 we will also give a small example how

to compute optimal mixed strategies from a payoff table.

1. First we show which pure strategies can possibly be optimal in a certain subgame.

(Lemma 3.3)

2. Secondly, we will derive simple but useful bounds for vn (Lemma 3.4).

3. The next lemma concerns the existence of optimal strategies and the uniqueness of the

value of each subgame and hence also for the search game. (Lemma 3.5).

4. Finally we will prove which strategies are optimal for the searcher and the hider in

subgames Γn(n) and Γn(n − 1) (Lemma 3.6).

Lemma 3.3 Consider a subgame Γn(k) with 1 ≤ k ≤ n and suppose it is optimal for the

players to adopt pure strategies. Then the searcher will search and the hider will stay in this

subgame. Moreover another combination of pure strategies cannot be optimal.

Proof: Suppose it is optimal for the players to adopt pure strategies in subgame Γn(k). The

hider’s objective is to maximize the expected capture time. So if the searcher would choose

to ambush, then the hider would certainly stay. On the other hand, the searcher’s objective is

to minimize the expected capture time. So if the hider would move, then the searcher would

certainly ambush. Thus if the players will play pure strategies such that either the hider will

move, the searcher will ambush or both, then at least one player can unilaterally change his

strategy in his own advantage. Consequently such a strategy cannot be optimal and hence if

it is optimal to adopt pure strategies in Γn(k), then certainly the searcher will search and the

hider will stay. �

Lemma 3.4 Consider the stochastic game Γn with value vn for n ≥ 3. Then n
2 ≤ vn ≤ n.

Proof: This proof consists of two parts. First we will prove the lower bound and secondly

we will prove the upper bound.

◮ Suppose the hider will always stay. Then we are interested in the searcher’s best response

to this strategy of the hider. If the searcher will ambush in some subgame, then he is

wasting his time because the hider never moves. Hence the searcher’s best response is

to search in every subgame. Now let un(k) be the expected time at which the hider

is caught while playing these strategies and for a game starting in Γn(k), then we find

un(k) = 2k−1
2k

+ k−1
k

un(k − 1) for k = 2, . . . , n − 1. Moreover from Lemma 3.2 we know

un(1) = 1
2 . Solving this recurrence relation gives un(k) = k

2 and thus in particular

un(n) = n
2 . So if the hider will always stay in every subgame, then he knows for sure

that the expected capture time is at least n
2 and consequently n

2 ≤ vn.
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◮ Next assume that the searcher will randomly search an arc in every subgame Γn(k) for

k = 2, . . . , n. Then each time step he will catch the hider with a probability of at least
1
n

. So vn is smaller than or equal to the expected value of a geometric distribution with

parameter 1
n

and hence vn ≤ n.

Combining these two parts completes the proof of this lemma. �

In the proof of the next lemma we will use Shapley’s Theorem (see [11]). This theorem

states that every stochastic game with

◮ a finite number of subgames,

◮ a finite number of possible pure strategies for both players in each subgame,

◮ a positive stopping probability for each combination of pure strategies in each subgame,

has a unique value for each subgame. Moreover this theorem ensures the existence of optimal

(mixed) strategies. Note Shapley used the last condition to ensure that the game ends in

finite time. In our search game a positive stopping probability means that the probability

that the searcher captures the hider is positive.

Lemma 3.5 There exist optimal stationary strategies for Γn. Moreover the value vn(k) for

subgame Γn(k) is uniquely determined by these optimal stationary strategies.

Proof: Our game has n subgames and both players have two options in each subgame. So

it is obvious that our game fulfils the first two criteria of Shapley’s Theorem. Thus we only

need to prove that our game also fulfils the last criterion. In each subgame there are four

possible combinations of pure strategies. In three of them, the hider can be caught and hence

those combinations have a positive stopping probability. However there is one combination

(the search will ambush and the hider will stay) where the hider is certainly not caught and

thus the stopping probability for this combination is zero. Consequently, in the current form

our search game does not fulfil the third criterion of Shapley’s Theorem.

However we can use a trick to avoid this problem. Remember that if the searcher adopts

a pure strategy in subgame Γn(k), then by Lemma (3.3) he will search. In other words, the

searcher will never ambush with probability one in Γn(k). Since the searcher ambushes in

Γn(k) with probability 1 − pk, this implies pk > 0 and hence there exists an ǫk > 0 such that

pk ≥ ǫ. So if we can replace the searcher’s current pure strategies by two new pure strategies

for the searcher such that he can search with any probability pk ∈ [ǫk, 1] by mixing those pure

strategies, then we do not restrict the search game.

Now take ǫ = min{ǫk | 1 ≤ k ≤ n} and replace the searcher’s current pure strategies in

Γn(k) by the following two pure strategies.

M1: Search one of the k arcs where the hider can stay (in fact this is the one of the two

original pure strategies).

M2: Search one of the k arcs where the hider can stay with probability ǫ and ambush with

probability 1 − ǫ.
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If the searcher would originally search in Γn(k) with probability pk ∈ [ǫ, 1] and ambush with

probability 1 − pk, then this equal to playing strategy M1 with probability ρk := pk−ǫ
1−ǫ

and

M2 with probability 1 − ρk, because

ρk + (1 − ρk)(1 − ǫ) =
pk − ǫ

1 − ǫ
+

(
1 − pk − ǫ

1 − ǫ

)
ǫ =

(1 − ǫ)(pk − ǫ)

1 − ǫ
+ ǫ

︸ ︷︷ ︸
≥ ǫ

= pk

and

(1 − ρk)(1 − ǫ) =

(
1 − pk − ǫ

1 − ǫ

)
(1 − ǫ) = 1 − ǫ − pk + ǫ = 1 − pk.

Moreover ρk ∈ [0, 1] for pk ∈ [ǫ, 1] and thus ρk denotes indeed a probability.

Since ǫ ≤ ǫk, it follows that we can assume that the searcher plays in Γn(k) according to

a mixture of M1 and M2 instead of a mixture of search and ambush. Notice the searcher has

in both M1 and M2 a positive probability for catching the hider and thus a positive stopping

probability. Hence our search game fulfils the third condition in Shapley’s Theorem, which

completes the proof of this lemma. �

Example 3.2 Consider a simple search game in which the searcher and the hider can both

choose from two strategies in each time step with payoffs respectively a, b, c and d. We will

solve this simple problem in a detailed way, because later on we will use the same approach

to derive formulas describing our stochastic game.

hider’s strategy H1 hider’s strategy H2

searcher’s strategy S1 a b

searcher’s strategy S2 c d

Assume in this example that it is optimal to adopt mixed strategies and let V denote

the value of this game. Next suppose it is optimal for the searcher to play strategy S1 with

probability p ∈ (0, 1) and for the hider to play strategy H1 with probability q ∈ (0, 1). Then V

is equal to

V = pqa + p(1 − q)b + (1 − p)qc + (1 − p)(1 − q)d,

= p (qa + (1 − q)b) + (1 − p) (qc + (1 − q)d) ,

= q (pa + (1 − p)c) + (1 − q) (pb + (1 − p)d) .

We assumed p, q to be optimal and thus there exists no p′ ∈ [0, 1] such that

p′ (qa + (1 − q)b) + (1− p′) (qc + (1 − q)d) < p (qa + (1 − q)b) + (1− p) (qc + (1 − q)d) (3.3)

and no q′ ∈ [0, 1] such that

q′ (pa + (1 − p)c)+(1−q′) (pb + (1 − p)d) > q (pa + (1 − p)c)+(1−q) (pb + (1 − p)d) . (3.4)
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Consequently,

pa + (1 − p)c = pb + (1 − p)d and qa + (1 − q)b = qc + (1 − q)d. (3.5)

Notice if (3.3) or (3.4) does not hold, then we could respectively construct such a p′ or q′.
Next solving (3.5) for respectively p and q gives

p =
c − d

b + c − a − d
and q =

b − d

b + c − a − d

and hence for V ,

V = pa + (1 − p)c = pb + (1 − p)d = qa + (1 − q)b = qc + (1 − q)d =
cb − ad

b + c − a − d
. (3.6)

This example shows how we can compute p, q and V under the assumption that it is optimal to

adopt mixed strategies. This approach can also be used in stochastic games, and in particular

in the one that we consider in this section.

Lemma 3.6 Consider the stochastic game Γn with n ≥ 3. Then in subgames Γn(n) and

Γn(n − 1) the searcher will always search and the hider will always stay. Consequently

vn(n) = 2n−1
2n

+ n−1
n

vn(n − 1)

vn(n − 1) = 2n−3
2n−2 + n−2

n−1vn(n − 2)

}
=⇒ vn(n) =

2(n − 1)

n
+

n − 2

n
vn(n − 2).

Proof: First consider the payoff table for Γn(n).

Γn(n) stay move

search 2n−1
2n

+ n−1
n

vn(n − 1) n−1
n

+ n−2
n

vn(n − 1)

ambush vn(n) + 1 1
2

Table 3.3: Payoff table for subgame Γn(n).

Notice no matter what the searcher does in this subgame, it is always beneficial for the

hider to stay, because the left column dominates the right column. This means that both

payoffs in the left column are more beneficial for the hider than the payoffs in the right

column.13 Here this is indeed the case, because

2n − 1

2n
+

n − 1

n
vn(n − 1) >

n − 1

n
+

n − 2

n
vn(n − 1) and vn(n) + 1 >

1

2
.

If the hider will always stay in a subgame, then it is obviously that the searcher responds by

always searching in that particular subgame. Hence in Γn(n) the searcher will search and the

hider will stay and thus vn(n) = 2n−1
2n

+ n−1
n

vn(n − 1).

13If the column players’ objective was to minimize the value of the game, then the right column would have
dominated the left column in this case. Moreover in payoff table it also possible that a row is dominated by
another row.
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Next consider subgame Γn(n − 1) with corresponding payoff table. Suppose it is optimal

Γn(n − 1) stay move

search 2n−3
2n−2 + n−2

n−1vn(n − 2) (2n−3)2

4(n−1)2
+ (n−2)2

(n−1)2
vn(n − 1)

ambush vn(n − 1) + 1 1
2

Table 3.4: Payoff table for subgame Γn(n − 1).

for the players to adopt mixed strategies in Γn(n− 1) such that the searcher will search with

probability pn−1 ∈ (0, 1) in Γn(n − 1) and the hider will stay in Γn(n − 1) with probability

qn−1 ∈ (0, 1). Both the searcher and the hider cannot profit from unilaterally changing their

strategy. Hence (compare to (3.6) in Example 3.2)

vn(n − 1) = pn−1

{
(2n − 3)2

4(n − 1)2
+

(n − 2)2

(n − 1)2
vn(n − 1)

}
+

1 − pn−1

2
,

and next solving for pn−1 results in

pn−1 =
2(n − 1)2 (2vn(n − 1) − 1)

2n2 − 8n + 7 + 4(n − 2)2vn(n − 1)

Differentiating this expression with respect to vn(n − 1) gives

∂

∂vn(n − 1)
pn−1 =

4(n − 1)2(2n − 3)(2n − 5)

(2n2 − 8n + 7 + 4(n − 2)2vn(n − 1))2 > 0, for n ≥ 3.

So pn−1 can be interpreted as an increasing function of vn(n− 1). From Lemma 3.4 we know

vn(n) ≥ n
2 . Moreover we showed in this proof that vn(n) = 2n−1

2n
+ n−1

n
vn(n−1) or equivalently

vn(n − 1) = n
n−1vn(n) − 2n−1

2n−2 . Consequently we know vn(n − 1) ≥ n
n−1 · n

2 − 2n−1
2n−2 = n−1

2 .

Then we find for pn−1,

pn−1 ≥ 2(n − 1)2 (2vn(n − 1) − 1)

2n2 − 8n + 7 + 4(n − 2)2vn(n − 1)

∣∣∣∣
vn(n−1)= n−1

2

,

=
2(n − 1)2(n − 2)

2n3 − 8n2 + 8n − 1
.

Both the numerator and the denominator of this fraction are positive for n ≥ 3. Moreover

2(n − 1)2(n − 2) − (2n3 − 8n2 + 8n − 1) = 2n − 3 > 0, for n ≥ 3

and thus we know pn−1 > 1 for n ≥ 3. However pn−1 cannot be larger than one, because it

denotes a probability. Hence we have a contradiction to the assumption that it was optimal

for the players to adopt mixed strategies in Γn(n − 1). So the players both adopt a pure

strategy in Γn(n−1). Then according to to Lemma 3.3 the searcher will search and the hider
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will stay in Γn(n − 1). Consequently vn−1 = 2n−3
2n−2 + n−2

n−1vn(n − 2) and next substituting this

expression into the the relation between vn(n) and vn(n− 1) obtained in the first part of this

proof, results in the relation between vn(n) and vn(n − 2) stated in the lemma. �

3.3.3 Solving the extended model for n = 3,4,5

In this subsection we will solve the stochastic games Γ3, Γ4 and Γ5. We will see that Γ3 is

easy to solve, Γ4 is a bit more difficult and analytically solving Γ5 becomes too complicated.

◮ The solution for Γ3 is an immediately consequence of Lemma 3.2 and Lemma 3.6. In the

first lemma we proved v1
3 = 1

2 and in the second lemma we proved v3 = v3
3 = 4

3 + 1
3v1

3 .

So combining these two lemmas shows v3 = 3
2 and also that the searcher will always

search and that the hider will always stay in each subgame of Γ3.

◮ Next consider Γ4. We know using Lemma 3.2 and Lemma 3.6 that in Γ1
4, Γ3

4 and Γ4
4 the

searcher will always search and the hider will always stay. So we only need to consider

the payoff table for Γ2
4. We know v4(1) = 1

2 (see Lemma 3.2) and v4(3) = 5
6 + 2

3v4(2)

Γ4(2) stay move

search 3
4 + 1

2v4(1) 7
12 + 1

3v4(3)

ambush v4(2) + 1 1
2

=⇒

Γ4(2) stay move

search 1 31
36 + 2

9v4(2)

ambush v4(2) + 1 1
2

Table 3.5: Payoff table for Γ2
4

(see Lemma 3.6). Substituting these equalities in the payoff table for Γ2
4 results in a

table only containing v4(2) and thus v4(2) can be expressed in terms of itself.

If it would be optimal for the players to play pure strategies in Γ4(2), then the only

possibility is that the searcher would search and the hider would stay (see Lemma 3.3).

So in that case v4(2) would be equal to 1, but then it is beneficial for the hider to

move because 31
36 + 2

9 > 1. Hence in an optimal solution the players do not adopt pure

strategies in Γ4(2), because then the solution cannot be a saddle-point equilibrium and

thus cannot be optimal.

So we know the searcher will search with probability p2 ∈ (0, 1) and the hider will stay

with probability q2 ∈ (0, 1). Then we find

v4(2) = p2q2 + p2(1 − q2)

(
31

36
+

2

9
v4(2)

)
+ (1 − p2)q2 (v4(2) + 1) +

(1 − p2)(1 − q2)

2

and after solving for v4(2),

v4(2) =
18 + 13p2 + 18q2 − 13p2q2

4(11p2q2 − 2p2 − 9q2 + 9)
.
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Figure 3.4: Saddle point indicating value of v4(2).

To solve the problem we have find the saddle point visible in Figure 3.4. So we have to

solve




∂
∂p2

v4(2) =
9(17−44q2−9q2

2)
4(11p2q2−2p2−9q2+9)2

= 0,

∂
∂q2

v4(2) =
9(36−26p2−13p2

2
)

4(11p2q2−2p2−9q2+9)2
= 0.

=⇒ p2 =
7

13

√
13 ± 1, q2 =

7
√

13 ± 22

9
.

Since p2 and q2 are defined as probabilities we find p2 = 7
13

√
13 − 1 ≈ 0.9415 and

q2 = 7
√

13−22
9 ≈ 0.3599.14 We can substitute these values in the expression for v4(2) and

then using v4 = v4(4) = 3
2 + 1

2v4(2) (see Lemma 3.6), we can conclude

v4 =
209

√
13 − 833

160
√

13 − 616
≈ 2.0311.

◮ Finally consider Γ5 for which we need the payoff tables for Γ2
5 and Γ3

5. Just as for Γ2
4, also

in these tables the relations provided by Lemma 3.2 and Lemma 3.6 can be substituted.

We expect mixed strategies in Γ5(2) and Γ5(3) and thus we can try to find saddle points

for those subgames. We cannot represent the saddle points in a plot anymore (assuming

there exists at least one saddle point), because we now have four variables. However

the idea remains the same and we can still compute the saddle points. Notice if it is

not optimal to play mixed strategies in either Γ5(2) or Γ5(3), then we do not find saddle

points such that p2, p3, q2 and q3 all take values in (0, 1). On the other hand if we find

a saddle point, then we know the corresponding strategies are optimal because each

14Since 7

13

√
13 + 1 > 1 and 7

√
13+22

9
> 1, the remaining solutions do not satisfy the condition that both p2

and q2 are defined to be probabilities.
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Γ5(2) stay move

search 3
4 + 1

2v5(1) 19
32 + 3

8v5(4)

ambush v5(2) + 1 1
2

=⇒

Γ5(2) stay move

search 1 59
64 + 9

32v5(3)

ambush v5(2) + 1 1
2

Γ5(3) stay move

search 5
6 + 2

3v5(2) 17
24 + 1

2v5(4)

ambush v5(3) + 1 1
2

=⇒

Γ5(3) stay move

search 5
6 + 2

3v5(2) 55
48 + 3

8v5(3)

ambush v5(3) + 1 1
2

Table 3.6: Payoff table for Γ2
5 and Γ3

5.

subgame has a unique value according to Lemma 3.5.

To find a saddle point notice that if the searcher will search with probability p2 in Γ5(2)

in such a point, then the hider must always have the same payoff for each choice of q2.

Therefore p2 fulfils the following relation (also see Example 3.2).

p2+(1−p2)(v5(2)+1) = p2

(
59

64
+

9

32
v5(3)

)
+

1 − p2

2
=⇒ p2 =

32(2v5(2) + 1)

64v5(2) + 18v5(3) + 27
.

On the other hand, the hider will stay with probability q2 such that the search will

always have the same payoff for each choice of p2. Then we find

q2+(1−q2)

(
59

64
+

9

32
v5(3)

)
= q2(v5(2) + 1) +

1 − q2

2︸ ︷︷ ︸
= vn(2)

=⇒ q2 =
9(2v5(3) + 3)

64v5(2) + 18v5(3) + 27
.

Moreover both terms on the left hand side of the arrow (we need the term on the right

hand side of the equality sign) must be equal to v5(2) (see Example 3.2) and thus

v5(2) = q2(v5(2) + 1) +
1 − q2

2
=⇒ v5(2) =

1 + q2

2(1 − q2)
=

18v5(3) + 32v5(2) + 27

64v5(2)
. (3.7)

In the same way we can find for Γ5(3),

p3 =
24(2v5(3) + 1)

66v5(3) − 32v5(2) + 39
,

q3 =
18v5(3) + 31

66v5(3) − 32v5(2) + 39
,

and thus

v5(3) =
1 + q3

2(1 − q3)
=

42v5(3) − 16v5(2) + 35

8(1 + 6v5(3) − 4v5(2))
. (3.8)

Combining (3.7) and (3.8) shows we have to solve the following system with two



63

equations and two unknowns,

{
64v5(2)2 = 18v5(3) + 32v5(2) + 27,

8v5(3)(1 + 6v5(3) − 4v5(2)) = 42v5(3) − 16v5(2) + 35
(3.9)

It is possible to eliminate v5(2) (we will not show the details) and obtain a fourth order

polynomial describing v5(3) such that

2304v5(3)4 − 4320v5(3)3 − 1420v5(3)2 + 3028v5(3) + 837 = 0. (3.10)

Theoretically the roots of this polynomial can be found analytically, however that is

not practical. Numerically we find that the roots are approximately −0.6869, −0.2750,

1.1209 and 1.7159. The first two roots are not useful, because v5(3) cannot be negative.

The third root is not useful, because the corresponding value for v5(2) is negative

(approximately −0.6442 using (3.8)). The fourth root is useful, because for this root

the corresponding value for v5(2) is approximately 1.2334. We expressed p2, q2, p3 and

q3 in terms of v5(2) and v5(3) and now substituting v5(2) and v5(3) in these expressions

results in

p2 ≈ 0.8108, q2 ≈ 0.4231, p3 ≈ 0.9431, q3 ≈ 0.5487. (3.11)

These values are all in the open interval (0, 1) and hence our assumption concerning

mixed strategies in Γ5(2) and Γ5(3) was correct. So we can conclude that is optimal for

the searcher and the hider to behave in subgames Γ5(2) and Γ5(3) according to (3.11).

We already knew that in subgames Γ5(1), Γ5(4) and Γ5(5), it is optimal for the searcher

always to search and for the hider always to stay. The value of Γ5 we find using Lemma

3.6,

v5 = v5(5) =
8

5
+

3

5
vn(3) ≈ 2.6296.

The computations in this subsection show that the value of Γ3 can be found easily and

is given by a nice fraction, namely 3
2 . For Γ4 it is still not very hard to compute the answer

analytically, however we do not longer find a nice answer. After that, we performed a lot

of computations finally resulting in approximation for the value of Γ5. We showed these

computations for Γ5, because in the next subsection we will use almost the same approach to

approximate the value of Γn for n > 5. The only difference is that we will not approximate

the roots of a polynomial, but numerically solve a fixed point problem. For n = 5 we would

be interested in the fixed points of the vector function f defined by (compare to (3.7) and

(3.8))

f(v5(2), v5(3)) =

[
18v5(3)+32v5(2)+27

64v5(2)
42v5(3)−16v5(2)+35
8(1+6v5(3)−4v5(2))

]
.

This vector function has four fixed points corresponding to the four roots of the polynomial

in (3.10) and the interesting fixed point is of course the one corresponding to v5(3) ≈ 1.7159.

In general, we are interested in fixed points such that each subgame has a positive value

and such that the variables pk, qk for k = 2, . . . , n−2 take values in the open interval (0, 1). If

such a fixed points would not exist, then we know our assumption concerning mixed strategies
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in Γn(2), . . . , Γn(n− 2) was not correct. Hence in that case in at least one of those subgames

it is optimal for the players to adopt a pure strategy instead of a mixed strategy. In that case

we should find such a subgame and formulate a new fixed point problem incorporating this

new knowledge.

3.3.4 Numerical analysis of the extended model

In this subsection we numerically solve the extended model. After that, based on the

numerical solutions we make a guess for the optimal strategies and the values of the subgames

for n tending to infinity.

To obtain the numerical solution for Γn we will start using the same approach as for

Γ5. So first assume that it is optimal for the players to adopt mixed strategies in subgames

Γn(2), . . . , Γn(n − 2). Then using Table 3.2 we know

pk

(
2k − 1

2k
+

k − 1

k
vn(k − 1)

)
+ (1 − pk)(vn(k) + 1)

= pk

(
4kn − 3n − 5k + 4

4k(n − 1)
+

(k − 1)(n − 2)

k(n − 1)
vn(n−1)

)
+

1 − pk

2
.

and

qk

(
2k − 1

2k
+

k − 1

k
vn(k − 1)

)
+ (1 − qk)

(
4kn − 3n − 5k + 4

4k(n − 1)
+

(k − 1)(n − 2)

k(n − 1)
vn(n−1)

)

= qk(vn(k) + 1) +
1 − qk

2
.

Solving these two equalities for respectively pk and qk results in

pk =
2k(n − 1)(2vn(k) + 1)

2 + 2kn − 3k − n − 4(k − 1)(n − 1)vn(k − 1) + 4k(n − 1)vn(k) + 4(k − 1)(n − 2)vn(n − 1)

and

qk =
4 − 3n − 3k + 2kn + 4(k − 1)(n − 2)vn(n − 1)

2 + 2kn− 3k − n − 4(k − 1)(n − 1)vn(k − 1) + 4k(n − 1)vn(k) + 4(k − 1)(n − 2)vn(n − 1)
.

In the analysis of Γ5 we found v5(2) = 1+q2

2(1−q2) and v5(3) = 1+q3

2(1−q3) . Such a relation also holds

in general for all n and k = 2, . . . , n − 2 such that vn(k) = 1+qk

2(1−qk) . Next we find

vn(k) =
(2n − 3)(k − 1) − 2(k − 1)(n − 1)vn(k − 1) + 2k(n − 1)vn(k) + 4(k − 1)(n − 2)vn(n − 1)

2n − 2 − 4(k − 1)(n − 1)vn(k − 1) + 4k(n − 1)vn(k)
.

So for each vn(k) with k = 2, . . . , n − 2 (n − 3 in total), we can express vn(k) in terms of

vn(2), . . . , vn(n − 2) (where we also use vn(1) = 1
2 by Lemma 3.2 and vn(n − 1) = 2n−3

2n−2 +
n−2
n−1vn(n − 2) by Lemma 3.6.) Now we have a fixed point problem in R

n−3 for which we can

try to find a fixed point resulting in a solution for Γn, such that all values for the subgames

are positive and pk, qk are between 0 and 1 for k = 2, . . . , n − 2.

In Figures 3.5, 3.6 and 3.7 some numerical results are given. We derived the numerical
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Figure 3.5: Searcher’s optimal strategy for different values of n.
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Figure 3.6: Hider’s optimal strategy for different values of n.
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Figure 3.7: Ratio between values and n for subgames Γn(k) with k = 1, . . . , n for different
values of n.

solutions for a large number of different values for n. To show the searcher’s optimal strategies,

the hider’s optimal strategies and the values of the subgames in a single plot we rescaled the

interval [0, n] to [0, 1] for each n. In Figures 3.5 and 3.7 the numerical results on the normalized

scale converge to the dotted curves for large n. The dotted curve in Figure 3.5 corresponds

to the function
√

k
n

and hence it appears pk ≈
√

k
n

for n tending to infinity. In the same

way, the dotted curve in Figure 3.7 corresponds to 2
3

√
k
n

and hence from the values of the

subgames it appears

vn(k)

n
≈ 2

3

√
k

n
⇐⇒ vn(k) ≈ 2

3

√
nk

for n tending to infinity. From Figure 3.6 such an observation for the hider’s optimal strategy

is not immediately clear, however further analysis suggests

qk ≈ 1 − 1
2
3

√
nk

.

We summarize these observations in Conjecture 3.7.

Conjecture 3.7 Consider the stochastic game Γn, then limn→∞
vn

n
= 2

3 and for n → ∞,

pk ≈
√

k

n
, qk ≈ 1 − 1

2
3

√
nk

, vn(k) ≈ 2

3

√
nk.
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3.3.5 Asymptotic behavior of the expected capture time

We aim in this subsection at proving the statement concerning the asymptotic behavior of the

expected capture time presented in the last statement of Conjecture 3.7. Therefore we will

first try to improve the bounds for vn derived in Lemma 3.4. The next theorem provides us

with improved bounds, under the assumption that we know in which subgames it is optimal

to play pure strategies.

Theorem 3.8 Suppose it is optimal for the players to adopt pure strategies in each subgame

Γn(n−m + 1)) for m = 1, . . . , j with 2 ≤ j ≤ n− 2 and not optimal to adopt a pure strategy

in Γn(n − j), then

α(n, j) ≤ vn(n − 1) ≤ α(n, j + 1)

with

α(n, x) =
(2nx − 2n − 2x + 1)(2n − x − 1)

4(nx − 2x + 1)
.

Proof: We will first prove the upper bound and then the lower bound.

◮ It is optimal to play pure strategies in Γn(n − 1), . . . , Γn(n − j + 1). So using Lemma

3.3 we know the searcher will search and the hider will stay in those subgames. Then

from the payoff table for Γn(n − m + 1) (see Table 3.2 with k = n − m + 1) we find

vn(n − m + 1) =
2n − 2m + 1

2n − 2m + 2
+

n − m

n − m + 1
vn(n − m), for m = 2, . . . , j.

Notice this relation gives us a way to express vn(n − j) in terms of vn(n − 1). It turns

out (see Appendix B.1) that

vn(n − j) =
n − 1

n − j
vn(n − 1) − (2n − j − 1)(j − 1)

2(n − j)
. (3.12)

Next suppose the searcher chooses always to search in Γn(n − j), then the hider’s best

response in Γn(n − j) is certainly not staying. If the hider’s best response would be

staying, then it would be optimal to play a pure strategy in Γn(n−j) which we assumed

not to be true. Consequently his best response must be moving and thus the searcher

Γn(n − j) stay move

search 2n−2j−1
2(n−j) + n−j−1

n−j
vn(n − j − 1) 4n2−4nj−8n+5j+4

4(n−j)(n−1) + (n−j−1)(n−2)
(n−j)(n−1) vn(n − 1)

ambush vn(n − j) + 1 1
2

Table 3.7: Payoff table for subgame Γn(n − j).

can in this way ensure (see Table 3.7)

vn(n − j) ≤ 4n2 − 4nj − 8n + 5j + 4

4(n − j)(n − 1)
+

(n − j − 1)(n − 2)

(n − j)(n − 1)
vn(n − 1)
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or equivalently

vn(n − 1) ≥ (n − j)(n − 1)

(n − j − 1)(n − 2)
vn(n − j) − 4n2 − 4nj − 8n + 5j + 4

4(n − j − 1)(n − 2)
.

Then substituting (3.12) gives

vn(n − 1) ≥ (n − j)(n − 1)

(n − j − 1)(n − 2)

{
n − 1

n − j
vn(n − 1) − (2n − j − 1)(j − 1)

2(n − j)

}

− 4n2 − 4nj − 8n + 5j + 4

4(n − j − 1)(n − 2)
,

=
(n − 1)2

(n − j − 1)(n − 2)︸ ︷︷ ︸
> 1

vn(n − 1) − (2nj − 2j − 1)(2n − j − 2)

4(n − j − 1)(n − 2)
,

and next

(
(n − 1)2

(n − j − 1)(n − 2)
− 1

)
vn(n − 1) =

n + jn − 2j − 1

(n − j − 1)(n − 2)
vn(n − 1),

≤ (2nj − 2j − 1)(2n − j − 2)

4(n − j − 1)(n − 2)
.

Thus finally we find

vn(n − 1) ≤ (2nj − 2j − 1)(2n − j − 2)

4(n + jn − 2j − 1)
= α(n, j + 1),

which completes the first part of the proof.

◮ The players will adopt pure strategies in Γn(n − j + 1). So the searcher will search in

this subgame and the hider will stay (see Lemma 3.3). So we know from the payoff

table for Γn(n − j + 1) that

vn(n − j + 1) =
2n − 2j + 1

2n − 2j + 2
+

n − j

n − j + 1
vn(n − j),

=
4n2 − 4nj − 2n + 4j − 2

4(n − j + 1)(n − 1)
+

n − j

n − j + 1
vn(n − j).

If the hider would move in Γn(n − j + 1), then vn(n − j + 1) would be equal to

vn(n − j + 1) =
4n2 − 4nj − 4n + 5j − 1

4(n − j + 1)(n − 1)
+

(n − 2)(n − j)

(n − j + 1)(n − 1)
vn(n − 1).

However it is not optimal for the hider to stay and thus we find

4n2 − 4nj − 2n + 4j − 2

4(n − j + 1)(n − 1)
+

n − j

n − j + 1
vn(n − j)

≥ 4n2 − 4nj − 4n + 5j − 1

4(n − j + 1)(n − 1)
+

(n − 2)(n − j)

(n − j + 1)(n − 1)
vn(n − 1).
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Next simplifying gives

vn(n − j) ≥ j + 1 − 2n

4(n − 1)(n − j)
+

(n − 2)

(n − 1)
vn(n − 1).

Now we again use (3.12) to find

n − 1

n − j
vn(n − 1) − (2n − j − 1)(j − 1)

2(n − j)
≥ j + 1 − 2n

4(n − 1)(n − j)
+

(n − 2)

(n − 1)
vn(n − 1).

Finally we can rewrite this inequality such that

vn(n − j) ≥ (2nj − 2n − 2j + 1)(2n − j − 1)

4(nj − 2j + 1)
= α(n, j).

So now we can combine the two parts of this proof to conclude α(n, j) ≤ vn(n−1) ≤ α(n, j+1).

�

So as we mentioned before, if we know in which subgames it is optimal to play pure

strategies then this theorem will provide us with improved bounds for vn(n). The numerical

results from subsection 3.3.4 suggest it is only optimal to play pure strategies in subgames

Γn(n), Γn(n−1) and Γn(1). Therefore these numerical results suggest we can apply Theorem

3.8 with j = 2 to obtain

(2n − 3)

4
≤ vn(n − 1) ≤ (4n − 5)(n − 2)

2(3n − 5)
.

and hence using vn = 2n−1
2n

+ n−1
n

vn(n − 1) (see Lemma 3.6),

2n2 − n − 1

4n
≤ vn ≤ 4n3 − 11n2 + 10n − 5

2n(3n − 5)
=

2n

3
−

> 0, for n≥4︷ ︸︸ ︷
13n2 − 30n + 15

6n(3n − 5)
<

2n

3

such that

vn <
2n

3
, for all n ≥ 4 and

1

2
≤ lim

n→∞
vn

n
≤ 2

3
.

We were not able to prove this, but we expect it to be true.

Figure 3.8 shows there exists an upper bound for the value of j, because for each fixed

n there exists a smallest yn > 0 such that α(n, x) is decreasing for yn < x ≤ n − 2. Since

α(n, j) ≥ α(n, j + 1) must hold (see Theorem 3.8), this implies j < yn. However this upper

bound for j does not lead to an improved upper bound for vn(n − 1), because it turns out

that lim
n→∞

α(n,yn)
n

= 1.

3.4 Conclusion

This chapter can be seen as a small introduction to search games on a star with arcs of equal

length. We assumed the searcher starts in the origin of star and the hider starts at the end of
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Figure 3.8: Left picture shows α(n, x) and right picture shows α(n,x)
n

one of the arcs. Each time step both the searcher and the hider could choose either to adopt

a passive strategy (respectively ambush and stay) or to adopt an active strategy (respectively

search and move).

First we analyzed in Section 3.2 a simple model in which both players did not use

knowledge from the past. So in that model the players are playing each time step the same

game until the hider is caught by the searcher. It was not hard to solve this problem and it

turned out the searcher will always search and the hider will always stay. It appeared this

model was too simple and therefore was considered an extended version of the problem in

Section 3.3. In this extended model we assumed both players possess some motion detection

abilities such that after each time step they know whether or not the opponent has moved in

that particular time step. We solved this game and the obtained numerical solutions suggest

that the value of the game tends to 2n
3 for n → ∞. The numerical results also suggest what

will be optimal strategies (see Conjecture 3.7) for both the searcher and the hider. The

formulas in this conjecture contain square roots and it is interesting to ask ourselves why

and how those square roots appear in the extended search game? Another interesting open

question for the extended problem is whether or not we can apply Theorem 3.8 with j = 2

to conclude vn ≤ 2n
3 ?

In the future we can also consider other search games on a star which might lead to

new interesting results. We can for instance consider search games on the star in which the

players have more advanced motion detection abilities, the initial location of the players is

different, the game is played in continuous time, etc. It might also be interesting to introduce a

probability that the hider can sneak past the searcher and see how this modification influences

the optimal strategies and the expected capture time.



71

A Computations for Chapter 2

A.1 Catalan numbers grow exponentially

Let Cm be the mth Catalan number, then (see [10])

Cm =
1

m + 1

(
2m

m

)
.

We can use Stirling’s formula

m! ≈
√

2πm
(m

e

)m

to approximate Cm for large m. Then we find

Cm =
1

m + 1

(
2m

m

)
,

=
1

m + 1

(2m)!

(m!)2
,

≈ 1

m + 1

√
4πm

2πm

(
2m

e

)2m (m

e

)−2m

,

=
22m

(m + 1)
√

πm
.

Hence the Catalan numbers grow exponentially.

A.2 Computation for Example 2.1

We have p0 < p1 < . . . < pn−1 and

X(k) = h(a, k) + h(k + 1,m + 1) + 2(m + 1 − a)

k∑

i=a

m+1∑

j=k+1

pipj

with

h(a, k) = 2

k−1∑

j=a

pj(k − j) (pj+1 + . . . + pk)

and

h(k + 1,m + 1) = 2
m∑

j=k+1

pj(m + 1 − j) (pj+1 + . . . + pm+1) .

And thus in particular we have

X(a) = 2

m∑

j=a+1

pj(m + 1 − j) (pj+1 + . . . + pm+1) + 2(m + 1 − a)

m+1∑

j=a+1

papj
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For a < k < m + 1 we find

X(k) − X(a) = 2

k−1∑

j=a

pj(k − j) (pj+1 + . . . + pk) + 2

m∑

j=k+1

pj(m + 1 − j) (pj+1 + . . . + pm+1)

+ 2(m + 1 − a)

k∑

i=a

m+1∑

j=k+1

pipj

− 2
m∑

j=a+1

pj(m + 1 − j) (pj+1 + . . . + pm+1) − 2(m + 1 − a)
m+1∑

j=a+1

papj ,

= 2

k−1∑

j=a

k∑

l=j+1

pjpl(k − j) + 2

m∑

j=k+1

m+1∑

l=j+1

pjpl(m + 1 − j) + 2(m + 1 − a)

k∑

i=a

m+1∑

j=k+1

pipj

− 2

m∑

j=a+1

m+1∑

l=j+1

pjpl(m + 1 − j) − 2(m + 1 − a)

m+1∑

j=a+1

papj,

= 2

k−1∑

j=a

k∑

l=j+1

pjpl(k − j) − 2

k∑

j=a+1

m+1∑

l=j+1

pjpl(m + 1 − j)

+ 2(m + 1 − a)






k∑

i=a

m+1∑

j=k+1

pipj −
m+1∑

j=a+1

papj




 ,

= 2

k∑

l=a+1

papl(k − a) − 2

k∑

j=a+1

m+1∑

l=k+1

pjpl(m + 1 − j) − 2

k−1∑

j=a+1

k∑

l=j+1

pjpl(m + 1 − k)

+ 2(m + 1 − a)






k∑

i=a+1

m+1∑

j=k+1

pipj −
k∑

j=a+1

papj




 .

Analyzing this last expression reveals that some terms can be combined (sometimes after

relabeling the summation), which results in

X(k) − X(a) = 2
k∑

j=a+1

m+1∑

l=k+1

pjpl(j − a) − 2
k−1∑

j=a

k∑

l=j+1

pjpl(m + 1 − k).

Next we can interchange the order of summation in the second term. Then we find

X(k) − X(a) = 2

k∑

j=a+1

m+1∑

l=k+1

pjpl(j − a) − 2

k∑

l=a+1

l−1∑

j=a

pjpl(m + 1 − k).

Next relabeling the second term such that j is replaced by l and l is replaced by j gives

X(k) − X(a) = 2
k∑

j=a+1

m+1∑

l=k+1

pjpl(j − a) − 2
k∑

j=a+1

j−1∑

l=a

pjpl(m + 1 − k),

= 2

k∑

j=a+1

pj

{
m+1∑

l=k+1

pl(j − a) −
j−1∑

l=a

pl(m + 1 − k)

}
.
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Now we can finally use p0 < p1 < . . . < pn−1 to find

X(k) − X(a) ≥ 2

k∑

j=a+1

pj

{
m+1∑

l=k+1

pk+1(j − a) −
j−1∑

l=a

pk−1(m + 1 − k)

}
,

= 2
k∑

j=a+1

pj {pk+1(m + 1 − k)(j − a) − pk−1(m + 1 − k)(j − a)} ,

= 2
k∑

j=a+1

pj︸︷︷︸
> 0

(m + 1 − k)︸ ︷︷ ︸
> 0

(j − a)︸ ︷︷ ︸
> 0

{pk+1 − pk−1}︸ ︷︷ ︸
> 0

,

> 0.

Consequently X(a) < X(k) for a < k < m + 1, which completes the proof.

A.3 Computation for Lemma 2.12

Let a, b be positive integers such that a < b, then

b−1∑

k=a

k2 −
b−a−1∑

k=1

k2 = a(b − a)(b − 1). (A.1)

Proof: Take arbitrary positive integers a, b such that b = a + 1, then

b−1∑

k=a

k2 −
b−a−1∑

k=1

k2 =

b−1∑

k=b−1

k2 = (b − 1)2, a(b − a)(b − 1) = (b − 1)2.

Thus (A.1) holds if b = a + 1. Now suppose (A.1) holds for positive integers a, b such that

b = a + m with m ≥ 1. For b = a + m + 1 we can write

b−1∑

k=a

k2 −
b−a−1∑

k=1

k2 =
a+m∑

k=a

k2 −
m∑

k=1

k2 =

(
a+m−1∑

k=a

k2 −
m−1∑

k=1

k2

)
+ (a + m)2 − m2,

then using our assumption for b = a + m gives for b = a + m + 1

a+m∑

k=a

k2 −
m∑

k=1

k2 = am(a + m − 1) + (a + m)2 − m2 = a(m + 1)(a + m).

The last term in this equation is exactly (A.1) for b = a + m + 1. Hence by induction to m

we can conclude that (A.1) holds for all positive integers a, b with b > a. �
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B Computations for Chapter 3

B.1 Computation for Theorem 3.8

We know

vn(n − m + 1) =
2n − 2m + 1

2n − 2m + 2
+

n − m

n − m + 1
vn(n − m), for m = 2, . . . , j, (B.1)

where 2 ≤ j ≤ n − 2. We would like to prove

vn(n − 1) =
(2n − j − 1)(j − 1)

2(n − 1)
+

n − j

n − 1
vn(n − j). (B.2)

For j = 2 it is obvious that this expression is correct, because applying (B.1) with m = 2

immediately gives the desired result. So now assume (B.2) holds for j = k − 1 ≤ n − 3, then

for j = k we find

vn(n − 1) =
(2n − k)(k − 2)

2(n − 1)
+

n − k + 1

n − 1
vn(n − k + 1),

=
(2n − k)(k − 2)

2(n − 1)
+

n − k + 1

n − 1

(
2n − 2k + 1

2n − 2k + 2
+

n − k

n − k + 1
vn(n − k)

)
,

=
(2n − k)(k − 2)

2(n − 1)
+

2n − 2k + 1

2(n − 1)
+

n − k

n − 1
vn(n − k),

=
(2n − k − 1)(k − 1)

2(n − 1)
+

n − k

n − 1
vn(n − k),

which is exactly (B.2) for j = k. Hence by using induction, we can now conclude (B.2) is

correct for j = 2, . . . , n − 2. Moreover we can rewrite (B.2) as

vn(n − j) =
n − 1

n − j
vn(n − 1) − (2n − j − 1)(j − 1)

2(n − j)
,

which is the version used in Theorem 3.8.
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