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Summary

Control-Theoretic Models of Feedforward in Manual Control

Frank Drop

Being in control of a vehicle is part of everyday life for many people. Under-
standing how humans control a vehicle is especially important for the design of

vehicles and their interfaces to the human controller. It allows engineers to design

faster, safer, more comfortable, more energy efficient, more versatile, and thus bet-
ter vehicles. Especially now, when automation enables us to support the human

controller in every way imaginable, it is important to understand how the human
controls and interacts with a vehicle. The human and the automation will dynam-

ically share the control authority over the vehicle. Hence, the automation should

(at least!) be designed around the human, but it would be much better if the au-
tomation behaves in a similar way to the control behavior of the human. If the

automation behaves as a human controller, the human controller understands the
intentions of the automation better, which leads to a higher safety, increased com-

fort and ready acceptance.

The Human Controller (HC) is almost always in control of the vehicle to achieve
a high-level goal. To achieve this high-level goal, the HC needs to perform a great

number of smaller tasks in succession that are achieved by giving “control inputs”
to the vehicle: moving the steering wheel, pressing the gas pedal, pulling the collec-

tive lever in a helicopter, turning a rotary knob, etc. To understand the relationship

between the high-level goal and the low-level control inputs, it is helpful to dis-
tinguish between three types of behavior: skill-based, rule-based, and knowledge-

based behavior. Knowledge-based behavior relates to complex decisions made by
the human in order to achieve the high-level goal, such as those required to take

the fastest route through a busy city during rush-hour. Rule-based behavior relates

to simple actions performed in an “if-then-else” fashion, such as stopping for a



viii Summary

traffic light if it lights red. Skill-based behavior relates to automatic sensori-motor

patterns of behavior, such as steering left and right to stay within the lines of the
road. While executing a ‘sensori-motor pattern’, the human continuously perceives

certain signals from the environment through the senses, such as visually perceiv-

ing the distance to the side of the road, and acts by giving control inputs to the
vehicle by moving the hands or feet. This thesis focuses on sensori-motor patterns

executed during short, single maneuvers, such as a lane-change maneuver or a turn
in a car; a sidestep, bob-up, or pedal turn maneuver in a helicopter; or a landing

flare, take-off, or decrab maneuver in an aircraft.

In this thesis, the sensori-motor patterns of control behavior are studied by

means of “target-tracking and disturbance-rejection control tasks”. In such a task,
the HC gives control inputs such that the vehicle tracks a particular reference path,

the target, as accurately as possible. The vehicle (often called the system) is per-

turbed by disturbances and the HC is required to reject (attenuate) the resulting
deviations of the system from the target. The HC can use closed-loop feedback,

open-loop feedforward, or a combination of both.

In closed-loop feedback control, the HC senses and responds to the tracking
error, i.e., the difference between the current output of the system and the desired

output (the target). Every realistic control task involves disturbances, which can

only be attenuated through feedback control, and thus it is likely that the HC uses
feedback control. For good tracking performance, feedback control requires the HC

to respond to the tracking error with a small time delay, but often the time delay is
too large. Therefore, it is unlikely that the HC relies entirely on feedback control.

In open-loop feedforward control, the commands given by the HC to the system
are based on the target only; the HC does not compare the actual system output

with the target. Feedforward control provides a much better tracking performance
than feedback control, but it does require the HC to have extensive knowledge of

the target and the system dynamics. The HC obtains knowledge of the target by

visually perceiving it and by predicting the future course of the target. It is unlikely
that the HC relies entirely on feedforward control, because a) the HC does not have

perfect knowledge of the target and the system, and b) external disturbances are
generally unknown and unpredictable. Thus, the HC likely uses a combination of

feedforward and feedback.

The HC will use a pure feedback control strategy only if both the target and
the disturbance are unpredictable and the HC can only perceive the tracking

error from the display. Such tasks are extremely rare in the real world. Yet, al-

most all HC models describe the human as a pure feedback controller, but the
important feedforward response received little attention. Therefore, the goal

of this thesis is to obtain a fundamental understanding of feedforward in

human manual control.
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Based on the results of two initial studies, the following four objectives towards

achieving the thesis goal were established. 1) To develop a system identification
method that allows for the objective identification of feedforward and feedback be-

havior in tracking tasks modeled after realistic control tasks. 2) To investigate how

the HC adapts the feedforward dynamics to the system dynamics and target signal
waveform shape. 3) To investigate how the subjective predictability of the target

signal affects feedforward behavior. 4) To investigate how human feedforward in-
teracts with other HC responses, primarily the feedback response on the system

output in tasks that feature physical motion feedback.

The first objective was to develop a novel system identification procedure that al-
lows for the objective identification of feedforward and feedback behavior in track-

ing tasks modeled after realistic control tasks. The two initial studies had shown
that existing methods were unsuited for this purpose. The novel procedure success-

fully addressed the three central issues in system identification for manual control.

First, the procedure does not require the user to make assumptions regarding the
model structure and/or dynamics, which makes the results more objective than

those obtained with previous methods. Second, the procedure explicitly prevents

‘false-positive’ feedforward identification: models that include a feedforward path
in addition to a feedback path have more parameters and therefore more freedom

to fit the data, resulting in a better fit even if a true feedforward response was not
present. Hence, if the ‘best’ model is selected based on the quality of the fit alone,

a ‘false-positive’ feedforward identification is possible. The procedure therefore im-

poses a penalty on model complexity, the weight of which is tuned based on Monte
Carlo simulations. Third, the procedure is able to identify the correct HC dynamics

from data containing high levels of human noise measured under closed-loop feed-
back conditions. The procedure was then successfully used to address the other

three objectives of the thesis.

The second objective was to investigate how the HC adapts the feedforward
dynamics to the system dynamics and the waveform shape of realistic target sig-

nals. First, it was found that the theoretically ideal feedforward dynamics are equal
to the inverse of the system dynamics. For example, if the system dynamics are

a single integrator, the ideal feedforward dynamics are a differentiator. From a

number of human-in-the-loop tracking experiments, it was concluded that the HC
utilizes feedforward dynamics that are indeed very similar to the inverse of the

system dynamics. Deviations from the ideal dynamics are due to limitations in the
perception, cognition, and action loop of the HC. These limitations can be mod-

eled accurately by a gain, a time delay, and a low-pass filter. The HC was found

to utilize a feedforward response with three different system dynamics (a single
integrator, a second-order system, and a double integrator) and two target signal

waveform shapes (consisting of either constant velocity ramp segments or constant
acceleration parabola segments).

The third objective was to investigate how the subjective predictability of the

target signal affects feedforward behavior. The central hypothesis of feedforward
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behavior states that the HC will develop a more optimal feedforward strategy eas-

ier if the target signal is more predictable. The predictability of a target signal is
affected by many factors, here the predictability of a sum-of-sine target signal was

investigated, by an objective system identification analysis, and subjects were asked

to give a subjective rating of predictability. It was found that the feedforward gain
was higher for signals rated more predictable, and that the feedforward time delay

was close to zero for the most predictable signals, which suggests that subjects were
indeed anticipating the future course of the target signal.

The fourth objective was to investigate how human feedforward interacts with
other HC responses, primarily the feedback response on the system output in tasks

that feature physical motion feedback. The HC can potentially use three control
responses in a realistic control task in which physical motion feedback is present:

a feedforward on the target, a feedback on the tracking error, and a feedback on

the system output. It was expected that the best tracking performance is obtained
if all three responses are used simultaneously. A theoretical analysis revealed that

the feedforward dynamics should adapt to the presence of an output feedback
response for the performance to be optimal. That is, the ideal feedforward path

is not equal to the inverse system dynamics, but equal to the sum of the inverse

system dynamics and the dynamics of the output feedback path. From a human-in-
the-loop experiment it was concluded that subjects indeed utilized all three control

strategies simultaneously, but that they respond with a significantly smaller gain
to the system output if they are simultaneously tracking a predictable ramp target

signal.

The following general conclusions were drawn from the research work:

1. The central element of the feedforward model is the inverse system dynam-

ics. The dynamics of the ideal feedforward response are equal to the inverse
dynamics of the controlled element, if an output feedback response is not

present.

2. If an output feedback response is present, then the dynamics of the ideal

feedforward response are equal to the sum of the inverse system dynamics
and the dynamics of the output feedback response.

3. The HC is not able to apply a feedforward response with the ideal dynamics.

Limitations in the perception, cognition, and action loop can be modeled by a

gain, a time delay, and a low-pass filter.

4. The feedforward gain is not always equal to the optimal value (unity), but is
often close to it. The gain depends on the combination of target signal wave-

form shape, controlled element dynamics, target signal predictability, and the

presence of physical motion feedback.
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5. The feedforward time delay correlates with the perceived predictability of

the target signal; smaller feedforward time delays are estimated for more
predictable target signals.

6. The feedforward low-pass filter smoothens the feedforward control signal; it

is the least well-understood element of the model.

7. The error feedback response dynamics are equivalent to the dynamics identi-

fied in tracking tasks with a compensatory display and unpredictable forcing
functions.

The developed system identification procedure and the feedforward/feedback

HC model are valuable tools for future research on feedforward control behavior.
The novel system identification procedure enables the researcher to obtain an objec-

tive estimate of HC control dynamics in control tasks that were not studied before.

The application of the procedure is not limited to the identification of feedforward,
it can be used to identify many other types of human dynamics. The HC model

enables the researcher to investigate how task performance depends on the feed-

forward model parameters through computer simulations, it helps in formulating
hypotheses, allows for effective design of experiments, and enables the researcher

to get a deeper understanding of control behavior adaptations through parameter
estimation analyses. The predictability of the target signal is the main point that

needs further research, after which multi-loop, multi-axes control tasks need to be

addressed. Eventually, research will have to move away from tracking tasks and
investigate manual control behavior in tasks with fewer constraints and thus more

freedom to follow a self-chosen path.
This thesis demonstrated that feedforward is an essential part of human man-

ual control behavior and should be accounted for in many human-machine appli-

cations. The state-of-the-art in manual control was advanced considerably; a funda-
mental understanding of feedforward in human manual control was obtained.
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Chapter

Introduction

1

Being in control of a vehicle is part of everyday life for many people; for most of us

as a necessary part of personal transport, for others it is a part of their profession.

Drivers, helmsmen, and pilots transport goods and people from A to B over roads,
water, or through the air, ambulance drivers bring doctors to those who need them,

farmers work their land with tractors equipped with specialized machinery, cyclists
in the Tour de France skillfully descend a curvy mountain road, and astronauts

couple their spacecraft with a space station. The list is endless: humans in control

of vehicles are everywhere.

How is it possible that humans are capable of controlling so many different vehi-

cle types? How is it possible that humans are capable of controlling a vehicle in dif-
ficult situations that require a divided attention, such as heavy traffic, bad weather,

time pressure, dysfunctional machinery, extreme heat or cold, grueling vibrations,

high acceleration loads, or in unknown terrain? And, how is it possible that hu-
mans are capable of using a vehicle for purposes this vehicle was not designed for?

Clearly, humans have developed rather sophisticated ways of controlling complex

machines in complex situations [Young, 1969].

“How do humans control a vehicle?” is a question that deserves to be answered

out of curiosity alone. Perhaps a better reason would be that understanding how
humans control a vehicle allows engineers to design faster, safer, more comfortable,

more energy efficient, more versatile, and thus better vehicles. This thesis originates

from that perspective.

“How do humans control a vehicle?” can be understood and answered in many

different ways. Qualitative answers may result (i.e., descriptive, abstract, expressed

in words) as well as quantitative answers (i.e., precise, numerical, expressed in mod-
els). Both are useful, and can be used throughout the entire design process.

Qualitative knowledge of human manual control is used during the conceptual
design phase of vehicles. Here, important, high-level decisions are made that affect

all subsystems of the vehicle, including the human controlling it. For example:

what will be the approximate vehicle size and mass? What kind and how many
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engines will the vehicle have? What is the approximate location of subsystems

such as wings, wheels, engines, and control surfaces? All these questions affect the
vehicle dynamics: how easy or difficult it is for the human to control the vehicle.

A qualitative understanding of manual control behavior can significantly help in

making these early conceptual decisions.

One important decision that needs to be taken during the conceptual design

phase is even more intimately related to the topic of this thesis: will the human
control the vehicle manually, or will there be automatic systems helping the human?

Should these automatic systems be able to control the vehicle autonomously? How

will the human and the automation share their responsibilities for control?

Given that the objective of automatic control systems is to remove the need for

manual control, it seems(!) that nowadays there is less reason to understand how
the human manually controls a vehicle. As technology advances, there will be less

manual control, not more, and the current pace at which this happens suggests

that soon we do not need to understand manual control behavior anymore. The
opposite is true, however, for two crucial reasons: safety and acceptance.

It is likely that (even in the far future) human and automation will both have a re-
sponsibility in controlling the vehicle, because it is unlikely that full automation, at

all times and in all situations, is economically feasible and safe. This requires the hu-
man and the automation to dynamically share the control authority, and means that

control responsibility is distributed. To understand which distribution is preferable

in what situation, the strengths and weaknesses of both systems need to be known.

Even if the vehicle will be equipped with control systems that achieve full auton-

omy, perhaps in 99.9% of the time, it is still necessary to understand how humans
control and interact with a vehicle. The humans inside the vehicle should under-

stand, feel comfortable with, and accept the decisions and control inputs given by

the automation. The abilities of automatic control systems might greatly outper-
form human control capabilities, but it might not be smart to utilize these abilities

to the full extent. For example, an autonomous car might be able to drive over a
curvy mountain road through thick fog at high speeds, but actually doing so might

cause anxiety in the passengers. If, as a result, the human believes that the automa-

tion is making a mistake and decides to intervene he or she might inadvertently
put the vehicle in a very unsafe situation. An even more challenging example is the

Personal Aerial Vehicle (PAV) that will enable non-pilots to fly from A to B, rather

than drive through congested streets [Jump et al., 2011; Nieuwenhuizen et al., 2013].
In this scenario, the human is likely unable to control the vehicle without automa-

tion, making it even more challenging for the human to understand the intentions
of the automation and accept its decisions.

As the design process of a vehicle progresses, more and more detailed decisions
need to be taken, for which quantitative knowledge is required. For making these

decisions, the engineer has several tools at his or her disposal. Ranging from “less

informative and specific, but fast and cheap” to “very informative and specific, but



Introduction 3

time-consuming and expensive”, the main tools are: computer simulations, simula-

tor studies, and prototype tests. In this thesis, simulator studies are performed to
gather data from which human manual control models are constructed that can be

used in computer simulations. To simulate human control behavior, models of hu-

man control behavior should preferably be written in the same language as models
of the vehicle: mathematical equations describing dynamic systems.

To conclude, understanding how humans control a vehicle might be even more

relevant now than as it ever was. With a seemingly endless number of ways in
which automatic control can be designed into the vehicle, we should obtain the

knowledge required to make the right decisions. This thesis aims to make a valu-
able contribution to this challenge.

1.1 Skill, rule, knowledge based behavior

The Human Controller (HC) is almost always in control of the vehicle to achieve a
high-level goal, i.e., controlling the vehicle is a means to an end, it is not an end

by itself. For example, driving from A to B. To achieve this high-level goal, the HC

needs to perform a great number of smaller tasks in succession that are achieved by
giving “control inputs” to the vehicle: moving the steering wheel, pressing the gas

pedal, pulling the collective lever in a helicopter, turning a rotary knob, etc. A use-
ful theoretical framework describing the relation between the high-level goals and

the low-level control inputs given to the vehicle is provided by Rasmussen, [1983].

He distinguishes between skill, rule, and knowledge based behavior, describes the
interaction between the different types of behavior, and furthermore describes how

the high-level goal flows down to specific control inputs, see Figure 1.1. The scheme

illustrates how sensory input drives all three categories of behavior.

In skill-based behavior, the HC perceives and recognizes patterns within the

sensory input (lower left in Figure 1.1) which signal that a specific automated

sensori-motor pattern should be executed (lower right). The automated sensori-
motor patterns are input-output relations, learned over time, between time-space

signals perceived through the various senses (inputs) and motor actions performed
by the hands, feet, and the body (outputs). For example, the helicopter pilot ac-

tivates the ‘hover-input-output-pattern’ after slowing down and reducing altitude

and before actually making the touch-down. This input-output-pattern dictates
how he or she should respond to one or more signals, whereas one of those signals

might be the perceived height above the landing pad.

In rule-based behavior, the human recognizes signs within the sensory input,
that indicate a state in the environment requiring a particular response. The HC

then triggers a stored pattern of behavior, which involves a sequence of skill-based
input-output-patterns. For example, the same helicopter pilot as in the previous

example, recognizes that he or she successfully achieved a stable hover close to the

landing pad, but that the helicopter is positioned too far to the right. The pilot
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Figure 1.1: Reproduction of Fig. 1 in Rasmussen, [1983]. Original caption: “Simplified
illustration of three levels of performance of skilled human operators. Note that levels are
not alternatives but interact in a way only rudimentarily represented in diagram.”

subsequently initiates the ‘side-step-pattern’, the ‘stabilization-pattern’, and finally
again the ‘hover-pattern’, before making the touch-down.

In knowledge-based behavior, the human identifies symbols within the sensory
input, which are abstract constructs that are defined by the internal conceptual

representation of the situation by the human. That is, whereas “a sign is part of the
physical world of being, a symbol is part of the human world of meaning” [Cassirer, 1944].

It is in the knowledge-based behavior level where the high-level goals of the HC

play an explicit role. Here, the HC decides how to achieve the goal and plans which
sequence of actions will lead to success. For example, during landing, the ultimate

goal of the aforementioned helicopter pilot is to land the helicopter safely, and, if
possible, at the prescribed location on the landing pad. Now, if the pilot obtains

information that it is not safe to land at the designated position — e.g., because a

loose piece of debris that might be sucked up into the rotor system is lying close
to the landing pad — he or she would decide to land some distance away from the

intended position. Such a decision is classified as knowledge-based behavior.

This thesis focuses on the sensori-motor patterns of control behavior that are

part of skill-based behavior. It focuses on short, single maneuvers, performed
under tight control, such as a helicopter sidestep, bob-up, and pedal turn

[Schroeder, 1999]; an aircraft landing flare [Heffley et al., 1982; Mulder et

al., 2000; Benbassat, 2005; Le Ngoc et al., 2010], take-off [Perry, 1969], or
decrab maneuver [Groen et al., 2007; Beukers et al., 2010]; or a lane-change

maneuver in a car [MacAdam, 1981].
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Three main sources of information play a role in these sensori-motor patterns:

1) sensory input, through which signals are perceived, 2) the HC ’s internal model
of the vehicle and the outside world, and 3) predictions on the future course of the

path to follow, and the uncertainty associated with those predictions.

First, the HC continuously senses the outside world, and perceives signals from
within this wide array of sensed information. These time-space signals contain

relevant information on the outside world itself, and the current state of the vehicle.
Visual [McRuer et al., 1968a; Mulder, 1999], vestibular [Hosman and Van der Vaart,

1978], somatosensory [Bos and Bles, 2002], proprioceptive [Adams et al., 1977], and

haptic [Van Paassen, 1994; Abbink, 2006] information are the primary senses for the
manual control of vehicles. This wealth of information is integrated in the central

nervous system (CNS) to one coherent ‘percept’ of the outside world and the state
of the vehicle therein [Gum, 1973; Borah et al., 1988; Zaichik et al., 1999]. Because

the HC is continuously interacting with the vehicle, and thus changing the state

of the vehicle and possibly also of the outside world, the sensed information also
contains feedback on the HC’s own actions.

Second, the HC has obtained, through dedicated training sessions and continu-

ous exposure to the task itself, an extensive set of knowledge about the dynamics
of the vehicle and specific maneuvers. That is, the HC builds up an internal model of

the task [Stassen et al., 1990; Papenhuijzen, 1994; Miall and Wolpert, 1996; Wolpert
et al., 1998; Haruno et al., 2001]. For vehicles with inherently unstable dynamics,

e.g., for bicycles and helicopters, learning to control the vehicle without failure is

already quite an achievement. Once the HC achieves stable control, an extensive set
of maneuvers are learned through repetitive exposure. Every time a particular ma-

neuver is performed, the HC will give a similar control input to follow the desired
trajectory; the variability in the control inputs between repetitions is mainly due to

disturbances and internal noise. It is possible that the HC learns to give the input

required to follow the desired trajectory from memory, rather than ‘calculating’ the
required control input each time again. That is, the HC builds an internal model to

interact with the external world in an efficient way [Stassen et al., 1990].
Third, the HC can make predictions on the future course of the path to follow,

the reference path, and is required to deal with the uncertainties associated with

these predictions [Magdaleno et al., 1969; Miall et al., 1993]. The HC can, to some
extent, predict the future course of the reference path, and the required control

inputs to follow this path, based on prior experience, and a more abstract under-
standing of the situation at hand. On the one hand, the HC generalizes specific

experience and applies it to a similar situation. For example, a helicopter pilot who

extensively trained a side-step over a short distance could use this knowledge to
perform a lateral reposition over a much longer distance successfully, without hav-

ing performed this maneuver ever before. On the other hand, the HC utilizes all
possible knowledge and understanding he or she might have, including knowledge

that is not specifically related to the vehicle or the situation at hand, to predict the

future course of the reference path. For example, a car driver might predict a sharp
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turn in a curvy mountain road, based on clues derived from the environment, even

though the turn itself is not yet visible. Such clues might be human built and ob-
vious, such as a road-sign indicating the turn, but might also be more abstract. If

the curvy road runs along a river and the driver observes that the road is momen-

tarily running perpendicularly towards the river, the driver might expect a sharp
turn soon, based on the ‘common sense’ understanding that roads and rivers do

not cross unless there is a bridge. Predictions always involve a certain degree of
uncertainty, which might cause the HC to give other control inputs than those that

would lead to an ‘ideal’ performance of the maneuver.

In general, the human senses are relatively slow [Rasmussen, 1983], and it takes

a considerable time for information to be perceived, processed, and then used in
subsequent actions. Due to these time delays, the HC would not be able to perform

particularly rapid maneuvers if he or she would solely rely on the continuous flow
of information coming from the senses. The HC can ‘exploit’ the predictability of

the task, and the fact that the vehicle generally responds in the same way to the

same control inputs, to drastically improve control performance.

1.2 Cybernetic approach

A thorough study and understanding of human control behavior and the interac-

tion between the human and the vehicle requires a system-theoretical, model-based

approach. That is, the human is an important element in an assembly of complex
systems that mutually communicate to achieve a high-level goal. To understand the

function of each system and its interaction with surrounding systems, each individ-
ual system should be modeled with sufficient accuracy and its behavior should then

be observed in the context of the entire system. This system-theoretical, model-

based approach is called the cybernetic approach, where the term cybernetics is
derived from κυβǫρνήτης, Greek for “steersman” or “governor” [Wiener, 1961].

1.2.1 Target-tracking and disturbance-rejection control tasks

In this thesis, the human in control of a vehicle is studied by means of target-tracking
and disturbance-rejection control tasks. The main assumption is that the HC gives

control inputs such that the system output follows a particular reference path, the
target, as accurately as possible, while the system is perturbed by a disturbance.

That is, the HC is simultaneously tracking the target and rejecting (or: attenuating)

the effects of the disturbance; hence, a “target-tracking and disturbance-rejection
control task”, illustrated in Figure 1.2.

Starting at the HC in the center of the scheme, the HC control inputs u enter the

vehicle which dynamics are described by Yc, through a control manipulator, such
as a side-stick, a steering wheel, or pedals. All realistic control tasks involve pertur-

bations that push the vehicle away from the intended path. These perturbations are

represented here by a single disturbance signal fd that is added to the unperturbed
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Figure 1.2: Schematic representation of a target-tracking and disturbance-rejection control
task.

system output; the sum of both is the true system output x. The HC might be able

(or not, depending on the control task properties) to perceive three signals: 1) the
perturbed system output x, 2) the target signal ft, and 3) the difference e between

the target signal ft and the system output x, i.e., e = ft − x. a

In order to successfully track the target, the HC could possibly apply any con-

trol technique. All existing control techniques can be classified as 1) closed-loop
feedback, 2) open-loop feedforward, or 3) a combination of both.

In closed-loop feedback, the controller relies on continuous, accurate, and fast

sensing of the current output x of the system, compares it with the desired output

ft (the target), and acts on the difference e between the two.

In open-loop feedforward, the commands given by the controller to the system
are based on the desired output ft only; the actual system output x is not observed.

The control law is based on knowledge of the system under control.

Both types of controllers have their advantages and disadvantages, and thus

many automatic control systems combine both. Given the limited abilities of the
human to continuously sense with high accuracy and integrate and process all sen-

sory information in short time, it is unlikely that the human relies entirely on feed-

back control [Rasmussen, 1983]. It is, however, also unlikely that the human relies
entirely on feedforward control, because the HC does not have a perfect knowledge

of the system and the system is continuously perturbed. Hence, it is most likely
that the human utilizes a combination of both. Krendel and McRuer, [1960] postu-

lated an extensive framework hypothesis, the Successive Organization of Perception

(SOP), describing how and when the HC utilizes feedback and feedforward.

1.2.2 Successive Organization of Perception

The SOP postulates an extensive framework describing the development of skill-

based behavior in manual tracking tasks. It distinguishes between three stages of
control behavior: compensatory, pursuit and precognitive control, see Figure 1.3 for

schematic representations. All stages are modeled by feedback elements (Ype and

Ypx), feedforward elements (Ypt ), or combinations of both.

aThe linear relationship between ft, e, and x affects the ability to identify the responses to each
individual signal; only two of the three signals are truly independent.
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(a) Schematic drawing of a compensatory control scheme.
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(b) Schematic drawing of a pursuit control scheme.
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(c) Schematic drawing of a precognitive control scheme.

Figure 1.3: Schematic representations of the three stages of control behavior described
in the Successive Organization of Perception, initially described in [Krendel and McRuer,
1960], later adapted in [McRuer et al., 1968a]. These figures are reproduced from McRuer
et al., [1968a], with one modification in (b): the proprioceptive feedback path is not shown,
because it is internal to the HC and cannot be identified. Note that the neuromuscular
system dynamics, Ynms, are explicitly drawn for the precognitive stage only, but are also
present in the compensatory and pursuit stages. For these stages, the NMS dynamics are
commonly included in the individual feedforward and feedback responses.
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In the compensatory stage, see Figure 1.3(a), the HC acts solely on the error

between the reference and the system output, the tracking error e [McRuer and
Krendel, 1959]. The HC responds only to the error, either because it is the only per-

ceivable signal, or because the HC pays attention to the error only. Compensatory

control has been studied extensively for control tasks were the HC could only per-
ceive the error, and all forcing functions were unpredictable [Tustin, 1947; Elkind,

1956; Young et al., 1964; McRuer et al., 1965; McRuer and Jex, 1967; Stapleford et al.,
1967; Allen and Jex, 1968; Van Lunteren, 1979; Van der Vaart, 1992; Mulder, 1999;

Grant and Schroeder, 2010; Pool et al., 2011a]. A well-tuned feedback response on

the tracking error allows the HC to achieve stability, i.e., the vehicle does not move
away from the reference path in an uncontrolled fashion, and provides a ‘basic’

level of target-tracking and disturbance-rejection performance.

Important quantitative results from this work are as follows. First, the feed-
back dynamics of the HC contain a considerable time delay, in the order of 200

to 500 ms, lumping the entire perception, cognition, and action loop [Elkind, 1956;

McRuer et al., 1965]. Second, the HC adapts its control dynamics to the system dy-
namics, such that the combined open-loop describing function is equal to a single

integrator around the crossover frequency [McRuer and Jex, 1967]. Third, the HC
control dynamics depend on properties of the target and disturbance signals, such

as bandwidth [McRuer et al., 1965] and spectral distribution [Beerens et al., 2009].

A display that shows only the tracking error is the compensatory display, see Fig-
ure 1.4(a). Other displays, such as the pursuit display, see Figure 1.4(b), present

more information to the HC, but this does not guarantee that the HC actually uti-

lizes this information [Wasicko et al., 1966]. Reasons for using a compensatory
organization in situations where more signals can be perceived are: 1) a lack of

experience, the HC has not learned sufficiently yet to progress to the pursuit or pre-
cognitive stages, 2) the HC is under stress, causing him/her to ‘revert’ to a compen-

satory organization from a higher level, or 3) a pursuit or precognitive organization

is not beneficial for performance. [Krendel and McRuer, 1960; Hess, 1981]

e

(a) Compensatory display

e

θ ft

(b) Pursuit display

Figure 1.4: Compensatory and pursuit displays for aircraft/helicopter pitch control. Both
displays only show the current values of the signals. No post or preview information is
presented.
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In the pursuit stage, see Figure 1.3(b), the HC utilizes a combination of at least

two of the following strategies: 1) a feedforward response on the target ft [Wasicko
et al., 1966; Reid, 1969; Pool et al., 2010a], 2) a compensatory feedback response on

the error e, and 3) a feedback response on the system output x [Wasicko et al., 1966;

Allen and Jex, 1968; Shirley and Young, 1968; Bergeron, 1970; Allen and McRuer,
1979; Pool et al., 2008; Zaal et al., 2009a; Zaal et al., 2009b; Pool, 2012].

A feedforward potentially improves target-tracking performance considerably,
without affecting closed-loop stability. The theoretically optimal feedforward con-

trol law is equal to the inverse of the system dynamics [Elkind, 1956; Wasicko et al.,

1966]. If the input-output relationship between the target ft and the control signal
u is equal to 1/Yc, which can be written in Laplace notation as:

u(s)

ft(s)
=

1

Yc(s)
, 1.1

such that:

u(s) =
1

Yc(s)
ft(s), 1.2

and knowing that the system output x is defined as:

x(s) = Yc(s)u(s), 1.3

then, it becomes clear that:

x(s) = Yc(s)
1

Yc(s)
ft(s) = ft(s) 1.4

That is, x is exactly equal to ft, yielding zero tracking error. This elementary theoret-

ical derivation shows that, for optimal tracking performance, the HC needs to adapt
his or her feedforward control strategy to the system dynamics. In other words, a

particular feedforward strategy that is optimal for one vehicle cannot be optimal

for the other if they have different dynamics.

A feedback response on the system output x is similar to the compensatory

feedback response on the tracking error e, in the sense that the HC acts only after
perceiving information from the outside world. The response dynamics must be

different, however, because the system output signal is different from the error

signal and is (possibly) perceived through different senses [Wasicko et al., 1966].

The system output can be perceived by many more senses than just the visual

system, whereas the error e can be perceived visually only. Obviously, some as-
pects of the system output can be perceived by the visual system, e.g., the attitude

of the vehicle, and the translational and rotational velocities, but others can not,
such as translational and rotational accelerations. The vestibular system is particu-

larly good at sensing translational accelerations and rotational velocities, with the

primary advantage that these are perceived faster than by the visual system. This
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allows the HC to obtain a better performance without negatively affecting stabil-

ity, as compared to a compensatory organization [Stapleford et al., 1967; Shirley
and Young, 1968; Bergeron, 1970; Levison and Junker, 1977; Levison, 1978; Van der

Vaart, 1992; Schroeder, 1993; Hosman, 1996; Pool et al., 2008; Zaal et al., 2009b].

The main complication in responding to the system output x directly, is that x
is the sum of both unwanted perturbations due to disturbances and desired motions

due to control inputs given by the HC itself. Hence, if the HC would utilize an out-
put feedback to attenuate perturbations, it would also attenuate intended motions.

In the precognitive stage, see Figure 1.3(c), the HC is assumed to have complete

knowledge of the target signal and generates a control input that causes the system
to track the target perfectly [Vossius, 1965; Hess, 1965; Pew et al., 1967; Magdaleno

et al., 1969; Yamashita, 1989]. The precognitive mode is modeled as an open-loop
feedforward containing inverse system dynamics. The HC does not actively observe

the error, at least not for a particular time interval [McRuer et al., 1968a].

To summarize, see Figure 1.5, the compensatory and pursuit control organiza-
tions involve feedback control, but the precognitive mode does not. The pursuit

and precognitive control organizations involve feedforward control, but the com-

pensatory mode does not. Previous research focused primarily on compensatory
behavior and pursuit behavior involving error feedback and output feedback. The

Compensatory Pursuit Precognitive

Feedback Feedforward

Figure 1.5: Schematic overview of feedback and feedforward in the SOP.

stages of the SOP that involve a feedforward element received far less attention.
Identifying models of compensatory behavior is uncomplicated: one unpredictable

sum-of-sines forcing function is sufficient for straightforward non-parametric iden-

tification of the error feedback dynamics in the frequency-domain. Knowledge on
compensatory behavior is, however, applicable only to control tasks that feature

unpredictable forcing functions and a display that shows nothing but the tracking er-
ror: such tasks are extremely rare in real-life control situations. As soon as the HC

has knowledge on the future course of the target (through prediction or learning)

or the display shows more than just the tracking error, the compensatory model
breaks down, because it lacks a feedforward response.

Realistic control tasks typically involve predictable, easy to memorize ref-

erence paths and displays that show this reference explicitly. The HC will
utilize a pursuit or precognitive control organization involving feedforward

in such control tasks. Little is known about the feedforward response. There-
fore, this thesis focuses on human feedforward in manual control tasks.
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1.2.3 Linearity and time variance of HC models

So far, the discussed models did not explicitly assume the HC to be linear or nonlin-

ear and time-variant or time-invariant. Given the HC’s ability to adapt to the task

variables and its sensitivity to fatigue, motivation and distraction [McRuer and Jex,
1967; Young, 1969], it is natural to expect the HC to be a time-variant, non-linear

controller. The identification of a non-linear model is far more complex than a
linear model [Ljung, 1999], and therefore the original authors of the SOP adopted

a quasi-linear modeling approach [McRuer and Jex, 1967]. Within this approach,

control behavior is described by an entirely linear, time-invariant model, but the
parameters in this model depend on the task variables, such as system dynamics,

forcing function properties and display type. These quasi-linear models can explain
between 70 and 90% of the measured control signal variance; the remaining 10 to

30% is called “remnant”. Sources of this remnant are [McRuer and Jex, 1967]:

• Potential sources of randomness, or pure noise in the entire HC perception,
processing and action loop that is active during control.

• Nonlinearities in perception and action, such as indifference thresholds in

sensors [Valente Pais et al., 2012], and force or velocity saturations in the
control output [Hill, 1938]. These nonlinearities are generally small [Pool et

al., 2012a], and thus a good model fit is possible without incorporating these

nonlinearities in the model.

• The HC behavior is time-variant, e.g., due to fatigue or varying motivation,

[Boer and Kenyon, 1998], but because time variations are generally slow the

HC behavior can be considered more-or-less time-invariant over short mea-
surement intervals. The remaining time-variant behavior appears as remnant

in modeling attempts.

In this thesis, the same quasi-linear modeling approach will be adopted.

1.3 Empirical evidence for feedforward in manual control

The authors of the SOP acknowledged that their theory was far from fully sup-
ported, mainly because direct identification of the feedforward responses was lack-

ing [Krendel and McRuer, 1960]. A broad collection of empirical observations and
measurements support the feedforward hypotheses of the SOP, however. Here, the

main observations are briefly discussed.

For most combinations of system dynamics and forcing function properties, the

tracking performance is better with a pursuit display than with a compensatory

display [Senders and Cruzen, 1952; Poulton, 1952; Chernikoff et al., 1955; Elkind,
1956; Wasicko et al., 1966; Pew et al., 1967; Allen and Jex, 1968; Abdel-Malek and

Marmarelis, 1988; Neilson et al., 1988]. Wasicko et al., [1966] found pursuit dis-

play performance to be better for dynamics described either by a gain, a double
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integrator, or a second-order system with one unstable pole, but the opposite for

a single integrator. A different tracking performance in two conditions does not,
however, necessarily mean that the HC control dynamics have changed [Wasicko

et al., 1966]. That is, the total error is the sum of error originating from tracking

the target signal with specific control dynamics, and errors due to random control
errors. A different total error score could, therefore, be caused either by changed

control dynamics, or simply by a reduction of ‘random’ control errors, i.e., human
noise. Nevertheless, the performance improvement for a pursuit display does sug-

gest that the HC utilizes the additional information perceivable from the display,

possibly in a feedforward manner.

Tracking performance is better for ‘predictable’ than for ‘unpredictable’ tar-

get signals [Poulton, 1952; Pew et al., 1967; Magdaleno et al., 1969], suggesting
that the HC was responding to the target signal in a feedforward manner. A for-

mal definition of this subjective predictability was not provided. The presented

evidence did not conclusively support the hypothesis that better performance was
due to predictability and subsequent anticipation by the HC. Poulton, [1952] found

that tracking performance in response to a ‘predictable’ single sine was better than
in response to an ‘unpredictable’ sum-of-four-sines, and concluded that this must

have been due to anticipation by the HC. An alternative explanation is that the HC

was utilizing a purely compensatory strategy in both conditions, instead of attempt-
ing to predict, which happened to be more suited for tracking the single sine than

the sum-of-four-sines signal. Other studies, such as Poulton, [1957], Trumbo et al.,
[1965], Noble et al., [1966], Trumbo et al., [1968a], and Trumbo et al., [1968b], pro-

vided stronger evidence, because the frequency content of their ‘predictable’ and

‘unpredictable’ signals was identical, but only the order in which discrete maneu-
vers took place was different.

Evidence for the development of a precognitive mode was found in time de-

lays or phase lags that are smaller than a ‘normal’ reaction time. For example,

Yamashita, [1989] investigated manual tracking of a sum-of-two-sines signal, and

measured the phase lag between the target and the system output at each of the tar-
get sine frequencies. From the lag an equivalent time delay was calculated, which

was found to be smaller than 200 ms for the faster of the two sines, in all conditions,
which led to the conclusion that a precognitive tracking mode had developed. This

analysis did not, however, consider the closed-loop nature of the control task, in

which the equivalent time delay calculated from a measured phase lag is not neces-
sarily equal to the time delay in the controller. That is, even without a precognitive

control strategy, the equivalent time delay could be smaller than the actual closed-
loop feedback time delay, for example with a pursuit response.

Wasicko et al., [1966] identified the equivalent open-loop describing function of
the HC in tracking with a compensatory and pursuit display, which is the describ-

ing function from the target to the system output. This function lumps together all

control dynamics and does not reveal the dynamics of each contribution separately.
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For some of the tested system dynamics the equivalent open-loop describing func-

tion was different with a pursuit display than with a compensatory display. Then,
by making the assumption that the compensatory feedback component was equal

for both displays, an estimation of the pursuit feedforward component was made.

The feedforward component was similar to the inverse of the system dynamics,
which is indeed the theoretically ideal feedforward dynamics, see Eq. 1.1.

Vossius, [1965] and Hess, [1965] observed that the HC is able to continue track-

ing a predictable, repetitive signal with reasonable accuracy after occluding the

display. In [Vossius, 1965], the HC tracked a sum-of-two-sines target signal for
a certain time after which the display was switched off and the HC continued to

‘track’ the target without any feedback. The original pattern was reproduced with

small differences in amplitude and frequency. In Hess, [1965], the HC was track-
ing a single sine and was also able to continue tracking during brief periods in

which the display was blanked. The probability distribution of the tracking error
was nearly Gaussian, but the probability distribution of the control input was not,

suggesting that the HC was not using the error as his or her sole input.

To conclude, ample indirect and mostly qualitative evidence of a feedforward

operation, either pursuit or precognitive, exists. The evidence is, however, not
conclusive and in many cases alternative explanations that do not require the ex-

istence of a feedforward control strategy are possible. More importantly, previous

research did not result in a structured, systematic understanding of feedforward
control behavior, as a function of task variables, nor did this research lead to control-

theoretical models suitable for use in real world applications.

1.4 Human modeling and identification

This thesis aims to identify HC models from experimental human-in-the-loop data
directly, i.e., without any intermediate interpretation steps that add subjectivity and

room for multiple interpretations. The art of building models from measured data
is called system identification [Ljung, 1999]. A great variety of identification methods

exist, but only a few were successfully applied to data collected in a human-in-the-

loop experiment [Stapleford et al., 1967; Osafo-Charles et al., 1980; Agarwal et al.,
1982; Boer and Kenyon, 1998; Van Paassen and Mulder, 1998; Nieuwenhuizen et al.,

2008; Van Kampen et al., 2008; Zaal et al., 2009c; Yu et al., 2014].

In general, methods that require fewer assumptions regarding the model struc-

ture or dynamics, so called black-box methods, are more objective but less powerful
than methods that make more assumptions: the so called gray-box and parameter

estimation methods [Wolpert and Macready, 1997; Ljung, 1999]. Black-box methods
are, however, required if no reliable knowledge of the underlying dynamics are

available, but they easily oversee dynamics that contribute less to the total explana-

tory power of the model. Currently, little is known regarding the dynamics that
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may appear in the feedforward path of the HC, and thus black-box identification

methods will have to be applied.
The existing identification methods impose two important constraints on the

conditions under which data is collected. First, the task should involve as many

forcing functions as control responses that are to be identified [Van Lunteren, 1979].
That is, if two responses should be identified, two forcing functions are required,

e.g., a target signal and a disturbance signal. Second, the HC is required to actively
and continuously respond to all forcing functions introduced in the control task

[Ljung, 1999]. That is, the signal-to-noise ratio of the responses to be measured

should be sufficiently high. This is ensured by choosing forcing functions with
considerable power and instructing the HC to actively minimize the tracking error.

These requirements cause the resulting tracking task to be different from the real
control tasks it is supposed to model.

First, real control tasks often do not involve an explicit target; the ‘target’ is

internal to the HC. An example of a task that does feature an explicit target is
the Flight Director (FD) mode in aircraft, in which the target is the desired flight

path as calculated by the autopilot system [Weir and McRuer, 1972; De Stigter et

al., 2005]. Depending on the FD design, the pilot observes either a compensatory
or a pursuit display, and gives the appropriate commands to track the desired

flight path. In early designs, the pilot observes a horizontal and vertical needle on
the attitude indicator, that corresponds with the vertical and lateral error, and is

required to keep these needles in the center of the display. Hence, the display is

a compensatory display and the target is not explicitly visible. In later designs, the
pilot observes the required pitch and roll attitude (necessary to track the desired

flight path accurately), and is required to align the aircraft symbol with these pitch
and roll targets. Hence, the display is a pursuit display and the target is explicitly

visible.

Second, in a tracking task the target is infinitesimally ‘narrow’ in both space
and time, whereas in reality, the trajectory to be followed has an allowable range

both in space and in time. Maneuvers can be started earlier or later than the ideal
point in time, and similarly, the spatial trajectory can be slightly different as well,

without causing problems. For example, after an aircraft accelerates on the runway

to the speed at which the wings are capable of generating sufficient lift to take off
— the “rotation speed” — the pilot will pitch up (rotate) the aircraft resulting in lift.

Ideally, the pilot rotates the aircraft immediately after the rotation speed is reached,
but a few seconds later is acceptable too. Then, the pilot ideally rotates in, e.g., 10

seconds to the required pitch angle of, e.g., 15 degrees, but slightly faster or slower

would be acceptable too. In certain tasks these bounds are tighter than in others,
and the tracking task considered here can be considered as the ‘limit case’, where

the allowable range is infinitesimally small.
Third, related to the previous point; in most real control tasks the HC knows in

advance when a maneuver will start and end, either because the maneuver is ‘self-

initiated’, or because there are cues that allow the HC to anticipate the maneuver
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onset. In the previous example, the slowly increasing speed until Vr is such a cue.

In an experimental tracking task the maneuvers are not self-initiated and there are
usually no clear cues, such that the HC will often respond with a certain delay, dur-

ing which the tracking error increases rapidly, requiring a strong corrective control

input. The control behavior just following the maneuver onsets might therefore be
quite different from behavior in a real task. Depending on the exact ‘waveform

shape’ of the target signal, the end of the maneuver might be more easy to antici-
pate. The maneuvers considered in this thesis are designed to be of relatively long

duration, such that this transient should not affect the results too much.

Fourth, in a large number of real control tasks the HC has a preview on the future

course of the target signal [Sheridan, 1966; Reid and Drewell, 1972; Tomizuka, 1974;
Ito and Ito, 1975]. Especially in vehicles that move on a planar surface, such as cars

on the road and ships on rivers, the HC can see the path ahead and respond to
any part of the target before the vehicle reaches it in a feedforward manner. These

aspects make the identification of a model very difficult, partly because feedforward

in tasks that do not involve preview is still poorly understood [Steen et al., 2011;
Damveld and Happee, 2012; Van der El et al., 2015]. Therefore, the scope of this

thesis is limited to tasks that do not involve preview.

Despite these differences, still the tracking task is a useful tool to investigate

HC behavior, as it allows for the use of effective, uncomplicated system identifi-
cation methods. It is important, however, to keep these differences in mind when

interpreting experimental results and ‘translating’ them to the real world. The ex-
perimental results obtained throughout this thesis are predominantly informative

of control tasks that require the HC to track an explicitly visible target, and tasks

that involve tight constraints on performance that can be fulfilled only by continu-
ously following a precise path.

1.5 Goal and approach

Goal of this thesis

To obtain a fundamental understanding of feedforward in human manual

control, resulting in a qualitative description of manual feedforward behavior

and quantitative models that are applicable to realistic control tasks.

When the work on this thesis started, the understanding of feedforward was
very limited and it was unclear where to start and how to proceed from there. There-

fore, two preliminary studies were performed to obtain an appropriate starting
point for the research, and to understand which were the most pressing open ques-

tions that had to be answered to satisfy the main research objective. These studies

revealed the main objectives of the thesis.
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Objectives of the thesis

1. To develop a system identification method that allows for the objective
identification of feedforward and feedback behavior in tracking tasks

modeled after realistic control tasks.

2. To investigate how the HC adapts the feedforward dynamics to the
system dynamics and the waveform shape of realistic target signals.

3. To investigate how the subjective predictability of the target signal af-

fects feedforward behavior.

4. To investigate how human feedforward interacts with other HC re-

sponses, primarily the feedback response on the system output in tasks
that feature physical motion feedback.

The control task of choice is the helicopter lateral reposition maneuver (ADS-33),

which is part of the certification process for military rotorcraft [Anon., 2000]. The
lateral reposition is started from hover, after which the pilot initiates a lateral accel-

eration up to 35 knots (18 m/s) followed by a deceleration to laterally reposition
the helicopter in a stabilized hover 400 ft (122 m) within 18 seconds. The pilot is

primarily in control of the roll and lateral degrees of freedom; in all other degrees

of freedom the helicopter should be stabilized only.

The ADS-33 lateral reposition certification maneuver was selected for a number

of reasons. First, the task is similar to other tasks allowing for the generalization of
the results. It is a multi-loop task (involving the roll and lateral helicopter dynamics)

which is also the case in the lateral control of cars, airplanes and bicycles. The inner

loop roll dynamics are comparable in difficulty with the dynamics of other vehicles.
The trajectory to be flown is simple and somewhat comparable to other maneuvers,

such as a lane-change in cars and a decrab maneuver in an aircraft.

Furthermore, the task had some interesting properties from an experimental

point of view. The task does not feature preview information, which would severely
complicate the interpretation and analysis of the results, because the HC could

respond to any point of the target signal that is in view [Van der El et al., 2015]. The

roll and lateral degrees of freedom can be presented on a two-dimensional display
without conflicts between them. And finally, the task was particularly suited for

simulation on the available simulator, the CyberMotion Simulator at the Max Planck

Institute for Biological Cybernetics, that features an extensive roll and lateral range.

1.6 Outline of the thesis

The thesis consists of three parts; each part describes an important phase of the

research work. Figure 1.6 illustrates the structure of the thesis.
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In Part I, two studies are described with the following two objectives: 1) to

obtain an appropriate starting point for the research (Chapter 2), and 2) to under-
stand which were the most pressing open questions that had to be answered to

satisfy the main objective of the research (Chapter 3). These two studies resulted in

novel insights on feedforward behavior, but, above all, revealed the most important
limitations of the available knowledge and the available system identification meth-

ods. Based on these limitations, four sub-objectives were formulated, which were
addressed in the subsequent chapters of the thesis.

The first sub-objective of this thesis was to develop a system identification

method that allows for the objective identification of feedforward and feedback be-
havior in tracking tasks modeled after realistic control tasks. This work is described

in Part II. Chapter 4 presents an overview of the most important issues encountered
in the identification of feedforward, and in Chapter 5 the novel method is presented

that was developed to deal with these issues.

The second, third and fourth sub-objectives of this thesis are addressed in sepa-
rate chapters in Part III. Chapter 6 investigates how feedforward dynamics depend

on the system dynamics and target signal waveform shape; Chapter 7 investigates

how the subjective predictability affects feedforward behavior; and finally, Chap-
ter 8 investigates how feedforward interacts with other control responses, primar-

ily the well-known feedback response on the system output in tasks that feature
physical motion feedback.

The thesis ends with a discussion, an overview of the main conclusions, and

recommendations for future research. If the reader wishes to skip to the discussion,
the reader is advised to first read the conclusion chapter, as the discussion assumes

the reader to be familiar with the main content and findings of the thesis.

1.6.1 Guidelines for the reader

All chapters of this thesis, except the introduction, discussion and conclusions, were
written as papers that have been presented at a scientific conference (Chapters 3, 4,

and 7) or have been (or will be) submitted for publication in scientific journals

(Chapters 2, 5, 6, and 8). The already published papers were included here with
minor modifications only. The first page of each chapter provides a short introduc-

tion of the scope of that chapter, how the work described there relates to the overall
thesis topic and to the research described in other chapters of this thesis.
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Figure 1.6: A visualization of the outline of this thesis. Part I: Exploring the presence of
feedforward in manual control tasks. Part II: Development of an identification procedure
for feedforward in manual control tasks. Part III: Investigating three important aspects of
feedforward in manual control tasks. The important relationships between the chapters are
indicated by arrows. Arrow a: the feedforward/feedback HC model identified in Chapter 2
was used extensively in Chapter 3. Arrow b: the theoretical analyses and experimental re-
sults of Chapter 2 revealed that the target signal shape and system dynamics are the key task
variables relating to feedforward, which were investigated extensively in Chapter 6. Arrow c
and arrow d: a review of the ARX identification analyses of Chapters 2 and 3 revealed that
false-positive and false-negative results might occur if an existing model selection criterion
is used, calling for a novel identification procedure, developed in Part II. Arrow f: Chapter 4
systematically presents and investigates the issues encountered in the identification of feed-
forward from experimental human-in-the-loop data with ARX models, which are resolved
by the novel method described in Chapter 5. Arrow g: the novel identification procedure is
used extensively throughout Chapters 6 and 8. Arrow h: A complicating factor in Part I and
Chapter 6 was that the predictability of the target signal was not well-understood. Chap-
ter 7 investigates the predictability and makes extensive use of the HC model identified in
Chapter 6. Arrow e and arrow i: the computer simulation analysis of Chapter 3 revealed
an important interaction between a feedforward and an output feedback response. This
interaction was investigated through computer simulations with the HC model of Chapter 6
and a human-in-the-loop experiment in Chapter 8.
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Control strategies involving feedforward control were hypothesized fre-

quently in literature and some empirical evidence was provided, but they
were never investigated through system identification or parameter es-

timation methods and a detailed model of these feedforward responses
was not available either. The objective of the first study was therefore

to find a control task for which it was possible to identify the expected

feedforward behavior from experimental data and to develop a model of
this feedforward component. The available empirical evidence suggested

that a feedforward response is most likely to occur with predictable target
signals, such as signals composed of constant velocity ramp segments. An

analytical derivation of the ‘ideal’ feedforward response then revealed that,

when tracking a constant velocity ramp, a feedforward response would
yield a large performance improvement over a pure feedback control strat-

egy when controlling single integrator dynamics. Hence, a human-in-

the-loop tracking experiment was performed, featuring a ramp target sig-
nal and single integrator system dynamics, from which the expected feed-

forward behavior was successfully identified, as described in this chapter.
An appropriate ‘starting point’ for the work described in this thesis was

thus found.
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The contents of this chapter are based on:

Paper title Identification of the Feedforward Component in Manual Control
With Predictable Target Signals

Authors Frank M. Drop, Daan M. Pool, Herman J. Damveld, Marinus M. van
Paassen, and Max Mulder
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2.1 Introduction

Manual control of a dynamic system requires the Human Controller (HC) to effi-
ciently steer the system along a certain target path while being perturbed by dis-

turbances. An example is driving along a winding road while the car’s motion

is perturbed by wind gusts. The HC uses various sources of information, like vi-
sual information of the outside world and vestibular or somatosensory information

on the current state of the system. To study manual control, real-life situations
are often simplified to tracking tasks. The example above can be represented as a

combined target following and disturbance rejection task.

Previous research on manual control behavior has mostly focussed on compen-

satory behavior, in response to unpredictable target signals. The resulting control
task is, however, not directly representative for realistic flight and driving maneu-

vers. Therefore, in this paper we consider behavior in response to more realistic
and predictable target signals.

The various control strategies the HC can use during tracking tasks have been

grounded in the Successive Organization of Perception (SOP) scheme of Krendel
and McRuer [Krendel and McRuer, 1960; McRuer et al., 1968a]. This scheme dis-

tinguishes three levels of control, i.e., compensatory [Elkind, 1956; McRuer et al.,

1965; Stapleford et al., 1967; Shirley and Young, 1968; Bergeron, 1970; Van der Vaart,
1992], pursuit [Reid, 1969; Hess, 1981; Abdel-Malek and Marmarelis, 1988], and

precognitive control [Pew et al., 1967; Magdaleno et al., 1969; Yamashita, 1990],
through which the HC might proceed when learning a new control task.

The compensatory strategy consists of controlling solely on the ‘error’ between

the system output and the target signal, in a closed-loop feedback fashion. It is

used by the HC when little experience with the control task is available or when
confronted with unpredictable target signals presented on a compensatory display,

that shows only the tracking error.

Wasicko et al., [1966] investigated the hypothesized pursuit strategy for unpre-
dictable target signals by comparing the compensatory display to the pursuit dis-

play, which explicitly presents the target, the system output and the error. HC
behavior was measured to be different and pursuit display performance was better,

suggesting that the HC was using a combination of feedforward control on the target

signal and feedback on the remaining error. Feedforward control is defined as all
control actions based on the target signal: either from perceiving the target on the

display or from memorized or inferred knowledge on the target signal properties.

The highest level of the SOP, precognitive control, is defined as an open-loop
feedforward mode in which the HC executes a learned control input with little to

no feedback.

Magdaleno et al., [1969] hypothesized that the HC might reach the pursuit and
precognitive control stages faster with predictable target signals. A signal is consid-

ered predictable when the remaining course of the signal can be predicted after

the onset of a signal segment is recognized by the HC. Refs. [Pew et al., 1967]



26 Chapter 2

and [Magdaleno et al., 1969] found evidence for feedforward behavior in perfor-

mance metrics for predictable single sine target signals. The tracking lags of 50
ms in response to double sine target signals, as reported by Yamashita, [1990], are

150-200ms lower than typical lags found in compensatory feedback-only tracking

[McRuer and Jex, 1967] and can only be explained by a significant feedforward
component in the HC control behavior. Despite this empirical evidence support-

ing the feedforward hypothesis, feedforward behavior was never found by system
identification techniques nor were feedforward models developed and validated by

experimental data.

It is the aim of the present paper to identify the expected feedforward behavior

in response to predictable target signals from experimental data and to develop
a model of this feedforward component. Identifying the compensatory and feed-

forward components simultaneously requires both a target and a disturbance signal
of considerable magnitude [Wasicko et al., 1966]. The addition of a disturbance sig-

nal might negatively influence the ability of the HC to exert feedforward action on

the target, however. Pool et al., [2010a] only found evidence for a feedforward oper-
ation in response to a predictable target signal when the quasi-random disturbance

was not present. Hence, the identification requirement to insert an additional dis-
turbance signal might harm the feedforward operation we intend to identify. For

this purpose, the relative strength of the predictable target signal and the unpre-

dictable disturbance signal will be systematically varied over a broad range. Our
main hypothesis is that the feedforward path can be identified, and that it is similar

to the inverse of the system dynamics.

The experimental data will be collected from a realistic control task that resem-
bles aircraft pitch attitude tracking. The target signal is composed of predictable

ramp segments, whereas the unpredictable disturbance signal is a sum-of-sines sig-

nal. The controlled element is a single integrator, a highly simplified model of
aircraft elevator to pitch angle dynamics.

The proposed identification of feedforward behavior will be done through two

independent system identification techniques. First, an ARX model analysis is used
which does not enforce a particular model structure to fit the data. Second, three

different parametric human control model structures are fit using a time-domain

maximum likelihood method: a basic error feedback model, an extended error
feedback model, and a model combining feedback on the error with an explicit

feedforward operation on the target.

The paper is structured as follows. Section 2.2 further introduces the SOP, and
compensatory and feedforward control. Section 2.3 describes the models we will

use to study the observed behavior and makes a prediction of what control strategy
can be expected for what situation. Section 2.4 describes the details of a human-

in-the-loop tracking experiment. The results of this experiment are presented in

Section 2.5. The paper ends with a discussion and conclusions.
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2.2 Background

2.2.1 The Successive Organisation of Perception

The control task

This paper focuses on human control behavior in a combined target tracking and
disturbance rejection task, shown in Fig. 2.1. The HC controls the dynamic system

Yc such that the error, defined as the target minus the system output, or e = ft − θ,

remains as small as possible. Meanwhile, the system is perturbed by disturbance
fd.

Human
controller
dynamics

Yc
+

−

+
+ft

ft

θ

e u

fd

θ

Figure 2.1: Control scheme studied here. The HC can use ft, the system output θ and the
error e to generate the control signal u.

Task variables and learning

The SOP theory postulates three levels of control through which the HC might pro-

ceed while learning a particular control task [Krendel and McRuer, 1960; McRuer
et al., 1968a]. That is, the achieved level of control in the HC is a function of the

task variables and his obtained experience with the task. In the first stage (compen-
satory), the human only responds to the error and control behavior can be modeled

as pure feedback control. In the second stage (pursuit), the HC uses perceived

information on the target signal ft and the system output θ in addition to compen-
satory action on the error signal e, to improve performance, see Fig. 2.2. The signal

n indicates remnant, accounting for non-linearities present in the HC, and is the
residual of the control signal that is not modeled by the linear model. In the third

stage (precognitive), the HC recognizes a pattern in the target signal and selects an

appropriate learned response to be used in open-loop fashion.

Whether or not sufficient learning will lead to the achievement of a particular
level of control depends on the task variables. Relevant task variables are 1) the

tracking display, Fig. 2.3, either the compensatory or the pursuit display [Wasicko
et al., 1966; Allen and Jex, 1968], 2) the system dynamics [McRuer and Jex, 1967],

3) the properties of the target and disturbance signals (forcing functions), and 4) the

presence of additional cues (e.g., vestibular).



28 Chapter 2
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Figure 2.2: Linear model of multi-loop pursuit behavior.

e

(a) Compensatory display

e

θ
ft

(b) Pursuit display

Figure 2.3: Compensatory and pursuit displays for pitch control. Both displays only show
the current values of the signals. No post or preview information is presented.

Predictable target signals

An important property of the target signal is whether or not it is predictable. The
two main dimensions of target signal predictability, as identified by Magdaleno et

al., [1969], are signal coherence and waveform shape complexity. On the predictable
end of the spectrum are single sine waves, which are very coherent and have a sim-

ple waveform. On the other end of the spectrum are the unpredictable signals, such

as filtered white noise and multi-sine signals with many frequency components.

Realistic flight and driving maneuvers are similar to discrete patterns with a

high coherence, as described in Magdaleno et al., [1969], such as steps and ramps.
Such discrete patterns are predictable, because once the onset of the pattern is

recognized, the remainder is also known. Two examples of predictable discrete

patterns are given in Fig. 2.4.

McRuer et al., [1968a] hypothesized that three phases can be distinguished in

the response to a step target signal. After a short delay phase (I), the HC perceives
an unusually large error and recognizes the step in the target signal, for which an

appropriate response is available. During the rapid-response phase that follows

(II), the HC is hypothesized to switch to an open-loop control strategy in order to



Identification of the feedforward component with predictable target signals 29

quickly reduce the error, and then switch back to compensatory control to suppress

remaining errors (III).

θ,
d

eg

time, s

IIIIII

θ

ft

(a) Response to step target

θ,
d

eg

time, s

IIIIIIbIIaI

θ

ft

(b) Response to ramp target

Figure 2.4: Typical responses, and definition of the response phases to two predictable
discrete patterns.

This paper is concerned with target signals composed of ramps, not steps. We
therefore propose a similar subdivision of the response to a ramp target signal,

Fig. 2.4(b). Due to the delay phase (I), during which the human controller is un-
aware of the onset of the ramp, one is suddenly confronted with an error whose

magnitude depends on the ramp velocity. We hypothesize that in response to this

error, the HC might also switch to an open-loop control strategy (phase IIa).
During phase IIb, designated the “ramp-tracking phase”, the HC has to match

the velocity of the system to the velocity of the target. During this phase, the HC

has likely recognized the signal as a ramp and can make use of its predictability
property for the remainder of the ramp. We therefore expect to see feedforward

behavior during phase IIb and will focus our further analyses on this phase.

2.2.2 Compensatory control models

In every practical control situation, there will be some unpredictability, causing
errors that can only be corrected for in a closed-loop feedback fashion, see Fig. 2.5.

Ype Yc

Human controller

+

−

+
+

+
+ft e u

n fd

θ

Figure 2.5: Single-loop compensatory model. The HC only perceives the error e or is
assumed to respond only to the error, even if other signals are available.

McRuer et al., [1965] captured the fundamentals of compensatory manual con-

trol with the Crossover model, stating that the human dynamics adapt to the system
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dynamics [McRuer et al., 1965; Pool et al., 2011b]. The Extended Crossover model

approximates linear controller dynamics in the crossover region for unpredictable
forcing functions and a compensatory display to:

Ype(s) =

(

Kp
TLs + 1

TIs + 1

)

e−sτe , 2.1

with the equalization in parentheses and an equivalent time delay τe. It is only
valid near the crossover frequency ωc. The Simplified Precision model [McRuer

et al., 1965] describes human dynamics for a wider frequency range. For frequen-

cies beyond crossover, neuromuscular dynamics were added, studied extensively
in [McRuer et al., 1968b; Van Paassen, 1994; Damveld et al., 2009]. The combined

manipulator and human neuromuscular dynamics are commonly modeled as:

Ynms(s) =
ω2

nms

s2 + 2ζnmsωnmss + ω2
nms

, 2.2

with natural frequency ωnms and damping ζnms.

2.2.3 Feedforward control models

For compensatory control it has been shown that increased tracking performance

requires a higher crossover frequency [McRuer et al., 1965]. However, due to the

presence of time delays in the closed-loop system (originating from the HC), there
is a limit to which ωc can be increased without sacrificing closed-loop stability.

In case of a known, predictable and perceivable target signal in addition to
the error e, the HC may apply a feedforward control action. This could increase

performance without sacrificing stability. An ideal feedforward control law would

be equal to the inverse system dynamics [Elkind, 1956; Wasicko et al., 1966]:

u(s)

ft(s)
=

1

Yc(s)
⇒ u(s) =

1

Yc(s)
· ft(s). 2.3

The system output θ is then found to be:

θ(s) = Yc(s) · u(s) = Yc(s) ·
1

Yc(s)
· ft(s) = ft(s), 2.4

i.e., exactly equal to the target ft, yielding zero tracking error.

2.3 Control Behavior Models and Simulations

2.3.1 Characteristic forcing function properties

We aim to model and identify feedforward strategies in a control task with a target

signal composed of predictable ramp-segments and an unpredictable multi-sine dis-

turbance signal. Pool et al., [2010a] performed an experiment with two variations in
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the target (short and fast versus long and slow ramps) and two variations in the dis-

turbance (no or a strong disturbance), also for single integrator dynamics. Evidence
of feedforward behavior was found only in the condition with long and slow ramps

without disturbance, but not when a disturbance was present. A disturbance signal

of a certain magnitude is however needed for identification purposes. In this study,
we will therefore systematically vary the steepness of the ramps and the magnitude

of the disturbance.
The different variations of the target and disturbance signals all relate to two

baseline signals ( f ∗t and f ∗d ) by a simple gain:

ft = q · f ∗t , and fd = Kd · f ∗d . 2.5

The baseline target signal f ∗t is composed of a series of ramps with a steepness

of 1 deg/s, such that multiplication by q results in ramps with a steepness of q

deg/s. The duration of the ramp segments is constant, such that q also affects the
final amplitude of the target. Both forcing functions are discussed in more detail in

Section 2.4.1.

2.3.2 Ramp-tracking performance metrics

Before introducing the three models to be studied, an analytic performance metric
is derived that will allow us to compare the models. The analytic performance

metric is the error during the ramp-tracking phase as defined in Section 2.2.1.

The following was first derived by Wasicko et al., [1966] and is based on the
scheme of Fig. 2.2. When modeling the HC as a linear controller, either Ypt , Ype or

Ypθ
can be omitted, because of the linear relationship between e, ft and θ. Thus,

the different responses cannot be identified separately. We decided to omit Ypθ

because we expect a response on the predictable target signal ft and the model

would thus have a higher resemblance to the HC. Also, the reduced control scheme
is then similar to feedforward control schemes employed in common automatic

controllers. The closed loop transfer function of error e due to target ft then equals:

e(s)

ft(s)
=

1

1 + Yβ(s)
, 2.6

with the ‘equivalent open-loop’ describing function Yβ [Wasicko et al., 1966]:

Yβ(s) =
Yc(s)

(

Ypt(s) + Ype(s)
)

1 −Yc(s)Ypt(s)
. 2.7

The steady-state error of the controller to a certain target ft can be calculated using

the Final Value Theorem [Ogata, 2001]:

ess = lim
t→∞

e(t) = lim
s→0

s ft(s)
e(s)

ft(s)
. 2.8
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A ramp input signal, starting at t = 0, of infinite duration, and with steepness q is

given, in the Laplace domain, as ft(s) = q/s2. Substituting this relation and Eq. 2.6
into Eq. 2.8, the ramp-tracking error of a generic controller in control of Yc = Kc/s

to this ramp input with steepness q equals:

eramp = lim
s→0

s
q

s2

1

1 + Yβ(s)
= lim

s→0

q

s

1

1 + Yβ(s)
. 2.9

This metric will be used to evaluate the ramp-tracking performance of the three
models to be introduced next.

2.3.3 Compensatory control models

Basic Compensatory Model

Two compensatory models will be postulated. For the manual control of integrator

dynamics, humans can be modeled as a feedback controller with gain equalization

only [McRuer et al., 1965]. This compensatory model is referred to here as the Basic
Compensatory Model (BCM):

YBCM
pe

(s) = Kpe e
−sτpe Ynms(s). 2.10

Substituting Eq. 2.10 in Eq. 2.9 and setting Ypt = 0, the ramp-tracking error of the

BCM is found:

eBCM
ramp = lim

s→0
s

q

s2

1

1 + Yβ(s)
=

q

Kc

1

Kpe

. 2.11

Tracking performance improves for higher controller gain Kpe , at the cost, however,

of closed loop stability.

Full Compensatory Model

The HC might adopt a compensatory control strategy that better suits ramp-tracking,

with equal stability. To obtain insight in what this strategy might be, we return to

the equalization terms in the Simplified Precision model, in its most generic form
[McRuer et al., 1965]:

Ype(s) = K
′

pe

TLs + 1

TIs + 1
e−sτpe Ynms(s), 2.12

which can be rewritten to the equivalent:

YFCM
pe

(s) = Kpe

s + ωL

s + ωI
e−sτpe Ynms(s), 2.13

referred to here as the Full Compensatory Model (FCM). Rewriting Eq. 2.12 into

2.13 clarifies the trade-off between stability and performance in the following, as
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ωI and ωL have an effect on both the static gain (and thus system stability) and the

ramp-tracking performance. TL and TI have the same effect, but are less convenient.
The FCM acts as an integrator between ωI and ωL, for ωI < ωL. Substituting

Eq. 2.13 into Eq. 2.9 yields:

eFCM
ramp = lim

s→0
s

q

s2

1

1 + Yβ(s)
=

q

Kc

ωI

Kpe ωL
. 2.14

Hence, in addition to the gain Kpe , the lag and lead corner frequencies ωI and ωL

also affect ramp-tracking error. It can be improved, as compared to the BCM, by
keeping ωI < ωL and taking ωI as low as possible. A Bode plot of the resulting

transfer function, shown in Fig. 2.6 for two values of ωI (Ype1
and Ype2

), illustrates

the effect of ωI on the controller phase margin. Controller Ype1
, with a smaller

ωI , yields smaller ramp-tracking errors than controller Ype2
, at the cost of a smaller

phase margin. Clearly, with a compensatory control strategy a trade off between
open loop gain at low frequencies, and thus error reduction there, and stability, is

inevitable.
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Figure 2.6: Bode plot of the FCM for two values of ωI . ∆ Phase margin indicates the
difference in phase margin between the two controllers.

2.3.4 Feedforward control model

The proposed Feedforward Model (FFM) consists of a compensatory control loop

augmented with a feedforward path acting directly on ft, see Fig. 2.7.
The feedforward path YFFM

pt
consists of an equalization term, inverse system

dynamics, a time delay and the neuromuscular dynamics of Eq. 2.2:

YFFM
pt

(s) = Kpt

1

TIs + 1
·

1

Yc(s)
· e−sτpt · Ynms(s). 2.15

It will dominate the control contribution necessary to track ft. Hence, the error

e will be caused primarily by the disturbance signal fd. We limit our study to
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Figure 2.7: The FFM, a combined feedforward and compensatory HC model.

disturbance signals with frequency content around the crossover frequency and

assume that compensatory control action in the presence of feedforward action can

be modeled by means of the Simplified Precision model tuned for single integrator
dynamics [McRuer et al., 1965]. Thus, the compensatory path of the FFM is equal

to the BCM:

YFFM
pe

(s) = YBCM
pe

(s) = Kpe e
−sτpe Ynms(s). 2.16

Substituting Eqs. 2.15 and 2.10 in Eq. 2.9, the ramp-tracking error of the FFM is
found to be:

eFFM
ramp = lim

s→0
s

q

s2

1

1 + Yβ(s)
=

q

Kc

(

1 − Kpt

)

Kpe

, 2.17

which can be brought to zero by choosing Kpt equal to 1, without affecting closed
loop stability.

Fig. 2.8 shows a typical response of the FFM. For single integrator system dy-

namics, ramp tracking requires a constant non-zero input and a distinctive “plateau”
in the control signal emerges. During a “hold segment” the control signal is only

due to the disturbance fd and the feedforward path Ypt has zero output. During a

“ramp segment” both feedforward and compensatory paths contribute to the con-
trol signal.
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Figure 2.8: Typical simulated response of the FFM to a ramp target and disturbance signal
(q = 3 deg/s, Kd = 1, remnant is zero).
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The feedforward controller, Eq. 2.15, is identical to the one proposed by Pool

et al., [2010a]. The lag equalization TI only affects the rise time of the feedforward
control (upt , Fig. 2.8) just following the ramp onset. Because this rise time is very

short, it will be difficult to estimate TI from noisy data. Therefore, based on the

results of Pool et al., [2010a], it is fixed here to 0.2 seconds.
The feedforward model of McRuer et al., [1968a, p. 59] is similar to the FFM,

but contains explicit ‘switches’ to model changes in behavior during the control
task. For ramp target following, this might occur during phase IIa (see Fig. 2.4(b)).

Explicitly modeling these switches is beyond the scope of this study. The target

signal ft was designed such that only a few ‘ramp-onsets’ were included, making
the possible effects of switching behavior on the analysis as small as possible.

2.3.5 Simulations of control behavior

To predict the effect of the two task variables on control strategy selection and to
design the experiment conditions we will first make use of simulations by means

of linear models. Since the models are linear, the forcing functions are scaled lin-
early (no change in frequency content) and only relative metrics are considered, the

analyses will not be affected by the absolute values of q and Kd. Therefore, the

analyses are performed as a function of the ratio of q and Kd, referred to here as the
Steepness Disturbance Ratio (SDR):

SDR =
q

Kd
. 2.18

The steepness q is expressed in degrees per second and the disturbance gain Kd is

a unitless quantity.
All simulations apply the exact forcing functions used in the experiment, de-

scribed in Section 2.4. The model parameter values are listed in Table 2.1. To allow
for a fair comparison, the model parameters are chosen such that the phase margin

of the compensatory path of the controller is equal for all models (55 deg). The

choice of the value for the phase margin is based on the available measurement
data of Pool et al., [2010a].

Table 2.1: Model parameter values used in simulations.

Model Kpt τpt Kpe ωL ωI τpe ωnms ζnms ωc

s rad/s rad/s s rad/s rad/s
BCM - - 2.5 - - 0.2 12 0.2 2.6
FCM - - 2.0 0.3 0.05 0.2 12 0.2 2.1
FFM 1 0.2 2.5 - - 0.2 12 0.2 2.6

Prediction of control strategy selection

The metric used to predict the control strategy selection is the relative performance

improvement of the FCM and FFM over the BCM. It is defined as the variance of
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the error of the BCM divided by the variance of the error of the FCM or FFM:

Performance increase =
σ2

eBCM
σ2

eAlternative

. 2.19

The simulated performance increase is shown in Fig. 2.9 for a large range of
SDR. It shows that, as expected, the alternative control models predict a better per-

formance for higher values of SDR. However, the FFM has a performance increase

that is considerably larger than the FCM.
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Figure 2.9: Relative performance increase of the FCM and FFM models with respect to
the BCM (baseline).

For a low SDR, the FCM performs worse than the BCM. The low frequency lag
degrades performance if the disturbances are large relative to the ramps. Hence, uti-

lization of low frequency lag does not only involve a trade-off between performance

and stability, but also a trade-off between disturbance attenuation performance and
ramp-tracking performance.

The FFM is, in contrast to the FCM, able to achieve a better or equal perfor-
mance compared to the BCM, for the complete range of the SDR. Apparently, the

feedforward control strategy does neither involve a trade-off between performance

and stability, nor a trade-off between disturbance attenuation and ramp-tracking
performance.

Concluding, it is likely that for SDR values larger than 1 the HC will change
behavior from adopting a BCM strategy to a low-frequency lag strategy, FCM, or,

with much better performance, a feedforward strategy, FFM.

Choice of conditions

From Fig. 2.9 it can be concluded that the most interesting range in SDR is between

1 and 10, since the differences in performance of the three control strategies vary
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greatly. The practical constraints on the experimental display (screen size, resolu-

tion and the visibility of the disturbances due to fd) pose an upper limit on the
ramp steepness q in the order of 4 deg/s. To attain an SDR of 10, the disturbance

gain Kd should be equal to 0.4 or lower. By means of a small experiment it was ver-

ified whether Kd = 0.4 would cause the HC behavior to change significantly. This
was not the case as will be shown in the results of the main experiment.

2.4 Experiment

To validate the proposed models and the theoretical concepts concerning the iden-
tification of changes in control behavior, a human-in-the-loop experiment has been

conducted.

2.4.1 Method

Apparatus

The tracking task was presented on a central visual display in a ‘pursuit’ configu-

ration, see Fig. 2.3(b). The display update rate was 60 Hz and the time delay of
the image generation in the order of 20-25 ms [Stroosma et al., 2007]. The display

measured 22 by 22 cm with 800 by 800 pixels resolution, and was placed at a dis-

tance of 90 cm from the subject’s eyes. No outside visuals and no motion cues were
available.

Subjects used the fore/aft axis of an electro-hydraulic sidestick to give their

control inputs, u. The stick had no break-out force and a maximum deflection of
±13 deg. Its stiffness was set to 1.0 N/deg over the full deflection range, and its

inertia to 0.01 kg · m2; the damping coefficient was 0.2. The lateral axis of the

sidestick was locked.

Controlled element dynamics

Single integrator dynamics were considered: Yc = Kc/s. The gain constant Kc was
chosen such that subjects: 1) would never reach the maximum deflection limits of

the stick at ±13 deg, and 2) were still able to give fine, accurate control inputs. A

gain of Kc = 1.0 met both requirements, as will be shown by the results.

Independent variables and forcing functions

The independent variables were the ramp steepness q and disturbance signal gain
Kd. There were four levels of q and three levels of Kd, listed in Table 2.2. As

mentioned, there is an upper limit on q of 4 deg/s and a lower limit on Kd of 0.4.
To be able to compare the experimental data of this study to the data of Pool et al.,

[2010a], q and Kd for the condition with SDR = 1 were chosen equal to those in

condition S3 of Pool et al., [2010a]. That is, q = 1 and Kd = 1. The other values
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were chosen in-between the maximum and minimum values of q and Kd. Fig. 2.9

shows the resulting SDR values of the nine ramp-tracking conditions.

Note that for the R0 target signal ft = 0, reducing the task to compensatory
disturbance rejection only. The three R0 conditions were added to observe the

compensatory behavior for the three levels of Kd, necessary to correctly interpret
the results of the conditions with a ramp target signal.

Each subject performed each combination of ramp steepness and disturbance

signal gain, resulting in a total of twelve conditions. A condition will be referred to
in this paper with the syntax “RxDy", where x indicates the Ramp steepness and y

the Disturbance gain as a percentage. For example, R1D40 designates the condition

with q = 1 deg/s and Kd = 0.4.

Table 2.2: Independent variables.

Target signal, ft Disturbance signal, fd

Name q, deg/s Name Kd

R0 0 D40 0.4
R1 1 D70 0.7
R2 2 D100 1.0
R4 4

The forcing functions ft and fd are shown, for all levels of q and Kd, in Fig. 2.10.

The ramp-tracking signal ft consisted of two short (5 s) and two long (10 s) ramps

of equal steepness.
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(b) Unpredictable quasi-random multi-sine disturbance signals fd.

Figure 2.10: Target and disturbance signals used in the experiment.
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The disturbance signal fd was a multi-sine signal, consisting of ten sets of adja-

cent frequency components. The phases of the sinusoids were chosen such that the
signal appeared random. It was identical to the signal used in [Pool et al., 2010a].

Subjects and instructions

Six subjects, all males with extensive tracking experience, aged 24-49 years (29 years

avg.), were instructed to minimize pitch tracking error e presented on the display.
After each run the tracking score was given: the root mean square (RMS) of the

error e.

Procedure

Subjects performed the 12 conditions in two sessions with six conditions. The two
sessions were performed on separate days. Conditions were randomized over sub-

jects using a balanced Latin square design.

The individual tracking runs of the experiment lasted 90 seconds, of which

the last 81.92 seconds were used as the measurement data. Tracking performance
was monitored by the experimenter. When subject proficiency in performing the

tracking task had reached an asymptote, five repetitions at this constant level of
tracking performance were collected as the measurement data. On average, each

session took 3 hours.

During the experiment, the time traces of the error signal e, the control signal

u and the pitch attitude θ were recorded for five repetitions of each experimental

condition. From u the control signal rate of change u̇ was reconstructed. The five
time traces were averaged to reduce effects of remnant, resulting in one time trace

for each subject for each condition. Using these averaged time traces all dependent
measures were calculated, followed by the ARX model analysis, and the parameter

identification of the three control models.

2.4.2 Dependent measures

Non-parametric measures

The error variance σ2
e was the tracking performance metric. The variance of the

control signal rate of change σ2
u̇, was the control activity metric. Note that the

control signal itself contains a ‘plateau’ during ramp-tracking segments, see Fig. 2.8.

Using its variance would suggest that control activity increased, whereas subjects
did not put more effort in their control inputs.

To examine whether behavior is linear and constant in the range 0.4 ≤ Kd ≤
1.0, it is observed in the frequency domain, using crossover frequencies and phase

margins metrics.
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Parametric measures

Two linear time-invariant ARX models were estimated from the measured control
signal u. The single channel model, ARX(e), contains a response on the error only

and thus assumes a pure feedback control structure, Fig. 2.11(a). Its frequency re-
sponse is comparable to BCM and FCM results. The multichannel model, ARX( ft, e),

also allows for a response on the target ft directly, as would be the case for feed-

forward behavior, Fig. 2.11(b). Its frequency response can be compared to the FFM
results. ARX models are commonly used for system identification of a large variety

of dynamic systems [Ljung, 1999], including multichannel LTI models for modeling
human behavior with two partially correlated inputs [Nieuwenhuizen et al., 2008].
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(a) Single channel model
ARX(e)
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(b) Multichannel model ARX( ft, e)

Figure 2.11: The ARX model structures.

The ARX models are fit to the measured control signal u, yielding estimates
Ŷpt(s) = Bt/A and Ŷpe(s) = Be/A. The ARX method does not enforce a particular

model form with parameters having physical meaning; it describes the set of LTI

models with an accuracy depending on the polynomial orders. The latter were
chosen such that the resulting model was stable and the Akaike Final Prediction

Error was minimal [Ljung, 1999].

In addition, the three models proposed in Sections 2.3.3 and 2.3.4 were fit to the
data through a time-domain Maximum Likelihood Estimation (MLE) method [Zaal

et al., 2009c].

The quality of the ARX and MLE fits is expressed by the Variance Accounted
For (VAF):

VAF =

(

1 −
∑

N
i=0 |u(i)− û(i)|2

∑
N
i=0 u(i)2

)

× 100%, 2.20

with û the modeled and u the measured control signal.

2.4.3 Hypotheses

The analysis in section 2.3.5 revealed that a transition from compensatory to feed-
forward control is most likely for an SDR > 1, based on the observation that the rel-

ative performance improvement of the hypothesized FFM over the BCM increases

dramatically.
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For the conditions without a ramp target signal (R0), it was hypothesized that

subjects’ control behavior would be invariant and described best by the BCM (H.I).

For the conditions with ramp targets, it was hypothesized that the subjects’ strat-

egy depended on the SDR. For low values of the SDR, subjects were expected to be-

have more like a compensatory controller, and modelled best by the single-channel
ARX(e) model, and the BCM. Beyond a certain, yet unknown, value of the SDR the

VAF in the BCM data fits was expected to decrease, indicating that subjects changed
their strategy (H.II).

For higher SDR values it was hypothesized that subjects would employ control

actions on ft, and only the multichannel ARX( ft,e) model would be applicable to fit
the data. Furthermore, only the proposed FFM, and neither the BCM nor the FCM,

is expected to be fit accurately. The FFM frequency response would nicely follow

the multichannel ARX estimated frequency response (H.III).

2.5 Results

2.5.1 Measured time traces

For two characteristic conditions, representative time traces of the measured control

signal u, error e and output θ are plotted in Fig. 2.12 (subject 1). The time traces are

shown only between 17 and 60 seconds into the experiment, to better demonstrate
the behavior during ramp-tracking. All measures were calculated over the full 81.92

seconds measurement time.

The pitch attitude plots show that subjects could accurately track ft; the error
was never larger than ±2.5 deg for all conditions. Around the onsets of the ramps,

a peak in the error signal was observed, generally 50 % larger than the largest
error during a disturbance-rejection task with the same Kd gain. Note that during

the ramps the error e simply oscillates around zero, similar to pure disturbance-

rejection tasks.

The time traces of the control signal u show the distinct ‘plateau’ during the

ramps that becomes particularly eminent for larger SDR values. The maximum
deflection limits of the sidestick were never hit by any of the subjects.

2.5.2 Non-parametric analysis of conditions without ramps

Before observing the results as a function of the SDR, the effects of the disturbance

gain Kd on behavior are examined separately by studying the results of the R0
conditions. A better understanding of the effects of Kd should ensure that the

observed changes in behavior as a function of the SDR are attributed to the correct
independent variable.

We hypothesized that, as Kd becomes smaller, it is more difficult to perceive fd

and respond accurately. Fig. 2.13(a) shows the error variance, normalized with the
variance of fd, dissected into error at the frequencies of fd (tracking error, σ2

e, fd
) and
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Figure 2.12: Measured time traces of e, u, and θ for R0D100 and R4D100.

error at all other frequencies (remnant, σ2
e,n). Indeed, task difficulty increases for

smaller Kd’s. Note that in this figure, and the following, the error bars show 95%
confidence intervals. Fig. 2.13(b) shows the control signal variance, also dissected

into correlated control action and remnant. Control actions are less effective for
smaller Kd’s, with relatively more non-correlated control inputs (remnant). These

findings support H.I: it is more difficult to accurately respond to smaller distur-

bances, in line with Breur et al., [2010].

To assess the possible changes in behavior due to the disturbance gain Kd,
the crossover frequency ωc, and phase margin ϕm were obtained from the non-

parametric describing functions, Fig. 2.14. Clearly, the crossover frequency reduces
slightly for smaller disturbance signal gains, likely because these are more diffi-

cult to perceive and control accurately. The average phase margins do not change

significantly with Kd.
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Figure 2.13: Normalized variances of error and control signals, all subjects.
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Figure 2.14: Crossover frequency and phase margin for R0 conditions.

2.5.3 Control activity and tracking performance metrics

Control activity

Fig. 2.15(a) shows the variance of the control signal derivative, u̇. Surprisingly,

control activity in the R1 and R2 conditions is lower than for the R0 condition.

During conditions with ramps, subjects apparently put less effort in attenuating
disturbances than during conditions without a ramp. The same effect was reported

by Pool et al., [2010a].

Tracking performance

Fig. 2.15(b) shows the error variance. Performance reduces for conditions with

ramps, as might be expected when another signal is fed into the closed loop. Error
growth can be due to the delay phase just after the ramp onset (phases I and IIa),

which gives a larger effect for higher ramp rates. Also, tracking the ramp itself

(phase IIb) may be more difficult for larger ramp rates.
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Figure 2.15: Variances of the control rate and error for all conditions.

2.5.4 Compensatory modeling results

Basic compensatory model fits to conditions without ramps

For the conditions without a ramp (R0), only the BCM was fit to the data. The

contribution of the additional equalization terms in the FCM can not be identified
from the R0 data. VAF values, shown in Fig. 2.18(a) (R0 conditions), correspond

well to values obtained in earlier research; VAFs are slightly smaller for lower Kd’s,
similar to what was reported in other studies, e.g., Breur et al., [2010].

Since the VAF indicates that the model fits are adequate, the identified parame-
ter values, shown in Fig. 2.16, can be observed to study possible changes in control

behavior as function of Kd. The identified values of the controller gain Kpe are

slightly lower for low values of Kd, which corresponds to the lower crossover fre-
quencies, Fig. 2.14(a). The time delay τpe shows no significant changes with Kd,

which suggests that the subjects were able to accurately perceive fd for all distur-
bance gains. Variations in neuromuscular system parameters ωnms and ζnms are

slightly more pronounced, but not significant.

These results, and those from Section 2.5.2, demonstrate that HC behavior is

generally constant for all conditions of Kd.

Basic compensatory model fits to conditions with ramps

Fitting the BCM to the data was not possible for most conditions with ramps. The

simulated control signal differed too much from the measured control signal, for

the entire range of parameter values. Clearly, there is no information in e alone that
allows for forming a u that corresponds to what was measured. This is illustrated

by Fig. 2.17(a), showing the best fit of the BCM to the measured data for subject 1
of condition R4D40. The modeled control signal remains close to zero during the

ramp-tracking segments, whereas the measured control signal has a clear plateau.

Eq. 2.10 states that the modeled control signal equals the error signal, scaled by
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Figure 2.16: BCM identified parameter values.

Kpe and delayed by τpe . With the BCM the measured control signal simply cannot
be related to the measured error signal for any combination of Kpe and τpe , see

Fig. 2.17(b).

The BCM did not return any sensible results for either of the R2 and R4 con-
ditions, the fastest ramps. The quality of the fits for the R1 conditions gradually

decreased with increasing SDR. Fig. 2.18(a) illustrates the VAF of the BCM fitted to
the R1 conditions. It shows that R1D100 still produces an acceptable VAF, suggest-

ing that the model might describe the subject’s behavior. Closer inspection of the

best fit, see Fig. 2.18(b), reveals that the simulated control signal has a structural
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Figure 2.17: Illustration of the difference between the BCM and measured data.

discrepancy during the ramp segments which is not observed during the hold seg-

ments. The model control signal is offset from the measured control signal by a

small amount.
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Figure 2.18: VAF and typical model fits of the BCM for R0 and R1 conditions.

Full compensatory model fits to conditions with ramps

The FCM was fit to all the conditions without any problems and reasonably high
VAF values were measured, see Fig. 2.19. The FCM manages to model the plateau

in the control signal during the ramp segments much better than the BCM. The

additional lag equalization has an integrating effect on low frequency components
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in the error signal, which are apparently present in the error signal during ramp-

tracking segments. However, there are several reasons to believe that the FCM does
not accurately model the measured control behavior.
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Figure 2.19: VAF values of all three models for conditions with a ramp signal (ARX results
are slightly offset for visibility of the errorbars). VAF values of the R0 conditions are also
plotted, for reference, although their SDR value (zero) is not within the horizontal axis
range.

First, by comparing a typical model fit to the measured control signal (see

Fig. 2.20) it can be seen that the best fit is clearly different from the measured u,
in particular around the ramp-tracking segments. The relative difference is largest

for conditions with a medium SDR, as also expressed by the dip in the VAF values

in Fig. 2.19 for 2 < SDR < 5. A typical example is condition R2D70, see Fig. 2.20(a).
For higher SDR, the VAF increases again, suggesting that the FCM fits the measured

behavior better. However, Fig. 2.20(b) shows that still a distinct difference remains
during the ramp segments.

Second, there is a large variance in the VAF between subjects, as expressed by
the magnitude of the 95% error bars in Fig. 2.19. This indicates a high sensitivity of

the model to particular nonlinear behavioral aspects of the subjects.

2.5.5 Feedforward modeling results

The results presented in this section apply for the FFM model presented in Fig. 2.7

with YFFM
pe

as defined in Eq. 2.16. Parameter identification of the FFM was successful
in all conditions. Fig. 2.21 shows typical model fits of two conditions, demonstrat-

ing that the FFM is able to model the measured control signal very well for the

complete range of SDR and for both ramp and hold segments.
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Figure 2.20: Typical model fits of the FCM.
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Figure 2.21: Typical model fits of the FFM.
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The VAF of the FFM is compared to the FCM and BCM in Fig. 2.19. The FFM

yields the highest VAF for all conditions, with higher VAFs for larger SDR values.

The VAF depends significantly on the model (F2,10 = 136.992, p < 0.05). A
pairwise Bonferroni-corrected post-hoc test showed that it is indeed significantly

different between all three models (pBCM,FCM = 0.001, pBCM,FFM < 0.001,
pFCM,FFM = 0.001). The between-subject variability, expressed by the error bars, is

also much smaller for the FFM. Clearly, the FFM is more robust against differences

in control behavior between subjects, and against remnant in general.

Since the FFM accurately models the measured behavior for all conditions, we

now study the identified parameter values, see Fig. 2.22. The figure includes the
estimated parameter values of the BCM for the R0 conditions, for comparison.
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Figure 2.22: FFM identified parameter values.

The feedforward gain Kpt is estimated to be somewhat lower than 1 for all

conditions, see Fig. 2.22(a). Kpt = 1 was expected because this would result in
the best ramp-tracking performance, see Eq. 2.17. The value of Kpt increases for

both larger ramp steepnesses (F2,10 = 6.694, p < 0.05) and lower disturbance gains

(F2,10 = 6.022, p < 0.05). It is particularly interesting to note the small error bars
for the conditions with a high SDR. Apparently, the between-subject variability for

this parameter is low and behavior is fairly constant.

The uncertainty in the feedforward time delay τpt estimate is high for the low

SDR conditions, see Fig. 2.22(b). Note that τpt has a small effect on the simulated

control signal and is thus very sensitive to remnant. For higher SDR conditions
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the ‘plateau’ in the control signal becomes more pronounced and thus the delay

between the ramp onset and the plateau start can be estimated better. An additional
effect is that subjects might have been anticipating for a ramp segment to end, e.g.,

by remembering at what value the target would stop moving or by remembering

(or even counting) the duration of the target movement. This would correspond
with a τpt equal to or even smaller than zero. It is estimated consistently for the

R4 conditions around 0.2 s, a plausible value in manual control [McRuer and Jex,
1967].

The compensatory control gain Kpe , Fig. 2.22(c), depends significantly on Kd

(F2,10 = 20.873, p < 0.05) and is estimated lower for the ramp conditions than

for the R0 conditions. This corresponds with the higher control activity in the

latter conditions. As the control signal time traces suggest, the HC response to
disturbances is less powerful during ramp-tracking, expressed in a lower Kpe .

Estimates of the compensatory time delay τpe are significantly higher (F2,10 =
4.857, p < 0.05) for higher ramp steepness, suggesting that a faster ramp makes it

more difficult for the HC to detect disturbances and therefore has a more delayed
response. Note, however, that the numerical differences are very small which makes

it difficult to comment on the true importance of these findings.

The neuromuscular system parameters ωnms and ζnms (not shown) generally

show the same behavior for all ramp steepnesses and do not follow any significant
trends.

2.5.6 ARX model results

The single-channel and multichannel ARX models of Fig. 2.11 were fit to the exper-

imental data. Their VAFs were calculated by simulating the model, see Fig. 2.19.

The ARX( ft, e) model described the data very well, with a VAF of approx. 90% for
most conditions. The ARX(e) model, performed less well, with VAF values between

60 and 80%.

Estimates of Ypt and Ype are shown in Fig. 2.23 for four characteristic conditions,

averaged over all subjects, for both the single channel and multichannel model.
Also shown are the analytical transfer functions of Ypt and Ype of the BCM, FCM,

and FFM, with the model simulation parameter values as in Table 2.1, for a qualita-
tive comparison.

Fig. 2.23(a) shows that the estimate of the response on e, Ŷpe , by the single-
channel model ARX(e) varies much across conditions. For high SDR values, its

gain increases at low frequencies, its phase reduces slightly around 1 rad/s.

The estimate of the response on e using the ARX( ft, e) model is consistently a

gain up until about 6 rad/s, see Fig. 2.23(b), after which a lightly-damped reso-
nance peak appears; the phase response contains a transport delay. Comparing the

estimated frequency response to the analytical responses of the BCM and FCM, it

is clear that the response resembles the BCM. That is, no integrating action nor a
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Figure 2.23: ARX model identification results.

non-zero phase difference is found in the experimental data, which would suggest

an FCM control strategy.

Fig. 2.23(c) shows the estimated response on the target signal ft, Ŷpt , using the
ARX( ft, e) model. For the R0 conditions it is close to zero, as expected. For the

ramp conditions, it is characterized by differentiating action for frequencies up until
approximately 6 rad/s. Beyond this frequency again a lightly damped resonance

peak is observed. The estimated frequency response is very similar to the FFM and

very much resembles 1/Yc over a wide frequency range.

The phase of Ŷpt differs from the FFM at higher frequencies (> 6 rad/s). The
same bias was found in ARX estimations performed on simulated data of the FFM.

It was found that the deviation is due to the inability of the ARX method to cor-
rectly estimate the time delay in the feedforward path. That is, the effect of the

feedforward time delay is apparently not clearly present in the measured control

signal, such that it cannot be estimated correctly. The MLE estimation of the FFM
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was also unable to estimate the feedforward time delay consistently, as shown in

Fig. 2.22(b) and discussed in Section 2.5.5.

2.6 Discussion

To correctly interpret the results of the conditions with ramps, we first verified that

HC behavior is constant throughout the conditions without ramps. For the range
of 0.4 ≤ Kd ≤ 1.0 this was indeed the case, although remnant increases for lower

values of Kd. This affects performance, but does not cause behavior to change sig-
nificantly. The assumption that the HC can be modeled as a linear controller is

therefore valid for the Kd-range investigated. Crossover frequencies were slightly

lower than reported in McRuer et al., [1965], likely caused by the different distur-
bance signal spectrum [Damveld et al., 2010].

HC behavior in the ramp-tracking conditions differs from behavior in the distur-

bance rejection tasks. Control activity reduces, and subjects responded less to the

disturbances during the ‘ramp segments’ than during the ‘hold segments’. Either
intrinsic HC limitations or a deliberate change in strategy could be the cause. In-

trinsic limitations include a worse error perception due to the motion in the visual
image during ramp segments. Also, ramp-tracking requires the HC to attenuate the

disturbances through stick movements around a different ‘neutral point’, where the

stick feel is different.

The ARX analysis unequivocally showed that HC behavior changed to feed-

forward control, operating on both ft and e, for all conditions with ramps. Indepen-
dent of the SDR value, subjects actively used the predictable target presented on the

pursuit display. The multichannel ARX( ft,e) model showed that the feedforward re-
sponse closely resembled the inverse of the single integrator system dynamics.

The parametric model estimation confirmed that the hypothesized FFM, rely-
ing on inverse system dynamics, describes the measured control response for all

ramp-conditions most accurately. Notably, the feedforward gain Kpt was estimated
somewhat lower than 1, which would correspond to the ‘ideal’ feedforward con-

troller. This matches the observation that the average error during the ramps was

not equal to zero, but always slightly positive, which causes the compensatory loop
of the model to contribute to the ramp-tracking control inputs as well. This contri-

bution then results in a decrease in the necessary contribution of the feedforward
path, expressed in a lower value of Kpt .

The compensatory model that describes the behavior in the ramp conditions most
accurately is the FCM (although worse than the FFM). The improvement of the VAF

values of the FCM with respect to the BCM is due to the integrating action on the
low frequency components in the error signal during the ramp segments. This

integration action is, however, not able to fully explain the changed behavior of the

HC.
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The increase in VAF values of both the FCM and the single-channel ARX(e)

model for SDR > 5 can be explained by observing the definition of the VAF more
closely. The VAF is defined as the variance of the error normalized by the variance

of the control signal. The control signal variance increases much due to the plateaus

in the control signal and thus the VAF values for fast ramp conditions will always
be higher than for slow ramp conditions. Thus, the result is basically an artifact. A

better metric of the quality of fit should be explored.

There was a considerable contribution of the feedforward path for all ramp-
tracking conditions, in contradiction to our hypothesis H.II. A ‘transition’ was ex-

pected from pure compensatory behavior, where the feedforward gain Kpt would
be estimated around zero, to the activation of feedforward, where Kpt would be

significantly different from zero. This point was expected for SDR values larger

than 1, but apparently lies below 1. Future studies should investigate whether the
transition point occures at lower SDR values.

When interpreting the results it is important to realize that all metrics were

calculated over the complete 81.92 s of the data. The behavior of the HC differs
between the ramp and hold segments, and the effects of these differences translate

‘averaged’ into the calculated metrics. For example, control activity was found to

be lower during the ramp conditions. However, the metric gives no information
whether this was the case during the ramp or hold segments (or both).

Finally, it is acknowledged that the current study only varied the velocity of the

ramp signals, but did not independently vary the amplitude or time duration of the
ramps. It is expected that there is a combined effect of velocity and amplitude on the

selection of a particular control strategy. A threshold effect might be present, where
the feedforward strategy only comes into effect if the HC knows that the ramp will

be ‘sufficiently long’. On the other hand, a shorter ramp might be experienced

more as a step then a ramp by the HC, causing the utilization of an entire different
control strategy altogether, for example the switch to a pure open-loop mode as

hypothesized by McRuer et al., [1968a].

2.7 Conclusions

This paper studied human manual control behavior in a pursuit tracking task with

predictable, ramp-shaped target signals in the presence of an unpredictable dis-
turbance signal. Three models of control behavior were postulated, a basic feed-

back model following McRuer’s adjustment rules (BCM), an extended feedback

model tailored to ramp targets (FCM), and a model combining basic feedback with
a feedforward component (FFM). The relative magnitude of the ramp target and

the unpredictable disturbance signal was varied and characterized by the Steep-
ness Disturbance Ratio (SDR). A model simulation analysis showed that for SDR

values up to 1, all three models yield the same performance. When SDR increases,

performance improves for the FFM which employs a feedforward loop on target.
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From a human-in-the-loop tracking experiment, conducted for a range of SDR’s,

we conclude that: 1) within the SDR range investigated, human feedforward behav-
ior was unambiguously identified for all conditions; 2) the hypothesized transition

from compensatory to feedforward behaviour when SDR increased was not found;

3) the feedforward response on the target signal approximates the inverse of the
single integrator system dynamics; 4) the compensatory response on the error sig-

nal closely resembles the response found during compensatory tracking tasks with
unpredictable targets. Supported by an independent ARX model analysis we con-

clude that the combined feedback and feedforward model (FFM) describes the data

best for all conditions investigated.
Future work will address human behavior for a wider range of Steepness Distur-

bance Ratio values. The current work was performed with a pursuit display, for a
better description of real-world control behavior, further investigation with preview

displays is needed.



Chapter

Feedforward control behavior during a lateral

reposition task

3

An appropriate ‘starting point’ for the research described in this thesis

was found in the previous chapter, but still an overwhelming number of
open questions remained. To understand which questions were the most

relevant ones to answer, a realistic control task, for which a better under-
standing of feedforward would be highly beneficial, was selected. Then, it

was attempted to construct a complete pilot model for the task, and it was

attempted to identify the (expected) feedforward response from human-in-
the-loop experimental data. That is, a control task much more complex

than the current state-of-the-art was selected on purpose, to understand
which path had to be taken in subsequent research to eventually under-

stand this complex task. This chapter describes the selected control task,

the computer simulation analyses, and the human-in-the-loop experiment.
The work successfully resulted in a better understanding of the work that

had to be done, and the four objectives of this thesis were formulated based

on this and the previous chapter.
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3.1 Introduction

A mathematical model of helicopter pilots’ manual control behavior is useful for

offline simulations to evaluate and quantify pilot-helicopter system performance
early in the design stage. Different types of pilot models are used for different

applications, such as shipboard operations [Lee et al., 2005; Hess, 2006] and ADS-
33 certification maneuvers [Celi, 2007; Bottasso et al., 2009].

The pilot models described for such applications in literature differ mainly in
whether they have a feedback or an open-loop feedforward structure. In this paper,

we define a feedback controller as a controller that operates on the error between
the commanded flight path and the current output of the helicopter. An open-loop

feedforward controller is defined as a controller that takes the commanded flight

path as the sole input and generates the appropriate control signal to steer the
helicopter along this reference trajectory.

In control systems, feedback is necessary for stability and will provide a basic

level of performance. The performance can be improved by adding a feedforward

path, where the optimal feedforward controller is equal to the inverse of the sys-
tem dynamics. We hypothesize that the human pilot makes use of similar feed-

forward control strategies for certain helicopter maneuvering tasks to significantly

improve his performance. This paper will investigate this hypothesis by developing
a method to objectively identify human control behavior from actual human-in-the-

loop measurements. Additionally, this paper will investigate the consequences of
including a feedforward path in a pilot model for offline simulations used to quan-

tify pilot-helicopter system performance.

Feedback pilot models are usually based on the Crossover model of McRuer

et al. [McRuer and Jex, 1967; Nieuwenhuizen et al., 2009], the Structural Model
of Hess [Hess, 1980; Hess, 2006] or the Optimal Control Model of Kleinman et al.

[Kleinman et al., 1970; Lee et al., 2005]. Such models are usually straightforward

to implement and are based on objective measurements of human control behav-
ior. It is, however, important to note that these feedback models were intended to

describe pilot dynamics in tracking tasks with quasi-random target or disturbance
signals that appear unpredictable to the human [McRuer and Jex, 1967; Kleinman

et al., 1970; Hess, 1980]. In real helicopter flight, however, the pilot is not tracking

an erratic reference path, but performs goal-directed maneuvers such as forward
flight, turns and climbs, hover pedal turns, bob-up maneuvers and longitudinal

and lateral repositions. The feedback models do not take the cognitive capabilities
of the human that play an important role during such maneuvers into account, such

as his ability to acquire an internal model of the system dynamics through learn-

ing, to make predictions on the future course of the target and to use memorized
knowledge. One might therefore expect that purely feedback models underestimate

the performance of the pilot-helicopter system for realistic maneuvers.

The open-loop feedforward pilot models that are sometimes used in helicopter

applications are usually described in inverse simulation problems [Whalley, 1991;
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Cameron et al., 2003; Thomson and Bradley, 2006; Celi, 2007; Bottasso et al., 2009].

In inverse simulations, a desired flight trajectory and the ‘forward’ helicopter equa-
tions of motion are given, from which the corresponding control signal is calculated,

usually done by numerically inverting the helicopter dynamics. Although the in-

verse solution might resemble the complex cognitive abilities of the human pilot
better than a pure feedback model, it does not, in its most basic form, explicitly

consider any human-in-the-loop effects. As such, it might not be representative
for what the pilot-helicopter system can do, because 1) the pilot does not know

or cannot execute the optimal control signal, 2) the pilot needs to leave margin to

structural load limits, 3) the pilot will also have to cope with unpredictable exter-
nal disturbances, and 4) because the pilot is unwilling or is trained not to perform

extreme maneuvers in certain flight conditions, e.g. close to the ground [Whalley,
1991]. Therefore, inverse simulation models are likely to overestimate the perfor-

mance of the pilot-helicopter system for realistic maneuvers.

Several authors have addressed the problem of overestimation by the inverse
simulation approach and proposed alternative model structures that model intrin-

sic limitations of the pilot [Cameron et al., 2003; Thomson and Bradley, 2006; Bot-
tasso et al., 2009] and performed human-in-the-loop experiments to compare the

inverse simulation result to human data [Whalley, 1991]. Still, none of the previ-

ous works have considered the possibility that the human pilot might operate a
feedback loop and a feedforward path simultaneously and neither did they attempt

to objectively measure pilot control behavior, for example through system identi-
fication techniques, to validate their proposed model. As such, a pilot model for

realistic helicopter tasks, taking into account both feedback and feedforward control

behavior, based on human-in-the-loop measurements does not exist.

It is the objective of this paper to develop a helicopter pilot model that takes

both feedback and feedforward control behavior into account and to 1) show the
difference in performance between a pilot model with and without an inverse sys-

tem dynamics feedforward path and 2) to identify from experimental data whether

or not the human pilot employs such feedforward control techniques. We hypothe-
size that 1) the difference in performance between the two approaches is large in a

realistic control task and that 2) evidence of feedforward behavior can be identified
from experimental data.

System identification methods that can be used to identify human control behav-
ior require the control task to be a tracking task, where the human pilot is required

to accurately follow an explicitly presented target object or marker. Within the wide

range of realistic helicopter maneuvers, only few will require such accurate control.
We argue, however, that ADS-33 certification tasks generally require highly accu-

rate control, such that they can be represented as tracking tasks and induce very
similar control behavior in the human pilots. Therefore, this paper will study the

hypotheses by means of a tracking task resembling an ADS-33 lateral reposition

maneuver [Anon., 2000].
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The paper is structured as follows. First, we introduce the ADS-33 lateral repo-

sition maneuver and investigate from a control theoretical perspective what control
dynamics can be expected to play a role in this control task. Then, we perform sim-

ulations to investigate the performance effect of a feedforward element, after which

we investigate to what extent it is possible to identify from measured data whether
the human pilot is using feedforward strategies. After describing the human-in-the-

loop experiment and its results, the paper will end with a discussion and conclu-
sions.

3.2 ADS-33 Lateral reposition task

This paper studies pilot control dynamics in a tracking task that resembles the ADS-
33 lateral reposition task. This task is intended to check the roll and heave axis

handling qualities during moderately aggressive maneuvering. The task consists of

accelerating laterally from a stabilized hover at 35 ft wheel height up to a lateral
ground speed of approximately 35 knots followed by a deceleration to laterally

reposition the rotorcraft in a stabilized hover 400 ft down the course [Anon., 2000].

A reference trajectory (or: target signal) was constructed which meets the Good
Visual Conditions (GVE) desired performance requirements for cargo/utility rotor-

craft, i.e. to complete the maneuver within 18 seconds, see Fig. 3.1. Directly after

performing one lateral reposition to the right (positive ḟt is motion to the right) an
identical reposition to the left is to be made. The green lines mark the start and end

of the two lateral repositions which by themselves take exactly 15 seconds. This
is 3 seconds shorter than the requirement of 18 seconds to account for the time

the pilot needs to acquire a stable hover. The target signal presented in Fig. 3.1 is

used throughout all simulations in this paper, as well as in the human-in-the-loop
experiment.

We will only consider the roll and lateral dynamics of the helicopter, such that

the other performance requirements relating to longitudinal, vertical and heading
motion do not play a role in our analysis.

3.3 Model of pilot control dynamics

In this section we study the task of the pilot during the ADS-33 lateral reposition
from a control theoretical perspective, but constrain the model to the physiological

abilities of the human pilot. That is, the model will not make use of signals that can
not be perceived by the human senses and will contain a model of the neuromus-

cular system. The primary senses of the pilot are vision and the vestibular system;

the contribution of both will be discussed next.

A schematic representation of the out-of-the-window visuals during the task is

given in Fig. 3.2, which shows that four ‘fundamental’ signals can be perceived

directly from the display: the lateral target signal ft, the helicopter roll angle φ, the
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Figure 3.1: The lateral target signal ft and its time derivatives.

helicopter lateral position y and the lateral tracking error ey = ft − y. We assume

that all linear and rotational velocities ( ḟt, ėy, ẏ and φ̇) can also be perceived by

means of the visual system, but that accelerations can not be perceived visually
[Gottsdanker, 1956]. Visual perception is usually associated with considerable time

delays, typically 0.1 to 0.3 seconds [McRuer and Jex, 1967].

We assume the vestibular system to be able to perceive linear accelerations (ÿ)

and rotational velocities, φ̇ [Gum, 1973]. Typical time delays associated with the

vestibular system, measured in closed loop control tasks, are 0.2 seconds [Zaal et
al., 2009c].

Finally, an important feature of the target signal is that it is identical throughout
the entire experiment which enables the human pilot to learn and memorize its

relevant features and use these for more effective control [Krendel and McRuer,

1960].
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ft

ey
y φ

Figure 3.2: A schematic representation of the out-of-the-window visuals. The white aircraft
symbol marks the current lateral position and roll angle of the helicopter. The white dot
indicates the tracking target. Lateral tracking error ey is to be minimized by the pilot.
Recognizable objects, such as the black poles, act as fixed reference points for the target and
helicopter lateral position.

3.3.1 Control scheme

A schematic block diagram of the lateral reposition task and the proposed pilot
control model is given in Fig. 3.3. The blocks contained within the dashed box are
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Figure 3.3: Schematic representation of the lateral reposition task and the proposed pilot
model.

internal to the pilot, the blocks Cφ(s) and Cy(s) represent the roll and lateral dynam-
ics of the helicopter, respectively. For the simplified helicopter model considered in

this paper, these dynamics are given as:

Cφ(s) =
Kcφ

s
, with Kcφ = 1.2 3.1

Cy(s) =
Kcy

s2
, with Kcy = 9.81 3.2

Signal fdφ
is a disturbance signal and models the presence of turbulence.
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We assume a serial model structure (rather than a parallel model structure) in

which the pilot first closes and stabilizes the inner (roll) loop and then the outer
(lateral position) loop. For both the roll and the lateral loop we consider three

pilot control elements: one feedforward path, one error feedback element and one

feedback element responding to the respective output signal of the helicopter. Both
the inner and the outer loop have an individual feedforward element, as opposed

to one feedforward element taking ft as input and giving an output directly to u.
This is necessary to prevent the roll loop feedback element Heφ(s) to ‘fight’ (and

thereby cancel) the inputs of such a feedforward element.

Roll loop feedback

The roll loop contains the helicopter roll dynamics and all the inner loop pilot
control elements, see Fig. 3.4. The roll target signal φt is not a measurable signal

+
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+

+

+

+

fdφ

Htφ

Heφ

Hφ

Hnms Cφ
φt

eφ

utφ

ueφ

uφ

unms u φ

Human controller

Figure 3.4: Schematic representation of the inner (roll) loop, containing pilot feedback
and feedforward elements, helicopter roll dynamics and roll disturbance signal fdφ

. The roll
target signal φt only exists in the pilot and is generated by the outer loop controller.

because it is internal to the pilot and thus eφ is also not measurable. Therefore,
the feedforward element Htφ(s) and the error feedback element Heφ(s) respond to

internal signals. The state feedback element Hφ(s) is the only element responding

to a signal that is directly measurable and perceivable.

The dynamics of the neuromuscular system and the control manipulator are

described by Hnms(s) and are commonly modeled as a second-order system,

Hnms(s) =
ω2

nms

s2 + 2ζnmsωnmss + ω2
nms

3.3

with natural frequency ωnms = 12 rad/s and damping ratio ζnms = 0.2 [Zaal et al.,
2009c].

The stability and disturbance-rejection properties of the roll loop are determined

by Heφ and Hφ. The dynamics of Heφ necessary to achieve stability will depend on
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the content of Hφ and vice versa. In general, the primary use of ‘state feedback’

elements, such as Hφ, are to stabilize the system dynamics and to improve the
disturbance rejection performance of the controller.

For the single integrator roll dynamics one can derive that choosing a gain for

Hφ will improve the disturbance rejection performance of the controller, but will
simultaneously worsen the target-tracking performance. The decrease in target-

tracking performance is especially large due to the considerable time delay that
is present in the state feedback generated by the human pilot [Zaal et al., 2009c]. In

this task the overall task performance is primarily determined by the controllers

target-tracking performance, because disturbances will be relatively small com-
pared to the size of the maneuver itself. Therefore, we assume the contribution

of the state feedback to be negligibly small and thus assume Hφ(s) to be equal to
zero.

For single integrator dynamics we can model the error feedback path Heφ as a

gain and a time delay, based on the Crossover Model [McRuer and Jex, 1967].

Heφ(s) = Keφ e
−τeφ

s
3.4

A typical value of Keφ is 2.5, such that the crossover frequency of the inner loop

is equal to 3.0 rad/s. A typical value for the time delay τeφ for single integrator
dynamics is 0.25 seconds [Drop et al., 2013].

Roll loop feedforward

If we assume the internal signal φt to be known to the pilot and of predictable na-

ture, we expect the pilot to perform a feedforward operation on φt, based on the
results of [Drop et al., 2013]. Drop et al., [2013] investigated feedforward control

strategies in a single-loop pitch-axis tracking task with predictable target signals
and found that feedforward control behavior similar to inverse system dynamics

can readily be identified from experimental data. As can be verified from Fig. 3.3,

the ideal feedforward dynamics Htφ are equal to the inverse system dynamics: [Wa-
sicko et al., 1966]

HtφIdeal
(s) =

u(s)

φt(s)
=

1

Cφ(s)
⇒ u(s) =

1

Cφ(s)
φt(s). 3.5

The system output φ is then found to be:

φ(s) = Cφ(s) · u(s) = Cφ(s) ·
1

Cφ(s)
· φt(s) = φt(s). 3.6

That is, output φ is exactly equal to the target signal φt, yielding zero tracking error.

We thus assume the inverse of the helicopter roll dynamics for Htφ , see Eq. 3.7.

Htφ(s) = Ktφ

1

Cφ(s)
= Ktφ

s

1.2
3.7
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Gain Ktφ is added to be able to tune the amount of feedforward action. For optimal

performance Ktφ = 1; for no feedforward contribution Ktφ = 0.

Lateral loop feedback

The outer loop commands roll angles (φt) to the inner loop and thereby controls

the lateral dynamics of the helicopter, see Fig. 3.5. In Fig. 3.5, the inner-loop pilot

+

-

+

+

+
ft

y

Hty

Hey

Hy

φ-loop
See Fig. 3.4.

Cy

ey

uty

uey

uy

φt φ

Human controller

Figure 3.5: The lateral loop isolated from the complete loop.

dynamics and helicopter dynamics are represented simply by the block ‘φ-loop’. If
we assume the roll loop to be well-tuned, we can approximate it as a gain close to

unity and thereby simplify the analysis of the lateral loop below. The stability of

the controller is determined by Hy and Hey and their dynamics mutually depend
on each other.

One can derive that rate feedback is the most effective form of state-feedback for

the outer loop, i.e. Hy(s) = Kyse−τys. However, as also discussed for the roll loop,
the state feedback only improves the disturbance-rejection performance of the pilot-

helicopter system, but worsens the target-tracking performance. Since this task

primarily relies on target-tracking performance, we expect that the contribution of
the state-feedback is only small and therefore we will neglect it in the remainder of

the paper. Hence, we assume Hy(s) = 0.

Based on the Crossover Model of McRuer et al.[McRuer and Jex, 1967] we expect
the error feedback element Hey to be a gain at low frequencies and a lead at higher

frequencies:

Hey(s) = Key

(

Teys + 1
)

e−τey s
3.8

Typically, the outer loop crossover frequency is approximately one third of the inner

loop crossover frequency [Hess, 2006], but since we are considering an aggressive
maneuver we will choose model parameters that lead to slightly better performance.

That is, we choose Key = 0.15 and Tey = 1 seconds such that the outer loop crossover

frequency is approximately 1.5 rad/s. Furthermore, we set the outer loop time
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delay τey to 0.1 seconds, such that the total feedback time delay (including the roll

feedback delay of 0.25 s) becomes 0.35 seconds.

Lateral loop feedforward

Similar to the roll loop, we hypothesize that the pilot performs a feedforward op-
eration to improve the tracking performance. For optimal performance the feed-

forward element Hty should be equal to the inverse of the lateral dynamics:

Hty = Kty

1

Cy(s)
= Kty

s2

9.81
3.9

The gain Kty was added such that the contribution of the feedforward path can be
tuned.

3.3.2 Model development conclusions

In the previous section a pilot model was developed for a roll-lateral helicopter

control task, assuming the helicopter dynamics as defined in Eqs. 3.1 and 3.2. The
model was developed from a control theoretical perspective, but the possible model

elements were constrained to respond to signals that are perceivable by the human

pilot. The important conclusions and findings are 1) that concerning the roll-loop
feedback elements the likely form of Heφ is a gain and a time delay, 2) that con-

cerning the lateral-loop feedback elements the likely form of Hey is a gain at low
frequencies and a lead at higher frequencies, 3) that these two findings result in

identical controller dynamics for Heφ and Hey as were proposed by McRuer et al.

for steady-state compensatory tracking [McRuer and Jex, 1967].
Furthermore, the objective of this paper can now be formulated more precisely

by means of Fig. 3.3, i.e., it is our objective to 1) investigate the difference in per-
formance between a model containing Hty and Htφ , and a model without these el-

ements, and 2) to identify from experimental data whether or not the human pilot

indeed performs feedforward control behavior similar to inverse system dynamics
for Hty and Htφ .

3.4 Performance simulations

This section addresses the first objective of this paper, that is, to investigate the

difference in performance between purely feedback behavior and a combination of

feedback and feedforward behavior. Simulations are performed using the model
developed in the previous section and performance is measured by the maximum

value of the lateral tracking error ey occurring at any time during the simulation.
The performance of a controller depends on its target-tracking performance

and its disturbance-rejection performance, which are two separate qualities. For

a purely feedback controller a trade-off between the two qualities has to be found.
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However, a controller containing feedforward can use its feedforward path for tar-

get tracking and use the feedback loop to cope with the disturbances. As such,
the usefulness of a feedforward element will depend on the presence, and strength,

of disturbances such as turbulence. For small to moderate disturbances, the feed-

forward element will have a considerable contribution to the tracking performance.
However, for large disturbances, the overall performance of the controller is largely

determined by its disturbance-rejection performance and thus the contribution of
the feedforward element is only small.

Because the usefulness of the feedforward element is dependent on the strength
of the disturbance signal, the simulations were performed as a function of the stan-

dard deviation of disturbance signal fdφ
, which disturbs the roll angle directly, see

Fig. 3.3, and is identical to the disturbance signal described in the Experiment sec-

tion. The pilot model parameter values as used during the simulations are given

in Table 3.1. Four different settings of the pilot model are defined, being a pure
feedback model (FB), a model containing feedback and roll feedforward (RFF), a

model containing feedback and lateral feedforward (LFF) and a model containing
feedback and both roll and lateral feedforward (RLFF).
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Figure 3.6: Tracking performance as a function of the roll disturbance signal magnitude.

Fig. 3.6 shows the maximum tracking error for four different settings of the

pilot model as a function of the standard deviation of the disturbance signal fdφ
.

Note that the maximum lateral error is plotted on a logarithmic scale. The differ-

ences are, as expected, largest for small to moderate disturbances. Roll feedforward

by itself (RFF model) improves the performance only marginally compared to the
purely feedback case (FB model), but the sole addition of lateral feedforward (LFF

model) greatly improves performance. Obviously, the best performance for small
to moderate disturbances is obtained by the model containing both roll and lateral

feedforward (RLFF model). For larger disturbances the differences are very small,

but feedforward still improves the performance (especially roll feedforward).
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Table 3.1: Four model parameters sets used in simulations throughout this paper.

Element Feedback,
FB

Roll Feedforward,
RFF

Lateral
Feedforward, LFF

Full Feedforward,
RLFF

Hty(s) = Kty

s2

9.81
Kty = 0 Kty = 0 Kty = 1 Kty = 1

Htφ(s) = Ktφ

s

1.2
Ktφ = 0 Ktφ = 1 Ktφ = 0 Ktφ = 1

Hey(s) = Key

(

Teys + 1
)

e−τey Key = 0.15, Tey = 1 s, τey = 0.1 s

Heφ(s) = Keφ e
−τeφ Keφ = 2.5, τeφ = 0.25 s

Hy(s) = 0, Hφ(s) = 0
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For a disturbance signal with a standard deviation of 4 deg, which falls within

the range of what can be argued to be realistic disturbance magnitudes, the maxi-
mum lateral tracking error of the FB model is in the order of 3 m. The RLFF model,

containing both roll and lateral feedforward, has a maximum error of only 0.26 m,

which is one order of magnitude smaller. This shows the importance of a proper
pilot model, if it were to be used for a simulation early in the design phase to

determine the roll lateral performance of the helicopter in an absolute sense.

3.5 Identification

This section addresses the second objective, that is to identify from experimental
data whether the human pilot indeed employs feedforward control techniques, as

hypothesized. For identification we wish to use a black box model for which no

assumptions concerning the underlying dynamics of the system have to be made.
More specifically, the system identification method of choice is one based on Linear

Time Invariant ARX models, because such models have been used successfully for

pilot control dynamics identification before [Nieuwenhuizen et al., 2008].

3.5.1 Identification approach

Ideally, we would like to find a method to identify transfer functions Hty and Htφ di-

rectly from experimental data. In order to do so, the signal φt (see Figs. 3.4 and 3.5)
would have to be measurable. However, since φt is a signal that only “exists” in

the human, this is not possible. The derivation to be presented next will show it

is, however, possible to collect indirect evidence for the existence of feedforward ac-
tion in the human pilot. In order to do so, one will have to make two assumptions

on the form of Hey and Heφ .

First, we derive the lumped transfer function from ft and ey to u, based on

Fig. 3.3. We can write u as a function of all the basic inputs to the ‘human controller
box’:

u =
(

Htφ φt + Heφeφ + Hφφ
)

Hnms 3.10

with

φt = Hty ft + Heyey + Hyy 3.11

We further note that:

eφ = φt − φ 3.12

and that

ey = ft − y → y = ft − ey 3.13
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Substituting Eq. 3.11, 3.12 and 3.13 into Eq. 3.10, we find the following equation:

u = Hnms(Htφ + Heφ)(Hty + Hy) ft

+ Hnms(Htφ + Heφ)(Hey − Hy)ey

+ Hnms(Hφ − Heφ)φ

3.14

We further note that the following relations exist:

y = φCy → φ = yC−1
y 3.15

Substituting Eqs. 3.15 and 3.13 into Eq. 3.14 results in the following equation:

u = Hnms

(

(Htφ + Heφ)(Hty + Hy) + (Hφ − Heφ)C
−1
y

)

ft

+ Hnms

(

(Htφ + Heφ)(Hey − Hy)− (Hφ − Heφ)C
−1
y

)

ey

3.16

When using an LTI ARX model using input signals ft and ey and output signal

u one will obtain the following two ‘lumped’ transfer function estimates:

Yft
=

(

(Htφ + Heφ)(Hty + Hy) + (Hφ − Heφ)C
−1
y

)

Hnms

Yey =
(

(Htφ + Heφ)(Hey − Hy)− (Hφ − Heφ)C
−1
y

)

Hnms

3.17

That is, the ARX method estimates the parameters of the ARX model given in

Eq. 3.18 in a least-squares fashion, from which the estimates Yft
= B ft

(q)/A(q) and

Yey = Bey(q)/A(q) are obtained.

A(q)u(t) = B ft
(q) ft(t) + Bey(q)ey(t) + ǫ(t) 3.18

In Eq. 3.18 the parameters A(q) and B(q) are polynomials of order na and nb, re-
spectively, and ǫ the modeling residual. Fig. 3.7 is a schematic representation of the

ARX model.
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Yft
=

B ft
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A(q)
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Bey (q)

A(q)
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Figure 3.7: Schematic representation of the ARX model with two input signals and one
output signal and the two transfer functions the model will estimate.

From observing Eq. 3.17, one can see why it is not possible to directly obtain es-

timates for Hty and Htφ : there are seven unknowns (all transfer functions indicated
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with “H”) and only two equations. We therefore look for possibilities to isolate Hty

and Htφ as much as possible. Hence, we add estimates Yft
and Yey together to find

Yft+ey
.

Yft+ey
= Yft

+ Yey = (Htφ + Heφ)(Hty + Hey)Hnms 3.19

By adding Yft
and Yey together, we eliminate the contribution of state feedback

elements Hφ and Hy such that comparable control behavior in the pilot does not
affect the analysis and it can not, by mistake, be identified as feedforward behavior.

It is important to understand that Yft+ey
does not have a physical meaning, but that

it does potentially allow us to find indirect evidence for feedforward behavior in
Hty and Htφ , by making assumptions on the dynamics of Hey , Heφ and Hnms.

First, for the neuromuscular dynamics Hnms we assume the second-order model

as given in Eq. 3.3. This model is based on experimental data and describes the in-

herent neuromuscular dynamics of the arm, which mainly influence pilot dynamics
at frequencies above 7 rad/s. As this control task is similar to previous experiments,

we assume these dynamics to be identical.

Then, we observe the form of transfer functions Hty , Htφ , Hey and Heφ from a
control theoretical perspective. The roll error feedback element Heφ is most likely

a gain, see Eq. 3.4, and the lateral error feedback element Hey is most likely a gain

at lower frequencies and a single differentiator (or lead) at higher frequencies, see
Eq. 3.8. The two feedforward elements Hty and Hyφ are in the ideal case a double

and a single differentiator, respectively. Hence, if one were to compare the Yft+ey

dynamics of a controller with and without feedforward and the aforementioned

assumptions were true, distinct differences are to be seen.

The next section will elaborate on these differences and show, by means of sim-

ulation, that such differences can indeed be identified by means of LTI models.

3.5.2 Verification using simulations

The result of Eq. 3.19 is to be verified by means of simulations, for each of the four

different parameter sets of the pilot model developed in the preceding sections of
the paper, see Table 3.1. From the simulated signals ft, ey, and u we estimate Yft

and Yey by means of an ARX model, from which Yft+ey
can be calculated.

Simulations with and without human remnant are performed. Human remnant
is defined by McRuer and Jex, [1967] as all non-linearities in the human and all

control inputs uncorrelated to the pilot input signals. We observe the results for

simulations free of human remnant first.

Fig. 3.8 (next page) shows a Bode plot of the theoretical dynamics of Yft+ey
and

those estimated from the simulated signals, for all four settings of the model. At fre-

quencies lower than approximately 7 rad/s, the dynamics of Hty , Htφ , Hey , and Heφ

determine the dynamics of Yft+ey
. At higher frequencies, a peak in the magnitude

is seen due to the neuromuscular dynamics, Hnms. Two important observations can

be made concerning the dynamics at frequencies lower than 7 rad/s.
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Figure 3.8: Simulated estimation of Yft+ey
compared to the analytical solution, for four

different parameter sets of the feedforward gains Kty
and Ktφ

. Without simulated remnant.
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Figure 3.9: Simulated estimation of Yft+ey
compared to the analytical solution, for different

settings of the feedforward gains Kty
and Ktφ

. With simulated remnant.

First, one can see that the Yft+ey
transfer function is markedly different for the

four different model settings. For the FB model Yft+ey
is a single differentiator

above 0.7 rad/s. The corresponding phase is determined largely by the lead term

in Hey and the time delay in Heφ . The phase rises slightly above 0 deg around 2

rad/s, but then rapidly falls off due to the time delay.

On the other hand, the Yft+ey
transfer function of the models that contain one or

two feedforward paths have a much steeper magnitude slope, and more phase lead

compared to the FB model. The effect of lateral feedforward is clear for frequencies

above 1 rad/s, both in magnitude and in phase, as can be seen from comparing the
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LFF model to the FB model and the RLFF model to the RFF model. The effect of roll

feedforward (compare RFF to FB) is less clear, and only affects the magnitude and
phase above 5 rad/s. The effect of the two feedforward paths on the Yft+ey

transfer

function compared to the FB model is a steeper magnitude slope and a more pos-

itive phase. It is important to note that the absolute magnitude and phase values
depend on the chosen model parameter values, but that the differences between the

different models remain the same.
The second observation to be made from Fig. 3.8 is that the estimates of the

Yft+ey
transfer function estimated from simulated data with our proposed identifi-

cation method are almost identical to the corresponding theoretical solutions. This
shows that the ARX method is very successful in estimating the underlying dynam-

ics for a noise free simulation and also serves as a check on the derivations made
earlier in this section.

Obviously, the data to be measured in a human-in-the-loop experiment will con-

tain human remnant and therefore simulations including simulated human rem-
nant were also performed. The simulated remnant is obtained by filtering a white

noise signal with a third-order low-pass filter and adding this signal to the control

signal u during the simulation. The white noise filter is defined as in Eq. 3.20, with
ωn = 12.7 rad/s and ζn = 0.26, based on [Zaal et al., 2009c].

Hn(s) =
Knω3

n

(s2 + 2ζnωns + ω2
n)(s + ωn)

3.20

The gain Kn was set to 0.2, such that the variance of the remnant signal was approx-

imately 15% of the variance of the total control signal u.

Fig. 3.9 shows the estimated Yft+ey
transfer function of 20 individual simula-

tions with simulated remnant for each of the four model settings with a thin, light

colored line and the average of those 20 simulations with a thick, darker colored

line. The figure shows that the estimated frequency responses of Yft+ey
are not ex-

actly identical to the theoretical solutions due to the remnant, especially at higher

frequencies. The important features of the Yft+ey
dynamics, that enables one to dis-

tinguish one parameter set from the other are, however, still clearly visible. That

is, the models that contain either roll, lateral or both feedforward paths still have a

much steeper magnitude curve at frequencies above 1 rad/s and a clearly positive
phase until 10 rad/s. Hence, we conclude that despite human remnant it is possi-

ble to distinguish purely feedback control behavior from behavior that also involves
feedforward control strategies.

3.6 Experiment

3.6.1 Method

To collect measurements of human pilots performing a lateral reposition task, a

human-in-the-loop experiment was conducted.
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Apparatus

The experiment was performed on the MPI CyberMotion Simulator (CMS) at the

Max Planck Institute for Biological Cybernetics [Teufel et al., 2007]. The CMS is
a motion simulator based on an anthropomorphic robot manufactured by KUKA

Roboter GmbH. Recently, two major developments on the CMS were completed
such that the current design differs significantly from that described in [Teufel et

al., 2007]. First, a completely enclosed cabin to be used as subject station was de-

veloped containing a wide field-of-view visualization system. Secondly, the entire
anthropomorphic robot was placed on a 9.6 m long linear axis, allowing for a very

large lateral or longitudinal motion space (depending on the robot orientation), see
Fig. 3.10.

Figure 3.10: The MPI CyberMotion Simulator on a linear axis and with the enclosed pilot
station at the end of the anthropomorphic robot arm.

The roll motion was presented as pure roll motion (no washout) with a motion
gain of 0.5 using the rotational joint closest to the pilot cabin [Teufel et al., 2007].

The lateral motion was presented as pure lateral motion (no washout) with a motion
gain of 0.06 using the linear axis, to scale down the large lateral motion (400 ft or

121.9 m) of the lateral reposition to the available lateral motion space of 9.6 m.

Subjects used the left/right axis of an electrical control loaded helicopter cyclic

stick (Wittenstein Aerocontroller) to give control inputs. Subjects experienced a
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stiffness of 32 N rad−1, a damping force of 2.14 N s rad−1 and a mass of 0.4 N

s2 rad−1, at the hand contact point located 35 cm above the point of rotation. The
maximum lateral stick deflection was ± 17 deg, the longitudinal axis of the stick

was locked. The stick gain was set to 3, such that u equaled three times the stick

deflection in radians.
The visuals were generated by the game development system Unity [Unity Tech-

nologies, 2013] version 4.0.0f7 and represented the ADS-33 lateral reposition setting
as provided in [Anon., 2000], see Fig. 3.11. A clearly visible white circle appeared

Figure 3.11: Experiment visuals.

in the 3D world indicating the current position of the target ft. Another, smaller,

but also clearly visible red circle appeared in the 3D world indicating the current
lateral position of the helicopter y. It was the objective of the subjects to control

the helicopter such that the distance between the two circles was minimized at all
times. Time delay measurements of the visual system were performed throughout

the experiment and were approximately 40 ms.

Forcing functions

The lateral target signal ft was as shown in Fig. 3.1. The onset of each lateral

reposition was made clear to the subjects by means of a timer counting down from
5 to 0 seconds. The countdown text was only visible while counting down and was

placed such that it did not impair the subjects ability to maintain a stable hover, but

was still clearly visible.
The roll disturbance signal fdφ

was a sum-of-sinusoid signal, appearing random

to the human and consisted of eleven sinusoids, as defined in Eq. 3.21 (in radians).

fdφ
(t) = Kdφ

11

∑
k=1

Aφk
sin

(

2π

Tm
nφk

t + ϕφk

)

3.21

In Eq. 3.21, Tm designates the measurement time and is equal to 55 s. Parameters

Aφk
, nφd

and ϕφk
are defined in Table 3.2. Gain Kdφ

scaled the magnitude of the

disturbance signal and was set to 4 to obtain a disturbance signal with a standard
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Table 3.2: Roll disturbance signal fdφ
sinusoid properties.

k nφk
Aφk

ϕφk
k nφk

Aφk
ϕφk

1 3 0.7 3.0164 7 31 0.07 3.0773
2 5 0.7 3.6567 8 41 0.07 2.7997
3 7 0.7 1.6974 9 53 0.07 4.0609
4 11 0.7 4.8099 10 71 0.07 4.4571
5 17 0.07 4.9964 11 87 0.07 4.7418
6 23 0.07 1.1742

deviation of 4 deg. The Power Spectral Density of both the lateral target signal ft

and the roll disturbance signal fdφ
is given in Fig. 3.12, as well as a time history.
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Figure 3.12: The power spectral density and time histories of the roll disturbance signal
fdφ

.

Procedure and independent measures

Subjects performed the lateral reposition task until they reached a plateau in their

performance. Then, 10 measurement runs were recorded for which all analyses are

performed. Task performance was measured by the root-mean-square of ey and
was reported to the subjects after each trial to motivate subjects to perform as good

as possible. The individual tracking runs lasted 60 seconds, of which the last 55
seconds were used as the measurement data. The time traces of all system outputs,

φ and y, the tracking error ey, and the control signal u were recorded.

Subjects

Four subjects participated in the experiment, all males, with an average age of 32
years. One of the subjects was a retired helicopter pilot with approximately 110

flight hours. The other three subjects obtained familiarity with helicopter dynamics

through radio controlled model helicopters and fixed-base helicopter simulators.
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3.6.2 Dependent measures

Performance measures

Both the root-mean-square of the lateral tracking error, RMS(ey), and the maximum

lateral tracking error, max(ey), are calculated from the measured time traces.

Control behavior identification

By means of a Linear Time Invariant ARX model, the frequency responses Yft
and

Yey are identified for each of the ten measured runs of each subject separately. From

these estimates the sum Yft+ey
= Yft

+Yey is calculated. The ten obtained frequency
responses are averaged and compared to Yft+ey

frequency responses obtained from

the model developed in this paper.

The number of free parameters of the ARX identification method will be chosen

such that it is able to capture the relevant dynamics hidden in all the measured data,
without overfitting. More precisely, the number of free parameters is increased

while observing the stability of the estimated ARX models and the quality of the
fit, for each run of each subject. The quality of the ARX model fit on each run is

measured by the Variance Accounted For, defined as:

VAF =

(

1 −
∑

N
k=0 |u(k)− û(k)|2

∑
N
k=0 u(k)2

)

× 100% 3.22

In Eq. 3.22, û is the modeled and u is the measured control signal. As soon as
adding one parameter causes one of the 40 ARX models to become unstable or the

average VAF decreases, calculated over all 40 runs, no more free parameters are
added.

3.6.3 Hypotheses

Given the resulting task performance benefit compared to pure feedback control,

we hypothesize that for the lateral reposition task considered in this paper pilots
will utilize feedforward control. Furthermore, we expect that our proposed ARX

identification method will show that evidence of feedforward behavior can be iden-
tified from experimental data.

3.7 Results

3.7.1 Performance measures

Fig. 3.13 shows the performance of the participants as they performed the experi-

ment runs. Fig. 3.13(a) shows the RMS value of the lateral position error, ey, calcu-

lated over the entire measurement window of 55 seconds for each run. Fig. 3.13(b)
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shows the maximum lateral position error at any time within the measurement

window.

Both figures show that all participants reached a plateau in their performance

after 20 to 30 runs and that there is a clear correspondence between both the perfor-
mance metrics. Performing up to 80 additional runs (participant 2) did not allow

participants to further improve their performance. The figures also show that all

participants showed significant spread in their error scores between runs. Differ-
ences between subsequent runs are sometimes as large as 50 to 100%. This shows

that the task at hand was a difficult task and was sensitive for small control errors
that quickly led to large lateral tracking errors.

Comparing the experimental results of Fig. 3.13(b) with the simulation results of
Fig. 3.6 for Kdφ

= 4 deg, we note that the best human performance (max(ey) = 0.58 m

for subject 1; 0.95 m for subject 2; 0.81 m for subject 3; 0.76 m for subject 4) is better

than the performance of the purely feedback model, the FB model, (max(ey) = 3.0
m) and worse than the RLFF model containing both feedforward paths (max(ey) =

0.28 m).

3.7.2 Time histories

Fig. 3.14 shows the lateral error signals ey of the ten measurement runs of each sub-

ject and the mean of those runs. One can see that all subjects consistently lagged be-

hind the target during the first 5 seconds after the onset of each maneuver (marked
in the figure), despite being informed by the countdown exactly when the target

would start moving. Subjects also consistently overshot the end position of the lat-
eral reposition, although it was very clear from the visual scene where the target

would stop moving.

3.7.3 Identification

Free ARX model parameters

The number of free parameters of the ARX model was increased until the average

quality of fit, measured by the Variance Accounted For and calculated over all ten
runs of all four subjects, decreased due to overfitting. Fig. 3.15 shows the VAF

of each of the ten measurement runs of all four subjects and the average for an

increasing number of free parameters. The figure shows that the maximum average
quality of fit was found for na = 4 and nb = 3. All results presented in the remainder

of this section were calculated for na = 4 and nb = 3.

ARX model fit quality

ARX models were fit to the ten measurement runs of each subject to identify the

control dynamics of the human pilots, which resulted in estimates of Yft
and Yey .

The obtained models were all stable, such that the Variance Accounted For could
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be calculated by Eq. 3.22 for each measurement run, see Fig. 3.16. The mean VAF of

the ARX fits was between 70 and 80%, which shows that the model was successful
in capturing the pilot control dynamics and suggests that the estimates of Yft

and

Yey are a good characterization of the pilot behavior.

ARX model fits

The transfer functions Yft
and Yey identified by means of the ARX method were

added together to obtain Yft+ey
as defined in Eq. 3.19. Fig. 3.17 presents the fre-

quency response functions of Yft+ey
of all ten measurement runs and the average

over all ten runs, for each subject.

The figure shows that Yft+ey
is consistent throughout all the runs for each subject.

This suggests that the behavior of the subjects was constant and that the mean is a

good representation of the data.

Fig. 3.18 shows only the Yft+ey
frequency response averaged over the ten mea-

surement runs, to reduce clutter and improve clarity. Two important observations

can be made from the figure.

First, the estimated dynamics are reasonably consistent across subjects, although

differences exist. The magnitude of Yft+ey
appears to be a gain at low frequencies

for all but one subject. Around 0.5 rad/s the slope of the magnitude curves increase
and becomes steeper than a single differentiator, but not quite as steep as a double

differentiator. At approximately 6 rad/s the slope of the magnitude curve reduces
and above those frequencies the neuromuscular peak can be observed. For most

subjects this peak is located at a slightly lower frequency (around 7 rad/s) than

normally seen in tracking tasks (around 12 rad/s).

The phase of Yft+ey
is close to zero at lower frequencies and gradually increases

to more positive values. Around 3 rad/s the phase peaks slightly above 90 de-

grees and then drops off to lower values. The phase curve is very consistent across
subjects.

The second important observation is that the Yft+ey
curves of the subjects seem

to contain some key characteristics that are also seen in the Yft+ey
curves for the feed-

forward models. That is, the magnitude slope is steeper than a single differentiator

and the phase is clearly well above zero, which is an indication for feedforward
behavior. However, the experimentally measured curves are certainly not a perfect

fit to any of the feedforward model curves, which calls for further research.

3.8 Discussion

In this paper, a helicopter pilot model for a tracking task representative of the

ADS-33 lateral reposition maneuver was developed. The model consists of both a
feedback loop and two feedforward paths, containing the inverse of the helicopter

roll and lateral system dynamics. This model and the results of a pilot-in-the-loop

experiment were used to investigate the two main objectives of this paper, being 1)
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to investigate by means of simulation how the performance of the pilot-helicopter

system depends on the presence of feedforward behavior and 2) to identify from ex-
perimental data whether or not the human pilot indeed employs such feedforward

control techniques.

By means of simulations we showed that the tracking performance depends

strongly on the inclusion of the feedforward paths in a realistic control task. That
is, the performance of the model including both roll and lateral feedforward is one

order of magnitude better than the purely feedback model. Although the absolute
performance of the model depends on the chosen numerical values of the model

parameters, it is interesting to note that the best performance of all subjects in

the experiment was clearly better than the modeled pure feedback performance.
Obviously, a comparison based on a single performance metric is not conclusive

for the underlying pilot behavior, but it does support our motivation to investigate

feedforward behavior in the human pilot. That is, if a simulated pilot model is used
early in the design process to predict the performance level of the helicopter it is

important that the model does not grossly over or underestimate the performance.

Our second objective was to identify the hypothesized feedforward control be-
havior during a human-in-the-loop experiment. We found that it is impossible to

directly identify the hypothesized feedforward behavior. Because the pilot is able

to control on a large amount of input signals seven different control responses are
to be identified; two of them are feedforward elements. Direct identification would

require one to measure the commanded roll signal, φt, which is a signal ‘internal’
to the pilot and can therefore not be measured.

Nieuwenhuizen et al., [2009] solved this problem by additionally presenting a
roll target signal that corresponded to the presented lateral target signal ft and

assuming this additional signal to be identical to the internal roll command. This
assumption, however, only holds in cases where there are no disturbances on the

roll motion and the pilot makes no control errors. As soon as disturbances or errors

are introduced, the pilot will have to decide between tracking the roll angle needed
to correct for lateral errors and tracking the explicitly presented roll target.

In this paper we took a different approach and made use of the fact that the

error feedback and feedforward dynamics can be estimated in a ‘lumped’ form,
designated Yft+ey

, reducing the amount of unknown control elements to five, be-

ing the roll and lateral feedforward elements, the roll and lateral error feedback

elements and the neuromuscular system dynamics. Then, by making assumptions
on the content of three of those control elements based on control theory, human

physiology and previous experiments, evidence for feedforward behavior can be
collected. More precisely, the dynamics of the term Yft+ey

would contain at most

one differentiator and have a zero or negative phase in case of predominantly feed-

back behavior. Estimated dynamics of Yft+ey
containing a steeper magnitude slope
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than one differentiator and a mostly positive phase response would point in the di-

rection of feedforward control behavior. Tests by means of model simulations con-
firmed this approach to be feasible, after which a human-in-the-loop experiment

was performed.

The Yft+ey
dynamics measured from human subjects contain characteristics sim-

ilar to the Yft+ey
curves obtained from the pilot model containing feedforward,

although not as clearly as one might expect. That is, the measured curves are cer-
tainly not a perfect fit to the feedforward model, but do achieve a higher magnitude

slope than a single differentiator and have a clearly more positive phase response

than the purely feedback model. This suggests that our proposed transfer functions
for the feedforward terms are not perfect. We see this as an additional motivation

for further research into helicopter pilot modeling by means of physiologically valid
pilot models and human-in-the-loop experiments.

To put this study into the proper perspective, it is important to note that several

modifications of the original ADS-33 lateral reposition task had to be made in or-
der to measure the pilot control dynamics. The most radical modification is that the

task was changed from a ‘free’ control task into a tracking task, exactly prescribing

the lateral position of the helicopter throughout the entire maneuver. The ADS-
33 specifies the lateral reposition task by prescribing the amount of distance that

needs to be covered by lateral motion within a certain time. Theoretically, the ma-
neuver can be flown in many different ways, but taking into account the stringent

longitudinal, vertical and heading motion requirements the number of ‘acceptable’

maneuver trajectories is strongly reduced. That is, in practice the pilot will attempt
to keep the helicopter within a narrow range of an imaginary reference trajectory

for which all requirements are met at the same time. Therefore, the tracking task is
probably similar, but not exactly the same as the original task and small differences

in control behavior may still be expected.

Additionally, the dynamics of the helicopter were simplified to simple linear
transfer functions neglecting, amongst others, coupling and drag effects. Especially

the roll dynamics were simplified considerably to make the task easier. The roll
dynamics were a single integrator, where more realistic transfer function models

also consider the unstable lateral phugoid, lateral sway damping and roll damp-

ing [Heffley, 1979]. The more complex dynamics would require the pilot to also
generate lead at higher frequencies in the roll loop and continuously stabilize the

unstable lateral phugoid, which would not only make the task more difficult but
would also affect the identification problem.

Based on the presented results and our experience with this experiment we

provide the following recommendations for future research.
First, it is important to better understand the assumptions concerning the er-

ror feedback elements that need to be made to obtain evidence of feedforward
behavior and to validate them by means of human-in-the-loop experiments. This

validation should preferably be done simultaneously to the feedforward identifi-

cation, because due to the adaptive nature of the human it is difficult to assume
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certain control dynamics to remain constant across different control tasks and ex-

periments.
Furthermore, our current approach was to qualitatively compare the overall

‘shape’ of the measured Yft+ey
dynamics to the shape of the Yft+ey

dynamics of the

models. It would be more objective to define a metric by which these dynamics can
be compared quantitatively and to investigate which model parameters affect the

similarity in particular.
Finally, it is important to investigate how the way the task is defined and pre-

sented to the pilots affect their behavior. In this study the task was presented as a

tracking task in order to make use of validated system identification methods, but
this does not exactly represent the ADS-33 certification task.

3.9 Conclusions

This paper investigated helicopter pilot control behavior in a tracking task resem-
bling an ADS-33 lateral reposition task. Based on control theoretical concepts and

knowledge of human physiology and perception, we hypothesized that the inclu-
sion of an inverse system dynamics feedforward path is necessary to obtain an

accurate prediction of helicopter performance. From simulations we conclude that

the performance of the pilot-helicopter system is one order of magnitude better
for a pilot model that includes feedforward action than for a pure feedback pilot

model. It was found that the feedforward control dynamics can not be identified
from experimental data directly, but that indirect evidence can be collected for the

existence of feedforward action, by making reasonable assumptions on the feedback

control behavior. Results from a human-in-the-loop experiment in which four sub-
jects performed the lateral reposition task suggest evidence for the conclusion that

the human pilot utilizes feedforward strategies, but does not result in a complete
pilot model for this task.
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In Part I of the thesis, existing system identification and parameter estima-
tion methods were used to analyze the data collected in human-in-the-loop

experiments. Although these analyses resulted in useful new insights on

feedforward control behavior, they also had several shortcomings. This
chapter systematically investigates and discusses the main three short-

comings and challenges encountered during the initial two studies of the
work. Based on this systematic investigation, a new identification proce-

dure was developed, which is described in the next chapter.
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4.1 Introduction

Manual control of a vehicle often requires the human controller (HC) to steer a dy-

namic system along a reference trajectory, while being perturbed by disturbances.

This target is often visible or to some extend known a priori by the HC. As a result,
the HC might respond to the target in a feedforward fashion, but it is not known

for which control tasks this is true. To obtain insight, we study the HC performing
target-tracking and disturbance-rejection control tasks by means of system identifi-

cation methods.

In many control tasks the path of the vehicle is perturbed by unpredictable dis-

turbances, to which the HC can respond only with a closed-loop feedback control

strategy. That is, the HC compensates for the ‘error’ between the target and the
current vehicle output. The HC might use a purely feedback control strategy for

target-tracking too, but could improve tracking performance considerably by utiliz-
ing an additional feedforward control strategy [Wasicko et al., 1966]. It is of interest

to know when the HC utilizes feedforward and when not.

System identification techniques allow us to objectively measure if and model

how the HC responds to multiple sources of information. The identification of HC

control dynamics, with a focus on feedforward detection and modeling, involves
three important challenges.

First, most system identification methods require the user to make assumptions
regarding the model structure and/or dynamics. The results of such analyses are

thus dependent on the subjective choices of the researcher. In this paper, we will

utilize black-box linear time invariant (LTI) autoregressive with exogenous input
(ARX) models, that do not require any assumptions regarding model structure or

parametrization.

Second, data measured in human-in-the-loop experiments involve relatively

high levels of noise [Zaal et al., 2009a] and measurements need to be taken under
closed-loop feedback conditions. The combination of both can severely complicate

identification [Van den Hof, 1998]. If a closed-loop feedback path is present, noise

in the output signal will appear (through the feedback path) in one or more input
signals. The correlation between the input signal and the output noise can cause

the estimate of the HC to be biased, in this case towards the inverse of the sys-
tem dynamics. Several identification methods exist that explicitly deal with such

closed-loop issues. In this paper, we will compare the indirect two-stage method of

Van den Hof and Schrama, [1993] against the classical direct method [Ljung, 1999],
that does not account for any closed-loop issues explicitly. We expect the indirect

method to perform better.

Third, a model that includes a feedforward path in addition to a feedback path

generally has more parameters and thus more degrees of freedom. For that reason
alone the feedforward model potentially describes the data better than a purely

feedback model, even if a real feedforward strategy was not present. Thus, if

the ‘best’ model is selected based on the quality of the fit alone, a false-positive
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feedforward identification is possible. One, of many, methods to prevent model

over-parametrization is the use of a model selection criterion, such as the Akaike
Information Criterion (AIC, [Akaike, 1974]) or the Bayesian Information Criterion

(BIC, [Schwarz, 1978]). These criteria explicitly take into account model complex-

ity when selecting the ‘best’ model, but apply different penalties to the number of
model parameters.

In this paper, we will explore these three issues through computer simulations
with a fixed and known HC model, and compare the identified dynamics to the

ground truth. Output noise will be present to model the human remnant. Both the
direct and the indirect identification methods are applied to data generated by two

different HC models, based on earlier experimental data. First, a pure feedback

HC model is used to investigate false-positive feedforward identification. Second,
a combined feedforward-feedback HC model is used to investigate the accuracy of

the obtained estimates of the multi-loop HC model. Three metrics of model quality
are considered: 1) the mean square error is used by the model selection criterion,

2) the Variance Accounted For (VAF) to assess time domain quality of fit, and 3)

the absolute error in magnitude and phase as a function of frequency to assess the
identifiability of specific model dynamics.

The paper is structured as follows. First, the target-tracking and disturbance-
rejection control task is introduced in Section 4.2 followed by a description of the

HC model. Then, the two identification methods and model selection criteria are
discussed in Section 4.3. The computer simulation details are described in Sec-

tion 4.4 followed by the results in Section 4.5. The paper ends with conclusions and

recommendations for future work.

4.2 Control Task and HC Model

4.2.1 Control Task

This paper focuses on the identification of human control behavior in a combined

target-tracking and disturbance-rejection task, with a predictable target signal and
an unpredictable disturbance signal, see Fig. 4.1. The HC perceives the target signal

ft, the system output θ perturbed by fd and the tracking error e = ft − θ from a

pursuit display [Wasicko et al., 1966]. The HC generates a control signal u to steer
the system with dynamics Yc such that θ accurately follows ft, thereby minimizing

e. An example is an aircraft pitch attitude tracking task where ft is the intended
pitch attitude and θ the actual pitch attitude.

The target signal to be tracked is composed of constant acceleration-deceleration
parabola segments, see Fig. 4.2, representative for a realistic control task. Each

parabola segment consists of a constant acceleration phase, directly followed by a
constant deceleration phase, of identical duration and magnitude. The parabola

segments resemble a rapid change in pitch attitude, performed in minimum time

within the pitch acceleration limits of the aircraft. The unpredictable disturbance
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Figure 4.1: Control scheme studied here.

signal fd consists of a sum of ten sines, with the lowest frequency at 0.23 rad/s and

the highest frequency at 17.33 rad/s, and is identical to the one used in [Drop et al.,

2013].
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Figure 4.2: Control task target and disturbance signals. Note that fd is scaled by 300% for
clarity in this plot.

The system dynamics Yc are second-order dynamics:

Yc(s) =
Kcωb

s (s + ωb)
, 4.1

with Kc = 2.75 and ωb = 2. Dynamics of this form can represent a wide array of
vehicle dynamics.

4.2.2 HC Model

Highly predictable target signals such as the parabola signal considered here might

invoke feedforward control behavior in the HC, in addition to a closed-loop feed-
back component, see the HC model in Fig. 4.3 [Drop et al., 2013; Laurense et al.,

2015]. The ideal feedforward response is equal to the inverse of Yc, such that
u(s) = ft(s)/Yc(s) and subsequently θ(s) = Yc(s) · ft(s) / Yc(s) = ft(s), which

results in e = 0. A feedback component is still necessary even if the HC were able

to perform perfect feedforward control on ft, to attenuate the disturbances by fd.
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The feedforward path Ypt is modeled according to the Inverse Feedforward Model

of [Laurense et al., 2015]:

Ypt(s) = Kpt

1

Yc(s)

1

(TIs + 1)2
e−sτpt , 4.2

where the gain Kpt , the second-order filter parametrized by TI and the feedforward
time delay τpt are included to model imperfections in the human feedforward con-

trol.

The feedback path Ype is described as:

Ype(s) = Kpe(TLs + 1)e−sτpe , 4.3

with Kpe the feedback gain, TL the lead time and τpe the feedback path time delay
[McRuer and Jex, 1967].

The neuromuscular system (NMS) is described by:

Ynms(s) =
ω2

nms

s2 + 2ζnmsωnmss + ω2
nms

, 4.4

with ωnms and ζnms the natural frequency and damping, respectively [McRuer et al.,

1968b].
Human nonlinearities and output noise are modeled by the remnant signal n,

which is modeled as white noise filtered by [Zaal et al., 2009a]:

Yn(s) =
Knω3

n

(s2 + 2ζnωns + ω2
n) (s + ωn)

, 4.5

with ωn = 12.7 rad/s and ζn = 0.26 [Zaal et al., 2009a]. Kn was chosen such that

σ2
n/σ2

u = 0.15 in a disturbance-rejection only tracking task ( ft = 0) and fd as in
Fig. 4.2.

4.3 Identification methods

4.3.1 ARX model estimation

Both the direct and indirect HC identification methods considered in this paper uti-

lize multi-input-single-output (MISO) ARX models for identification [Ljung, 1999],
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see Fig. 4.4. Signals i1 and i2 are the two input signals, and o is the output signal

to be modeled. The input and output signals last 81.92 s and are sampled at 25 Hz,
such that each signal consists of 2048 samples. The subscript m used throughout

this section denotes signals measured under closed-loop conditions, either from

computer simulations (here) or from a human-in-the-loop experiment.

B1

(

q; nb1

)

/A (q; na)

B2

(

q; nb2

)

/A (q; na)

1
A(q;na)

i1
(

k − nk1

)

i2
(

k − nk2

)

ǫ(k)

o(k)
+

Figure 4.4: Generic ARX model structure.

The ARX model is described by the discrete-time difference equation in (4.6),

with k the discrete time samples:

A(q; na)o(k) = B1(q; nb1
)i1(k − nk1

)+

B2(q; nb2
)i2(k − nk2

) + ǫ(k)
4.6

Here, ǫ is a white noise signal and q is the discrete time shift operator. Polynomials
A, B1, and B2 are defined as:

A(q; na) = 1 + a1q−1 + . . . + ana q−na

B1(q; nb1
) = b1,1 + b1,2q−1 + . . . + b1,nb1

q

(

−nb1
+1
)

B2(q; nb2
) = b2,1 + b2,2q−1 + . . . + b2,nb2

q(−nb2
+1)

4.7

Each ARX model is defined by three model orders: the number of parameters in

the A polynomial na, the B1 polynomial nb1
, and the B2 polynomial nb2

. For each
of the two input signals a delay parameter also needs to be set: nk1

, and nk2
. The

model orders and delay parameters are not known a priori; in both methods many
candidate models are evaluated and the best model is chosen by means of a model

selection criterion.

The ARX models are estimated on a subset of the available time traces: the
estimation data set, ranging from ke,s to ke,e, such that Ne = ke,e − ke,s + 1 samples are

used to fit the models. After estimation, each ARX model is evaluated by simulating
the input signals through the estimated ARX model over all samples to obtain ô:

the modeled estimate of the true output signal o. The model quality is calculated

over a subset of the available time traces: the validation data set, ranging from kv,s to
kv,e:

V =
1

Nv

kv,e

∑
k=kv,s

(ôm(k)− o(k))2 , 4.8
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with Nv = kv,e − kv,s + 1 the number of samples used to measure model quality.

In all identification steps of the direct and indirect methods, the target signal ft

is shifted forward in time by 1 s, to account for possible anticipatory feedforward

control, i.e., negative HC delays in the feedforward response. To obtain the true

time delay in the path associated with ft, one should substract 25 samples from the
estimated nk ft

.

4.3.2 Indirect two-stage method

The indirect two-stage method of [Van den Hof and Schrama, 1993] involves two

identification steps. In stage 1, a high-order model is used to obtain an accurate,

noise-free estimate er of the tracking signal em for use in stage 2. The forcing func-
tions ft and fd are used as inputs i1 and i2, respectively, and the tracking error

signal em as output o. Thus, in stage 1 all inputs are uncorrelated with the output
noise and closed-loop effects do not play a role.

It was found that in stage 1 one cannot use just any high-order ARX model,

because not all model order and delay parameter combinations result in a stable
ARX model. Therefore, a range of ARX model orders is considered, see Table 4.1,

and the ‘best’ model is the one with minimum V. In stage 1, ke,s = 1, ke,e = 2048,
kv,s = 1, and kv,e = 2048, i.e., all data is used for both estimation and validation.

In stage 2, a direct estimation is performed with i1 = ft, i2 = er, and o = um.

Here, the input signal er is not correlated with output noise in um and closed-loop
effects should not play a role. In stage 2, ke,s = 129, ke,e = 1088, kv,s = 1089, and

kv,e = 2048.

The range of evaluated model orders and delay parameters is given in Table 4.1.
Bounds of stage 1 and 2 were chosen such that the selected model orders did not

‘hit’ these bounds with a margin of at least 2. For stage 1, however, it was not
possible to choose the bounds of nb ft

following this rule, because model selection

is based on V only. It was found that the lowest V is always obtained by the model

with the maximum value of nb ft
. Therefore, a very large value (25) was chosen as

upper bound of nb ft
.

Table 4.1: ARX model order ranges.

na nb ft
nbe

nk ft
nke

Indirect stage 1 [1..10] [0..25] [0..10] [1..5] [1..5]

Direct and indi-
rect stage 2

[1..7] [0..7] [0..7] [1..50] [1..10]

4.3.3 Direct method

The direct method involves one identification step only, with i1 = ft, i2 = em, and

o = um. The direct method does not explicitly deal with closed-loop effects, and
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assumes that measurements were in fact taken in an open-loop experiment. Each

ARX model is fit on the data from ke,s = 129 to ke,e = 1088, to be consistent with
the indirect method. Model quality is evaluated over the data from kv,s = 1089 to

kv,e = 2048.

The large range of evaluated nk ft
delay parameters in the direct method and in

step 2 of the indirect method, see Table 4.1, is a result of shifting the target signal

forward in time to account for anticipatory feedforward control.

4.3.4 Model selection

A model selection criterion is used to select the ‘best’ model from the set of con-

sidered models. Model selection criteria (MSC) make a trade off between model
quality measured by V, and model complexity measured by the number of model

parameters d, penalized by a factor W:

MSC = log V +Wd 4.9

For the AIC WAIC = 2/N f , and for the BIC WBIC = log(N f )/N f . Here, we will

present results as a function of W to investigate the effect of utilizing a particular
criterion or penalty value on model quality and complexity. The number of param-

eters d is the sum of na, nb ft
, and nbe

, plus the total number of delays in the model,

which is equal to the number of responses with nb > 0.

4.4 Computer Simulations

Computer simulations are performed utilizing the HC model of Section 4.2.2 with

two sets of model parameter values, referred to here as ‘models’, see Table 4.2. First,
the purely feedback model (FB) is used to investigate false-positive feedforward

identification. The feedforward gain Kpt is set to zero; only feedback control is
present. Second, simulations with the feedforward model (FF) with parameter val-

ues representative for this control task [Laurense et al., 2015] are performed to

investigate the methods’ ability to identify the feedforward-feedback multi-loop
model structure and dynamics. The feedforward gain Kpt is set to 0.8, which is a

‘conservative’ value: a slightly larger value, closer to the ideal value of 1, was esti-
mated from experimental data [Drop et al., 2013; Laurense et al., 2015]. For both

models, ωnms = 10.1 rad/s and ζnms = 0.35.

Table 4.2: Model parameters values.

Kpt TI τpt Kpe TL τpe RMS(e)
- s s - s s deg

FB 0 - - 0.75 0.4 0.24 2.43
FF 0.8 0.25 0.35 0.75 0.4 0.24 1.22
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The RMS(e) reflects the performance level of each model for this control task, see

Table 4.2. The RMS(e) of the FF model is around 50% of the FB model, illustrating
the potential performance improvement of utilizing feedforward control [Wasicko

et al., 1966; Drop et al., 2013].

Each model is simulated for fifty different realizations of the signal n. Both
identification methods are applied to each realization.

4.5 Results

4.5.1 Model fit quality

The model fit quality of the selected models is assessed here by means of the Vari-

ance Accounted For (VAF):

VAF =



1 −
∑

kee
k=kes

(um(k)− ûm(k))
2

∑
kee
k=kes

ûm(k)2



× 100% 4.10

Note that the VAF is different from V, but more intuitive to interpret.
Fig. 4.5(a) depicts the VAF obtained for all models with both methods, averaged

over all remnant realizations, as a function of W. Errorbars depict one standard

deviation. For W < 0.1 the VAF is approximately constant and close to 98% for all
conditions, which illustrates that the models obtained from both methods describe

the data very well. The VAF is always higher for the direct method (D) than for the
indirect method (I), for both models.
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Figure 4.5: Model fit quality as a function of W. Vertical dashed lines mark the value of W
for AIC and BIC.

Fig. 4.5(b) shows the VAF for much larger values of W; note the ordinate axis
scaling. The VAF reduces dramatically for W > 0.5, albeit at different values for

different conditions, suggesting that model complexity was penalized too much

and important dynamics were left out.
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4.5.2 False-positives and false-negatives

Fig. 4.6 shows the number of parameters in the feedforward path nb ft
of the selected

ARX models, averaged over all remnant realizations, as a function of W. To describe
the low-frequency feedforward response (the inverse of Yc, which is equal to a

differentiator) nb ft
should be ≥ 2.

False-negatives

False-

positives

BIC

AIC

FF, D

FF, I

FB, D

FB, I

W , -

n̄
b

f t
,

-

10−3 10−2 10−1 100

0

1

2

3

4

Figure 4.6: n̄b ft
as a function of W.

For the FB model nb ft
should be 0; any non-zero result is a false-positive feed-

forward identification. For the direct method, false-positives are found up to W <

1.2 × 10−2, but for the indirect method up to a much higher value: 3.7 × 10−2. The
penalty that would be imposed by both the AIC and BIC is too small to prevent

false-positives, and thus both model selection criteria are unsuited.

For the FF model n̄b ft
≥ 2 up to W < 2.6 × 10−1 for both the direct and indi-

rect method. n̄b ft
rapidly decreases to zero for larger values of W, these are false-

negative results: feedforward is present in the true model, but not in the identified

model.

4.5.3 Frequency response of identified models

Fig. 4.7 shows the frequency responses of the identified models for all remnant

realizations, selected for W = WBIC, compared to the true FB dynamics. Vertical
dashed lines mark the lowest and highest frequency component in fd, outside this

region inaccurate estimates are expected.

Fig. 4.7(a) shows the false-positive feedforward results, compared to the true feed-

forward response of FF, but with Kpt = 0.2. The magnitude response of these false-

positives resemble the FF feedforward dynamics very well, albeit with a rather
small static gain. This nevertheless increases the likelihood of falsely interpreting

such results as a ‘real’ feedforward identification. The phase response is 180 de-
grees different from the FF feedforward dynamics, by which false-positive results

could be recognized. Note, however, that this statement relies on knowledge of the

true model, which is not known for a real human controller.
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The identified feedback dynamics, see Fig. 4.7(b), resemble the true FB dynamics

very well. At higher frequencies, some responses rapidly increase in magnitude to
fit the noise. Surprisingly, also models identified by the indirect method suffer from

this effect.

Fig. 4.8(a) shows that for the FF model, the identified feedforward dynamics
resemble the true FF dynamics very well for ω < 3 rad/s. Above 3 rad/s the

identified responses show a neuromuscular peak, although these dynamics are not
present in the true model’s feedforward path. The apparent identification of NMS

dynamics is caused by the denominator polynomial A, that is shared by the feed-

forward and feedback paths (see Fig. 4.4). The identified feedback dynamics of the
FF model, see Fig. 4.8(b), are very similar to the true dynamics.

4.5.4 False-negative feedforward results

Upon closer inspection of Fig. 4.5(b) and Fig. 4.6 for the FF model, it becomes
clear that for 0.4 < W < 1 models without a feedforward path are selected, that

nevertheless provide a VAF similar to the VAF of models with a feedforward path

(selected for W < 0.1). Fig. 4.9 reveals that models selected for 0.4 < W < 1
contain a feedback path that partly describes the feedforward dynamics. That is,

the feedback dynamics are a leaky integrator at low frequencies, whereas the true

feedback dynamics are a gain at low frequencies. This leaky integrator integrates
the steady-state tracking error during the parabola segments, thereby generating a

control signal that is similar to the real control signal [Drop et al., 2013].

To conclude, models exist with very different dynamics from the true dynamics

that nevertheless describe the data with high accuracy. This clearly demonstrates
the importance of choosing the correct value for W when analyzing experimental

human-in-the-loop data for which the true model is not known.

4.5.5 Comparison between direct and indirect methods

To compare the direct and indirect methods, we compute two error metrics between
the identified dynamics and the true dynamics. The absolute error in magnitude

εmagnitude and the absolute error in phase εphase is calculated as:

εmagnitude(jω) = ||Ybest
p (jω)| − |Y

hyp
p (jω)|| 4.11

εphase(jω) = | 6 Ybest
p (jω)− 6 Y

hyp
p (jω)| 4.12

Fig. 4.10 shows the mean and maximum values of these metrics, taken over all

50 realizations, for the FF model. Fig. 4.10(a) shows that the direct method provides
a better estimate of the true feedforward dynamics than the indirect method, for

ω < 8 rad/s. For instance, at low frequencies the error averaged over all remnant

realizations in both magnitude and phase is smaller; and the maximum error is
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|Ŷ
b

es
t

p
e

|,
-

10−1 100 101 102

10−1 100 101 102

-360

-270

-180

-90

0

10−2

10−1

100

101

102

(b) Feedback.

Figure 4.7: Bode plot of the feedforward and feedback paths of the selected models for the
FB model, W = WBIC.
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Figure 4.8: Bode plot of the feedforward and feedback paths of the selected models for the
FF model, W = WBIC.
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Figure 4.9: Bode plot of the feedback path of the selected ARX models for the FF model,
W = 0.47.

smaller too. Both methods perform worse at higher frequencies than at low fre-

quencies, caused by the appearance of a neuromuscular peak in the ARX model
which is not present in the true model. The indirect method provides a slightly

smaller error at certain higher frequencies.
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Figure 4.10: The average and maximum error in magnitude and phase between the esti-
mated and true dynamics for W = WBIC.

Fig. 4.10(b) shows that the direct method also provides a smaller average error

for the feedback dynamics for ω < 7 rad/s for the FF model. The same is true for

the feedback dynamics of the FB model (not shown).
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Note that for W = WBIC the models identified by the indirect method are gener-

ally more complex than those identified by the direct methods, see Fig. 4.6. Hence,
one would expect the results of the indirect method to be more accurate, but the

opposite is true.

4.6 Conclusions

This paper evaluated a direct and an indirect identification method for identifying

the feedforward and feedback control dynamics of the HC from closed-loop mea-

surements. The ‘best’ of all possible models was chosen by means of a model se-
lection criterion that makes an explicit trade-off between model quality and model

complexity.
We conclude that 1) both methods identify models with dynamics similar to the

true dynamics, but that 2) the direct method provides more accurate estimates in

the frequency range of interest. We demonstrated the occurence of false-positive
and false-negative results, and conclude that 3) the AIC and BIC model selection

criteria do not prevent false-positive feedforward identification.
We suggest two methods, to be investigated further in future research, to deal

with the issue of possible false-positive results. First, the correct value of the model

complexity penalty parameter is obtained from computer simulations for which
the true model is known and highly similar to the expected HC control dynamics.

Second, the identification results of experimental human-in-the-loop data will be
analyzed as a function of the model complexity penalty parameter, to make the

model selection more insightful and objective to the reader.
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In Part I of the thesis, existing system identification and parameter esti-

mation methods were used to analyze the data collected in human-in-the-
loop experiments. Although these analyses resulted in useful new insights

on feedforward control behavior, they also had several shortcomings. The
previous chapter systematically investigated these shortcomings. This

chapter presents a novel identification procedure that explicitly addresses

these shortcomings. The procedure was used extensively in the subse-
quent work presented in Part III of this thesis.
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5.1 Introduction

Manual control of a dynamic system typically requires the human controller (HC)

to steer that system, perturbed by disturbances, along a reference trajectory. An
example is the manual control of an aircraft during turns and landings, in the

presence of turbulence. The HC will use all available information and knowledge,
i.e., visual, vestibular, and somatosensory information as well as prior experience,

to improve control performance and reduce effort [McRuer et al., 1965; Boer and

Kenyon, 1998; Hess et al., 2012; Potter and Singhose, 2013; Van der El et al., 2015].

In many everyday control situations the reference trajectory or target signal has a

simple and predictable waveform. Evidence exists that in this case the HC employs
a feedforward control strategy, as it can considerably improve tracking performance,

without affecting closed-loop stability [Krendel and McRuer, 1960; Wasicko et al.,
1966; Magdaleno et al., 1969]. Feedforward control plays an essential role in many

neurophysiological processes as well [Bastian, 2006; Nagengast et al., 2009; Franklin

et al., 2012; Nasseroleslami et al., 2014].

Although feedforward control strategies were frequently hypothesized [Krendel
and McRuer, 1960; McRuer et al., 1965; Wasicko et al., 1966; McRuer and Jex, 1967;

Magdaleno et al., 1969; Hess, 1981] and some empirical evidence was provided

[Pew et al., 1967; Yamashita, 1990], it was only until recently that feedforward
control was studied by means of system identification and parameter estimation

techniques [Drop et al., 2013; Yu et al., 2014; Laurense et al., 2015] with the goal of
modeling the feedforward in detail.

System identification techniques allow us to experimentally measure if, and
mathematically model how the HC responds to multiple sources of information.

Many of the common techniques [McRuer et al., 1965; McRuer and Jex, 1967; Shin-

ners, 1974; Van Lunteren, 1979; Osafo-Charles et al., 1980; Abdel-Malek and Mar-
marelis, 1988; Van Paassen and Mulder, 1998; Nieuwenhuizen et al., 2008; Zaal

et al., 2009c], however, were not designed to identify the feedforward response in
addition to the, relatively well-known, feedback response.

The main problem is that, given a particular manual control task, it is often not
known a priori whether the HC will exert feedforward control, or not. Adding a

feedforward path to the HC model adds degrees of freedom in the model (more
parameters) that the identification method can use to obtain a better fit. When the

model selection is only based on the ‘best’ quality of fit, the identification proce-

dure is likely to be biased towards selecting more complex models. The choice for
including a feedforward path might be a ‘false-positive’ result. A secondary prob-

lem is that it is often unknown how the human feedforward and feedback paths
should be modeled. Although basic control-theoretical insights provide a good

initial guess, prior assumptions on the feedforward dynamics cannot be based on

previous experimental results, because hardly any literature exists on the subject.
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It is the goal of this paper to address and resolve these two issues, and de-

scribe an objective identification procedure to simultaneously identify the HC feed-
forward and feedback control responses. To address the first issue, the procedure

selects the best model based on a trade-off between model complexity (the model or-

der) and the model quality-of-fit. To address the second issue, it uses unconstrained
linear models which allows the selection of the best global model available.

In short, the proposed identification procedure will identify many different lin-

ear time invariant (LTI) autoregressive with exogenous input (ARX) models [Ljung,

1999]. The models vary in the model structure (pure feedback and combined
feedback-feedforward response models are considered), and in the number of model

parameters (model order). A model selection criterion, derived from the Bayesian
Information Criterion (BIC) [Schwarz, 1978; Ljung, 1999] is used to choose the best

model. It decides on the model order and whether a feedforward component is

needed, or not, to describe the data. This differs from previous ARX estimation
procedures, where no explicit model order selection step was used [Shinners, 1974;

Osafo-Charles et al., 1980; Abdel-Malek and Marmarelis, 1988; Nieuwenhuizen et
al., 2008]

The functionality of the proposed procedure is assessed by means of computer

simulations, because it is necessary to know the true model to assess the ability

of the procedure to identify the true dynamics. It is found that the original BIC
does not weigh the model complexity enough, such that ‘false-positive’ feedforward

identification occurs frequently. This problem is addressed by altering the relative

weighting of model quality and model complexity in the model selection criterion,
by the introduction of a ‘model complexity penalty parameter’ in the selection cri-

terion as suggested by Ljung, [1999]. The weighting is tuned by means of offline
Monte Carlo simulations with a HC model based on literature. The procedure is

applied to experimental data in a future paper.

The paper is structured as follows. Section 5.2 provides an overview of the

identification problem, our workflow and proposed procedure. Sections 5.3 and 5.4
describe in more detail the individual steps in the procedure. Sections 5.5 to 5.7

discuss the results of applying the procedure to a comprehensive example, involv-
ing four typical manual control tasks. The paper concludes with a discussion and

conclusions.

5.2 Identification Problem and Approach

Section 5.2 introduces the general identification problem and provides an overview

of the steps in the procedure. Section 5.3 and 5.4 describe ARX model identification

and our tuning of the model selection criterion, respectively, in detail.
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5.2.1 Identification problem and objectives

This paper focuses on the identification of human control behavior in a combined
target-tracking and disturbance-rejection task, with predictable target signals and

unpredictable disturbances. Here, the task resembles an aircraft pitch attitude con-
trol task. Fig. 5.1 illustrates the task: the HC controls a dynamic system Yc such that

the output θ (perturbed by disturbance fd) accurately follows the target ft. Thus,

the error e, defined as e = ft − θ, is minimized. The target ft and disturbance fd

signals are referred to as forcing functions.

Yp(s), human

controller
dynamics

Yc(s)
+

−

+
+ft e u

fd

θ

Figure 5.1: Control scheme studied here. The HC perceives the target signal ft, the per-
turbed system output θ and the error e from a pursuit display and generates control signal
u.

System identification and parameter estimation methods are used to address
four objectives: O.1) to identify the signals to which the HC responds in a particular

task; these are the input signals of the HC model; O.2) to identify the governing
HC dynamics, in the frequency range where they contribute most to the model

output signal u; O.3) to obtain a precise and physically meaningful parametrization

of the HC model; and O.4) to quantify changes in those dynamics as a function
of control task variables. A single method suitable for all four objectives does not

exist. These four objectives should be addressed sequentially by specific methods
and the results of one step are necessary for the next. However, previous studies

into manual feedforward addressed O.4 directly, relying on models derived from

control theoretical insights rather than system identification results [Drop et al.,
2013; Laurense et al., 2015].

The objective of the procedure described here is to simultaneously address O.1
and O.2, providing the insights necessary to parametrize the model (O.3). The

procedure does not aim to address O.4; existing parameter estimation methods

work satisfactory and are currently not limiting manual control research [Zaal et
al., 2009c]. Objectives O.1 and O.2 involve five challenges.

First, the HC is presented with three signals on a pursuit display, Fig. 5.2: ft, e
and θ, and can respond to all three (but possibly also to two, or even just one). Be-

cause of the linear relationship e = ft − θ, however, only the responses to two input
signals can be identified [Wasicko et al., 1966]. The two responses to be identified

can be chosen freely; all choices are equivalent from an identification point of view.

For this particular control task, we choose to identify the feedforward response on
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e

θ
ft

Figure 5.2: Pursuit display for aircraft pitch control. The horizontal black line indicates the
target pitch attitude ft, the aircraft symbol indicates the current pitch attitude θ, and thus
the vertical distance between the target and the aircraft symbol is the error e. The display
only shows the current values of the signals; no past/preview information is available.

the target ft and the feedback response on the error e. A feedforward and feedback
model likely reflects the actual control strategy best, as we consider predictable tar-

get signals [Drop et al., 2013]. Other control tasks may require a different choice of
possible HC responses.

Second, the HC is a highly adaptive, nonlinear controller and will change the

control strategy to the characteristics of Yc and the properties of the forcing func-

tions ft and fd. Therefore, the HC response needs to be measured in a control task
very similar to the task for which the identified model will be used, and the identi-

fication procedure should be compatible with the chosen forcing functions and sys-

tem dynamics. Realistic control tasks often involve ramp or parabola-like reference
signals, which have power at all frequencies. This renders non-parametric tech-

niques that rely on the excitation of the HC at discrete frequencies useless [McRuer
and Jex, 1967; Van Paassen and Mulder, 1998]. Hence, the procedure introduced

here is based on multi-input, single-output (MISO) linear time-invariant (LTI) ARX

models[Ljung, 1999] that pose less stringent requirements on forcing function prop-
erties.

Third, a relatively large portion of the HC control signal is not (linearly) corre-

lated to any of the input signals presented to the HC, and thus cannot be described
by a linear model. This modeling residual, designated n, is human remnant and con-

sists of the unmodeled nonlinear dynamics and random noise. The remnant level

(expressed as the variance of the remnant over the variance of the control signal,
σ2

n/σ2
u) is usually large, up to 30% [Zaal et al., 2009c], and is a key complicating

factor in the identification of small, yet relevant control dynamics. To reduce the
remnant level, experimental data is averaged over multiple recordings before it is

further analyzed.

Fourth, the use of MISO LTI ARX models for identification purposes requires

the user to choose the appropriate number of model parameters (the model order),
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Figure 5.3: Workflow of the procedure proposed in this paper. Circled numbers denote outputs of the steps. 1} ft, fd, Yc, and remnant
power σ2

n/σ2
u. 2} em, um. 3} Set of Ŷp with corresponding ûm. 4} Ŷbest

p , ûbest
m . 5} Increase/decrease model complexity weighting. 6}

Yes: phase 2, human-in-the-loop experiment, can commence. 7} No: make changes to control task or experimental paradigm, go back
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Table 5.1: HC model structure and parameter values used in simulations, unless noted otherwise

Y
hyp
pt (s) Kpt TI , s τpt , s Y

hyp
pe (s) Kpe TL, s τpe , s ωnms, rad/s ζnms

SI Kpt

1

YSI
c (s)

1

(TIs + 1)
e−τpt s 1 0.28 0.2 Kpe e

−τpe s 2.3 - 0.21 12 0.2

DI Kpt

1

YDI
c (s)

1

(TIs + 1)2
e−τpt s 1 0.35 0.45 Kpe (TLs + 1) e−τpe s 0.45 1.25 0.28 9.5 0.27
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and the time delay for each of the model inputs. In the proposed identification

procedure we will use a model selection criterion derived from the Bayesian In-
formation Criterion (BIC) [Schwarz, 1978] to objectively determine the model or-

der and time delay values. The model selection criterion must prevent overfitting,

the selection of a model with too many (meaningless) parameters. It takes into
account both the model quality, the goodness of the model fit, and the model com-

plexity, the model order, in the choice for the ‘best’ model. Although the primary
objective of the model selection criterion is to prevent overfitting, by putting a cer-

tain weight on model complexity, it is equally important to prevent underfitting

by putting too much weight on model complexity. Our procedure will explicitly
address this weighting.

Fifth, all measurements need to be taken in closed-loop. This causes the tracking
error e (one of the model inputs) to be correlated with the noise (human remnant)

present in the control signal u (the model output). That is, apart from the ‘forward’
relationship between e and u (that is to be identified), an additional correlation ex-

ists, equal to −1/Yc, due to the closed-loop feedback McRuer and Krendel, [1974,

pp. 19], [Van den Hof, 1998]. At frequencies where remnant is larger than the dis-
turbance signal this correlation −1/Yc might be identified [Van Lunteren, 1979]. ‘In-

direct’ identification methods are less sensitive [Van den Hof, 1998] to these closed-
loop effects than the classic ‘direct’ [Ljung, 1999] identification approach. Indirect

identification methods, however, often consist of more steps yielding a more in-

volved procedure or tend to return models of unnecessarily high order [Van den
Hof, 1998], which is unacceptable for our objective. Thus, we apply a direct identi-

fication approach.

5.2.2 Approach

The identification procedure introduced in this paper reflects the workflow we rec-
ommend when performing studies on HC behavior. It is illustrated in Fig. 5.3.

The workflow consists of two phases. In the first phase, the procedure is applied
to data obtained by simulating an HC model that is hypothesized for the control

task at hand, with numerous remnant realizations. Using this simulation data set, a
Monte Carlo analysis is performed to assess whether the procedure is indeed able to

identify the HC model and, most importantly, to tune the model selection criterion.

When successful in identification of the simulated HC model and the criterion being
tuned to satisfaction, the second phase commences and the procedure is applied to

the experimental data using the obtained model selection criterion tuning. The

individual steps are briefly introduced below.

1) The control task is defined by the chosen target signal ft, disturbance signal
fd, and system dynamics Yc. For this control task, based on existing literature or

control-theoretic principles, a model for the HC, Y
hyp
p , is hypothesized. Here, Y

hyp
p

is a MISO system with inputs ft and e, and output u. The experimental paradigm

will determine the remnant level σ2
n/σ2

u for which the procedure has to be evaluated.
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1.2) Many (100+) different remnant realizations are generated, such that the

simulation data set has a sufficient level of randomness to reflect the nonlinear
human response.

1.3) Many different MISO ARX models are estimated from the collected data.
The signals used to estimate the ARX models are the two model inputs: the target

signal ft and the measured tracking error em; and the model output signal: the

measured control signal um. Each estimated ARX model Ŷp is simulated to obtain
the estimated control signal ûm.

1.4) The validity of the ARX models from an identification point-of-view is

tested and invalid models are excluded. Models with dynamics (poles and zeros)

outside the frequency range excited by the forcing functions are considered invalid.

1.5) The best ARX model Ŷbest
p , with corresponding ûbest

m , is selected through a

model selection criterion that trades off model complexity and model quality. For
simulated data, this trade-off is tuned until all requirements at step 1.6 are satisfied.

1.6) Simultaneously, the model selection criterion is tuned and the ability of the

procedure to correctly identify Y
hyp
p is assessed by means of four quantitative re-

quirements, that are chosen by the user depending on the objectives of the study:

R.1) ‘False-positive’ identification of one or more responses should occur in fewer

than η f p realizations, where η f p is a percentage chosen by the user. R.2) The se-
lected model is the best of all evaluated models, but not necessarily a good model in

an absolute sense. Therefore, ûbest
m is compared to um to assess the time-domain

quality-of-fit. The quality-of-fit should surpass a level chosen by the user. R.3) The

selected model Ŷbest
p should be sufficiently complex to describe dynamics of the

same order as Y
hyp
p . R.4) The response dynamics of Ybest

p should be sufficiently

similar to Y
hyp
p .

The main result of step 1.6, i.e., with the simulated data, is that the model

selection criterion is tuned to the HC behavior expected for the control task being

studied, such that the procedure reliably selects a model similar to Y
hyp
p . If all

requirements cannot be satisfied simultaneously, the control task or experimental
paradigm needs to be changed to excite the relevant HC dynamics more, or reduce

the remnant levels.

The requirements imposed by 1.6 are assessed as a function of the relative

weighting of model complexity and model quality at step 1.5. For simulated data,

the ‘true’ dynamics Y
hyp
p are perfectly known and thus it is possible to tune the

model selection criterion such that Ŷbest
p is most similar to Y

hyp
p . Most importantly,

repeating the procedure for all individual remnant realizations allows us to assess

the occurrences of ‘false-positive’ and ‘false-negative’ results, and see how the rel-
ative weighting needs to be tuned to minimize these objective, yet invalid, model

selections.

The steps of phase 2 are identical to the corresponding steps in phase 1, with

the following exceptions.
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B ft

(

q; nb ft

)

/A (q; na)

Be (q; nbe) /A (q; na)

1
A(q;na)

ft

(

k − nk ft

)

em (k − nke)

ǫ(k)

um(k)
+

Figure 5.4: Generic ARX model structure.

2.2) Experimental human-in-the-loop data are collected from a number of par-

ticipants.

2.5) The model selection criterion uses the tuning obtained in step 1.6, i.e., the
model selection is not tuned in phase 2.

2.6) The model Ŷbest
p that was identified from experimental data is compared

to Y
hyp
p , to assess whether the Monte Carlo analysis was performed for the correct

model. In case discrepancies between Ŷbest
p and Y

hyp
p are substantial, phase 1 should

be repeated using a model more similar to the experimentally found Ŷbest
p . If Ŷbest

p

identified from experimental data is indeed very similar to Y
hyp
p (confirming the

HC model hypothesis), Y
hyp
p can be used for O.3 and O.4.

5.3 ARX Identification and Model Selection

The ARX model estimation, evaluation and selection steps (1.3 through 1.5 in Fig. 5.3)
are an essential part of the identification procedure. They are described in detail

next.

Step 1.3, substep A. The data are time traces of ft, em, and um, lasting 81.92 s
and sampled at 100 Hz. These are split into an estimation set (t = [0, 40.95] s) and

a validation set (t = [40.96, 81.91] s). Data are resampled to 25 Hz after filtering to
prevent aliasing, yielding 1024 samples data sets. Resampling reduces computation

effort, but may introduce biases in the estimated models. The estimated time delays

are affected most, as these can only be integer multiples of the sample time.

Step 1.3, substep B. Many ARX models are fit onto the estimation data. The

generic structure of each ARX model is shown in Fig. 5.4 and is described by the
discrete-time difference equation (5.1), with k the discrete time samples of 0.04 s:

A(q; na)um(k) = B ft
(q; nb ft

) ft(k − nk ft
)+

Be(q; nbe
)em(k − nke

) + ǫ(k)
5.1
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Here, ǫ is a white noise signal, q is the delay operator and the polynomials A, B ft
,

and Be are defined as:

A(q; na) = 1 + a1q−1 + . . . + ana q−na

B ft
(q; nb ft

) = b ft,1 + b ft,2q−1 + . . . + b ft,nb ft

q

(

−nb ft
+1

)

Be(q; nbe
) = be,1 + be,2q−1 + . . . + be,nbe

q(−nbe+1)

5.2

Each ARX model is described by three model orders, i.e., the number of parameters

in the A polynomial (na), the B ft
polynomial (nb ft

), and the Be polynomial (nbe
).

For each of the two input signals, a delay parameter needs to be identified: the
feedforward time delay nk ft

, and the feedback time delay nke
, both integer multiples

of the sample time 0.04 s.

The effective total number of free parameters d of each ARX model is the sum

of na, nb ft
, and nbe

, plus the total number of delays in the model. That is, for a

pure feedback model with nb ft
= 0 and nbe

> 0, the number of free parameters

d equals na + nbe
+ 1. For a pure feedforward model, with nb ft

> 0 and nbe
= 0,

d = na + nb ft
+ 1. For a combined feedback-feedforward model, with nb ft

> 0 and

nbe
> 0, d = na + nb ft

+ nbe
+ 2.

Each model order and delay parameter is varied over a certain range, and the

full factorial combination of these ranges results in a huge number of model can-
didates. The ranges depend on the expected complexity and time delay of the HC

responses, where a more complex response requires more parameters. The identi-

fication procedure is more objective if the evaluated range is large, at the cost of
computation time.

Step 1.3, substep C. Each model is evaluated by simulating the ft and em signals

through the estimated model to obtain ûm, the estimate of the measured control

signal um. The full 81.92 s of data are used to simulate the model and obtain ûm,
but only the last 40.96 s (the validation data set) are used to calculate the quality of

the fit V, with Nd = 1024:

V =
1

Nd

2Nd

∑
k=Nd+1

(ûm(k)− um(k))
2 , 5.3

Step 1.4. The validity of each ARX model from an identification perspective is
assessed and ‘invalid’ models are excluded. The HC dynamics can be identified

only within the frequency range where both forcing functions ft and fd have power.
Outside this frequency range only noise is measured.

Early evaluations of the identification procedure revealed that ARX models con-

taining dynamics approximating −1/Yc(s) were selected in a small number of cases,

see Section 5.2.1. These models provided a good fit, because in addition to fitting
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the HC control dynamics (that are to be identified), they could also fit the correla-

tion between e and the remnant at higher frequencies caused by taking measure-
ments in closed-loop. The use of separate estimation and validation data sets does

not prevent the selection of these models, because this relation is ‘real’. These mod-

els are excluded by checking for the presence of zeros in the feedback path of the
ARX model close to, or above the highest frequency component in the disturbance

signal fd.

Step 1.5. The model selection criterion is calculated for each model from the

quality of fit V and model complexity expressed by the number of parameters d.

The model with the smallest value is selected as the best model. The selection
criterion used is a modified version of the Bayesian Information Criterion (BIC),

defined as [Ljung, 1999]:

BIC = log V +
d log Nd

Nd
. 5.4

The trade-off between model quality and complexity by the BIC is fixed. Yet, each
control task has its own particularities and for some studies the original BIC might

either put too much weight on model complexity, such that certain HC dynamics
are overseen, underfitting, or too little weight, leading to overfitting. Therefore, in

our identification procedure an additional parameter c is introduced to allow the

trade-off to be tuned [Ljung, 1999], yielding the modified BIC (mBIC) a:

mBIC = log V + c
d log Nd

Nd
5.5

The ‘model complexity penalty parameter’ c is to be tuned by means of computer

simulations, such that false-positives are avoided, while maintaining sensitivity to
small yet important contributions of certain HC control dynamics. For a given value

of c, the model with the lowest mBIC value is selected to be the best model Ŷbest
p .

5.4 Model Selection Criterion Tuning

The main innovation in the identification procedure lies in the tuning of the model
selection parameter c at step 1.6 guided by four tangible requirements described in

detail next. Note that this tuning process happens with the simulated data only.

R.1) ‘False-positive’ identification of a response should occur in fewer than η f p

realizations. The order of the path in Ŷbest
p associated to a response that is not

present in Y
hyp
p should be equal to zero. E.g., nb ft

should be zero for data generated

aThe selection of a particular model by the BIC and mBIC criteria is not affected by the units in
which the data are expressed, since the logarithm of V is taken as metric for model quality. If the
data were expressed in different units with conversion factor α, the model quality term would become
ln(αV) = ln(α) + ln(V). Since ln(α) is constant for all models, it does not affect for which model the
BIC or mBIC is minimum, nor does it affect the value of c for which false-positive feedforward selection
is prevented.
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by a pure feedback model. If false-positives are found in more than η f p realizations,

c should be increased.
R.2) The time-domain quality of fit of the selected ARX model Ŷbest

p is evaluated,

by comparing its control signal ûbest
m to the measured control signal um in the time

domain. Previous literature measured the fit quality using the Variance Accounted

For (VAF) [Drop et al., 2013; Laurense et al., 2015], defined as:

VAF =



1 −
∑

2Nd
k=Nd+1 (um(k)− ûm(k))

2

∑
2Nd
k=Nd+1 ûm(k)2



× 100%. 5.6

The VAF of Ŷbest
p is to be compared to the VAF of Y

hyp
p , by means of the VAF ratio

defined as VAF(Ŷbest
p ) / VAF(Y

hyp
p ). A VAF ratio larger than 1 is an indication

of overfitting; Ŷbest
p was able to fit the remnant and c should be made larger to

prevent this. A VAF ratio smaller than 1 indicates underfitting. The user chooses
an allowable range for the VAF ratio depending on the importance of preventing

overfitting over obtaining a model providing a high model quality.
R.3) Feedforward ARX models (nb ft

> 0) should be identified from data gener-

ated by a combined feedback-feedforward HC model (with Kpt > 0). Moreover, the

selected ARX model Ŷbest
p should be sufficiently complex to describe the dynamics

of Y
hyp
p . For example, if the feedforward in Y

hyp
p is a differentiator, then nb ft

should

be equal to or larger than 2 to describe these dynamics accurately. Clearly then,
identified ARX models with less parameters are considered false-negative results. If

false-negatives are found in more than η f n realizations, the value of c should be

decreased.
R.4) The dynamics of the selected ARX model Ŷbest

p should be similar to the

hypothesized model Y
hyp
p . Here, similarity is considered sufficient if the frequency

response of Ŷbest
p falls within a predefined range of the magnitude and phase re-

sponse of Y
hyp
p , defined by the inequalities:

1

ηmag
|Y

hyp
p (ω)| < |Ŷbest

p (ω)| < ηmag|Y
hyp
p (ω)|, 5.7

| 6 Ŷbest
p (ω)− 6 Y

hyp
p (ω)| < ηphase 5.8

The frequency range of interest over which the inequalities are tested, as well as

ηmag and ηphase, are chosen by the user.
All four requirements involve one or more objective thresholds chosen by the

user, which will depend on the application. Applications relying on precise predic-
tions of future control inputs, e.g., advanced motion cueing [Beghi et al., 2013], will

set more stringent requirements than those that rely on an ‘average’ HC model, e.g.,

haptic aids for easy-to-control dynamics [Olivari et al., 2014].
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The metric used for R.4 enables the user to objectively decide whether or not

Ŷbest
p is sufficiently similar to Y

hyp
p . It does not reveal how the models differ. This

is valuable information if not all requirements can be satisfied simultaneously and

changes to the control task or experimental paradigm need to be made. We propose
therefore, as an additional analysis method that is not part of the tuning process, to

fit the parameters of Y
hyp
p onto Ŷbest

p , in the frequency domain, through minimizing a

normalized quadratic cost function:

p̂ = arg min
p
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∣Ŷbest
pe

(ωi)− Y
hyp
pe (p; ωi)

∣

∣

∣

2

∣
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5.9

Here, p denotes the parameter vector of the parametric model Y
hyp
p , ωi the ith

frequency where the two models are compared, and ni the number of frequency
points. The frequencies ωi should be spaced logarithmically, to ensure that the fit-

ting does not unduly favor higher frequencies. A genetic algorithm [Goldberg and

Holland, 1988] is used to find a reasonably accurate initial estimate of the model
parameters, refined by a gradient descend method. This process is performed ten

times, from which the parameter set with the lowest cost function is considered the
final estimate.

5.5 Example Identification Problem

The procedure’s workflow and performance is illustrated by an example, involving

four representative control tasks. In this paper, we present the results for phase
1 only, to validate the proposed procedure using models that are exactly known

beforehand. The accompanying experimental study is presented in a future paper.

In this section, the considered control tasks are introduced. Section 5.6 discusses
the model selection tuning results, and Section 5.7 presents how the selected Ŷbest

p

differs from Y
hyp
p .

5.5.1 Control Tasks

The approach starts by defining the control task to be investigated (step 1), selecting

the forcing functions ft and fd and the system dynamics Yc.
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Forcing functions

Two variations of the target signal ft will be studied: i) a signal composed of pre-
dictable ramp segments (R), and ii) a signal composed of predictable parabola seg-

ments (P), see Fig. 5.5. The unpredictable disturbance signal fd consists of a sum
of ten sines, with the lowest frequency at 0.23 rad/s and the highest frequency at

17.33 rad/s. This signal is identical to the one used in [Drop et al., 2013].

fd (R, P)ft (P)ft (R)

time, s

f t
,

f d
,

d
eg

0 10 20 30 40 50 60 70 80
-30

-20

-10

0

10

20

Figure 5.5: Two predictable target signals ft, consisting of ramp and parabola segments,
and the quasi-random sum-of-sines disturbance signal fd.

System dynamics

Two common variations of the system dynamics Yc will be considered: i) a single
integrator (SI), Eq. (5.10), and ii) a double integrator (DI), Eq. (5.11):

YSI
c (s) = 1/s 5.10

YDI
c (s) = 5/s2

5.11

These represent a wide array of vehicle dynamics [McRuer and Jex, 1967]. DI dy-

namics are more difficult to control than SI dynamics, as they require considerable
lead action for stability[McRuer and Jex, 1967].

Each combination of system dynamics and target signal will be referred to with
the syntax ‘{SI,DI}-{R,P}’. E.g., SI-P designates single integrator dynamics and the

parabola target.

5.5.2 HC Models and Remnant Model

At step 1.2, data is generated through computer simulations with HC models. These

simulations require: i) a HC model Y
hyp
p that describes the expected HC control

behavior, and ii) a noise model to generate the remnant signal n.
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HC Models

Fig. 5.6 shows the generic structure of the hypothesized HC model Y
hyp
p for all

conditions. The HC model structure consists of three components: i) a feedback

component Y
hyp
pe , ii) a feedforward component Y

hyp
pt , and iii) a model of the neuro-

muscular system Y
hyp
nms that acts on the summed feedback and feedforward signals:

upe + upt . Model details are summarized in Table 5.1.

Ype(s)

Ypt(s)

Ynms(s) Yc(s)

Human controller

ft e upe

upt

u

n fd

θ

Figure 5.6: HC model block diagram.

Literature [Drop et al., 2013; Laurense et al., 2015] suggests that the feedback

part Y
hyp
pe of the combined feedback-feedforward HC model can be modeled with

a structure identical to McRuer’s Extended Crossover Model [McRuer et al., 1965].
For an SI, this compensatory model consists of a gain and a time delay; for DI

dynamics a lead term parametrized by TL is added, see the column Y
hyp
pe (s) in

Table 5.1. Model parameter values are taken from [Drop et al., 2013; Laurense et al.,

2015].

The model of the feedforward part Y
hyp
pt

is based on the notion that the ‘ideal’

feedforward controller equals the inverse of the system dynamics [Wasicko et al.,
1966; Drop et al., 2013; Laurense et al., 2015]. Hence, it consists of a gain, inverse

system dynamics Y−1
c (s), an equalization term, and a time delay, see the column

Ypt(s) in Table 5.1.

The equalization term TI accounts for the possibility that the HC is not able to

invert the system dynamics over the entire frequency range, but only up to a certain
frequency [Laurense et al., 2015]. Then, τpt captures the time delay present in the

feedforward response, originating throughout the entire perception and action loop

responding to the target signal. The HC might, however, compensate for this delay
by anticipating the future course of the target signal, effectively reducing it to zero.

The ‘perfect’ feedforward gain Kpt is 1, but the HC might not be able, or willing, to
perform a feedforward action with such strength, as previous studies have shown

[Drop et al., 2013; Laurense et al., 2015]. Note that for Kpt = 0, the HC model

becomes a pure feedback model.
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The neuromuscular system (NMS) is modeled with second-order dynamics

[McRuer et al., 1968b]:

Y
hyp
nms (s) =

ω2
nms

s2 + 2ζnmsωnmss + ω2
nms

5.12

Appropriate values for ωnms and ζrms depend on the system dynamics and were

chosen based on [Laurense et al., 2015], see Table 5.1.
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Table 5.2: Range of tested ARX model orders

A, Be, B ft
order time delay

na nbe
nb ft

nke
nk ft

lower bound 1 0 0 1 1
upper bound 7 7 7 15 15

Remnant Model

Remnant n is added to the control signal u, Fig. 5.6. It is white noise passed through

a third-order low-pass filter (ωn=12.7 rad/s) with damping (ζn=0.26) [Zaal et al.,
2009c]:

Hn(jω) =
Knω3

n
(

(jω)2 + 2ζnωn jω + ω2
n

)

(jω + ωn)
. 5.13

Here, Kn is used to scale the remnant power such that its variance equals 15% of

the variance of the control signal u, during a disturbance-rejection only control task:

σ2
n/σ2

u = 0.15: the remnant level obtained when averaging five tracking runs. The
reason for this is that during the ramp and parabola target-tracking segments, u is

not zero-mean, resulting in a large control signal variance which would make the
scaled simulated remnant unrealistically large [Drop et al., 2013].

5.5.3 Identification and Parameter Estimation Boundaries

In our procedure the researcher needs to set: i) the range of ARX model orders to be
tested at step 1.3, see Section 5.3, ii) the requirements R.1 through R.4 guiding the

tuning process at step 1.6, and iii) the lower and upper bounds on the HC model

Y
hyp
p parameter values during the parametric fitting to assess how Ŷbest

p differs from

Y
hyp
p .

Table 5.2 lists the lower and upper bounds of ARX model orders, defining the

ARX models to be estimated and evaluated in step 1.3, identical for all conditions.

The least complex models to be tested have only three parameters, the most com-
plex models have 23 free parameters. For each model, the feedforward and feedback

time delays are varied between 1 and 15 samples, corresponding to a delay between
0.04 s and 0.60 s which is a reasonably wide range around the true delay values in

the simulated HC models, Table 5.1.

At step 1.6 we will impose the following requirements. R.1) False-positive feed-
forward identification is allowed in fewer than η f p = 2% of the realizations gen-

erated with Kpt = 0. R.2) The VAF ratio should be above 0.9 for all remnant re-
alizations. R.3) For SI conditions, a model with at least two parameters in the

feedforward path (nb ft
≥ 2) is necessary to describe inverse system dynamics. For

DI conditions, three parameters are necessary (nb ft
≥ 3). Models with fewer pa-

rameters are considered false-negatives. False-negatives should occur in less than
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η f n = 25% of realizations for Kpt = 1. R.4) Similarity between Ŷbest
p and Y

hyp
p is

tested between the lowest frequency in fd (= 0.23 rad/s) and the upper bound of

the frequency range that contains 90% of the power of upt and upe of Y
hyp
p for that

condition, see Fig. 5.6. The bounds on magnitude and phase are ηmag = 1.5 and
ηphase = 45 deg.

Table 5.3 shows the lower and upper bounds on the parameter values of the HC

model Y
hyp
p , fitted to the selected ARX model . These bounds are identical for all

conditions.

Table 5.3: Range of HC model parameter values

Kpt TI τpt Kpe TL τpe ωnms ζnms

- s s - s s rad/s -
low. b. 0 0 0 0 0 0 5 0
up. b. 2 10 1 10 6 1 20 2

5.5.4 Computer Simulations

For each of the four tasks evaluated the hypothesized HC model will be simulated,

with the feedforward gain Kpt ranging between 0.0 and 1.0 in steps of 0.1. For each

of these 44 (4 × 11) HC models, one hundred independent remnant realizations
will be used.

5.6 Results I: Tuning the Model Selection Criterion

5.6.1 False-positive Feedforward Model Selection (R.1)

Fig. 5.7 shows the percentage of remnant realizations for which an ARX model was
selected with either nb ft

= 0, 1, 2, ..., or 7, as a function of the model complexity

penalty parameter c. For low values of c, and for all conditions, the number of

parameters in the feedforward path is relatively high for a considerable number of
ARX models: false-positives. When c increases, these false-positives diminish. For

c ≥ 3, in less than 2% of the 100 available remnant realizations a feedforward model

is erroneously selected, such that R.1 is met for all conditions. Note that for c = 1,
for which the mBIC criterion equals the original BIC, a feedforward model with up

to seven orders in the feedforward path is chosen in over 20% of the cases.

5.6.2 Time Domain Quality of Fit (R.2)

Requirement R.2 states that the VAF ratio should be above 0.9 for all realizations.
Fig. 5.8(a) shows the mean and minimum VAF ratio for all conditions for Kpt = 0,

for which Y
hyp
p is a pure feedback model. For both SI conditions, the mean VAF
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Figure 5.7: Percentage of ARX models with nb ft
between 0 and 7, selected from simulated

data with Kpt = 0, as a function of the model complexity parameter c. All ARX models
with nb ft

> 0 are false-positives.

ratio is equal to 1 for small c, and remains mostly constant as c is made larger; the

first notable decrease in the VAF ratio appears only at c ≈ 40. This indicates that

the very high order false-positive feedforward models, selected for c < 3, do not
provide a truly better fit than models without the feedforward path. The minimum

VAF ratio for SI conditions is also close to 1, indicating little variance between real-
izations. For both DI conditions, however, the minimum VAF ratio is considerably

smaller than 1. For DI-P, requirement R.2 is met for c < 60. For DI-R, however, the

VAF ratio is below 0.9 for all values of c, such that requirement R.2 cannot be met.

Then, Fig. 5.8(b) shows the VAF ratio for all conditions for Kpt = 1, for which

Y
hyp
p is a combined feedback and feedforward model. As for Kpt = 0, the mean

VAF ratio is larger than 0.9 in SI conditions and DI-P up to large c, such that R.2

can be met. Contrary to Kpt = 0, requirement R.2 can also be met for the DI-R
condition, but only for c < 5.

Note that the VAF ratio tends to decrease in a step-wise fashion; these steps

correspond to the ‘disappearance’ of dynamics in Ŷbest
p that are present in Y

hyp
p

as c is made larger. The first stepwise decrease for both DI conditions is seen
between c = 1 and 10, suggesting that 10 is the upper bound for c for avoiding

false-negatives. Further analysis will reveal that the disappearing dynamics are the

feedforward.
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Figure 5.8: Minimum (dashed) and mean (solid) values of VAF(Ŷbest
p ) / VAF(Y

hyp
p ) taken

over all remnant realizations. (a) Kpt = 0. (b) Kpt = 1.

5.6.3 Feedforward Model Selection in SI Conditions (R.3)

We then analyze the complexity of models estimated from data generated with HC

models that include feedforward, with Kpt between 0.1 and 1.0, to assess ‘false-

negative’ results.

Figs. 5.9(a) and (b) show that for c = 3, very few feedforward ARX models

are selected for Kpt = 0.1 in both SI conditions. That is, for Kpt = 0.1 a false-

negative result is found in approximately 90% of the simulations. The percentage
of selected feedforward ARX models with nb ft

≥ 2 much increases for Kpt ≥ 0.2

in both conditions, reducing the number of false-negative results to approximately

5% for SI-R and 15% for SI-P. For Kpt ≥ 0.3 no false-negative results are found. For
Kpt = 1, all the selected models contain at least two parameters in the feedforward

path, required to describe the inverse system dynamics, and thus R.3 is met.

5.6.4 Feedforward Model Selection in DI Conditions (R.3)

Figs. 5.9(c) and 5.9(d) show that, for c = 3, the number of realizations for which
a feedforward model is selected is much smaller in the DI conditions than in the

SI conditions. Even for large Kpt , the majority of the selected feedforward models

has just one or two parameters in the B ft
polynomial, not sufficient to describe the

double differentiator feedforward dynamics, and thus R.3 is not met. Hence, the

feedforward contribution in both DI conditions, for c = 3 and HC model parameter
values as given in Table 5.1, is likely to be overseen.

Feedforward ARX models are selected more frequently in the DI-P condition

than in the DI-R condition, caused by the relatively larger contribution of the feed-
forward path to the total control signal. Fig. 5.10 shows that, for the DI-R condition,

upt is a sharp pulse of short duration following the onset and endings of the ramp

segments. Following this initial transient upt is zero, irrespective of the duration or
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Figure 5.9: Percentage cases for which an ARX model with an indicated number of param-
eters in the feedforward path was identified, as a function of Kpt .
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rate of the ramp segment, making identification of the feedforward dynamics diffi-

cult. For the DI-P condition, upt is a constant, non-zero control input resembling a
‘doublet’ and persists during the entire parabola segment; here identification of the

feedforward dynamics is more straightforward.
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Figure 5.10: Feedforward control signal upt , in the DI-R and DI-P conditions.

Feedforward Model Selection for c < 3

If it is deemed acceptable to have false-positive results in more than just 2% of
simulations, as required by R.1, c can be made smaller in an effort to identify the

small, but perhaps relevant, feedforward contribution in the DI conditions and meet
R.3.

Figs. 5.9(e) and (f) show that, for c = 2, a considerably larger number of feed-
forward models are selected. The majority of selected models, however, still contain

only one or two parameters in the feedforward path for the DI-R condition. For DI-

P, however, choosing c = 2 did result in a large increase of selected models with
nb ft

≥ 3, especially for Kpt ≥ 0.5.

Finally, Figs. 5.9(g) and (h) illustrate how the distribution of selected models
changes when c is reduced further to 1, for which the mBIC is equal to the original

BIC. For Kpt = 0 many false-positive results are found and for Kpt ≥ 0.1 many
models are selected with just one parameter in the B ft

polynomial, that clearly do

not model Y
hyp
p correctly. This demonstrates the importance of choosing a value of

c that is large enough to prevent false-positive results.

Effects of Feedback Gain on Feedforward Model Selection

To illustrate the effect of the relative strength of the feedforward and feedback paths

on the detection of the correct model, further simulations with reduced feedback
gains were performed for the DI conditions. The feedback gain Kpe was reduced by

30% to 0.32 and the lead time constant TL set at 1 s. The effects are considerable:

compare Figs. 5.9(c) and (d) to Figs. 5.9(i) and (j), respectively. The number of
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(correctly) selected feedforward ARX models with nb ft
≥ 3 is much larger for Kpt >

0.5, especially in the DI-P condition.

5.6.5 Similarity between Ŷbest
p and Y

hyp
p (R.4)

Fig. 5.11 shows a Bode plot of Ŷbest
p , for 40 different remnant realizations of the SI-P

condition (Kpt = 0.3; c = 3) compared to the true model Y
hyp
p . Green dashed lines

indicate the boundaries corresponding to R.4, for the frequency range over which
R.4 is tested. 90% of the power of upt is at very low frequencies (< 0.8 rad/s); upe

has a more uniform power distribution, and thus similarity is tested over a wider

range. The majority of the models fall within the boundaries. Thus, we conclude

that both the feedforward and feedback paths are sufficiently similar to Y
hyp
p .

At higher frequencies, two ‘clusters’ of similar solutions are seen: models that

show the NMS peak, marked 1}, and models that lack this peak, marked 2}. Models

belonging to the second cluster have fewer parameters in the A polynomial. Models
without NMS dynamics in the feedforward path also lack these dynamics in the

feedback path, as they are included in both, Fig. 5.4. The NMS contribution is small
and mostly present at higher frequencies, where remnant dominates. In 25% of

the cases the contribution of the NMS was apparently too small and ‘drowned’ in

the remnant noise to overcome the penalty of added complexity, and is not present

in the model. For larger values of Kpt the selected ARX models resemble Y
hyp
p

much better for ω < 3 rad/s (not shown). That is, the results shown for Kpt = 0.3

illustrate ‘worst case’ results.

Fig. 5.12 shows a Bode plot of Ŷbest
p , for 40 different remnant realizations of the

DI-P condition, for Kpt = 1, compared to Y
hyp
p , if c is reduced to 2, see Section 5.6.4.

Again, results appear in ‘clusters’. Here, these clusters correspond to the number
of parameters in the B ft

polynomial, as annotated in the figure caption. The models

with nb ft
≥ 3 are similar to Y

hyp
p , in the sense that they are a double differentiator

for ω < 2 rad/s, but only few fall within the bounds of R.4. For c = 3, even fewer
models fall within the bounds.

Fig. 5.13 shows the percentage of remnant realizations for which Ŷbest
p was suffi-

ciently similar to Y
hyp
p , for c = 3, as tested by (5.7) and (5.8), for all conditions and

all values of Kpt . For both SI conditions, Ŷbest
p is sufficiently similar to Y

hyp
p for all

realizations for Kpt ≥ 0.5. In the DI-P condition, the similarity is sufficient in a few

cases for Kpt ≥ 0.7. For the simulations performed with lower feedback gains, see
Section 5.6.4, the similarity is sufficient in more cases, but still not 100%. For DI-R,

Ŷbest
p is never sufficiently similar; neither for the parameter set of Table 5.1 nor for

the lower feedback gains. This confirms the results obtained for R.3.
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Figure 5.11: Bode plots of Ŷbest
p , SI-P (c = 3, Kpt = 0.3), other parameter values as given in

Table 5.1. Dashed lines indicate boundaries imposed by R.4, drawn for the frequency range
over which R.4 is tested.
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Figure 5.12: Bode plots of Ŷbest
p compared to Y

hyp
p , condition DI-P, c = 2, Kpt = 1, other

parameter values as given in Table 5.1. Clusters of results: 1} correspond to nb ft
= 1; 2}

nb ft
= 2; 3} nb ft

≥ 3. Dashed lines indicate boundaries imposed by R.4, drawn for the
frequency range over which R.4 is tested.
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Figure 5.13: The percentage of remnant realizations for which Ŷbest
p is sufficiently similar

to Y
hyp
p , for c = 3.

5.6.6 Conclusions

Based on the presented results we conclude that, first, the identification procedure

can identify small feedforward contributions (Kpt ≥ 0.3) for all SI conditions, when
choosing c = 3, which provides a probability less than 2% of obtaining a false-

positive result. Second, the procedure can identify the feedforward contribution

in the DI-P condition only if the feedforward contribution is relatively large when
choosing c = 3. Third, the procedure cannot properly identify the feedforward

contribution in the DI-R condition without greatly reducing the value of c, which

increases the risk of obtaining false-positive results. Hence, the procedure is suit-
able to analyze experimental human-in-the-loop data of both SI conditions and the

DI-P condition.

5.7 Results II: Analysis of Ŷbest
p - Y

hyp
p Similarity

Requirement R.4 allows the user to test the similarity between Ŷbest
p and Y

hyp
p in an

objective, quantitative way, but does not reveal how Ŷbest
p differs from Y

hyp
p . To ob-

tain insight, the parametric model Y
hyp
p is fit onto Ŷbest

p , and the parameter estimates

are compared to the true values.

SI Conditions

Fig. 5.14 show the HC model parameter estimates, for each individual remnant

realization, for both SI conditions. Note that the results are shown only for the
Ŷbest

p models for which nb ft
≥ 2. All individual results are plotted in a scatter-plot,

to explicitly show their distributions.

The feedforward gain Kpt , varied between 0.0 and 1 (steps of 0.1) in the simu-
lations, is estimated close to the real value with little variance, Fig. 5.14(a). Bias

and variance is smaller in the SI-R condition than in the SI-P condition, suggesting

that the ramp target signal is more suited for the correct detection of feedforward.
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Figure 5.14: The identified values of each HC model parameter for each individual remnant
realization compared to the real value, for the SI-R and SI-P conditions, with HC model
parameter values as given in Table 5.1, and c = 3. (a) Kpt , (b) TI , (c) τpt , (d) Kpe , (e) τpe , (f)
ωnms, (g) ζnms.

Note that for 0.1 ≤ Kpt ≤ 0.2 (for which false-negative results were found in some

cases) the bias and variance is of the same magnitude as for Kpt ≥ 0.3, for which

no false-negative results were found. Hence, if a feedforward model is selected, the
model has the correct feedforward gain.

Fig. 5.14(b) shows the estimate of the feedforward equalization parameter TI .

Whereas in the SI-R conditions TI is estimated close to zero for Kpt < 0.6, and close
to the true value for Kpt ≥ 0.6, for the SI-P conditions the estimate is bad. The effects

of TI are larger during the onsets of ramp segments, as compared to the onsets of
parabolas. Hence, a reliable estimate of TI is possible only in the SI-R conditions

from models with a strong feedforward component. If it is deemed important that

TI is estimated with higher accuracy, a target signal needs to be designed with a
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higher power at frequencies where TI has an effect. Changes made to ft would,

however, likely also cause the control behavior to change [Beerens et al., 2009].
The feedforward time delay τpt is estimated equal to integer multiples of the 0.04

s sample time, Fig. 5.14(c). For all SI conditions τpt is overestimated, with a large

variance and slightly smaller bias when Kpt increases. The bias in the estimates
for τpt is likely caused by the interaction between TI and τpt , as both parameters

cause lag in Ypt . That is, most of the dynamics caused by the TI parameter can be
described by choosing a slightly larger value for nk ft

, without any added cost to the

model complexity, such that these models are likely to be preferred by the selection

criterion.
Fig. 5.14(d) shows that the feedback gain Kpe is estimated with moderate bias

and variance. Furthermore, the quality of the estimate is mostly unaffected by the

variation in Kpt . If a higher similarity between Ŷbest
p and Y

hyp
p with respect to the

feedback gain is desired, remnant levels need to be reduced, e.g., by averaging the
data over more than five runs [Zaal et al., 2009c].

Fig. 5.14(e) shows a multimodal distribution in the estimates of the feedback

time delay τpe , with a density peak around 0.20 s (close to the real value of 0.21 s),
and smaller peaks around 0.08, 0.12, and 0.16 s. This is caused by the delay param-

eter nke
that is equal to an integer multiple of the sample time of 0.04 s. The bias

towards lower values is likely a result of the interaction between τpe and the NMS

parameters, Figs. 5.14(f) and 5.14(g). As shown by Fig. 5.11(b), 90% of the signal

power of upe is located below 5 rad/s, resulting in a bad estimation of dynamics
affecting higher frequencies. Especially the ζnms estimates have a large bias and

variance, indicating that the identification procedure is unable to successfully cap-
ture the NMS effects in these conditions, see also Fig. 5.11. If it is deemed important

that the NMS dynamics are estimated with higher accuracy, the power distribution

in fd needs to be changed. This might also affect the HC control behavior [Beerens
et al., 2009]. Generally, ζnms is overestimated which causes a larger phase lag in

the feedforward and feedback paths. This can be compensated for by reducing the

delays τpt and τpe .
To conclude, in the SI conditions the model selection criterion selects a model

that describes the underlying dynamics ‘efficiently’. It is not more complex than
strictly necessary and in many cases a slightly worse quality of fit is accepted in

return for a reduction in model complexity.

DI Conditions

Only a few feedforward ARX models with nb ft
> 2 were selected from simulations

with the parameter values of Table 5.1, but many from simulations with a reduced

feedback contribution in the DI-P condition, as discussed in Section 5.6.4. Hence,
for the initial simulations it was possible only to estimate the feedback parameters.

As these estimates were very similar to those for the simulations with reduced

feedback gains, we only show the latter in Figs. 5.15(a) through (h). Results only
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Figure 5.15: The identified values of each HC model parameter for each individual remnant
realization compared to the real value, for the DI-R and DI-P conditions, with Kpe = 0.32,
TL = 1 s, and all other HC model parameter values as given in Table 5.1, and c = 3. (a) Kpt ,
(b) TI , (c) τpt , (d) Kpe , (e) TL, (f) τpe , (g) ωnms, (h) ζnms.

include selected models with nb ft
≥ 3, hence far more results are shown for the DI-P

than DI-R conditions (see also Figs. 5.9(i) and 5.9(j)). The few remaining parameter

estimates for the DI-R condition show large biases, confirming that the procedure
cannot identify HC dynamics in the DI-R condition.

The feedforward parameter estimates for the DI-P condition, Figs. 5.15(a) through

(c), show notable biases with considerable variance, but do illustrate that Ŷbest
pt

is a

reasonably accurate representation of Y
hyp
pt . Kpt is generally underestimated with

a large variance, whereas the delay τpt is overestimated by approximately 200 ms.

Bode plots (Fig. 5.12(a)) revealed that all selected Ŷbest
p models indeed lack the ef-

fect of TI , i.e., they are a double differentiator up to ω = 10 rad/s, whereas Y
hyp
p

becomes a single differentiator around ω = 1/TI = 2.8 rad/s. The effect of TI is
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apparently too small to be captured and as a consequence its value is estimated

close to zero.

Considerable variances in estimates are found for all feedback parameters, but

with small biases, see Figs. 5.15(d) - (f). NMS parameter estimates show consider-
able biases and variances, Figs. 5.15(g) - (h).

A variety of changes can be made to the DI-P condition if more accurate feed-

forward identification is desired. The power of ft relative to fd can be increased

to emphasize feedforward, at the expense of accuracy of feedback identification.
Furthermore, reducing the remnant level by averaging over more tracking runs is

expected to improve identification results, but note that HC control behavior might
not be constant throughout many repetitive runs.

5.8 Discussion

Given a particular manual control task, it is often not known a priori whether the
HC will exert feedforward control, or how the HC feedforward and feedback paths

should be modeled. Prior assumptions on the feedforward or feedback dynamics
cannot be made based on previous experimental results, because hardly any litera-

ture exists on the subject. This paper presents a new LTI-model based identification

procedure, to more objectively identify the feedforward and feedback components
of HC control behavior without making any prior assumptions on the HC dynam-

ics. The novel feature of this procedure is the objective selection of the correct model,

based on a model selection criterion that is tuned by means of simulations prior to
collecting experimental data.

The introduced procedure is successful in answering if and how the HC re-

sponds to ft and e for three of the four control task conditions studied in this paper.

For the SI-R, SI-P, and DI-P conditions, the procedure correctly identified the charac-
teristic features of the feedforward and feedback controller dynamics from a noisy

data set. False-positive detection of a feedforward response from data generated by
a purely feedback model is prevented by tuning the model selection criterion. False-

negative results, i.e., the selection of a purely feedback model from data generated

by a combined feedback-feedforward model, occur only for data generated with
small feedforward gains (Kpt ≤ 0.3) in both SI conditions. For the DI-P condition,

false-negative results occur for a larger range of Kpt values, and depend much on
the relative strength of the feedforward and feedback paths.

The procedure is able to correctly identify the governing low-frequency dynam-
ics of the HC responses. More subtle dynamics, such as feedforward equalization

and time delays, are estimated, if at all, with large biases. Hence, the results of
this procedure alone are not sufficient to build a parametrized HC model (O.3). A

gray-box modeling approach is required to obtain the HC model with the correct

parametrization.
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In the DI-R conditions, the contribution of the feedforward path is small and is

identified only sporadically from the noisy data. To improve the identification ac-
curacy in this condition, one could evaluate the ARX models only on the segments

where feedforward is expected, such as the ramp onsets and endings. This method

was reported in [Laurense et al., 2015], who used a time-domain parameter esti-
mation method. Evaluating this approach for ARX models is beyond the current

scope.

Our identification procedure includes three features to ensure objective model

selection, which were not previously applied in the identification of manual control

behavior. These features are: i) the use of a separate estimation and validation data
set to prevent overfitting, ii) the use of a model selection criterion that makes an

explicit trade-off between model quality and model complexity, and iii) the tuning
of this explicit trade-off by means of simulated data.

Our results demonstrate that the use of the standard BIC results in many false-

positive results, and thus the selection criterion needs to be modified by choosing an
appropriate value for the c parameter. Other model selection criteria exist, such as

the Akaike Information Criterion (AIC) [Akaike, 1974], but these criteria generally
penalize model complexity even less than the BIC and would not be suitable in the

current application.

We argue that performing Monte Carlo simulations using a hypothesized model

is the most objective way to gain insight in the identification process and tune c ap-

propriately. It evaluates the identification process for a case similar to the real case,
and for which the ground truth is known, leaving the least room for any subjective

interpretation. The Monte Carlo simulations simultaneously assess the ability of the

identification procedure to estimate the correct model from measurements made in
closed-loop, and deal with the high levels of human remnant (colored white noise).

The main disadvantage of the features included to prevent false-positive results
are possible false-negative results, i.e., existing controller dynamics that are not

identified, or dynamics that are identified with a relatively large bias. For in-
stance, the effects of the feedforward bandwidth parameter TI are missing from

the selected models in the DI-P condition: this is essentially a false-negative result.

Accurate tuning of the model selection criterion should prevent most false-positive
occurrences, but for certain conditions a compromise will have to be found between

false-positive and false-negative results.

The presented identification procedure is part of a complete approach to study-

ing manual control behavior, which involves simulations and experimental data

and has an iterative nature. This paper presented the simulation results, from
which we conclude that, apart from the DI-R condition, an experimental study can

be performed to answer if and how the HC responds to the target signals and
system dynamics evaluated. The results of the human-in-the-loop experiment will

be presented in a separate paper. Clearly, if the experimentally obtained HC dy-

namics are very different from the hypothesized HC dynamics, the whole tuning
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procedure should be repeated with an HC model closer to the HC behavior found

experimentally.
The tuning process is guided by four objective requirements, determined by the

user based on the application. These four requirements can additionally be used to

compare the performance of this procedure with novel methods in the future.
The proposed procedure is considered to be particularly useful in studies that

involve multi-loop or multi-modal HC behavior, which generally require more com-
plex HC models to describe the measured behavior. For the first time, we showed

that in dealing with these more complex models false-positives occur more fre-

quently than one would expect, which casts serious doubts upon the validity of
many previous findings.

5.9 Conclusions

We introduced an objective procedure to identify if and how the human controller
utilizes feedforward and feedback, in control tasks with predictable target signals

and unpredictable disturbances. The procedure aims to identify HC dynamics in
closed loop, from noisy data, and without making any prior assumptions regarding

the HC model structure or parameters. It estimates and evaluates a large number

of LTI ARX model candidates and uses a novel model selection criterion to select
the best model. The original Bayesian Information Criterion was found to return

many false-positive results: models that contain dynamics not present in the mea-
sured system. We demonstrate that in identifying HC dynamics, it is mandatory

to increase the penalty imposed on the model order, through a model complexity

penalty parameter. The appropriate value of this parameter can be found through
Monte Carlo computer simulations with a hypothesized HC model, guided by four

objective requirements chosen by the user. To illustrate its performance, the proce-
dure was applied to four typical manual control tasks, with single and double in-

tegrator dynamics, and predictable target signals composed of ramp and parabola

segments. The procedure was able to identify the correct HC model structure for
both target signals with the single integrator dynamics, and for the parabola target

signal with the double integrator. The identification for HC behavior with double

integrator dynamics and ramp targets proved to be problematic, confirming previ-
ous results.
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feedforward
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The objective of this chapter is to investigate the adaptation of manual
feedforward control behavior to the controlled element dynamics and the

target waveform shape. Previous research into compensatory and pursuit

control strategies revealed that the human control dynamics are particu-
larly sensitive to the dynamics of the controlled element and the properties

of the target and disturbance signals. The work performed in Part I of this
thesis also made clear that feedforward had to be understood for more dif-

ficult system dynamics than the single integrator dynamics considered

in Chapter 2, because only few realistic control tasks involve single inte-
grator dynamics. Furthermore, given that the ‘ideal’ feedforward control

signal is equal to the target signal passed through the inverse system dy-
namics, it is evident that understand the effect of these two task variables

on feedforward behavior is of paramount importance.
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6.1 Introduction

Manual control of a dynamic system requires the human controller (HC) to effi-

ciently steer the system along a certain target path while being perturbed by dis-
turbances. An example is the manual control of an aircraft during turns or ascends

and descends in the presence of turbulence. The HC will make use of all available
information and knowledge, i.e. visual, vestibular, and somatosensory information

as well as prior experience, to optimize his control performance and reduce effort

[Rasmussen, 1983]. To measure HC control behavior with system identification
techniques we simplify real-life situations to tracking tasks. The above example can

be represented as a combined target-following and disturbance-rejection task.

Manual control research has produced a number of HC models supported by a

vast amount of experimental data [Tustin, 1947; Elkind and Forgie, 1959; McRuer
and Jex, 1967]. The majority of these models describe compensatory control behav-

ior, where the HC acts as a closed-loop feedback controller. Additionally, a large
number of model hypotheses were postulated that sought to describe higher levels

of control behavior, such as pursuit, pre-cognitive and preview control, and their

interaction [Krendel and McRuer, 1960; Young, 1969; Rasmussen, 1983]. Models
of higher level control behavior commonly include a feedforward operation on the

target, which provides better tracking performance than compensatory feedback

control alone.

Early identification methods allowed for detailed analysis of behavior in tasks
involving compensatory displays and unpredictable sum-of-sine forcing functions.

Based on identification results, the HC was modeled as a quasi-linear closed-loop

compensatory feedback controller with a considerable time delay. The HC con-
trol dynamics were found to depend heavily on the controlled element dynamics

and the forcing function properties [McRuer et al., 1965]. The required methods
for simultaneous system identification of feedback and feedforward behavior in re-

sponse to more realistic and predictable targets with discrete waveforms were not

available yet. As a result, feedforward behavior was not studied in great detail, but
some empirical evidence was presented [Pew et al., 1967; Yamashita, 1990].

It is the objective of this paper to investigate the adaptation of manual feed-

forward control behavior to the controlled element dynamics and the target wave-

form shape. The current presence of automation and shared-control interfaces in
aviation and the advent thereof in the automotive sector demands a better under-

standing of the higher-level, goal-directed human steering inputs that involve feed-
forward [Abbink and Mulder, 2010]. Recent advances in system identification meth-

ods now allow testing the previously untested hypotheses regarding the presence

and dynamics of feedforward control to be investigated.

For feedforward control behavior, two main hypotheses were postulated: 1) the
ideal feedforward control law is equal to the inverse of the system dynamics [Wa-

sicko et al., 1966], and 2) the utilization of feedforward is affected by the ‘subjective

predictability’ of the target signal [McRuer and Jex, 1967; Pew et al., 1967], which
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is primarily affected by the waveform shape of the target [Magdaleno et al., 1969].

Wasicko et al. [Wasicko et al., 1966] were first to provide evidence supporting the
first hypothesis, but also found that the inversion was sub-optimal in pursuit tasks.

Recent studies support this observation and modeled the sub-optimality by low-

pass filters and time delays [Pool et al., 2010a; Drop et al., 2013; Laurense et al.,
2015], but they do not agree on the exact model structure and formulation.

The effect of the target waveform shape on the subjective predictability of the
target signal (and thereby the utilization of feedforward) received no specific atten-

tion. However, upon comparing the results of Wasicko et al.[Wasicko et al., 1966]

and Laurense et al.[Laurense et al., 2015], a strong interaction between controlled
element dynamics and target signal waveform shape seems present. [Wasicko et al.,

1966] investigated feedforward with “unpredictable” sum-of-sine targets and found
little evidence of feedforward with a single integrator (SI), but strong evidence with

a double integrator (DI). [Laurense et al., 2015] used “predictable” ramp targets and

found strong evidence for feedforward with an SI, but less conclusive evidence for
a DI. Objective metrics quantifying the predictability of the targets were not pre-

sented.

To investigate the adaptation of manual feedforward control behavior to the con-
trolled element dynamics and the target waveform shape, we consider two realistic

target waveform shapes and three classes of vehicle-like system dynamics. We will
not explicitly investigate the subjective predictability of the two targets, but rather

focus on how the feedforward control strategy adapts to the different waveform

shapes . We will consider constant velocity ramp segments, similar to the targets
used in [Pool et al., 2010a; Drop et al., 2013; Laurense et al., 2015], and constant

acceleration parabola segments. The parabola segments represent maneuvers in
which the attitude of the vehicle is changed in minimum time, whilst keeping the

vehicle accelerations within certain limits. The considered system dynamics are

the easy-to-control single integrator (SI), a second order system, and the difficult-
to-control double integrator (DI). We expect that a feedforward operation on the

parabola target signal is especially useful with DI dynamics, because for these dy-
namics the ideal feedforward control input is equal to the second derivative of the

target, which is non-zero for the parabola, but zero for the ramp.

The interaction between target waveform shape and system dynamics is investi-
gated by means of an offline analysis with hypothesized HC models and a human-

in-the-loop experiment. The offline analysis will investigate the potential perfor-
mance improvement of utilizing a feedforward component as a function of system

dynamics, target waveform, and model parameter values. Two complementary sys-

tem identification and parameter estimation methods are used to analyze human-
in-the-loop experimental data. A recently developed ARX black-box identification

method, which is robust to false-positive identification of a feedforward component,
is used to objectively identify underlying dynamics, Chapter 5. A time domain pa-

rameter estimation method, that uses HC models based on the ARX results, is then

used to identify the subtle changes in control behavior.
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The paper is structured as follows: Section 6.2 further introduces the control task

under investigation. Section 6.3 introduces the HC model used in the offline anal-
ysis of Section 6.4. The human-in-the-loop experiment is described in Section 6.5,

the results of which are described in Section 6.6. The paper ends with a discussion

and conclusions.

6.2 Control task

This paper focuses on human control behavior in a combined target-tracking and
disturbance-rejection task, as shown in Fig 6.1. In this case an aircraft pitch attitude

control task is shown. The HC controls the dynamic system Yc such that the error e

defined as e = ft − θ, remains as small as possible. Meanwhile, the system output
θ is perturbed by a disturbance signal fd. The task is presented visually to the HC

by means of a pursuit display, explicitly showing the target, the system output, and
hence also the tracking error, see Fig. 6.2.

Human
controller
dynamics

Yc(s)
+

−

+
+ft e u

fd

θ

Figure 6.1: Control scheme studied here. The HC can use target signal ft, the system output
θ and the error e to generate the control signal u.

e
θ ft

Figure 6.2: Pursuit displays for pitch control. The display shows only the current values of
the signals. No post or preview information is presented.

6.2.1 System Dynamics Yc

Three variations of Yc will be considered: 1) a single integrator (SI), 2) a second

order system (S2D), and 3) a double integrator (DI). The respective system dynamics



142 Chapter 6

are defined in (6.1) through (6.3).

YSI
c (s) =

KSI
c

s
6.1

YS2D
c (s) =

2KS2D
c

s (s + 2)
6.2

YDI
c (s) =

KDI
c

s2
6.3

With KSI
c = 1, KS2D

c = 2.75, and KDI
c = 5.

6.2.2 Target Signal ft

Three variations of ft are considered: 1) a signal composed of constant velocity

ramp (R) segments, 2) a signal composed of constant acceleration parabola (P) seg-
ments, and 3) a constant and zero target signal (Z). The two predictable target sig-

nals are the main topic of investigation; the Z signal was added to the experimental
conditions to serve as a baseline and to compare the behavior of our subjects to lit-

erature. Note that the task reduces to a purely compensatory disturbance-rejection

task for the Z signal, rendering feedforward ineffective. We therefore do not con-
sider this target signal in the theoretical analysis in Section 6.4.

The predictable target signals used in this study are composed of several ramp

and parabola segments of 3.75 and 7.5 s duration. Fig. 6.3 shows one individual

ramp and parabola segment of 7.5 s and the first and second derivatives.
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Figure 6.3: Discrete target signal segments considered in this study. (a) Ramp. (b) Parabola.

The velocity of the ramp signal in Fig. 6.3(a) instantaneously changes from zero
to 5.3 deg/s, and as such, the second derivative of the target is infinitely large at

the onsets and endings of the ramp segments. The resulting temporal shape of the
segment is a ramp. The acceleration of the parabola signal in Fig. 6.3(b) changes

instantaneously three times during one segment. First, the acceleration changes in-

stantaneously from zero to 5.7 deg/s2, such that the velocity of the target increases
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linearly over time. Then, after exactly half the total duration of the segment, the

acceleration instantaneously changes sign, such that the velocity of the target de-
creases linearly over time. The resulting temporal shape of the segment are two

smoothly connected parabolas.

Each combination of a target signal and one variation of system dynamics will

be referred to in this paper with the syntax “{SI, S2D, DI}− {Z, R, P}". For example,

SI-P designates the condition with single integrator dynamics and the parabola
target signal.

6.3 HC Model

We will perform simulations with HC models to investigate the usefulness of a feed-
forward strategy and how the usefulness depends on the hypothesized limitations

and time delays in the feedforward control action. Fig. 6.4 shows the generic struc-

ture of the HC model assumed for all three system dynamics and is identical to the
Inverse Feedforward Model (IFM) of Laurense et al., [2015]. The HC model struc-

ture consists of three components: 1) a feedforward component Ypt , 2) a feedback

component Ype , and 3) a model of the neuromuscular system (NMS) Ynms.

Ype(s)

Ypt(s)

Ynms(s) Yc(s)

Human controller

ft e u

n fd

θ

Figure 6.4: HC model block diagram.

The feedforward component Ypt consists of a gain, inverse system dynamics

[Wasicko et al., 1966; Pool et al., 2010a; Drop et al., 2013; Laurense et al., 2015], a
low-pass filter, and a time delay:

Ypt(s) = Kpt

1

Yc(s)

1

(TIs + 1)2
e−τpt s

6.4

The gain Kpt determines the overall strength of the feedforward response; set-

ting Kpt to 0 transforms the model to a pure feedback model. We will assume the

theoretically ideal feedforward gain Kpt of 1, but note that previous studies have
identified slightly lower values, Kpt ≈ 0.9 [Drop et al., 2013; Laurense et al., 2015].

Parameter τpt captures the time delay present in the feedforward response, orig-

inating throughout the entire perception and action loop responding to the target

signal. In our simulations and analyses of experimental data we will consider the
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possibility that τpt < 0, modeling anticipatory control behavior where the HC pre-

dicts the future course of the target. To simulate negative time delays, the feed-
forward path Ypt responds to f ∗t (t) = ft(t + 1) with the time delay τ∗

pt
= τpt + 1,

while the feedback path Ype responds to the error e = ft − θ, where ft is the unmod-

ified target signal.

The low-pass filter parametrized by TI smoothens the ideal waveform of upt by
filtering out high frequency components of the perfect inversion of ft through 1/Yc.

The effect of the low-pass filter is illustrated for all combinations of Yc and ft in

Fig. 6.5, by plotting upt simulated with different values of TI . Compare Fig. 6.5
with Fig. 6.3 and note the similarity in waveform shape between upt and the first

and second derivatives of ft. For example, upt of SI-R is a smoothed step much

like the first derivative of the ramp, and upt of DI-P is a smoothed doublet much
like the second derivative of the parabola. The filter affects upt especially around

discontinuities in the first or second derivatives of ft; here the filter removes the
high frequent content of upt .
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Figure 6.5: The feedforward control signal upt plotted for three different values of TI (0.2,
0.4, and 0.8 s) demonstrating the effect of the low-pass filter. Arrows indicate evolution of
signal shape as TI is reduced. The target ft is scaled by 0.25 and shifted up to start at 0
deg for clarity. (a) Ramp conditions. (b) Parabola conditions.

In [Pool et al., 2010a] and [Drop et al., 2013] a first order low-pass filter was

assumed, but in [Laurense et al., 2015] the filter was of second order. Similarly,
two different assumptions regarding the position of the neuromuscular system in

the model were made in [Drop et al., 2013] and [Laurense et al., 2015]. In [Drop

et al., 2013], the NMS acts on both the feedback and the feedforward path, whereas
in [Laurense et al., 2015] it acts only on the feedback path. The simulation results

to be presented in this paper are performed with the HC model and identified
parameter values of [Laurense et al., 2015] for consistency with this earlier work.

The best model structure will be identified from experimental data in this paper

through two different identification methods.
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The compensatory feedback component Ype of the combined feedforward and

feedback HC model is modeled with a structure identical to the Extended Crossover
Model [McRuer et al., 1965; Wasicko et al., 1966; Drop et al., 2013; Laurense et al.,

2015]. For second-order system dynamics (S2D and DI), the compensatory dynam-

ics are described by:

Ype(s) = Kpe(TLs + 1)e−τpe s
6.5

For the SI the lead time TL is zero.

The neuromuscular system is commonly modeled as a mass-spring-damper sys-

tem [McRuer et al., 1965; McRuer et al., 1968b; Van Paassen, 1994]:

Ynms(s) =
ω2

nms

s2 + 2ζnmsωnmss + ω2
nms

6.6

The model parameter values, shown in Table 6.1, are taken from [Laurense et al.,
2015] for the fastest of the two ramp targets (4 deg/s) as they are closest to the rate

of the ramp target considered in this study (5.3 deg/s, Fig. 6.3(a)).

Table 6.1: HC model parameter values used in simulations

Kpt TI τpt Kpe TL τpe ωnms ζnms

- s s - s s rad/s -

SI 1 0.25 0.22 1.55 - 0.19 14 0.22

S2D 1 0.25 0.35 0.75 0.4 0.24 10.1 0.35

DI 1 0.32 0.45 0.25 1.2 0.23 9.5 0.28

6.4 Performance simulations

We hypothesize that the utilization of a feedforward control strategy by the HC

depends on the potential performance improvement that the feedforward path de-
livers over a pure feedback strategy. The larger the potential performance improve-

ment, the larger the likelihood of observing a feedforward strategy in the HC. We

investigate how the potential performance improvement is affected by the relative
strength of the target and disturbance signals and by the hypothesized imperfec-

tions in the HC feedforward control input, expressed in the HC model by model

parameters TI , and τpt .

In this paper, we measure the usefulness of the feedforward path by the perfor-

mance improvement (PI) that the utilization of this feedforward path in addition to

the feedback path causes. The performance is expressed by the root mean square
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(RMS) of the tracking error e, and the PI is expressed as a percentage:

PI =
RMS(eFB)− RMS(eFB+FF)

RMS(eFB)
× 100% 6.7

The subscript FB designates a pure feedback HC model with feedforward gain

Kpt = 0, and the subscript FB + FF designates a HC model with an ideal feed-

forward contribution, Kpt = 1, in addition to the feedback component. A PI of zero
corresponds to no benefit of feedforward (performance is equal with and without

feedforward), a PI of 100% means that the feedforward path was able to reduce
RMS(e) to zero (perfect tracking), and negative PI values indicate that feedforward

had a detrimental effect on performance.

6.4.1 Simulation properties

The simulation results presented in this section are performed with the HC models

introduced in Section 6.3 and model parameter values are as given in Table 6.1,
unless noted otherwise. The simulations did not contain simulated remnant.

The forcing functions ft and fd are shown in Fig. 6.6 and are identical to the

signals used in the human-in-the-loop experiment. The ramp and parabola target

signals consist of one short (3.75 s) upward segment, followed by five longer (7.5
s) alternately downward and upward segments [see Fig. 6.3], followed by a final

short (3.75 s) upward segment. The disturbance signal fd was an unpredictable
multi-sine signal as further introduced in Section 6.5.
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Figure 6.6: Target and disturbance signals. See Fig. 6.3 for an individual ramp and parabola
segment example.

6.4.2 Relative strength of target and disturbance signals

First, the magnitude of fd is varied by multiplication with gain Kd to modulate

the emphasis on either target-tracking or disturbance-rejection. In Fig. 6.6 fd is

plotted for Kd = 1, as is the case during the human-in-the-loop experiment. In



Effects of target signal shape and system dynamics on feedforward 147

these simulations, we consider a wide range of Kd values, between 0.1 and 100, to

cover the entire range between pure target-tracking and pure disturbance-rejection
tasks.

Fig. 6.7(a) shows how the PI depends on Kd. For all conditions the PI is positive

and it is largest for low values of Kd, indicating that the feedforward contribution

improves the target-tracking performance. The PI is close to zero for large values of
Kd, where disturbances are large compared to the target, because the disturbances

can be rejected only through feedback control.
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Figure 6.7: The performance advantage of the feedforward HC model for six different
conditions, as a function of Kd for different values of TI and τpt . (a) TI and τpt as defined in
Table 6.1. (b) TI = 0.05 s and τpt = 0.05 s.

Comparing across conditions, Fig. 6.7(a) shows that the PI is largest and always
larger than zero for both SI conditions, slightly smaller but still larger than zero

for both S2D conditions, and smallest for both DI conditions, for all values of Kd.
For the DI-P condition a small PI is attainable through feedforward, but for the

DI-R condition the PI is negligibly small and almost equal to zero, suggesting that

a feedforward operation does not improve tracking.

The lack of PI due to the feedforward contribution in the DI-R condition is
caused by 1) the limitations and imperfections in the feedforward control strategy

(modeled by TI and τpt ) that cause the feedforward control input to be consider-
ably different from the optimal control input, and 2) the subsequent interaction

between the feedback and feedforward paths that operate simultaneously. In DI-R,

the feedforward path should ideally generate a short, pulse-like control input that
accelerates the system to a velocity matching the ramp velocity directly after the

onset of the ramp. The feedforward input is delayed by τpt and the low-pass filter
causes the feedforward input to be less ‘pulse-like’, such that a large tracking error

builds up following the ramp onsets. If τpe ≈ τpt the feedback path will respond to

this tracking error simultaneously with the feedforward control input, which will
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cause the system output to overshoot the target. Hence, the performance is not

improved by applying feedforward with a large τpt and TI .

To demonstrate that this is indeed the case, the same simulations were per-

formed but now with TI = 0.05 s and τpt = 0.05 s, see Fig. 6.7(b). These parameter
values correspond to a hypothetically skillful HC that is able to accurately predict

the ramp onsets and give sharp, pulse-like control inputs of the correct magnitude

and duration. Choosing these parameter values causes the feedforward control
input to better resemble the ideal feedforward control input and indeed the PI is

much larger for small values of Kd for all conditions. Most notably, the PI is now
clearly positive even for the DI-R condition.

6.4.3 Anticipating the Target Signal

As hypothesized, a well-trained HC might learn to anticipate the course of the target
and perform control inputs with an effectively negative time delay with respect to

ft. To investigate the potential benefits of such an anticipating control strategy,

simulations are performed as a function of τpt for Kd = 1. The feedforward filter
parameter TI was set to 0.05 and 0.15 s (different from Table 6.1) to better illustrate

the effect of τpt , and the interaction between τpt and TI .
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Figure 6.8: The PI as a function of τpt , for Kd = 1 and all model parameters fixed. (a) TI

= 0.05 s. (b) TI = 0.15 s.

Fig. 6.8 shows that τpt has a large, but consistent effect on the PI across all

conditions for both values of TI . Clearly, an optimal time delay τ
optimal
pt exists where

the PI is largest. For all conditions, τ
optimal
pt is slightly below zero and depends on

the value of TI , as can be seen by comparing Fig. 6.8(a) to Fig. 6.8(b). That is,

τ
optimal
pt ≈ −0.1 s for TI = 0.05 s, but τ

optimal
pt ≈ −0.30 s for TI = 0.15 s. The

low-pass filter not only smoothens the feedforward control signal, but also adds

lag. The anticipatory feedforward time delay compensates for this additional lag,

such that the optimal value of τpt is more negative for larger TI . In [Laurense
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et al., 2015], TI values larger than 0.15 s were estimated from experimental data,

so it is to be expected that the HC will attempt to anticipate the target to obtain
a better performance. The results of [Laurense et al., 2015] did not suggest that

anticipatory control action was used for a ramp target, which might be due to the

ramp target itself and different for a parabola segment, or due to the used bounds
in the parameter estimation analysis.

6.5 Experiment

A human-in-the-loop experiment was conducted to validate the hypothesized HC

models and to test the hypotheses derived from simulations with the hypothesized

models.

6.5.1 Method

Apparatus

The tracking task representing an aircraft pitch control task was presented on a
central visual display in a pursuit configuration, that explicitly shows the target ft,

system output θ and tracking error e [see Fig. 6.2]. The display apparatus was a

ViewPixx Lite Visual Stimulus Display with an update rate of 120 Hz and the time
delay of the image generation was in the order of 15-20 ms (measured). The area

of the display used by the pursuit display measured 22 by 22 cm with 800 by 800

pixels resolution, and was placed at a distance of 90 cm from the subject’s eyes. The
display gain was 16 pixels per degree of pitch. No outside visuals and no motion

cues were available.

Subjects used the fore/aft axis of an electrically actuated sidestick to give their
control inputs, u. The stick had no break-out force and a maximum deflection of

±17 deg. Its stiffness was set to 1.0 N/deg over the full deflection range, and its

inertia to 0.01 kg · m2; the damping coefficient was 0.2. The lateral axis of the
sidestick was locked.

Independent Variables

The independent variables were three different system dynamics and three different

target signals.

The experiment considered the three different controlled element dynamics
given in (6.1) through (6.3). The three different target signals considered in the

experiment were the ramp (R) and parabola (P) signals as shown in Fig. 6.6, and
an additional signal equal to zero for the entire measurement time (Z). Each subject

performed each combination of system dynamics and target signal, resulting in a

total of nine conditions.
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Disturbance Signal

The disturbance signal fd was a multi-sine signal, consisting of twenty frequency

components, see Table 6.2, and was generated through (6.8).

fd(t) = Kd

20

∑
i=1

A fd
(i) sin

[

n fd
(i)ωmt + φ fd

(i)
]

6.8

In (6.8), ωm = 2π/Tm with Tm the measurement time equal to 81.92 s. The phases

of the sinusoids were chosen such that the signal appeared random. Kd was set to
1.

Table 6.2: Disturbance signal components

n fd
A fd

, deg φ fd
, rad n fd

A fd
, deg φ fd

, rad

3 0.7828 1.2690 71 0.0525 0.3656
4 0.7637 2.6766 72 0.0515 4.8493

11 0.5597 4.5225 101 0.0328 0.9056
12 0.5290 1.1222 102 0.0325 4.4812
23 0.2788 4.1590 137 0.0238 1.4743
24 0.2640 1.6998 138 0.0236 5.8833
37 0.1420 1.4078 171 0.0198 3.8822
38 0.1364 6.2706 172 0.0197 5.1612
51 0.0864 5.9928 225 0.0168 0.8126
52 0.0839 0.6057 226 0.0168 4.3437

Subjects and Instructions

Twelve subjects, eleven males and one female, aged 24-34 years (29 years avg.), were

instructed to minimize the pitch tracking error e. After each run the tracking score

was given on the visual display: the mean square of the error e.

Procedure

Subjects performed the nine conditions in three sessions with three conditions each.

The system dynamics were constant throughout each session and thus the subjects

performed all three target signal conditions for one type of system dynamics con-
secutively. The order of the sessions was randomized by a Latin Square design,

and the order of the target signals within each session was randomized by a Latin
Square design as well, see Table 6.3.

The individual tracking runs of the experiment lasted 90 seconds, of which the
last 81.92 seconds (Tm) were used as the measurement data. Tracking performance

was monitored by the experimenter: when subject proficiency in performing the

tracking task had reached an asymptote, five repetitions at this constant level of
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Table 6.3: Order of sessions and conditions for all twelve subjects

Subject Session 1 Session 2 Session 3
S2D SI DI

1
Z R P Z P R P R Z

DI S2D SI
2

R Z P P Z R R P Z
SI DI S2D

3
Z R P R P Z Z P R

SI S2D DI
4

P Z R P R Z Z R P
DI SI S2D

5
Z P R R Z P R P Z

S2D DI SI
6

R Z P P Z R P R Z
SI DI S2D

7
P R Z R P Z R Z P

S2D SI DI
8

Z P R P Z R Z R P
SI S2D DI

9
Z R P P R Z P Z R

DI S2D SI
10

Z P R Z R P R P Z
S2D DI SI

11
P Z R R Z P Z P R

DI SI S2D
12

P R Z R Z P R P Z

tracking performance were collected as the measurement data. On average, each

session took one hour.

During the experiment, the time traces of the error signal e, the control signal

u and the pitch attitude θ were recorded for five repetitions of each experimental

condition. The five time traces were averaged to reduce effects of remnant, resulting
in one time trace for each subject for each condition.

6.5.2 Dependent Measures

Nonparametric Measures

Tracking performance was measured by the root mean square (RMS) of the error

signal.
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Figure 6.9: Generic ARX model structure.

Black-box ARX Identification

The control behavior during the ramp (R) and parabola (P) conditions are identi-

fied by means of the ARX black-box identification method of Chapter 5. It was

developed to objectively identify if and how the HC utilizes a feedforward and/or
feedback control strategy, without making prior assumptions concerning the con-

trol dynamics. The method involves fitting and evaluating many ARX models in

parallel and selecting the best model based on the quality of the fit and the model
complexity, measured by the number of free parameters. The generic structure of

each ARX model is shown in Fig. 6.9 and is described by the discrete time differ-
ence equation of (6.9), with k denoting the discrete time samples of 0.04 s (the data

is resampled to 25 Hz prior to identification).

A(q; na)um(k) = B ft
(q; nb ft

) ft(k − nk ft
)+

Be(q; nbe
)e(k − nke

) + ǫ(k)
6.9

In (6.9), ǫ is a white noise signal, q is the delay operator and the polynomials A, B ft
,

and Be are defined in (6.10).

A(q; na) = 1 + a1q−1 + . . . + ana q−na

B ft
(q; nb ft

) = b ft,1 + b ft,2q−1 + . . . + b ft,nb ft

q

(

−nb ft
+1

)

Be(q; nbe
) = be,1 + be,2q−1 + . . . + be,nbe

q(−nbe+1)

6.10

Each ARX model is described by three model orders and one or two time delay

parameters: a) the number of parameters in the A polynomial na, b) the number

of parameters in the B ft
polynomial nb ft

, c) the number of parameters in the Be

polynomial nbe
, d) the feedforward time delay nk ft

, expressed in integer multiples

of the sample time 0.04 s, and e) the feedback time delay nke
, also expressed in

integer multiples of the sample time 0.04 s. The total number of free parameters d

is the sum of na, nb ft
and nbe

, and the number of time delay parameters. For a pure

feedback model d is equal to na + nbe
+ 1, for a combined feedforward and feedback
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model d = na + nb ft
+ nbe

+ 2. Note that at least 2 parameters in the feedforward

path of an ARX model are necessary to describe the inverse dynamics of an SI, and

at least 3 parameters to describe the inverse of a DI.

The ARX models are estimated from the first 40.96 s (1024 samples) of each set

of data, and evaluated on the last 40.96 s. The best model is the model with the
lowest mBIC value, see Chapter 5 and [Ljung, 1999], defined as:

mBIC = log V + c
d log Nd

Nd
, 6.11

where Nd equals the number of data samples used to calculate V, c is the ‘model

complexity penalty parameter’, and

V =
1

Nd

2Nd

∑
k=Nd+1

(ûm(k)− um(k))
2 , 6.12

measures the quality of the fit, with Nd = 1024. In (6.12), ûm is the control signal
calculated by the model through simulation. We set c = 3, based on a Monte

Carlo analysis with a known model very similar to the expected HC dynamics,
as described in detail in Chapter 5. This particular value of c will prevent ‘false-

positive’ identification of feedforward (i.e., a feedforward model selected from data

generated by a pure feedback model), but maintains sufficient sensitivity to small
but important control dynamics demanding a higher model complexity.

The target signal ft was shifted 1 s backward in time (in similar fashion as in
Section 6.3) to allow for the identification of negative feedforward time delays. Ta-

ble 6.4 shows the range of ARX model orders tested in full-factorial fashion. Hence,

a total of 336,000 ARX models were identified and considered for the model selec-
tion step.

Table 6.4: Range of tested ARX model orders

Order na nb ft
nbe

nk ft
Equiv. τpt nke

Equiv. τpe

s s
LB 1 0 0 1 -0.96 1 0.04
UB 7 7 7 50 1.0 15 0.6

Parametric Model Parameter Estimation

Based on the ARX results and literature we will test six parametric models of differ-

ent structures to obtain further insight regarding the best model structure. The six
models are fit by means of the time domain parameter estimation method of [Zaal

et al., 2009c]. Parameter estimates of the chosen model structure are presented to

gain further insight in the adaptation of the HC to the control task properties.
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To compare the quality of the obtained models, the Variance Accounted For

(VAF) of the models is calculated through

VAF =

(

1 −
∑

N−1
k=0 |um(k)− û(k)|2

∑
N−1
k=0 um(k)2

)

× 100%, 6.13

with û the modeled and um the measured control signal.

6.5.3 Hypotheses

The simulation analysis revealed that a feedforward control strategy provides a
considerable performance improvement for all conditions, but only in specific cir-

cumstances for the DI-R condition. Laurense et al. [Laurense et al., 2015] found
evidence for an inverse dynamics feedforward operation for all system dynamics

considered here with a ramp target, although results were less consistent across

subjects for the DI. Therefore, we expect to identify an inverse system dynamics
feedforward operation for all subjects, with all system dynamics, and for both the

ramp and the parabola targets, except in the DI-R condition. We expect consider-
able variability between subjects for the DI-R condition. (H.I)

The required feedforward control inputs upt for the parabola target appear more

complex than for the ramp target, as shown in Fig. 6.5. That is, upt is non-stationary

for SI-P and S2D-P, and involves a switch in sign for the DI-P, whereas it is station-
ary for SI-R and S2D-R, and mostly zero for DI-R. The parabola target requires the

HC to match both the velocity and the acceleration, which is arguably more diffi-
cult than matching the velocity alone (as for the ramp). We expect to see differences

in the feedforward dynamics for the parabola compared to the ramp: a less strong

response (lower Kpt ), or a less quick, more ‘cautious’ response (higher TI). (H.II)

We expect to see evidence for anticipatory feedforward control, indicated by
negative τpt , but possibly only for exceptionally skilled subjects and not in all con-

ditions. (H.III) Neither Drop et al., [2013] nor Laurense et al., [2015] found evidence
of anticipatory control inputs for the ramp target, but this is possibly due to the

used constraints in their analysis method or the considered target signals (ramps).

6.6 Experiment results

6.6.1 Measured Time Traces

Representative time traces of the measured control signal u, error e, and output

θ are plotted in Fig. 6.10, for all ramp and parabola conditions (subject 1). The

time traces are shown only between 23 and 35 s of the measurement time, to better
demonstrate the behavior during the ramp and parabola segments.

Fig. 6.10(a) shows the control signal u as measured during ramp segments for all

three system dynamics. Comparing Fig. 6.10(a) to Fig. 6.5(a) large similarities can
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Figure 6.10: Representative time traces. (a) and (b) Control signal u for ramp and parabola
conditions, respectively. Target ft scaled by 0.25 and shifted up. (c) and (d) Target ft, system
output θ and tracking error e (scaled by a factor 3) for ramp and parabola conditions,
respectively.
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Figure 6.11: The RMS of the tracking error for all conditions.
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be seen, but it is important to note that in Fig. 6.10(a) the effect of the disturbances

are also present. Indeed, the shape of u for SI-R is similar to a plateau, for S2D-R is
it similar to a lower plateau with an initial pulse, and for DI-R two pulses around

the onset and endings of the ramp segment can be distinguished. Upon comparing

Fig. 6.10(b) to Fig. 6.5(b) a similar equivalence is observed in parabola conditions.
The shape of u for SI-P and S2D-P is a triangle, and for DI-P u resembles two small

plateaus of opposite sign to match the constant acceleration and deceleration of
the target. Note that the apparent resemblance between the ideal control signals

and the measured control signals does not provide evidence regarding the utilized

control strategy.
Fig. 6.10(c) illustrates that in general subjects could track the ramp target sig-

nal adequately, with tracking errors remaining smaller than ±5 deg. Similarly,
Fig. 6.10(d) shows that the subjects could also adequately track the parabola target

signal, and had smaller spikes in the error signal around the onset of the parabolas

than for the ramps.

6.6.2 Tracking performance

Fig. 6.11 shows the RMS of the tracking error e which is a metric of performance,

for each condition averaged over all twelve subjects. The error bars indicate the 95%

confidence intervals corrected for between-subject variability.
For all target signals, the performance is best for SI dynamics, then S2D dy-

namics, and worst for DI dynamics. For all dynamics, the performance is best for
the zero target signal, then the parabola, and worst for the ramp signal. The best

performance was obtained for the zero target signal, as here subjects could focus

entirely on the rejection of the disturbances. Tracking performance for the parabola
target signal was better than for the ramp target signal, mainly because the veloc-

ity of the ramp changes instantaneously such that tracking errors increase quickly
before subjects can respond. The onset of the parabolas was more gentle and thus

the tracking error remained smaller [see Fig. 6.10(c) and Fig. 6.10(d) at 24 and 32 s].

These results presented so far contradict the assumptions on which hypothesis H.II
relies; the parabola segments were apparently not more difficult to track than ramp

segments.

6.6.3 Black-Box ARX Identification Results

Results as a Function of c

Fig. 6.12(a) shows how the quality of the selected ARX models, measured by the
VAF, depends on the value of c, averaged over all 12 subjects. The data are presented

on a logarithmic scale and the value of c chosen based on simulations (c = 3),
for which all subsequent results are shown, is marked by a vertical dashed line.

As expected, the model quality is high for small c and becomes smaller as c is

made larger. The VAF decreases rapidly at a specific value of c depending on the
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Figure 6.12: Model selection results. (a) The VAF of the selected ARX models as a function
of c, averaged over all subjects. (b) The number of parameters in the feedforward path nb ft

of the selected ARX models as a function of c, averaged over all subjects. (c) Histogram of
nb ft

of the selected ARX models counted by subject, for c = 3.

condition: for the SI conditions this ‘knee point’ is seen at 80 and 150 (ramp and

parabola, respectively) and for both S2D conditions at 40. The curves for DI-R and
DI-P are more separated and the knee points at c ≈ 70 for DI-R and c ≈ 30 for DI-P

are less abrupt, suggesting that a larger variability between subjects is present.

Fig. 6.12(b) shows how the number of parameters in the feedforward path nb ft

depends on the value of c, averaged over all 12 subjects. Note that the ARX model
for each individual subject has an integer number of parameters; fractional results

are caused by averaging over 12 subjects. For small c the number of parameters
is large, indicating a high model complexity, and vice versa. For the SI and S2D

conditions, a similar ‘knee point’ is seen at exactly the same values of c for which the

quality of the model decreased rapidly: for the SI conditions this ‘knee point’ is seen
at 80 and 150 (ramp and parabola, respectively) and for the S2D conditions at c ≈ 60.

This indicates that the feedforward path constitutes an important contribution to
the model and without it the model has little explaining value.

Although the metrics of model quality and model complexity both do not show

a clear ‘knee point’ for the DI-P condition, there is a strong correlation between

the two. That is, for larger c the number of parameters in the feedforward path
decreases and so does the quality of the model, albeit not very abruptly. Note

that these results are averaged over 12 subjects and the lack of a clear knee point
could mean that there are larger differences between the individual feedforward

contributions than in the SI and S2D conditions. We conclude that for the DI-P

condition the feedforward path is an essential aspect of the model.

Finally, for the DI-R condition there is little correlation between Fig. 6.12(a) and

Fig. 6.12(b). Although the feedforward path on average contains less than 1 param-

eter for c = 6 the VAF is still well above 80%: only a few percent lower than for
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c = 1. As such, it seems that for the DI-R condition the feedforward path is not an

essential part of the HC model and could be left out.

Based on the results presented as a function of c, we see no reason to change

our choice to use c = 3, which was initially based on Monte Carlo simulations,

Chapter 5. For c = 3, the VAF of the selected model is almost as high as for much
smaller values of c, but the models contain fewer parameters, suggesting that these

parameters do not describe actual HC control dynamics.

The histogram in Fig. 6.12(c) shows the number of subjects for which a model
with a particular number of parameters in the feedforward path was selected, to

assess the consistency of the selected models across subjects for c = 3. The figure
shows that in all SI and S2D conditions, a model with at least 2 parameters in the

feedforward path was selected, and that occasionally a more complex model was

selected. For the DI-P condition the selected models are consistent as well, with ten
out of twelve subjects for which nb ft

= 3 and the remaining nb ft
= 0. In the DI-R

condition a large variation is seen across subjects, illustrating that the feedforward

contribution is small and inconsistent across subjects.

Single integrator dynamics (SI)

Fig. 6.13(a) and (b) show the feedforward (Ŷpt ) and feedback (Ŷpe) frequency re-

sponses of the selected ARX models (c = 3) for the SI-R condition of all subjects.
The range for which the identification results are valid is indicated with two dashed

vertical lines, marking the lowest and highest frequency component in the multi-

sine disturbance signal fd. Below and above this frequency range, the HC dynam-
ics were not simultaneously exited by two uncorrelated forcing functions as fd does

not have power here, and therefore the estimates are not strictly valid outside this
range.

Fig. 6.13(a) shows that for all subjects a feedforward response was identified that

approximates inverse SI dynamics. That is, the magnitude plot has a slope equal to
a differentiator and the phase is close to 90 deg at frequencies lower than 1 rad/s

for most subjects. Between 1 and approximately 8 rad/s, the magnitude of the

feedforward response levels off in similar fashion to a low-pass filter with a corner
frequency between 1 and 4 rad/s. At even higher frequencies, most responses

show a peak similar to the NMS peak in the feedback path. Furthermore, the phase
response in Fig. 6.13(a) suggests that a considerable time delay was present in the

feedforward path for most subjects. The two subjects for which the phase becomes

exponentially positive correspond to selected models with a negative time-delay,
indicating that these subjects were anticipating the target signal.

Fig. 6.13(b) shows the identified feedback response of all subjects. The structure
of the feedback responses are as expected for SI dynamics based on the Extended

Crossover Model [McRuer et al., 1965]: they resemble a gain at lower frequencies

and have a neuromuscular peak around 10 rad/s.
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Figure 6.13: The frequency response of the selected ARX models for c = 3 for all subjects.
(a) SI-R, Ŷpt . (b) SI-R, Ŷpe . (c) SI-P, Ŷpt . (d) SI-P, Ŷpe .
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Ŷ

p
t,

d
eg

ω, rad/s

|Ŷ
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Figure 6.14: The identified ARX models for all subjects, condition S2D-R. (a) S2D-R, Ŷpt .

(b) S2D-R, Ŷpe . (c) S2D-P, Ŷpt . (d) S2D-P, Ŷpe .
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Figure 6.15: The identified ARX models for all subjects for DI conditions. For DI-R, an
ARX model without feedforward contribution was selected for 3 out of 12 subjects, for DI-P
for 2 out of 12 subjects. (a) DI-R, Ŷpt . Note the deviating range of the ordinate axis from

the other presented Bode plots. (b) DI-R, Ŷpe . (c) DI-P, Ŷpt . (d) DI-P, Ŷpe .
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Fig. 6.13(c) and (d) show the feedforward and feedback frequency responses of

the selected ARX models for the SI-P condition. Note the strong similarity with the
results of the SI-R condition. The feedforward response resembles inverse system

dynamics for all subjects at low to medium frequencies. The corner frequency

of the apparent low-pass filter is more consistent across subjects than in the SI-R
condition and at a lower frequency (around 1 rad/s). The exponentially positive

phase responses indicate that all but one subject anticipated for the target signal
(negative feedforward time delay).

The feedback responses are very similar to the responses identified for the SI-R

condition, but less consistent across subjects.

Second-order system (S2D)

Fig. 6.14(a) and (b) show the feedforward and feedback frequency responses of the
selected ARX models for the S2D-R condition. Fig. 6.14(a) shows that for all subjects

a feedforward response was identified that follows the inverse system dynamics
closely below 1 rad/s. The feedforward response resembles a differentiator up to

10 rad/s, where a NMS peak is seen. A considerable time delay is present for all

but one subject.

The feedback response [see Fig. 6.14(b)] resembles the Extended Crossover Model:

a gain at lower frequencies, a lead around the crossover frequency and a neuromus-
cular peak around 10 rad/s. The phase response provides evidence for a consider-

able time delay.

The primary difference in the feedforward responses between S2D-R and S2D-P
[see Fig. 6.14(c)] is the phase: for S2D-P the subjects anticipate for the target signal.

The feedback responses of S2D-P [see Fig. 6.14(d)] are very similar to S2D-R and
resemble the Extended Crossover Model.

Double integrator dynamics (DI)

Fig. 6.15(a) and (b) show the feedforward and feedback frequency responses of

the selected ARX models for the DI-R condition. The five subjects for which 0 <

nb ft
< 3 are plotted in a different style, for easy comparison with the theoretically

ideal 1/Yc feedforward. For five other subjects a model for which nb ft
≥ 3 was

selected: these models follow the inverse system dynamics, albeit with a low gain
(≈ 0.2), suggesting that these subjects utilized feedforward. The selected models

of the remaining two subjects had nb ft
= 0, such that it is not clear whether they

utilized feedforward as well. However, as the ARX analysis takes into account
the entire 81.92 s of data, it is possible that these subjects managed to utilize a

feedforward strategy for certain ramp onsets or endings, but not for all, resulting
in an ambiguous model selection. The feedback responses shown in Fig. 6.15(b)

match the Extended Crossover Model very well, with a gain at low frequencies and

a lead around the crossover frequency.
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Fig. 6.15(c) and (d) shows the feedforward and feedback frequency responses

of the selected ARX models for the DI-P condition, which are remarkably differ-
ent from DI-R. The feedforward responses of ten subjects consistently approximate

1/Yc, but have a magnitude slightly smaller than the ‘ideal’ as seen by comparing

them with 1/Yc. For these subjects, nb ft
= 3, which is needed to invert the double

differentiator. The effect of a possible low-pass filter is not visible in these results,

possibly because the effect is too small to be included and the NMS system has a

very similar effect on the feedforward control signal. The phase shows relatively
strong variation between subjects, likely because of the high levels of remnant usu-

ally seen for double integrator dynamics and the relatively small contribution of
the feedforward path. The feedback response, shown in Fig. 6.15(d), is again very

similar to the form of the Extended Crossover Model.

6.6.4 Time Domain Parameter Estimation Results

Now that the black-box ARX method identified a feedforward response approx-
imating inverse system dynamics consistently across subjects for all SI and S2D

conditions and the DI-P condition, it is considered appropriate to fit parametric
HC models to gain further insight in the precise feedforward dynamics. The ARX

method did not reveal the best order of the low-pass filter, and suggested even that

for DI conditions no low-pass filter action is present. Furthermore, all feedforward
estimates included NMS dynamics in the feedforward path, but this is possibly a

result of the common denominator of the feedforward and feedback paths in the
ARX models, causing an ‘either/or’ model choice: either both paths have NMS

dynamics, or none.

We attempt to reveal the best feedforward model by fitting six candidate models:

the different models contain either no low-pass filter (nLPF), a first-order low-pass
filter (LPF1), or a second-order low-pass filter (LPF2), and the NMS acts either on

the feedback path only (nNMS), or on the feedforward and feedback path simulta-

neously (NMS). For example, the model with a first-order low-pass filter and the
NMS acting on both paths simultaneously is designated NMS-LPF1.

Fig. 6.16 shows the VAF of the six candidate models for all six conditions each.

The VAF values are large for all models and all conditions and differences between

models are generally small. Differences in VAF are largest between models without
a low-pass filter and models with a first or second order filter, whereas the LPF2

models are slightly better than LPF1 models for all conditions, but not statistically

significant. Nevertheless, a choice for a model with a second order low-pass fil-
ter seems justified based on these results, for its consistently higher VAF for all

conditions.

Comparing nNMS-LPF2 to NMS-LPF2, no significant differences are seen, most
likely because the second-order filter removes virtually all high frequency content

from ft and thus the NMS dynamics do not influence the feedforward control signal.

The choice for the ‘best’ model structure therefore remains ambiguous; here we
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choose the nNMS-LPF2 model for further analysis to be consistent with [Laurense

et al., 2015].
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Figure 6.16: VAF.

SI and S2D Conditions

Fig. 6.17 shows the mean and 95% confidence intervals of the estimated model pa-
rameter values for the nNMS-LPF2 model, for all subjects and all conditions. In the

SI and S2D conditions, the estimates are generally consistent across subjects, and

consistent with the ARX analysis and with literature [Drop et al., 2013; Laurense
et al., 2015]. For the Z conditions, the fit model was identical to the nNMS-LPF2

model, except for that the feedforward path was removed. Hence, only estimates
for the compensatory and neuromuscular elements are shown for these conditions.

We decided not to do a statistical analysis concerning the significance of ob-

served differences and trends, because 1) different models were fit to the Z condi-
tion (feedback only) and the R and P conditions (feedforward/feedback), 2) differ-

ent models were fit to the SI conditions and the S2D and DI conditions (additional

lead term), and 3) the ARX analysis showed that HC behavior in the DI-R condition
requires a different HC model than the one used in this analysis. Furthermore, a

statistical analysis was not necessary to address the postulated hypotheses.

The feedforward gain Kpt is slightly smaller than 1 for all conditions except
SI-P: the mean estimated value is slightly above 1 for this condition. In previous

studies involving ramp targets, Kpt was usually found to be smaller than 1 and was
believed to reflect a strategy to prevent overshoot at the end of a ramp segment.

Because the target is perceivably slowing down it is easier to predict the end of a

parabola segment, and subjects are less likely to overshoot, reflected by the slightly
higher value for Kpt in parabola conditions.

The feedforward time delay τpt depends strongly on the target signal: it is close

to zero for SI-R and S2D-R, but considerably smaller than zero for SI-P and S2D-P,
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Figure 6.17: Model fit parameter values averaged over all subjects, error bars show 95%
confidence intervals corrected for between-subject variability.

indicating anticipatory control inputs. In [Laurense et al., 2015], the estimated val-

ues for τpt were considerably larger than zero, most likely because in [Laurense et

al., 2015] the ramp endings were removed from the analysis after subjects reported
that these were easier to anticipate than ramp onsets. In our analysis, the full 81.92 s

is used and thus we find lower values for τpt . The difference is further explained by
the shorter duration of the individual ramp segments and the constant segments in

between than in [Drop et al., 2013; Laurense et al., 2015], making it easier to predict

the ramp onsets and endings.

The estimated values for TI are similar to [Laurense et al., 2015] despite the

small differences in the analysis. For S2D-R, the mean and confidence intervals
do not represent the results distribution well, as one outlier result is situated at

TI = 0.95 s; the remaining subjects have a lower TI value for S2D-R than for S2D-P.

As such, TI is smaller for ramp conditions than for parabola conditions for both
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SI and S2D, meaning the feedforward response is quicker and more high frequent

for the ramp. Because subjects are able to anticipate the parabola signal better than
the ramp, there is possibly less incentive to give quick, aggressive control inputs; a

gentle, well-timed input is sufficient.

The feedback gain Kpe and lead time constant TL depend on the system dynam-
ics only, and are very similar to values found in previous studies [Drop et al., 2013;

Laurense et al., 2015]. Differences between estimates for the R and P conditions
and the Z condition are small for Kpe and TL. The feedback time delay τpe depends

mainly on the system dynamics, where dynamics requiring lead (S2D and DI) have

a higher time delay than the SI. For the SI, τpe depends on the target signal in a
similar fashion as seen previously in [Drop et al., 2013], where τpe was found to be

significantly higher for faster ramp targets with SI dynamics. During the parabola,
the maximum velocity of the target is larger than the constant velocity during the

ramps.

Finally, the NMS parameters ωnms and ζnms depend mainly on the system dy-

namics, consistent with literature. Subject 7 reported holding the stick differently

in the S2D-Z condition in an attempt to find a more comfortable position. This
resulted in neuromuscular parameter estimates very different from the other condi-

tions and subjects.

DI Conditions

The individual results for each subject are plotted next to the mean and confidence

intervals in Fig. 6.17, because of the non-uniform ARX model selection for different

subjects in these conditions [see Fig. 6.12(c)]. Subjects for which a feedforward path
with less than three parameters was selected are marked differently, because three

parameters are necessary to describe the inverse dynamics of a DI.

The results for Kpt are consistent with the ARX results in the DI-P condition:

the two subjects for which a pure feedback model was selected have a considerably

smaller feedforward gain than the remaining ten subjects. This marks the first time
a feedforward response was identified reliably for the DI. That is, an inverse system

dynamics feedforward response was identified through a black-box method first,
followed by a parameter estimation analysis that returns results consistent with the

black-box method across many subjects.

For the DI-R condition, however, there is no apparent correlation between the
estimated Kpt value and the selected ARX model. The feedforward contribution

is very small in the DI-R condition, and the large variability in the HC response
to the ramp onsets and endings cause large variability in the model identification.

To obtain more insight in the feedforward behavior for DI-R, other analyses are

necessary.

The low-pass filter time constant TI is larger for the DI-P than the SI and S2D

conditions, and τpt is estimated strongly negative indicating anticipatory control
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inputs. These parameter values reflect a ‘cautious’ feedforward response: the in-

puts are smaller than ideal (Kpt ≈ 0.9), low frequent, and anticipatory to prevent
overshoot.

The feedback parameter estimates are consistent with the DI-Z condition and

with literature.

6.6.5 Anticipatory Feedforward Control Inputs

Both the ARX and the parametric model fit results indicate that the feedforward

time delay is negative, hence anticipatory, in the SI-P, S2D-P, and DI-P conditions.

Evidence of such anticipatory feedforward control inputs is also found in time
traces of subject control inputs. Fig. 6.18 compares the ‘ideal’ feedforward control

signal uideal
pt

equal to ft · 1/Yc(s), to the measured control signal u minus an estimate
of the feedback contribution ûpe = e(t) · Ype(s)Ynms(s), which is an estimate for upt

without assuming a specific model for Ypt . Furthermore, ûpt as provided by the

NMS-LPF2 parametric model is shown.
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Figure 6.18:

For SI-R, Fig. 6.18(a), u − ûpe is delayed with respect to uideal
pt

following the
target discontinuities (onset and endings of the ramp segment), while during the

ramp segment it oscillates around the ideal feedforward input. The estimated feed-
forward control signal ûpt of the NMS-LPF2 model is also delayed (such that τpt > 0

s), and of slightly smaller magnitude than the ideal (such that Kpt < 1). For the

ramp target signal, the effect of TI is only observable around the target disconti-
nuities, Fig. 6.5. Whereas a peak in u − ûpe is seen around the ramp ending at

65 s, a clear peak following the ramp onset at 57 s is lacking, suggesting that a
considerably different value of TI would be identified for each ramp discontinuity.

For SI-P, Fig. 6.18(a), u − ûpe is also delayed after the onset of the parabola

segment, but is mostly ‘synchronized’ with or even leads uideal
pt

during the remainder

of the parabola segment. The sharp peak in uideal
pt

around 60 s is absent from u− ûpe ,
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demonstrating that the subjects indeed provide a feedforward control input with a

limited bandwidth (such that TI > 0). Furthermore, it seems that around 59 s the
feedforward control input u − ûpe is reduced in anticipation of the reversal in the

acceleration of the target at 61 s, see also Fig. 6.3(b).

6.7 Discussion

The black-box ARX identification method provided strong evidence for an inverse

system dynamics feedforward operation on the target, confirming our first hypoth-

esis H.I. This result is important, because it is the first time feedforward is identified
from experimental data using a black-box method that explicitly takes into account

model complexity to prevent false-positive feedforward identification, Chapter 5.
Furthermore, it is the first time an inverse system dynamics feedforward response

was identified for the difficult to control DI dynamics.

For the DI-R condition, the feedforward model has a good quality of the fit
(>80%) for all subjects, but the feedforward parameter estimates are not consistent

between subjects. The performance improvement analysis, utilizing a HC model,

showed that feedforward is useful for the DI-R condition only if the feedforward
is fast and timed appropriately (anticipatory). Subjects are likely attempting to

provide such a fast and anticipatory response at every ramp onset and ending, but
only manage to do so in a limited number of cases. Their success depends on how

well the onset or ending can be predicted (e.g., by counting), and a different set of

feedforward model parameters would be identified for each onset or ending. The
analysis method assumes the behavior to be stationary over 81.92 s and is therefore

not suited for the DI-R condition. We recommend future work to investigate the

specific feedforward contribution around target signal discontinuities, and will not
consider the DI-R condition in the remainder of this discussion section.

We expected that using a feedforward control operation was more difficult for

the parabola target signal (H.II), but no evidence was found to support this hypoth-
esis. Contrary to our expectations, a slightly stronger feedforward response was

found (larger Kpt) for parabola conditions. Small differences in the low-pass filter
settings were found for the SI only (larger TI for SI-P than SI-R), but these were not

large enough to argue that a feedforward operation was more difficult.

Anticipatory feedforward control was identified in all conditions for more than
one subject, but mainly in parabola conditions, confirming hypothesis H.III. We

hypothesize that the differences in estimated feedforward time delay between ramp

and parabola conditions are caused by a complex interaction between non-linear
HC behavior and the used (linear) identification methods. First, we hypothesize

that in fact two types of feedforward time delay τpt are present in the feedforward
response of the HC: 1) a discrete reaction time in detecting the onset of the ramp

or parabola segment, and 2) a continuous time delay during the ramp and parabola

segments. Then, we observe that the delay τpt can be estimated only during time
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instances where upt is varying in time (non-constant). For all ramp conditions, upt

is only non-constant close to the ramp onsets and ends, and is constant in between.
Hence, for ramp conditions, the analysis methods will identify the time delay just

following the onsets and ends, which corresponds with the reaction time and is

indeed around 200 ms [Luce, 1986] for most subjects. During a parabola segment
upt is continuously changing for SI and S2D dynamics, and switches sign once

halfway the segment for the DI. For parabola conditions τpt is estimated close to
the continuous time delay, which is negative for all but one subject.

We hypothesize that in this experiment the feedforward control behavior con-

sisted of learned pre-cognitive motor commands, rather than visually guided con-
tinuous pursuit control behavior. First, it is generally accepted that the HC cannot

accurately perceive object acceleration, which would however be required for vi-
sually guided pursuit control in the DI-P condition, and to a lesser extend in the

S2D-P condition. Second, the anticipatory feedforward time delay suggests that the

HC is executing control commands before they are perceived visually on the pursuit
display. The pre-cognitive motor commands are triggered by the recognition of a

ramp or parabola onset, after which they are executed in open-loop fashion. The ac-
tual control strategy is thus considerably different from the model used to analyze

the results.

The black-box ARX identification method of Chapter 5 was developed to ob-

jectively identify the HC dynamics from experimental data involving realistic tar-

get signals that possibly invoke feedforward control behavior. The model selec-
tion criterion is tunable through the model complexity penalty parameter c based

on Monte Carlo simulations. These simulations evaluate the occurrence of ‘false-

positive’ or ‘false-negative’ results for particular values of c, such that an appropri-
ate value of c can be chosen a priori. The model complexity penalty parameter also

provides an intuitive means to investigate the relation between model quality and
complexity post-hoc. We showed that the complexity of the selected models does not

change for a wide range of c values, which gives us a strong argument for choosing

this particular model for further analysis through the time domain parameter esti-
mation method. We argue that the identification method of Chapter 5 should not

replace, but complement the time domain parameter estimation method of [Zaal
et al., 2009c] in future studies.

We proposed to use simulations with HC models to investigate the performance
improvement with feedforward and use this as a predictor for feedforward behav-

ior. The fact that the actual control strategy is considerably different from the HC

model (pre-cognitive vs. pursuit) means this approach has only limited applica-
bility. The HC models should be improved to reflect the actual control strategy

and make better predictions. An important, but as of yet poorly understood aspect
influencing feedforward behavior is the subjective predictability of the target signal.

Future work should focus on quantifying and understanding effects of the subjec-

tive predictability on pre-cognitive and pursuit control behavior.
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6.8 Conclusions

This paper studied the effects of target signal waveform shape and controlled el-

ement dynamics on human feedforward control behavior in tracking tasks with
predictable target signals and an unpredictable disturbance signal. Two target

waveform shapes are evaluated, consisting of constant velocity ramp segments or
constant acceleration parabola segments. Three vehicle-like system dynamics were

investigated: a single integrator, a second order system, and a double integrator.

From a human-in-the-loop tracking experiment we conclude that: 1) a combined
feedforward and feedback control strategy, modeled accurately by a quasi-linear

model, was identified for all dynamics with the parabola target, and for the single
integrator and second order systems with the ramp target; 2) evidence of non-

stationary control behavior was found for the double integrator and ramp tracking

task; 3) the HC is able to anticipate for the future course of the parabola target
signal given extensive practice, reflected by an estimated negative feedforward time

delay; and 4) the feedforward model parameters are very different between the two

target waveform shapes, illustrating the limited predictive power of the quasi-linear
model.
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feedforward control
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The central hypothesis concerning the ability of the human to develop
a pursuit or even a precognitive control organization states that these

levels are reached more effectively with ‘predictable’ target signals. The

predictability of a target signal was, however, never experimentally in-
vestigated. Magdaleno et al., [1969] postulated an extensive hypothesis

grouping different classes of signals based on their predictability. For
a select number of these classes, experimental studies were performed

that sought to investigate the predictability of the signals and the control

strategies adopted by the human during tracking, but never with the use
of system identification and parameter estimation techniques. This chap-

ter describes a study investigating the subjectively perceived predictabil-
ity of sum-of-sine signals, and the adaptation of feedforward and feedback

control behavior to variations in the properties of such signals, through

a parameter estimation analysis with the HC model developed in Chap-
ter 6.
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7.1 Introduction

Manual control often requires a Human Controller (HC) to steer a dynamic system

along a certain reference path while being perturbed by a disturbance. An exam-
ple is riding a bicycle on a winding road, where the road is the ‘target’ trajectory

and the wind is the ‘disturbance’. Several information sources are used to control
the bicycle, such as visual, vestibular, somatosensory and proprioceptive informa-

tion about the current state of the bicycle, but also the visual information of the

road ahead. In many everyday manual control situations, the human controller has
prior information about the route that has to be followed. If the cyclist travels a

familiar route, there is information about the target path from memory. In this case
the target path is known and the controller can use this information to optimize

performance without decreasing stability.

Previous manual control research focused on the HC tracking either very pre-

dictable target signals, e.g., signals which consist of only one or two sine waves [Pew

et al., 1967; Yamashita, 1989] or very unpredictable signals, such as the well-known
quasi-random forcing functions which contain at least ten sine waves [Wasicko et al.,

1966; McRuer and Jex, 1967]. These studies did not give a clear definition, however,

for the predictability of the target signal. They merely stated that the target signal
was predictable, or not. A thorough understanding of factors that may affect the

human’s ability to predict the (near) future of the target signal is not available. This
lack of knowledge stands in stark contrast with the well-known fact that a HC’s

control strategy changes significantly when the target signal becomes predictable.

Hence, it is our objective in this paper to perform a first investigation into what fac-
tors affect the predictability of target signals used for manual control experiments.

For several decades, three different control strategies have been distinguished
for tracking tasks, described first in [Krendel and McRuer, 1960] in their successive

organization of perception (SOP) scheme: compensatory, pursuit and precognitive
control. The compensatory control strategy is based on controlling a dynamic system

purely on the error e, defined as the difference between the target signal ft and the

controlled element (CE) output θ: e = ft − θ. With a compensatory display, the HC
simply aims at minimizing the error. When the target signal is unpredictable, the

control strategy is feedback-only.

In pursuit tracking, more information is presented to the HC. Here, with a pur-

suit display, the target signal and system output are explicitly shown, allowing the
HC to infer error from the difference between both signals, and to act on all three

possible inputs in some way to improve tracking performance. In [Wasicko et al.,

1966] it was first reported that the HC control strategy changes considerably, and
performance improves, suggesting that the HC applies a feedforward control on

the target signal, combined with a feedback on the error. At the highest level of
the SOP, precognitive control, the HC operates in an ‘open loop’, pure feedforward

mode on the target signal. It is assumed that the HC has complete information

about the target (visually, e.g., when presented on a preview display, or in memory,
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Figure 7.1: The levels of (subjective) predictability as proposed in [Magdaleno et al., 1969].

when the HC has memorized the target), as well as close-to-perfect knowledge of
the system dynamics, and little to no feedback is needed.

In [Magdaleno et al., 1969] these three control strategies were studied, and for

the first time an attempt was done to look at how the shape of the target signal

affects the control strategy adopted by the HC, see Figure 7.1. One of the main hy-
potheses stated, was that HCs can reach higher SOP levels at an earlier stage when

the target signals become more and more predictable. This hypothesis, however,
was not experimentally verified.

Recently, system identification and parameter estimation methods have become
available to obtain objective evidence for the claims reported in [Wasicko et al.,

1966] and [Magdaleno et al., 1969]. Different methods to objectively measure and
model the HC feedforward behavior were developed in [Drop et al., 2013; Laurense

et al., 2015]. In this paper these methods are used to identify the strength of the HC

feedforward path, as a function of the level of predictability of the target signals.
From the many possible dimensions to be investigated (see [Magdaleno et al., 1969]

for a complete overview) two particular characteristics of a sums of sinusoids target
signal were studied: (i) the number of sinusoid components, and (ii) the use of

harmonic components in the target signal, or not.

For this purpose, a human-in-the-loop tracking experiment was conducted. Apart

from the objective measurement of the HC feedforward-feedback control behaviour
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from the experimental time traces, the level of predictability was also measured in a

subjective way, by asking the participants their opinion of the signal’s predictability.

The paper is structured as follows: Section 7.2 provides more background in-
formation on the predictability of signals in tracking experiments. Section 7.3 de-

scribes the HC model structure and model parameters, which are used to character-

ize the observed control behavior. Section 7.4 describes the experiment, the results
of which are presented in Section 7.5. The paper ends with conclusions.

7.2 Signal Predictability

7.2.1 Introduction into Predictability

In [Magdaleno et al., 1969] it is hypothesized that a predictable target signal will

make the HC able to reach the pursuit and precognitive phases of the SOP in an
earlier stage, yielding a better performance. The first ideas to categorize target

signals by their level of predictability was also done by Magdaleno et al., who used

three dimensions: (i) waveform shape complexity, (ii) waveform time variations,
and (iii) waveform masking by noise.

The waveform shape complexity means that in tracking a forcing function with a

repetitive pattern, subjects first focus on getting the correct ‘directions’ of the signal,

then on the ‘timing’ and finally (and to a lesser extent) the ‘amplitude’. Regarding
the waveform time variations, it is either the amplitude or the frequency of the tar-

get signal that will change over time, e.g., in amplitude- or frequency-modulated
signals. If the variation in time is large, the signal becomes less predictable, as com-

pared to a smaller variation in time. Considering the waveform masking by noise,

colored noise is added in the frequency region of the target signal. Possible metrics
for predictability are then the signal-to-noise ratio and various coherence functions.

With these dimensions in mind, Magdaleno et al. presented a table with the

different gradings for the (subjective) predictability [Magdaleno et al., 1969], see

Figure 7.1. Signals in the top left corner (Category A-1) are assumed to be the most
predictable; signals in the lower right corner (Category C-4) are the least predictable

signals. Although providing great insight, none of these claims were experimentally
validated. In this paper we will study only the harmonic patterns (Category B-1).

7.2.2 Harmonic and Non-harmonic Signals

For a sine wave with fundamental frequency f0, the harmonic frequencies are those
with a frequency that is an integer multiple of f0 (2 f0, 3 f0, . . . ). Signals where all

components are harmonics of the lowest frequency are called harmonic signals. If
this is not the case, it is a non-harmonic signal. Harmonic signals show a repetitive

pattern with a shorter period than the non-harmonic signals.

We aim to study the effect of a signal being harmonic (H) or non-harmonic

(NH). The sinusoid frequencies were chosen in such a way that eight periods of
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the harmonic signals fit in one experimental run (with measurement time Tm=81.92

s). The period of the non-harmonic signals was equal to the measurement time.
In addition, signals either consisted of Nt = 2, 3 or 4 sinusoid components with

different frequencies. This yields six possible target signals (2H, 3H, 4H; 2NH,

3NH, 4NH) that will act as the main independent variable in our investigation.

Table 7.1: Target signal properties.

Harmonic (H) Non-Harmonic (NH)

nt ωt, rad · s−1 At, deg nt ωt, rad · s−1 At, deg
8 0.614 3.583 8 0.614 3.583
16 1.227 2.289 15 1.150 2.430
24 1.841 1.445 25 1.917 1.370
32 2.454 0.967 31 2.378 1.013

Table 7.1 lists the target signal properties. The signals were obtained by inserting
these properties in:

ft(t) =
Nt

∑
k=1

At(k) sin(ωt(k)t) 7.1

Target signal amplitudes At(k) were scaled using the low-pass filter of [Zaal et al.,
2009a]:

HA(jω) =
(1 + TA1

jω)2

(1 + TA2
jω)2

, 7.2

with TA1
= 0.1 s and TA2

= 0.8 s.

For the non-harmonic signals, the non-harmonic wave was chosen to be the first
lower integer of the frequency used for the harmonic targets. Only in the case

of nt = 24 the non-harmonic was chosen to be nt =25 since nt =23 would be a
frequency also present in the disturbance signal (Table 7.2).

The six resulting harmonic and non-harmonic signals are shown in Figure 7.2,

together with the disturbance signal fd which remained the same during all condi-
tions. The disturbance signal was added to allow for the multiloop identification

required in tasks with expected feedforward-feedback HC dynamics [Drop et al.,
2013]. It is the same as used in [Zaal et al., 2009a] and is presented in Table 7.2.

7.3 HC Model and Simulations

7.3.1 HC model

An aircraft pitch angle tracking task with a pursuit display, illustrated in Figure 7.3,
will be studied. For the sake of performing multiloop system identification of the

HC dynamics, the tracking task is implemented as a combined target-tracking, dis-

turbance rejection task, see Figure 7.4.
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Table 7.2: Disturbance signal properties.

Disturbance, fd

nd ωd, rad · s−1 Ad, deg φd, rad
5 0.383 0.6714 -0.269
11 0.844 0.5077 4.016
23 1.764 0.2531 -0.806
37 2.838 0.1290 4.938
51 3.912 0.0784 5.442
71 5.446 0.0476 2.274

101 7.747 0.0298 1.636
137 10.508 0.0216 2.973
171 13.116 0.0180 3.429
226 17.334 0.0152 3.486
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Figure 7.2: Target signal ft, different in all six conditions; the disturbance signal fd remains
the same.
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e

θ
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Figure 7.3: Pursuit display for aircraft pitch control (neither past nor preview information
is presented).

Human
controller
dynamics

Yc(s)
+

−

+

+

ft e u

fd

θ

Figure 7.4: Control scheme studied here. The HC perceives the target signal ft, the per-
turbed system output θ and the error e from a pursuit display and generates control signal
u.

With a pursuit display, ft is directly available, and the HC can apply a feed-

forward control strategy to improve performance. An ‘ideal’ feedforward controller
inverts the controlled element dynamics [Wasicko et al., 1966]:

u(s)

ft(s)
=

1

Yc(s)
⇒ u(s) =

1

Yc(s)
· ft(s) 7.3

The system output is then found to be (with fd = 0):

θ(s) = Yc(s) · u(s) = Yc(s) ·
1

Yc(s)
· ft(s) = ft(s) 7.4

Due to HC limitations in perception and actuation, such as processing time delays
and neuromuscular dynamics, the perfect feedforward is rarely possible. In addi-

tion, because of the unpredictable disturbance signal fd, in the task at hand the HC

will need a feedback path. Hence, the HC model studied here will be a combination
of a feedforward and feedback controller, as illustrated in Figure 7.5.

The feedforward path Ypt is modeled according to the Inverse Feedforward Model
of [Laurense et al., 2015]:

Ypt(s) = Kpt

1

Yc(s)

1

(TIs + 1)2
e−sτpt , 7.5
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Figure 7.5: HC model block diagram.

with Kpt the gain, TI the lag time and τpt the time delay of the feedforward; Yc are

the controlled element dynamics.
The feedback path Ype is described as:

Ype(s) = Kpe(TLs + 1)e−sτpe , 7.6

where Kpe is the feedback gain, TL is the lead time and τpe is the feedback path time

delay, assuming that the CE dynamics are second-order [McRuer and Jex, 1967].

The neuromuscular system (NMS) is described by:

Ynms(s) =
ω2

nms

s2 + 2ζnmsωnmss + ω2
nms

, 7.7

with ωnms and ζnms the natural frequency and damping, respectively [McRuer et al.,
1968b].

7.3.2 HC Model Simulations

Preliminary computer simulations were performed using the HC model defined

above, with parameter values as estimated in [Laurense et al., 2015], see Table 7.3.

Table 7.3: HC Parameters used for simulations.

Kpt TI τpt Kpe TL τpe ωnms ζnms

- s s - s s rad/s -
1 0.28 0.2 1.3 0.4 0.28 10.5 0.35

The HC model tracking performance, expressed in Root-Mean-Square (RMS)

of the error signal e (= ft − θ), for the six target signal definitions introduced in

Section 7.2 is shown in Figure 7.6. Note that the scores for the non-harmonic signals
are shown slightly to the right, to better distinguish them from the scores with

harmonic targets.
The computer simulations show that when using the fixed HC model, no differ-

ences in tracking performance are found between the harmonic and non-harmonic

targets. Tracking performance decreases when the number of sinusoid components



180 Chapter 7

NH

H

Number of sines, -

R
M

S
(e

),
d

eg

2 3 4
0

0.5

1

1.5

2

Figure 7.6: Simulated score parameter for all conditions.

increases from 2 to 4, illustrating that the signal’s (higher) frequency content does
matter. Clearly, the fixed feedforward HC model is not able to take the predictability

of a target signal into account.

7.4 Experiment

7.4.1 Control Task

Subjects performed an aircraft pitch attitude target tracking and disturbance rejec-
tion task, with a pursuit display. CE dynamics were defined as:

Yc(s) =
2Kc

s(s + 2)
, 7.8

with Kc = 2.75. Only one disturbance signal fd was used; the target signal ft was
varied. The disturbance and target signals were as defined in Section 7.2.2.

7.4.2 Apparatus

The tracking task was presented on a central visual display in a pursuit configura-
tion, see Figure 7.3. The ViewPixx Lite Visual Stimulus Display had an update rate

of 120 Hz; the image generation delay was around 15-20 ms. The distance to the
subject’s eyes was 90 cm. A display gain of 16 pixels per degree of pitch was used.

For the experiment there were no outside visuals or motion cues.

The fore/aft axis of an electronically-actuated side-stick was used to give control
inputs, u; the lateral axis was fixed. The stick had no break-out force, a maximum

deflection of ± 17 deg. Its stiffness was set to 1.0 N/deg over the complete de-
flection range; its inertia were set to 0.01 kg·m2 and the damping coefficient was

0.2.

7.4.3 Experiment Setup and Procedure

The experiment had one independent variable, namely the six target signals defined

in Section 7.2.2. The resulting six conditions were ordered through a Latin square.
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A subject first completed one run of each condition for familiarization. After this

run the subject was asked to give a subjective rating for the predictability of the
signal, using the direct magnitude estimation method of [Meyer, 1971]. This rating

was asked again when the experiment was completed. After each run the tracking

score, expressed as RMS(e), was shown.

Subjects performed several runs of 90 seconds per condition. When the subject
achieved a stable performance, five measurement runs were done. From each of

these runs, only the last 81.92 seconds were used as measurement data.

7.4.4 Subjects and Instructions

Six subjects performed the experiment, 5 males and 1 female, between the age of 26

and 30 years (average age 28). All were experienced in tracking tasks. Instructions
were to minimize the tracking score RMS(e).

7.4.5 HC Model Identification

The HC model defined in Section 7.3 was fit to the experimental data using the
parameter estimation method of [Zaal et al., 2009a].

7.4.6 Dependent Measures

To assess tracking performance and control activity, the RMS values of the error

and control signals, respectively, were used. To assess the subjective predictability

of the target signal, the pre- and post-experimental ratings using the Meyer scale
were used [Meyer, 1971].

7.4.7 Hypotheses

We expected that the predictability of the target signal would range between con-

ditions 2H (high) and 4NH (low). Hence, our first hypothesis (H. I) was to see a

change in HC control behavior from a combined feedforward and feedback strat-
egy (2H) to a purely feedback control strategy (4NH). Our second hypothesis (H.

II) was to see a better tracking performance for the harmonic conditions as com-
pared to their non-harmonic equivalents. This is more in line with common sense

and previous investigations, but in contrast to what we found for the computer

simulations.
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7.5 Results and discussion

7.5.1 Tracking performance and control activity

Figure 7.7 shows that subjects scored better with the harmonic signals as com-

pared to their non-harmonic counterparts (left), with a slightly lower control ac-
tivity (right). As hypothesized (H. II), subjects were able to use the predictable

aspect in the harmonic signals to improve their score. This in contrast to the com-
puter simulations, which used the same HC model to obtain the model predictions.

Clearly, our subjects learned from, and adapted to, the more predictable harmonic

target signals, which repeated themselves eight times in every measurement run.
Performance decreases and control activity increases when more sine components

are added, but lesser so for the more predictable, harmonic signals. In fact, perfor-
mance was better in the 4H condition then in the 3NH condition.
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Figure 7.7: Tracking performance and control activity.

7.5.2 HC Model Fit

Figure 7.8 shows estimates of six HC parameters. The feedforward gain Kpt is

nonzero in all conditions, and is considerably higher for the harmonic signals, Fig-

ure 7.8(a). It decreases slightly when more sine components are added, reducing
the feedforward activity. The feedforward time lag TI was extremely small for all

conditions, Figure 7.8(d), indicating that subjects hardly ‘filtered’ the target inter-

nally. Figure 7.8(e) shows estimates of the feedforward time delay τpt . For the
harmonic signals, the delay goes to the lower boundary of the estimation, set to

zero seconds, which clearly indicates that our subjects were perfectly capable of
anticipating the target. For the non-harmonic signals, time delays were in the order

of 250 - 350 ms, typical for tracking tasks with unpredictable quasi-random target

signals [McRuer and Jex, 1967].

Subjects also had a slightly higher feedback gain Kpe for the harmonic signals,

Figure 7.8(b); it decreases when more sinusoid components are added. The lead

time constant TL approximates the ‘ideal’ value of 0.5 seconds (for the CE dynamics
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Figure 7.8: Estimated HC model parameters.

of Equation (7.8)) for the 2H condition, but increases when more components are

added. The lead is always higher for the non-harmonic signals, indicating that
subjects had to work harder to obtain the same stability margins. The time delay,

Figure 7.8(f), was approximately the same for all conditions, between 300 and 320

ms, very similar as found in [McRuer and Jex, 1967].

Recall that Hypothesis I expected a change from combined feedback and feed-

forward in the 2H condition, to a purely feedback control strategy in the 4NH con-
dition. Clearly, this was not the case as in all six conditions the feedforward path

was activated, albeit with smaller gains for the non-harmonic targets. Hypothesis I

is therefore rejected.
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7.5.3 Magnitude Estimation

Figures 7.9(a) and 7.9(b) show the magnitude estimation results before and after the

experiment, respectively. Generally speaking, we see that subjects became better in

marking the difference in predictability between the experimental conditions. As
expected, the harmonic signals were stated to be more predictable as compared

to the non-harmonic signals. Whereas for the latter predictability decreases when
more sinusoid components are added, this seems not to be true for the harmonic

signals.
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Figure 7.9: Results of the magnitude estimation.

7.6 Conclusions

We investigated the predictability of a target signal as a function of the number of
sine components, and whether the components were harmonics or not. A combined

target-tracking disturbance rejection experiment was done, with a pursuit display.

For all conditions, including those with up to 4 non-harmonic sinusoid components,
the feedforward path was active. The harmonic signals led to better performance,

lower control activity, the highest feedforward gains, and close to zero feedforward
time delays. Subjective ratings of the signal predictability support the objective

findings. Future work focuses on adding more sinusoid components in an attempt

to see whether and when the feedforward component disappears completely.
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Simultaneous use of feedforward, error feedback, and

output feedback

8

Previous chapters resulted in a better understanding of feedforward con-

trol in single axis control tasks performed in fixed-base simulators. In
realistic control tasks, the HC is, obviously, able to perceive the motion of

the vehicle, and since this motion contains useful information for control
purposes, it is likely that the responds to the vehicle motion as well. Such

a system output feedback was indeed identified, and extensively studied,

in control tasks featuring unpredictable target and disturbance signals.
This chapter investigates whether or not the HC is able to simultaneously

utilize a feedforward response on the target, a feedback response on the
tracking error, and a feedback response on the system output in a tracking

task.
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8.1 Introduction

Manual control of an aircraft or rotorcraft requires the Human Controller (Human

Controller (HC)) to efficiently steer the vehicle along a reference trajectory while
being perturbed by disturbances (e.g., turbulence). The HC has three main sources

of information available to construct the appropriate control input: visual informa-
tion, vestibular information, and knowledge based on prior experience and cogni-

tion [Rasmussen, 1983]. To study the utilization of different sources of information

in detail, we observe the HC in target-tracking and disturbance-rejection control
tasks [Krendel and McRuer, 1960]. Such tracking tasks allow for the use of system

identification methods to gain deeper insight in HCs’ control organization and dy-
namics. System identification techniques allow us to experimentally measure if, and

mathematically model how the HC responds to multiple sources of information.

In a pursuit tracking task the HC can potentially perceive and respond to three

signals. These three signals are: the target signal ft, the vehicle output ψ, and

the tracking error e, which is defined as the target minus the vehicle output, or
e = ft − ψ. Each response provides a different contribution to closed-loop stability,

target-tracking performance, and disturbance-rejection performance.

An error feedback response on e is necessary for closed-loop stability and the

rejection of disturbances. A HC model consisting only of an error feedback path

adequately describes control behavior in tasks involving a compensatory display
and unpredictable target and disturbance signals [McRuer et al., 1965; McRuer and

Jex, 1967; Grant and Schroeder, 2010]. An output feedback response on ψ can aid
the HC in stabilizing marginally stable or unstable dynamics, thereby also improv-

ing tracking performance [Wasicko et al., 1966; Allen and McRuer, 1979]. The HC

might perceive ψ, or its derivatives, either visually [Allen and Jex, 1968; Pool et
al., 2008] or through physical motion. Especially the response to physical motion

allows for considerable improvements of tracking performance, and therefore re-
ceived most attention [Shirley and Young, 1968; Stapleford et al., 1969; Bergeron,

1970; Van der Vaart, 1992; Hosman, 1996; Nieuwenhuizen et al., 2008; Zaal et

al., 2009a; Pool et al., 2011b]. A feedforward response to the target signal ft can
improve target-tracking performance without affecting the closed-loop stability or

disturbance-rejection performance [Wasicko et al., 1966]. The ability of the HC to
utilize a feedforward response depends primarily on the predictability of the target

signals: highly predictable signals are more likely to invoke a feedforward response

than unpredictable signals [Pew et al., 1967; McRuer et al., 1968a; Magdaleno et al.,
1969; Hess, 1981; Yamashita, 1989; Pool et al., 2010a; Drop et al., 2013; Yu et al.,

2014; Laurense et al., 2015].

In a particular control task, it is possible that the HC actively responds to all

three signals, but the HC might be unable, or unwilling, to do so, depending on
the task properties. That is, the HC may opt to respond to only two signals, or

even just one [Wasicko et al., 1966; McRuer et al., 1968a; Hess, 1981]. To the best

of the authors’ knowledge, all studies, except Chapter 7 of Pool, [2012], that used
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system identification techniques to measure control behavior in a pursuit tracking

task considered two responses only. That is, previous studies considered either 1)
feedforward on ft and error feedback on e [Wasicko et al., 1966; Hess, 1981; Pool et

al., 2010a; Drop et al., 2013; Yu et al., 2014; Laurense et al., 2015], or 2) error feedback

on e and output feedback on ψ [Allen and Jex, 1968; Van der Vaart, 1992; Hosman,
1996; Zaal et al., 2009a; Pool et al., 2011b], but a combination of all three responses

simultaneously was not considered. This paper continues the work initiated by
Pool, [2012].

It is the goal of this paper to identify if and how the HC responds to all three

signals simultaneously in a realistic control task. We will develop a HC model and
use system identification methods to analyze experimental human-in-the-loop data,

collected in the SIMONA Research Simulator (SRS) [Stroosma et al., 2003] at TU
Delft, to gain insight in the control behavior of the HC. This objective involves

three important challenges; these will be addressed in this paper.

First and foremost, direct identification of the three control responses is not pos-
sible. The HC’s response to three signals can be described by two mathematically

equivalent responses, due to the linear relation between the three signals perceiv-

able from a pursuit display: e = ft −ψ [Wasicko et al., 1966; Vos et al., 2014; Van der
El et al., 2015]. Therefore, the task should feature three uncorrelated forcing func-

tions, chosen such that three linearly independent signals are perceived by the HC,
to which the HC might respond with the appropriate response. In this paper, we

opt to include one predictable target signal, one unpredictable target signal, and one

unpredictable disturbance signal. This approach involves a number of assumptions,
further elaborated upon in Section 8.2.

Second, hypotheses concerning the simultaneous utilization of feedforward and
output feedback are high-level and rudimentary; parametrized HC models are not

available. The HC can be expected to utilize all available information to improve

task performance [Krendel and McRuer, 1960; Rasmussen, 1983], but no detailed
hypotheses were postulated regarding the dynamics of these responses when they

appear simultaneously. A thorough control theoretical analysis and computer sim-
ulations involving a hypothetical HC model are necessary to assess the possible

interdependence of human feedforward and output feedback responses.

Third, it is unknown in which tasks the simultaneous use of feedforward, er-
ror feedback, and output feedback is beneficial (e.g., for improving tracking perfor-

mance or reducing control effort) and can therefore be expected. That is, the human
is a highly adaptive controller whose dynamics are sensitive to many task variables

[Young, 1969], which makes it difficult to make a priori predictions on the actual use

of certain control responses in a particular task. Therefore, the task variables of the
realistic control task considered in this paper need to be chosen based on literature

that considered only two responses, but the possibility exists that an unexpected
interaction causes the HCs to use only two, or even just one, response. The task

variables whose effect on control behavior are least understood are chosen as the

independent variables in the human-in-the-loop experiment, to further increase the
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likelihood of identifying the simultaneous use of three responses in at least one

condition.

The realistic control task considered in this paper is a helicopter yaw tracking
task in hover. This task is chosen because it is likely to invoke all three control re-

sponses simultaneously and similar tasks were studied by others [Schroeder, 1999;
Ellerbroek et al., 2008]. First, the task is likely to invoke feedforward control, be-

cause a) the task is presented to the HC on a pursuit display that explicitly shows

the target, and b) the target follows a partly predictable trajectory. Second, an
error feedback response is required to track the partly unpredictable target trajec-

tory and to attenuate the perturbations introduced by an unpredictable disturbance
signal. Third, the HC can use an output feedback response, because the system

output ψ and all of its derivatives are perceivable, either visually or through the

vestibular system, and the selected system dynamics are marginally stable. That is,
the pursuit display is rendered on top of a realistic out-of-the-window scene and

one-to-one physical motion feedback is provided. Computer simulations with hy-
pothesized HC models are performed to choose the appropriate scaling of the target

and disturbance signals, such that the likelihood of three simultaneous responses

is largest.

This paper is structured as follows. The control task under investigation and

the system identification approach are introduced in Section 8.2. In Section 8.3,

five models of HC control behavior are introduced and it is derived how the feed-
forward control law should adapt to the presence of output feedback. Results of

computer simulations, performed to investigate the usefulness of different control
strategies and to choose the experimental conditions, are presented in Section 8.4.

The human-in-the-loop experiment is described in Section 8.6, and results are pre-

sented in Section 8.7. The paper ends with a discussion and conclusions.

8.2 Control Task

8.2.1 Helicopter Yaw Tracking Task

The control task considered in this paper is a helicopter yaw tracking task in hover,

presented to the HC on a pursuit display rendered on top of out-of-the-window

scenery, see Fig. 8.1. The HC is instructed to aim the helicopter at a moving target:
here, the target is a purple pole moving along the circumference of a circle with

a 20 m radius centered on the helicopter axis of yaw rotation. The target pole

follows a partly predictable, partly unpredictable trajectory. Stationary blue poles
are placed on the same circle, located at ψ = -30, 0, and 30 deg, and provide an

absolute heading reference to the HC.

This control task is particularly suited to investigate the simultaneous use of

feedforward, error feedback, and output feedback, for three reasons. First, it was

shown by Ellerbroek et al., [2008] that HCs benefit from the presence of physical
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eψ

ft

Figure 8.1: The yaw pursuit display rendered on top of the out-of-the-window scenery. The
purple pole indicates the target ft and moves within the scene. The crosshair is fixed to
the center of the viewport and indicates the current yaw angle with respect to the outside
world. The HC is instructed to keep the crosshair as close as possible to the purple pole.
The horizontal FOV of the display was 40 degrees, such that at least one and at most two
blue poles were in view at any given ψ.

motion in a yaw tracking task involving unpredictable target and disturbance sig-

nals. Second, the yaw degree of freedom does not involve multi-loop control. That

is, unlike the roll and pitch degrees of freedom, the yaw degree of freedom does
not involve translational motion in the lateral, longitudinal, nor vertical directions.

Third, the yaw degree of freedom motion range on the designated simulator (SRS)
is sufficiently large to allow for the presentation of one-to-one physical motion cues.

This is desirable, because any form of motion-attenuation could have a negative ef-

fect on the usefulness of physical motion feedback [Ringland and Stapleford, 1971;
Jex et al., 1978; Reid and Nahon, 1986; Schroeder, 1999; Telban et al., 2005; Pool

et al., 2010b].

8.2.2 Identification Considerations and Assumptions

This paper aims to identify three human control responses simultaneously. The

number of control responses that can be identified simultaneously is equal to the

number of uncorrelated forcing functions present in the control loop [Wasicko et
al., 1966]. E.g., to identify three control responses simultaneously, three uncorre-

lated forcing functions are necessary. Previously, to identify feedforward and error
feedback simultaneously, a predictable ramp-tracking target signal and an unpre-

dictable multi-sine disturbance signal were used [Drop et al., 2013; Laurense et al.,

2015], and Chapter 6. To identify output feedback and error feedback simultane-
ously, an unpredictable multi-sine target signal and an unpredictable multi-sine

disturbance signal were used [Stapleford et al., 1967; Jex et al., 1978; Zaal et al.,
2009b]. To identify three control responses simultaneously we combine these two

control tasks, with two forcing functions each, into one control task with three forc-

ing functions in total. That is, the HC is instructed to track a target signal ft that
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Figure 8.2: Control scheme studied here. The HC perceives ft, i.e., the sum of ftp
and ftu

,
the system output ψ, and the tracking error e on the pursuit display and generates control
signal u.

is the sum of 1) the predictable target signal ftp , composed of ramp segments as in

[Drop et al., 2013; Laurense et al., 2015] and Chapter 6, and 2) the unpredictable
target signal ftu , which is a multi-sine signal as in [Zaal et al., 2009b]. That is,

ft = ftp + ftu . Simultaneously, the HC is required to reject the perturbations due to

3) the unpredictable disturbance signal fd, which is also a multi-sine signal.

Fig. 8.2 depicts the resulting control scheme of the helicopter yaw control task..

The HC gives control inputs u to the dynamic system Yc such that the error, defined
as the target ft minus the system output ψ, or e = ft − ψ, remains as small as

possible. The system is simultaneously perturbed by disturbance signal fd, which
is a quasi-random multi-sine signal. The target signal ft is the sum of a predictable

and an unpredictable target signal, ftp and ftu , respectively. The HC perceives ft, e,

and ψ on the pursuit display, see Fig. 8.1. The predictable and unpredictable target
signals are not shown separately, only the summed signal ft is shown.

The approach that we take here relies on two important assumptions. First,

we assume that the HC is able to ‘detect’ the predictable target signal ftp from

the total target signal ft that is partly quasi-random due to ftu , and will generate
a feedforward response based on ftp . Second, we assume that the HC is unable

to generate a feedforward response based on ftu in addition to the feedforward
response on ftp .

Concerning the first assumption: if the HC is unable to detect the predictable
target signal, because the unpredictable part is too large and effectively hides the

predictable part, then the analysis results in this paper will suggest the false con-

clusion that the HC is unable to utilize three control strategies simultaneously. The
HC might, however, be able to do so in a real control task, because there the target

signal might be perfectly predictable to the HC.

Concerning the second assumption: if the HC is (unexpectedly) able to generate

a feedforward response based on ftu , then this would cause a bias in the estimates
of the feedforward, error feedback, and output feedback responses. That is, the

system identification and parameter estimation methods would attempt to ‘fit’ the
feedforward response to ftu by adapting the estimates for the feedforward, error

feedback, and output feedback responses. This might lead to erroneous conclusions

regarding the dynamics of these responses in control tasks where the HC is able
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to generated feedforward on ftu . A large volume of literature exists, however, that

supports the second assumption [McRuer et al., 1965; Wasicko et al., 1966; McRuer
and Jex, 1967; Magdaleno et al., 1969; Hess, 1981].

8.2.3 Forcing Functions

Time-traces of the forcing functions are shown in Fig. 8.3. The predictable target ftp

consists of ramp (constant velocity) segments; the ramp steepness (rate of change)

of the ramp segments is varied through gain Ktp . In Fig. 8.3, ftp is plotted for
Ktp = 6, for which the rate of the predictable target during all ramp segments

is equal to 6 deg/s. The duration of the first and last ramp segments is 3 s, the

four segments in between last 6 s. Hence, the maximum deviation from the start
orientation is 18 deg.

fd

ftu
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ft

time, s
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Figure 8.3: Forcing functions, with Ktp
= 6, Ktu

= 1.5, Kd = 2. ft = ftp
+ ftu

.

The unpredictable target ftu and unpredictable disturbance signal fd are sum-

of-sine signals with 10 discrete frequencies each, see Table 8.1, and are defined
through:

ftu,d(t) = Ktu,d

10

∑
k=1

Atu,d(k) sin [ωtu,d(k)t + φtu,d(k)] 8.1

The amplitudes and phase shifts of the individual sines are identical to the forcing
functions of Zaal et al., [2009b], but the overall gain is different. The magnitude of

ftu and fd is altered through gains Ktu and Kd, respectively. In Fig. 8.3, Ktu = 1.5 and
Kd = 2, coinciding with the values used during the human-in-the-loop experiment.

8.2.4 Helicopter Yaw Dynamics

Simplified linear helicopter yaw dynamics in hover approximately resemble a second-
order system [Schroeder, 1999; Ellerbroek et al., 2008]:

Yc(s) =
Kcωb

s (s + ωb)
, 8.2
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Table 8.1: Control task forcing function properties

Disturbance, fd Unpredictable target, ftu

nd, - ωd, rad/s Ad, deg φd, rad ntu , - ωtu , rad/s Atu , deg φtu , rad
5 0.383 1.095 1.530 6 0.460 1.123 1.288

11 0.844 0.828 5.967 13 0.997 0.786 6.089
23 1.764 0.412 1.000 27 2.071 0.355 5.507
37 2.838 0.210 6.117 41 3.145 0.191 1.734
51 3.912 0.128 6.145 53 4.065 0.128 2.019
71 5.446 0.078 2.692 73 5.599 0.080 0.441

101 7.747 0.049 1.895 103 7.900 0.051 5.175
137 10.508 0.035 3.153 139 10.661 0.037 3.415
171 13.116 0.029 3.570 194 14.880 0.029 1.066
226 17.334 0.025 3.590 229 17.564 0.026 3.479

with Kc the control input ratio, and ωb the yaw damping break frequency. Typical

values for ωb are 0.89 rad/s for a small helicopter (OH-6A), and 0.39 rad/s for a
large helicopter (CH-53D) [Heffley, 1979]. Here, we choose a slightly higher value,

ωb = 1 rad/s, to match dynamics that were considered in earlier studies involving

feedforward control [Laurense et al., 2015] and Chapter 6.

8.3 HC models

This section will introduce five parametric HC models that are used throughout

subsequent sections of this paper. All five models have the structure of Fig. 8.4,
reflecting the assumptions made in Section 8.2.2. That is, the HC is assumed to be

able to distinguish ftp within ft and apply feedforward to ftp , but not to ftu . Thus,
the input for the feedforward path Ypt is ftp , but the error e is calculated from ft

(the sum of ftp and ftu ).

Ype(s)

Ypt(s)

Ypψ(s)

Yc(s)
−

+

+
+

−

+
+

+
+

+
+

HC

ftu

ftp

ft e upe

upt

upψ

u

n fd

ψ

Figure 8.4: Structure of all HC models considered in this paper. The dashed line from
ftp

indicates that this signal is not explicitly perceived by the HC. Signal n models human
remnant. Note that the output feedback path Ypψ applies negative feedback.
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8.3.1 Compensatory Error Feedback model, EFB

Compensatory control behavior involves a closed-loop feedback response to the

tracking error e only. It is required for stability and disturbance-rejection, and pro-

vides a basic level of target-tracking performance. The Simplified Precision Model
of McRuer et al., [1965] describes the compensatory response for second-order sys-

tem dynamics as:
Ype(s) = Kpe (TLs + 1) e−τpe sYnms(s), 8.3

with the gain Kpe , an equalization term defined by TL, the time delay τpe , and
the neuromuscular system dynamics Ynms. The equalization term generates lead

which is required to obtain a stable closed-loop control with second-order system

dynamics as those of Eq. 8.2. To generate lead, the HC perceives the tracking error
rate ė and applies a negative feedback proportional to Kpe TL. The value of the time

delay τpe depends on Yc; system dynamics that require lead-generation typically

involve a time delay of 200-400 ms [McRuer and Jex, 1967].
The neuromuscular system dynamics are modeled by second-order dynamics

[McRuer et al., 1968b; Van Paassen, 1994]:

Ynms(s) =
ω2

nms

s2 + 2ζnmsωnmss + ω2
nms

, 8.4

with ωnms the natural frequency and ζnms the damping ratio.

8.3.2 Compensatory Error Feedback and Output Feedback model, +OFB

The HC may operate a feedback on the system output, if 1) the HC can perceive the
system output ψ [Allen and Jex, 1968; Pool et al., 2008], and 2) the system dynamics

require lead equalization in the error feedback path [Van der Vaart, 1992; Hosman,

1996; Nieuwenhuizen et al., 2008; Zaal et al., 2009a; Pool et al., 2011b]. Output
feedback improves stability, disturbance-rejection performance, and (depending on

the properties of ft) also target-tracking performance [Pool et al., 2008; Zaal et al.,
2009a].

Output feedback relies on the assumption that the system output rate ψ̇ is ap-

proximately equal to ė, and is beneficial only if ψ̇ can be perceived with a smaller
time delay than τpe . Evidence for an output feedback response was found if ψ is

perceivable through visual cues in the periphery (out-of-the-window cues) [Pool et
al., 2008], directly from the pursuit display [Wasicko et al., 1966; Vos et al., 2014], or

if physical motion cues are perceived through the vestibular system [Ringland and

Stapleford, 1971; Jex et al., 1978; Reid and Nahon, 1986; Schroeder, 1999; Telban
et al., 2005].

Models of different complexities were proposed to describe the output feedback
response. Here, we assume the simplest model [Pool et al., 2010b], consisting of a

lead with gain Kpψ , a time delay τpψ , and the NMS dynamics:

Ypψ(s) = Kpψ se
−τpψ s

Ynms(s) 8.5
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The compensatory error feedback response of this model is equal to Eq. (8.3), but

with different parameter values. Experimental results show that if physical motion
feedback is present, the error feedback path adapts to the utilization of output

feedback by increasing the gain Kpe by approximately 20% and reducing the lead

time constant TL by approximately 30% [Pool et al., 2011c; Pool, 2012].

8.3.3 Feedforward and Compensatory Error Feedback Model, +FF

A feedforward path responds to the target signal in open-loop fashion, thereby

(potentially) improving target-tracking performance considerably without affecting
closed-loop stability. It was hypothesized that the ability of the HC to utilize a

feedforward strategy depends on the predictability of the target signal [McRuer et
al., 1965; Wasicko et al., 1966; Magdaleno et al., 1969]. Literature does not provide

a formal definition of predictability, however, and this hypothesis received little

attention in the context of tracking tasks, see Chapter 7.
The theoretically optimal feedforward control law [Elkind, 1956; Wasicko et al.,

1966] is equal to the inverse of the system dynamics, u(s)/ ft(s) = 1/Yc(s), such
that the system output ψ(s) = Yc(s)u(s) = ft(s). That is, ψ is exactly equal to

ft, yielding zero tracking error. Thus, for optimal tracking performance, the HC

needs to adapt its feedforward control strategy to the system dynamics, because
they need to be inverted. The inversion of Yc by the HC is not perfect, as shown

by system identification and parameter estimation analyses of human-in-the-loop
experimental data by [Pool et al., 2010a; Laurense et al., 2015] and Chapters 2 and

6. These references accounted for the measured imperfections by a gain, a second-

order low-pass filter, and a time delay:

Ypt(s) = Kpt

1

Yc(s)

1

(TIs + 1)2
e−τpt s

8.6

The inverse of Yc applied to the discrete ramp onsets of ftp would yield impulse-

like control inputs with a magnitude approaching infinity and a duration approach-
ing zero [Laurense et al., 2015]. The HC is clearly unable to produce such inputs,

due to limitations of the neuromuscular system and the inertia of the control ef-

fector. This will cause the actual control input to lag behind the ideal control in-
put, resulting in less accurate tracking. Performance can be improved if the HC is

able to anticipate the future course of ftp , thereby better synchronizing the lagged,
sub-optimal response with the ideal response. In Eq. (8.6), the neuromuscular lim-

itations and inertia effects are modeled through the second-order low-pass filter,

limiting the bandwidth of the feedforward control inputs. The feedforward time
delay then depends on whether the HC is able to anticipate ftp or responds to ftp

only after perceiving it on the display.
The error feedback path of the +FF model is equal to Eq. (8.3). No output

feedback response is present, thus Ypψ = 0. Error feedback parameter values are

identical to those for the EFB model.
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8.3.4 Feedforward, Compensatory Error Feedback and Output Feedback

Model, +FF+OFB

In a control task where the HC can perceive the system output and where the target

signal is predictable, the HC could potentially utilize feedforward, error feedback,
and output feedback simultaneously. A simple ‘combination’ of the +FF and +OFB

models previously defined would, however, not result in optimal tracking perfor-
mance, because the feedforward path would invert the ‘wrong’ dynamics, as we

will demonstrate now. Here, we derive the ideal feedforward control law for the

case were the HC utilizes output feedback in addition to feedforward and error
feedback.

For the HC control organization of Fig. 8.4, Wasicko et al., [1966] showed that
the closed-loop transfer function of e due to ftp , with ftu = fd = 0, can be written

as
e(s)

ftp(s)
=

1

1 +Yβ(s)
, 8.7

where Yβ is the “equivalent open-loop” describing function:

Yβ(s) =
Yc(s)

(

Ypt (s) + Ype(s)
)

1 − Yc(s)
(

Ypt(s)− Ypψ(s)
) 8.8

Optimal tracking requires e → 0, such that Yβ should go to ∞, which requires the

denominator of Eq. (8.8) to equal zero:

1 − Yc(s)
(

Ypt(s)− Ypψ(s)
)

= 0 8.9

Rewriting for Ypt , we find that:

Ypt
ideal(s) =

1

Yc(s)
+Ypψ(s) 8.10

That is, the ideal feedforward path is not equal to 1/Yc(s), as in the +FF model, but

to the sum of 1/Yc and Ypψ . In practical terms, this means that HCs should account

for their own output feedback response when giving a feedforward control input.
Thus, the feedforward path of the +FF+OFB model is different from Eq. (8.6), and

now includes Ypψ :

Ypt
+FF + OFB(s) = Kpt

(

1

Yc(s)
+ Ypψ(s)

)

1

(TIs + 1)2
e−τpt s, 8.11

which, after substitution of Eq. (8.5), results in:

Ypt
+FF + OFB(s) = Kpt

(

1

Yc(s)
+ Kpψ se

−τpψ s
Ynms(s)

)

1

(TIs + 1)2
e−τpt s

8.12
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Note from Eq. (8.5) that Ypψ contains the neuromuscular dynamics Ynms and time

delay τpψ , such that Eq. (8.12) contains two different time delays. The effect of
τpψ and Ynms on upt is small, because they act only at high frequencies where the

power of ftp is small. Thus, upt will be affected minimally by these dynamics if

Eq. (8.12) is used in computer simulations of the control task of Section 8.2, and
more importantly, the system identification analyses will not be able to determine

whether or not the HC indeed takes into account these contributions in the feed-
forward input. We therefore opt to leave these dynamics out of the +FF+OFB model

and consider the low-frequency contribution of Ypψ only, resulting in the much less

complex model:

Ypt
+FF +OFB(s) = Kpt

s
(

s + ωb

(

1 + KcKpψ

))

Kcωb

1

(TIs + 1)2
e−τpt s

8.13

Fig. 8.5 illustrates why Ypψ should be considered in the feedforward path, by
means of an example involving the control task of Section 8.2 and the +FF+OFB

model. The figure shows the individual contributions of the feedforward and out-

put feedback paths during a ramp segment. The feedforward control input upt has
a square waveform with a magnitude equal to the static gain of the feedforward

path, 1/Kc + Kpψ , multiplied with ḟtp . This causes ψ to follow ftp accurately such

that the yaw rate ψ̇ is approximately equal to the ramp rate ḟtp . Consequently, the

output feedback path responds to the non-zero ψ̇ by giving a negative feedback

control input equal to −Kpψ ψ̇ ≈ −Kpψ ḟtp . That is, Ypψ produces a control input
opposing ψ̇ that would cause ψ to follow ft with a steady-state ramp tracking error.

This is prevented by the Ypψ term in the ideal feedforward law, which cancels out

−Kpψ ψ̇ by giving an additional control input equal to Kpψ ḟtp . The magnitude of the

resultant control signal upt − upψ is equal to the magnitude of the ideal feedforward
signal if output feedback were absent.

8.3.5 Feedforward (not adapted), Compensatory Error Feedback and

Output Feedback model, +FF+OFB (not adapted)

Finally, the +FF+OFB (not adapted) model represents a control strategy involving

feedforward, error feedback, and output feedback, but with a feedforward path not
properly adapted to the presence of an output feedback path. Thus, the feedforward

is modeled by Eq. (8.6), the error feedback path is modeled by Eq. (8.3), and the

output feedback path by Eq. (8.5).

8.4 Offline HC model simulations

The goal of this paper is to identify from experimental data whether the HC is able

to utilize error feedback, feedforward, and output feedback simultaneously. We
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Figure 8.5: The control signal contributions of the feedforward and output feedback paths,
upt and upψ , respectively, during a ramp segment. Horizontal dashed lines indicate the
static gain of the feedforward and output feedback paths multiplied with the rate of the
ramp target. The steady-state contribution of Ype is zero, because the steady-state ramp
tracking error is zero.

assume that the likelihood that the HC utilizes all three simultaneously is largest
in the control task where the potential performance improvement is largest. In this

section, the potential performance improvement is investigated through offline HC

model simulations, with the HC models presented in Section 8.3. As will be demon-
strated in this section, tracking performance improves considerably by utilizing all

three strategies simultaneously, but not for all control tasks equally.

First, we investigate how the performance improvement depends on whether
the control task is primarily a target-tracking or a disturbance-rejection task. The

overall tracking performance is determined by both target-tracking performance

and disturbance-rejection performance, and feedforward and output feedback do
not improve both simultaneously. Then, we investigate the influence of the un-

predictable target ftu that is added for identification purposes. The experimental
conditions were chosen based on this analysis.

We hypothesize that the main incentive for the HC to use a particular control
strategy in addition to error feedback alone is the performance improvement (PI)

the additional strategy provides. Here, we compute the PI of a particular strategy by
simulating the corresponding HC model, and comparing its tracking performance

to the EFB model. Performance is measured by the root mean square error RMS(e).

The PI is expressed as:

PIAlternative =
RMS (eEFB)− RMS (eAlternative)

RMS (eEFB)
× 100% 8.14

A PI of zero corresponds to no benefit of the alternative model (tracking perfor-

mance is equal), a PI of 100% means the alternative model was able to track the
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target perfectly (RMS (eAlternative) = 0), and a negative PI indicates that the alterna-

tive model had a worse performance than the EFB model.

The model parameter values used during the offline simulations are provided
in Table 8.2. Feedforward and error feedback parameter values were based on

human-in-the-loop experimental results of [Laurense et al., 2015]; output feedback
parameter values were based on [Zaal et al., 2009b; Pool et al., 2011c].

8.4.1 Target-tracking and disturbance-rejection performance

Fig. 8.6(a) shows the PI as a function of the ratio between Kd and Ktp , for the five HC

models introduced in Section 8.3, obtained from simulations without unpredictable
target signal, Ktu = 0.

The +FF model provides a 35% performance improvement compared to the

EFB model for low Kd/Ktp , where the task is predominantly a target-tracking task.
Performance for the +FF model is equal to the EFB model for high Kd/Ktp , where

task performance is determined mainly by disturbance-rejection performance.

The +OFB model has better performance than the EFB model for Kd/Ktp > 1:
an output feedback path clearly improves disturbance-rejection performance. For

Kd/Ktp < 1, however, the performance of the +OFB model is dramatically worse

than that of the EFB model.

The +FF+OFB model has superior performance to all other models for all values

of Kd/Ktp . For high Kd/Ktp , the performance is identical to the +OFB model, at
low Kd/Ktp the performance is slightly better than the +FF model. As expected,

the +FF+OFB (not adapted) model performs worse than +FF and +FF+OFB for

low Kd/Ktp . Indeed, the inversion of the wrong dynamics causes a decrease in
performance.

A comparison of the system output time-traces of all models, see Fig. 8.7, re-

veals that the steady-state ramp-tracking error ess,ramp is the main source of the large
differences in PI for small Kd. The steady-state error is largest for the +OFB model;

smaller for the EFB model, and zero for the +FF and +FF+OFB models. The larger
steady-state error for the +OFB model is caused by the opposing control input given

by the output feedback path in response to a large, non-zero system output rate ψ̇.

The output feedback path cannot distinguish between an ‘intended’ non-zero ψ̇, re-
quired to follow ft, and an unintended non-zero ψ̇ due to a disturbance. Fig. 8.7

demonstrates that ess,ramp is reduced to zero by the utilization of feedforward. The
PI of the +FF+OFB model is slightly larger compared to the PI of the +FF model.

This is due to the transient response just following the ramp onset, which is faster

and has less overshoot for the +FF+OFB model.
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Figure 8.6: The performance improvement (PI) as a function of Kd for different settings
of Ktp

and Ktu
. (a) Ktp

= 1, Ktu
= 0. (b) Ktp

= 6 and Ktu
= 1.5. Dashed vertical line

corresponds to experiment conditions S6 and M6, discussed in Section 8.6. (c) Ktp
= 3 and

Ktu
= 1.5. Dashed vertical line corresponds to experiment conditions S3 and M3.
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Figure 8.7: The system output ψ of the different models, during a ramp segment, compared
to target signal ftp
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Table 8.2: Model parameter values as used in simulations

Parameter Kpt TI τpt Kpe TL τpe Kpψ τpψ ωnms ζnms

Unit - s s - s s - s rad/s -
EFB - - - 0.60 0.60 0.23 - - 9.6 0.34

+OFB - - - 0.72 0.42 0.23 0.3 0.2 9.6 0.34
+FF 1 0.27 0.2 0.60 0.60 0.23 - - 9.6 0.34

+FF+OFB 1 0.27 0.2 0.72 0.42 0.23 0.3 0.2 9.6 0.34
+FF+OFB (not adapted) 1 0.27 0.2 0.72 0.42 0.23 0.3 0.2 9.6 0.34
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8.4.2 Effect of unpredictable target signal and choice of experiment

conditions

The control task considered in this paper features three forcing functions; the un-
predictable target signal ftu (not considered in the previous section) is present to

facilitate the identification of three control responses. Here, we investigate the ef-
fect of ftu on the PI of the different HC models, and use these results to choose the

experiment conditions.

We expect that the likelihood of identifying all three control strategies simul-

taneously is largest where the difference in PI between the +FF+OFB model and
all other models is largest; this is the case for 0.1 < Kd/Ktp < 2, see Fig. 8.6(a).

That is, for Kd/Ktp < 0.1, the difference between +FF+OFB and +FF is small, such

that (possibly) the HC has little incentive to utilize output feedback in addition to
feedforward and error feedback. Similarly, for Kd/Ktp > 2, the difference between

+FF+OFB and +OFB is small, such that (possibly) the HC has little incentive to uti-
lize feedforward in addition to output feedback and error feedback. Therefore, we

opt to select experimental conditions in the region 0.1 < Kd/Ktp < 2.

It is important to note that the relation between the theoretically calculated PI

and the actual utilization of a particular control strategy by the HC is not well
understood. Therefore, we decided to consider two values of Kd/Ktp in the experi-

ment, to increase the likelihood of identifying all three strategies simultaneously in

at least one condition. Monte Carlo simulations, see Chapter 5, were performed to
determine that Kd ≥ 2 is necessary for identification. We decided to keep Kd con-

stant at 2 and choose two settings for Ktp , thus varying the steepness of the ramp

segments.

The yaw degree of freedom of the designated simulator is effectively limited
to ±25 deg. A 7 deg margin was deemed necessary for deviations due to ftu , fd

and human errors, such that the maximum displacement due to the predictable

target signal is 18 deg, corresponding to Ktp = 6. Thus, the smallest possible
Kd/Ktp = 2/6 = 0.33: close to the lower bound of the region of interest. Possibly,

the HC is unable to utilize output feedback if the steepness of the ramps in ftp is
too high; therefore, we additionally consider the case where Ktp = 3, resulting in

Kd/Ktp = 0.66, which is close to the upper bound of the region of interest.

Other Monte Carlo simulations revealed that Ktu should be equal to or larger

than 1.5 for identification. To investigate how the presence of ftu influences the
results discussed in Section 8.4.1 for the selected ramp steepnesses, simulations are

performed with Ktu = 1.5 and Ktp equal to 6 and 3, see Figs. 8.6(b) and 8.6(c),

respectively. The figures show that the presence of ftu influences the PI only at low
Kd, where task performance is determined mainly by target-tracking performance.

For all models, the HC responds to ftu only through error feedback, such that the
RMS(e) of each model, including the EFB model, increases by the same amount.

Subsequently, the PI decreases, because it is calculated relative to the RMS(e) of the

EFB model. For the same reason, the decrease in PI at low Kd is larger for Ktp = 3
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than for Ktp = 6. At high Kd, performance is determined entirely by disturbance-

rejection performance of fd; thus, for large Kd the target signals ftp and ftu are too
small to influence the RMS(e) of any model. Hence, the PI is not affected by ftu for

high Kd.

Figs. 8.6(b) and 8.6(c) show that for both experiment conditions, the simulta-

neous use of output feedback and feedforward is still beneficial for performance,
despite the presence of ftu . For Ktp = 6 the PI provided by feedforward is approxi-

mately 15%. The use of output feedback provides a PI of an additional 6% improve-

ment. For Ktp = 3 the possible improvements are smaller: 5% for feedforward and
a further 12% for output feedback. To conclude, there is a clear incentive to simul-

taneously use feedforward and output feedback in both experimental conditions,

even though ftu was added for identification purposes.

8.5 System identification and parameter estimation

To identify the simultaneous use of feedforward, error feedback, and output feed-
back in a control task, we utilize two system identification techniques: the Fourier

Coefficient method of Stapleford et al., [1967] and Van Paassen and Mulder, [1998]

and the ARX identification method of Chapter 5. To gain deeper insight in the con-
trol behavior of the HC, a parameter estimation analysis is performed utilizing the

most appropriate model of the five models presented in Section 8.3. This section
introduces the system identification and parameter estimation methods.

8.5.1 ARX system identification

The responses to ftp , e, and ψ are identified by means of the ARX black-box identifi-

cation method of Chapter 5. The ARX method was developed to objectively identify
if and how the HC utilizes a feedforward and/or feedback control strategy, with-

out making prior assumptions concerning the control dynamics. Here, the method

is used to identify the output feedback response, in addition to the feedforward
and error feedback responses, if they are present. The method involves fitting and

evaluating many ARX models in parallel and selecting the best model based on the

quality of the fit and the model complexity, measured by the number of free param-
eters. The generic structure of each ARX model is shown in Fig. 8.8 and is described

by the discrete time difference equation of Eq. (8.16), with k denoting the discrete
time samples of 0.04 s (the data are resampled to 25 Hz prior to identification).

A(q; na)um(k) =Bt(q; nbt
) ftp(k − nkt

) + Be(q; nbe
)e(k − nke

)+ 8.15

Bψ(q; nbψ
)ψ(k − nkψ

) + ǫ(k) 8.16
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Figure 8.8: Generic ARX model structure.

In Eq. (8.16), ǫ is a white noise signal, q is the delay operator and the polynomials
A, Bt, Be, and Bψ are defined as:

A(q; na) = 1 + a1q−1 + . . . + ana q−na

Bt(q; nbt
) = bt,1 + bt,2q−1 + . . . + bt,nbt

q(−nbt
+1)

Be(q; nbe
) = be,1 + be,2q−1 + . . . + be,nbe

q(−nbe+1)

Bψ(q; nbψ
) = bψ,1 + bψ,2q−1 + . . . + bψ,nbψ

q

(

−nbψ
+1
)

8.17

Each ARX model is described by four model orders (na, nbt
, nbe

, and nbψ
) and up

to three time delay parameters (nkt
, nke

, and nkψ
). All time delays are expressed in

integer multiples of the sample time of 0.04 s. The total number of free parameters

d is the sum of na, nbt
, nbe

and nbψ
, and the number of time delay parameters. That

is, for a pure feedback model d is equal to na + nbe
+ 1, for a combined feedforward

and error feedback model d = na + nbt
+ nbe

+ 2, and for a combined feedforward,
error feedback and output feedback model d = na + nbt

+ nbe
+ nbψ

+ 3.

The ARX models are estimated from the first 40.96 s (1024 samples) of each set

of data, and evaluated on the last 40.96 s. The best model is the model with the
lowest mBIC value, see Ljung, [1999] and Chapter 5, defined as:

mBIC = log V + c
d log Nd

Nd
, 8.18

where Nd equals the number of data samples used to calculate V, c is the ‘model

complexity penalty parameter’, and:

V =
1

Nd

2Nd

∑
k=Nd+1

(ûm(k)− um(k))
2 , 8.19

measures the quality of the fit, with Nd = 1024. In Eq. (8.19), ûm is the control signal

calculated by the model through simulation. Based on a Monte Carlo analysis

with the models introduced in Section 8.3 we determined that c should be set to
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4, to prevent ‘false-positive’ identification of feedforward and/or output feedback.

This value of c is referred to as csim. False-positive feedforward or output feedback
identification refers to the possibility of selecting an ARX model with a feedforward

or output feedback path as ‘best’ model from data generated by a process that does

not contain such dynamics. Table 8.3 shows the range of ARX model orders tested
in full-factorial fashion. Hence, a total of 384,000 ARX models were identified and

considered for the model selection step.

Table 8.3: Range of tested ARX model orders

na nbt
nbe

nbψ
nkt

Equiv τpt nke
Equiv τpe nkψ

Equiv τpψ

s s s
LB 1 0 0 0 1 0.04 1 0.04 1 0.04
UB 4 3 3 3 15 0.6 10 0.4 10 0.4

If the model hypotheses of Section 8.3 were true, a certain number of parameters
is expected in each channel of the selected ARX models. The expected feedforward

response, see Eq. (8.6) and (8.13), requires nb ft
≥ 2 to describe inverse system

dynamics at low frequencies. The expected error feedback response, see Eq. (8.3),
requires nbe

≥ 2 to describe dynamics consisting of a low-frequency gain and higher

frequency lead. The expected output feedback response, see Eq. (8.5), requires

nbψ
≥ 2 to describe the expected differentiator dynamics. For all three responses,

more than 2 parameters are necessary to describe more complex responses at higher

frequencies.

8.5.2 Fourier Coefficients System Identification

In addition to identifying the HC responses to e and ψ in the conditions without

ftp using the ARX method, HC responses are identified with the Fourier Coefficient

(FC) method [Stapleford et al., 1969; Van Paassen, 1994; Van Paassen and Mulder,
1998; Mulder, 1999]. The FC method does not require the selection of a HC model,

and thus serves as an independent validation method for the ARX method for
these conditions. Estimates of the Ype and Ypψ describing functions are obtained

by considering the following equation, that is valid at each input frequency of the

unpredictable target signal ftu and the disturbance signal fd [Nieuwenhuizen et al.,
2008]:

U(ω) = Ype(ω)E(ω)− Ypψ(ω)Ψ(ω), 8.20

where U, E, and Ψ are the Fourier coefficients of the corresponding signals at fre-
quency ω. To obtain estimates of Ype and Ypψ at ωd, the input frequencies of fd, the

Fourier coefficients of u, e, and ψ at the frequencies of the ftu are interpolated to

the frequencies of fd, resulting in Ũtu , Ẽtu , and Ψ̃tu , respectively. This yields a set of
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two equations at ωd [Nieuwenhuizen et al., 2008]:

[

Ud

Ũtu

]

=

[

Ed −Ψd

Ẽtu −Ψ̃tu

] [

Ype(ωd)
Ypψ(ωd)

]

, 8.21

from which Ŷpe(ωd) and Ŷpψ(ωd) can be solved [Nieuwenhuizen et al., 2008]:

Ŷpe(ωd) =
Ũtu Ψd − UdΨ̃tu

Ẽtu Ψd − EdΨ̃tu

, Ŷpψ(ωd) =
EdŨtu − Ẽtu Ud

Ẽtu Ψd − EdΨ̃tu

8.22

The same procedure can be applied for the input frequencies ωtu of ftu resulting in
estimates of Ŷpe and Ŷpψ at ωtu [Nieuwenhuizen et al., 2008]. The estimates of Ŷpe

and Ŷpψ at ωtu and ωd are subsequently averaged over adjacent input frequencies

of ftu and fd to obtain the final estimates of Ŷpe and Ŷpψ at intermediate frequencies.

8.5.3 Time Domain Parameter Estimation

To obtain further insight in the control strategy adopted by the HC, we fit the

parametric model of Section 8.3 that best resembles the ARX results, by means of
the genetic maximum likelihood estimation method of Zaal et al., [2009c]. That

is, if the ARX results give clear indication that all three control strategies are used
simultaneously, with dynamics comparable to the expected dynamics, we fit the

+FF+OFB model. If either feedforward, output feedback, or both are clearly not

present, we fit the +OFB, +FF, or EFB models, respectively.

8.6 Experiment method

An experiment was performed on the SIMONA Research Simulator (SRS) at Delft

University of Technology, to investigate the simultaneous use of feedforward, er-
ror feedback, and output feedback control strategies in a helicopter yaw tracking

task, described in Section 8.2. This section describes the experimental method and

hypotheses.

8.6.1 Independent variables and forcing functions

The independent variables were 1) the presence of physical motion and 2) the steep-
ness of the ramps in the predictable target signal, see Table 8.4. Physical motion

was either ‘off’ (Static (S) condition), or ‘on’ (Motion (M) condition). Three ramp

steepnesses were considered: 0 deg/s, resulting in a constantly zero predictable tar-
get signal; 3 deg/s, resulting in a maximum yaw deflection due to the predictable

target of 9 deg; and 6 deg/s, resulting in a maximum yaw deflection of 18 deg. Each
subject performed each combination of ramp steepness and the presence of physi-

cal motion, resulting in a total of six conditions. A condition is referred to in this

paper with the syntax {S,M}{0,3,6}, where the first position indicates the presence of
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physical motion, and the second the ramp steepness of the predictable target. For

example, M3 designates the condition with physical motion and the predictable
target signal with a ramp steepness of 3 deg/s.

Table 8.4: Conditions

| ft|max

∣

∣ ḟt

∣

∣

max
Km Ktp Ktu Kd

Condition - deg/s - - -
S0 0 0 0 0 1.5 2
S3 9 3 0 3 1.5 2
S6 18 6 0 6 1.5 2
M0 0 0 1 0 1.5 2
M3 9 3 1 3 1.5 2
M6 18 6 1 6 1.5 2

The forcing functions applied in the experiment were identical to those intro-

duced in Section 8.2. The gain Ktu applied to the unpredictable target ftu is 1.5,
and the gain Kd applied to the disturbance fd was equal to 2, for all conditions, see

Section 8.4.2.

8.6.2 Apparatus

The experiment was performed in the SRS at Delft University of Technology (see
Fig. 8.9). Yaw motion cues were presented one-to-one, i.e., unfiltered and unscaled

by the SRS motion system. The axis of rotation was located at the design pilot head

position. Thus, the lateral motion cues that would normally result from the HC sit-
ting in front of the axis of rotation of the helicopter were not presented [Schroeder,

1999; Ellerbroek et al., 2008]. The time delay associated with the response of the
motion system was determined to be approximately 30 ms [Berkouwer et al., 2005].

Figure 8.9: The SIMONA Research Simulator (SRS).
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During the experiment, subjects were seated in the right pilot seat. An out-of-

the-window scene representing the yaw pursuit display, see Fig. 8.1, was presented
on the right primary flight display in the SRS cockpit. The display update rate

was 60 Hz and the time delay of the image generation on the order of 20-25 ms

[Stroosma et al., 2007].

Subjects used the lateral axis of an electrical side stick to give their yaw control
inputs u. The side stick had no breakout force and a maximum deflection of ±14

deg. Its stiffness was set to 1.0 N/deg over the full deflection range and its inertia

to 0.01 kg · m2; the damping ratio was 0.2. The fore/aft axis of the sidestick was
locked.

8.6.3 Controlled element dynamics

Helicopter yaw dynamics as given in Eq. (8.2) were simulated. The gain constant

Kc was chosen such that subjects would never reach the maximum deflection limits
of the side stick and were able to give accurate control inputs. Kc = 4.9 met both

requirements.

8.6.4 Subjects, instructions and procedure

Six subjects, all male, with extensive tracking experience, aged 22-53 years (30 years
avg.), were instructed to minimize yaw tracking error e presented on the display.

After each run, the tracking score was presented on the display: the RMS of the
error e.

Before the actual experiment started, subjects performed one run on each condi-
tion to familiarize with the experiment. Subjects progressed through the conditions

by performing an unfixed number of practice runs, during which tracking perfor-
mance was monitored by the experimenter. When subject performance had reached

an asymptote, five repetitions at this constant level of performance were collected

as the measurement data, after which the subject proceeded to the next condition.
Subjects were free to take a short break between runs. Subjects performed the 6

conditions in one session, with the opportunity to take a longer break outside the
simulator between conditions. Conditions were randomized over subjects using a

balanced Latin square design.

The individual tracking runs lasted 90 s, of which the last 81.92 s were used as

the measurement data. During the five measurement runs, the time traces of error
signal e, control signal u, and yaw angle ψ were recorded. These five traces were

averaged to reduce effects of remnant, resulting in one trace for each subject for each

condition. Using these averaged traces, all dependent measures were calculated.
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8.6.5 Dependent measures

The root mean square (RMS) of the recorded error signal e and control signal u were

calculated as measures of tracking performance and control activity, respectively.
Three system identification and parameter estimation methods were applied to the

recorded signals; the predictable target signal ftp , the error signal e, the system
output ψ, and the control signal u. The Fourier Coefficient identification method

was applied to conditions S0 and M0 only; as it cannot be applied to the other

conditions, because they involve the predictable target signal ftp that has power at
all frequencies. The ARX system identification method was applied to all condi-

tions. The ARX results indicated that the +FF+OFB model accurately resembles the
measured behavior, and therefore this model was fit to the experimental data using

the time domain parameter estimation method of Zaal et al.[Zaal et al., 2009c]. To

evaluate the accuracy of the models in the time domain, the variance accounted for
(VAF) was calculated using the measured HC control signal, um, and the output of

the HC model, û:

VAF =

(

1 −
∑

N
k=1 (um(k)− ûm(k))

2

∑
N
k=1 ûm(k)2

)

× 100%, 8.23

with N the number of samples used for the fitting procedure. The VAF gives the

percentage of the measured HC control signal variance that can be explained by the
linear response functions.

8.6.6 Hypotheses

Having established in Section 8.4 that a clear incentive to utilize feedforward, error
feedback and output feedback simultaneously exists, we expect to identify three

control responses in all conditions with a predictable target signal (H.I). There are
no apparent reasons to expect that the HC would not utilize all three responses in

any of those conditions (S3, S6, M3, and M6), because 1) the HC is able to perceive

all the required signals, 2) tracking performance benefits from utilizing all three
responses, and 3) previous studies have identified feedforward or output feedback

in comparable conditions. Nevertheless, it is possible that the HC is unable to
utilize all three in one or more conditions. Furthermore, we expect that the output

feedback response in the no-motion conditions, if it is indeed present, has a smaller

magnitude and higher associated time delay than in the motion conditions (H.II)
[Hosman, 1996; Pool et al., 2008; Vos et al., 2014]. Finally, we expect that the

feedforward response, if it is indeed present, is more strongly utilized for conditions
with a higher ramp steepness (H.III), [Laurense et al., 2015] and Chapter 2. Note

that in conditions M0 and S0, a feedforward response is not possible, because ftp =
0.
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8.7 Results

This section presents the combined results of the six subjects who participated in the

experiment. First, tracking performance and control activity will be analyzed using
the time-domain data from all the experiment runs. Next, HC control behavior will

be identified using three system identification and parameter estimation methods.
The results of the parameter estimation method are analyzed using a repeated-

measures analysis of variance (ANOVA) to reveal any significant effects.

8.7.1 Tracking performance and control activity
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Figure 8.10: The RMS of the tracking error e and the control signal u.

Fig. 8.10 depicts the RMS of the tracking error e and control signal u, errorbars
indicate 95% confidence intervals. Tracking performance, Fig. 8.10(a), was signifi-

cantly worse with higher ramp steepness (F2,10 = 21.73, p < 0.05), and significantly

better with motion than without (F1,5 = 23.36, p < 0.05). Worse tracking perfor-
mance for higher ramp steepness, also found in [Laurense et al., 2015] and Chap-

ter 2, is explained by the more rapid buildup of error around the ramp onsets for
steeper ramps. During the reaction time between the ramp onset and its detection

by the HC the tracking error increases rapidly. Better tracking performance with

motion was found consistently across many studies for tasks that require HC lead
equalization [Pool et al., 2008; Zaal et al., 2009a].

Control activity, Fig. 8.10(b), was significantly higher with higher ramp steep-

ness (F2,10 = 8.93, p < 0.05), and significantly higher with motion than without
(F1,5 = 36.89, p < 0.05). Steeper ramps require larger control inputs, causing

RMS(u) to be larger with higher ramp steepness. Physical motion provides lead in-
formation with a smaller time delay than visual motion, resulting in a larger phase

margin, in turn allowing subjects to control with a higher feedback gain without

losing stability, causing a higher RMS(u).
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8.7.2 FC and ARX results of conditions without ramps (S0, M0)

Fig. 8.11 depicts the estimates for the error feedback and output feedback responses,
averaged over all subjects, for the S0 and M0 conditions, obtained from the Fourier

Coefficient and ARX identification methods.
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ŶFC
pe

ω, rad/s

P
h

as
e,

d
eg

ω, rad/s
M

ag
n

it
u

d
e,

-

100 101

100 101

-360

-270

-180

-90

0

90

180

10−1

100

101

(b) S0, FC and ARX means

Figure 8.11: Fourier Coefficient and ARX estimates of the error feedback and output
feedback responses, averaged over all six subjects.

Fig. 8.11(a) shows that both an error feedback and an output feedback response
were identified for the M0 condition. Both responses correspond with previous

studies: the error feedback response is a gain at low frequencies, a lead around
the crossover frequency, and a considerable time delay; and the output feedback

response is a differentiator for ω < 8 rad/s and a time delay. Both responses show

the neuromuscular peak around 10 rad/s. The phase of Ŷpψ decreases at a slower

rate, at ω > 8 rad/s, than of Ŷpe indicating a smaller time delay. This is confirmed
by observing the corresponding time delay parameters of the selected ARX models,

see Table 8.5. The error feedback time delay is considerably larger than the output

feedback time delay. To conclude, subjects were actively using the physical motion
cues in their output feedback response.

Table 8.5: Properties of selected ARX models, averaged over subjects

Condition n̄ke
τpe , s n̄kψ

τpψ , s Magnitude of ŶARX
pψ

, at ω = 1 rad/s

S0 7.3 0.29 4.7 0.19 0.17
M0 7.3 0.29 3.7 0.15 0.25
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In the S0 condition, see Fig. 8.11(b), an output feedback response very similar

to Ŷpψ in the M0 condition was identified for all subjects. The responses mainly

differ in that 1) the magnitude of Ŷpψ is smaller in S0 than in M0, and 2) the phase

lag is larger at higher frequencies in S0, indicating a higher time delay. These two
observations are quantified in Table 8.5. The average error feedback time delay n̄ke

in S0 is identical to M0, but the output feedback time delay n̄kψ
is indeed slightly

larger. The magnitude of Ŷpψ at 1 rad/s in S0 is 60% of the magnitude in M0.

It appears that the out-of-the-window display allowed subjects to utilize a visual
output feedback response, with similar dynamics as to physical motion cues, but

with a lower gain and a higher time delay.

8.7.3 ARX results of conditions with ramps (M3, M6, S3, S6)

ARX results as a function of c

Fig. 8.12(a) shows the quality of the fit of the selected models, measured by the VAF,

as a function of the model complexity penalty parameter c. Figs. 8.12(b)-(e) show

the number of parameters in each polynomial of the selected ARX models, averaged
over all subjects, over the same range of c values. These figures provide insight in

the sensitivity of the ARX results to the value of c, and reveals the importance of
each response for each condition.

Fig. 8.12(a) shows the VAF of the selected models as a function of c. Obviously,

for small values of c, the model quality is high, and as c is made larger, the model

quality decreases. For very small values of c, the VAF is above 85% for all conditions,
indicating that the selected models were able to describe the measured data well;

similar values were found in previous studies [Zaal et al., 2009a; Zaal et al., 2009c;

Pool et al., 2011b]. At csim = 4, see Section 8.5.1, the VAF is only marginally
smaller than at much smaller values of c, illustrating that although these models

are far less complex, they still describe almost as much of the measured control
signals. Hence, the more complex models possibly contain ‘false-positives’ or ‘true’

dynamics with a very small contribution. For higher values the VAF decreases

gradually and sometimes in discrete steps. At specific values of c a particular
response is ‘removed’ completely and the less complex model has a considerably

smaller fit quality. By comparing Fig. 8.12(a) to Figs. 8.12(b)-(e) it becomes obvious
which response is responsible for the discrete steps in model quality.

In Figs. 8.12(b)-(e), the dashed horizontal lines indicate the minimum number

of parameters required in each path for our hypotheses to be true, see Section 8.6.6.

The dashed vertical lines indicate the value of c as chosen based on Monte Carlo
simulations csim equal to 4. If a particular response is ‘removed’ from the selected

model for small values of c, it contributes little to the explaining power of the
model and might be a false-positive result. Note that the selected ARX models have

an integer number of parameters, fractional results are caused by averaging over

six subjects.
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Figure 8.12: Number of parameters in selected ARX models. (e)-(c) n̄a, n̄be
, n̄b ft

, and n̄bψ

as a function of c, respectively. (a) VAF as a function of c. (f) Number of subjects for which
an ARX model with a particular number of parameters (0, 1, ..., 4) in the output feedback
path was selected for c = csim, and the corresponding subject letters for identification.
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Fig. 8.12(b) shows that for the M6 and S6 conditions a feedforward path was

identified with n̄b ft
≥ 2 up to csim. For the M3 condition the feedforward disappears

for values of c only slightly smaller than csim, but for S3 the feedforward disappears
clearly at much smaller values of c. For the M3 and S3 conditions, the slow ramps

and the presence of ftu might have made it too difficult for the subjects to detect the
ramp and construct a feedforward response. In S3 the subjects relied exclusively on

visual information to reject disturbances, as physical motion was absent, possibly

complicating the detection of a ramp segment even further, explaining the notable
difference between M3 and S3.

Furthermore, the VAF of the selected models for S3 and M3 is not affected much

by the disappearance of the feedforward for c < csim, indicating that the contribu-
tion of the feedforward path to the total control signal is small. The identification

of the feedforward path is therefore possibly a ‘false-positive’ for these conditions,

especially because for most subjects it is only identified for c < csim, but it is also
possible that a feedforward response with a very small magnitude was present. For

the S6 and M6 conditions, however, the feedforward response is clearly not a false-
positive result, because 1) for all but one subject a feedforward path is selected for

c = csim, and 2) the VAF decreases clearly when the feedforward disappears from

the selected models for c > csim.

Fig. 8.12(c) shows that n̄bψ
≥ 2 for all motion conditions, up to c ≈ 5, which

is slightly larger than csim: an output feedback response is clearly present for all

motion conditions. For S3 and S6, n̄bψ
is close to zero for csim and thus the identifi-

cation of an output feedback path for smaller values of c is possibly a false-positive

result. For condition S0, the results are less clear: n̄bψ
is clearly non-zero at csim,

but the overall decrease in the VAF from c = 0.1 to 15 (where n̄bψ
is finally equal

to zero) is small. Most likely, the result is not a false-positive result, but mainly

signifies that the output feedback response is very small for most subjects.

Fig. 8.12(d) shows that even for very large values of c, the average number of
parameters in the error feedback path n̄be

is above or equal to 2. Note that at

c = 30, where the selected ARX models contain only an error feedback path, the

VAF is still relatively high: around 80%. Thus, the error feedback path explains
a large part of u by means of a relatively simple model of just 2 parameters for

all conditions. At even larger c values, the VAF decreases further; this decrease is,

however, not correlated with a further decrease in n̄be
, but rather with a decrease in

n̄a, see Fig. 8.12(e).

Fig. 8.12(e) shows the average order of the denominator of the selected ARX

models n̄a, that contains the poles of the MISO ARX model. Two parameters in
the A polynomial are necessary to describe the neuromuscular system dynamics,

which is commonly modeled as a second-order system. Here, n̄a is close to 2,
consistent across conditions, for a large range of c values, but at very large values,

i.e., for c > 80, n̄a gradually decreases from 2 to 1, for all conditions. This decrease

coincides with the rapid decrease in VAF for c > 80. Apparently, the neuromuscular
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system has a rather large contribution to the measured control signal, and removing

these dynamics from the model causes the quality of the fit to decrease dramatically.

Fig. 8.12(f) shows the number of subjects for which an ARX model with a par-

ticular nbψ
was selected, for c = csim, and the letter (A through F) by which each of

the six subjects can be identified. In the M0 condition six subjects had 2 parameters

in the output feedback path; in the M3 and M6 conditions five subjects had a more

complex response requiring three parameters, one more than in the M0 condition.
Subject E was possibly not using output feedback in the M3 and M6 conditions, or

had a response with a small magnitude. For the S conditions, the model selection

was not uniform across subjects and depends on the presence of a predictable target
signal. For S0, four subjects had a response with an identical number of parameters

as in the M0 condition, but in the S3 and S6 only one subject had a non-zero nbψ
.

Based on these results, we conclude that: 1) an error feedback response is clearly

present in all subjects and conditions; 2) a feedforward response is present in M6
and S6, and possibly also in M3 and S3; 3) an output feedback response is certainly

present in all M conditions, and most likely also in S0 for some subjects; and 4) in

the S3 and S6 conditions a small output feedback response might be present for a
limited number of subjects, but this result is possibly a false-positive result.

Ramp Conditions (S3, S6, M3, M6)

Figs. 8.13, 8.14, and 8.15 show the frequency responses of the selected ARX mod-

els, for all conditions with non-zero ramp steepness, for c = csim, for all subjects
individually. Each color represents the same subject in every sub-figure. Vertical

dashed lines indicate the lowest frequency component in ftu and the highest fre-

quency component in fd. Outside this frequency range the ARX estimates are not
strictly valid, because three uncorrelated forcing functions are necessary to reliably

identify three responses.

The error feedback responses Ŷpe , see Fig. 8.13, are consistent across conditions

and subjects, and accurately resemble the dynamics of the hypothesized model of

Eq. (8.3). The error feedback dynamics are identical to the dynamics identified for
the no ramp conditions, S0 and M0: a gain at low frequencies, lead around the

crossover frequency, a neuromuscular peak and a considerable time delay. Differ-
ences between conditions are subtle: the low frequency gain is slightly larger for M

conditions, and the lead time constant is slightly smaller for M conditions.

The feedforward responses Ŷpt , see Figs. 8.14, of conditions S6, M3, and M6

resemble a differentiator over a broad frequency range; no feedforward responses

were selected in the S3 condition for csim. A purely differentiator feedforward re-
sponse can indicate that 1) the bandwidth of the feedforward response was limited

to approximately 1 rad/s, corresponding to TI > 0.3 in Eq. (8.13); and/or 2) the
feedforward control law of the subjects contained both the inverse system dynam-

ics and the output feedback response, as hypothesized, and Kpψ was larger than 0,

see Eq. (8.13).
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(a) S3, error feedback.
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(b) M3, error feedback.
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(c) S6, error feedback.
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(d) M6, error feedback.

Figure 8.13: The frequency response of the selected ARX models for c = 4 for all subjects.
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(a) S3, feedforward.
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(b) M3, feedforward.
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(c) S6, feedforward.
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(d) M6, feedforward.

Figure 8.14: The frequency response of the selected ARX models for c = 4 for all subjects.
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(a) S3, motion feedback.
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(b) M3, motion feedback.
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(c) S6, motion feedback.
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(d) M6, motion feedback.

Figure 8.15: The frequency response of the selected ARX models for c = 4 for all subjects.
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In the M3 and M6 conditions, the phase of the feedforward responses generally

lacks a sharp decrease at higher frequencies which would be characteristic of a con-
siderable time delay (compare with the error feedback responses). Hence, in these

conditions, the feedforward time delay is very small, indicating that the subjects

were attempting to anticipate the future course of the target. For M3, t he ARX
time delay parameter nk ft

is indeed equal to 1 (lower bound) for all three subjects,

whereas for M6 the larger mean value is caused by only one subject; for all other

subjects nk ft
was equal to 1 or 2. For the S6 condition, multiple subjects show the

effects of a time delay, but note that the between-subject variability is large.

The output feedback responses Ŷpψ , see Figs. 8.15, resemble the hypothesized
model of Eq. (8.5) very well within the frequency range where the ARX estimates

are valid in the M conditions. That is, Ŷpψ is a pure differentiator at low to medium
frequencies, and contains a neuromuscular peak around 10 rad/s. Close to the

lower boundary and below, it is impossible to disentangle three controller dynamics

reliably; here, the estimates for Ŷpψ and Ŷpt tend to a gain. ARX models generally
tend to a gain as the frequency approaches zero, unless the sum of the B-polynomial

coefficients is exactly equal to zero. Thus, Ŷpt and Ŷpψ will also tend to a gain at

lower frequencies.

8.7.4 Parameter Estimation Results

The identified ARX control responses have high resemblance to the hypothesized
+FF+OFB model dynamics of Section 8.3.4. Note that the ARX results suggested

that the feedforward and/or output feedback responses in the S3 and S6 conditions

were possibly false positive results or ‘true’ responses with a very small magnitude.
To obtain more insight, the +FF+OFB model is also fit to these conditions, to es-

timate the actual magnitude of these responses through gains Kpt and Kpψ
, and

observe consistency across subjects. Gain estimates close to zero combined with a
large variance in the estimates of other parameters in the respective response would

provide further evidence of a false-positive result. Estimates of Kpt and Kpψ
that

are small, but consistently non-zero across subjects, would suggest that the result

is not a false-positive, but that the respective response indeed had a small magni-

tude. The mean and 95% confidence intervals of the parameter estimates are shown
in Fig. 8.16. Note that the obtained parameter estimates are entirely independent

of the ARX estimates. For the S0 and M0 conditions, it is not possible to obtain
estimates for feedforward parameters, because ftp = 0.

Fig. 8.16(a) shows that the feedforward gain Kpt is significantly higher with
faster ramps (F1,5 = 13.092, p < 0.05), confirming results of previous studies [Drop

et al., 2013; Laurense et al., 2015]. Kpt is also significantly higher in conditions
with physical motion (F1,5 = 11.340, p < 0.05). The presence of physical motion

aids the HC in stabilizing the control loop, possibly making it easier to focus on

target-following rather than disturbance-rejection, reflected by a higher Kpt . Even
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Figure 8.16: Parameter estimates of the +FF+OFB model of Section 8.3.4.
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though no feedforward was identified by the ARX method in the S3 condition, the

parameter estimates are clearly non-zero and consistent across subjects, suggesting
that subjects were in fact utilizing feedforward, but with a small magnitude.

No significant effects were found for TI , see Fig. 8.16(b). The estimated values

are similar to those found in previous studies [Laurense et al., 2015] and Chapter 6.
Previous studies found that TI is smaller for steeper ramps; this trend is present in

these data as well, albeit not significant.

The feedforward time delay, see Fig. 8.16(c), was estimated very close or equal

to the lower bound (0.01 s) in many cases, therefore statistical significance was not

tested. This confirms the ARX estimates for Ŷpt that did not show the exponential
phase drop at higher frequencies characteristic for a considerable time delay. This

result suggests that subjects were able to give feedforward inputs that were accu-
rately synchronized with the ramp onsets and ends with a close-to-zero time delay.

Doing so requires considerable anticipation, given that the human reaction time is

normally on the order of 200 ms.

Kpe was significantly higher in motion conditions (F1,5 = 31.106, p < 0.05), as

expected [Pool et al., 2008], but did not significantly depend on ramp steepness.

TL was significantly lower in motion conditions (F1,5 = 18.837, p < 0.05) and

significantly higher for higher ramp steepness (F2,10 = 6.529, p < 0.05). In motion

conditions, part of the required lead is generated by the output feedback response,
such that less visual lead is necessary, reflected by a lower TL. Similarly, in the

S0 condition subjects were able to utilize a visual output feedback response, also
reducing the need for generating lead from the error signal. As subjects were not

able to utilize a visual output feedback in S3 and S6, they required more lead based

on e, reflected by a higher TL in these conditions. A similar, but much smaller, effect
is seen for the motion conditions.

τpe did not show any significant trends, and mean values are as observed in
previous studies between 0.2 and 0.3 s [McRuer and Jex, 1967; Stapleford et al.,

1967; Pool et al., 2008; Zollner et al., 2010].

The output feedback gain Kpψ , see Fig. 8.16(g), is significantly higher in M con-

ditions than in S conditions (F1,5 = 30.250, p < 0.05) and significantly lower in

conditions with higher ramp steepness (F2,10 = 21.227, p < 0.05). Evidently, the
presence of a predictable target complicates the utilization of an output feedback

response by the subjects, resulting in a lower estimated Kpψ . The very low Kpψ

for S3 and S6 further supports results of the ARX analysis, suggesting that output
feedback is non-existent or of very small magnitude in these conditions.

For S3 and S6, Kpψ is very close to zero, causing τpψ estimates to be unreliable
and meaningless. Significance of the apparent trends in τpψ was therefore not tested.

The mean values for M conditions are similar to those found in previous studies:
between 150 and 250 ms [Zaal et al., 2009a; Zaal et al., 2009b]. The mean value of

τpψ for the S0 condition is approximately 70 ms slower than in the M0 condition,

but 30 ms faster than τpe in the S0 condition.
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Both ωnms (F1,5 = 6.970, p < 0.05) and ζnms (F1,5 = 11.134, p < 0.05) were found

to depend significantly on the presence of motion. With motion, the subjects had a
higher neuromuscular bandwidth and were less damped, indicating that they were

more stiff, either by co-contraction or by increasing the reflexive gain [Schouten

et al., 2008; Olivari et al., 2014]. Furthermore, ζnms was found to be significantly
larger in conditions with faster ramps (F2,10 = 8.059, p < 0.05).

8.8 Discussion

We expected that the HC makes simultaneous use of error feedback, feedforward
and output feedback in control tasks involving a predictable target and physical

motion cues (H.I). We indeed identified the simultaneous use of all three control
strategies from human-in-the-loop experimental data, and found that control dy-

namics of error feedback and output feedback are equivalent to dynamics found

in previous studies. It was derived and shown through computer simulations that
feedforward control dynamics need to adapt to the presence of output feedback

for optimal performance. The ideal feedforward control law inverts the system dy-
namics and cancels out the output feedback response to ψ caused by following ft.

Direct evidence for the adaptation of feedforward to output feedback could not be

obtained from experimental human-in-the-loop data, however, for two reasons.

First, the identification and parameter estimation methods are unable to sepa-

rately quantify individual contributions of two or more dynamics that affect the

feedforward response similarly. Thus, the (possibly imperfect) presence of output
feedback dynamics in the feedforward law can be inferred only by making assump-

tions on the other feedforward dynamics. For example, the low-frequency gain of
the feedforward path depends on: 1) the willingness or ability of the HC to apply a

feedforward operation with a certain magnitude, captured in the model by the feed-

forward gain, and 2) whether or not the feedforward adapts to the output feedback
dynamics. There is, however, no means to tell these apart, and thus no conclusions

can be drawn regarding 1), without making assumptions regarding 2), and vice
versa. Note that the same argument holds for dynamics at higher frequencies; the

low-frequency gain is, however, estimated with more accuracy than dynamics at

higher frequencies, due to the power spectrum of the target signal. The following
paragraph will discuss the assumptions that can be made and and how they result

in indirect evidence of the adaptation of feedforward to output feedback.

If the following assumption regarding 1) is made: “subjects were equally mo-
tivated and able to give feedforward inputs of a particular magnitude in motion

and static conditions”, it follows that the low-frequency gain of the feedforward
response can be different only due to an adaptation of the feedforward to the out-

put feedback dynamics. And thus, the considerably larger magnitude of the feed-

forward responses in the motion conditions suggests that subjects were doing so to
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cancel out the output feedback response to the non-zero ψ̇ caused by following ft

in the motion conditions.
Then, the parameter estimation analysis relied on the following assumption re-

garding 2): “subjects cancel out the static gain of their output feedback response,

but neglect the output feedback time delay and neuromuscular dynamics”. The pa-
rameter estimation analysis found values for the feedforward gain that were iden-

tical to previous studies, that did not involve output feedback. This suggests that
subjects were indeed able to give feedforward control inputs with the same magni-

tude as they do in other control tasks, that do not feature physical motion feedback.

Hence, the results of both analysis methods provide indirect evidence for the adap-
tation of the feedforward dynamics to the presence of output feedback.

Second, the ARX method utilizes a model selection criterion that takes into ac-
count model complexity explicitly. The model complexity penalty parameter is

chosen such that no false-positive identification of feedforward or output feedback

occurs from data generated by a simulated HC model that does not contain the
respective channel. This prevents false-positive acceptance of our main hypothesis

(H.I), but, for this particular control task, has the disadvantage that dynamics with

a small contribution to u are unlikely to be identified. Direct evidence for the adap-
tation of feedforward to output feedback would be provided by the identification

of dynamics that are 1) normally not identified in the feedforward path, and 2) re-
lated to the output feedback path, such as the output feedback time delay, and the

neuromuscular system dynamics. No evidence for these dynamics was found in

the feedforward path, because the selected ARX models described the feedforward
dynamics as a differentiator only.

We expected to identify an output feedback response in all conditions (H.II),
but did not find strong evidence for a (visual) output feedback response in the S3

and S6 conditions even though it was identified in the S0 condition, albeit with a

lower gain than in the M0 condition. Similarly, the output feedback response in
the M3 and M6 conditions was significantly smaller than in the M0 condition. To

explain these two observations, we hypothesize that the output feedback response
in M0 consists of both a visual and a physical motion component, whereas in S0 it

is visual only. In S0, it is possibly easier for the HC to generate lead from perceiving

the visual flow of the entire scene (which is equal to ψ̇) than estimating ė. Perceiving
ė requires the HC to estimate the rate of change of the distance between two slender

objects, being the target pole and the cross-hair. This is possibly more difficult and
therefore slower than perceiving the visual flow of the background scene, such that

utilizing an output feedback response is beneficial for performance. In conditions

with a predictable target, however, the visual flow caused by following the ramp
segments might have ‘masked’ the small fluctuations due to the disturbance signal,

rendering such a strategy impossible and explaining the differences between the 0
and the 3 and 6 conditions. Further research should investigate this specific aspect,

for example, by performing an experiment with the presence of visual flow as an

independent variable.
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The ARX identification method found a feedforward response in all conditions,

except the condition with a slow predictable target and no physical motion feedback
(S3). Note, however, that the feedforward response was ‘removed’ from the selected

model for values of c only marginally smaller than csim, which was chosen based

on Monte Carlo simulations as per Chapter 5. For this particular value of c, no
false-positive identification of feedforward and/or output feedback occurred from

simulated data generated with the +FF+OFB model and parameter values based
on literature. The disadvantage of this approach is that if the actual responses

contribute less to the total control signal u, then false-negative results might occur.

The parameter estimation results for condition S3 suggest that the ARX result was
indeed a false-negative result, given that Kpt was estimated at 0.5 consistently across

subjects here. This value is considerably lower than the gain assumed in the Monte
Carlo simulations, which was equal to 1.

Finally, we expected the feedforward response, if indeed present, to be stronger

in conditions with steeper ramps (H.III). This was indeed the case, confirming pre-

vious results [Drop et al., 2013; Laurense et al., 2015], and two explanations can be
given. First, the signal-to-noise ratio of the predictable ramp segments was higher

in the 6 conditions, because the magnitude of the unpredictable target signal was
equal in all conditions. Thus, subjects were better able to distinguish the ramp and

subsequently apply a feedforward response. Second, the potential performance

improvement due to a feedforward response was larger in the 6 conditions, and
therefore the subjects were more inclined to utilize feedforward in these conditions

than in the 3 conditions.

The simultaneous identification of three control responses was successful, but

required three uncorrelated forcing functions and the assumption that the HC is
unable to apply feedforward to an unpredictable target signal. Even though this

assumption is supported by a considerable number of studies [McRuer et al., 1965;
Wasicko et al., 1966; McRuer and Jex, 1967; Magdaleno et al., 1969; Hess, 1981], it is

important to note that the effects of target signal predictability, or other control task

properties such as the display configuration and presence of other forcing functions,
on the development of feedforward has received little attention so far. Therefore,

further research is necessary to test the correctness of the assumption.

8.9 Conclusion

This paper studied the simultaneous use of an error feedback, feedforward and

output feedback control strategy during a helicopter yaw tracking task in hover.
From theoretical analyses we conclude that: 1) there is a clear incentive for the si-

multaneous use of error feedback, feedforward, and output feedback, to improve
tracking performance, and 2) the feedforward control law should adapt to the pres-

ence of an output feedback control strategy. From the human-in-the-loop tracking

experiment we conclude that: 3) subjects indeed utilized all three control strategies
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simultaneously in conditions where a predictable ramp target and physical motion

was present, but 4) that they utilize output feedback significantly less in conditions
involving predictable target signals, as reflected by a large decrease in the output

feedback gain. The latter is relevant especially for the simulator community, given

the unresolved debate regarding the importance of physical motion cues during
simulated flight. Future research should focus on this apparent reduction of output

feedback utilization in the presence of realistic, predictable target signals.
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Discussion and recommendations

9

This thesis contains separate discussion and conclusion chapters. The discussion
chapter is a critical reflection of the path taken throughout this thesis, the analysis

methods and experimental paradigms that were used, and the relevance of the

obtained results with respect to the higher-level context within which this work
was performed. The conclusion chapter, on the other hand, puts more focus on

the direct conclusions that can be drawn based on the results of human-in-the-loop
experiments. The discussion chapter furthermore recommends how future research

can address the identified shortcomings of this thesis, and in which direction future

research should be performed.

The discussion chapter is structured as follows. First, the important points of

criticism are discussed and recommendations for future research to address these

shortcomings are provided, for each of the three parts of the thesis separately. Sec-
ond, the ecological validity of the system identification and Human Controller (HC)

modeling approach, for past and future research related to feedforward control be-

havior, is discussed. Third, the quantitative and qualitative contributions to the field
of human machine interaction are discussed. Recommendations for future research

are provided throughout the discussion.

9.1 Exploring the presence of feedforward in manual control

tasks

The goal of this thesis is to obtain a better understanding of feedforward strategies

in manual control tasks. The lack of previous studies was both a blessing and a

curse: many different directions could be taken — there was no beaten path — but
on the other hand it meant that no clear-cut starting point was available and it was

unclear which of the many open questions were the most relevant ones. Therefore,
two ‘exploratory’ studies were performed; the first with the aim of obtaining an

appropriate starting point (Chapter 2), the second with the aim of identifying the

most pressing questions to be answered in following studies (Chapter 3).
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The choice for the control task considered in Chapter 2 was mainly driven by the

likelihood of inducing a feedforward response, and less by the ecological relevance
of the task. The system dynamics considered in Chapter 2, a pure single integrator,

are not representative for a particularly large collection of vehicles. That is, many

vehicle dynamics include some form of second-order dynamics, damping effects or
lead-lag dynamics [McRuer and Jex, 1967; Heffley et al., 1982; Pool et al., 2011b]

which are 1) more difficult to control, possibly reducing the ability of the HC to
utilize feedforward, and 2) reduce the potential performance improvement of a

feedforward strategy when tracking a ramp target signal, possibly reducing the

desire of the HC to utilize feedforward.

Furthermore, Chapter 2 considered a large number of conditions to increase
the likelihood of identifying feedforward in at least one condition. This approach

was “too” successful, as feedforward was identified in all conditions — not just

one — but no additional trends of importance were revealed. That is, the observed
behavior was rather constant throughout the nine different experimental conditions.

An additional independent variable, e.g., a variation in the system dynamics, could
have resulted in more relevant observations at an earlier stage.

In Chapter 3 the opposite approach was taken, with the aim of identifying
shortcomings of analysis methods and gaps in the knowledge of manual control

behavior: the choice for the control task was based on the ecological relevance and
realism of the task, even though this meant that an in-depth analysis of the exper-

imental data would be impossible and a myriad of possibly confounding effects

were present. The computer simulation and system identification analyses relied
on a multiloop pilot model developed specifically for this chapter. It contains a

feedforward, error feedback, and output feedback response in both the roll and the

lateral loop, see Figure 9.1. The model relied on two assumptions, based on the
then available knowledge, that in later chapters were found to be incorrect.
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Figure 9.1: Schematic representation of the lateral reposition task and the proposed pilot
model.

First, the two feedforward elements Hty and Htφ consisted of a gain and inverse

system dynamics only; they did not contain additional dynamics, such as a time
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delay and a low-pass filter. Furthermore, the feedforward elements inverted the sys-

tem dynamics only, and not the sum of the inverse system dynamics and the output
feedback response. Chapters 6, 7 and 8 clearly demonstrated that these are essential

elements of the feedforward model. The computer simulation analysis, performed

to investigate the performance improvement provided by the feedforward elements,
would have obtained quantitatively different results, but these differences would not

have affected the conclusions drawn from the analysis. The identification results,
on the other hand, relied heavily on the exact structure and parametrization of the

model, and thus it is not clear whether the same conclusions would be drawn from

an analysis with an updated model.

Second, the input for the roll-loop feedforward Htφ was the sum of all control
responses in the outer loop, including the error feedback and output feedback re-

sponses, Hey and Hy, respectively. Therefore, the ‘roll target signal’ φt (internal to
the pilot) was the sum of a ‘predictable’ signal, i.e., the predictable target ft that had

passed through Hty , and an ‘unpredictable’ signal, i.e., the rather erratic signals ey

and y that had passed through Hey and Hy, respectively. Based on Chapters 7 and 8,
it is now questionable whether it is correct to assume that (the same) feedforward

dynamics can be applied to both the unpredictable and the predictable components
of φt. Possibly, a better assumption would have been to take the output of Hty as

the input for Htφ , such that Htφ responds to the predictable component only. Alter-

natively, it is possible that the ‘unpredictable’ component of φt is still ‘sufficiently
predictable’ that a feedforward response can be expected, but with a larger time

delay, as was found in Chapter 7 that the feedforward time delay is larger for less
predictable target signals. Again, it is more likely that this wrong assumption af-

fected the identification analysis more than the computer simulation analysis. Note

that the above relies on the assumption that the HC indeed organizes the control in
a separate lateral and roll loop, and that the internal signal φt actually exists. Even

if this signal would exist somewhere in the CNS, it is not immediately obvious how

this signal could be measured. This is an important complicating factor in further
research of this particular task.

The wrong assumptions might have led to incorrect conclusions regarding the

control behavior in Chapter 3, but this was expected. More importantly, the pro-
cedure was successful in identifying the most important shortcomings in the anal-

ysis methods and the most pressing aspects of feedforward that needed further
research, at least in the sense that, after addressing the majority of these in sub-

sequent research, it is now possible to critically reflect upon the assumptions that

had to be made in Chapter 3 and see its results in a new light. That is, subsequent
research indeed revealed very relevant information regarding these shortcomings

and it did not put the research on the wrong track. First, the study suggested that
ARX model order-selection has a large influence on experimental results, and sub-

sequent research indeed showed that ‘false-positives’ are an issue that needed to

be addressed in a novel identification method. This identification method was then
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successfully used in subsequent research that focused on various aspects of feed-

forward. Second, the study successfully exploited the hypothesis that in order to
identify feedforward for higher order system dynamics, a target signal with higher

order derivatives is necessary. In Chapter 6, this hypothesis was successfully used

to identify feedforward for the double integrator. Third, the study suggested an in-
teraction between the feedforward and output feedback responses, which was later

successfully demonstrated and identified from experimental data in Chapter 8.

9.1.1 Recommendations for future research

It is recommended that the HC model developed in Chapter 3 is ‘updated’ and the
computer simulation analyses as well as the identification analyses are repeated.

Such a ‘revision’ can result in a better understanding of this particular task, but

will most likely reveal new gaps in our current understanding, which can give di-
rection to future research. The multi-loop aspect of this task is the most challenging

aspect: it will be impossible to identify every control response simultaneously, as
it would require six(!) uncorrelated forcing functions. It is possibly necessary to

momentarily step away from tasks that might induce feedforward behavior, to re-

duce the number of possible responses, and better understand error feedback and
motion feedback first, before returning to more realistic tasks.

9.2 Development of an identification procedure for feedforward

in manual control tasks

In Part II, a novel identification procedure was developed to objectively identify
whether or not the HC utilizes a feedforward response on the target signal in addi-

tion to a feedback response on the tracking error.

9.2.1 Other identification approaches for feedforward

Since the work described in this thesis started, others have used alternative ap-

proaches for the identification of feedforward in tracking tasks.

Pool, [2012] performed two studies that potentially involved a feedforward re-
sponse; both studies involved the tracking of a ramp target signal, the first without

physical motion feedback (similar to Chapter 2), the second with physical motion
feedback (similar to Chapter 8). In the first study, two separate models were fit

to the measured control signal (a pure feedforward model and a pure feedback

model) to show to what extend each individual path would capture the measured
control inputs. In the second study, that involved physical motion feedback simi-

lar to Chapter 8, a pure feedforward model was fit to the measured control signal,
after which a model with an error and an output feedback component was fit to

the remainder of the control signal. Both analyses were, however, severly biased

towards the identification of feedforward, due to the closed-loop relation between
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the target, error and control signals. That is, a well-tuned feedback controller Ype

will have a high gain such that the error e due to the target ft is small:

e(s)

ft(s)
=

1

1 +Ype(s)Yc(s)
9.1

The transfer function between u and ft will approach 1/Yc(s) for a high gain feed-

back response, which becomes clear from inspecting:

u(s)

ft(s)
=

Ype

1 +YpeYc
9.2

Hence, if a feedforward model consisting of inverse system dynamics is fit to any

data of a well-tuned feedback controller, a good quality-of-fit is to be expected,

especially if the model has additional freedom due to a gain, low-pass filter and a
time-delay. It is important that all responses of a model are fit simultaneously.

A truly non-parametric black-box identification method for feedforward was

proposed by Yu et al., [2014]. The method consists of estimating the sensitivity
and co-sensitivity functions, T and S, respectively, from a tracking task involving a

predictable single-sine target signal and a multi-sine disturbance signal. The error
feedback and feedforward describing functions are calculated from the T and S esti-

mates. The proposed method does not require the user to perform model selection;

it provides a model-free estimate of the feedforward response. In order to estimate
the feedforward dynamics over a wide frequency range, data from different experi-

mental conditions had to be combined. This is problematic, because the HC adapts
his or her control behavior to task variables such as the target signal frequency con-

tent, and thus the combined describing function is not necessarily a good estimate

of the behavior in each individual condition. This limitation is, however, mainly
due to the use of single sine targets, and not due to the method itself. The method

would be suited excellently for the analysis of the data of Chapter 7.

9.2.2 Different applications

The application of the procedure is not limited to feedforward identification only:

it can be used for the identification of other responses as well. Roggenkämper et
al., [2016] used the ARX procedure developed in this thesis for the identification

of a response to physical motion feedback for different settings of the simulators’
motion cueing algorithm. If the physical motion feedback is attenuated more, the

HC makes less use of a feedback on the physical motion [Van Gool, 1978; Pool et

al., 2012b; Pool et al., 2013]. The results obtained with the ARX procedure lead to
the same conclusions as drawn from earlier research that used the non-parametric

Fourier Coefficient (FC) identification method, but are more informative and more
straightforward to interpret, for two reasons.

First, the ARX procedure directly provides a model that can be simulated in

the time-domain, which allows the user to assess time-domain quality of fit and
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evaluate the contribution of each individual response. The FC method, on the other

hand, requires more effort from the user to obtain these results. The user needs to
interpret and understand the frequency-domain results first, construct a parametric

model, and then fit this model in the time or frequency domain to the data.

Second, the FC method results are difficult to interpret if a ‘false-positive’ re-

sponse is estimated. That is, the FC method always provides an estimate of a par-

ticular response, even if the HC did not actually use such a response. FC estimates
of non-existent responses are, however, not simply equal to a very small gain, but

noisy with a considerable magnitude on some frequencies. An additional prob-
lem is that the quality of the primary response estimate is negatively affected by a

non-existent secondary response.

Other examples of research that could benefit from the novel ARX procedure are

as follows. Vos et al., [2014] investigated the possible utilization of a system output

feedback in tracking tasks without physical motion feedback, but the FC analysis
was affected by the aforementioned disadvantages. Van der El et al., [2015] inves-

tigated the required complexity of a HC model for preview tracking tasks, which
resulted in a model with many responses and parameters. The ARX procedure

could provide insight in whether or not these responses are necessary or can be

replaced by a much less complex model. Pool et al., [2011b] investigated whether
or not the HC equalizes complex aircraft dynamics in the compensatory feedback

path, by considering models of different complexities. Cleij et al., [2015] obtained a

continuous rating of simulator motion coherence, measuring the subjective fidelity
of the simulator motion over time. The continuous rating can, possibly, be described

by a model with the ‘error signals’ between the 6DOF vehicle and simulator motion
as inputs, e.g., the difference in translational acceleration and rotational rates. The

ARX procedure can be used to assess whether or not a linear relation exists, which

signals are the model inputs, and the dynamic relation between the inputs and the
continuous rating.

9.2.3 Concerns with the ARX procedure

The application of the novel identification procedure in Chapters 6 and 8 revealed

a number of practical and theoretical concerns.

The first and most important practical concern is the enormous computational

effort required by the procedure. First, for each condition in an experiment (typi-
cally between 6 and 12), at least two HC models (to assess false-positive and false-

negative results) need to be simulated many times (typically between 50 and 200

times), each time with a different remnant realization, to generate the simulated
data. Then, for each of these data sets, a large number of ARX models need to be

identified and subsequently simulated to calculate the model quality. Finally, the
‘best’ model is selected many times for different values of c. Additionally, in many

situations it was found useful to consider more than just two different HC models,

or have multiple model parameter sets to gain more insight in the identification
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process. Then, if the results are not satisfactory, and changes are made to the con-

trol task variables, the entire process needs to be repeated. This process can take
up to months of computation time, if it were to be performed on a single desktop

computer. This computational effort is at least off-putting, if not unacceptable in

certain situations and should thus be addressed.
Future research should focus on a considerable reduction of computation time.

Such research should focus on ways to reduce the required number of ARX mod-
els that need to be identified and simulated, since this is the most time-consuming

step in the procedure. Currently, a brute-force grid-search method is used to find

the best ARX model from a large number of model candidates. Various optimiza-
tion methods exist, however, that could be used to search for the best model in

a more intelligent and faster way. A relatively simple method, that does not rely
on complex optimization methods, would be to use knowledge obtained from the

evaluation of many models to one remnant realization for the evaluation of the next

realization. One might expect that the best ARX model for one particular remnant
realization is likely to be a ‘good’, and possibly also the best, model for all other

remnant realizations. Therefore, it might suffice to test all models on just one or a

few remnant realizations only, and test the, for example, 10% best models on the re-
maining remnant realizations, assuming that none of the 90% worst models would

ever be the best model for a different realization.
A second practical concern is that the results of the procedure depend on which

input signal or its derivatives are selected as the model inputs. That is, the model

selection results will be different if the derivative of a signal is selected as model
input instead of the original signal, depending on the dynamics in the associated

path. For example, in Chapter 8, based on the knowledge that the semi-circular
canals are particularly sensitive to rotational rates — and not to rotational position

— it arguably would have been acceptable to select ψ̇, rather than ψ, as input signal

for the output feedback channel. The model would not need two parameters to
describe differentiator dynamics, but only one parameter to scale the signal with

the appropriate gain. The same argument applies to the input signal for the feed-
forward path: instead of x, also ẋ or even ẍ could have been chosen, making it more

likely to select a feedforward path, because it requires fewer ‘additional’ parame-

ters, but results in the same model quality. As a result, the procedure still involves
a level of subjectivity in obtaining the results.

The main theoretical concern regarding the developed procedure is that the
procedure involves a circular dependency on its own results. That is, the objective

of the procedure is to obtain a HC model from measured data, but to obtain the

appropriate value of the model complexity penalty parameter c a HC model very
similar to the HC model to be identified is necessary. One way to circumvent

this necessity is to apply the method to experimental data, without knowing the
appropriate value for c, but still observing the results as a function of c. This helps

the user to understand the relation between model quality and complexity for that

particular case, and explore the possible model dynamics in a systematic way. Then,
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other criteria, such as consistency between subjects and conditions, can be used to

decide which of the models is the most plausible candidate; this model is then used
for the first iteration of the identification procedure.

A further, rather fundamental, concern is that the circular dependency of the
procedure on its own results, might lead the user to find a ‘locally optimal HC

model’ rather than the ‘globally optimal HC model’. That is, the model selection
criterion is tuned to correctly identify a model similar to the initial model hypoth-

esis. Then, the tuned model selection criterion is applied to experimental data,

and if the identified model is sufficiently similar to the initial model hypothesis,
the model hypothesis is accepted. This does not guarantee, however, that the ini-

tial model hypothesis is truly the ‘best’ model; it merely means that the model
describes the underlying dynamics reasonably well and that it can be identified

reliably from simulated data and experimental data. Therefore, the user is recom-

mended to always observe the experimental results as a function of c, and not only
for the tuned value of c, and to evaluate a very large number of ARX model can-

didates. If the procedure is applied in a too ‘mechanical’ way, it might induce the

system identification equivalent of tunnel vision, which is exactly the opposite of
what the procedure intended to resolve in the first place.

9.2.4 Recommendations for future research

In the first implementation of the procedure, only LTI models with an ARX struc-

ture were considered. The main reason for considering ARX models is that their
solution is analytical and thus quickly and easily calculated, without requiring an

optimization step. ARX models do, however, involve a number of assumptions re-
garding the dynamics of the underlying system that are not necessarily true. First,

ARX models assume the denominator of the different input paths to be identical,

which is not necessarily true. Second, the noise model of an ARX model is assumed
to be equal to the denominator of the controller model, which is also not necessar-

ily true. Both assumptions might lead to biased results. Future research should
therefore focus on more complex model structures, such as ARMAX or Box-Jenkins

models, in an effort to make the method more precise.

9.3 Investigating three important aspects of feedforward in

manual control tasks

In Part III, three important aspects of feedforward were addressed in individual
studies. In Chapter 6, the interaction between target signal shape and system dy-

namics was investigated. In Chapter 7, the predictability of sum-of-sine target sig-
nals was investigated. In Chapter 8, the interaction between feedforward and out-

put feedback was investigated. This section discusses the agreement and relation

between these studies, and their shortcomings. Some aspects of feedforward, that
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were not explicitly addressed, but often lead to questions from the audience during

scientific presentations, are discussed as well.

9.3.1 The incentive for utilizing feedforward

The main reason for expecting the HC to utilize a feedforward strategy is that

feedforward potentially improves target tracking performance considerably [Kren-

del and McRuer, 1960]. A straightforward mathematical derivation indeed demon-
strates that a feedforward operation, equal to the inverse of the system dynamics,

would lead to perfect target tracking, see Chapter 2. It is, however, also known
that the HC is not a perfect controller, and would unlikely be able to perform a

feedforward operation exactly equal to the inverse system dynamics. It was not

clear to what extent a non-optimal feedforward operation would still be beneficial.
Chapters 2, 3, 6 and 8 have shown that even a non-optimal feedforward operation

can provide quite substantial performance improvements; a reduction of up to 70%
of the root-mean-square tracking error is possible.

In the tasks considered in this thesis, such improvements were mainly due to
the effective elimination of the steady-state tracking error during ramp and parabola

segments by the feedforward path. A feedback strategy has a considerable steady-

state tracking error, resulting in a much larger RMS tracking error than a feed-
forward/feedback strategy. Such a steady-state tracking error might, arguably, not

be a big problem in most realistic control tasks, where the HC is merely required to
stay within a certain set of boundaries: as long as the steady-state error falls within

the boundaries everything is fine. The HC might prefer a feedforward strategy nev-

ertheless, because it allows for a reduction of the feedback gain — increasing the
stability margins and reducing workload — without a decrease in target-tracking

performance.

9.3.2 Consistency of feedforward identification results

Even though the computer simulation analyses demonstrated that the potential per-

formance improvement is very large, it is still remarkable that strong evidence for

a feedforward response was found in all but one of the twenty five different exper-
imental conditions tested in this thesis, not counting Chapter 3. This is remarkable

for two reasons. First, the identification of feedforward was expected to be a dif-
ficult problem, because most existing identification methods were unable to deal

with target signals that have power at all frequencies, and parameter estimation

methods that could deal with such target signals required a suitable HC model,
which at that point did not exist yet. Second, the HC is apparently able to utilize

a feedforward strategy even when confronted with difficult dynamics such as a
double integrator (see Chapter 6), seemingly unpredictable target signals such as

a sum of four non-harmonic sinusoids (see Chapter 7), or a predictable target sig-

nal ‘masked’ by an unpredictable signal (see Chapter 8). The ability of the HC to
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develop a feedforward strategy in these very simple control tasks is perhaps not

particularly remarkable, given that realistic control tasks are orders of magnitude
more complex and demanding — e.g., involving multiple degrees of freedom, un-

stable, time-varying dynamics, and secondary tasks — and still the HC is able to

successfully complete these tasks.
The identification and parameter estimation results were consistent across sub-

jects, experimental setups, and similar but not entirely identical control tasks.

Between-subject variability for feedforward parameter estimates was of similar or-
der of magnitude as the variability of error feedback and output feedback estimates

in these and previous studies. The studies discussed in this thesis were performed
on four different experimental setups; two at the Delft University of Technology,

and two at the Max Planck Institute for Biological Cybernetics. Three similar stud-

ies [Pool et al., 2010a; Willems, 2012; Laurense et al., 2015] were performed by other
authors and a good agreement with these studies was found as well.

9.3.3 Feedforward model elements

The studies in this thesis have shown that a large portion of the feedforward control
inputs are modeled well with a relatively simple model. The model consists of a

gain, inverse system dynamics, a second-order low-pass filter, and a time delay:

Ypt(s) = Kpt

1

Yc(s)

1

(TIs + 1)2
e−τpt s

9.3

Feedforward gain Kpt

Simulations showed that for many of the considered control tasks the optimal feed-

forward gain Kpt was close to 1, which is the theoretical optimum in case the feed-
forward path would consist of inverse system dynamics only. Parameter estimates

of the feedforward gain are typically between 0.5 and 1. Particularly low feed-

forward gains were found in conditions that involved difficult dynamics (double
integrator in Chapter 6), target signals that were perceived to be less predictable

than other target signals (non-harmonic signals in Chapter 7), and for predictable

ramp target signals that were masked by an unpredictable target signal (Chapter
8). A complete ‘disappearance’ of feedforward, where the subject reverts to purely

feedback control, was not observed, however.
Future research should investigate under which circumstances the HC reverts

to a purely feedback control strategy. One can expect the motivated, skilled, and

properly trained HC to utilize a feedforward strategy whenever it would result in
a performance improvement. The stressed, impaired, or not-well-trained HC, how-

ever, might be especially susceptible to reverting to a pure feedback strategy. Such
findings might find their way into actual applications, for example in systems that

detect the state (stress, tiredness) of a car driver and provide warnings. The detec-

tion of the transition to a purely feedback strategy might be a quicker and more
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effective way of detecting stress and tiredness in the HC than to merely observe

performance metrics, such as the accuracy with which the road is followed. That
is, a pure feedback strategy can still provide acceptable performance, such that it

appears that everything is fine, but actually the HC may already be performing at

the limit of his or her abilities.

Feedforward time delay τpt

The feedforward time delay lumps together the effects of reaction time, delays

throughout the entire perception and action chain, and the ability of the HC to
anticipate for the future course of the target signal. Parameter estimates of the feed-

forward time delay therefore show a much larger variability across different control

tasks than the feedback time delays. The error feedback time delay is predomi-
nantly sensitive to variations in system dynamics and forcing function bandwidth,

and is usually estimated to be between 150 and 400 ms [McRuer et al., 1965]. The

output feedback time delay, in response to physical motion feedback, is usually es-
timated between 100 and 250 ms [Pool et al., 2008; Zaal et al., 2009a]. In this thesis,

the feedforward time delay was estimated as low as -500 ms (i.e., anticipatory, for
SI-P and S2D-P in Chapter 6), and as high as 500 ms (for R1D40 and R1D70 in

Chapter 2). This is partly due to the difficulty with which the feedforward time

delay can be estimated reliably, see Chapters 5 and 6, but mainly because in certain
situations the HC is able to anticipate and predict, while in other situations the HC

can only respond to the target after perceiving it.

It is a common misunderstanding that feedforward always involves prediction
of the target signal by the HCa. In fact, a feedforward response to the ‘current

state’ of the target signal can already be highly beneficial, as in pursuit tracking of

unpredictable target signals [Wasicko et al., 1966]; it is not required per se that the
future course of the target signal is known or predicted. The computer simulation

analyses of Chapter 6 demonstrated that a feedforward strategy with a time delay of

200 to 450 ms can result in a considerable performance improvement compared to
a pure feedback strategy. A ‘non-anticipatory feedforward response’ thus requires

the HC to perceive, process and act on the target signal within 200 to 500 ms to be
useful; this should be possible, given that the estimated error feedback time delay

is of the same duration.

It is recommended that future research continues to address the predictability

of the target signal. A modest start was made in Chapter 7, which above all demon-
strated the high dimensionality of the predictability aspect of a signal. Clever ex-

perimental designs are necessary to reduce the number of conditions that would
have to be evaluated to address all dimensions of predictability. Rather than simply

aThis misunderstanding probably stems from the hypothesis that the HC is particularly likely to
utilize a feedforward strategy if the target signal is predictable. This suggests that predictability is a
requirement for feedforward control, but this is not true. Feedforward is simply ‘a direct response to
the target signal’ that may or may not involve prediction.
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observing changes in parameter estimates of a quasi-linear model as a function of

signal properties, research should focus on an overarching theory that predicts how
the parameters will change. Developing such a theory will be challenging; even

for the relatively simple compensatory [Beerens et al., 2009] or pursuit [Zaal et al.,

2009b] models, with just four to eight parameters it was found to be difficult to
predict parameter values from task properties.

Feedforward low-pass filter TI

The low-pass filter is the least well understood part of the feedforward model.
There are good reasons to assume that the HC cannot, or chooses not to, invert

the system dynamics up to very high frequencies, and a low-pass filter seems to be

an adequate way of modeling this limitation, see Chapter 6, but it is not understood
how and why the lag time constant TI depends on key task variables such as system

dynamics and target signal shape.

At high frequencies, the HC is inherently limited, e.g., by the inertia of the
control device and the dynamics of his or her own neuromuscular system. The HC

might be able to compensate for some of these dynamics in the feedforward path —

essentially by ‘inverting’ not only the system dynamics, but also the neuromuscular
dynamics — but the HC cannot compensate for limitations such as the maximum

force the muscles can generate, or the maximum velocity by which the arm can
move. Furthermore, the HC might be able to give slow, smooth movements with

less random error than fast, high-frequent movements, such that the HC limits the

bandwidth of the control inputs by choice, rather than due to limitations.

The main trend in the estimates of TI , as seen in Chapters 6 and 7, seems to

be that TI is larger, corresponding to a ‘smoother’ feedforward input, in conditions

where the feedforward time delay is small or even anticipatory; and, conversely,
that TI is small if the time delay is large. Possibly, the HC prefers to give smooth

control inputs in those conditions where he or she is able to anticipate the target

signal, reflected by a small or negative time delay and a higher lag time constant. If,
on the other hand, the HC is unable to anticipate the target signal, then her or she

is possibly ‘compensating’ for this inability by giving more high-frequency control
inputs, reflected by a positive time delay and a smaller lag time constant.

Note that in all studies described in this thesis, the target signal had little power

at frequencies where the effects of the feedforward low-pass filter are large, result-
ing in a relatively low reliability of the parameter estimates. Also, none of the

studies were specifically designed to study the adaptation of the low-pass filter to

particular control task variables. Future studies should focus on the apparent inter-
action between the feedforward time delay and the lag time constant, and consider

the possibility that an even more complex model is necessary to adequately model
the limitations of the HC. Possibly, a model with more parameters is necessary, e.g.,

a second-order model as normally used to model the neuromuscular dynamics, but

with parameters independent from the feedback neuromuscular dynamics.
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9.3.4 Interaction between feedforward and feedback paths

The error feedback path dynamics in tasks featuring realistic target signals, pre-
sented on a pursuit display, are equivalent to those identified from compensatory

display tasks with unpredictable targets. That is, the feedback dynamics adapt to

the the system dynamics following the Verbal Adjustment Rules of McRuer et al.,
[1965], such that the combined open-loop dynamics approximate a single integra-

tor around the crossover frequency. Hence, the feedback dynamics consist of a gain
for single integrator system dynamics, and an additional lead term is present for

second-order and double integrator dynamics. Furthermore, the feedback time de-

lay is considerably larger in tasks that require lead generation. Estimated feedback
path parameter values in tasks where a feedforward path is present are usually

similar, but not equal, to those in tasks without a feedforward path. Systematic
adjustments to target signal properties are yet to be discovered.

Wasicko et al., [1966] found evidence for an inverse system dynamics feed-
forward response from human-in-the-loop data by making the assumption that

the feedback path is identical in tasks with a compensatory or a pursuit display.

First, the feedback dynamics of one particularly skilled participant were measured
in a target-tracking task with a compensatory display. Then, the equivalent open-

loop describing function, that lumps the contributions from the feedback and feed-

forward paths together, was measured from the same target-tracking task, but now
with a pursuit display. From the pursuit display equivalent open-loop describ-

ing function and the compensatory display feedback dynamics, the pursuit display
feedforward dynamics were calculated. The results of this thesis do not support

the assumption that feedback dynamics are identical in compensatory and pursuit

tasks, however, as estimated parameter values were often different between tasks
with or without realistic target signals composed of ramp and parabola segments.

It is, however, not possible to determine whether changes of this magnitude could
have led to a ‘false-positive’ feedforward identification, because it is not well un-

derstood how these changes depend on target signal properties. Possibly, changes

in feedback behavior are larger for tasks with unpredictable than with predictable
target signals.

An important conclusion from this thesis is that the ideal feedforward path is
equal to the sum of the inverse system dynamics and the output feedback dynam-

ics, if they are present. That is, the feedforward path needs to adapt to the presence
of an output feedback path. The feedforward path of the postulated model in-

deed consists of these ideal feedforward dynamics, supplemented by a number of

terms to describe the limitations of the HC to actually perform the ideal dynamics.
Whether or not the model structure accurately reflects the control organization in

the human cannot be determined through system identification analyses, however,
given the mathematical equivalency of different control organizations. That is, at

least two considerably different organizations are possible, see Fig. 9.2, but all can

be rewritten into the same form.
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Figure 9.2: Two possible internal organizations of a simultaneous feedforward and output
feedback response that are mathematically equivalent.

In the organization depicted in Fig. 9.2(a), the HC inverts the ‘equivalent system

dynamics’, instead of the actual system dynamics, given by:

Y∗
c (s) =

Yc(s)

1 +Yc(s)Ypx(s)
→

1

Y∗
c (s)

=
1 + Yc(s)Ypx (s)

Yc(s)
=

1

Yc(s)
+ Ypx(s) 9.4

The feedforward path responds to the actual target signal, and the output feedback

path responds to the actual system output, and no internal signal manipulations
are required. It does imply, however, that the feedforward path has to adapt to

all changes in the output feedback path. Now, if the biological implementation
of the feedforward path are learned motor commands, triggered by recognized

patterns in the target signal, then a different motor command has to be learned

for each ‘setting’ of the output feedback response. For example, if the perceived
motion is temporarily noisy, due to vibrations, the HC might decide to reduce

the output feedback gain, which would render the previously learned feedforward
motor commands considerably less useful.

In the organization depicted in Fig. 9.2(b), the HC inverts the actual system dy-

namics Yc in the feedforward path, and, in an additional path, calculates the output
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feedback response to the target and then subtracts this from the actual output feed-

back response to the system output. The HC would have to have a ‘model’ of its
own output feedback response, denoted Ŷpx in Fig. 9.2(b), and ‘simulate’ this model

with the visually perceived target signal or an internal representation thereof, ob-

tained from prediction or memorization. Instead of ‘simulating’ the output feed-
back response, the HC could exploit the fact that for second-order and double

integrator system dynamics, the output feedback is essentially a negative feedback
on the system output velocity. Thus, the HC could directly perceive the target veloc-

ity, apply the appropriate gain, and subtract this from the actual output feedback

response. Other organizations, involving an internal ‘forward’ model of the system
dynamics are also possible, but are not further discussed for the sake of brevity.

To resolve this ambiguity, system identification analyses alone will not suf-
fice. Inferences regarding the internal organization will have to be made based

on a deeper knowledge of human sensory dynamics and cognitive processes, and

through experimental studies in which the functionality of these dynamics and
processes are manipulated.

9.3.5 Pursuit and precognitive control

In this thesis, no explicit distinction between pursuit and precognitive control was

made, mainly because system identification methods are unable to distinguish be-

tween them since they have the same input ( ft) and output (u) signal. In literature,
pursuit control is described as a control mode where the HC attends to two or more

observed input signals, of which one might be the target signal, and responds to
these with certain dynamics. During pursuit control, the HC might give error feed-

back control inputs together with feedforward inputs. Additionally, the HC might

make ‘short term predictions’ of the target signal [Krendel and McRuer, 1960]. In
[Krendel and McRuer, 1960], the precognitive mode is described as the ‘culminat-

ing stage’ in the progression from a compensatory response via a pursuit response
that involves some predictions to a stage where the HC has “complete knowledge of

the forcing function”. Furthermore, the precognitive control inputs are supposedly

given in open-loop fashion, i.e., without a continuous feedback on the tracking er-
ror. Given these definitions it is, however, not possible to classify the identified

feedforward behavior in this thesis as either pursuit or precognitive.

First, the HC was not found to ‘switch off’ his or her feedback response while

a feedforward input was given. In all conditions that involved a non-zero target

signal an error feedback response was identified in addition to the feedforward
response. The parameter estimates and control activity metrics of Chapter 2 did

suggest that subjects had used feedback dynamics with a slightly lower gain in
conditions that involved ramp segments than in pure disturbance-rejection condi-

tions, but the reduction was far too small to classify the adopted control strategy

as ‘open-loop’. Furthermore, Chapter 6 that had very similar conditions did not
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replicate these results. Thus, it seems that the adopted control mode was not pre-

cognitive, at least not by the definition given by Krendel and McRuer, [1960].

The definition of ‘pursuit’ thus seems more appropriate to describe the feed-
forward behavior identified in this thesis, although it is questionable whether the

subjects were indeed only making ‘short-term’ predictions. For example, the con-
trol signal time traces of the parabola conditions in Chapter 6 certainly suggest that

subjects were not only predicting that the target has a constant acceleration, but

also that the acceleration would switch sign exactly halfway the maneuver. An-
other example are the anticipatory control inputs given just before the end of a

ramp segment that coincides with the horizon of the pursuit display. These exam-
ples suggest that subjects had learned or understood the target signal at a higher

level and were not merely making brief predictions of the near future.

Because it is not clear whether the identified behavior is ‘pursuit’ or ‘precog-
nitive’, the more generic term ‘feedforward’ was used in this thesis. It seems ap-

propriate to consider the possibility that the actually adopted control organization

involves elements from both pursuit and precognitive control. If the HC is very
familiar with the system dynamics and has full knowledge of the target signal, the

HC might respond to the target in a precognitive fashion. That is, if the onset of
a known pattern is predicted or recognized, the appropriate control response is

applied in an open-loop fashion. These control inputs are possibly stored motor

commands that do not require the HC to actively perceive and process the target
signal. Then, if the task also involves disturbances of considerable magnitude, the

HC is forced to maintain a compensatory feedback response on top of the precog-
nitive response.

9.3.6 Predictability of a target signal

In this thesis the terms ‘prediction’ and ‘predictability’ were used frequently to
describe a skill of the HC or a property of the target signal, respectively. It was,

however, not strictly necessary for subjects to predict the future course of the tar-
get, they could have memorized it instead. Memorizing was possible, because 1) in

none of the experiments the target signal was entirely ‘new’ to the subjects in the

measurement runs (because of their training), and 2) subjects were told that the
target signal was identical in each run of one condition. Memorizing the ramp and

parabola target signals was probably not too difficult, because the segments that
appeared within one run were very similar (i.e., the target velocity or acceleration

profile was equal for most of the segments), they were evenly spaced, and generally

started and ended at the same position. Instead of calling these signals ‘predictable’,
they could have been called ‘easily memorizable’ instead. Also, whereas Chapter 7

claimed to investigate and measure the ‘predictability’ of the target signals, it per-
haps measured how easy it was for subjects to memorize the target signals instead.

The question, whether or not subjects were predicting or memorizing, is perhaps

not the most relevant question to ask in the context of control tasks, however.
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A more relevant question seems to be how the HC deals with uncertainty about

the path to follow, e.g., if a (slightly) different target signal appears each run. If
there is a certain degree of uncertainty about the target, what choice does the HC

make, based on which information, and what control strategy is then used to ac-

tually follow the chosen path? The results presented in this thesis suggest that the
HC would adopt a more cautious control strategy, reflected in the model by a lower

feedforward gain, but possibly the control strategy changes are more complex. In-
sights from the fields of decision theory and human motion control are relevant in

answering these questions. Specific aspects of a control task need special attention:

e.g., the HC is not necessarily making a decision from a set of discrete options,
but has infinitely many options; the HC is able to change his or her mind while

executing the maneuver; and, given that manual control is never perfect, there is
a high likelihood that the eventually followed path is considerably different from

the intended path. To understand the latter, it is important to understand which

control strategy the HC uses while executing the maneuver. Assuming that the HC
utilizes a feedforward strategy might lead to different conclusions than assuming a

feedback strategy.

9.4 Human modeling and identification

The introduction chapter discussed four important differences between a real con-

trol task and the tracking tasks considered in this thesis, necessary for using system
identification methods to build HC models.

First, real control tasks often do not involve an explicit target, but tracking tasks

rely on an explicit target. Possibly, the HC utilizes a different control strategy in

situations where an explicit target is not present, limiting the relevance of research
presented in this thesis. The relevance of the research depends on whether the HC

constructs a virtual, internal target in those tasks were an explicit, external target
is not present. In Chapter 8, the predictable target was not explicitly visible, it was

‘occluded’ by a quasi-random target signal, but still, the HC was found to apply

a feedforward operation to this target. The HC thus seems to have a higher-level
understanding of the target, at least in this task, and does not require it to be

explicitly visible to respond to it. Future research should investigate the possibility
that the HC constructs and tracks a virtual, internal target.

Second, the experimental tracking task is spatiotemporally fixed (forced-pace),

but in reality the trajectory to be followed has an allowable range both in space and

time. The resulting task is sometimes referred to as ‘boundary avoidance tracking’
[Gray, 2008; Padfield et al., 2012]. Two contributions of this thesis are possibly use-

ful for research into such tasks. First, there are two reasons why feedforward is a
possible control mode in a boundary tracking task. The main reason is, that when

the vehicle is within the allowable range, the error is essentially zero, rendering a

pure feedback control strategy useless. Furthermore, as the target size is increased,
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the shortest path that fits within the allowable range becomes less high-frequent

than the original target signal, see Figure 9.3. Considering the possibility that the
HC will attempt to follow the shortest path to reduce control effort, and that the

shortest path becomes more predictable as target size is increased, feedforward

needs to be taken into account. Second, it is unclear how control behavior in a
boundary avoidance task should be modeled, and the identification method devel-

oped in this thesis would be suitable for initial analyses of experimental data. It
can provide insight in whether or not the behavior is time-invariant and linear, and

if so, identify the required input signals and dynamics of the HC model.
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Figure 9.3: Boundary avoidance tracking example, illustrating the difference in frequency
content between the original target signal and the shortest path that does not exceed the
allowable spatial range. Likely, the HC would ignore the high-frequency content of ft and
follow a path similar to the minimum distance path.

Third, in most real control tasks the HC knows in advance when a maneuver

will start and end, but in an experimental tracking task this is usually not the case.

During the work on this thesis, compelling anecdotal evidence was collected that
this is an important difference between the experimental tracking task and the real

control task. In Chapter 3, a complex tracking task was considered, involving multi-
loop control and a complex target signal. It was found, during initial testing, that

tracking the target was very difficult if the onset of the target motion could not be

predicted. To mitigate this problem, a ‘countdown’ was shown to the subjects to
aid in properly timing the maneuver onset. Future studies should decide whether

or not to include such a timing cue, depending on the aim of the study and the
envisioned application of the study’s results. Even closer to reality would be self-

initiated maneuvers, but this would severely complicate the analysis.

Fourth, in a large number of control tasks the human has preview on the future
course of the target. This thesis did not consider preview tracking tasks, but in

many conditions the HC had access to very similar information through prediction
or memory, and thus one might expect the control behavior in these tasks to be

somehow similar to those in preview tasks. The fact that the human has to deal

with uncertainty in tasks without preview might be sufficient reason for the HC
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to adopt a different control behavior, however. Currently, there is no universally

accepted model of preview control behavior, and so it is unclear to what extent
control behavior in preview and pursuit tasks are similar.

An empirical model of preview control behavior derived from human-in-the-
loop measurements and system identification analyses was proposed by Van der

El et al., [2015], some time after the work on this thesis had started. Two notable

differences exist between the proposed preview model and the feedforward model
presented in this thesis. First, the preview model mainly consists of a feedback re-

sponse on a ‘far’ viewpoint of the target for tracking. That is, the model employs a
feedback on the error between the current system output and the target some time

into the future; system identification results suggest the point responded to lies be-

tween 0.5 and 1 s ahead. Based on this thesis, one would expect the HC to utilize a
feedforward response on the future course of the target, because a feedback response

always involves a trade-off between performance and stability. Possibly, utilizing
a feedback response is easier than ‘inverting’ the system dynamics and ‘acceptable’

performance can be achieved whilst maintaining sufficient margin to stability lim-

its. Second, the preview model contains a feedforward path that predominantly
responds to high frequency target content, with dynamics that do not approximate

inverse system dynamics. Instead, the feedforward path is a first-order high-pass
filter that effectively responds to a ‘near’ viewpoint of the target. Possibly, at these

high frequencies, the HC is unable to properly invert the system dynamics — as

was also found in this thesis and modeled by a low-pass filter — and has a sub-
optimal response that nevertheless slightly improves tracking performance. Future

research should further investigate these differences.

9.5 A fundamental understanding of feedforward in manual

control

The most important lesson to be learned from this thesis is that feedforward is

indeed a very important element of human control behavior and should be con-
sidered in each human-machine application. Much progress has been made in the

development of tools for the identification of feedforward, models of feedforward

behavior were identified, and a large volume of experimental results were obtained.

Chapter 3 alluded to a fairly ‘basic’ application of the models developed in this
thesis: the simulation of human control behavior in manually flown ADS-33 ma-

neuvers, such as a lateral reposition, for the assessment of helicopter performance

early in the design process. Based on the knowledge discovered in the subsequent
chapters, a much better (i.e., more similar to actual human performance) model can

be constructed: better than the model presented in Chapter 3 and certainly better
than the state-of-the-art models found elsewhere in literature. Still, the scientific ba-

sis for this model is not large enough yet, and further research, e.g., into multi-loop

control behavior is needed. Furthermore, considerable differences exist between
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the tracking task considered in the experiment and the actual ADS-33 lateral repo-

sition, which is, arguably, more like a ‘boundary avoidance tracking task’ than a
target-tracking and disturbance-rejection tracking task. Keeping that in mind, how-

ever, the model can be used to gain a qualitative understanding of the control task

and the required HC control actions, and a quantitative performance estimate that
is closer to reality than previous models.

More challenging applications that will benefit from this research were described
in the introduction: the autonomous or highly augmented car and the Personal

Aerial Vehicle (PAV) that behaves as a real human controller to maximize accep-

tance and comfort. These applications benefit from the research of this thesis in
two ways. First, a qualitative understanding of human control behavior enables the

engineer to design the augmentation systems in a more goal-directed fashion. The
engineer has to rely less on expensive and time consuming simulator or prototype

evaluations to test which design solutions is ‘best’ [Gerboni et al., 2014]. Second,

the HC models can be used directly in the control algorithms of the vehicle [Gelu-
ardi et al., 2015], to estimate the control actions that would be given by the human

and adapt the actual control inputs accordingly. The models allow the car to adapt

its behavior to the specific driving style of each driver, which is necessary given the
large differences in behavior between drivers. Interestingly, this would require the

human to ‘teach’ the vehicle ‘how’ to control.
Despite all the progress, much work is required before the theory of this thesis

can be used in a real application. It will be challenging to aim the — very basic —

research that needs to be done in the right direction; manual control research tends
to stick to the safe and comforting zone of simple models that can be identified

neatly from meticulously designed tracking experiments. The approach taken in
this thesis is recommended for future research: occasionally try to take a big step

forward, so big that it is likely to fail, but learn which small steps need to be taken

for the big step to succeed.
Future research will need to make big steps quickly to catch up with the state-

of-the-art in augmentation systems and automatic control, before the industry and
society get used to occasional accidents due to human-out-of-the-loop design so-

lutions. It is recommended to keep testing the current state-of-the-art in manual

control research by applying it to challenging use-cases and presenting these en-
deavors at scientific meetings. The number of researchers taking a proper cybernetic

approach to manual control behavior is small and their research is often difficult to
understand, even for an expert. Actually applying the obtained models and knowl-

edge to the envisioned application, even if it is just an ‘example’, will help outsiders

to understand the importance and relevance of the cybernetic approach, and give
direction to the research itself.
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The goal of the work presented in this thesis was:

Goal of the thesis

To obtain a fundamental understanding of feedforward in human manual

control, resulting in a qualitative description of manual feedforward behavior

and quantitative models that are applicable to realistic control tasks.

One particular control task, an ADS-33 lateral reposition maneuver [Anon.,
2000], was selected as the realistic control task towards which the research would

be aimed. Based on two initial studies, described in Part I, four objectives were

formulated:

Objectives of the thesis

1. To develop a system identification method that allows for the objective

identification of feedforward and feedback behavior in tracking tasks
modeled after realistic control tasks.

2. To investigate how the Human Controller (HC) adapts the feedforward

dynamics to the system dynamics and waveform shape of realistic tar-

get signals.

3. To investigate how the subjective predictability of the target signal af-
fects feedforward behavior.

4. To investigate how human feedforward interacts with other HC re-

sponses, primarily the feedback response on the system output in tasks
that feature physical motion feedback.

These objectives were addressed in subsequent parts of this thesis: objective 1 in

Part II and objectives 2, 3, and 4 in Part III. This section provides a brief overview
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of each chapter and its conclusions. Then, the general conclusions of the thesis are

presented.

10.1 Exploring the presence of feedforward in manual control

tasks

Chapter 2 studied manual control behavior in a pursuit tracking task with pre-
dictable, ramp-shaped target signals, an unpredictable disturbance signal, and sin-

gle integrator system dynamics. Feedforward control behavior was studied as a

function of the Steepness Disturbance Ratio (SDR): the relative magnitude of the
ramp target with respect to the disturbance signal. Three HC models models were

postulated: a basic feedback model (BCM) based on the Precision Model of McRuer
et al., [1965]; an extended feedback model tailored to ramp targets (FCM); and a

model featuring both a feedback path, identical to the BCM, and a feedforward

path, consisting of the inverse system dynamics, a gain, a time-delay, and a first-
order low-pass filter (FFM). These models were used for 1) a computer simulation

analysis to quantify the potential performance improvement, and 2) a parameter

estimation analysis of data collected from a tracking experiment.

From the computer simulation analysis, it was concluded that 1) the BCM, FCM,

and FFM have equal tracking performance in a predominantly disturbance-rejection
task, with low SDR values; 2) but that, for tasks that are predominantly a target-

tracking task (with high SDR values) the FFM provides a considerably better track-
ing performance than the BCM and FCM.

From the human-in-the-loop tracking experiment, which was conducted for a

range of SDR values, it was concluded that 1) feedforward control behavior was
unambiguously identified with the entire SDR range that was investigated; 2) the

dynamics of the feedforward response on the target signal approximate the inverse
of the single integrator system dynamics; and 3) the compensatory response on the

error signal closely resembles the feedback response found during compensatory

tracking tasks with unpredictable target and disturbance signals.

Chapter 3 investigated helicopter pilot control behavior in a realistic helicopter

control task resembling an ADS-33 lateral reposition task. The task was simplified
to a roll-lateral only task, requiring the pilot to give control inputs to steer the roll

angle of the helicopter and thereby track a lateral position target. Therefore, the
pilot could potentially utilize six different control responses: a feedforward on the

roll target (internal to the pilot) and the lateral target; an error feedback on the roll

error (internal to the pilot) and the lateral error; and an output feedback on the
helicopter roll angle and the helicopter lateral position. A hypothetical model of

pilot control behavior was postulated; the dynamics of the six control responses
were chosen based primarily on control-theoretical insights and literature, but note

that a solid fundamental basis for the model was lacking. Rather, the model allowed

for 1) a computer simulation analysis to quantify the importance of understanding
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the potential presence of the feedforward responses in this specific task, 2) a system

identification analysis of experimental human-in-the-loop data, to obtain empirical
evidence of such feedforward responses.

From the computer simulation analysis, it was concluded that the performance
of the pilot-helicopter system is one order of magnitude better for a pilot model that

includes roll and lateral feedforward action than for a pure feedback pilot model.

From the human-in-the-loop tracking experiment, it was concluded that 1) the
measured task performance was considerably better than the simulated perfor-

mance with a pure feedback model, but 2) worse than simulated performance with
a model containing roll feedforward and lateral feedforward. Furthermore, the

system identification analysis of the the human-in-the-loop experiment provided

indirect evidence of the presence of feedforward strategies, but it was not possible
to identify the exact feedforward dynamics, nor whether this feedforward was in

response to the lateral target or to the roll target (internal to the pilot).

10.2 Development of an identification procedure for feedforward

in manual control tasks

Chapter 4 investigated three central issues in the identification of human feed-
forward behavior. First, most system identification require the user to make as-

sumptions regarding the model structure and/or dynamics. These subjective choices

of the researcher thus influence the outcome of the analysis, making those con-
clusions less objective. Second, data measured in human-in-the-loop experiments

involve relatively high levels of noise, and measurements need to be taken under

closed-loop feedback conditions; the combination of both can cause severe biases in
the analysis results. Third, models that include a feedforward path in addition to

a feedback path have more parameters and therefore more freedom to fit the data,
resulting in a better fit even if a true feedforward response was not present. That is,

if the ‘best’ model is selected based on the quality of the fit alone, a ‘false-positive’

feedforward identification is possible.

First, data representative of human-in-the-loop experimental data, was gener-

ated with a feedforward/feedback model and with a pure feedback model of hu-
man tracking behavior. Then, two identification methods were applied: an indirect

and a direct method. Both methods fit many LTI ARX models to the data and
the best model was selected by means of a model selection criterion. The selected

models were compared to the true models, as a function of the penalty applied

to the model complexity by the model selection criterion. Based on this analysis,
it was concluded that 1) both the direct and the indirect method identify models

with dynamics similar to the true dynamics, but that 2) the direct method provides
more accurate estimates in the frequency range of interest. Furthermore, it was

demonstrated that false-positive and false-negative results indeed occur, and it was

concluded that 3) both the Akaike Information Criterion (AIC) and the Bayesian
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Information Criterion (BIC) model selection criteria did not prevent false-positive

feedforward identification.

Chapter 5 introduced an objective procedure to identify if and how the human
controller utilizes feedforward and feedback, in control tasks with predictable tar-

get signals and unpredictable disturbances. The procedure addressed the three

central issues, investigated in Chapter 4, successfully. It identifies HC dynamics
from noisy data measured under closed-loop conditions, without making any prior

assumptions regarding the HC model structure or parameters. It estimates and

evaluates a large number of LTI ARX model candidates and uses a novel model
selection criterion to select the best model. It was demonstrated that in identify-

ing HC dynamics, it is mandatory to increase the penalty imposed on the model
order, through a model complexity penalty parameter. The appropriate value of

this parameter can be found through Monte Carlo computer simulations with a

hypothesized HC model, guided by four objective requirements chosen by the user.

To illustrate its performance, the procedure was applied to four typical manual
control tasks, with single and double integrator dynamics, and predictable target

signals composed of ramp and parabola segments. It was able to identify the correct
HC model structure for both target signals with the single integrator dynamics,

and for the parabola target signal with the double integrator. The procedure was,

however, not able to identify the correct model for the double integrator and ramp
target condition, this was due to the very small contribution of the feedforward

path to the total control signal for this condition.

The procedure was successfully used in Chapters 6 and 8.

10.3 Investigating three important aspects of feedforward in

manual control tasks

In Part I, the main shortcomings in the available knowledge on manual feedforward

control were identified. To successfully simulate and understand HC control behav-

ior in a realistic control task, it was found necessary to investigate three factors in-
fluencing feedforward: 1) the system dynamics and target signal waveform shape,

2) the predictability of the target signal, and 3) the interaction between feedforward
and a system output feedback response. These three factors were investigated in

three separate chapters.

Chapter 6 studied the effects of target signal waveform shape and system dy-

namics on human feedforward control behavior in tracking tasks with predictable
target signals and an unpredictable disturbance signal. The effect of two target

waveform shapes and three system dynamics were investigated. The predictable tar-
get signals consisted of constant velocity ramp segments or of constant acceleration

parabola segments. The considered vehicle-like system dynamics were a single in-

tegrator, a second order system, and a double integrator. A feedforward/feedback
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HC model, based on the results of Chapter 2, was used to investigate the poten-

tial performance improvement (PI) provided by the feedforward path. The model
consisted of the inverse of the system dynamics, a gain, a time delay, and a second-

order filter. Different model parameter sets were considered in the computer simu-

lation analysis, to investigate the effect of the various model elements on the PI.
From the computer simulation analysis, it was concluded that 1) a feedforward

response, with parameter values based on Chapter 2, provides a considerable PI
for both targets with the single integrator and second-order system, but only for

the parabola target with the double integrator; 2) a feedforward response results

in a considerable PI for the ramp target with the double integrator only if the
feedforward time-delay is close to zero (< 0.05 s); 3) the largest PI is achieved for

negative feedforward time delays, i.e., the HC is required to anticipate for the future
course of the target signal; and 4) a second-order filter with a larger time constant,

corresponding to a more smooth feedforward control input, requires the HC to

anticipate more (i.e., more negative time delay) to achieve the largest PI.
From the human-in-the-loop tracking experiment it was concluded that: 1) a

combined feedforward and feedback control strategy was identified for all dynam-

ics with the parabola target, and for the single integrator and second order systems
with the ramp target; 2) evidence of non-stationary control behavior was found for

the double integrator and ramp tracking task; 3) the HC is able to anticipate for
the future course of the parabola target signal given extensive practice, reflected

by an estimated negative feedforward time delay; and 4) the feedforward model

parameters are very different between the two target waveform shapes, illustrating
the limited predictive power of the quasi-linear model.

Chapter 7 investigated the predictability of the target signal in tracking tasks
with predictable target signals and an unpredictable disturbance signal. The pre-

dictability of a target signal is affected by many factors, as hypothesized extensively

by Magdaleno et al., [1969]. Here, the predictability of a sum-of-sine target signal
was investigated, with two independent variables: 1) the number of sinusoid com-

ponents (2, 3 or 4 sinusoids), and 2) the use of harmonic components in the target
signal, or not. That is, the “harmonic” target signals contained sines at frequencies

that were an integer multiple of the lowest-frequency sine. The “non-harmonic”

counterpart of each harmonic target signal contained sines at slightly different fre-
quencies, such that the frequency content was almost identical, but the time-domain

realization was completely different. Quasi-linear HC models are not sensitive to
the suspected differences in predictability between harmonic and non-harmonic

signals; they are sensitive only to the frequency content of the signals. Thus, the

simulated tracking performance, obtained from computer simulations with the HC
model identified in Chapter 6, was also almost identical for the harmonic and non-

harmonic target signals.
From the human-in-the-loop tracking experiment, it was concluded that: 1) for

all conditions, including those with up to 4 non-harmonic sinusoid components,

the feedforward path was active, 2) the harmonic signals led to better performance,
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lower control activity, the highest feedforward gains, and close to zero feedforward

time delays, and 3) subjective ratings of signal predictability indicated that har-
monic signals are experienced to be more predictable than non-harmonic signals.

Chapter 8 studied the simultaneous use of an error feedback, feedforward and

output feedback control strategy during a helicopter yaw tracking task in hover.
Each individual response is capable of improving either target-tracking perfor-

mance or disturbance-rejection performance, but it was unclear whether or not the
combination of all three would also be beneficial for performance, and whether or

not the HC is able to utilize all three simultaneously.

First, a theoretical analysis was performed to understand under which circum-
stances all three responses simultaneously lead to an improvement of the overall

performance. From this analysis, it was concluded that the feedforward dynamics
should adapt to the presence of an output feedback response. That is, the ideal

feedforward dynamics are equal to the sum of the inverse system dynamics and

the dynamics of the output feedback response, instead of the inverse system dy-
namics only. It was then shown, through computer simulations with a HC model

containing the ideal feedforward dynamics, that tracking performance was best if

all three responses were indeed acting simultaneously.
Second, a human-in-the-loop yaw experiment was performed to identify whether

or not the HC is utilizing all three responses simultaneously. The HC was instructed
to track a target signal composed of a predictable component and an unpredictable

component, whereas the magnitude of the predictable component was the first in-

dependent variable. The second independent variable was the presence of physical
motion feedback. It was concluded that: 1) subjects indeed utilized all three control

strategies simultaneously in conditions where a predictable ramp target and phys-
ical motion was present, but 2) that they respond with a significantly smaller gain

to the system output in conditions involving predictable target signals.
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10.4 General conclusions

This thesis provided ample evidence for the existence of a feedforward response on

the target signal by the human controller in various target-tracking and disturbance-
rejection control tasks with predictable target signals and unpredictable distur-

bances. It was shown that the feedforward response can be identified from exper-
imental human-in-the-loop data with an objective black-box identification method,

developed in this thesis, that does not require a priori assumptions regarding the

response dynamics. The feedforward dynamics can be modeled accurately with a
relatively simple quasi-linear model, the parameter values of which depend on task

variables such as forcing function properties and system dynamics.

1. The central element of the feedforward model is the inverse system dynam-
ics. The dynamics of the ideal feedforward response are equal to the inverse

dynamics of the controlled element, if an output feedback response is not

present (Chapter 2).

2. If an output feedback response is present, then the dynamics of the ideal
feedforward response are equal to the sum of the inverse system dynamics

and the dynamics of the output feedback response (Chapter 8).

3. The HC is not able to apply a feedforward response with the ideal dynamics.

Limitations in the perception, cognition, and action loop can be modeled by a
gain, a time delay, and a low-pass filter (Chapters 2, 6, 7, and 8).

4. The feedforward gain is not always equal to the optimal value (unity), but of-

ten close to it. The gain depends on the combination of target signal waveform
shape (Chapters 2 and 6), controlled element dynamics (Chapter 6), target sig-

nal predictability (Chapter 7), and the presence of physical motion feedback

(Chapter 8).

5. The feedforward time delay correlates with the perceived predictability of
the target signal; smaller feedforward time delays are estimated for more

predictable target signals (Chapter 7).

6. The feedforward low-pass filter smoothens the feedforward control signal; it
is the least well-understood element of the model.

7. The error feedback response dynamics are equivalent to the dynamics identi-

fied in tracking tasks with a compensatory display and unpredictable forcing

functions.
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Samenvatting

Regeltechnische Modellen van de
Voorwaartskoppeling in Menselijk Stuurgedrag

Frank Drop

Veel mensen besturen vrijwel dagelijks een voertuig. Kennis over hoe mensen

een voertuig besturen is zeer belangrijk tijdens het ontwerpproces van voertuigen

en interfaces tussen mens en machine. Deze kennis stelt ingenieurs in staat om
voertuigen te ontwerpen welke sneller, veiliger, comfortabeler, efficiënter, diverser,

en dus beter zijn. Zeker nu de mens op allerlei mogelijke manieren kan worden on-
dersteund door automatische systemen is het belangrijk dat we begrijpen hoe een

mens een voertuig bestuurt, en dat we de wisselwerking tussen mens en machine

bestuderen. In de toekomst zullen mens en automatisering de verantwoordelijkheid
voor de besturing van het voertuig delen. Het is daarom belangrijk dat de automa-

tisering tenminste ontworpen wordt rondom de mens, maar het zou nog beter zijn
wanneer het automatische besturingssysteem zich vergelijkbaar zou gedragen als

de mens. Dit kan ervoor zorgen dat de mens de bedoelingen van het automati-

sche besturingssysteem beter begrijpt, wat zal leiden tot een hogere veiligheid, een
verbeterd comfort en een snellere acceptatie van de automatisering.

De menselijke bestuurder (MB) bestuurt een voertuig bijna altijd met een groter

doel voor ogen, bijvoorbeeld het rijden van A naar B in de auto. Om dit doel te
bereiken, voert de MB een aaneenschakeling van vele kleine taken uit welke be-

staan uit stuurhandelingen, zoals het draaien van een stuurwiel, het indrukken van

het gaspedaal, het bewegen van de collective in een helikopter, het draaien aan
een invoerknop, enzovoorts. Om de relatie tussen het grotere doel en de individu-

ele stuurhandelingen beter te begrijpen is het behulpzaam om een onderscheid te
maken tussen drie vormen van stuurgedrag, namelijk gedrag gebaseerd op vaar-

digheden, op regels en op kennis. Gedrag gebaseerd op kennis is gerelateerd aan

de complexe besluitvorming die nodig is om het hogere doel te bereiken, zoals de
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beslissingen die nodig zijn om vlot door een drukke stad te navigeren tijdens spits-

uur. Gedrag gebaseerd op regels is gerelateerd aan relatief eenvoudige handelingen
die worden uitgevoerd op een ‘als-dan-anders’ manier, zoals het al dan niet stop-

pen voor een rood of groen verkeerslicht. Gedrag gebaseerd op vaardigheden is

gerelateerd aan automatische waarneming-actie-gedragspatronena, zoals de stuur-
bewegingen naar links of rechts om met de auto binnen de rijbaan te blijven. Tijdens

het uitvoeren van een waarneming-actie-gedragspatroon neemt de MB voortdurend
signalen uit de omgeving waar, zoals de afstand tussen de auto en de berm, en geeft

voortdurend stuurhandelingen aan het voertuig met, bijvoorbeeld, de handen of de

voeten. Dit proefschrift onderzoekt waarneming-actie-gedragspatronen zoals die
worden uitgevoerd tijdens korte, geïsoleerde bewegingen, zoals het wisselen van

baan of het nemen van een bocht in de auto; een stap in verticale of horizontale
richting in een helikopter; of de landing of start-rotatie in een vliegtuig.

In dit proefschrift worden de waarneming-actie-gedragspatronen onderzocht

door middel van ‘doelvolgtaken’ waarin de MB een doel volgt en een verstoring
tegenwerkt. In deze taken voert de MB stuurhandelingen uit zodat het voertuig zo

accuraat mogelijk een bepaald referentie traject, het doelsignaal, volgtb. De bewe-
ging van het voertuig wordt tegelijkertijd door externe effecten verstoord en de MB

dient de afwijkingen van het doel ten gevolge van deze verstoring tegen te gaan. In

een doelvolgtaak kan de MB gebruik maken van een “gesloten-lus-terugkoppeling”,
een “open-lus-voorwaartskoppeling”, of een combinatie van beide.

Een gesloten-lus-terugkoppeling bestaat uit het waarnemen van, en het reage-
ren op de ‘volgfout’: dit is het verschil tussen de huidige positie van het voertuig

en de gewenste positie (het doelsignaal). In iedere realistische situatie wordt het
voertuig verstoord; deze onvoorspelbare verstoringen zijn alleen met een terugkop-

peling tegen te gaan. Het is dus waarschijnlijk dat de MB een terugkoppeling

gebruikt. Om het doel accuraat te volgen met een terugkoppeling moet de MB
met een kleine tijdsvertraging reageren op de volgfout. Echter, deze tijdsvertraging

is in veel gevallen te groot. Het is daarom onwaarschijnlijk dat de MB alleen een
terugkoppeling gebruikt.

Een open-lus-voorwaartskoppeling bestaat uit het geven van stuurhandelingen

die enkel op het doelsignaal zijn gebaseerd; hier vergelijkt de MB de huidige positie
van het voertuig niet met het doelsignaal. Het doelsignaal kan vele malen accurater

gevolgd worden met een voorwaartskoppeling dan met een terugkoppeling, maar
het vereist wel uitgebreide kennis van het doelsignaal en de voertuigdynamica. De

MB vergaart kennis over het doelsignaal door het visueel waar te nemen en door

voorspellingen te maken over het toekomstige traject van het doelsignaal. Het is
onwaarschijnlijk dat de MB enkel gebruik maakt van een voorwaartskoppeling,

aVertaling van ‘sensory-motor pattern’.
bDe hier gebruikte Nederlandse vertaling van ‘tracking’ (volgen) suggereert (wellicht) dat in deze

taken de MB altijd ‘wacht’ tot het doel een beweging maakt en dan pas reageert met een stuurbeweging.
Dit is niet het geval. In een doelvolgtaak stuurt de MB het voertuig zodanig dat het de bewegingen van
het doelsignaal zo veel mogelijk nabootst, indien mogelijk ook perfect synchroon in de tijd.
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omdat a) de MB het doelsignaal en de voertuigdynamica niet perfect kent, en b)

de externe verstoringen doorgaans onbekend en onvoorspelbaar zijn. Daarom is
het waarschijnlijk dat de MB een combinatie van een voorwaartskoppeling en een

terugkoppeling gebruikt.

De MB zal alleen een pure terugkoppeling gebruiken als zowel het doelsig-

naal als het stoorsignaal onvoorspelbaar zijn en de MB alleen de volgfout

kan waarnemen op het beeldscherm. Stuurtaken die aan deze beschrijving
voldoen zijn zeer zeldzaam in de echte wereld. Nochtans beschrijven vrij-

wel alle MB modellen de mens als een pure terugkoppeling-regelaar, en is
er slechts weinig aandacht besteed aan de belangrijke voorwaartskoppeling.

Het doel van dit proefschrift is daarom het verkrijgen van een fundamenteel

begrip van de voorwaartskoppeling in menselijk stuurgedrag.

Om het doel van dit proefschrift te bereiken werden vier doelstellingen geformu-
leerd. 1) Een systeemidentificatieprocedure ontwikkelen welke in staat is om de

voorwaartskoppeling en de terugkoppeling op een objectieve manier te identifice-

ren in doelvolgtaken welke realistische stuurtaken voorstellen. 2) Onderzoeken hoe
de voorwaartskoppelingdynamica afhankelijk is van de voertuigdynamica en de

signaaleigenschappen van het doelsignaal. 3) Onderzoeken hoe de voorwaartskop-
pelingdynamica afhankelijk is van de subjectieve voorspelbaarheid van het doelsig-

naal. 4) Onderzoeken hoe de voorwaartskoppeling interageert met andere stuur-

technieken, voornamelijk de terugkoppeling op de beweging van het voertuig in
taken waar de MB deze beweging fysiek kan waarnemen.

De eerste doelstelling was het ontwikkelen van een systeemidentificatieproce-

dure welke in staat is om de voorwaartskoppeling en de terugkoppeling op een

objectieve manier te identificeren in doelvolgtaken die realistische stuurtaken voor-
stellen. Twee aanvankelijke studies lieten zien dat bestaande methodes hiertoe niet

in staat zijn. De nieuwe procedure gaat op een adequate manier om met drie
belangrijke punten van aandacht bij de systeemidentificatie van menselijk stuur-

gedrag. Ten eerste, de gebruiker hoeft geen aannames te maken betreffende de

modelstructuur of de modeldynamica, wat de resultaten van de nieuwe procedure
objectiever maakt dan die verkregen met voorgaande methodes. Ten tweede, de

procedure voorkomt het fout-positief identificeren van een voorwaartskoppeling:
modellen welke een voorwaartskoppeling bevatten naast een terugkoppeling heb-

ben doorgaans meer parameters en dus meer vrijheid om zich aan te passen aan de

data, wat resulteert in een betere modelfit, zelfs indien een voorwaartskoppeling
niet daadwerkelijk aanwezig was. Daarom is een fout-positieve identificatie van

een voorwaartskoppeling waarschijnlijk zodra de keus voor het ‘beste’ model al-
leen is gebaseerd op de kwaliteit van de modelfit. Bij het maken van de modelkeus

wordt daarom de complexiteit van het model meegewogen; de juiste numerieke

waarde van het gewicht wordt gekozen door middel van Monte-Carlo-simulaties.
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Ten derde, de procedure is in staat om de juiste menselijke dynamica te identifice-

ren uit data welke een grote hoeveelheid menselijke ruis bevatten en gemeten zijn
in een gesloten-lus-situatie. De procedure is uitvoerig gebruikt tijdens het uitvoeren

van de andere drie doelstellingen van dit proefschrift.

De tweede doelstelling was het onderzoeken hoe de voorwaartskoppelingdyna-

mica afhankelijk is van de voertuigdynamica en de signaaleigenschappen van het

doelsignaal. Allereerst is analytisch afgeleid dat de ideale voorwaartskoppeling-
dynamica gelijk is aan de inverse van de voertuigdynamica. Bijvoorbeeld, als de

voertuigdynamica beschreven wordt door een enkele integrator is de ideale voor-

waartskoppelingdynamica een differentiator. Gebaseerd op een aantal experimen-
ten met menselijke stuurders, kan worden geconcludeerd dat de MB inderdaad een

voorwaartskoppeling gebruikt waarvan de dynamica zeer vergelijkbaar is met de
inverse van de voertuigdynamica. Afwijkingen van de ideale dynamica zijn ten ge-

volge van beperkingen in de perceptie-, cognitie-, en actieprocessen in de MB. Deze

afwijkingen kunnen worden gemodelleerd met een versterkingsfactor, een tijdsver-
traging, en een laagdoorlaatfilter. Uit dit onderzoek blijkt dat de MB gebruik maakt

van een voorwaartskoppeling in stuurtaken waarin de voertuigdynamica beschre-
ven wordt door een enkele integrator, een tweede-orde systeem, of een dubbele

integrator, en wanneer het doel korte bewegingen maakt (5 tot 10 s) met een con-

stante snelheid (een zogenaamd “helling” doelsignaal) of een constante versnelling
(een zogenaamd “parabool” doelsignaal).

De derde doelstelling was het onderzoeken hoe de voorwaartskoppelingdyna-
mica afhankelijk is van de subjectieve voorspelbaarheid van het doelsignaal. De ele-

mentaire hypothese betreffende het gebruik van een voorwaartskoppeling door de

mens zegt dat de MB makkelijker een meer optimale voorwaartskoppeling ontwik-
kelt als het doelsignaal voorspelbaar is. De voorspelbaarheid van het doelsignaal

wordt beïnvloed door meerdere factoren. In dit proefschrift is de voorspelbaar-
heid van een doelsignaal, bestaande uit een som van sinussen, onderzocht door

middel van een objectieve systeemidentificatieanalyse, en verder werden proef-

personen gevraagd naar een subjectieve waardering van de voorspelbaarheid van
het doelsignaal. Hieruit kan worden geconcludeerd dat de voorwaartskoppeling-

versterkingsfactor groter is voor doelsignalen welke als voorspelbaarder worden
ervaren, en verder is de voorwaartskoppeling-tijdsvertraging bijna gelijk aan nul

voor de meest voorspelbare doelsignalen. Dit suggereert dat proefpersonen antici-

peerden op het toekomstige verloop van het doelsignaal.

De vierde doelstelling was het onderzoeken hoe de voorwaartskoppeling intera-

geert met andere stuurtechnieken, voornamelijk de terugkoppeling op de beweging
van het voertuig in taken waar de MB deze beweging fysiek kan waarnemen. De

MB kan drie stuurtechnieken gebruiken in een realistische stuurtaak indien de MB
de fysieke beweging van het voertuig kan waarnemen: een voorwaartskoppeling

op het doelsignaal, een terugkoppeling op de volgfout, en een terugkoppeling op

de beweging van het voertuig. De beste stuurprestaties werden verwacht indien
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de MB gebruik maakt van alle drie de stuurtechnieken tegelijkertijd. Een theoreti-

sche analyse liet zien dat de voorwaartskoppelingdynamica zich moeten aanpassen
aan de aanwezigheid en de dynamica van een terugkoppeling op de beweging van

het voertuig voor optimale stuurprestaties. Dit betekent dat de ideale voorwaarts-

koppelingdynamica niet gelijk is aan de inverse van de voertuigdynamica, maar
gelijk is aan de som van de inverse voertuigdynamica en de dynamica van de terug-

koppeling op de voertuigbeweging. Gebaseerd op een experiment met menselijke
bestuurders kon worden geconcludeerd dat proefpersonen inderdaad alle drie de

stuurtechnieken tegelijkertijd gebruiken. Echter, zij reageren met een significant

kleinere vergrotingsfactor op de voertuigbeweging als ze een deels voorspelbaar,
deels onvoorspelbaar doelsignaal volgen, dan wanneer ze een compleet onvoor-

spelbaar doelsignaal volgen.

De volgende algemene conclusies kunnen worden getrokken uit het onderzoek:

1. De belangrijkste component van het voorwaartskoppeling-model is de inverse

voertuigdynamica. De ideale voorwaartskoppelingdynamica is gelijk aan de

inverse voertuigdynamica indien een terugkoppeling op de voertuigbeweging
niet aanwezig is.

2. Indien een terugkoppeling op de voertuigbeweging wel aanwezig is, is de ide-
ale voorwaartskoppelingdynamica gelijk aan de som van de inverse voertuig-

dynamica en de dynamica van de terugkoppeling op de voertuigbeweging.

3. De MB is niet in staat om een voorwaartskoppeling met de ideale dynamica

te gebruiken. Beperkingen in perceptie-, cognitie-, en actieprocessen kunnen
worden gemodelleerd door een vergrotingsfactor, een tijdsvertraging, en een

laagdoorlaatfilter.

4. De voorwaartskoppeling-vergrotingsfactor is niet altijd gelijk aan de optimale

waarde (gelijk aan één), maar vaak iets kleiner. De vergrotingsfactor hangt
af van de signaaleigenschappen van het doelsignaal, de voertuigdynamica,

de voorspelbaarheid van het doelsignaal, en de waarneembaarheid van de

fysieke voertuigbeweging.

5. De voorwaartskoppeling-tijdsvertraging correleert met hoe voorspelbaar het

doelsignaal wordt ervaren. Kleinere tijdsvertragingen worden gemeten voor
doelsignalen die voorspelbaarder worden ervaren.

6. Het voorwaartskoppeling-laagdoorlaatfilter strijkt het voorwaartskoppeling-
stuursignaal glad; dit element wordt nog niet goed begrepen.

7. De dynamica van de terugkoppeling op de stuurfout is equivalent aan de

dynamica in stuurtaken met een compensatory display en een onvoorspelbaar

doelsignaal en een onvoorspelbaar stoorsignaal.
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De in dit proefschrift ontwikkelde systeemidentificatieprocedure en het model

van menselijk stuurgedrag met een voorwaartskoppeling en een terugkoppeling
zijn waardevolle gereedschappen voor toekomstig onderzoek naar stuurtechnieken

met een voorwaartskoppeling. De nieuwe systeemidentificatieprocedure stelt de

onderzoeker in staat om een objectieve schatting van de menselijke stuurdynamica
te verkrijgen in stuurtaken welke nog niet eerder bestudeerd zijn. De toepassing

van de procedure is niet beperkt tot de identificatie van de voorwaartskoppeling,
het kan ook gebruikt worden voor vele andere soorten van menselijke dynamica.

Het model van menselijk stuurgedrag stelt de onderzoeker in staat om te onderzoe-

ken hoe de stuurprestaties afhangen van de voorwaartskoppeling-modelparameters
door computersimulaties, het is behulpzaam bij het formuleren van hypotheses,

helpt bij het ontwerpen van een experiment, en stelt de onderzoeker in staat om het
stuurgedrag beter te begrijpen door middel van een parameterschatting-analyse.

Toekomstig onderzoek moet zich richten op de voorspelbaarheid van het doelsig-

naal, waarna stuurtaken met meerdere gesloten lussen en meerdere vrijheidsgraden
aandacht verdienen. Uiteindelijk zal onderzoek naar stuurtaken gedaan moeten

worden waarin de MB niet een ‘smal’ doelsignaal volgt, maar waarin het te volgen

traject minder expliciet wordt voorgeschreven en de MB dus meer vrijheid heeft om
een zelf gekozen traject te volgen.

Dit proefschrift laat zien dat de voorwaartskoppeling een essentieel onderdeel
is van menselijk stuurgedrag en dat de ingenieur hier rekening mee moet houden

in veel mens-machine toepassingen. Dit proefschrift levert een aanzienlijke bijdrage

aan de huidige staat van het onderzoek naar menselijk stuurgedrag; het onderzoek
heeft geresulteerd in een fundamenteel begrip van de voorwaartskoppeling in men-

selijk stuurgedrag.
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