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Abstract

The cooperative output regulation problem has attracted considerable attention due to its wide appli-
cations in several real life problems; in the past decade, the cooperative control of multi-agent systems
has become a trendy topic in the control community. In the cooperative output regulation problem the
main purpose consists in achieving reference tracking and disturbance rejection.
State-of-the-art methodologies can solve cooperative output regulation only by assuming some critical
a priori knowledge: either the exosystem dynamics (e.g. their harmonic frequencies) can be globally
shared; or some structural parameters of the communication graph (e.g. structural eigenvalues) are
known; or initial stabilizing controllers are available for each system.
However, from a practical point of view, it is crucial to develop adaptive methodologies to effectively
handle uncertainty in cooperative control of network systems, exploiting as little a priori information
as possible.
This work addresses and solves the cooperative output regulation problem without exploiting any of
the aforementioned critical knowledge.
In fact, the distinguishing feature of the proposed solution is to assume an uncertain cooperative sce-
nario where neither follower nor leader dynamics are globally known. In particular, the exosystem
dynamics are assumed to correspond to harmonic oscillators with unknown frequencies.
Cooperative output regulation is achieved by designing, for each system in the network, fully dis-
tributed adaptive controllers, i.e. requiring no knowledge of the structural eigenvalues nor initial
stabilizing control law.
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Chapter 1

Introduction

The cooperative output regulation problem refers to the problem of making a network of systems
(sometimes referred to as follower agents) to follow the behavior of a leader exosystem (sometimes
referred to as leader agent).
Cooperation arises from solving the problem in a distributed way when not all systems in the network
can access the signals of the leader. The main idea is that the systems not directly connected to the
exosystem reconstruct the exosystem signals through communication with neighbors [1, 2].
In the traditional formulations of cooperative output regulation, the system dynamics are considered to
be known or belonging to a sufficiently small uncertainty set, and in addition, the exosystem dynamics
are assumed to be globally known in the network [3, 4, 5, 6].
Many are the applications of the cooperative control in real scenarios, such as cooperative platooning
[7, 8], smart energy [9, 10] and smart traffic [11, 12, 13, 14].
However, in real-life networked environments, information is partial or not available: therefore, it is
desirable to consider cooperative output regulation problems in which:

• The system dynamics involve parametric uncertainties.

• The exosystem dynamics are not globally known.

In the first case, a distributed observer with adaptive coupling gains can be used to reconstruct the state
of the exosystem. Variants of this technique have been adopted for homogeneous uncertain dynamics
[15, 16], heterogeneous known dynamics [17], or special classes of heterogeneous unknown dynamics
(e.g. Euler-Lagrange [18, 19], model reference [20, 21, 22], or passifiable [23, 24] dynamics).
In the second case, when the leader dynamics are not globally known, it has been assumed that the
systems connected to the leader know them and share this information across the network through
consensus dynamics [25].
However, this requires an extra communication channel. To avoid the use of this extra communication,
estimation techniques for the leader dynamics have been combined with a robust design [26] or with
a learning-based design [27].
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2 Introduction

1-1 Open problems and proposed solutions

Distributed adaptive techniques offer strong potential to deal with large parametric uncertainties in
networks [28]. However, despite the recent advances presented above, uncertain cooperative problems
are still solved assuming some critical a priori knowledge:

• Globally known leader dynamics [24]

• Globally shared leader dynamics through consensus [25]

• Sufficiently small uncertainty for fixed-gain robust control [26]

• Initial stabilizing feedback available for each system [27].

The main contribution of this thesis is to solve the cooperative regulation problem without exploiting
any of the aforementioned critical knowledge. In particular, in the presence of uncertain dynamics and
large parametric uncertainties that cannot be handled by state-of-the-art methodologies, our approach
implements three steps of adaptation.

• The first step involves an on-line fully distributed estimation of the exosystem dynamics, which
are assumed to be completely unknown (the exosystem is assumed to be a multi-dimensional
harmonic oscillator with unknown frequencies).

• The second step involves the on-line estimation of the unknown parameters of a minimum state-
space realization of the systems, and the use of adaptive observers to estimate the corresponding
states.

• Finally, in the third step, the estimated exosystem and adaptively generated parameters and
states of the systems are used to solve the regulator equations and update the parameters of
the output regulators. It is shown analytically that, overall, the three adaptation steps lead to
asymptotic cooperative regulation.

The thesis is organized as follows: the second chapter concisely presents the output regulation prob-
lem, the third chapter introduces the the cooperative output regulation problem for linear systems; the
fourth chapter gives a review of different methodologies found in literature to solve the cooperative
output regulation problem.
Then, the fifth chapter introduces the distributed exosystem estimator whereas the sixth covers both
the adaptive observer for the system dynamics, the adaptive solution to the regulator equations and
presents the main result.
Several simulations are carried out in the seventh chapter, while in the eighth and last chapter,possible
future development and conclusions are presented.

Marco Romagnuolo Master of Science Thesis



Chapter 2

Output Regulation Problem

In this chapter a concise but self-contained analysis of the output regulation problem for LTI systems
is given, in order to have a clear understanding of this topic when it will be extended to the cooperative
case. In the first section, the linear output regulation problem is defined whereas in the second section
the robust approach to parametric uncerainties in the plant is presented.

2-1 Linear Output Regulation

Many practical control problems such as car’s cruise control, trajectory planning of a robot, attitude
control of an airplane, and so on, fall into the classical scenario represented in Fig. 2-1.
We have a plant, subject to a disturbance d(t) and a controller that guarantees disturbance rejection and
reference tracking, meaning that not only the closed loop system is not affected by the disturbance but
also that the output y(t) asymptotically tracks the reference r(t), leading the error e(t) to 0 as follows

lim
t→∞

e(t) = lim
t→∞

(y(t)− r(t)) = 0 (2-1)

Master of Science Thesis Marco Romagnuolo



4 Output Regulation Problem

Controller Plant
𝑒(𝑡)𝑟(𝑡) 𝑦(𝑡)

-+

𝑑(𝑡)

Figure 2-1: Unity feedback control

From control theory, it is known that a linear system with with m inputs, p outputs and n state variables
can be represented in its state space form as follows:

ẋ(t) = Ax(t)+Bu(t)

y(t) =Cx(t)+Du(t)
(2-2)

where x(·) is the state vector, with x(t) ∈ Rn; y(·) is the output vector, with y(t) ∈ Rp; u(·) is the
input (or control) vector, with u(t) ∈Rm; A is the state (or system) matrix of dimension n×n, B is the
input matrix, of dimension n×m; C is the output matrix, of dimensions p× n and, finally, D is the
feedthrough (or feedforward) matrix, of dimensions p×m.
When the system doesn’t have a direct feedthrough, the matrix D is equal to 0.
However, it is possible to incorporate in this representation also the disturbance acting on the plant as
follows:

ẋ = Ax+Bu+Edd

y =Cx+Du+Fdd
(2-3)

Therefore, the tracking error e is given by

e =Cx+Du+Fdd− r (2-4)

In order to give a systematic representation of the output regulation problem, we should be able to
design a single controller capable to simultaneously handle class of references and disturbances; this
objective is achieved by generating both references and disturbances through a autonomous linear
differential equation defined as:

ṙ = S1rr, r(0) = r0, ḋ = S1dd, d(0) = d0 (2-5)

where r0 and d0 are the initial states. Stacking together the reference and the disturbance in a vector
v, it is possible two consider the two differential equation as a single autonomous dynamic system,
defined as follows:

v̇ = Sv, v(0) = v0 (2-6)

where

v =

[
r
d

]
, S =

[
S1r 0
0 S1d

]
, v0 =

[
r0
d0

]
(2-7)
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2-1 Linear Output Regulation 5

Thus, equations (2-3) can be put in the following form

ẋ = Ax+Bu+Ev

e =Cx+Du+Fv
(2-8)

where [
E
F

]
=

[
0 Ed
−I Fd

]
(2-9)

In the continuation of the thesis, the autonomous dynamic system in (2-6) will be referred to as
exosystem (or leader in the multi-agent case).
With this new formulation, the asymptotic reference tracking and the disturbance rejection can be
treated as the regulation of the error e to the origin and this is the reason why the problem of asymptotic
tracking and disturbance rejection can be referred to as output regulation. Two are the classes of
feedback control that solves the linear output regulation:

• Static State Feedback
u = Kxx+Kvv (2-10)

where Kx and Kv are constant matrices named feedback gain and feedforward gain, respectively

• Dynamic Measurement Output Feedback

u = Kz ż = G1z+G2ym (2-11)

where ym represent the output available for measurement and it is defined as

ym =Cmxm +Dmum +Fmv. (2-12)

However, in many cases the available output is the error e itself, and, as a consequence, we
have that Cm = C, Dm = D, Fm = F and the obtained controller is defined as Dynamic Error
Feedback.

The static case is also referred to as "full information case", since it is based on the assumption that
all the states x and v can be measured and, therefore, used by the controller.

Definition 1. [Linear Output Regulation Problem] Given the system (2-8), a controller (2-10) or
(2-11) must be found such that:

• The closed loop system is Hurwitz

• For any initial condition x(0), v(0), the tracking error is asymptotically steered to 0

lim
t→∞

e(t) = 0 (2-13)

By closing the loop using either (2-10) or (2-11), the following results are obtained

ẋcl = Aclxcl +Bclv, xcl(0) = xcl0

v̇ = Sv,

e =Cclxcl +Dclv

(2-14)
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6 Output Regulation Problem

where, for the static case xcl = x and

Acl = A+BKx, Bcl = E +BKv

Ccl =C+DKx Dcl = F +DKv
(2-15)

while for the dynamic case we have that xcl =

[
x
z

]
and

Acl =

[
A BK

G2Cm G1 +G2DmK

]
, Bcl =

[
E

G2Fm

]
Ccl =

[
C DK

]
, Dcl = F

(2-16)

In this scenario, controllers (2-10), (2-11) manage to keep the closed loop exponentially stable.
In [29], the closed loop system (2-14) is said to be exponentially stable if the following conditions
hold

• Acl is Hurwitz

• for every initial state xc0 and v0, the dynamics described by (2-20) satisfy

lim
t→∞

e(t) = lim
t→∞

(Cclxc(t)+Dclv(t)) = 0 (2-17)

Furthermore, the following assumptions are needed in order the solve the linear output regulation
problem

Assumption 1. S has no negative eigenvalues

Assumption 2. the pair (A,B) is stabilizable

Assumption 3. The pair [Cm Fm

]
,

[
A E
0 S

] (2-18)

is detectable

The first asssumption guarantees that the modes associated with the eigenvalues of the exosystem S
will not decay to asymptotically while the second one guarantees that the problem is solvable through
state feedback, meaning that it is always possible to determine a feedback matrix Kx such that A+BKx

is Hurwitz.
Finally , the third assumption together with the second one guarantees that the problem is solvable
through output feedback.

A fundamental result for the output regulation theory is given by the following Lemma , whose demon-
stration can be found in [29, Chap. 1]

Lemma 1. Under Assumptions 1-3, given the controller (2-10) or (2-11) that makes the closed loop
matrix Acl Hurwitz, the following statements are equivalent:

Marco Romagnuolo Master of Science Thesis



2-1 Linear Output Regulation 7

1. The closed loop system satisfies (2-17).

2. The given controller solves the output regulation problem

3. Exists a unique matrix Xcl that solves the following algebraic equations

XclS = AclXc +Bcl

0 =CclXcl +Dcl
(2-19)

This result is extremely important and represents the cornerstone for the output regulation theory: by
linking the solvability of the output regulation problem to the one of a set of linear matrix equations,
mathematical tools of linear algebra can be exploited to solve the problem.
Since during the continuation of this thesis work, a modified version of the static state feedback will
be adopted as controller, let us focus our attention on this case.
Let us rewrite the closed loop system equations (2-14) and the algebraic equations (2-19) for the static
case in order to underline some fundamental concepts:

ẋ = (A+BKx)x+(E +BKv)v,

v̇ = Sv,

e = (C+DKx)x+(F +DKv)v

(2-20)

XclS = (A+BKx)Xcl +E +BKv

0 = (C+DKx)Xcl +F +DKv
(2-21)

The main idea behind the static state feedback controller consists in using the feedback term Kx to
make the closed loop matrix Acl Hurwitz while the feedforward term Kv annihilate the steady state
error, achieving, simultaneously, reference tracking and disturbance rejection.
More specifically, the feedforward term drives the closed loop system towards a subspace define by
the hyperplane (C+DKx)x+(F +DKv)v = 0, where the trajectories remain since Acl is Hurwitz.
Consequently, there is a straightforward and schematic way to solve the linear output regulation:

1. Choose a feedback term Kx such that Acl is Hurwitz

2. Find a solution pair (Xcl , Kx) to the set of equations (2-21)

3. Define the control input as u(t) = Kxx(t)+Kvv(t)

The clear drawback of this approach lies in the dependency of Xcl and Kv on the feedback term Kx,
leading to a new computation of Xcl and Kv, for every new design of the feedback term Kx.
This problem can be overcome by defining two matrices X and U such that:[

X
U

]
=

[
In 0n×m

Kx Im

][
Xcl
Kv

]
(2-22)

leading to the the well known Regulator Equations

XS = AX +BU +E

0 =CX +DU +F
(2-23)

The obtained results can be summarized in the following lemmma

Master of Science Thesis Marco Romagnuolo



8 Output Regulation Problem

Lemma 2. Under Assumptions 1 and 2, the linear output regulation problem is solvable through
static state feedback

u = Kxx+Kvv (2-24)

by choosing Kx such that Acl is Hurwitz and Kv such that

Kv =U−KxX (2-25)

where (X,U) is a solution pair to the Regulator Equations (2-23)

By analyzing more accurately the Regulator Equations, it is possible to infer some useful concepts:
by considering v to be constant, the exosystem matrix S becomes, obviously, equal to 0.
As a consequence, equations (2-21) and (2-23) become respectively:

0 = (A+BKx)Xcl +E +BKv

0 = (C+DKx)Xcl +F +DKv
(2-26)

and

0 = AX +BU +E

0 =CX +DU +F
(2-27)

From (2-26), it can be inferred that Xclv represents the equilibrium of the closed loop system at which
the output is zero; furthermore, Xclv represents also the steady state value of the closed loop system.
Instead, by analyzing (2-27), it can be deduced that Uv represents the input that drives the open loop
system towards the equilibrium point Xv, where the output is 0.
Since from the linear transformation (2-22) it has been established that X = Xcl , it can be seen that the
steady state value of the input u(t) will converge to Uv:

lim
t→∞

u(t) = (KxX +Kv)v =Uv (2-28)

These considerations can be extended to the general case, where v is not constant, leading to the
following results, achieved under any controller able to solve the output regulation problem:

lim
t→∞

xcl(t)−Xv(t) = 0 (2-29)

and
lim
t→∞

u(t)−Uv(t) = 0 (2-30)

What emerges from these results is that, when the output regulation problem is solvable, the steady
state behavior of the closed loop depends on the solution of the regulator equations.

Assumption 4. For every λ ∈ σ(S), where σ(S) is the spectrum of the matrix S

rank

[
A−λ I B

C D

]
= n+ p (2-31)

where n is the state space dimension, while p the output space dimension.
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2-2 Robust Linear Output Regulation 9

This assumption is fundamental to an important result, presented in the following lemma:

Lemma 3. For any matrices E and F, the regulator equations (2-23) are solvable if and only As-
sumption 4 holds

Without going into excessive details (the proof can be found in [29]), in this lemma it is demonstrated
that it is possible to transform (2-23) into a standard linear algebraic equation of the form:

Qx = b (2-32)

where

Q = ST ⊗

[
In 0n×m

0p×n 0p×m

]
− Iq⊗

[
A B
C D

]

x = vec

[X
U

] b = vec

[E
F

] (2-33)

where ⊗ denotes the Kronecker product, whose properties can be found in the next chapter, while the
notation vec indicate a vector-valued function of a matrix defined such as, given a matrix H ∈ Rm×n

we obtain:

vec(H) =


H1
...

Hn

 (2-34)

where for i = 1, . . . ,m, Hi is the ith column of H.

2-2 Robust Linear Output Regulation

Stabilizer Plant
𝑟(𝑡) 𝑒(𝑡) 𝑢(𝑡) 𝑦(𝑡)

𝑑(𝑡)

Internal 
Model 

Augmented systemRegulator

Figure 2-2: Decentralized Feedforward Control.

In the previous section, the proposed approaches only works in a scenario where the plant dynamics
are completely known.
The situation completely changes when we try to keep into account plant uncertainties, leading to the
following class of systems:

ẋ = (A+∆A)x+(B+∆B)u+(E +∆E)v

e = (C+∆C)x+(D+∆D)u+(F +∆F)v
(2-35)
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10 Output Regulation Problem

Here A, B, C, D, E, F ,C, denote the nominal part of the plant while ∆A, ∆B, ∆C, ∆D, ∆F , denote the
uncertain part. For ease of notation, it is convenient to collect together the uncertainties in the vector

w = vec(
[

∆A ∆B ∆C
∆D ∆E ∆F

]
),

Then, by defining

Aw = A+∆A Bw = B+∆B Ew = E +∆E

Cw =C+∆C Dw = D+∆D Fw = F +∆F
(2-36)

it is possible to rewrite (2-35) in a compact way, together with the exosystem (2-6):

ẋ = Awx+Bwu+Ewv

v̇ = Sv

e =Cwx+Dwu+Fwv

(2-37)

In the previous section a static state feedback and a dynamic output feedback were shown to solve the
linear outptut regulation problem.
Because of the presence of the uncertain parameter w, no static state feedback can solve the robust
output regulation problem and, for this reason, a dynamic state or output feedback is needed, such as:

• Dynamic State Feedback

u = K1x+K2z

ż = G1z+G2ym
(2-38)

or

• Dynamic Output Feedback

u = Kz

ż = G1z+G2ym
(2-39)

where ym is the measurement output.

Definition 2. [Linear Robust Output Regulation Problem] Given the system (2-35), a controller (2-38)
or (2-39) must be found such that:

• The closed loop system is Hurwitz

• For any initial condition x(0), v(0), the tracking error is asymptotically steered to 0

lim
t→∞

e(t) = 0 (2-40)

It is worth delving deeper into the reasons why a static feedback no longer represents a valid option
to solve the output regulation problem for the robust case.
Let us first consider the closed loop matrices, obtained for the two classes of controllers:

Awcl =

[
Aw +BwK1 BwK2

G2(Cw +DwK1) G1 +G2DwK2

]
, Bwcl =

[
Ew

G2Fw

]
Cwcl =

[
Cw +DwK1 DwK2

]
, Dwcl = Fw

(2-41)
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2-2 Robust Linear Output Regulation 11

for the state feedback case and

Awcl =

[
Aw BwK

G2Cw G1 +G2DwK

]
, Bwcl =

[
Ew

G2Fw

]
Cwcl =

[
Cw DwK

]
, Dwcl = Fw

(2-42)

for the output feedback case. In this way, (2-37) becomes:

ẋcl = Awclxcl +Bwclv

v̇ = Sv

ecl =CwclxclDwclv

(2-43)

where xcl = col(x,z).
Similarly to the previous section, the closed loop system (2-43) is said to be exponentially stable if
the following conditions hold

• Awcl is Hurwitz

• for every initial state xc0 and v0, the dynamics described by (2-20) satisfy

lim
t→∞

e(t) = lim
t→∞

(Cwclxcl(t)+Dwclv(t)) = 0 (2-44)

Then, a result, whose demonstration can be found in [29], is given as follows

Lemma 4. Under Assumptions 1-3, given a controller such as (2-38) or (2-39) that renders the closed
loop matrix Awcl Hurwitz, the following statements are equivalent:

1. There exists a neighbourhood W of w= 0 such that the closed loop system (2-43) satisfies (2-44)

2. The controller solves the linear robust output regulation problem

3. For each w ∈W such that Awcl is exponentially stable, exists a unique matrix Xcw that solves
the following matrix equations

XwclS = AwclXc +Bwcl

0 =CwclXwcl +Dwcl
(2-45)

Differently from the previous section, these equations depend on the uncertain parameter w and this
makes the robust output regulation problem more difficult to solve.
In fact, whilst for the previous, non-robust, case it was possible to find a solution pair (X ,U) to the
regulator equations (2-23), this cannot apply to the current case since the uncertain regulator equations
(2-45) depend on variable parameter w.
As a consequence, no fixed-gain static feedback controller is able to solve the robust output regulation.
Since using the solutions of the regulator equations is no longer a valid option, another methodology
is presented: the well known Internal Model Principle, first introduced in [30].
This methodology works as follows:
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12 Output Regulation Problem

1. A dynamic compensator of the form

ż = G1z+G2ym (2-46)

is chosen such that it incorporates a p-copy internal model of the system (2-37)

2. An augmented system

ẋ = Ax+Bu+Ev

ż = G1z+G2ym

e =Cx+Du+Fv

(2-47)

is defined, where the uncertainties no longer appear since they are keep into account by the
internal model

3. Finally, either a dynamic state feedback or a dynamic output feedback that stabilizes the aug-
mented system (2-47) is designed.
In this way, the robust output regulation problem is solved in an open neighborhood W of w= 0.

The mathematical details of how the internal model is able to satisfy the third statement of Lemma 5
lie outside the purpose of this thesis work and can be found in [29, Theorem 1.30]
What is clear from this brief summary about the output regulation theory, is that

• Parameters uncertainties are usually dealt with exploiting a robust approach.

• The robust approach only works with small uncertainties while the adaptive control can over-
come this problem, otherwise unsolved.

• It is still necessary to explain how to solve solve the problem in the cooperative case.
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Chapter 3

Cooperative Output Regulation

Since the core of this project is the development of an adaptive, fully distributed solution to the Co-
operative output regulation problem, all the concepts presented in Chapter 2 will be now extended
to the cooperative case. In the first section a small overview of the graph theory is given, then the
Kronecker product, together with its properties, is given; in the third section the notation that will be
used throughout the thesis work is given, while in the fourth section the reason why the decentralized
solution is impossible in our case are shortly explained.
Then, the distributed observer is introduced in the fifth section while in the last section a short expla-
nation of how is usually solved the robust output regulation for the cooperative case is given.

3-1 Basic Concepts of Graph theory

0

1

2

3

4

Figure 3-1: Example of communication graph.

In the study of coordination and synchronization problems of Multiagent Systems (MAS), communi-
cation between agents plays a fundamental role.
Suppose, therefore, that multiple systems interact with each other according to a precise communica-
tion topology: appears natural modeling these interactions between systems by graphs.
We consider networks of dynamical systems (also referred to as nodes), which are linked to each other
via a communication graph, that describes the allowed information flow.
In other words, we say that system i has a directed connection to system j if the second can receive
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14 Cooperative Output Regulation

information from the first.
When the information can flow in both directions, the connection is said to be undirected.
In a communication graph, a special role is played by the leader node, which is a system (typically
indicated as system 0) that does not receive information from any other system in the network.
The communication graph describing the allowed information flow between all the systems, leader
excluded, is completely defined by the pair G = (V ,E ), where V = {1, . . . ,N} is a finite nonempty
set of nodes, and E ⊆ V ×V is a set of pairs of nodes, called edges.
To include the presence of the leader in the network we define Ḡ = {V ,E ,T }, where T ⊆ V is the
set of those nodes, called target nodes, which receive information from the leader. Fig. 3-1 provides
a simple exle of how V , E , and T can be defined. Two square matrices are instrumental to find
many useful properties of a communication graph: the adjacency matrix A = [ai j] ∈ RN×N and the
Laplacian matrix L = [li j] ∈ RN×N .
Specifically, the adjacency matrix of an undirected communication graph is defined as aii = 0 and
ai j = a ji = 1 if (i, j) ∈ E , where i 6= j; the Laplacian matrix is defined as lii = ∑ j ai j and li j =−ai j, if
i 6= j.
The adjacency and the Laplacian matrices corresponding to the exle in Fig. 3-1 are

A =


0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

 , L =


2 −1 −1 0
−1 2 −1 0
−1 −1 3 −1

0 0 −1 1

 .

In addition, we use a square diagonal matrix, the target matrix M = [mi j] ∈ RN×N , to describe the
directed communication of the leader with the target nodes.
Specifically, the target matrix is defined as mii = 1 if i ∈ T and mii = 0 otherwise. In the exle of Fig.
3-1, we have M = diag(1,0,0,0).
An undirected graph G is said to be connected if, taken any arbitrary pair of nodes (i, j) where i, j ∈V ,
there is a path that leads from i to j. Note that the graph G in Fig. 3-1 is undirected and connected.
Finally, let us define the leader-follower topology matrix as B = L +M . When L is the Laplacian
matrix of an undirected and connected graph, B is positive definite by construction.

3-2 Kronecker Product

In mathematics, in the field of linear algebra, the Kronecker product is indicated with⊗ and represents
an operation between two arrays of arbitrary size, always applicable. If A Is a matrix m× n and B a
matrix p×q, then their Kronecker product is a matrix defined as follows:

A⊗B =

a11B . . . a1nB
. . . . . . . . .

am1B . . . amnB

 (3-1)
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3-3 Notation 15

or, if we expand every term

A⊗B =



a11b11 a11b12 · · · a11b1q · · · · · · a1nb11 a1nb12 · · · a1nb1q

a11b21 a11b22 · · · a11b2q · · · · · · a1nb21 a1nb22 · · · a1nb2q
...

...
. . .

...
...

...
. . .

...
a11bp1 a11bp2 · · · a11bpq · · · · · · a1nbp1 a1nbp2 · · · a1nbpq

...
...

...
. . .

...
...

...
...

...
...

. . .
...

...
...

am1b11 am1b12 · · · am1b1q · · · · · · amnb11 amnb12 · · · amnb1q

am1b21 am1b22 · · · am1b2q · · · · · · amnb21 amnb22 · · · amnb2q
...

...
. . .

...
...

...
. . .

...
am1bp1 am1bp2 · · · am1bpq · · · · · · amnbp1 amnbp2 · · · amnbpq



(3-2)

The Kronecher product has the following properties:

• A⊗ (B+C) = A⊗B+A⊗C

• (A+B)⊗C) = A⊗C+B⊗C

• (kA)⊗B) = A⊗ (kB) = k(A⊗B)

• (A⊗B)⊗C = A⊗ (B⊗C)

However, the commutative property does not hold for this kind of product. It is worth mentioning how
Kronecker product and regular matrix product work together:

• (A⊗B)(C⊗D) = (AC)⊗ (BD)

• (A⊗B)−1 = A−1⊗B−1

In the rest of the thesis work the Kronecker product will play a fundamental role, making the notation
for the demonstrations over the networks much more compact.

3-3 Notation

The transpose of a matrix or of a vector is indicated with XT and xT . The n× n identity matrix is
denoted by In.
A diagonal matrix ∆= diag(δ1,δ2, . . . ,δn) is denoted as diag(δk)←−n ; a block-diagonal matrix is denoted
as ∆ = bdiag(∆k)←−n .
A matrix M ∈ Rn×n is said to be negative definite if, for every non-zero vector x ∈ Rn, it results
xT Mx < 0.
A vector signal x(·) is said to belong to L2 (x ∈L2), if

∫ t
0

∥∥x(τ)
∥∥2 dτ < ∞, ∀t ≥ 0. A vector signal

x(·) is said to belong to L∞ (x ∈L∞), if max
t≥0

∥∥x(t)
∥∥< ∞, ∀t ≥ 0.
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16 Cooperative Output Regulation

3-4 Decentralized Control

Let us define a linear heterogeneous multi-agent system composed by N agents as follows:

ẋi = Aixi +Biui +Eiv

e =Cixi +Diui +Fiv
(3-3)

where xi ∈ Rni , ui ∈ Rmi , ei ∈ Rpi , and v ∈ Rq.
As for the single agent case, let us also define the exosystem, that generates either the reference r and
the disturbance d as follows:

v̇ = Sv (3-4)

Then, systems Eq. (3-3) and Eq. (3-4) can be considered as a multi-agent system of N + 1 agents,
where the exosystem Eq. (3-4) is the leader and the agents Eq. (3-3) are the N followers. If every
follower can access the state v of the leader, then the output regulation problem of system Eq. (3-3)
can be handled by a so-called decentralized control scheme, shown in Fig. 3-2

𝑣(𝑡)

𝑣(𝑡)

Controller 1

Controller 2

𝑣(𝑡)

𝑣(𝑡)
Controller N

Agent 1

Agent 2

Agent N

𝑢1(𝑡)

𝑢2(𝑡)

𝑢𝑁(𝑡)

𝑦1(𝑡)

𝑦2(𝑡)

𝑦𝑁(𝑡)

Leader

𝑣(𝑡)

𝑣(𝑡)

𝑣(𝑡)

Figure 3-2: Decentralized Control Scheme

However, in the cooperative output regulation problem, the information flow must satisfy some con-
straints, such as not every agent can communicate with the exosystem and/or with every other agent.
Consequently, two types of agents are considered:

• informed followers that can directly communicate with the leader

• uninformed followers that cannot communicate directly with the leader
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3-5 Distributed Observer 17

For this the reason, it is necessary to find a way to solve the output regulation problem for a multi-
agent system by using a distributed control strategy (i.e. exploiting only own measurements and
measurements from neighbors).
Basically, our objective is to steer every ith regulated output ei to 0, as follows

lim
t→∞

ei(t) = 0 i = 1, . . . ,N (3-5)

A possible approach used to solve the cooperative output regulation for a linear multi-agent system,
when no uncertainties are taken into account, consists in exploiting the so called Distributed Observer.

3-5 Distributed Observer

𝜂2(𝑡)

Internal 
Model 1

Internal 
Model 2

Internal 
Model N

Agent 1

Agent 2

Agent N

𝑢1(𝑡)

𝑢2(𝑡)

𝑢𝑁(𝑡)

𝑦1(𝑡)

𝑦2(𝑡)

𝑦𝑁(𝑡)

Distributed 
Observer 1

Distributed 
Observer 2

Distributed 
Observer N

Leader

Communication 
Network

𝑣(𝑡)

𝑦1(𝑡)

𝑦2(𝑡)

𝑦𝑁(𝑡)

𝜂1(𝑡)

𝜂𝑁(𝑡)

Figure 3-3: Distributed Internal Model Approach.

As mentioned in the previous section, this approach is based on a dynamic compensator, the dis-
tributed observer, that, by exploiting only neighboring information, is able to provide to every agents
an estimation of the leader dynamics.
An example of distributed observer is given by:

η̇i = Sηi +µ

∑
j∈Ni

ai j(η j−ηi)+mii(v−ηi)

 (3-6)

where µ is some positive number, ηi ∈Rq is the estimate of v. The dynamics ηi are clearly influenced
by η j, meaning that the approximation of the exosystem state v is obtained by the exploitation of
neighboring information.
Clearly, the ith compensator depends on v if and only if mii 6= 0, meaning that the agent i is a neighbor
of the leader.
Similarly to the single agent case, the following assumptions are needed for the solution of the coop-
erative output regulation problem:
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18 Cooperative Output Regulation

Assumption 5. The exosystem matrix S has no eigenvalues with negative real part

Assumption 6. The pairs (Ai,Bi) are stabilizable, i = 1 . . .N

Assumption 7. The regulator equations

XiS = AiXi +BiUi +Ei

0 =CXi +DUi +Fi
(3-7)

have solution pairs (Xi,Ui)

Then, in the full information case (i.e. the states of the agents are measurable), the distributed con-
troller becomes

ui = Kxixi +Kηiηi

η̇i = Sηi +µ

∑
j∈Ni

ai j(η j−ηi)+ai0(v−ηi)

 (3-8)

where Kxi is chosen such that A+BKxi is Hurwitz and Kηi is obtained by exploiting the solution of the
regulator equation (3-7)

Kη i =Ui−KxiXi (3-9)

Moreover, also the output feedback solution, as for the single agent case, is possible by considering
some extra assumptions.
Let us define a measurement output ymi , then the equations describing the dynamics of the N agents
become:

ẋi = Aixi +Biui +Eiv

ymi =Cmixi +Dmi +Fmiui

e =Cixi +Diui +Fiv

(3-10)

Then by adding the following detectability assumptions

Assumption 8. The pairs (Cmi ,Ai) are detectable, for every informed follower

Assumption 9. The pairs

[Cmi Fmi

]
,

[
Ai Ei

0 S

] are detectable, for every uninformed follower

the problem can be solved by a dynamic output feedback: such as

ui = Kxizi +Kη iηi

η̇i = Sηi +µ

∑
j∈Ni

ai j(η j−ηi)+ai0(v−ηi)


żi = G1izi +G2iymi

(3-11)

where G1i and G2i are constant matrices.
Assumption 8 establishes that for all the uninformed agents (i.e. the ones not directly linked to the
leader) the state xi is detectable from the measurement output ymi , while Assumption 9 establishes that,
for all the informed agents (i.e. the ones directly linked to the leader) the state xi and the exosystem
state v is detectable from the measurement output ymi .
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3-6 Distributed Internal Model 19

Definition 3. [Linear Cooperative Output Regulation Problem] Given the multi-agent system (3-3)
and a graph G , a controller (3-8) or (3-11) must be found such that:

• The closed loop system is Hurwitz

• For any initial condition xi(0), ηi(0) for i = 1 . . .N and v(0), the tracking error is asymptotically
steered to 0

lim
t→∞

ei(t) = 0 i = 1 . . .N (3-12)

Under Assumptions 5-9, this is possible if and only if the graph G contains a directed spanning tree,
namely there is a subgraph that connects every vertex of G .

3-6 Distributed Internal Model
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Figure 3-4: Distributed Internal Model Approach.

In the previous section, the cooperative output regulation problem was tackled when no uncertainty
is taken into account; in order to obtain a robust result, a distributed internal model approach must be
chosen.
It consists in converting the cooperative output regulation problem of a multi-agent system into a
stabilization problem of a multiple augmented system composed of the given multi-agent system and
the distributed internal model.
Let us define the uncertain multi agent system as:

ẋi = (Ai +∆Ai)xi +(Bi +∆Bi)ui +(Ei +∆Ei)v

ei = (Ci +∆Ci)x+(Di +∆Di)ui +(Fi +∆Fi)v
(3-13)

Here Ai, Bi, Ci, Di, Ei, Fi, denote the nominal part of the agents while ∆Ai, ∆Bi, ∆Ci, ∆Di, ∆Ei, ∆Fi,
denote the uncertain part. For ease of notation, it is convenient to collect together the uncertainties in
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20 Cooperative Output Regulation

the vector w = vec(
[

∆Ai ∆Bi ∆Ci
∆Di ∆Ei ∆Fi

]
).

Then, similar to the single agent case, by defining

Awi = Ai +∆Ai Bwi = Bi +∆Bi Ewi = Ei +∆Ei

Cwi =Ci +∆Ci Dwi = Di +∆Di Fwi = Fi +∆Fi
(3-14)

it is possible to write (2-35) in a compact way, that together with the leader (5-3) constitute the
following system:

ẋi = Awixi +Bwiui +Ewiv

v̇ = Sv

ei =Cwixi +Dwiui +Fwiv

(3-15)

In order to overcome the communication constraints that prevent the uninformed agents from ac-
cessing the exosystem state, a different solution from the distributed observer can be used: a virtual
regulated output for each agent.
Let us define evi to be equal to ymi , the measurement output, for the informed followers, while for the
uninformed followers

evi =
N

∑
j=1

1
Ni

(ymi− ym j) (3-16)

where Ni is the cardinality of the set (i = 1 . . .N).
Clearly, evi is defined in such a way because the informed agents can directly access the leader’s state,
whereas the uninformed agents cannot and they estimate it by exchanging information with other
agents.
In this way, the information generated by the leader is passed to every agent of the network, overcom-
ing the communication constraints.
Finally, the standard methodology is similar to the single agent case; two kind of controllers can be
used:

• Dynamic State Feedback

ui = K1ixi +K2izi (3-17)

żi = G1izi +G2ievi (3-18)

and

• Dynamic Output Feedback

ui = Kzi (3-19)

żi = G1izi +G2ievi (3-20)

where in both cases the dynamical compensator żi = G1z+G2evi incorporates a p-copy internal model
of the uncertain composite system Eq. (3-15). Then, the dynamical compensators (that keep into
account plant uncertainties) together with the agent dynamics without uncertainties constitutes the
following augmented system:

ẋi = Aixi +Biui +Eiv

ei =Cixi +Diui +Fiv

żi = G1izi +G2ievi

(3-21)
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3-6 Distributed Internal Model 21

Definition 4. [Linear Cooperative Robust Output Regulation Problem]
Given the augmented system (3-21) and a graph G , a controller such as (3-17) and (3-19) must be
found such that:

• The closed loop system is Hurwitz

• For any initial condition xi(0), ηi(0) for i = 1 . . .N and v(0), the tracking error is asymptotically
steered to 0

lim
t→∞

ei(t) = 0 i = 1 . . .N (3-22)

Under Assumptions 5-9, this is possible if and only if the graph G contains a directed spanning tree.

In this chapter, the following concepts has been presented

• The reason why the decentralized approach is not valid.

• The distributed observer approach and how to solve the linear cooperative output regulation
problem.

• The cooperative robust approach in case of small parametric uncertainties.

In the following chapter, it will be given a brief overview about the different approaches found in
literature to solve the cooperative output regulation problem with particular attention the the approach
introduced in [25], that represented the starting point of this thesis work.
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Chapter 4

Adaptive Distributed Observer

In the first section, a general overview about different methodologies, based on the distributed ob-
server, to solve the cooperative output regulation problem is given.
Then, in the second section is presented the work [25], that represented the starting point of this thesis
work.

4-1 The distributed observer approach

The distributed observer (3-6) has been first introduced in [2], where the cooperative output regulation
for a network of heterogeneous linear systems is achieved via a dynamic full information.
The problem here faced includes the synchronized output regulation of networked systems studied in
[1] as a special case by assuming that all the agents to be identical with the feedthrough matrix D
equal to 0.
The solution proposed in [1] requires some extra assumption due to the different design of the dis-
tributed obersver:

η̇i = Sηi +
N

∑
j=1

ai jH(xi− x j) (4-1)

where ηi represents the ith estimation of the exosystem state v, ai j represents the element of coordinate
(i, j) of the adjacency matrix A and H is defined as the distributed synchronous protocol gain.
The term mii is here absent because the adjacency matrix is defined over the entire network (exosystem
included) and the connection between the agents and the exosystem is represented by ai1, since in this
"extended" adjacency matrix, the leader is always considered as the first element of the network.
The drawbacks of this observer respect to the one presented in [2] are several:

• The stability analysis of the closed loop system is much more complicated since (4-1) exploits
the states of the agents to reconstruct the exosystem state.

• The eigenvalues of the Laplacian matrix describing the network must be located in a certain,
allowed region
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24 Adaptive Distributed Observer

• The feedforward gain K f , according to Lemma 2 of [1], must be chosen such that (B,S) are
detectable.

Then, as thoroughly explained in section 4-2, by exploiting some extra detectability assumption, an
improvement to the result obtained in [2] is achieved in [31]: the cooperative output regulation is
indeed obtained through distributed measurement output feedback control.
This result is important because in many practical situations neither the state of the plant nor the state
of the exosystem is directly available for feedback control.

However, the control design presented in [2] explicitly depends on certain nonzero eigenvalues of the
Laplacian matrix associated with the communication graph. This represents a problem because any
nonzero eigenvalue of the Laplacian matrix is global information of the communication graph.
Using these global information prevents from designing fully distributed the controllers.
This issue has been overcome by [32], where the proposed adaptive distributed observer

η̇i = Sηi +L(Fηi− v) (4-2)

where (4-2) works for the informed followers,

η̇i = Sηi−di pi

N

∑
j=1

ai j(ηi−η j)

di =

 N

∑
j=1

ai j(ηi−η j)

T

Γ

 N

∑
j=1

ai j(ηi−η j)

 (4-3)

while (4-3) works for the uninformed followers. It is important to underlie that the proposed con-
trol scheme relies only on the agent dynamics and the local information of neighboring subsystems,
independent of any global information of the communication graph, meaning that a fully distributed
solution has been obtained.
Another major drawback of the distributed observer approach is that the matrix S is used by every
follower agent. This means that every follower have information about the leader (e.g. in case of
a sinusoidal reference, every follower would know the frequency of the sine). An improvement of
the classical distributed observer (3-6) has been obtained in [25], with the definition of the adaptive
distributed observer. Let us focus our attention on this work.

4-2 The Adaptive Distributed Observer

The current section is completely based on the work presented in [25]. Let us consider an exosystem

v̇ = Sv (4-4)

and a network of N agents

ẋi = Aixi +Biui +Eiv

ei =Cixi +Diui +Fiv

ymi =Cmixi +Dmiui +Fmiv

(4-5)
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4-2 The Adaptive Distributed Observer 25

As explained in the previous chapter, the system composed of (4-4) and (4-5) is treated as a multi-
agent system of (N+1) agents with 4-4 as the leader and the N subsystems of 4-5 as N followers. The
adjacency matrix A is, for this work, defined over the entire network. Moreover, in order to solve the
linear output regulation problem, the classical Assumptions 5-9 must hold and the graph G in this case
considered directed, must contain a spanning tree with the node 0 as the root. The adaptive distributed
observer is defined as follows:

Ṡi = µ1

N

∑
j=0

ai j(S j−Si)

η̇i = Siηi +µ

N

∑
j=0

ai j(η j−ηi)

(4-6)

where η0 = v, ηi ∈ Rq , i = 1, . . . ,N,, S0 = S, Si ∈ Rq×q,i = 1, . . . ,N, µ1,µ2 > 0. for i = 1, . . . ,N.
The main strength of this new observer is that it incorporates a mechanism for estimating the matrix
S, based on the fact that the informed followers know the matrix S.
Let us define η̃i = ηi− v; then, for any initial condition Si(0) and ηi(0), we have

• for any µ1 > 0, for i = 1, . . . ,N,
lim
t→∞

S̃i(t) = 0 (4-7)

exponentially, and

• for any µ2 > 0, fori = 1, . . . ,N,
lim
t→∞

η̃i(t) = 0 (4-8)

Because of the estimation mechanism, also the regulator equations, that relies on the exosystem matrix
S, need to be adaptively calculated, by using the estimate Si.
For this purpose, for i = 1, . . . ,N, let

xi = vec

[Xi

Ui

] bi = vec

[Ei

Fi

] (4-9)

and

Qi(t) = Si(t)T ⊗

[
Ini 0
0 0

]
− Iq⊗

[
Ai Bi

Ci Di

]
(4-10)

where Si is provided by (4-6).
Then the following results hold: for i = 1, . . . ,N, for any initial condition ζi(0), each of the following
equations

ζi =−µ3Qi(t)(Qi(t)ζi−bi) (4-11)

where µ3 > 0, has a unique bounded solution over t ≥ 0.
Moreover, let us define Ξi(t)=Mq

(ni+mi)
(ζi(t)), where Mq

(ni+mi)
(ζi(t))=

[
ζi1 · · ·ζiq

]
, with ζi j ∈R(ni+mi),

for j = 1, . . . ,q.
Then, for some solution [X∗i ,U

∗
i ] of the regulator equations, we have

lim
t→∞

Ξi(t)−

[
X∗i
U∗i

]= 0 (4-12)
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exponentially.

At this point, since the adaptive solution to the regulator equation was achieved, it is possible to solve
the cooperative output regulation problem by state feedback control.
Let Ξi(t) =

[
Xi(t)T ,Ui(t)T

]T where Xi(t) ∈ Rni×q and Ui(t) ∈ Rmi×q.
Since (Ai,Bi) is stabilizable, let Kxi be such that Ãi = Ai +BiKxi is Hurwitz and Kη i(t) be given as

Kη i(t) =Ui(t)−KxiXi(t) (4-13)

For i = 1, . . . ,N, we design the following state feedback controller

ui = Kxixi +Kη i(t)ηi (4-14)

Then the following result is obtained: given systems (4-5),(4-4) and a graph G that contains a span-
ning tree, under Assumptions 5-7, the cooperative output regulation problem is solvable by the control
law composed of (4-6), (4-11), and (4-14).

In fact, by defining x̃i = xi−X∗i v, X̃i(t) = Xi(t)−X∗i and Ũi(t) =Ui(t)−U∗i we obtain

˙̃xi = Aixi +Biui +Eiv−X∗i Sv

= Ãix̃i +BiU∗i η̃i +BiŨ(t)iηi−BiKxiX∗i η̃i−BiKxiX̃(t)iηi
(4-15)

Under the aforementioned assumptions, it is known that ‖v‖ is bounded above by a polynomial func-
tion.
Thus, (BiU∗i η̃i +BiŨ(t)iηi−BiKxiX∗i η̃i−BiKxiX̃(t)iηi) tends to 0 exponentially as t→ ∞.
Since Ãi is Hurwitz, we have

lim
t→∞

x̃i(t) = 0 (4-16)

On the other hand, let C̃i =Ci+DiKxi.
Then we have

ei =Cixi +Diui +Fiv

= C̃ix̃i +DiU∗i η̃i +DiŨi(t)ηi−DiKxiX∗i η̃i−DiKxiXi(t)η̃i
(4-17)

Again, since η̃i(t), Ui(t), X̃i(t),x̃i(t) all tend to 0 exponentially. Finally, as t→ ∞, we have

lim
t→∞

ei(t) = 0 (4-18)

In case the state is not available, the problem is still solvable by adopting a measurement output
feedback control. Let Kxi and Ki(t) be defined as in the state feedback control law (4-14). If (Cmi,Ai)
is detectable, then there exists Li such that (Ai +LiCmi) is Hurwitz.
For i = 1, . . . ,N, let

ui = Kxiξi +Kηiηi

ξ̇i = Aiξi +Biui +Eiηi +Li(Cmiξi +Dmiui +Fmiηi− ymi)
(4-19)

Then the following result is obtained: given systems (4-5),(4-4) and a graph G that contains a spanning
tree, under Assumptions 5-9, the cooperative output regulation problem is solvable by the control law
composed of (4-6), (4-11), and (4-19).
.
This work constituted the starting point of this thesis work, since we tried and managed to remove the
two main drawbacks of this approach:
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4-2 The Adaptive Distributed Observer 27

• The estimation mechanism present in (4-6) is based on the assumption that every informed
follower access the matrix S. In our approach the estimation is achieved by just passing the
state v to the informed followers, in a fully distributed way

• Since no internal model is used to solve the output regulation (as explained in section 4-2 for
the multi agent case and in section 2-1 for the single agent case), any small uncertainty in the
agents’ parameters would make the approach fail. This problem has been overcome through
adaptive theory, using adaptive observers to estimate each agent parameters.
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Chapter 5

Exosystem Estimator

In this chapter it is introduced the main contribution of this thesis work, the distributed exosystem
estimator.
Let us start by defining, in the next section, what type of dynamical systems we are going to work
with, which assumptions are needed and what is the the problem to be solved. Then, in the second
section, the distributed exosystem estimator is derived.

5-1 Problem formulation

The following network of heterogeneous uncertain single-input single-output systems is considered

yi =
bi,1sni−1 + . . .+bi,ni−1s+bi,ni

sni +ai,1sni−1 + . . .+ai,ni−1s+ai,ni

ui, i ∈ V (5-1)

whose minimal state-space realization in the observable form is given as:

ẋi =


−ai,1

...
Ini−1

−ai,ni 0 · · ·0


︸ ︷︷ ︸

Ai

xi +


bi,1

...
bi,ni


︸ ︷︷ ︸

bi

ui

yi = [1 0 · · · 0]︸ ︷︷ ︸
cT

i

xi , i ∈ V

(5-2)

where xi ∈ Rni , ui ∈ R, yi ∈ R are the state, the control input, and the output of the i-th system,
respectively. The coefficients of the numerator and denominator polynomials in (5-1) which appear in
the Ai ∈ Rni×ni and bi ∈ Rni , are unknown constants.
In line with most adaptive designs [33, 34], we are focusing on uncertain single-input single-output
systems, where ci is known, in view of the observer form.
The control objective is to design, for every system (5-2), a distributed control strategy for ui, that
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makes each yi track the output of an exosystem, or leader system.
The exosystem is taken in the form of a multi-dimensional harmonic oscillator

v̇ = bdiag

[ 0 ωk
−ωk 0

]
←−
q/2︸ ︷︷ ︸

S

v

r = [

q/2 times︷︸︸︷
0 1 0 1 · · · 0 1 ]︸ ︷︷ ︸

cT
0

v

ei = yi− r = cT
i xi− cT

0 v

(5-3)

where ωk > 0, k = 1, . . . ,q/2, are the frequencies of the leader system, which are distinct and are
assumed to be unknown to all systems in the network. In (5-3), v ∈ Rq is the leader state, r ∈ R is the
reference signal to be tracked, and ei ∈ R is the regulation error to be driven to zero.

The following assumptions are made.

Assumption 10. The pairs (Ai,bi) are controllable, the pairs (ci,Ai) are observable, and ni is known,
∀ i ∈ V .

Assumption 11. The zeros of (5-1) do not coincide with the eigenvalues of S.

Assumption 12. The order q of the exosystem satisfies q
2 ≥ n̄ = maxi ni.

Assumption 13. The graph G of the leaderless network is undirected and connected, and the leader
interacts with at least one system (T 6= /0).

Remark 1. Assumptions 10 and 11 guarantee the solvability of the output regulation problem, which,
as previously mentioned, is equivalent to the existence of solution pairs (Xi, pi), ∀ i ∈ V to the linear
regulator equations

XiS = AiXi +bi pT
i

0 = cT
i Xi− cT

0
(5-4)

which can be expressed in the compact form

Qiξi = βi (5-5)

where

ξi = vec

[Xi

pT
i

] , βi = vec

[ 0
−cT

0

] , (5-6)

Qi = ST ⊗

[
Ini 0
0 0

]
− Iq⊗

[
Ai bi

cT
i 0

]
. (5-7)

Finally, Assumption 12 guarantees the correct identification of all parameters in (5-1), while Assump-
tion 13 is a standard network connectivity assumption that allows the distributed estimation of the
frequencies in (5-3).
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We are now ready to give the problem formulation.

Problem 1. Under Assumptions 10-13, given the network of uncertain systems (5-2) with uncertain
exosystem (5-3), design distributed adaptive control laws ui such that the signals of the closed-loop
network system are bounded, and the regulation errors ei satisfy

lim
t→∞

ei(t) = 0, ∀ i ∈ V .

Remark 2. The distributed nature of ui refers to the fact that the adaptive control strategy must
respect the allowed information flow. Solving Problem 1 in a distributed way presents at least three
challenges: (a) the exosystem dynamics are unknown to all systems, which make it necessary to design,
for each system i ∈ V , an estimator of (5-3); (b) the coefficients in (5-2) are unknown, which require
the design of adaptive observers; (c) the solution to the regulator equations (5-4) must be obtained in
a stable adaptive way from the above-mentioned estimates.

5-2 Distributed exosystem estimator

The first step for solving Problem 1 is the design of a distributed exosystem estimator. The task of
such estimator, as sketched in Fig. 5-1, is twofold: estimating S for all systems, and reconstructing the
state v for the non-target nodes. In the following, all variables and estimates are intended to depend
on time, and time dependence is omitted whenever obvious.

Exosystem 𝑣 𝜂1

𝜂2
Exosystem
Estimator 2

ሶ𝑣 = 𝑆𝑣

መ𝑆1

System 2

Controller 2

መ𝑆2

Exosystem
Estimator 1

System 1

Controller 1

Figure 5-1: To reconstruct the exosystem state, non-target nodes exchange auxiliary vari-
ables according to the communication graph.

Let us start by defining the local observation error εi

εi =
N

∑
j=1

ai j(ηi−η j)+mii(ηi− v), (5-8)

where ai j and mii come from the adjacency and the target matrices.
In (5-8), the variable v is available only to the target nodes (through mii). For each system i, the
variable ηi in (5-8) represents the locally reconstructed exosystem state to be exchanged according
to the communication graph (through ai j), c.f. Fig. 5-1. Note that the error in (5-8) represents
a consensus error over the variable of interest v; in other words, εi → 0 ∀i ∈ V implies the local
reconstruction of the exosystem state, ηi→ v ∀i ∈ V .
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To represent in a compact form variables for the overall network, it is now convenient to adopt Kro-
necker product notation (denoted by ⊗). For example, after defining η = [ηT

1 ,η
T
2 , . . . ,η

T
N ]

T ∈ RNq

and vm = [vT ,vT , . . . ,vT ]T ∈RNq, it is easy to write the overall observation error ε = [εT
1 ,ε

T
2 , . . . ,ε

T
N ]

T ,
stemming from (5-8), as

ε = (L ⊗ Iq)η +(M ⊗ Iq)(η− vm).

Exploiting the fact that (L ⊗ Iq)vm = 0 [35], we can write

ε = (B⊗ Iq)(η− vm).

The design of the distributed exosystem estimator is provided by the following theorem.

Theorem 1. Under Assumption 13, consider the following distributed dynamics for ηi

η̇i = Ŝiηi +(Am− Ŝi)εi (5-9)

with the following Hurwitz diagonal matrix Am ∈ Rq×q

Am =− bdiag(ak · I2)←−q/2
, ak > 0, k = 1, . . . ,q/2. (5-10)

Furthermore, let us write ηi and εi component-wise as

ηi =


ηi,1

...
ηi,q

 , εi =


εi,1

...
εi,q

 , (5-11)

and let Ŝi in (5-9) be

Ŝi = bdiag

[ 0 (ω̂k)i

−(ω̂k)i 0

]
←−
q/2

(5-12)

with (ω̂k)i being the estimate of ωk for system i, generated by

( ˙̂ωk)i =κk

[
(ηi,(2k−1)− εi,(2k−1))εi,(2k)− (ηi,(2k)− εi,(2k))εi,(2k−1)

]
, (5-13)

with initial conditions (ω̂k)i(0) and where κk > 0 is a constant gain.
Then, the adaptation laws (5-13) guarantee that ηi→ v and Ŝi→ S as t→ ∞, ∀i ∈ V .

Proof. The dynamics (5-9) can be equivalently written as a function of the local error (5-8) and of the
estimation error S̃i = Ŝi−S

η̇i = Sηi +(Am−S)εi + S̃i(ηi− εi). (5-14)

Moreover, by defining
S̃d(t) = diag(S̃1(t), S̃2(t), . . . , S̃N(t))

we can write (5-14) for the overall network as

η̇ = (IN⊗S)η +[IN⊗ (Am−S)]ε + S̃d(η− ε). (5-15)
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Let us write the overall error dynamics, using (5-8) and (5-15) as

ε̇ =(B⊗ Iq)(IN⊗S)(η− vm)+(B⊗ Iq)[IN⊗ (Am−S)]ε +(B⊗ Iq)S̃d(η− ε)

=
[
(IN⊗S)+

(
B⊗ (Am−S)

)]
ε +(B⊗ Iq)S̃d(η− ε).

(5-16)

Positive-definiteness of B leads to the existence of a unitary matrix U ∈RN×N such that U T B−1U =
diag(δ1,δ2, . . . ,δN) , ∆, where δi, i = 1, . . . ,N, are the eigenvalues of the topology matrix B. This
can be used to define the transformation ε = (U ⊗ In)ε̄ with ε̄ = [ε̄T

1 , ε̄
T
2 , . . . , ε̄

T
N ]

T [36].
Consider the positive definite Lyapunov function candidate

V =
1
2

ε
T (B−1⊗ Iq)ε +

1
2

N

∑
i=1

q/2

∑
k=1

(ω̃k)
2
i

κk
. (5-17)

Using (5-13), we have

V̇ =ε
T (B−1⊗ Iq)

[
(IN⊗S)+

(
B⊗ (Am−S)

)]
ε + ε

T (B−1⊗ Iq)(B⊗ Iq)S̃d(η− ε)

+
N

∑
i=1

q/2

∑
k=1

(ω̃k)i

κk
( ˙̃ωk)i

=ε
T
[
(B−1⊗S)+

(
IN⊗ (Am−S)

)]
ε + ε

T S̃d(η− ε)+
N

∑
i=1

q/2

∑
k=1

(ω̃k)i

κk
( ˙̃ωk)i

=
N

∑
i=1

ε̄
T
i (δiS+Am−S)ε̄i +

N

∑
i=1

ε
T
i S̃i(ηi− εi)+

N

∑
i=1

q/2

∑
k=1

(ω̃k)i

[
(ηi,(2k−1)− εi,(2k−1))εi,(2k)

− (ηi,(2k)− εi,(2k))εi,(2k−1)

]
.

(5-18)

Considering the first summation in the last equation of (5-18), we have that each matrix

δiS−S+Am = bdiag

[ −ak ωk(δi−1)
−ωk(δi−1) −ak

]
←−
q/2

(5-19)

is always negative definite for each i, since, taken a non-zero vector s ∈ Rq it results

[
s1 ... sq

]
bdiag

[ −ak ωk(δi−1)
−ωk(δi−1) −ak

]
←−
q/2


s1
...

sq


=−

(q/2)−1

∑
j=0

q/2

∑
k=1

ak

(
s2

2 j+1 + s2
2 j+2

) (5-20)

Considering now the second summation in the last equation of (5-18), we can write for system i

[
εi,1 ... εi,q

]
bdiag

[ 0 (ω̃k)i

−(ω̃k)i 0

]
←−
q/2


ηi,1− εi,1

...
ηi,q− εi,q


=

N

∑
i=1

q/2

∑
k=1

(ω̃k)i

[
− εi,(2k)(ηi,(2k−1)− εi,(2k−1))+ εi,(2k−1)(ηi,(2k)− εi,(2k))

]
.
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Therefore, we have

V̇ =
N

∑
i=1

ε̄
T
i (δiS+Am−S)ε̄i (5-21)

which is negative semi-definite in view of (5-20). Since V > 0 and V̇ ≤ 0, V (t) is non-increasing and
bounded from below by zero, which implies the existence of a limit

lim
t→∞

V (ε(t),Ω̃(t)) =V∞ < ∞ (5-22)

where Ω̃ = [(ω̃1)1...(ω̃q/2)1...(ω̃1)N ...(ω̃q/2)N ] collects all the parametric errors.
Boundedness of V (t) implies that the error ε and the estimates Ω̃k are bounded functions of time. Fur-
thermore, we derive that V̇ (t) is a uniformly continuous function of time because V̈ (t) is a uniformly
bounded function of time.
In fact

V̈ = 2
N

∑
i=1

ε̄
T
i (δiS+Am−S) ˙̄εi (5-23)

where boundedness of ˙̄εi can be derived by looking at (5-16), after noticing that: the homogeneous
part of (5-16) leads to an exponentially stable system; the input term in (5-16) is a bounded function
of time because ε and Ω̃k are bounded. According to Barbalat’s lemma [33, Lemma 3.2.6], lower
boundedness of V (t), negative semi-definiteness and uniformly continuity of V̇ (t), imply that V̇ → 0
as t→ ∞ and hence ε → 0. Therefore ηi→ v is derived, ∀i ∈ V .

The fact that Ŝi converges to S is derived as follows. Since v is the state of a harmonic oscillator with
distinct frequencies, according to [37, Definition 14.1], it is persistently exciting, i.e. it satisfies the
property ∫ t+T0

t
v(τ)vT (τ)dτ ≥ α0T0I

for some T0, α0 > 0 and for all t > 0. This implies, using [33, Thm. 4.3.2] that (ω̂k)i → ωk (i.e.
Ŝi→ S).
This concludes the proof. Finally, it is possible to show that the result of Theorem 1 holds also in
case of parameter projection of the estimates (5-13) in R+, i.e. exploiting the a priori knowledge that
ωk > 0 [33, Sect. 4.4].

The following remark applies to (5-9)-(5-13).

Remark 3. Let us refer to Fig. 5-1 to explain the contribution of Theorem 1. In [25], the matrix S
is known to the target nodes, which share this information to all other nodes using extra communi-
cation. The proposed exosystem estimator (5-13) solves the case in which the exosystem dynamics
are unknown to all systems. In addition, because no estimate of S is shared along the graph, it pro-
vides a much simpler communication architecture. Another contribution worth mentioning is that the
matrices in (5-19) are always negative definite, regardless of the values of δi and ωk. This makes
the estimator in Theorem 1 fully distributed, i.e. convergence does not require the knowledge of any
structural parameter of the communication graph (e.g. structural eigenvalues). This provides an im-
provement with respect to the scheme in [27], where sufficiently high gains (whose values depend on
some structural eigenvalue of the communication graph) are required to achieve convergence.
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Chapter 6

Adaptive observer

The adaptive observer and the adaptive solution to the regulator equation are presented in the first
section whereas, in the second section, the main result is derived.

6-1 The adaptive solution to the Regulator Equations

Since the states xi are not measurable and the parameters of Ai and bi are unknown, it is necessary
to estimate them on-line simultaneously using an adaptive observer. We adopt a Luenberger observer
where Ai, bi are replaced with their estimates Âi and b̂i, that is

˙̂xi =


−âi,1

...
Ini−1

−âi,ni 0 · · ·0


︸ ︷︷ ︸

Âi

x̂i +


b̂i,1

...
b̂i,ni


︸ ︷︷ ︸

b̂i

ui + li(yi− ŷi)

ŷi = [1 0 · · · 0]︸ ︷︷ ︸
cT

i

x̂i

(6-1)

where x̂i is the observed state, the time-varying observer gain li(t) is

li(t) =


a∗i,1− âi,1(t)

...
0ni−1

a∗i,ni
− âi,ni(t) 0 · · ·0


and a∗i,1, . . . ,a

∗
i,ni

are chosen as the coefficients of a stable polynomial. Several methods can be used to
generate the parameter estimates âi,1, . . . , âi,ni and b̂i,1, . . . , b̂i,ni at each time t.
The methods rely on expressing the system equation (5-1) in the form of a linear-in-the-parameter
model [33, Sect. 2.4]

zi = θ
∗T
i φi (6-2)
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where

zi =
sni

Λi(s)
yi = yi +λ

T
i φ2i

φi =

[
αT

ni−1(s)
Λi(s)

ui,−
αT

ni−1(s)
Λi(s)

yi

]T

=
[
φ T

1i
,φ T

2i

]T

Λi(s) = sni +λ
T
i αni−1(s)

λi = [λni−1 λni−2 . . . λ1 λ0]
T

αni−1(s) = [sni−1 sni−2 . . . s 1]T

and the unknown coefficients of (5-1) are included in the unknown vector

θ
∗
i = [bi,1 . . . bi,ni ai,1 . . . ai,ni ]

T

with Λi(s) a Hurwitz polynomial of degree ni chosen by the designer.
In view of (6-2), a possible adaptive law to estimate on-line the unknown vector θ ∗ (i.e. the coef-
ficients ai,1, . . . ,ai,ni and bi,1, . . . ,bi,ni) is a gradient algorithm based on integral cost [33, Chap. 4],
which takes the form

θ̇i =−Γi(Ψiθi +ρi)

Ψ̇i =−γiΨi +
φiφ

T
i

m2
i
, Ψi(0) = 0

ρ̇i =−γiρi−
ziφ

T
i

m2
i
, ρi(0) = 0

(6-3)

with the following choices for the design parameters: m2
i = 1+n2

si
, with nsi chosen so that φi/mi ∈L∞

(e.g., n2
si
= αiφ

T
i φi,αi > 0); γi > 0; Γi = ΓT

i > 0.
The following convergence properties, whose proof can be found in [33, Chap. 4], apply to (6-3).

Lemma 5. The adaptive observer formed by combining the observer equation (6-1) and the adaptive
law (6-3) based on the parametric model (6-2) guarantees that:

(i) all signals are uniformly bounded;

(ii) θ̇i ∈L2∩L∞ and θi ∈L∞;

(iii) the output observation error ỹi = yi− ŷi converges to zero as t→ ∞;

(iv) if ui is sufficiently rich of order 2ni, then the state observation error x̃i = xi− x̂i and the param-
eter error θ̃i = θi−θ ∗i converge to zero with exponential rate of convergence.

Next, we show how to solve the regulator equations (5-4) adaptively. To this purpose, let us replace ξi

and Qi in (5-6) and (5-7) with

ξ̂i(t) = vec

[ X̂i(t)
p̂T

i (t)

] ,

Q̂i(t) = ŜT
i (t)⊗

[
Ini 0
0 0

]
− Iq⊗

[
Âi(t) b̂i(t)
cT

i 0

]
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where Ŝi is provided by (5-13), Âi, b̂i are provided by (6-3), and ξ̂i(t) collects the estimates (X̂i, p̂i) of
the solution to the regulator equations.
Based on these estimates, the regulator equations can be solved adaptively via the systems of linear
equations

Q̂iξ̂i = βi, ∀i ∈ V . (6-4)

From the properties of systems of linear equations we have that if Âi, b̂i converge to Ai, bi, then X̂i, p̂i

converge to the actual solutions Xi, pi.

6-2 Main result

The solution to Problem 1 arises from combining the distributed exosystem estimators of Theorem 1
with the adaptive observers and the adaptive solutions to the regulator equations.

Theorem 2. The control law composed of: the distributed exosystem estimators (5-9) with adaptive
laws (5-13), the adaptive observers (6-3), the adaptive solutions of the regulator equations (6-4), and
the output-feedback control input

ui(t) =−kT
i (t)x̂i(t)+ f T

i (t)ηi(t) (6-5)

where
f T
i (t) = p̂T

i (t)+ kT
i (t)X̂i(t) (6-6)

solves Problem 1 provided that the gains ki, li are chosen such that

Âi(t)− b̂i(t)kT
i (t) Âi(t)− li(t)cT

i (t)

are Hurwitz at every time instant t.

Proof. First, we will prove persistency of excitation of the control input (6-5), that can be rewritten as

ui(t) =−kT
i (t)(x̂i(t)− X̂iηi)+ p̂T

i ηi. (6-7)

Let us write the dynamics of x̂i− X̂iηi

˙̂xi− ˙̂Xiηi− X̂iη̇i =(Âi− b̂ikT
i )(x̂i− X̂iηi)+ licT

i (xi− x̂i)

− ˙̂Xiηi− X̂i(Am− Ŝi)εi,
(6-8)

where we have substituted the regulator equation X̂iŜi = ÂiX̂i + b̂i p̂T
i .

By observing the terms on the right-hand side in (6-8), we have that cT
i (xi− x̂i)→ 0, εi → 0 (from

Lemma 5 and Theorem 1, respectively).
In addition, since ˙̂Ai,

˙̂bi ∈L2∩L∞ from the properties of the estimator, the system of linear equations
(6-4) allows us to conclude that ˙̂Xi ∈L2∩L∞. Consequently, with Âi− b̂ikT

i Hurwitz, using notions
of input/output stability [33, Lemma 3.3.3], we obtain that x̂i− X̂iηi ∈L2∩L∞.
Therefore, using standard properties of persistently exciting signals [33, Lemma 4.8.3], we have that
ui is sufficiently rich of order 2n̄.
Now, define Ãi = Âi−Ai, b̃ = b̂i− bi x̃i = x̂i− xi, χ̃i = xi−Xiv, ũi = ui− pT

i v, η̃i = ηi− v, f ∗Ti =
pT

i + kT
i Xi, f̃i = fi− f ∗Ti , and ζ̃i = x̂i−Xiv.
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By making use of the regulator equations, it is possible to obtain the dynamics of the errors just
defined.
Let us start with χ̃i:

χ̃i = Aixi +biui−XiSv

= Ai(χ̃i +Xiv)+bi(ũi + pT
i )−XiSv

= Aiχ̃i +biũi

(6-9)

In order to determine the error on the control input ũi, let us first rewrite x̃i as follows:

x̃i = x̂i− xi = (z̃i +Xiv)− (χ̃i +Xiv) = ζ̃i− χ̃i. (6-10)

Then ũi becomes

ũi =−kT
i x̂i + f T

i ηi− pT
i v

=−kT
i (x̃i + xi)+ f T

i ηi− pT
i v

=−kT
i xi + kT

i (χ̃i− ζ̃i)+ f T
i ηi− pT

i v

= kT
i (χ̃i− ζ̃i)− kT

i χ̃i + f̃ T
i v+ f T

i η̃i

(6-11)

It is possible to express the regulated output as:

ei = cT
i xi− cT

0 v

= cT
i x̂i + cT

i Xiv− cT
0 v

= cT
i x̂i

(6-12)

The dynamics of the error ζ̃i = x̂i−Xiv are:

˙̃
ζi = Âx̂i + b̂iui + lici(xi− x̂i)−XiSv

= Âi(ζ̃i +Xiv)+ b̂i(ũi + pT
i v)+ lici(χ̃i− ζ̃i)−XiSv

= Âiζ̃i + b̂iũi + licT
i (χ̃i− ζ̃i)+ ÃiXiv+ b̃i pT

i v

(6-13)

If we collect together the obtained results, we get:

˙̃χi = Aiχ̃i +biũi

˙̃
ζi = Âiζ̃i + b̂iũi + licT

i (χ̃i− ζ̃i)+ ÃiXiv+ b̃i pT
i v

ei = cT
i χ̃i

ũi = kT
i (χ̃i− ζ̃i)− kT

i χ̃i + f̃ T
i v+ f T

i η̃i

(6-14)

Finally, by closing the loop we obtain:[
˙̃χi

˙̃χi− ˙̃
ζi

]
=

[
Âi− b̂ikT

i bikT
i

0 Âi− licT
i

][
χ̃i

χ̃i− ζ̃i

]

+

[
−(Ãi− b̃ikT

i )χ̃i +bi f̃ T
i v+bi f T

i η̃i

−Ãixi− b̃iui

]
.

(6-15)
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Since the control input ui is sufficiently rich of order 2n̄, we can conclude that the terms Ãi and b̃i in
(6-15) converge to zero exponentially fast.
Moreover, from Theorem 1 we know that η̃i → 0 and Ŝi → S also exponentially fast. Now, we can
conclude X̂i → Xi and p̂i → pi, that means also f̃i → 0. Then, the Hurwitz property of Âi− b̂ikT

i
and Âi− licT

i (that converge to Ai− bikT
i and Ai− licT

i , respectively) guarantees that ζ̃i → χ̃i → 0
exponentially, from which we obtain convergence of ei to zero. This concludes the proof.

The following remarks apply to Theorem 2.

Remark 4. In contrast with approaches based on fixed-gain robust control [26], in Theorem 2 no
assumption is made on the size of the parameter uncertainty set. Also, differently from the learning-
based approach of [27], no initially stabilizing feedback is required. Finally, learning-based solutions
require injecting an external probing signal in the input to induce persistency of excitation (an input
sufficiently rich of order n̄(n̄+1)

2 + n̄+ 1 is required in [27] to estimate both the Lyapunov function
and the control gains). In our case, the adaptive closed loop (6-15) reduces the requirements on the
sufficiently richness of the input, which is only of order 2n̄. Therefore, Assumption 12 makes any
additional external probing signal unnecessary.

Remark 5. Theorem 2 requires the estimated pairs (Âi, b̂i), (ci, Âi) to be controllable and observable
at every time instant (which is necessary and sufficient to have Âi− b̂i f T

i and Âi− licT
i Hurwitz). This

assumption is in line with the well-known ‘loss-of-controllability/observability’ situation of indirect
pole-placement adaptive control [33, Chap. 7], where the calculation of the controller parameters is
performed based on estimated dynamics that must be controllable/observable at every time instant.
In our case, a sufficiently rich input of order 2n̄ guarantees exponential convergence of the estimated
parameters to their true values. Since the true parameters correspond to a controllable and observ-
able system, it is implied by continuity that the estimated pairs (Âi, b̂i), (ci, Âi) will enter in finite time
a set corresponding to a controllable and observable system [33, 38, 39]. This leads to the following
estimation strategy: if the estimated pairs are not controllable/observable during the initial estima-
tion transient, it suffices to freeze the controller parameters to their previous values; then, exponential
convergence guarantees that any loss-of-controllability/observability issue is removed in finite time.
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Chapter 7

Simulations Results

In this chapter the simulation results are presented: however, in the first section 3 experiments are run,
in order to test the performances of our new methodology compared to the work of [25]. Instead, in
the second section, a surprising result discovered during the simulations is presented.

7-1 Persistently Exciting Case

0

1

2

3

4
Figure 7-1: Communication graph G

The four systems connected as in the communication graph of Fig. 3-1 are used as numerical validation
of the proposed approach. As already stated in Chapter 3, the communication graph G is defined by
the pair G = (V ,E ), where V = {1, . . . ,N} is a finite nonempty set of nodes, and E ⊆ V ×V is a set
of pairs of nodes, called edges.
In this case, we have

• V ={1,2,3,4}

• ε = {(1,2),(2,1)(1,3)(3,1)(3,2)(2,3)(3,4)(4,2)}

It is, then, necessary to calculate the 4 matrices that completely describe the communication structure:
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• Adjacency matrix A

A =


0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

 (7-1)

• Laplacian Matrix L

L =


2 −1 −1 0
−1 2 −1 0
−1 −1 3 −1

0 0 −1 1

 (7-2)

• Target Matrix M

M =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (7-3)

• Leader-Topology Matrix B

B = L +M =


3 −1 −1 0
−1 2 −1 0
−1 −1 3 −1

0 0 −1 1

 (7-4)

The exosystem, represented as system 0 in Fig. 3-1, is given by

v̇ =


0 3 0 0
−3 0 0 0

0 0 0 2
0 0 −2 0

v r =
[
0 1 0 1

]
v (7-5)

where the frequencies of the generated sinusoids are ω1 = 3 and ω2 = 2.

The heterogeneous followers are given by:

ẋ1 =

[
−10 1
−24 0

]
x+

[
2
3

]
u y1 =

[
1 0

]
x

ẋ2 =

[
−12 1
−11 0

]
x+

[
2
1

]
u y2 =

[
1 0

]
x

ẋ3 =

[
3 1
−1 0

]
x+

[
1
1

]
u y3 =

[
1 0

]
x

ẋ4 =

[
2 1
−2 0

]
x+

[
3
1

]
u y4 =

[
1 0

]
x

.

For the simulations we will consider three settings, that represent different levels of uncertainty:
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7-1 Persistently Exciting Case 43

• Experiment 1. The systems are known and the exosystem is known only to system 1. This
corresponds to the setting in [25];

• Experiment 2. The systems are unknown and the exosystem is known only to system 1. This
requires to augment the method in [25] with a system estimator;

• Experiment 3. The systems are unknown and the exosystem is unknown to all systems. This
can be handled by the proposed fully distributed method.

In all experiments, the initial state of the exosystem is v(0) = [1,0.2,0.5,1]T and all the states of the
systems are initialized to zero. Whenever used, the initial state of the estimator is θ(0) = [1,1,1,1]T ,
and all the other estimators are initialized to zero.
The other design parameters are described in the following.

7-1-1 Experiment 1
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Figure 7-2: Regulated outputs

For experiment 1, we use the algorithm in [25] with gains µ1 = µ2 = 10 (gains for consensus over S
and v) and µ3 = 40 (gain for adaptive solution to regulator equations). The regulated outputs, shown
in Fig. 7-2 go to 0 smoothly, without violent oscillations, in approximately 15 seconds.
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Figure 7-3: Estimates of the exosystem

In Fig. 7-3 it is shown how rapidly the matrix S is estimated by the agents: this result was expected,
since all the informed followers ( in this case agent 1) have the real S, leading to an estimation time of
approximately 3 seconds.
Worth mentioning are also the adaptive solution to the regulator equations: the true result are here
listed

• U1 =
[

0 5 0.8 5.6
]

X1 =

[
0 1 0 1
−3 0 −3.6 −1.2

]

• U2 =
[
−0.6 5.9 0.23 6

]
X2 =

[
0 1 0 1

−1.7 0.2 −2.5 −0.1

]

• U3 =
[
−1.5 −3.5 0 −3

]
X3 =

[
0 1 0 1

−1.5 0.5 −2 0

]

• U4 =
[

0 1 0.8 5.6
]

X4 =

[
0 1 0 1

−0.9 0.2 −1.3 0.1

]

Instead in Fig. 7-4 are shown how the adaptive solutions converge to the true values for all the agents.
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(a) Estimates of the 1-st system
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(b) Estimates of the 2-nd system
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(c) Estimates of the 3-rd system
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(d) Estimates of the 4-th system

Figure 7-4: Estimates of the solution pair (Xi, pi) to the regulator equations for every agent.

7-1-2 Experiment 2
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Figure 7-5: Regulated outputs

For experiment 2, we add a system estimator as in (6-1) and (6-3), with the parameters:

• αi = 0.01

• γi = 0.01

• Γi =


180 0 0 0
0 180 0 0
0 0 180 0
0 0 0 180


• a∗ =

[
15 56

]T

• Λi(s) = s2 +2s+1

The resulting regulated outputs in Fig. 7-5 show a larger transient than Fig. 7-2 due to the estimation
of Ai and bi. The consensus over S is identical to Fig. 7-3, and therefore not shown.
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(b) Estimates of the 2-nd system
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(c) Estimates of the 3-rd system
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(d) Estimates of the 4-th system

Figure 7-6: Estimates of the the system matrices Ai and bi for every agent.

Rather, in Fig. 7-6 we show, the convergence of the estimated parameters Â, b̂ to the actual A, b for
every agent. In the second experiment, the behaviour of the adaptive solution to the regulator equation
is basically equal to the first experiment, and for this reason is not shown.

7-1-3 Experiment 3

Finally, for experiment 3, we used the proposed fully distributed exosystem estimator with

• Am =


−15 0 0 0

0 −15 0 0
0 0 −15 0
0 0 0 −15


• κ1 = κ2 = 60.
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Figure 7-7: Regulated outputs with unknown agents and leader

The resulting regulated outputs, shown in Fig. 7-7, have a comparable transient with the one in Fig. 7-
3, meaning that the triple level of adaptation of the proposed method doesn’t affect the performances.

Figure 7-8: Estimates of the exosystem

Even more interesting are the estimates of the exosystem in Fig. 7-6d, which are very different with the
estimates in Fig. 7-3: this is because the systems are not allowed to do consensus over their estimates
of S, and can perform the estimation only by communicating ηi.
Finally, the behaviour of the adatpive solutions to the regulator equations is shown in Fig. 7-9 for
every agent
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(a) Estimates of the 1-st system
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(b) Estimates of the 2-nd system

0 5 10 15 20 25 30

Time (s)

-4

-3

-2

-1

0

1

2

A
m

p
p
lit

u
d
e

X3

U3

(c) Estimates of the 3-rd system
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(d) Estimates of the 4-th system

Figure 7-9: Estimates of the solution pair (Xi, pi) to the regulator equations for every agent.

7-2 Future work: no persistency of excitation

During the simulations, a very interesting result was discovered: even if one choose an exosystem
matrix S ∈ R2×2 and agents of the fourth order, the cooperative output regulation problem is still
solved by the new proposed method.
The adopted exosystem is:

v̇ =

[
0 3
−3 0

]
v r =

[
0 1

]
v (7-6)
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while the heterogeneous followers are given by:

ẋ1 =


−4 1 0 0
−6 0 1 0
−4 0 0 1
−1 0 0 0

x+


2
3

0.5
1

u y1 =
[
1 0 0 0

]
x

ẋ2 =


−8 1 0 0
−24 0 1 0
−32 0 0 1
−16 0 0 0

x+


2
1
2
3

u y2 =
[
1 0 0 0

]
x

ẋ3 =


3 1 0 0

−3.25 0 1 0
1.5 0 0 1
−0.25 0 0 0

x+


2
1

1.4
0.2

u y3 =
[
1 0 0 0

]
x

ẋ4 =


0.5 1 0 0
3 0 1 0

0.5 0 0 1
−1 0 0 0

x+


3
1
1
2

u y4 =
[
1 0 0 0

]
x

.

Then the chosen tuning parameters are:

• Am =


−50 0 0 0

0 −50 0 0
0 0 −50 0
0 0 0 −50


• κ1 = κ2 = 800.
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Figure 7-10: Regulated Outputs
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As it is shown in Fig. 7-10, the cooperative output regulation problem is successfully solved by the
proposed method, at cost of higher parameters and faster pole location for the matrix Am. However,
the errors converge to 0 less smoothly, with high peaks, and slower than the persistently exciting case.
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(a) Estimates of A1
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Figure 7-11: Parameters estimation of the first agent

As expected, the proposed method is no longer able to identify the true parameters of the followers,
as shown in 7-11.
The most interesting result, that also represents the reason why the methodology works also without
persistency of excitation, is that the adaptive solution to the regulator equations converge to the real
parameters even without persistency.
The true values are here listed:

• U1 =
[
−3.5 1.25

]
X1 =


0 1

−2.06 1.5
−3 0.16
0.25 0.4



• U2 =
[

6.4 2.76
]

X2 =


0 1

−21.8 2.46
−21.6 −0.56
−7.7 −2.13



• U3 =
[
−2.24 −1.66

]
X3 =


0 1

−4.5 0.33
−0.78 6.41
−0.58 0.05



• U4 =
[
−4.11 −0.27

]
X4 =


0 1

3.35 0.33
1.13 0.63
−1.55 0.91


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(a) Estimates of the 1-st system
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(b) Estimates of the 2-nd system
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(c) Estimates of the 3-rd system
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(d) Estimates of the 4-th system

Figure 7-12: Estimates of the solution pair (Xi, pi) to the regulator equations for every agent.
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Chapter 8

Conclusions

This thesis work considered the problem of cooperative output regulation in the presence of both fol-
lower and leader uncertain dynamics.
A novel algorithm embodied with three levels of adaptation has been proposed: distributed adaptation
was designed for estimating the leader dynamics, the follower dynamics, and the solution to the reg-
ulator equations.
Distinguishing features of the proposed approach are:

• No globally known information are used by the proposed controllers: in fact, the proposed
exosystem estimator (5-13) solves the case in which the exosystem dynamics are unknown to
every agent and no estimate of S is shared along the graph.
Moreover, the matrices in (5-19) are always negative definite, regardless of the values of δi and
ωk, making the proposed estimator fully distributed.

• Due to the structure of the proposed methodology, no initial stabilizing controller is required
because, as already mentioned, the matrices in (5-19) are always negative definite.

• Adaptive control easily handles big parametric uncertainties: in fact, in contrast with approaches
based on fixed-gain robust control no assumption is made on the size of the parameter uncer-
tainty set.

Therefore, similar features of traditional adaptive output regulation of individual systems has been
recovered in a networked setting.
This allows handling situations in which minimum a priori information might make it impossible to
have an initial stabilizing solution.

The surprising final result showed in the previous chapter suggest that possible future work should
focus on how to mathematically demonstrate that even in absence of persistency of excitation, the
cooperative output regulation problem is still solved by the proposed method.
Furthermore, in this work the graph have been always considered undirected, but in a real scenario it
is difficult to ensure that every agent can communicate with each agent and, for this reason, a possible
extension could be considering a directed communication graph.
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54 Conclusions

Moreover, a possible future development could be considering cooperative control of systems with
switching topology. While some work has been done for systems without uncertainties [40, 41], the
joint presence of uncertainty and switching topologies makes the problems hard. Possibly a solution
to this problem might come from recent tools of adaptive switched control [42, 43, 44, 45, 46].
Finally, the most challenging extension would be trying to develop a similar methodology also for
agents characterized by non linear dynamics.
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