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summary

Due to the increased demand for train travel, train operators are considering increasing their rolling
stock. Before achieving this, they must enhance the capacity of their shunting yards. This is attempted
by improving methodologies for solving the Train Unit Shunting and Servicing (TUSS) problem. To
address the TUSS problem, a planner determines routes on shunting yards for trains, ensuring they
visit designated service tracks before parking in a configuration that facilitates a smooth departure.
TUSS is a well-studied problem, and various approaches have been proposed. The first approach
capable of solving real-world, complete TUSS instances is a local search method introduced by van
den Broek et al. [64]. In this thesis, we explore an alternative approach using PDDL models. PDDL
is the standard language for describing Automated Planning problems. Automated Planning is a well-
established field within artificial intelligence, and new, improved algorithms are continually developed
to solve PDDL models for problems similar to TUSS.

In this thesis, we design a detailed model in PDDL and propose several methods to simplify the model
so that planning algorithms perform more efficiently compared to the detailed model. When solving
simplified models, a post-processing routine is employed to generate detailed shunting plans. The
performance of several model-independent PDDL planners was analysed, and the best-performing
planner was identified as Temporal FastDownward [41].

By analysing plans obtained from experiments, we identified areas for improvement. Based on this
knowledge, we developed a new TUSS-specific planner called Train Order Preserving Search (TOPS).
TOPS employs a search algorithm with effective pruning of symmetrical states and a custom heuristic
that quides the search towards states where the order of trains aligns with the departure order. TOPS
significantly outperformed Temporal FastDownward in these experiments.
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Introduction

In the Netherlands, the largest passenger railway operator is Nederlandse Spoorwegen (NS), which
transports over a million passengers every day [50]. In the morning and afternoon, most of their trains
are travelling across the many tracks on the Dutch network. At night, however, the demand is low,
and the non-operational trains need to be parked on so-called shunting yards. While on the yard, a
significant portion of the trains need to be cleaned or repaired before they can depart the next morning
to transport passengers.

The railway network is currently very busy, but before NS can consider increasing their rolling stock,
they must ensure that any additional trains can be parked and serviced during non-operational hours.
However, increasing the capacity of a shunting yard is easier said than done. Shunting yards are often
built in populated areas near busy train stations, which often makes physically increasing their size
extremely costly or outright impossible. Nonetheless, there is an alternative way to increase shunting
yard capacity: improving computational methods for planning.

For many shunting yards, the capacity is not limited by the space on the tracks but rather by the ability
to compute shunting plans. A shunting plan consists of a time-stamped list of actions to be performed.
Devising such a plan is difficult because the planner must consider many requirements. All trains requir-
ing service must visit a designated service track, execution of the movements specified in a shunting
plan must not cause collisions, and all actions must be completed before the trains are scheduled to
depart the yard. Designing a plan that moves trains into a valid parking configuration, performs all
service tasks, and ensures no collisions is referred to as solving the Train Unit Shunting and Servicing
(TUSS) problem.

TUSS is a well-studied NP-hard feasibility problem [23] for which no exact solver currently exists. The
current state of the art is a solving method based on a local-search algorithm proposed by van den
Broek et al. [54]. Other approaches in the literature include Multi-Agent Pathfinding (MAPF) algorithms
[40] or Mixed-Integer Linear Programming (MILP) solvers [2], among others. Despite the effort invested
in TUSS research, there is still room for improvement. Many approaches are impractical because they
are specific to one shunting yard, perform poorly on real-world instances, or do not guarantee feasible
solutions.

What has not been tried before, however, is framing TUSS as an automated planning problem. In a
planning problem, a planner must find a sequence of actions that one or more agents can execute
to achieve a specific goal within an environment, given initial conditions and constraints. Automated
planning, or Al planning, is a widely studied field of artificial ntelligence that focuses on developing
algorithms to solve planning problems that are too complex for human planners. New and improved
planning algorithms are actively developed to this day. International Planning Competitions (IPCs) are
regularly organised to compare planning algorithms on a variety of problems. Most state-of-the-art
planning algorithms are model-independent, which means that they are able to solve problems using
only their descriptions.

The standard language used to describe planning problems is the Planning Domain Definition Lan-
guage (PDDL) [1]. Over the years, many PDDL models have been created and used that are similar to
TUSS in some aspects. For instance, many problems featured in IPCs require planners to determine



the optimal path for one or more agents to reach a destination while also visiting specific intermediate
locations. This resembles how, in a TUSS problem, trains must visit a service track before finding a
location to park.

The active development and versatility of planning algorithms, as well as the existence of moderately
similar PDDL models, indicate great potential for solving TUSS problem instances. For this reason, this
thesis explores how TUSS problems can be solved using PDDL models and Al planning algorithms.
To the best of our knowledge, planning algorithms have never been applied to solve TUSS problems.
Before we can apply PDDL planners we consider our first research question:

RQ 1: How can we model TUSS problems using PDDL?

We take a careful look at the aspects we can include to model a TUSS problem. PDDL is a rich
language that allows for detailed problem descriptions. However, detailed problem descriptions can
limit scalability for solving complex instances as search times can increase exponentially. Therefore
also explore ways to simplify descriptions of certain aspects of TUSS. We consider different variations
of models to answer the following research question:

RQ 2: How can a TUSS model in PDDL be simplified to improve planner performance?

The simplified models are used to produce partial-order shunting plans for TUSS problem instances. In
this thesis we also describe a post-processing routine based on a Constraint Programming (CP) model
that is able to finalize these partial-order plans into full-order solutions.

After exploring the modelling of TUSS in PDDL, we conduct experiments to answer the following ques-
tions:

RQ 3: Which PDDL planners and model variations perform best when solving TUSS prob-
lem instances?

Performance of different planner and model combinations will be measured based on the complexity
of problems they can solve within a set time limit and the quality of the solutions. We compare PDDL
planners as well as the impact of the previously considered simplifications. After analysis of the experi-
mental results we provide a recommendation for the best planner and model that can be used to solve
TUSS problems.

Additionally, the contents of the partial-order plans are examined to identify properties of TUSS prob-
lems that negatively impact algorithm performance in the experiments. This analysis is used to answer
the last research question:

RQ 4: Can we use the knowledge obtained from analysing solutions by model-independent
planners to create a better performing TUSS-specific planner?

We develop the Train Order Preserving Search (TOPS) planner to specifically solve the TUSS we
have created using PDDL. This planner will use a modified version of the A* search algorithm and a
custom heuristic evaluation to solve TUSS problem instances. This heuristic evaluates states such that
it prefers to obtain or maintain the departure order of trains in the problem instance.

By answering the aforementioned research questions this paper makes the following contributions:

1. Extensive exploration of detailed modelling of TUSS problems using PDDL
2. Alarge set of TUSS models with varying degrees of detail written in PDDL

3. A new methodology for solving TUSS problem instances using any compatible Al planner and a
CP model

4. Extensive analysis of performance per planner and per model variation
5. A new TUSS-specific planner able to solve problem instances modelled with PDDL

The remainder of this thesis is structured as follows: In Chapter 2, we explain important concepts
related to automated planning, PDDL, and CP in more detail. Since many Al planners, including TOPS,
use A* search, we also explain how this algorithm is applied in a planning context in the same chapter.
In the next chapter, Chapter 3, we present an overview of relevant literature. Because many variations
of TUSS have been studied, Chapter 4 provides a detailed problem description of the specific variation
used in this thesis. In Chapter 5 we explore how we can model TUSS in PDDL and describe the post-
processing routine. The experimental setup and analysis of results are presented in Chapter 6. The



algorithm and heuristic evaluation used in TOPS are explained in Chapter 7 as well as an analysis
of its performance compared to the best performing model-independent planners. Finally, Chapter 8
presents our conclusions and recommendations for future research.



Background

Throughout this thesis we discuss modelling automated planning problems in the Planning Domain Def-
inition Language (PDDL). These models are solved by planners that often use the A* search algorithm.
In our solving method we also include a Constraint Programming (CP) model. This chapter is intended
to provide the reader with foundational knowledge on the key concepts regarding these topics. After
reading the sections below we believe the reader to have a sufficient understanding of the technical
details required to follow the next chapters.

2.1. Automated planning

Planning was described by Ghallab [21] as the reasoning side of acting, a deliberate process in which
actions are organised into a plan in order to best achieve some desired objectives. A plan is described
by Tate [53] as a representation of future behaviour, usually as a set of actions with temporal or other
constraints on them to be executed by one or multiple agents.

Human planners such as those tasked with computing train unit shunting plans face many complexities
when planning due to a large amount of actors and demanding requirements. Fortunately advances in
information processing technology gives them access to affordable and efficient planning tools. This
was one of the main motivations which set off a large amount of research in the field of automated
planning. In automated planning the aim is to develop artificially intelligent algorithms to perform
planning tasks.

2.1.1. Actions

An action is described by Ghallab et al. [22] as something an agent does that makes a change in the
environment and its own state. An agent is any entity that can interact with its own environment. In
our TUSS models this can be a train or a driver for example.

Information about certain properties of agents and the environment are stored in a state. Actions
change properties of agents or the environment such that a new state is reached. In other words,
actions are seen as state transitions.

When defining an action we describe the acting agents, preconditions and effects. The preconditions
describe in what states the action can be performed. The effects describe how the state changes after
the action has been performed.

2.1.2. Domains

In a domain the environment, rules and capabilities of a planning problem are described. The environ-
ment is described by a set of literals, which have boolean values, and fluents, which have numeric
values.

Furthermore, a domain contains action definitions. For each action definition the required values for
specific literals and fluents are listed in the preconditions. If a state does not meet these preconditions,
the action can not be executed. How a state changes after the execution of an action is listed in its
definition under the effects.
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A domain which includes any numeric fluent is labelled as numeric. If the action definitions in a do-
main include its duration, when the preconditions must hold and when effects take place we call this a
temporal domain. A domain which is neither numeric nor temporal is called a classical domain.

2.1.3. Problem instance

A planning problem is completely described by a domain and a problem instance. We can view the
domain as the rule book for the environment and the problem instance as a description of initial envi-
ronment and the objective. In it is included the initial state and a description of the goal.

The goal is composed of several goal literals. Goal literals can either be literals as named in the
domain descriptions or a numeric comparison between the values of two fluents. A state for which all
goal literals have the truth value is called a goal state.

One thing worth to note is that the same label applies to a domain and the corresponding problem
instance. A problem instance which follows the state-transition system in a temporal domain is consid-
ered a temporal problem. The same applies to the numeric and classical labels.

2.1.4. Objective

A plan can be any sequence of actions, but not every plan is a solution. A plan can be called a solution
if a goal state is reached after performing the sequence of actions starting out from the initial state.

If the objective is to find a feasible plan we are happy if any solution is found. Problems which describe
such an objective are called satisficing problems. However a problem can also be formulated as
an optimization problem which means that the objective is to find an optimal solution. An optimal
solution is one where the cost is minimized. The cost for numeric problems is often a literal defined in
the domain which increases or decreases in value in the effects of actions. For temporal domains this
metric is often the total duration.

2.2. PDDL

the Planning Domain Definition Language (PDDL) was first introduced in 1998 by Ghallab et al. [1]in an
attempt to standardise formulation of automated planning problems. Since then several new versions
have been released with many additional features. In this section we will discuss the elements neces-
sary to describe a planning problem in PDDL as well as several optional features and their implications.
To define a planning problem in PDDL we need two files: a domain and a problem file.

2.2.1. Domain file
The domain file can be seen as the rule book of the environment. A domain must include all of the
following:

* List of requirements
* List of object types
* List of literals

+ action definitions

The list of requirements is preceded by the :requirements tag and is used to indicate to the planner
which PDDL features are used in the domain definition. In practice however, many planners ignore the
requirements list and infer the used features from the domain definition.

PDDL objects are used as parameters in literals, fluents and actions. These objects can be assigned a
type so that in the definitions for literals, fluents and actions it can be detailed which objects are allowed
to participate in them and which are not.

The literals are listed under the :predicates tag. Each literal has a name and can have one, multiple
or no parameters. Parameters are easily recognised as they are prefixed with a question mark.
Action definitions are listed independently, each of them preceded with an :action tag. Below this tag
we define a list of typed or untyped parameters with the :parameters tag. An action’s preconditions are
listed under the :preconditions tag its effects under the :ef fects tag.

The syntax for temporal domains differs slightly regarding action definitions. Instead of the :action tag
we use the :durative-action tag. After the parameters are listed a numerical value must be assigned
for the :duration. The list of preconditions are listed under the :conditions tag. For each precondition
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we must indicate either that it must hold before (at — start), during (over — all) or after (at — end) execut-
ing the action. Usage of the :ef fects tag is similar to regular actions but for each it must be indicated
whether it takes place before or after execution.

Optionally a domain file may also contain a list of fluents or derived literals. Fluents are listed under
the :functions tag and similarly to literals they can have one, multiple or no parameters. The differ-
ence between fluents and literals is that fluents are assigned a numeric value. A numeric comparison
between fluents can be one of the preconditions listed in an action definition. Before including fluents
in a domain the :numeric-fluents requirement must be included in the list of requirements.

Finally, a domain might include definitions for derived literals. For derived literals we also define a set
of parameters much like for literals and fluents. Similarly to action definitions every derived literal is
defined separately and is preceded by the :derived tag. The first line includes the name of the derived
literal and its parameters. Below that we include all literals or numeric comparisons that must hold
for the derived literal to hold. The truth value of a derived literal is updated after any state transition.
When including derived literals the domain we must include the :derived-predicates tag in the list of
requirements.

2.2.2. Problem file

The problem file contains the following:

* List of objects
+ Description of the initial state
+ Description of what makes a goal state

In the list of objects, indicated by the :objects tag, we assign a name and a type to every object
participating in the problem. In PDDL it is not possible to dynamically create or delete objects so this
list must contain all objects that will ever be relevant for the problem.

After the objects have been defined we must provide a description of the initial state, which is preceded
by the :init tag. In the initial state we include all grounded literals which are true in the initial state. Any
grounded literal not included in the initial state is assumed to be false.

To describe a grounded literal we write the name of the literal followed by the name(s) of objects for
which this literal hold. This is different from how literals are defined in the domain, where they are
followed by (a) parameter(s) which are not directly linked to a specific named object.

Besides grounded literals the initial state also contains assignments of numbers to all grounded numeric
fluents. Numeric comparisons cannot be written in the initial state.

However they can be written in the goal description alongside literals or their negations. Any state in
which all the mentioned literals and comparisons hold is a valid goal state.

One last feature which may be included in the problem file is a metric. A metric is recognized by the
:metric tag and followed by instructions for the planner to either minimize or maximize a numeric
expression. This numeric expression can either be a single fluent or a more complex expression like
the sum of multiple fluents for example. If this feature is included in the problem file we have described
the problem as an optimization problem. Without a metric the problem file always describes a satisficing
problem.

2.3. A* search

Originally proposed by Hart et al. [24], A* search is an algorithm meant to search both mathematically
and heuristically for the minimum cost path in a weighted graph. Finding an optimal path in a graph is
the goal for many categories of engineering problems. One such category is Multi-Agent PathFinding
(MAPF), which is described by Ma [38] as planning collision-free paths for multiple robots. TUSS can
be seen as a real-world application of this problem as is done by Mulderij et al. [40].

In this section we provide several definitions related to graphs before explaining the algorithm. Lastly
we will look at the concepts related to weighted graphs in a planning and MAPF context to explore the
role of A* search in solving TUSS.
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2.3.1. Weighted graphs

A graph is described by Hart et al. [24] as a set of elements {n;} called nodes and a set of directed line
segments {e;;} called arcs. Arc e;; connects node n; to n;. In weighted graphs every arc is assigned

a cost ¢;;.

2.3.2. Algorithm

Pseudo-code

Below we provide pseudo-code of the A* search algorithm based on the description by Hart et al. [24]:

Algorithm 1 A* search

N = =2 a a4 4 a A a4 o
QEaeNIasON2Q®

: givens, T
. Initialize OPEN, CLOSED, PATH
: OPEN <+ s

PATH + s

: while OPEN not empty do

NN 2

Neurrent < NOde with lowest priority in OPEN
for n; in successors of n.yrrent dO
if n; in T then
PATH + n;
terminate and return PATH
end if
if n; notin OPEN and notin CLOSED then
calculate f(n;)
end if
priority(n;) < f(n;)
OPEN <+ n;
end for
CLOSED < Neyrrent
OPEN < OPEN \ {ncyrrent }

: end while

Step 1: In the problem definition we are provided with start node s and the set of terminal nodes
T

Step 2-4: We initialize a PATH which at first contains only the start node s. During search we
keep track of nodes which are candidates to be expanded in the OPEN list. We also have a
CLOSED list in which we keep track of the nodes which have already been explored.

Step 5: Search continues until we have explored all nodes

Step 6: The node with lowest priority is placed in front of the queue and thus selected first for
expansion. The value of the priority is set based on the outcome of the evaluation function.

Step 7: Any node that can be reached from the current node is a successor of the current node.

Step 8-11: Once we have reached a goal state we return the solution. In its original form A*
search terminates when the first solution is found although in many practical applications the
algorithm is extended such that search continues.

Step 12-14: If we have not encountered the successor node before we calculate the evaluation
function, otherwise we look it up.

Step 15-17: Evaluate the successor node and place it in its correct place in the queue.

Step 18-19: After we have evaluated all possible continuations starting from the current node,
we remove it from the queue as it has already been fully explored. We do not want to redo the
evaluation of the current node and thus place it in the CLOSED list.
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Evaluation function
The area of the search space to which search is directed depends mostly on the calculated evaluations.
Let us delve deeper into the definition of the evaluation function f(n;):

f(ni) = g(ni) + h(ni) (2.1)

Function g(n;) can be seen as the mathematical part of the evaluation function. Its value is the cost it
takes to reach node n; from a previously defined start node s. If we define a path P as {ng, n1,...,nn}
we can write the cost as follows:

N
g(ni) = i1y, (2.2)
j=1

One thing to note is that ng = s and ny = n;.

The heuristic part of the evaluation function is represented by h(n;) and there are many ways in which
it can be defined. When defining a h(n;) the aim is to estimate the cost it takes to reach any node in
the set of defined terminal nodes T when starting out from node n;.

2.3.3. Planning problem as a weighted graph

Before we can use algorithms designed for path-finding in graphs we must define what is considered
a node and what is an arc in a planning context.

A node in a planning graph consists of both a state and the sequence of actions that were performed
to reach it. It is common that states in a planning problem can be reached via multiple paths. To be
able to distinguish two states that were reached via different action sequences we store the sequences
in the node.

After performing an actions in a specific state we end up in a new state and the sequence leading up
to that state is also different. In other words, we transitioned from one node to another. In a planning
context we see actions as arcs. The weight of an arc is defined as the cost that is induced when
performing an action.

Now we can see how a planning problem can be seen as a path-finding problem for graphs when we
switch perspectives. Finding the shortest path from a starting node to another can be seen as finding
the optimal sequence of actions to reach a goal state when starting from an initial state.

2.3.4. Evaluating heuristics

There is no one definition for h(n;) as there is for g(n;). Heuristics are specific to one planner and
sometimes even to only to a single planning problem.

What we want to achieve with a search algorithm is to find the shortest path as quickly as possible.
Heuristics that can accurately evaluate a node allow for the search algorithm to make more informed
decisions. When successors of nodes not included in this path are evaluated we are wasting time. For
this reason the performance of a heuristic is often measured by the amount of node expansions [26].
We call a heuristic good if it leads us to expanding few nodes to find the shortest path. Determining
whether a heuristic is good or not can be done experimentally.

Besides not wanting detours to be explored we want the optimal path to be included in the search
space that is explored by the algorithm. A heuristic for which it can be guaranteed that the optimal
solution is found is called admissible. Proof is provided by Hart et al. [24] that any heuristic which
never overestimates the cost is admissible.

An admissible heuristic is not necessarily good. To give an example, a heuristic which estimates zero
cost for every node is admissible but does not allow for informed decision making during search. More-
over, a good heuristic does not necessarily mean that performance will be good when using an unmod-
ified A* search. Helmert et al. [26] for example show how performance can worsen exponentially even
with almost perfect heuristics.

2.4. Constraint Programming

Constraint Programming (CP) is described by Rossi et al. [44] as a powerful paradigm for solving
combinatorial search problems using a wide variety of artificial intelligence techniques. The concept
behind CP is that the user creates a model, specifies variables and constraints, and uses a general-
purpose solver to optimise the value of a variable. CP models are applied to solve many different types
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of problems; one example is resource-constrained scheduling.

In this section, the contents of a CP model are explored in more detail, along with several modelling
techniques that improve the performance of a solver.

2.4.1. Model Contents
In a CP model, the user defines variables, each of which has a numeric value. For each variable, a
domain is specified, describing the possible values that the variable can take.

In addition, a model includes constraints that specify rules determining which combinations of values
for different variables are allowed or disallowed.

Finally, a CP model can provide instructions on how the solver should perform its search for a solution.

2.4.2. Modelling Techniques

Several techniques enhance the performance of a CP model. One such technique is the inclusion of
redundant constraints. These are constraints that are already implied by others but when explicitly
included it might make information available to the solver earlier, improving performance.

Another effective technique is the inclusion of symmetry-breaking constraints. In problems involving
identical resources, many symmetrical solutions exist that are equivalent in quality. By adding these
constraints, the solver can focus its search more effectively, leading to improved performance.



[1terature review

Before we analyse the performance of several planning algorithms on TUSS problem instances, we
present an overview of other approaches that have been taken. This allows us to better understand
the context in which to place the research done in this thesis.

The Train Unit Shunting Problem (TUSP) was, to the best of our knowledge, first introduced by Freling
et al. [19]. In this paper they define and solve the matching and parking sub-problems. To solve the
matching sub-problem they describe how train units in incoming train configurations are organised in
outgoing train configurations. They solve the parking sub-problem by assigning where each incoming
train unit will be parked until departure. For both sub-problems mathematical model is composed and
solved with a Mixed Integer Programming (MIP) solver. This approach does not consider much detail
and does not guarantee the feasibility of the resulting shunting plans.

Lentink et al. [35] extend the TUSP description by including the routing sub-problem. They take a
sequential approach where they first compute solutions to the matching and parking sub-problems. In
every step the solution to the previous sub-problem is used as a starting point for the next. In the
last step a local search strategy is used where routes over the shunting yard are computed using the
Occupied Network A* search algorithm. This methodology provided more support to human planners
compared to the one proposed by Freling et al. [19], but it may not be able to find routes for all trains
defined in the problem instance

The first solving method which computes solutions to the parking and matching sub-problems simulta-
neously was proposed by Kroon et al. [31]. However, this integrated approach required a large amount
of constraints to be generated. This meant that for realistic scenarios it took too long to find solutions.
Because of the scalability issues with MIP-based solving methods, Jacobsen et al. [29] explored an
approach where a local search algorithm is guided by several metaheuristics. They find that their ap-
proach produces solutions of slightly lower quality compared to a MIP-solver but significantly faster.
For further research they suggest integrating crew planning when solving TUSP instances.

The experiments performed by Haahr et al. [23] also show that their heuristic approach outperforms ex-
act solvers regarding computational time. In their paper they compare a greedy construction heuristic,
a Constraint Programming (CP) formulation and a column generation approach. They suggest further
research to include crew planning and scheduling of servicing tasks.

The current state of the art is a fully integrated local search approach proposed by van den Broek et
al. [54]. They partly build upon the suggestion made by Haahr et al. by including the servicing sub-
problem. This sub-problem is solved if all trains mentioned in a provided service schedule have been
serviced between arrival and departure. Transposing the TUSP to the Train Unit Shunting and Servic-
ing (TUSS) problem adds to the complexity of the complete problem since the servicing of trains can
only be done on certain designated service tracks. The local search algorithm performs quite well on
realistic scenarios for shunting yards in the Netherlands. In their recommendations for further research
they acknowledge that actions performed by crew have a significant impact in a shunting plan.
Several other techniques have been proposed since, such as the Multi-Agent PathFinding (MAPF) ap-
proach by Cuilenborg [14] using Conflict-Based Search (CBS). Another example is an Evolutionary
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Algorithm (EA) approach with Conflict-Based Crossover (CBC) by Athmer [4]. However both solving
methods did not improve on the performance of the current state of the art.

Several of the authors have suggested integrating crew planning when solving TUSP or TUSS in-
stances. One approach was proposed by van den Broek et al. [11]. In their solving method they
propose assigning crew members to train activities with heuristic search methods.

Szabo [51] explores a local search approach to schedule maintenance crew whereas van Nes [42]
incorporates the branch-and-price algorithm to schedule tasks for train drivers.



Problem definition

The Train Unit Shunting and Servicing (TUSS) problem is a well-studied problem, and numerous re-
search papers address its solutions. As became clear in the literature review, many different versions
of it have been studied with varying levels of detail. In this chapter we provide a detailed and formal
definition of the problem as it is be studied in the rest of this paper.

Firstly, the problem setting is discussed. This is followed by a specification of the provided input and
required output.

A common approach in TUSS involves decomposing the problem into smaller sub-problems, solving
them independently or in pairs. This methodology is also relevant in our approach and thus the chapter
concludes with a presentation of the sub-problems into which TUSS is most commonly divided.

4.1. Setting

In TUSS, the objective is to fulfil specific requirements by moving trains across a shunting yard. This
section explores the components of a shunting yard and the types of trains considered in subsequent
chapters of this paper.

4.1.1. Shunting yard
A shunting yard is a type of railroad yard where trains go during non-operational hours. It comprises
multiple track components of various types. In our models, the following types are considered:

* Track
+ Switch
» English switch

A track is mostly straight, has a fixed length, and is connected to one other component on either side.
Trains cannot be side-by-side on the same track; hence, the sum of the lengths of trains located on
a track cannot exceed its length. A description of a shunting yard must specify whether parking and
servicing tasks are allowed on each track. For every shunting yard, there is one entry track, which is
used for trains entering and exiting the yard.

A switch is a mechanical installation connected to one track component on one side and to two track
components on the other, though not simultaneously. Parking is not permitted on switches. This paper
considers only electrified switches, which can be controlled remotely, as these are the most common
type in Dutch shunting yards.

An English switch connects to two track components on either side. Like a regular switch, it enables
connections between one track component and another at a time, and parking is not permitted on it.
Only electrified English switches, remotely controlled, are considered in this paper.

A visual representation of both types of switches is shown in figure 4.1. The upper image shows a
regular switch where depending on its position either tracks 1a and 3a are connected or 1a and 4a. For
the English switch in the lower image only one of 16 - 3b, 1b - 4b, 2b - 3b or 2b - 4b is possible at one
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point in time. It is important to note that sharp turns are not possible. Using the example presented in
figure 4.1: to get from track 3a to 4a a train must first move onto 1a.

track la switch sla track 3a

A I e .!!!llllllllll T O O TR

track 4a

track 1b switch s1b
track 3b

R W

Uittt

track 4b

Figure 4.1: Two types of switches that can be found on a shunting yard: regular switch (upper image) and an English switch
(lower image)

4.2. Trains

A train composition, often referred to simply as a train, consists of one or multiple connected train
units. A train can be decomposed into multiple trains by breaking the connection between two train
units, a process known as uncoupling. Conversely, connecting trains to form a single composition is
referred to as coupling.

A train unit has a specific type, and all train units of the same type share the same length. Train units
cannot change type or be decomposed into smaller components. This paper focuses exclusively on
self-propelling electric train units, meaning any unit can move independently without requiring a specific
other unit in its composition.

However, before a train can move it must be operated by a train driver. Self-driving trains are not
included in any of our TUSS descriptions.

4.3. Input

Now that we have defined the important components of TUSS we continue with a formal description of
the input which is provided to a (human or Al) planner before solving a problem instance:

* Arrival schedule

» Departure schedule
+ Servicing task list

» Shunting yard layout

The arrival schedule specifies train compositions and their arrival times at the entry track. Train com-
positions detail the specific train units they contain and their configuration.

The departure schedule describes the required train compositions and departure times from the yard.
Unlike the arrival schedule, the departure schedule specifies required types and configurations rather
than individual train units. Multiple configurations may satisfy the departure requirements. This paper
assumes that the first train departs only after the last train has arrived, a condition referred to as the
midnight condition by Di Stefano et al. [15].

The servicing task list outlines the servicing tasks required for each train unit. It specifies the types
of services needed, as it is uncommon for all service types to be available on every servicing track.
Examples of service types include maintenance and internal or external cleaning.



4.4. Output 14

A shunting yard layout is often provided as a list of track descriptions. The relevant properties detailed
in the track description are:

» Track name

» Track type

» Track length

* Whether parking is possible

* List of service types available

» Possible track connections

Often most of the regular tracks in a shunting yard can be parked on whereas (English) switches can
never be parked on. Servicing tracks are commonly very few when compared to tracks where no
servicing tasks can be performed.

4.4. Output

Given the previously described input a planner is tasked with providing a sequence of shunting activities
that ensures the provided schedules can be followed under the relevant constraints. The shunting
activities a planner can use in their plan are:

» A driver entering- or exiting a train

+ A driver walking from one train to another

* Moving a train

» Parking a train

+ Servicing a train

* (Un)coupling a train to create new compositions
» Moving a switch to change track connections

4.5. Sub-problems

As inferred from the input and output descriptions, there are numerous aspects and interactions to con-
sider when solving a TUSS instance. These complexities make TUSS a challenging problem, often de-
composed into a set of sub-problems that are solved independently before combining all sub-solutions
to form a complete solution.

The Train Unit Shunting Problem was introduced by Freling et al. [19], who formulated the parking and
matching sub-problems. Lentink et al. [35] later extended this formulation to include the routing and
servicing sub-problems.

4.5.1. Matching

All arriving train units have a name and a type. In the departure schedule, train compositions are
described as a sequence of train unit types. A solution to the matching problem assigns a position
in a departing train composition to each incoming train unit. An example arrival schedule is shown in
Table 4.1. A solution for the departure schedule in Table 4.2 is provided in Table 4.3.

Table 4.1: Simple arrival schedule containing two different compositions.

Arrival Time | Train | Train unit types
18:00 (1,2) | (ICM-3, ICM-3)
18:15 (3) (ICM-4)
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Table 4.2: Simple departure schedule containing two different compositions.

Departure Time | Train | Train unit types
09:00 A (ICM-4, ICM-3)
09:15 B (ICM-3)

Table 4.3: Solution to the matching problem described by the arrival schedule in Table 4.1 and the departure schedule in

Table 4.2.
Train unit | Train | Position
1 A 2
2 B 1
3 A 1

4.5.2. Parking

In the parking sub-problem, the aim is to assign a parking track and position on it to every incoming
train unit. Several constraints disallow certain parking assignments, as detailed by Lentink [34].

First, some tracks in a shunting yard cannot be parked on, such as switches. Secondly, train units have
a fixed length and cannot overlap; therefore, the sum of train unit lengths on a parking track can never
exceed the length of the track. Lastly, it must not be possible that a train cannot arrive at or depart from
the shunting yard because it is blocked by another parked train.

Freling et al. [19] address the matching sub-problem first, whereas later approaches, such as that of
Kroon et al. [32], often solve the matching and parking sub-problems simultaneously.

4.5.3. Routing

When solving the routing sub-problem, the objective is to find a path for every train that ensures it
reaches its destinations on time and without collisions.

A collision occurs when two trains occupy the same piece of track at the same time. In practice, when
a train driver intends to move a train, they submit a route request. If accepted, the tracks included in
this request are reserved exclusively for the train in question. Once the train reaches its destination,
the tracks become available again. Lentink [34] provides further details on this process.

4.5.4. Servicing

A servicing schedule specifies the train units, the servicing tasks to be performed on them, and the
locations in the shunting yard where these tasks can be carried out. A solution to the servicing sub-
problem describes where and in what order each train unit is serviced.

Some approaches, such as that of Lentink [34], combine the routing and servicing sub-problems by
treating a servicing track as an intermediate destination and a parking track as the final destination.



Modelling TUSS 1in PDDL

In this chapter, we explore the modeling of TUSS problem instances using PDDL. First, we attempt
to develop a detailed model that accurately represents a TUSS instance, enabling PDDL planners to
generate a shunting plan that is both feasible and provides solutions to all sub-problems.

Next, we examine variations of this detailed model, simplifying or omitting certain TUSS aspects in
hopes of improving planner performance. However, we acknowledge that plans obtained using these
simplified models are less detailed and lack the guarantees provided by the detailed model. Additionally,
comparing plans from models with differing levels of detail is inherently unfair.

To address this, we incorporate a post-processing routine in our solving method. This routine treats
PDDL plans as partial solutions and extends them to include the missing details. It also optimizes the
action sequence using a Constraint Programming (CP) model. We detail the steps taken to modify
PDDL plans, ensuring they achieve the same level of detail as those from the detailed model, allowing
fair comparisons.

5.1. Detailed modelling of TUSS in PDDL
We aim to create a detailed TUSS model in PDDL to determine whether PDDL’s provides the necessary
tools to produce plans that solve all four sub-problems. A PDDL plan achieves this by:

+ Solving the parking sub-problem by assigning parking locations that prevent the need for rear-
rangements before departure.

» Addressing the servicing sub-problem by ensuring specified trains visit a service track during the
shunting period.

+ Handling the matching sub-problem by detailing when, where, and how train units are uncoupled
or combined to meet the departure schedule.

» Resolving the routing sub-problem by specifying paths for all trains such that no collisions occur.

It is only recently, for example by van den Broek et al. [11] or Szabo [51], that crew planning was in-
tegrated when solving TUSS instances. Our model also adopts an integrated approach, although only
considering train drivers and service workers that stay on one track during shunting.

The most critical measure of plan quality is its feasibility. A shunting plan is feasible if all required shunt-
ing activities can be performed within the provided timeframe without collisions and within the allocated
resources. When constructing the domain and problem files, we consider the following questions:

1. Is the duration correctly estimated?
2. Can actions be executed within the given problem description and resource constraints?
3. Are collisions avoided if the plan is followed?

The detailed PDDL model is deemed complete only if these questions can be affirmatively answered.
In this section, we discuss the TUSS aspects essential to include in the PDDL model and the features
required to represent them.

16
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5.1.1. Concurrent Actions

Modeling concurrent actions is a practical necessity. A model without concurrency capabilities will
avoid underestimating plan durations but will struggle to solve instances with many train units due to
the disparity in durations between service tasks and other shunting activities. For instance, van den
Broek et al. [54] report that service tasks can take up to 56 minutes, while movements can take 5
minutes or less. Efficient plans exploit this disparity by assigning drivers to move other trains while one
is being serviced.

To enable concurrency, we include the :durative-actions requirement in the domain and define
:durative-actions instead of :actions. As explained in Section 2.2.1, :durative-actions require
specifying a duration, which can be a numeric constant or fluent. Additionally, we must define when
:preconditions and :effects are relevant during the action. Correctly formulating these elements en-
sures that concurrency is modeled accurately without underestimating durations or introducing collision
risks.

5.1.2. Train Locations

Accurately tracking train locations requires specifying the track and the position on that track. Using
relative positions, such as the length of the track and a train’s relative location, can lead to inaccuracies
in plan durations. For instance, this method may indicate sufficient space on a track but fail to account
for necessary train movements to prevent collisions. To avoid such discrepancies, we model the exact
one-dimensional coordinates of trains.

In our model, we represent train locations with two numeric fluents: train_length, the train’s length,
and aside_distance, the distance from the A-side of the train to the A-side of the track. The B-side
location can be derived from these fluents. This level of detail ensures no additional actions are needed
to resolve train positioning, resulting in precise plans.

5.1.3. Track Capacity

Tracks cannot accommodate side-by-side trains; all trains on a track must be positioned sequentially.
Therefore, the total length of all trains on a track must not exceed the track’s length. Domain rules
should enforce this, ensuring plans do not cause collisions.

Each track’s length is stored as a numeric constant, track_length. We also maintain the contiguous
positions of trains on a track using two numeric fluents: astack_distance, the A-side position of the
train stack, and bstack_distance, the B-side position of the stack. These fluents dynamically update
as trains move on or off a track, ensuring track capacity constraints are respected.

5.1.4. Train Movement Clearance
Executing a shunting plan dynamically alters the shunting yard’s state. Movement actions must validate
certain prerequisites:

+ A driver must operate the train.

» The driver must be positioned at the train’s front.

* No other train should obstruct the path.

« Sufficient space must exist on the destination track.

We track whether a train is operated using the literal operated(train). Initially, no train is operated,
but this state changes when a driver performs an enter action. Additionally, a train can only move in
the direction indicated by the direction_aside or direction_bside literals.

To simplify planner decision-making, movements are restricted to track-to-track actions between con-
nected tracks. These movements are only allowed if sufficient space exists on the destination track,
verified using the bstack_distance fluent.

Listing 5.1 provides an example of movement predicates, while Figure 5.1 visually represents the fluents
used for capacity and location tracking.
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train_length aside distance

astack distance

bstack_distance

Figure 5.1: A visual representation of the fluents used to ensure exact train locations and track capacity is never exceeded.

Listing 5.1: Necessary predicates that verify whether a movement can happen or not.

(:durative-action move_aside
:parameters (?t - train 7?from ?to - track)

:condition (and

(over all (operated 7t))

(over all (direction_aside ?7t))

(over all (connected ?from 7to))

(over all (>= (track_length ?to) (train_length ?7t)))

(or
(at start (>= (+ (train_length ?t)(bstack_distance ?7to)) (track_length ?to)))
(at start (= (num_trains ?to) 0))

)

(at start (= (aside_distance 7?7t)(astack_distance 7from)))

)
:effect (and

)

5.2. Integration of Personnel Scheduling

In previous research, the scheduling of personnel is often not considered when producing a shunting
plan, with job assignment solved as a separate problem afterward. Kamenga [2] mentions only mainte-
nance crew, while the state-of-the-art local search algorithm by vd Broek et al. [54] ignores personnel
planning entirely, though it notes that walking times of drivers can significantly impact shunting plans.
Extensive research into personnel scheduling as a separate problem has been conducted by vd Broek
et al. [11], Szabo [51], and Nes [42], among others. Despite differences in solving algorithms, these
studies share similar requirements: considering which tasks each crew member can perform, the travel
time between tasks, and ensuring no crew member is overworked.

In our detailed model, we integrate a simplified version of the personnel scheduling problem, exclud-
ing considerations of employee satisfaction. Additionally, we distinguish between two types of crew:
drivers and service workers. Drivers are responsible for driving trains, coupling, and uncoupling them.
When drivers need to move between locations on the shunting yard, they do so by walking. Service
workers, on the other hand, remain at a designated platform near a service track, where they can enter
trains to perform servicing tasks.

Several considerations regarding drivers are necessary to maintain realism. Drivers can interact with
any train entering the yard and can be located at any point in the shunting yard. To keep track of drivers,
we include driver objects, allowing us to assign literals to them.

First, the model must ensure that a driver cannot operate two trains simultaneously. To enforce this, we
introduce a literal called idle for each driver object. This literal serves as a :precondition for entering
a train and is set to false once the driver has entered. When a driver exits a train, the model must
identify which driver becomes available to operate other trains and which train is no longer operable.
For this purpose, we define another literal, driving, for every possible driver-train object pair. This
literal is set to true when the specific driver is inside the specific train.

Lastly, to include walking durations for drivers, the model must track the location of each driver. This is
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accomplished using a single literal, driver_at, which has two parameters: a driver objectand a track
object. This literal is set to frue if the driver is located on a given track. A driver’s location becomes
undefined when they enter a train and is reset when they exit. While it is theoretically possible to know
the exact location of every driver, since train locations are precisely tracked, we choose to only track
the driver’s location at the level of the track. To prevent underestimation of walking times, these times
are slightly overestimated.

As in the aforementioned research, walking times between every possible pair of tracks are precom-
puted and stored in numeric fluents called walking_duration, which take two track objects as param-
eters. Unlike the approach proposed by Nes [42], we do not include the possibility of drivers tagging
along with another train. Consequently, travel times for drivers may be slightly overestimated.

5.2.1. Simplified Constraints

To avoid overcomplicating the domain, our model does not optimize for employee satisfaction or in-
clude constraints regarding working hours and break times for the crew. We assume that the inclusion
of multiple driver objects will facilitate plans that meet reasonable working hours, or that minor mod-
ifications to task assignments to satisfy such constraints will not significantly impact the total duration
of the shunting plan.

A code snippet demonstrating how the mentioned literals are updated is provided in Listing 5.2. It
was decided not to include service crew as separate objects in the PDDL domain. Unlike drivers, they
stay at one platform in the shunting yard. Similar to drivers we must ensure that the predicates in the
domain do not allow for one service crew to work on multiple trains at the same time. With drivers we
had to solve this by introducing objects, but for service crews we can solve this by predicates involving
only trains. Unlike drivers, service workers enter and exit trains only on one specific location: special
designated service tracks. If we limit the number of trains that can be located on a service track at the
same time we can guarantee that a service crew never is servicing two trains at the same time. This
limit can be increased or decreased depending on the amount of service crews working on a service
track.

5.2.2. Preventing crossings

A “crossing” occurs when a movement by one vehicle is obstructed by another, as described for buses
by Gallo et al. [20]. In papers about the Train Unit Shunting System (TUSS), this is often referred to
as a train collision. In previous sections, we have described the rules for train movement. These rules
only allow trains to move from one track to another; trains can only move if there is no other train on
the same track between it and its destination track, and trains can only move onto another track if there
is enough space on the side they enter. Once on the destination track, they move up to the first train
they find on it if the track is not empty. Collisions are impossible on any track included in the PDDL
problem file because of the rules described in the domain file. A simple method of guaranteeing that
no collisions occur at any point in a plan is to include every piece of infrastructure described in the
shunting yard layout in the problem file.

However, this would significantly increase the number of objects in the problem instance and require
many more decisions to be made by the planner. The Kleine Binckhorst shunting yard, for example,
is described by 18 tracks and 49 switches. Switches are relatively small compared to tracks, and they
are never an intermediate or final destination for a train since they cannot be parked or turned there.
Therefore, another approach that does not include switches is preferred, but we must perform some
additional steps to guarantee that no collisions occur during the time every train spends between tracks.

We introduce a literal called potential_connection, which, like the connected literal, takes two track
objects as parameters. The connected literal describes an active connection over which trains can
move, while this is not necessarily the case for a potential_connection, which describes connections
that could be made at some point in time. Any track can only have one active connection, represented
by the connected literal, on each side of it.

If we examine an example of some rail infrastructure in Figure 5.2, it becomes clear. The literal
potential_connection is true for any combination of one (L)eft track and one (R)ight track. In or-
der to guarantee that a plan generated using our domain does not contain any collisions, we must
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Listing 5.2: Updating of literals such that crew can be planned realistically.

(:durative-action enter_aside
:parameters (?d - driver ?t - train ?r - track)

:condition (and

(over all (train_at ?t ?r))
(at start (driver_at 7?7d ?r))
(at start (idle ?d))

)

:effect (and

(at start (not (idle ?d)))
(at start (not (driver_at ?d ?r)))
(at end (operated 7t))
(at end (direction_aside 7?7t))
(at end (drivig ?d 7t))
)
)
(:durative-action exit
:parameters (?d - driver ?t - train ?r - track)

:condition (and

(at start (drivig ?d 7t))
(over all (train_at ?t ?r))
)
:effect (and

(at start (not (drivig 7d 7t)))
(at end (driver_at ?d ?r))
(at end (idle ?d))
)
)
(:durative-action walk
:parameters (?d - driver ?from 7to - track)
:duration (= ?duration (walking_distance 7from ?to))
:condition (and

(at start (idle 7d))

(at start (driver_at ?d ?from))
)
:effect (and

(at start (not (idle ?d)))

(at start (not (driver_at ?d ?from)))
(at end (driver_at ?d ?7to))

(at end (not (idle ?d)))

design predicates such that only one movement between any of the tracks on the left and any of the
tracks on the right can happen concurrently.

To achieve this, "knots” such as the one shown in Figure 5.2 are replaced by one imaginary track in the
model. This imaginary track has special properties, as it can only contain at most one train regardless
of that train’s length; trains cannot park or turn on it, and drivers cannot exit a train while it is on this
track. How this looks visually can be seen in Figure 5.3. Now there are potential connections between
tracks L1-3 and track M, as well as between track M and tracks R1 and R2.

To ensure a collision-free plan, we define the initial state such that the only active connections allowed
are between L1-M and M-R1. In the domain, we include switch actions that can deactivate one active
connection and replace it by making another potential connection active. This means that we have
established the rule that at most one active connection can exist on each side of a track. This switch
action cannot occur while a train is moving on either of the tracks. To ensure this, we set a literal called
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blocked to be true for a track if a movement is happening.

When these definitions are included in the domain, we can guarantee that no collisions occur on any
tracks or switches that are either included or excluded in the problem file. A code snippet for the relevant
actions and literals can be seen in Listing 5.3.

track L1

track L2

track L3 track R1
track R2

Figure 5.2: A section of a shunting yard where a train could move from any of the track son the left to any of the tracks on the
right.

track L1
track L2 track M track R1
track L3 track R2

Figure 5.3: The same infrastructure as in figure 5.2 but now the knot has been replaced by a track

Listing 5.3: Updating of literals to ensure collision free movement across switches.

(:durative-action move
:parameters (?t - train 7from ?to - track)

:effect (and
(at start (blocked ?from)) ; block all tracks involved for action duration

(at end (not (blocked 7to)))
)
)
(:durative-action switch
:parameters (7al 7a2 ?b - track)

:condition (and

(over all (potential_connection ?al ?b))

(over all (potential_connection 7a2 ?b))

(over all (not (blocked 7al))) ;assure none of the tracks involved are blocked at any
point

(at start (connected ?al ?b))

(at start (not (connected 7a2 7b)))
)
:effect (and

(at start (not (connected 7al 7b)))
(at end (connected 7a2 7b))

5.2.3. Turns

A train driver must sit at the front of the train when moving. This means that if the train has to move
in the opposite direction, the driver must stop the train, walk to the other side, and transfer control
there. This is also called performing a saw-movement by van den Broek [55], and van den Broek et al.
mention in [54] that this can take anywhere from 3 to 5 minutes, depending on the train type.
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Kamenga et al. [2], who call it turnarounds, mention that they can be included in the paths taken but
do not explicitly state what the effect is on the path duration. The additional durations of turns are
acknowledged by Cuilenborg [14] but are ignored in their approach to solving.

In our domain, we keep track of the direction of a train with two literals, direction_aside and
direction_bside, which are set to true if a train driver is sitting in the A-side cockpit or the B-side
cockpit, respectively. A turn action can only be performed if a train is operated by a driver object.
This action only changes the direction literal of the train, but it does make the driver and train objects
unavailable for other actions during the turn.

The inclusion of this action prevents us from underestimating the durations of movements by always
ensuring that the train’s direction is set before it moves in that direction. It is worth mentioning that the
same effect can be achieved by having a driver exit a train and enter from the other side. However,
this takes longer than performing a turn, which justifies the inclusion of specific turn actions because it
allows us to make more accurate predictions for the total duration of a plan.

5.2.4. Coupling and Uncoupling

The act of coupling combines two trains to form a single longer train, whereas uncoupling splits a train
into two smaller ones. These two actions are the only ones that allow a planner to solve the matching
sub-problem. Many approaches, such as those by Freling et al. [19], solve it as a separate problem first
or combine it with the parking sub-problem, as done by Kroon et al. [31]. Kamenga et al. [2] consider
all possible configurations of train units and only decide how to solve the matching sub-problem after
solving the others first. In these approaches, they first decide which train units will be connected at
the time of departure and later determine when and where they will be combined. The most common
strategy is to perform all necessary uncoupling actions after the trains arrive and conduct all the coupling
actions right before departure. Although often preferred, this strategy is not necessary. Train units can
be coupled or uncoupled on many tracks as long as a driver is present to do so.

In our domain, we place slightly different restrictions on coupling and uncoupling actions. It is only
possible to perform these actions while both trains are located next to one another on the same parking
track and a driver is present. This means that it is allowed to couple or uncouple trains at any point
during shunting, and any strategy regarding matching is the decision of the planner.

To verify in an action’s predicates that both trains and the driver are located on the same track, we use
the literals train_at and driver_at. We recall that we keep track of every train’s exact location using
aside_distance and train_length. These will be used to ensure that there is no other train between
the two trains that are about to be coupled. This verification is not necessary for uncoupling, as a train,
by definition, cannot contain another train.

When two trains combine into one, we could theoretically keep track of them and ensure that they
always move together and remain next to each other. This is extremely complex to achieve in PDDL.
Fortunately, we can take a slightly more elegant approach by introducing the concept of a train object
being active or not.

In reality, when two trains combine, one could view it as the original two trains 'disappearing’ and being
replaced by a new train that just 'appears’. In our model, we view it as one of the two trains ‘transforming’
into the new train, whereas the other train 'disappears’.

When two train objects combine, we increase the train_length fluent so that it is the sum of both.
The fluents used to keep track of the location of the train are updated to match the size of the newly
combined train. The other train object 'disappears’ by setting the literal active for it to false. Any
action on a train can only be performed on one for which the active literal is true. This means that the
inactive train does not participate in the state and essentially has disappeared.

When performing an uncouple action on a train object, it needs a second, inactive train as a parameter.
In the effects of the action, the original, longer train object is shortened, and the remaining length is
properly distributed to the other train object, which is activated. Now actions can be performed on the
newly appeared train.

One last thing to keep in mind is that not every type of train can be combined with any other. In order
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to verify this, we introduce the fluent train_type_x, where z is the name assigned to the type, to
ensure that only the correct combinations are made or the correct splits occur. Although PDDL objects
are typed, it is not possible to change them when solving, and thus this less elegant method using
literals is required. This has a negative impact on the model’'s readability because we either have to
write a specific action for every possible coupling or write one coupling action with many disjunctive
preconditions and conditional effects. In our models, we choose to write out multiple actions, as we
find this the most readable.

With these rules, we can correctly model (un)coupling with relatively few additional objects and actions.
However, due to the lack of dynamic typing and the impossibility of dynamically creating objects, PDDL
is not as suited for modelling the matching sub-problem. A snippet of the code is shown in Listing 5.4.

Listing 5.4: Updating literals to ensure correct coupling by PDDL planner.

(:durative-action couple_1_1_to_2
:parameters (

?tl - train
?t2 - train
?r - track

)
:condition (and

(over all (train_at ?tl1 ?r))
(over all (train_at ?t2 7?r))
(at start (= (+ (aside_distance ?7tl1)(train_length ?t1)) (aside_distance ?7t2)))
(over all (parking_allowed ?r))
(over all (operated ?7t1))
(at start (train_type_1 7t1))
(at start (train_type_1 7t2))
)
:effect (and

(at start (not (active ?7t2)))

(at start (not (train_type_1 ?t1)))

(at end (increase (train_length 7t1) (train_length ?7t2)))
(at end (train_type_2 ?7t1))

5.2.5. Marking Sub-Problems Solved

To ensure that the states contain sufficient information for determining the solvability of all sub-problems,
it is essential to adopt a systematic approach. Early methodologies, solve multiple sub-problems se-
quentially. A more recent approach, considered the state of the art was proposed by van den Broek et
al. [54] which integrates all sub-problems.

If our detailed modeled model can provide the same integrated solutions we must carefully examine
how we recognise when sub-problems have been solved. The search algorithm explores various train
routes across the shunting yard, identifying configurations in which all train units specified in the ser-
vicing schedule are serviced, and the appropriately configured trains secure valid parking spots. This
subsection details how the PDDL model identifies the resolution of all sub-problems.

We commence by examining the servicing sub-problem. To ascertain whether a train has been ser-
viced, we introduce the serviced literal. This literal is assigned a true value for a train if a corresponding
service action has been executed with that train as a parameter. Such actions may only be conducted
on designated servicing tracks, identifiable by the model through the service_allowed literal being set
to true. For any train not requiring servicing during shunting, the serviced literal is set to true in the
initial state. The servicing sub-problem is considered resolved when the serviced literal holds true
for all train objects that are active.

In parallel with the servicing sub-problem, we introduce a parked literal for each train. The parking sub-
problem is regarded as resolved when this literal is true for every active train. However, the mechanism
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for establishing this literal differs significantly from the serviced literal.

In the domain, we incorporate park actions to facilitate the achievement of a valid parking configuration.
A valid parking configuration is defined as one that allows for the smoothest possible train departures.
Specifically, this means that each train can traverse the shortest path to the yard exit without being
impeded by any train scheduled to depart later. We can confirm that train B does not obstruct train A
if either it is on the same track but located further away from the entry track, or it occupies a different
track with a greater entry_distance value. The entry distance is defined as the number of tracks that a
train must move across to reach the entry track. If each train is unobstructed by any train scheduled for
subsequent departure, this confirms that the departure order can be executed as smoothly as feasible.

It is important to highlight that, as specified in the problem definition, the departure schedule does not
detail specific train units; rather, it specifies train types along with their respective departure times. In
our models, we employ literals to classify trains, necessitating that we enumerate the parking actions
for each type.

In the preconditions for all park actions, we implement a validation to ensure that the serviced literal
is true for both trains, and that they possess the correct type. The goal state specifies that all active
trains must be parked, which can only occur if the correct matching has been established. The actions
selected by the planner are restricted to valid paths that do not result in crossings. When the parked
literal is set to true for all active trains, this indicates that both the matching and routing sub-problems
have been resolved.

Through the definitions of the service and park actions, we assign values to the serviced and parked
literals for active trains. Once these values are established, we explicitly denote that the servicing and
parking sub-problems are resolved. These literals can only be established once every train is correctly
matched and has traversed a valid path, thereby confirming that their establishment also implies the
resolution of the routing and matching sub-problems. A code snippet summarising the assignment of
these literals is presented in Listing 5.5.

5.3. Simplified variations

In the previous section we have presented how we can describe TUSS in PDDL such that the result-
ing plan provides a solution to all sub-problems and guarantees feasibility if we ignore rules regarding
the crew’s working hours. A potentially negative consequence of this detailed description is that plan
length, state size or the large number of available actions may lead to a bad performance by planners.
In this section we explore how we can simplify the detailed domain such that we decrease the size of
each state and limit the decisions a planner has to make. We do this hoping that these changes lead
to better performance compared to the detailed domain.

We attempt to achieve these simplifications by formulating certain TUSS aspects differently or ignore
them altogether. We realize that the obtained plans obtained do not provide the same guarantee of
feasibility when compared to the detailed plans and thus need to be modified to improve them.

Below we describe several simplifications we consider. We will create domains containing different
combinations of the proposed simplifications as to allow for comprehensive analysis of these simplifi-
cations.

5.3.1. Ignoring concurrency

Previously we have discussed how with the inclusion of :durative-actions the planner is aware of what
actions can be execute concurrently and provide a fully-ordered solution to the TUSS sub-problems.
However, it might be worthwhile to consider creating models without this requirement as this opens
up the possibility of using other planning algorithms as not all planners support the :durative-actions
requirement. The drawback of this is that the plans cannot provide fully ordered solutions for problem
instances with multiple trains. The partially ordered plans thus require additional modification before
they can be executed in a real shunting yard. This strategy where obtaining a PDDL plan is an inter-
mediate step is seen in other research as well. One example of this is the paper by Estivill-Castro
et al [17], where classical domains are used among other steps to solve a path-finding problem for a
dynamic environment.

Planners will try to minimize the total duration of plans for temporal problem instances. Non-temporal
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Listing 5.5: Where the parked and serviced literals are set.

(:durative-action service
:parameters (

?t - train
?r - track

)

:condition (and

(over all (train_at ?t ?7r))
(over all (service_allowed ?r))

)

:effect (and

(at end (serviced 7t))

)
)

(:durative-action park_different_tracks_0
:parameters (

?tl - train
?t2 - train
?rl - track
?r2 - track
)
:duration (= ?duration 0.1)
:condition (and
(over all (train_type_2 7t1))
(over all (train_type_1 7t2))
(over all (train_at ?t1 ?ril))
(over all (parking_allowed ?ri))
(over all (parking_allowed ?7r2))
(over all (serviced ?7t1))
(over all (serviced 7t2))
(at start (<= (entry_distance ?rl1) (entry_distance ?7r2)))

)

:effect (and
(at end (parked ?7t1))
(at end (parked 7t2))

)

(:durative-action park_different_tracks_1
:parameters (

)

:duration (= 7duration 0.1)
:condition (and
(over all (train_type_1 ?7t1))
(over all (train_type_1 7t2))
(over all (parked 7t1l)

)

:effect (and
(at end (parked 7t2))

)

domains, those without the :durative-actions requirement, can be instructed to either minimize the
number of actions in the resulting plan or optimize the value of a metric. For our TUSS instances we
believe the minimizing a cost metric will result in better plans because not all actions have the same
impact on the total duration of the shunting plan. Entering and exiting a train takes significantly longer
than moving a train across a track. Moreover, for trains that have to be serviced it does not make sense
to punish the inclusion of service actions in the plan.

When optimizing for a metric term we need to include the :action-costs requirement in the domain
and define a :metric term in the problem instance. With the :metric term it is possible to specify a
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fluent to be either minimized or maximized. For TUSS domains it makes the most sense to minimize a
single numeric fluent called total-cost. The value of this cost is increased in the effects of actions, by
how much depends on the impact an action has on the total duration. Actions that must be performed
to reach a goal state will not increase this metric term.

5.3.2. Inexact train locations

We have described how we keep track of every train’s exact location for the detailed model. Other
TUSS solving methods, such as the current state of the art algorithm by vd Broek et al [54], take a
different approach. An alternative would be to only keep track of a train’s relative position on a track
rather than precise coordinates. With this approach it is still possible to ensure that track capacity is
never exceeded. The drawback is that there is no guarantee that the resulting plan is complete as it
might be possible that additional move actions need to be inserted to ensure that no crossings occur.

To keep track of a train’s relative location we introduce a numeric fluent called order which takes
one train object as parameter. The smallest value possible is 1, which is assigned to the train closest
to the A-side end of the track. The largest value possible is the amount of trains that are on the track,
which is stored under num_trains. The train for which its order equals the num_trains for the track its
on is the track closest to the B-side end of the track.

To ensure that track capacity is never exceeded the track_length fluent must be dynamic, decreasing
anytime a train enters the track and increasing anytime a train leaves it. For domains with inexact train
locations the track_length fluent represents the available space on a track rather than its dimensions.

5.3.3. Ignoring turns

We have already expanded on the impact of turning a train has on plan duration and what the benefit
is of including turn actions in the domain. It has been seen in other research, such as Cuilenborg [14],
that no distinction is made between the impact of turning a train and the impact of moving a train. In
our domains we take it a step further where we do not require that a train be reversed before moving
in a different direction than previously.

This can be achieved simply by not including any turn actions or any preconditions or ef fects that
contain any literal describing the direction of a train. Models containing this simplification contain less
literals in each state, have on average less available actions in every state and will produce shorter
plans. This means that less decisions have to be made by the planner to compute a plan for these
domains.

5.3.4. Excluding switch actions

It is often seen in TUSS literature that movements are planned such that all tracks and switches be-
tween a starting point and destination are "reserved” to prohibit use of them by other trains during the
movement. This is how movements are planned by operators at NS and is modeled by vd Broek et al
[54] as well as Kamenga et al [2]. This, combined with the assumption that the time it takes to move a
switch is negligible, does not require them to model the action of moving a switch and allows the model
to include multiple connections on each side of a track.

In our domains movements are included in a plan from one track to one other rather than long paths,
which necessitates the inclusion of dynamic track connections to guarantee that a resulting plan does
not cause crossings. We consider a simplification where track connections are static while realizing
that this does not provide the same guarantee as other research regarding the impossibility of crossings.

This simplification is achieved by excluding the potential_connection literal from the domain and
for every pair that this literal was true in the initial state we assign this truth value to the connected
literal. Furthermore all switch actions are removed as well as any so-called phantom tracks included
in the shunting yard description in the problem file. The result of these modifications to the domain is
a reduction in state size and amount of decisions to be made by a planner.
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5.3.5. Excluding drivers
Many other approaches do not consider the actions a driver takes as separate from a train movement,
and they are often planned after a shunting plan has been created.

The exclusion of drivers might negatively impact the performance because the planner does not re-
alize the true impact of specific action sequences. Consecutive movements of the same train take less
time than sequences where the moving of trains is alternated. However, domains that do not include
driver objects contain less action definition because actions such as a driver entering or exiting or turn-
ing a train do not need to be included. This should significantly decrease the decisions a planner needs
to make to find a feasible plan.

Another benefit of including driver objects is that these infuse some resource management by the
planner. Driver objects are a limited resource in the model and are required to be associated with a
train before the train can move. The actions and literals related to driver objects allow for the correct
modeling of which actions can be done concurrently and which cannot. For example, if there is only
one driver object in a problem instance this means that at most one train movement can be performed
at a time. To ensure this in a domain without driver objects we must introduce two fluents, which we call
max_concurrent_movements and concurrent_movements. Before a move action is performed the pred-
icates verify that concurrent_movements are less than max_concurrent_movements and only during
the movement the concurrent_movements fluent is incremented by 1.

5.3.6. Excluding walking actions

Although walking durations are acknowledged as significant by vd Broek et al [54], crew planning is
often treated as a separate problem. We also consider domains in which the walking times of drivers
are ignored.

To achieve this we remove the walk action and the walking_duration fluent. This will reduce state
size and hopefully make it easier for planners to decide on how to include movement actions to reach
a goal state.

5.3.7. Combining actions

Some actions included in a shunting plan should only be followed by a specific other action. One ex-
ample is that a driver should only enter a train if he intends to start moving it. If the driver were to exit
a train right after entering we are in the same state as before and have wasted two expansions to get
to that realization.

In PDDL however, it is not possible to make mandatory chains of actions. One way this can be modeled
is to combine them into one action. This ensures that mandatory actions happen after one another but
does mean that there are more grounded actions after parsing which complicates the search for the
planner. This may cause complications during search which might have a negative impact on perfor-
mance. However, if planners do not correctly recognize that some action combinations do not make
sense a lot of time could be wasted exploring symmetrical states.

5.3.8. Duplicate sub-goals

As described before, the parked can only be set by actions which include the serviced literal in the
preconditions. Thus in the goal state we do not need to mention the serviced explicitly, but it may be
worth to investigate whether this has a positive impact on planner performance

5.3.9. Strict parking preference

In order to be able to describe when a train is located in a valid parking spot we introduced the
entry_distance fluent. With this fluent we describe how many other tracks there are between a track
and the exit of the shunting yard. When a shunting yard contains many tracks that have the same value
for entry_distance situations may arise where they are interchangeable when deciding on a parking
configuration. A simple example is shown in figure 5.4 which describes a problem instance in which
train 1 needs to depart the shunting yard before train 2. Both configurations are equally valid seeing
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as the entry_distance of both tracks is the same.

In vd Broek et al [54] it is mentioned that human shunting planners prefer fixed patterns in their shunting
plans. In an attempt to introduce this in our PDDL we consider variations where parking preferences
are more strict. This is achieved by making sure that every numeric value for entry_distance is unique.
When a set of tracks have the same value for entry_distance each of them is increased slightly with
the difference being different every time. This has as a result that although when starting from any
of the tracks a train needs to cross the same amount of other tracks to reach the shunting yard exit,
when deciding on when to park there is a clear order of which track is considered closest and which
track is considered farthest. This means that the illustration in figure 5.4 only contains one valid parking
configuration. One of the tracks will have a smaller entry_distance than the other which means that
train 1 must be parked on this track specifically. This modification does not change the state size or
the amount of actions included in plans. Further analysis is needed to predict how this impacts planner
performances.
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Figure 5.4: Two different parking configurations in which train 1 has to depart the yard before train 2 does. Without strict
parking preferences both configurations are valid whereas with strict parking preferences only one of them would be.

5.4. Post-processing

Plans obtained from some of the simplified PDDL models lack certain details. In addition to a partial
order solution for the parking, routing, and service sub-problems, they may omit several aspects, such
as actions performed by drivers or actions describing the turning of a train.

Given the movement and service actions for each train and the partial order in which they should occur,
a Constraint Programming (CP) model can be formulated in MiniZinc [43] to find the optimal way to
schedule the missing activities. The resulting plans will contain movement, service, enter, exit, turn,
and walk actions.

Our post-processing routing can be performed on solutions obtained for any of our PDDL models. In this
section, we first explain the information extracted from the PDDL plans and how it is used to formulate
the input for the CP model. Next, we describe the contents of the CP model.

5.4.1. Parsing PDDL plans
The first step of our post-processing routine is to extract the information from the PDDL plans necessary
for the CP model.

Extracting relevant actions

The first part of our post-processing routine involves a script that extracts relevant information from any
plan found using our PDDL models. While not all models contain the same types of actions, all models
include movement and service actions. A script is used to extract these from any plan, regardless of
the amount of detail it contains.

Ordering actions by train and track
The simplified plan is treated as a partial-order solution. The script recognises which actions must be
performed before another by applying the following rules:
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1. For each train, the order of actions performed by it must remain the same.
2. For each track, the order of actions that have the track in their parameters must remain the same.

The script extracts pairs of actions for which one must finish before the other can start according to
these rules and saves the pairs in a list of tuples.

Recognising turns

The next step is to recognise which actions require a turn action between them. This is easily identi-
fied by examining the movements per train, and anytime two subsequent movements are in different
directions, these actions are saved in a list of tuples.

Recognising switches

The penultimate step is to recognise which pairs of actions require a switch action to occur between
them. The only rail infrastructure included in the PDDL models consists of tracks, and our script models
connections between tracks dynamically, much like this is described in sub-section 5.3.4. The important
rule to follow is that every track can be connected to at most one other track on both sides.

Before iterating through pairs of actions, the script assumes no connections are present between tracks.
During the iteration, when a movement is encountered, the script checks whether a connection already
exists for the sides of the tracks between which a train is supposed to move. If not, the connection
is saved. If it exists and does not allow the second movement in the pair to occur, this pair of actions
requires a switch action in between them. The pair is saved in a list of tuples.

Building walking distance matrix

The final step in parsing the PDDL plans is to organise the walking times between actions. Obviously,
walking can only occur from one location to another, not between actions. Therefore, we examine the
actions and formulate constraints that after one action has finished, there must be at least enough time
for a driver to walk from that action’s destination to the starting point of the next action.

The procedure to achieve this is straightforward: we first initialise a square matrix with the lengths of
both dimensions being the number of movements. We label the actions 1..N and fill in the matrix at
index (4, 7) with the walking time from the destination of action i to the starting point of action ;.

5.4.2. Constraint Programming Model

The CP model is created in MiniZinc. The model consists of a .mzn file in which all the constraints are
described, as well as the variables, constants, and their bounds. After parsing the PDDL plans, a .dzn
file is generated in which all the lists of tuples and bounds are formulated as constants. Together with
the .mzn file, this can be executed to commence the optimisation of the parsed PDDL plan into a nearly
complete TUSS plan.

In this subsection, we describe the variables and objective of the CP model, as well as the constraints.

Variables

Our CP model is an interpretation of a standard resource-constrained scheduling problem. In such a
problem, there is a list of tasks that need to be performed as efficiently as possible. These are de-
scribed by two arrays: one constant array containing the durations and one variable array containing
the start times. The objective is to minimise the time at which the latest task finishes.

Similarly, in our CP model, we have a list of actions for which we have durations, and we need to find
the optimal starting times. These arrays are called D and S, respectively.

However, in our CP model, we have one additional variable array in which we store the driver assign-
ments. One of the constants in the model is the number of drivers, which is the limited resource in
our optimisation problem. Every driver is labelled from 1. NUM_DRIV ERS, and the CP solver deter-
mines the optimal driver assignment such that the total duration is the smallest possible. If the variable
array containing driver assignments, or DA, is assigned the value 3 at index 8, this means that the
action labelled 8 will be performed by driver 3.

To formulate the objective, we need to include a variable integer called END.
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Objective
The EN D variable represents the time at which the plan concludes. To ensure EN D takes this value,
we introduce the following constraint:

V;S[i] + D[i] < END (5.1)

This means that the latest timestamp at which any action can end is END. The objective is then set
to minimise this variable integer, which causes the CP solver to find the most time-efficient schedule.
The objective is formulated as follows:

minimise(END); (5.2)

Constraints

Next, we formulate constraints so that the solution provided by the CP solver reflects the reality of
operations within a shunting yard. The basis of our constraints includes the following assumptions
about shunting:

* |t takes 2 minutes to climb inside and start up a train.

+ It takes 2 minutes to shut down a train and exit it.

+ It takes 4 minutes for a driver already inside the train to start moving in the opposite direction.
+ It takes 1 minute to move across any track.

+ It takes 1 minute to change an electrified switch.

We acknowledge that these assumptions may differ slightly from actual operations. However, the most
significant contribution is the solving method. These assumptions can easily be updated in the model
if it were ever to be used for realistic shunting plans.

Precedence constraints
Using the parsing method discussed in 5.4.1, we extracted the pairs of actions for which these con-
straints will hold. For each pair of actions (i, j), the following constraint is formulated:

S[i] + D[i] < S[j] (5.3)

This constraint indicates that the earliest action j can start is after action ¢ has been completed. The
best-case scenario occurs when actions i and j describe movements in the same direction, performed
by the same train and driven by the same driver. In that case, these actions must occur sequentially,
but there does not need to be any delay. In other cases, where the actions do not have the same
direction, for example, constraints are formulated such that the difference in end and start times must
be greater.

Turn constraints
As mentioned in the previous sub-section, two movements of the same train cannot occur immediately
after one another, even if they are driven by the same driver. The action pairs requiring turn constraints
are extracted using the method described in 5.4.1. For each such pair (4, j), the following constraints
are written:

S[i) + DJi] < S[j] — 3 (5.4)

Here, it is stated that the start time of action j must be at least 4 minutes after action ¢ finishes.

Switch constraints
The last of these similar constraints applies to the pairs that require a switch action in between, as
extracted by the procedure in 5.4.1. For each pair (4, j), we write the following constraints:

Sli] + Dli] < S[j] (5.5)

This indicates that the start time of action j must be at least 1 minute after action i completes, which is
the time required to move an electrified switch.
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Driver changing trains

If a shunting plan specifies that a driver needs to move one train first and then another, they must exit
the train they are currently in, walk to the other train, and start it up. For each pair of actions (i, j) that
involve different trains but the same driver, we write the following constraints:

(S[i] + D[i]) < (S[5] — 3 — walk_times][i, j]) v (S[j] + D[j]) < (S]] — 3 — walk_times][3, i]) (5.6)

This constraint ensures realism regardless of whether i or j is planned earlier than the other. In case
1 finishes before j: after movement i is completed, the driver requires 2 minutes to shut down train,;.
Afterwards, they walk to train;, which takes an additional 2 minutes to start that train up. These
constraints describe the absolute minimum amount of time it takes a driver to change trains.

Train changing drivers
In the opposite case, where we have two actions ¢ and j performed by two different drivers but on the
same train, we formulate the constraint slightly differently:

(Sli] + D[i]) < (S[j] = 3) v (S[j] + Dli]) < (S[i] - 3) (5.7)

In this instance, we only need to consider the start-up and shut-down time of the train, as this represents
the best-case scenario for the fastest driver swap.

Redundant constraints

In the background, in Section 2.4, we mentioned that the inclusion of redundant constraints might im-
prove performance. The redundant constraints included use MiniZinc’s built-in disjunctive constraint,
which specifies that two actions cannot overlap in time. Any action pair that has either a precedence,
turn, or switch constraint is also assigned the redundant disjunctive constraint, which implies that
these pairs cannot overlap in time.

Symmetry breaking constraints

There is a symmetry that we can eliminate regarding driver assignments. At the beginning of the
shunting plan, none of the drivers are busy, and thus it does not matter which driver is assigned to the
first task. We introduce a symmetry-breaking constraint that assigns driver 1 to action 1. As mentioned
in Section 2.4, this induces the solver to search more efficiently and thus improves performance.

Choice of solver
Any general-purpose solver could be used to solve this described CP model. Any time we execute this
model for this thesis, we utilise the Chuffed solver [12].

5.5. Conclusions

In this chapter we explored how a detailed model would model the necessary aspects of TUSS problem
instances to be able to create feasible plans. Although this detailed model might not produce plans that
are ready to use as is, it is possible to model problems with a similar level of detail as the current state
of the art. Although it is possible to integrate all sub-problems in PDDL, its features are not perfectly
suited to model the matching sub-problem.

Besides the description of a detailed model we offer numerous options to simplify this detailed model.
In combination with our post-processing routine these models could produce plans with a high level of
detail with potentially better performance.

The code for the post-processing routine is uploaded to Github [36].



Experimental analysis of planner and
model performance

Now that we have explored various approaches to model and solve TUSS instances, we proceed to
evaluate the performance of different planners and models through a series of experiments. These
experiments are designed to address the following key research questions:

1. Which planner-model pair demonstrates the best overall performance?
2. Which simplifications, as discussed in Section 5.3, significantly impact performance?
3. Are there specific areas for improvement in the content or quality of the generated plans?

This chapter begins by detailing the experimental setup, followed by an in-depth analysis of the per-
formance of various planner-model pairs. The chapter concludes with recommendations for the best-
performing planner-model pair and suggestions for improving the analysed planning algorithms.

6.1. Experimental setup

To evaluate the performance of different planner-model pairs, we establish a well-defined experimental
setup. This section outlines the models and planners that are compared. Moreover, we describe what
problem instances are generated for each planner-model pair. Next we detail the steps performed to
obtain the results and provide the metrics we use to evaluate them.

6.1.1. Models

Experiments are run for multiple models in which descriptions of various TUSS aspects are either de-
tailed, as mentioned in section 5.1 or simplified, as mentioned in section 5.3. Because of the large
amount of models evaluated we organise them in four categories to improve clarification. The cate-
gories are decided based on the two modeling decisions with the most significant impact on the way a
problem instance is approached.

The most important the decision is whether to consider concurrency when planning, as described in
sub-section 5.1.1, or ignore concurrency, as described in sub-section 5.3.1. With the inclusion of con-
currency a temporal planner is required whereas a numeric planner suffices otherwise.

The second most significant decision is whether train locations are modeled exactly, as described in
subsection 5.1.2, or relatively, as described in subsection 5.3.2. Exact train locations limit the number
of available movements per state more than relative locations do.

The models are organized in four categories based on the outcome for the two aforementioned mod-
eling decisions. How these categories are numbered is explained in table 6.1. Per category multiple
variations are evaluated, a more detailed overview of all models used in the experiments is presented
in the appendix in chapter A.1.

32
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Table 6.1: Numbering of model categories based on the two most significant modeling decisions and how many variations
were analysed in each category.

. . Total number of variations
Category | Concurrency | Train locations . .
in this category
1 Included Exact 19
2 Included Relative 14
3 Ignored Exact 18
4 Ignored Relative 14

6.1.2. Planners

Over the years many planners have been developed to compete in International Planning Competitions
(IPCs) [39]. Many of them however have not been maintained and as a result are no longer compatible
with newer compilers and/or operating systems. In table 6.2 we provide an overview of the planners for
which it was possible to solve our TUSS models and which model categories they are compatible with.

Table 6.2: Overview of planners and their properties. The column Planner lists the used planners: TFD is Temporal
FastDownward [41], OPTIC is Optimizing Preferences and TIme-dependent Cost [5], ENHSP is Expressive Numeric Heuristic
Search Planne [45], Metric-FF is Metric-FastForward [28], SP is the SymbolicPlanners.jl package [56] and NFD is Numeric
FastDownward [3]. The column Search Algorithm lists the search techniques employed by each planner: A* is Dijkstra’s
A-star search algorithm [24], W A* is Weighted A-star, I D A* is iterative deepening A-star [30], DK S_A* is Dynamic
K-Shortest Paths A-star [48] and EH C refers to Enforced Hill Climbing [27]. The column Heuristic specifies the heuristic
functions used: h,qq is the additive heuristic [8] and superscripts ¢ and " refer to the context-enhanced [18] or
interval-relaxation [46] modifications. hf/f is the Fast-Forward heuristic [28], h"P9 refers to the relaxed planning graph used in
POPF [13], h™"P is the multi-repetition plan heuristic [47]. The final column Compatible Model Categories refers to the
categories of TUSS models these planners can handle.

Search . .. Compatible Model
Planner . Heuristic .
Algorithm Categories
TFD A* h&y 1,2
OPTIC WA* + IDA* h"P9 1
ENHSP WA* h™TP 3,4
Metric-FF | EHC + W A* RIT 3,4
NFD DKS A* e 3
SP W A* hadd 3, 4

Both short descriptions of the algorithms used by the planners and a more comprehensive overview of
the PDDL features supported by each planner can be found in the appendix in section A.2.

6.1.3. Problem instances

To evaluate their performance, each planner-model pair will attempt to solve multiple problem instances
with varying degrees of complexity. The complexity is measured by the number of trains included in
the problem. From chapter 4 we recall that the problem description should include a shunting yard
layout as well a scenario consisting of a arrival, departure and service schedules. In this sub-section
we describe these properties for the instances used in our experiments.

Shunting yard layout

For all problem instances we use a slightly modified version of the Kleine Binckhorst shunting yard.
This layout was used by other authors such as van den Broek et al. [54] and Cuilenborg [14]. In our
experiments this layout is modified by removing one of two entry tracks, removing an inspection track
and changing an exterior cleaning track to a regular parking track. After these modifications we are left
with a shunting yard containing one entry track, 10 parking tracks and 2 service tracks.
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The original layout of the Kleine Binckhorts shunting yard is presented in figure 6.1 and the modified
version used for our experiments is shown in figure 6.2.
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Figure 6.2: Shunting yard layout used in problem instances for experiments.
Scenario

For the scenario used we took inspiration from those used by NS to test their automated planning
system. In our scenarios the entry schedule describes multiple trains of the same length arriving at
the entry track simultaneously. All trains need to be serviced and must depart in the same order and
composition they arrived in. This means that no coupling or uncoupling is to be done during shunting.
A goal state is reached when all trains have been serviced and are in a valid parking configuration. A
valid parking configuration is one where every train is able to travel across the shortest path to the exit
without being blocked by any train that is scheduled to depart later.

Increasing complexity

The shunting yard layout and scenario is kept constant, thus the complexity depends on the amount
of trains included in the problem. For every planner-model pair this number starts at 3 trains and
increases up until the planner-model pair has failed 3 times. The shunting yard layout used in the
problem instances fits a maximum of 32 trains so no planner can ever find a solution for instances
containing more than 32 trains.

6.1.4. Method

Now that we have outlined the ingredients needed to perform an experiment we describe the process
using the following steps:

1. Select planner, model and problem instance



6.2. Comparing performance 35

2. Perform search after providing the planner with the model and problem instance
3. Obtain partial-order plan from planner output
4. Finalize solution with post-processing routine described in section 5.4

A time limit of 300 seconds is set for step 2 and if a plan could be obtained after step 3 another time
limit of 300 seconds is set for the final step. If the planner could not produce a partial solution the
experiment is considered to have failed.

The post-processing routine performed in steps 4 is described in more detail in section 5.4. These
steps can be done on plans obtained from any of the TUSS models. The final solution obtained after
post-processing always contains the same level of detail and allows for a fair comparison between
different models containing different levels of detail.

6.1.5. Evaluating results

As mentioned before, the purpose of setting up these experiments is to be able to compare performance
for different planner-model pairs, and in this section we define how we do so. When measuring the
performance we look at the following properties in order of importance:

1. The complexity of problem instances for which a solution could be found
2. The makespans of obtained shunting plans

The most important measure of performance is how complex the instances are for which a solution can
be found. The more trains included in the problem the more complex it is deemed. Being able to create
shunting plans for more trains increases the capacity of a shunting yard which is of great interest for
railway operators.

When comparing two planner-model pairs, we look at the most complex problem instance that could
be solved. The pair that can solve the most complex problem is considered to have better performance.

If two planner-model pairs are able to solve similarly complex problem instances, we look at the quality
of the plans they produced. In this paper, we compare plan quality quite superficially, looking only at
which has the shortest makespan.

Human planners prefer robust plans to be generated. The makespan of a plan is considered a simple
but commonly used measure for robustness by Boysen et al. [9] and van den Broek et al. [10]. In this
paper, we naively only consider the makespan of a plan when measuring robustness. We consider one
planner-model pair’s performance better than another if it can consistently produce plans with shorter
makespans for instances of the same complexity.

6.1.6. Hardware
All experiments were performed on an MSI Modern 15 B7M laptop with an AMD Ryzen 7730U processor
and 16 GiB RAM. The operating system used was Ubuntu 24.04.1 LTS.

6.2. Comparing performance

In this section we present an analysis of the experimental results obtained with respect to performance.
We compare different planners, as well as different model variations. First it is important to mention
that the limiting factor for all experiments was the PDDL planner. The post-processing for all 410 ex-
periments performed finished within 4 minutes.

Before we have identified the inclusion of concurrency and the modelling of train locations as the mod-
elling decisions with the most significant impact. After these we consider the inclusion of driver objects
to be the third most significant. The inclusion of driver objects necessitates actions to model them en-
tering and exiting trains which significantly increases state size and te amount of actions necessary to
complete a partial-order plan.

Next, the modelling of turning a train is considered the fourth most significant modelling decision. This
greatly impacts how certain paths across the yard are evaluated.

In this section we first compare results per planner and based on the aforementioned modelling deci-
sions. Lastly we provide a brief overview of the impact of the other simplifications that were deemed
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less significant.

6.2.1. Comparing planners

Several planners were tested that take different approaches to producing solutions. All of them do
some form of search guided by a heuristic evaluation. Below we compare which planner was best able
to find feasible partial-order plans to the TUSS instances.

Range of makespans found in all models

Temporal
700-I-ITF1]3‘IIIIIIIII‘]IIIIII-
[ ENSP 1
Metric-FF
3 NFD
600 |- =@+ Best TFD i
| —®- Best ENHSP
| —@ - Best Metric-FF
I =@ - Best NFD
500 —
g
o L
L 400 + .
< L
g
3
e
300 .
200 - .
100 —
1 " " " 1 " L L | 1

L L " 1 L L " L
4 6 8 10 12
Complexity (number of trains in problem)

Figure 6.3: Comparison of performance between different planners. For each planner the area was filled between the best and
fifth-best result found per level of complexity.

In figure 6.3 we plot the 5 shortest makespans per level of complexity for each planner. Two planners
were omitted, OPTIC and SymbolicPlanners (SP), because they were never able to solve any problem
instance with more than four trains. These planners are deemed unsuited for solving TUSS problem
instances.

The best performing planner overall was Temporal FastDownward. It was able to solve the most com-
plex instances and the shortest makespan for each level of complexity was always one found by this
planner.

The best performing numeric planner was ENHSP. It was able to solve problem instances with up to
11 trains, and the models can produce plans with relatively short makespans compared to other partial-
plans found. For instances with up to seven trains Metric-FF had a similar performance to ENSP, but
interestingly Metric-FF was never able to solve instances that were more complex. Curiously that this
was never because the planner timed out during search, search was never initialized for problem in-
stances with more than seven trains.

After OPTIC and SP the worst performing planner was Numeric FastDownward (NFD). The best plan
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found using this planner was always worse than at least five plans found by any other planner for
the same problem instances if they contained eight trains or less. The difference in performance was
smaller for more complex problem instances but the shortest makespan found by any model paired with
NFD was still significantly longer than the shortest makespan found for any model paired with another
planner.

Overall we can conclude that both TFD and ENHSP performed significantly better than the other plan-
ners, with TFD having the best performance.

The best planner-model pairs all include the TFD planner. There are two candidate models that can
be considered to allow for best performance, all of which are presented in figure 6.4

The 3 best performing models
Model category: 1
Planner: Temporal FastDownward
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Figure 6.4: Top two candidates for best performing planner-model pair.

6.2.2. Temporal vs. Numeric

In section 5.1.1 we explain that in order to model concurrent actions we need temporal domains and
planners, whereas otherwise numeric domains and planners suffice. All models in categories 1 and 2
are temporal, whereas all models in categories 3 and 4 are numeric.
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Range of makespans found in all temporal or numeric models
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Figure 6.5: Comparison of performance between different temporal and numeric models. For each group the area was filled
between the best and tenth-best result found per level of complexity.

In figure 6.5 we compare the ten best temporal and numeric results found per level of complexity. We
can see that temporal planner-model pairs outperform numeric planner-model pairs because they were
able to solve problem instances containing up to thirteen trains, whereas no numeric planner-model
pair could solve any instance with more than eleven trains.

Even considering plan quality temporal planner-model pairs perform better. The best temporal pair
per level of complexity always has a shorter makespan than the best numeric pair. The difference is
more significant for more complex problem instances.

6.2.3. Exact vs relative train locations

Besides the modeling of concurrency, the formulations of train locations was considered the most sig-
nificant modeling decision to be made. Modelling exact train locations can limit the number of available
actions per state. We compare the impact of how train locations were modeled for the ten best planner-
model pairs in either category in Figure 6.6 below.
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Range of makespans found in all models
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Figure 6.6: Comparison of performance between models where train locations were modelled exactly or relatively. For each
group the area was filled between the best and fifth-best result found per level of complexity.

We can see that both temporal and numeric planner-model pairs perform better when train locations
are modeled exactly. In both cases, the ten best planner-model pairs were able to produce plans for
significantly more complex problem instances. For the temporal domains we can also say that the best
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model per level of complexity with exact locations always outperformed the best model with relative
locations. The same cannot be said for numeric domains.

In Section 5.3.2 the concern was mentioned that with exact train locations it occurred more often that
potentially viable movements were not considered and that this could make it more difficult for planners
to find feasible plans. This concern was proven invalid. On the contrary, modelling exact train locations
led to the planners finding feasible plans more easily.

6.2.4. Including vs. excluding drivers

Similarly to how we compared models with or without turn actions we compare models including or ex-
cluding driver objects for the two best performing planners. Introducing driver objects in a PDDL model
significantly increases the state size and number of actions included in a plan. Before we expressed
concerns that this would negatively impact the performance.
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Range of makespans found in all models
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Figure 6.7: Comparison of performance between models including or excluding driver objects. For each group the area was
filled between the best and fifth-best result found per level of complexity.

In Figure 6.7 we can see that these concerns were valid for the ENHSP planner. This planner is more
likely to produce plans with shorter makespans and is able to handle instances with more trains if driver
objects are not modelled.

However, for TFD the best models including drivers perform similarly to the best models without.
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6.2.5. Including vs. ignoring turns

For each category several models were compared that included turn actions and more in which turn
actions were ignored. In section 5.3.3 we expressed concern that without considering the additional
time it takes to turn a train planners would end up producing plans with longer makespans. Below, in
Figure6.8 we compare the impact of including turns in our PDDL models for the two best performing
planners, TFD and ENHSP.
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Figure 6.8: Comparison of performance between models including or excluding turn actions. For each group the area was
filled between the best and fifth-best result found per level of complexity.
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For both planners the inclusions of turns did not cause either of the planners to not be able to handle
more complex models. For TFD the impact on the produced makespans was insignificant. The ENHSP
planner produced was able to produce plans with the shortest makespans for models including turns.
For ENHSP including turns does have a positive impact.

6.2.6. Other modelling decisions

The complete results of all the experiments performed are presented in the appendix in chapter A.3.
The models used in experiments are uploaded to Github [37]. In section 5.3 several more simplifications
are discussed and thus to keep this section organised we provide a compact overview of the overall
impact of each simplification across all planners and model categories in Table 6.3

Table 6.3: A compact overview of the overall impact of several simplifications discussed in section 5.3.

Model Excluding switch | Strict parking | Excluding walk | Combining | Duplicate

Planner - . .
Category actions preferences actions actions sub-goals

TFD 1 Positive Negative Positive Positive Neutral
2 Positive Neutral Neutral Neutral Negative
ENHSP 3 Positive Negative Positive Positive Negative
4 Positive Negative Positive Neutral Negative

Metric-FF 3 Positive Negative Neutral Neutral Neutral

NFD 3 Positive Negative Positive Neutral Neutral

The easiest simplifications to assess are the exclusion of switch actions and assigning strict parking
preferences. Almost no planners were able to find any solutions for models including switch actions.
Excluding switch actions greatly simplifies problems for all planners. The assignment of strict prefer-
ences for parking tracks can not be considered a simplification. This modification to models nearly
always caused a worse performance compared to similar models without strict parking preferences.

In general the better performing planner-model pairs included models without walking actions. How-
ever, in for some planners this did not seem to have a significant impact. It can not be said that the
makespans of plans obtained with models including walk actions were overall shorter. It does not seem
that the inclusion of walk actions improves planner’s understanding of the problem.

The combining of multiple actions is also hard to assess, as in some cases it improved performance
and in some cases it worsened performance. There is not a combination of actions for which it can be
said that it positively impacts performance in general.

Lastly, the inclusion of sub-goals at best did not have a significant impact on the performance of planner-
model pairs. At best the performance was similar to models without.

6.3. Analysing PDDL plan contents

In the previous section we analysed the performance for the examined planner-model pairs based on
problem comlexity and plan makespans. In this section we take a closer look at the contents of the
plans produced by the PDDL planners and see if we can identify any areas where their understanding
of the TUSS models seems to be lacking.

First, we examine if service actions are distributed optimally by the planners. Next, we examine whether
the planning algorithms can accurately identify and eliminate symmetrical states from the search tree.
We take a look at symmetries in state values and symmetries for which a more in-depth analysis of the
TUSS problem instances is needed.

Next we propose a strategy that might improve performance, and analyse plan contents obtained in
experiments to verify whether it is viable or not. Lastly we examine how search progresses in a model
with strict parking preferences compared to a model without. The idea behind this simplification was to
alleviate some decision-making from the planner and that parking tracks were assigned more consis-
tently. With an example we try to understand better why this decision seemed to have such a negative
impact.
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6.3.1. Service track distribution

Service actions take significantly longer compared to other actions to be performed and therefore it
is preferable to evenly distribute service actions across the available service tracks. While trains are
being serviced either other un-serviced trains can be moved closer to the service tracks or serviced
trains can be moved to their final parking destination. Below we present how evenly the service actions
are distributed across both tracks.

Distribution of service actions over all plans
found per planner

100 L 50 % of actions at most visited service track
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Figure 6.9: Analysis on how the locations of service tasks are distributed across the 2 available service tracks. The darker
colours indicate that service tasks were very unevenly distributed, whereas light colours indicate even distribution. When
looking at the height per colour we can see what percentage of the total amount of plans had which level of spread in their
distributions.

In the numeric domains it is not indicated that servicing two trains simultaneously is preferred. Plans in
which all trains are serviced on the same track have the same cost as those in which the service tracks
are alternated. However, in figure 6.9 we can see that both ENHSP and Metric-FF distribute service
actions as evenly as the only temporal planner used, TFD.

However, for nearly all plans obtained using NFD all service tracks are performed on one track. This
explains the poor performance of this planner more clearly.

Important to note is that some models were created where an even distribution was forced for numeric
planners, but for these models all numeric planners always were able to handle less trains compared
to models without this specification.

6.3.2. Recognising state symmetries

First we discuss symmetries that are not specific to the examined TUSS models. In section 5.3.7 a
concern is brought up that planners are unable to recognise when two states are symmetrical. Some
models include an action together with its inverse. If the inverse of an action is performed after it we
reach the same state. An efficient algorithm should only ever keep one node per state in its search
tree. If it encounters a state it has already seen before, it should remove the node for which the cost
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to reach it was largest. If both nodes can be reached with the same costs it should not matter which is
kept in the search tree.

In this sub-section we examine the two best-performing planners, TFD and ENHSP and verify whether
they recognise these symmetries. We examine two types of actions and their inverse, starting with
enter and exit actions. When a train driver enters a train and exits it straight after we have reached a
symmetrical state.

Since the code for the heuristics of ENHSP and TFD is compiled, it is hard to analyze whether this
inefficiency occurs during search. Therefore we examined all solutions produced by these planners
and counted when an enter action was followed by an exit actions for the same driver. The results of
this analysis are presented in table 6.4.

Table 6.4: Amount of consecutive enter and exits pairs for models where this is possible.

enter
Planner | Category | Model | followed by | total enters

exit

1 9 4 460

17 17 714

TFD 8 0 187

2 9 1 1001

12 7 960

7 0 159

ENHSP 9 0 30

10 15 135

For both planners we could find instances where symmetrical states were reached and explored fur-
ther. Anytime this happens for the ENHSP planner this leads to a plan with larger value for the cost.
For TFD this is not necessarily the case, as the cost is measured by the makespan of a plan rather
than how many actions are included. However, when examining plans obtained by this planner it was
verified that in at least one case the execution of an enter and exit sequence lead to a plan with longer
makespan.

Another such action pair that leads to a symmetrical state are the two different turn actions. If a
train turns to one side and then back to another nothing has changed in the state but the increase of
the cost. In fact, turn actions should only be followed by a movement, as exiting a train or servicing
also does not make sense after a turn action. In those cases the turn action could be replaced by a
gap in the plan and thus it is not preferred that planners explore states resulting from such a sequence.
The results of how many times this occurs in plans for both planners can be seen in Table 6.5. Itis quite
surprising as it seems that for both planners it happens quite often that a turn action could have been
excluded from the plan. It should be mentioned that often the ENHSP planner does seem to rectify its
mistakes and inconsequential turns are removed by the time it decides on a final plan. However, this
finding this does indicate that time is spent exploring these symmetrical states, that should be spent on
exploration of alternative action sequences.

Table 6.5: Amount of times a turn action was not followed by a move action for several models.

turn not
Planner | Category | Model | followed by | total enters
move
6 15 46
TFD 1 7 30 75
3 4 81 143
ENHSP 4 6 51 51
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6.3.3. Recognising TUSS-specific symmetries

Besides symmetries that can be recognised from action definitions only, there is a deeper symmetry
that follows from the shunting yard layout. In this section we examine the parallel paths that trains can
take in the shunting yard layout and how the different paths could be treated more efficiently.

In our experiments we use a modified version the Kleine Binckhorst shunting yard in all problem files.
The trains described all contain one unit that is 80 metres long. The layout described in all PDDL prob-
lem files can be seen in figure 6.10. In this figure we also note for each track how many trains they can
fit at most.

Figure 6.10: Shunting yard layout usind for experiments in chapter 6. The layout is a slight modification of the Kleine
Binckhorst, which is a real shunting yard operated by NS in Den Haag, the Netherlands. The entry track is not represented, but
is connected on the bottom left. Next to each track is shown the amount of trains of 80m long fit on it.

In the problem instances used the trains arrive on the entry track located bottom left in the figure. From
the entry track they can move onto any of the tracks 52 to 59. All trains have to be serviced at either
track 61 or track 62, both of which can be reached directly via one of tracks 56 to 59.

The time it takes to reach either of the service tracks from the entry tracks is the same regardless
which of these tracks you move onto first. In fact these tracks are interchangeable in any path if we
assume the shunting yard is empty because all of them are connected to the same tracks on either
side. We refer to groups of tracks for which this is true as being in the same zone. The yard used for
our experiments contains 3 such zones, one containing tracks 53-55, another one containing tracks
56-58 and one containing both service tracks 61 and 62.

However, these symmetries are not guaranteed to hold for the whole duration of the search. If for ex-
ample track 56 is occupied the choice matters from the perspective of a train on the entry track. Moving
onto the occupied track 56 has a different impact on the overall state than moving onto either of the
unoccupied tracks 57 or 58.

Not considering these symmetries during search can negatively impact a planner’s performance. Such
planners will logically evaluate moving onto symmetrical tracks with the same score once it encounters
a fork in the road’. If one of these symmetrical states is explored further and the planner is not able to
select states or which the evaluation is lower than it was at the 'fork in the road’ it is wasting time.

We consider one such example where we look at how a julia planner A.2.5 which implements Ax search
and the h,4q heuristic [8]. We consider a problem instance for the shunting yard described in figure
6.10 where three trains, sit40, sit41 and sit42 arrive at the entry track in that order.

The planner was able to find an optimal plan where all trains take the most efficient route to a service
track and their respective parking tracks. During search, the planner performed 41 expansions to find
the following plan:
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move (train_s1t40, track_entry --> track_56)

move (train_slt41l, track_entry --> track_59)

move (train_slt42, track_entry --> track_58)

move(train_slt41, track_59 --> track_61_service)
service(train_slt41l, track_61_service)

move (train_slt41, track_61_service --> track_59)

move (train_s1t40, track_56 --> track_62_service)
service(train_slt40, track_62_service)

9: move(train_s1t40, track_62_service --> track_56)

10: move(train_slt42, track_58 --> track_61_service)

11: service(train_slt42, track_61_service)

12: move(train_slt42, track_61_service --> track_63)

13: park_different_tracks(train_slt4l, train_slt42, track_59, track_63)
14: park_different_tracks(train_slt40, train_slt41l, track_56, track_59)

0 N O U WN -

There are two moments which can be considered forks in the road’, the initial state and the state that
is reached after action 3. We examine both to understand how the track symmetries are handled by
the planner.

For the initial state, visually represented in figure 6.11, the evaluations can be seen in table 6.6. Based
on these evaluations there are 4 equally good actions to choose from, out of which moving train_slt40
onto track_56 is chosen. After performing this action the planner was always able to find a path evalu-
ated more favourably than this state was and thus this choice was never reconsidered.

The opposite was the case after the third action in the plan. A visual representation of the resulting
state is shown in figure 6.12 and the evaluations calculated for the resulting state are presented in table
6.7.

We can see that there are two cases in which symmetries could be exploited but are not, which leads
to inefficiency. As discussed before, tracks 61 and 62 are in the same zone and choosing one or the
other to move onto in this case does not make a difference. The planner decides first to explore the
state that arises after train_sit40 moves onto track_61. Later it regrets this decision and decides to
backtrack before choosing to move train_sit40 onto track_62. This leads to a nearly identical situation
down the line, one which the planner will again reject in favour of backtracking to the same ’fork in the
road’ of figure 6.7.

Starting from this state, at least 10 unnecessary expansions are performed solely due to the planner
not being able to exploit zonal symmetries of the shunting yard. When extending the h,44 heuristic
to not expand symmetrical states, fewer nodes are expanded during search. A small experiment was
performed to confirm this, the results of which are presented in table 6.8

Table 6.6: Heuristic evaluations for every movement possible in the initial state. Only train slt40 is able to move as it is the only
train not blocked by another. The heuristic correctly evaluates that taking any of the tracks 56-59 lead to the most efficient path
towards either of the service tracks

Action gl h f Expansi9ns after
action
move(train_slt40, track_entry —>track_54) | 1 | 21 | 22 0
move(train_slt40, track_entry —>track_52) | 1 | 21 | 22 0
move(train_slt40, track_entry —>track_56) | 1 | 18 | 19 40
move(train_slt40, track_entry —>track_59) | 1 | 18 | 19 0
move(train_slt40, track_entry —>track_55) | 1 | 21 | 22 0
move(train_slt40, track_entry —>track_58) | 1 | 18 | 19 0
move(train_slt40, track_entry —>track_57) | 1 | 18 | 19 0
move(train_slt40, track_entry —>track_53) | 1 | 21 | 22 0
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Table 6.7: Heuristic evaluations when choosing the fourth action in the plan. Two cases in which symmetrical states are
explored leading to 10 unnecessary expansions solely due to not recognizing symmetries in the shunting yard.

Action gl h f Expansu_ms after
action
move(train_slt40, track_56 —>track_60) 4112 | 16 0
move(train_slt40, track_56 —>track_61_service) | 4 | 10 | 14 3
move(train_slt40, track_56 —>track_62_service) | 4 | 10 | 14 3
move(train_slt42, track 58 —>track_60) 4 | 11 |15 0
move(train_slt42, track_58 —>track_61_service) | 4 | 10 | 14 7
move(train_slt42, track_58 —>track_62_service) | 4 | 10 | 14 7
move(train_slt41, track 59 —>track_60) 4 |13 | 17 0
move(train_slt41, track_59 —>track_61_service) | 4 | 10 | 14 11
move(train_slt41, track_59 —>track_62_service) | 4 | 10 | 14 0
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Figure 6.11: Initial state in a simple problem for the modified Kleine Binckhorst layout with 3 trains.
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Figure 6.12: State which represents a fork in the road for the planner, for a simple problem for the modified Kleine Binckhorst
layout with 3 trains.
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Table 6.8: Number of expansions for regular and extended heuristic, showing performance improvement when pruning
symmetrical states.

Heuristic 3 trains | 4 trains | 5 trains
hadd 41 41 5642

haaqa With pe.nalty 23 31 559
for symmetrical states

6.3.4. Rush-to-service strateqgy

Service actions take the longest compared to all other actions in the models. One idea for a strategy
that can be implemented by planners is to try and occupy all service tracks as quickly as possible before
performing all other necessary movements.

To investigate the potential for this strategy we determine whether a pattern can be observed between
the amount of movements performed before all service tracks are occupied for the first time and the
makespan of the final solution. In Figure 6.13 we plot the number of initial movements against the
makespan of the final plan. In this figure we see a density scatter plot so that we can examine how
often a low number of initial movements leads to a shorter makespan.

Representation of a kernel-density estimate of
the number of plans per initial movements and makespans
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Figure 6.13: Density scatter plot to compare how the initial movements might predict that plan’s makespan.

If we follow the dense area we can see an upwards trend. However, there are still plans with relatively
short makespans found for a relatively large number of initial movements. What can be inferred is that
the shortest makespans are only found for a small amount of initial movements. These results indicate
that it is a viable strategy, although not guaranteed to lead to the best performance.

6.3.5. Preferences in parking tracks

In all models parking tracks are decided for each train based on that train’s priority and a tracks prox-
imity to the entry track, which we call that track’s entry distance. When taking two trains, the one with
lower value for its priority needs to be parked either on the same track in front of the other train or on
a different track with the same or smaller entry distance than where the higher priority train is parked.

In some models the entry distances are made unique. With this a preference is implied regarding the
order in which each track will be used for parking. In general indicating a preference beforehand can
lead to pruning of the search space and thus might increase efficiency, following a similar concept to
the exploitation of symmetries discussed in the previous section.

However, if this preference for parking order is ignored in heuristic evaluations this may lead to inef-
ficiency for the modified Kleine Binckhorst layout specifically. A notable property of this layout is that
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the trains need to move over the best parking tracks to reach the service tracks. After the lower priority
trains have been serviced they might come to find that the parking track they strongly prefer is already
occupied by a higher priority train that still needs to be serviced.

To illustrate this we ran some experiments on a simplified version of the shunting yard used for the
experiments in chapter 6, which is shown in figure 6.14. Because of the limited parking space on this
small shunting yard it is more likely that trains are inhibiting one another from reaching their goal.

We run a small experiment using a julia planner A.2.5 which implements Ax search and the k.44 heuris-
tic [8]. This planner solves two different problem instances with three trains. In one instance the entry
distance of track 57 is smaller than that of track 58, and therefore strongly preferred by lower priority
trains whereas in the other instance the entry distances are set to be equal.

The different values for entry distance between the two cause only slight differences in heuristic evalu-
ations. For the problem instance with unique entry distances the lowest priority value train, train_sit40,
must be parked on track 57. Because not all trains fit on one single track, both tracks will be used for
parking which means that the lowest priority train must be on the track with the lower entry distance
between the two.

The results of solving both problem instances are presented in table 6.9. It is clear that with unique en-
try distances the planner was less efficient. There was one state in particular which caused problems,
which is visually represented in figure 6.15.

Up until this point evaluations for each state were exactly the same and thus this state was reached
in the same number of expansions. The evaluations in this state for both problem instances are pre-
sented in table 6.10. Both planners first choose to move train_sit41, and later reconsider this choice
and include the bottom action in their plan instead. However, the precomputed heuristic evaluation for
this action is higher for the problem instance with unique entry distances, which means that the planner
takes more expansions before reconsidering taking this decision.

Interesting to note is that choosing the action move(train_slt41, track_62 —>track_57) can lead to an
optimal solution if both tracks 57 and 58 are equally preferred as a parking track. Ironically, indicating a
strong preference for track 57 leads to precomputations that cause problems only if a strong preference
for track 57 exists.
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Figure 6.14: Simplified version of the Kleine Binckhorst shunting yard layout which uses only a subset of the original tracks.
Because of the few parking tracks conflicts arise more easily.

Figure 6.15: State in which the planner starts to move down a dead end. Trains slt40 and slt41 have been serviced, slt42 still
needs to visit either of the service tracks.
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Table 6.9: Results for solving two problem instances with 3 trains on the simplified Kleine Binckhorst shunting yard. The
parking configuration was the same for both but the planner was able to arrive to the solution sooner in the problem.

Problem instance | Expansions Parking track: | Parking track: | Parking track:
train_slt40 train_slt41 train_slt42
equal entry dist. 21 track_57 track_57 track_58
unique entry dist. 54 track_57 track_57 track 58

Table 6.10: Evaluations for the same state for different problem instances. For both instances the planner chooses to move
train_slt41, but in the equal entry distance problem the planner reconsiders this choice sooner and is able to waste less time.

. Evaluation | Expansions | Evaluation | Expansions
Action - .
equal ed. equal ed. unique ed. | unique ed.
move(train_slt41, track_62 —>track_58) 58 0 34 1
move(train_slt40, track 61 —>track_58) 34 0 54 0
move(train_slt41, track_62 —>track_57) 30 2 30 36
move(train_slt40, track_61 —>track_57) 30 5 34 5

6.4. Conclusions

We set up experiments with several planners and many TUSS models written in PDDL to determine
the best performing planner-model pair, which simplifications improved performance and any areas of
improvement for the analysed planners.

First we compared the performance of all planner-model pairs. The best performing planner is Tempo-
ral FastDownward (TFD), using either Model 3 or Model 16 from category 3. Both models are temporal
and model exact train locations. Model 3 only contains movement and service actions. Model 16 does
contain driver objects and actions modelling the turning of trains. For both models TFD was able to
solve problem instances with up to thirteen trains. The next best performing planner was ENHSP, all
other planners performed significantly worse.

The impact of several simplifications were examined for results obtained by the two best performing
planners. The best temporal models coupled with TFD consistently outperformed the best results ob-
tained with numeric planners and models. TFD was able to perform better using models without switch
actions and where the exact locations of trains were kept track of. Defining strict preferences for park-
ing locations had a significant negative impact on performance. For the other simplifications there is
no concrete evidence whether they impact the performance positively or negatively.

The second-best planner, ENHSP, was able to perform best for models with exact train locations, in-
cluding turns and without driver objects. Similar to TFD, the performance significantly worsened when
switch actions were included or strict parking preferences were defined.

Lastly, we examined the contents of the plans created by planners to identify any areas of improve-
ment. We found that the planners we compared are not able to correctly identify and prune symmetrical
states. Neither symmetries in state values nor in the shunting yard layout were handled optimally. Fur-
thermore, we identified that planners which more evenly distributed service tasks across the available
service tracks were able to produce plans with shorter makespans. In the plans obtained using our
experiments it was more likely to find shorter makespans if fewer movement actions were performed
before all service tracks were occupied. Lastly we identified that strict preferences for parking tracks is
more likely to negatively influence performance when planners are not able to anticipate on this when
looking far ahead from a state.



Train Order Preserving Search

When examining the contents of the plans obtained by experimentation we found how several aspects
of the TUSS models were not handled optimally by the model-independent planners. However, many
properties of the PDDL models and planners were convenient, such as the filtering of unavailable
actions from each state and how the planning problem is organised in a search tree. In this section, we
explore how we can improve an existing planner, leveraging the beneficial features but modifying the
search algorithm and heuristic evaluation to handle TUSS-specific complexities better. As a result we
present a TUSS-model-dependent PDDL planner called Train Order Preserving Search (TOPS). This
planner prioritises actions that help either attain or maintain the departure order of trains included in
the problem instance.

First, we motivate our choice of planner to be modified and explain what properties are kept the same.
Next, we explain our modifications to the search algorithm and heuristic evaluation. Finally, we compare
how TOPS performs compared to the best planners found after experimental analysis in Chapter 6.

7.1. Planner to be modified

Because of time constraints we choose to modify the SymbolicPlanners [56] package written in julia
[6]. Although the performance with this package on the TUSS models was poor compared to others, it
is most easily modified since the code for heuristic evaluations for all other planners was provided as
a compiled package. The code for SymbolicPlanners is open-source and available on Github and is
more easily modified.

This package includes either a forward or a backwards search function and several different heuristics.
We choose to modify the forward search function, which is an implementation of weighted A* search
because this is most commonly found in other PDDL planners. This is combined with a custom devel-
oped heuristic.

The planner selected for modification is a numeric planner and thus only is able to handle numeric
models.

7.2. Search algorithm

As mentioned before, the TOPS planner uses a modified version of the A* search algorithm. Several
modifications are introduced to improve search-space pruning, inspired by the experimental results
from model-independent planners. We add mechanisms to recognise and prune symmetrical states.
In sections 6.3.2 and 6.3.3 we identified that other planners did not prune states that were already
encountered and did not recognise which tracks in a shunting yard lead to similar paths. The modifica-
tions introduced in TOPS will ensure that these symmetries are pruned correctly.

Moreover, we introduce the following three rules:

1. When a service action is available it is the only action considered
2. If not all trains can be parked, no park action is considered

52
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3. If all trains can be parked, it is only allowed to execute park actions

The motivation for each modification is discussed followed by the pseudo code of the resulting search
algorithm.

7.2.1. Pruning symmetrical states

In this sub-section we explain how we accomplish the pruning of symmetrical states. In the domains
the (total — cost) fluent is both the metric to be minimised and included in the state values.

During an expansion in our search algorithm the first step is to remove this fluent from the state and
it is stored separately. Nodes in the search tree consist of the state values without the cost fluent, the
value for the cost and the action sequence that lead to the state. This allows us to to compare two
nodes based on the states relevant to the configuration on the shunting yard and focus the search on
exploring new states.

7.2.2. Recognising zonal symmetries

In Section 6.3.3 we discussed what we call zonal symmetries and how they are not recognised by the
additive heuristic in the SymbolicPlanners package. To summarize, when two different tracks can fit
the same number of trains and are connected to the same set of tracks on either side, we consider
them to be in the same zone. When both tracks are empty, it does not matter which of the two tracks
a train moves onto.

Before search starts the shunting yard layout is analysed to determine which zone each track is in.
During expansion of a node the available grounded actions for the state in that node are identified. In
the action parameters the name of any unoccupied track is replaced by the name of the zone it is in.
Duplicate grounded actions are ignored for the next expansion.

7.2.3. Parking and service rules

Service actions are made mandatory because rarely if ever a situation occurs where it is beneficial
for an unserviced train to wait on a service track. The planner can never backtrack to a state in which
a train has just moved onto a service track, which means that a small part of the search space is pruned.

Only collective parking is allowed out of concern that the planner needs to backtrack far to recon-
sider the decision to park a train. This modification is included to simulate the functionality of derived
predicates, where in each state it is verified whether all sub-goals have been achieved. Once all trains
can be parked only park actions are allowed to focus on producing a plan so that at least some solution
can be presented before search continues.

7.2.4. Pseudo-code
The pseudo-code for this search algorithm is presented below in algorithm 2.
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Algorithm 2 Modified A* search algorithm used in TOPS

1: given sinitial, T

2: Initialise OPEN

3: OPEN « (S'L'nitialaovo7 {})
4. while OPEN not empty do

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:

Neurrent < NOde with lowest priority in OPEN
if any service action in available_actions(neyrrent) then
filtered_available_actions + { first_service_action(available_actions(neyrrent))}
else
if all trains can be parked then
filtered_available_actions < { first_park_action(available_actions(neyrrent))}
else
filtered_available_actions + {}
for act; in available_actions(neyrrent) dO
if act; is movement & destination_track(act;) is empty then
replace nNamedestination_track(act;) with Nameone(destination_track(act;)
end if
if act; ¢ filtered_available_actions then
filtered_available_actions U {act; }
end if
end for
end if
end if
for act; in filtered_available_actions do
s; < act;(state(Neyrrent))
priority < f(s;)
cost <+ cost(Neyrrent) + cost(act;)
path «— path(ncurrent) U {aCti}
n; < (s, priority, cost, path)
if s; in T then
return n;
end if
if 3n; € OPEN for which state(n;) = s; then
if cost(n;) < cost then
next iter
end if
if cost(n;) > cost then
OPEN + OPEN \ {n;}
end if
else
OPEN U {n,}
end if
end for
OPEN < OPEN \ {ncuyrrent }

44: end while

If we more closely examine the steps in this algorithm:

nodes 7.

Step 6-8: If any service action is found it is mandatory to execute it.

Step 9-11: If all trains can be parked no other type of action is considered.
Step 12-21: Remove any actions for zonally-symmetric states.

» Step 1: In the problem definition we are provided with the inital state s;,,;:;o; and the set of goal

Step 24-28: The node contents are slightly different compared to regular A* search, we include
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the cost separately from the state.

» Step 29-31: Once we have reached a goal state we return the solution. In its original form A*
search terminates when the first solution is found although in this version the algorithm is extended
such that search continues.

» Step 32-39: If we have encountered another node wherein the same state is stored, we keep the
node with lowest cost. This is how symmetrical states are pruned.

+ Step 39-41: If we encounter a new state we add the node to the open list.

7.3. Order Preserving Heuristic

In this section we discuss the heuristic evaluation used in the TOPS planner. With this heuristic we
leverage contextual knowledge about TUSS problem instances to guide the search. The departure
order in a problem instance will be used to assign priorities, where the train that is set to depart first is
assigned the lowest value for priority. Based on these the heuristic will prefer moving trains with lowest
priority values towards their destination.

Furthermore we can easily determine the shortest paths to either service tracks or the entry track. This
can be used to determine the direction in which every train prefers to move. This in turn can be used
to identify states in which the preferred direction clashes for different trains, which is not at all what we
want.

Lastly, we analysed the plans obtained using model-independent planners and the insights from section
6.3.4 indicate that a rush-to-service strategy might lead to plans with shorter makespans.

The heuristic evaluation is divided into multiple penalty terms. The contextual knowledge we have
about TUSS problems informs us how to determine these. In the sub-sections we first discuss what
pre-computations are performed to be able to calculate the weighted_total_distance, ordering, and
service_capacity penalty terms. Next, we discuss the entry_track_occupation penalty, which is only
preferred in specific problem instances. All penalty terms are multiplied by weights, the values of which
were determined in preliminary experiments. Finally, we briefly discuss whether this heuristic evaluation
is admissible or not.

7.3.1. Pre-computations

To calculate some penalty terms we need to obtain certain knowledge about the TUSS problem instance.
We recall that the input consists of a description of a shunting yard layout and an arrival schedule. The
output contains a departure schedule and a list of required service tasks to be done for each train-unit
to be shunted. The input is formulated as an initial state, and the output is formulated as a set of goal-
states.

First we create a graph which represents a relaxation of the provided PDDL problem instance. In this
graph, nodes represent a track and arcs are drawn between tracks that are linked in the shunting yard
layout. All arcs have the same weight.

The goal state in the provided problem instance describes one or several desired orders in which trains
should exit the shunting yard. These configurations are used to infer a priority for each train. If one train
is always supposed to depart the yard earlier than another it will have a lower priority value assigned.

Moreover, the following properties are calculated for each track using the relaxed graph representation
of the shunting yard:

» The direction and distance to the closest service track
» The direction and distance to the entry track

Since this relaxation of the problem is often very easy to solve one can use any shortest-path algorithm
to extract the relevant information. We opt for Dijkstra’s algorithm [16].

These properties are used to calculate the penalty terms. If a train moves to a state for which the
distance to its destination is further away the heuristic will evaluate this state transition unfavourably.

7.3.2. Weighted total distance penalty

The idea behind the Weighted Total Distance penalty (WTD) is to penalise trains for moving away from
their sub-goals. Penalties are harsher for trains with lower priority values. Branches in the search
tree where trains increase their distance to their sub-goals should be considered only if there is no
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alternative, as it is very likely to require drivers to enter- and exit trains more often which increases the
cost and leads to a sub-optimal plan.

This penalty term makes use of the pre-computed distance values in the relaxed problem. For each
train we look up the the distance from its current location to the location of its next sub-goal. The sum
of distances of all trains make up the total distance penalties:

N

WTD = wd% Z(N—i—l—py-iorityt)*[xt * 2% (distservice(locy) + disteniry(locs)) + (1 — xy) * disteptry (locy)]
t (7.1)
= {1 if train ¢ is supposed to be serviced but has not been serviced yet (7.2)
0 otherwise
loc; = current location of train ¢, (7.3)
locs = location of the service track which is closest to train ¢ (7.4)

This penalty term increases any time a train moves farther away from its destination, which can either
be a service track or the entry track. Trains with lower priority values are penalised more harshly for
this than the others.

Preliminary experiments showed that penalising distances of un-serviced trains harsher compared to
serviced trains lead to better performance. This modification causes the planner to employ the rush-
to-service strategy where the first trains arriving on the entry track are moved to service tracks before
other actions are considered.

7.3.3. Blockage penalty

In the desired ordering in the goal state, no trains with higher priority values are uninhibited by those
with lower priority values. The BP term evaluates orderings that resemble the desired final ordering
more favourably. The aim is to explore areas of the state space where the lowest priority trains are
able to move most freely.

To calculate the B P we make use of the pre-computed preferred directions of each train in the relaxation
of the provided TUSS instance. For any train that cannot move in its preferred direction because it is
blocked by another train this penalty term is incremented. Train A is blocked by train B if either of the
following is true:

* A and B need to move in opposite directions but cannot do so without colliding

» A and B need to move in the same direction but the train with the higher priority value is in front
of the other train

ti tjFt;
o 1 if train ¢; is blocking ¢; in its preferred direction (7.6)
"] 0 otherwise '
1 if train t;’s priority value is higher than that of ¢;
Dij = . (7.7)
0 otherwise

7.3.4. Ordering penalty

Another approach to steer search towards ensuring the desired final ordering is done in the OP term.
In a state we want to incentivize the lowest priority trains to be closer to their sub-goal. However we
want to dis-incentivize the higher priority trains to move further away from their sub-goals to ensure
this.

To calculate the O P term we look up the distances of all trains to their sub-goals. These distances are
sorted by their values and then stored in the expected_distance array. In another array the distances are
sorted by the priority value of the corresponding train in the actual_distance array. If the actual_distance
is larger than the expected_distance, the OP is increased.

OP = Z max [(exp_dist(t) — act_dist(t)),0)] (7.8)
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7.3.5. Entry track occupation penalty

Whether or not to include this penalty depends on the input provided for a problem instance. Since
we modify a numeric planner there is no way to indicate the arrival times of trains in a schedule. If the
individual arrival times of incoming trains is spaced apart significantly, it makes more sense to perform
all required actions for a train before moving another onto the entry track.

However, in the opposite case where trains arrive practically at the same time, it is preferred to move
all trains onto the shunting yard to free up space for the next trains arriving at the entry track. In these
types of problem instances it would be beneficial to include the Entry Track Occupation (ETO) penalty

term
N

ETO = wcto» x (7.9)
t

(7.10)

_— 1 if train ¢ is on the entry track
"7 ) 0 otherwise

7.3.6. Admissibility

We recall the definition of an admissible heuristic to be one that never overestimates the actual cost of
an optimal plan.

The cost of TUSS plans are dominated by the amount of times a driver enters and exits a train, whereas
the heuristic value of OPH is determined by the train distances and amount of displaced trains. In
practice it becomes evident that the properties used to calculate OPH are indeed relevant to the total
cost of the resulting plan, as the performance of search is drastically improved over other heuristics.
However it is impossible to provide mathematical proof that the heuristic value will never exceed the
actual cost of an optimal plan, making the OP H heuristic inadmissible.

7.4. Analysing performance

Now that we have explained how the TOPS planner searches for plans it is time to compare its perfor-
mance to the best model-independent planner. First we explain the setup of experiments with which
we obtain results for the TOPS planner. Then we look at the results and compare performances of
TOPS and Temporal FastDownward on TUSS problems modelled in PDDL.

7.4.1. Experimental setup

Since the TOPS planner is an extension of the SymbolicPlanners package, it can only handle numeric
domains. Plans are produced for one simple and one more detailed model. The simple model only con-
tains movement and service actions, but the costs for turns are included in the effects of the movement
actions. The more detailed model has the same actions as the simple one, but also contains action
definitions describing walking to, entering, exiting and turning trains. Both models contain exact train
locations.

In Section 6.3.1 it was shown that planners which evenly distributed service tasks performed better
than planners which did not. Both models force the TOPS planner to alternate the location of service
tasks.

We use the same method of generating problem instances as in Section 6.1. Again we use the modified
layout of the Kleine Binckhorst shunting yard, the same scenario where trains arrive and have to depart
in the same order and all trains have to be serviced before being parked. The same time limits are set
for the TOPS planner as well as the post-processing routine

7.5. Results

To generate results we used two different configurations of TOPS, one including ETO penalty and one
excluding it. Both configurations were used to solve both the simple and detailed variations of the
problem instances described in the experimental setup in this chapter.
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Comparing TOPS performance to TFD
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Figure 7.1: Comparison of performance four configurations of TOPS and the best model-independent planner-model pair.
In Figure 7.1 we can clearly see that both regarding the makespans and the maximum solvable com-

plexity all configurations of TOPS significantly outperform the best planner-model pair found in Chapter
6.



Conclusion and Further Research

In this paper, we set out to explore how PDDL can be used to solve TUSS problem instances. First, we
examined how the matching, parking, routing, and servicing sub-problems could be integrated into a
detailed model. In this detailed model, we also investigated the inclusion of actions performed by train
drivers. We found that PDDL provides the necessary tools to describe solutions to all sub-problems
and driver actions. However, although possible, the features are not well-suited to model the matching
sub-problem, and when this is included in the detailed model, it negatively impacts both readability and
state size.

In addition to the description of a detailed model, we provided numerous ways in which TUSS aspects
could be simplified. When combined with a post-processing routine, including optimisation using a CP
solver, these simplified models produce plans with a similar level of detail to the detailed PDDL model.
Furthermore, we analysed how several domain-independent PDDL planners performed when solving
TUSS problem instances modelled in PDDL. After analysing performances for multiple planner-model
pairs, we identified that Temporal FastDownward was the best-performing planner. It consistently pro-
duced plans with shorter makespans and handled the most complex instances containing up to thirteen
trains. The next-best-performing planner was ENHSP, which was able to solve instances with up to
eleven trains. The worst-performing planners were OPTIC and the SymbolicPlanners package, which
were slightly outperformed by Metric-FF and Numeric FastDownward.

Performances per simplification were also analysed. We found that modelling exact train locations,
lenient parking preferences, and excluding switch actions significantly improves performance for most
planners.

The contents of plans obtained by our experiments were analysed to identify potential improvements
that could be applied in our new planner called Train Order Preserving Search (TOPS). We identified
that the model-independent planners did not handle symmetries optimally. It was worth attempting to
implement a strategy where the trains rush to fill service track capacity initially, and service tasks are
distributed as evenly as possible. These improvements were implemented in TOPS, combined with a
custom heuristic evaluation that aims to either obtain or preserve the order of trains in the departure
schedule.

This resulted in a TUSS-specific PDDL planner that significantly outperformed the best model-independent
planner. TOPS was able to solve instances with up to eighteen trains while producing plans with sig-
nificantly shorter makespans.

Due to time constraints, the search algorithm for one of the worst-performing planners was examined
because it was the easiest to modify. Examining the code of some of the better-performing planners
might provide other valuable insights into improving the performance of planners for the TUSS models.
This same planner was used as a starting point for the TOPS planner, also for convenience. It might
be interesting to explore implementing some ideas in one of the better-performing planners. The pre-
processing method for these planners might be one of the reasons for their better performance, and if
so, it would be a good idea to leverage that.

The solving method in TOPS is very promising as it is able to find high-quality plans for complex in-
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stances with very few expansions. However, we cannot compare its performance fairly to the current
state-of-the-art solving methodology. This is because the problem instances used for experimentation

in this thesis differ significantly and are less realistic. This might be an interesting idea to explore in
further research.
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Additional information regarding
experiments

A.1. Models

Below we provide a table per model category that contain all models of that category used in experi-
ments. We recall that models of category 1 and 2 include concurrent actions whereas category 3 and
4 do not. Models in category 1 and 3 describe train locations exactly whereas categories 2 and 4 use
relative locations.

Table A.1: Contents of all models in category 1

Model | Domain | Turns | Drivers Sw_itch W_alk Strict parking | Duplicate
actions | actions | preferences | sub-goals
1 1a no no no no no no
2 1a no no no no no yes
3 1b no no no no no no
4 1c no no no no yes no
5 1d no no yes no no no
6 2a yes no no no no no
7 2b yes no no no no no
8 2c yes no no no no no
9 3a no yes no no no no
10 3b no yes no no no no
11 3b no yes no no no yes
12 3c no yes no no no no
13 3d no yes no no yes no
14 3e no yes yes no no no
15 4a yes yes no no no yes
16 4b yes yes no no no no
17 5a no yes no yes no no
18 5b no yes no yes no no
19 6a yes yes no yes no no
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Table A.2: Contents of all models in category 2

Model | Domain | Turns | Drivers Sw.itch W.alk Strict parking | Duplicate

actions | actions | preferences | sub-goals
1 1a no no no no no no
2 1a no no no no no yes
3 1b no no no no no no
4 1c no no no no yes no
5 2a yes no no no no no
6 2b yes no no no no no
7 2b yes no no no no yes
8 3a no yes no no no no
9 3b no yes no no no no
10 3c no yes no no no no
11 4a yes yes no no no no
12 ba no yes no yes no no
13 5b no yes no yes no no
14 6a yes yes no yes no no

Table A.3: Contents of all models in category 3

Model | Domain | Turns | Drivers Sw.itch W_alk Strict parking | Duplicate

actions | actions | preferences | sub-goals
1 1a no no no no no no
2 1b no no no no yes no
3 1c no no no no no no
4 2a yes no no no no no
5 2a yes no no no no yes
6 2b yes no no no no no
7 2b yes no no no no yes
8 2c yes no no no yes no
9 3a no yes no no no no
10 3b no yes no no no no
11 3c no yes no no no no
12 1d no no no no no no
13 2d yes no no no no no
14 3d no yes no no no no
15 4a yes yes no no no no
16 4b yes yes no no no no
17 6a yes yes no yes no no
18 6b yes yes no yes no no
19 1e no no no no no no
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Table A.4: Contents of all models in category 4

Model | Domain | Turns | Drivers Sw.itch W.alk Strict parking | Duplicate

actions | actions | preferences | sub-goals
1 1a no no no no no no
2 1a no no no no no yes
3 1b no no no no yes no
4 1c no no yes no no no
5 1d yes no no no no no
6 2a yes yes no no no no
7 2b yes yes no no no no
8 2c no yes no no yes no
9 3a no no no no no no
10 3b no no no no no no
11 3c yes no no no no no
12 3d no no no no no yes
13 4a no yes no no no no
14 5a yes yes no yes no no

A.2. Planners
In this section we provide a short description of the planners compared in the experiments.

A.2.1. Temporal Fast Downward

The first version of Temporal Fast Downward (TFD) [18] participated in the temporal satisfycing track
of the 6th IPC in 2008. It uses the context-enhanced additive heuristic [25] which solves a hierarchy
of local solutions in order to estimate distances to goal states. In our experiments we use a modified
version of TFD v0.4 [41] which was entered into the IPC in 2014. This version supports domains that
are numeric and/or temporal.

A.2.2. OPTIC

The temporal planner called Optimizing Preferences and TIme-dependent Costs (OPTIC), developed
by Benton et al. [5] offers a new approach in which reasoning is done with plan quality metrics not
directly correlated to the total duration of a plan. This is relevant for domains in which plan quality
depends on the time each individual sub-goal is achieved rather than the total duration. The planner
builds upon techniques introduced in POPF, developed by Coles et al [13]. OPTIC introduces dummy
plan steps and MIP encodings of preferences combined with a preference-aware heuristic to compute
plans for numeric and/or temporal domains.

A.2.3. ENHSP

The Expressive Numeric Heuristic Search Planner (ENHSP) was developed by Scala et al [45]. The
planner supports many features, but preliminary results show best performance using weighted A*
search guided by the MRP extraction heuristic [47]. This heuristic notes how many times certain actions
need to be executed before a goal state is reached in a relaxation of the problem. This notation is then
used to better define sub-goals and helpful actions.

A.2.4. Metric-FF

Metric-FastForward (Metric-FF) is a numeric planner that uses a search function guided by a heuristic
function. The values of this heuristic are calculated by solving a relaxed version of the problem with
Graphplan [7] algorithm. The original problem is relaxed by modifying the effects of every action such
that once a value for a literal has been achieved it is never unset.

A.2.5. SymbolicPlanners
Developed in the programming language Julia [6], the SymbolicPlanners package [56] supports both
the forward and backwards A* search algorithm combined with the additive and maximizing heuristics,
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much like what is possible in the ENHSP planner but with different pre-processing. With this package
it is possible to compute solutions for numeric domains.

A.2.6. Numeric FastDownward

Numeric FastDownward (NFD) planner was the best performing in the numeric track of the most recent
IPC in 2023 [52]. It was originally developed by Aldinger et al in 2017 [3]. The most recent improve-
ments were made in symmetry breaking by Shleyman et al [49] and the linear numeric landmark-cut
heuristic by Kuroiwa et al [33]. Preliminary experiments showed that performance on TUSS models
was best using the symmetry-breaking DK S_A* search algorithm with the interval-relaxation-based
additive heuristic.

A.3. All experimental results

Below we present all results obtained for every planner-model pair analysed. Results for SymbolicPlan-
ners and OPTIC are omitted as they were never able to solve instances with more than 3 trains. The
same holds for Metric-FF and Numeric FastDownward and all models in category 4.

All results
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Planner: Temporal FastDownward
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Figure A.1: All results found for planner TFD and model category 1
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Figure A.2: All results found for planner TFD and model category 2
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Figure A.3: All results found for planner ENHSP and model category 3
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Figure A.4: All results found for planner ENHSP and model category 4
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Figure A.5: All results found for planner Metric-FF and model category 3
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Figure A.6: All results found for planner NFD and model category 3
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