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Abstract Remote sensing radar satellites cover wide areas
and provide spatially dense measurements, with millions of
scatterers. Knowledge of the precise position of each radar
scatterer is essential to identify the corresponding object and
interpret the estimated deformation. The absolute position
accuracy of synthetic aperture radar (SAR) scatterers in a 2D
radar coordinate system, after compensating for atmosphere
and tidal effects, is in the order of centimeters for TerraSAR-
X (TSX) spotlight images. However, the absolute positioning
in 3D and its quality description are notwell known.Here, we
exploit time-series interferometric SAR to enhance the posi-
tioning capability in three dimensions. The 3D positioning
precision is parameterized by a variance–covariance matrix
and visualized as an error ellipsoid centered at the estimated
position. The intersection of the error ellipsoid with objects
in the field is exploited to link radar scatterers to real-world
objects. We demonstrate the estimation of scatterer position
and its quality using 20months of TSX stripmap acquisitions
over Delft, the Netherlands. Using trihedral corner reflec-
tors (CR) for validation, the accuracy of absolute positioning
in 2D is about 7cm. In 3D, an absolute accuracy of up to
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∼66cm is realized, with a cigar-shaped error ellipsoid hav-
ing centimeter precision in azimuth and range dimensions,
and elongated in cross-range dimension with a precision in
the order of meters (the ratio of the ellipsoid axis lengths is
1/3/213, respectively). The CR absolute 3D position, along
with the associated error ellipsoid, is found to be accurate
and agree with the ground truth position at a 99% confi-
dence level. For other non-CR coherent scatterers, the error
ellipsoid concept is validated using 3D building models. In
both cases, the error ellipsoid not only serves as a quality
descriptor, but can also help to associate radar scatterers to
real-world objects.

Keywords 3D position · Geolocation · Geocoding ·
Geoposition · 3D position quality · Radar scatterer
positioning · Error propagation · Error ellipse · Error
ellipsoid · Target characterization

1 Introduction

Interferometric synthetic aperture radar (InSAR) has evolved
towards an effective tool for measuring the Earth’s topogra-
phy and surface deformation. Persistent scatterer interferom-
etry (PSI) is one of the techniques to process a set of images
in order to identify phase-coherent scatterers known as per-
sistent scatterers (PS) (Ferretti et al. 2001; Kampes 2005).
These PS are a random subset of scatterers in the imaged
scene, usually but not necessarily man-made objects, that
are phase-coherent over time. Displacement and location of
thesePSare estimated.The relative displacement is estimated
with millimeter-level precision, but the positioning precision
is usually in the order of decimeters or even meters. This
hampers the interpretation of the deformation signal, as it is
unclear which object is associated with the measurements.
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In previous studies (Small et al. 2004a; Schubert et al.
2010, 2012; Eineder et al. 2011) the absolute position-
ing capabilities of SAR systems were validated in the 2D
(azimuth and range) radar geometry by measuring the phase
center of CR with differential global positioning system
(DGPS) to centimeter accuracy and predicting their respec-
tive positions in the radar image. The absolute position
accuracy of ENVISAT (Small et al. 2004a, b, 2007) and
Sentinel-1A (Schubert et al. 2015) images were computed to
be in the order of several decimeters at best both in azimuth
and range directions. Recently, for TSX the absolute geo-
location accuracy after compensating for atmospheric and
tidal effects, was reported to be in the order of a few centime-
ters in azimuth and range directions (Schubert et al. 2010,
2012; Eineder et al. 2011; Balss et al. 2013). The accuracy
of PS heights was indirectly validated by Perissin (2008)
(for ERS and ENVISAT) and Dheenathayalan and Hanssen
(2013) (for ERS, ENVISAT and TSX), both by making a
digital terrain model (DTM) from smoothed PS heights and
comparing this with precise elevation data obtained from
airborne LiDAR. 3D positioning was presented for TSX
stereoSAR by Gisinger et al. (2015), and for PSI the absolute
3D positioning and quality assessment by Dheenathayalan
et al. (2013, 2014). In this paper we: (i) present a systematic
geodetic procedure to precisely estimate the position; (ii) per-
form error propagation to estimate the position quality, and
as a result, (iii) demonstrate the association of scatterers by
intersecting error ellipsoids to real-world objects.

This paper is structured as follows. Section 2 presents the
definition of different coordinate systems, and the sequence
of mapping operators used to estimate the position and
describe their stochastic properties. The discussions related
to computing the 2D and 3D positioning accuracy are
briefed in Sect. 3. The experimental setup to demonstrate our
approach is explained in Sect. 4. The 2D and 3D positioning
results for corner reflectors and other coherent scatterers are
presented in Sect. 5. Section 6 is devoted to the conclusions.

2 Scatterer positioning

Using a single SAR image, the position of a scatterer can only
be described in two dimensions, namely azimuth and (slant)
range. In order to estimate the third dimension, cross-range,
InSARobservations are necessary. The position of a scatterer
in the radar geometry (azimuth, range and cross-range) is
mapped to a 3DTRF (Terrestrial Reference Frame) reference
system using a non-linear transformation. This transforma-
tion, known as geocoding, is based on the range,Doppler, and
ellipsoid/digital elevation model (DEM) equations (Schreier
1993; Small et al. 1996).

However, the radar measurements are affected by several
secondary positioning components which impact the posi-

tion estimation, see “Appendix1”. Some of the secondary
positioning components and their magnitude of impact are
tabulated in Table1. Dominant terms such as atmospheric
delay, solid earth tides (SET), tectonics, and timing errors
(azimuth shift) can cause position errors ranging from cen-
timeters to even several meters. In the following, precise
scatterer positioning in radar, time, and geodetic coordinate
systems and their transformations are discussed, including
error propagation. In each case, a quality description is pro-
vided to summarize the positioning error comprising the
impact of the dominant secondary positioning components.

Scatterer positioning is the procedure that maps a position
in radar image coordinates (dimensionless sample units) to
a corresponding position in a TRF, an Earth-centered Earth-
fixed reference system (datum) with units in meters. This
mapping procedure is subdivided into a number of steps.
We apply a standard Gauss–Markov approach, where we use
the output estimators of the previous mapping step as input
observations for the subsequent step. This facilitates error
propagation, quality assessment and control. In the end, this
leads to an estimated position in a (Cartesian) TRF,with units
in meters, as well as associated “precision” expressed via the
variance–covariance (VC) matrix of the estimator.

2.1 The dimensionless 2D radar datum

The initial amplitude measurements refer to a target, or scat-
terer, in the focused radar image. The local two-dimensional
datum is expressed in pixels in range and azimuth, with sam-
ple units. The origin of the datum is the location (0, 0)1 for
range and azimuth, respectively. To determine the estimated
sub-pixel position (μP , νP ) of target P in range and azimuth
direction, respectively, themeasurement involves reconstruc-
tion of a sinc-function (Cumming and Wong 2005), by
performing complex fast Fourier transform (FFT) oversam-
pling and detecting the sub-pixel location of the target by
finding the maximum peak. This peak position represents
the effective phase center of the radar scatterer. In case of
an isolated ideal point scatterer, such as a trihedral corner
reflector, the effective phase center is the apex of the reflec-
tor. But, in a complex urban environment, containing many
dominant scatterers, depending on the distribution of scat-
terers, the effective phase center may be less well-defined
geometrically.

2.1.1 Quality description

The quality of the sub-pixel position is dependent on (i) shift-
ing of the peak position due to clutter or more than one
dominant scatterer, a function of the signal-to-clutter ratio
(SCR), and (ii) the oversampling factor �. Therefore, the

1 Represents the lower-left corner of the pixel.
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Table 1 Secondary positioning
components, and their impact in
azimuth and range directions for
TSX images in Balss et al.
(2013), Dheenathayalan et al.
(2013)

Secondary positioning components Impact in Azimuth Impact in range

Azimuth shift dm to cm Nil

Path delay (iono+ tropo) Nil m

Solid earth tides cm dm

Tectonicsa dm dm

Atmosphere pressure loading mm <cm

Ocean tidal loading mm <cm

Pole loading mm mm

Ocean pole tides mm mm

Atmosphere tidal loading mm mm

Dominant terms are highlighted in bold, see “Appendix1” for an in-depth discussion on these terms
a Depending on the time of acquisition relative to the reference epoch of the local reference frame

variance of the peak (in azimuth or range) position estimate
of a target P in i th image can be approximated as:

σ 2
μP,i

= σ 2
ν P,i = 3

2 · π2 · SCRP,i
+

(
1

�P,i

)2

12
, (1)

where the first term of the above equation provides the
Cramér–Rao Bound for a change in peak position due to
clutter in a given single look complex (SLC) image (Stein
1981; Bamler and Eineder 2005). The SCR value is the ratio
between the peak intensity and the background, calculated
by averaging the intensity values in the oversampled area
excluding the cross-arm pattern produced by the side lobes
of the scatterer of interest. The second term in Eq. (1) repre-
sents the error due to quantization introduced by a chosen
oversampling factor (Bennett 1948). Increasing the over-
sampling factor does not necessarily always yield a better
sub-pixel position, there is a saturation point beyond which
the position does not improve significantly for any significant
increase in oversampling factor. In addition to oversampling,
an optional 2D quadratic interpolation is usually performed
for computational efficiency (Press et al. 1992).

The observed subpixel position is considered to be unbi-
ased, (μP , νP ) = E{μ

P
, νP }, with its quality expressed

by the pixel variances from Eq. (1) in range and azimuth,
(σ 2

μ, σ 2
ν ), where E{·} is the expectation operator and the

underline (e.g., μ
P
, νP ) denotes that the quantities are

stochastic in nature. The range and azimuth position obser-
vations are considered to be uncorrelated, as they are derived
independently.

2.2 Transformation to the temporal 1D radar datum

The first mapping operator transforms the pixel-positions to
time-units. Slow-time (azimuth direction), t , and fast-time,
τ , refer to the azimuth and range timing, respectively (Bam-
ler and Schättler 1993), but the time coordinate is inherently
one-dimensional. The absolute time in the satellite system is

given by the onboard GPS receiver. GPS time is an atomic
time scale, however, not identical to the universal time coor-
dinated (UTC). The transformation from GPS time to UTC,
e.g., leap seconds, is implemented in the Level-1 SAR data
processing chain or in the GPS instrument. The UTC time,
annotated in the SAR header files, is usually provided with a
resolution of onemicrosecond2 [ENVISAT (Kult et al. 2007)
and TSX/TDX (Fritz 2007)].

The internal relative timing for radar positioning requires
more precise numbers.3 The relative time is obtained from the
local oscillator (Massonnet and Vadon 1995). This relative
time determines the sampling window start time (SWST),
also known as the near-range time τ 0, the sampling fre-
quency, which determines the pixel spacing or posting, and
the pulse repetition frequency (PRF) or pulse repetition inter-
val (PRI).

The mapping from the pixel coordinates (μ
P
, νP ) to the

fast (τμP
) and slow (tνP ) time coordinates can be expressed

as, see Fig. 1,

τμP
= τ 0 + μ

P
· �τ (2)

tνP = t0 + νP · �t, (3)

where t P = tνP + τμP
is the time of receiving the zero-

Doppler signal corresponding to target P , t0 is the time of
emitting the first pulse of the (focused) image, tνP is the time
of emitting the pulse that contains P in the focused image
(azimuth time), τ 0 is the time to the first range pixel, or
SWST, �t = PRI = PRF−1, and �τ = f −1

s is the range
sample interval, the inverse of the range sampling frequency
(RSF).

2 In case of TSX and TDX (TanDEM-X), an additional parameter
record namely ‘timeGPSFraction’ provides seconds with up to 19 sig-
nificant digits.
3 Timing expressed in seconds with 10−10 (for ENVISAT) up to 10−20

(for TSX) significant decimal digits.
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Fig. 1 Slow (t) and fast (τ ) time coordinates

2.2.1 Quality description

The quality of the time-units in Eqs. (2) and (3) is depen-
dent on (i) the absolute time given by GPS, and (ii) the local
oscillator. The observed fast and slow time coordinates of a
scatterer are given by linearizing Eqs. (2) and (3) with initial
values (to0 , νoP ,�to, τ o0 , μo

P ,�τ o):

σ 2
τμP

= [
1, �τ o, μo

P

]
⎡
⎣

σ 2
τ0

σ 2
μP

σ 2
�τ

⎤
⎦[

1, �τ o, μo
P

]T

(4)

σ 2
tνP

= [
1, �to, νoP

]
⎡
⎣

σ 2
t0

σ 2
νP

σ 2
�t

⎤
⎦ [

1, �to, νoP

]T
, (5)

where σ 2
t0 is based on the quality of the absolute timing from

GPS, and pixel variances (σ 2
μP

, σ 2
νP
) are given by Eq. (1).

σ 2
�t , σ

2
�τ , and σ 2

τ0
represent the respective variances of PRF,

RSF, and SWST given by the local oscillator, which in fact
may cause some local cross-correlation. For now, we assume
this cross-correlation is absent. The quality of the observed
slow and fast time coordinates is influenced by the accuracy
and precision of timing information provided in themetadata.

Recently, Marinkovic and Larsen (2015), Bähr (2013)
reported a systematic frequency decay of the ENVISAT
ASAR instrument which was claimed to originate from the
deterioration of local oscillator performance over time. This
could introduce a time-dependent-timing error, and as a
consequence the time coordinate and positioning capability
would drift over time. If this drift is known a priori, it can
be compensated, otherwise it has to be estimated empirically
over a period of time using calibration targets. In that case, a
time-dependent-timing-calibration is mandatory.

2.3 Transformation to the geometric 2D radar datum

The secondmapping operator transforms the time coordinate
tP or its 2D equivalent (τμP , tνP ) for point P to distances
in range and azimuth, (r, a), respectively. To discriminate
between time and space, we refer to these coordinates
as range-distance, r and azimuth-distance, a, acknowledg-
ing the pleonasm. The coordinate system has its origin in
the phase center of the antenna. The range distance rP is
expressed as

r P = v0

2
·
(
τμP

+ τ sys

)
+ r ε,

= v0

2
·
(
τ 0 + μ

P
· �τ + τ sys

)
+ r ε, (6)

where v0 is the velocity of microwaves in vacuum, τ sys
is an offset representative of unmodeled internal electronic
delays in the system, and r ε represents the secondary posi-
tioning components in range with E{r ε} �= 0. Note that the
atmosphere is not vacuum, but the true velocity along the path
is unknown. Therefore, we use v0 instead of the mean prop-
agation velocity v (incorporating potential bending effects
along the path between the antenna phase center and the
target) of the radio signal. Also, in practice, τ sys is either
not known and/or not explicitly given in the metadata. Fre-
quently, during the commissioning phase of the mission, the
process of Eq. (6) is inverted: instead of deriving r Q from
accurate timing measurements, r Q is empirically measured
from some calibration target Q, τμQ

is measured in the com-
missioning phase, and a correction bias τ sys is estimated,
often even using v0, instead of the actual velocity v. From
inverting Eq. (6)

τ sys = 2 · r Q
v0

− τμQ
, (7)

is estimated and hence Eq. (6) becomes

r P = v0

2
·
(

τ 0 + μ
P

· �τ + 2 · r Q
v0

− τμQ

)
+ r ε . (8)

Then, instead of explicitly stating this correction factor in the
metadata, the timing information may be corrected directly
during the generation of the product annotations. Such cor-
rections were described for the case of ENVISAT by Small
et al. (2004a) and Dheenathayalan et al. (2014).

This also holds for the distance from the radar antenna
phase center to the instantaneous center-of-mass (CoM) of
the satellite, and the position of the independent positioning
device (GNSS receiver, retro-reflector, or equivalent device).
For highly accurate positioning (geo-localization) of targets,
the reported state-vectors should point at the antenna phase
center. However, conventionally the state-vectors are defined
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to the CoM of the satellite, which may shift during the life-
time of the mission due to depletion of consumables. Even
if the CoM was once calibrated at the start of the mission, a
mismatch (as a drift over time) should be given due consider-
ation during the lifespan of the mission. Similarly, variability
of τ sys over time should be considered due to aging effects
of the electronics on board.

From “Appendix1”, we know that the slant range mea-
surement also includes the secondary positioning compo-
nents such as path delay, tectonics and SET. Therefore, the
range position r P in Eq. (8) can be written as:

r P = v0

2
·
(

τ 0+μ
P

· �τ + 2 · r Q
v0

− τμQ

)
+ rpdP + r tectP + r setP ,

(9)

where rpdP , r tectP , and r setP are the modeled position correc-

tion factors in range. σ 2
rpdP

, σ 2
rtectP

, and σ 2
rsetP

(see “Appendix
1”) are their respective a priori variances.

Now in the along-track dimension, the geometric azimuth
distance aP is expressed as:

aP = vs/c · (tνP + t sys) + aε,

= vs/c · (t0 + νP · �t + t sys) + aε, (10)

where vs/c is the local velocity of the spacecraft, t sys is
an offset due to instrumental timing errors, and aε repre-
sents the secondary positioning components in azimuth with
E{aε} �= 0. t sys is also estimated and corrected during the
commissioning phase to yield

aP = vs/c ·
(
t0 + νP · �t + aQ

vs/c
− tνQ

)
+ aε, (11)

where aQ , and tνQ are the respective azimuth position, and
the timing information measured empirically from the cali-
bration target Q, similar to the range components in Eq. (7).
Radar satellites are often yaw or zero-Doppler steered, and
the raw data is then focused to produce a SLC image. In this
study, the offsets emanating from the Doppler (usually zero-
Doppler) image processing (SAR focusing) are assumed to
be already compensated by the processor during focusing
and hence not considered.

From “Appendix1”, the azimuth measurements are influ-
enced by timing, tectonics and SET. Then, Eq. (11) can be
rewritten by:

aP = vs/c ·
(
t0 + νP · �t + aQ

vs/c
− tνQ

)
+ ashiftP

+ atectP + asetP , (12)

where ashiftP , atectP , and asetP are the modeled position cor-
rection factors in azimuth and σ 2

ashiftP
, σ 2

atectP
, and σ 2

asetP
are

their respective a priori variances.

2.3.1 Quality description

The observed range and azimuth distances are (r P , aP ), with
their quality expressed by the variances in range σ 2

rP and
azimuth σ 2

aP with initial values (τ o0 , μo
P , �τ o, τ osys, vos/c, t

o
0 ,

νoP , �to, tosys) determined by:

σ 2
rP = α · A · αT (13)

σ 2
aP = β · B · βT , (14)

where α = [
v0
2 , v0

2 · �τ o, v0
2 · μo

P , v0
2 , 1, 1, 1

]
, β =[

to0+νoP ·�to+tosys, v
o
s/c, v

o
s/c · �to, vos/c · νoP , vos/c,1,1,1

]
, and

diagonalmatricesA, andBwith entries
[
σ 2

τ0
, σ 2

μP
, σ 2

�τ , σ
2
τsys

,

σ 2
rpdP

, σ 2
rtectP

, σ 2
rsetP

]
, and

[
σ 2

vs/c
, σ 2

t0 , σ 2
νP

, σ 2
�t , σ 2

tsys , σ 2
ashiftP

,

σ 2
atectP

, σ 2
asetP

]
, respectively. The range and azimuth distance

estimates are considered to be uncorrelated, neglecting any
covariance as a result of timing, and other common error
sources.

2.4 Transformation to the geometric 3D radar datum

Range, azimuth, and cross-range4 distances form a 3D
orthogonal Cartesian coordinate system in a radar geome-
try as shown in Fig. 2. With a single SLC image, the third
dimension, namely cross-range (c) cannot be derived, but
interferometric SAR observations can be utilized to estimate
it. Therefore, unlike azimuth and rangedistances, cross-range
distance is expressed relative to a spatial (reference point R)
and a temporal (reference master image M) reference.

Based on Fig. 3, the cross-range component is estimated
from the change in look-angle θ PR , and the distance between
the sensor and the scatterer r P (from Eq. (9)). The change in
look angle θ PR is estimated from the interferometric phase
change. Under the far-field approximation (Zebker andGold-
stein 1986), the cross-range becomes

cP = r P · θ PR,

= − λ

4π

r P
B1 cos(θ R′ − α1)

φ
PR,1

,

= − λ

4π

r P
B⊥,1

φ
PR,1

, (15)

where λ is the radar wavelength. B1, B⊥,1, φPR,1
, and α1 are

the baseline, perpendicular baseline, the unwrapped interfer-

4 This is also sometimes called elevation in the literature, even though
it is not in the vertical direction.
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Fig. 2 3D radar geometry: range (r), azimuth (a), and cross-range (c)
dimensions

Fig. 3 Cross-range (c) component estimated from interferometry. R
is the reference point and P is the scatterer of interest. The reference
surface can be considered to be either a flat surface (as drawn here),
an ellipsoid, a geoid, or a topographic surface represented by a DEM.
Symbols are explained in the text below

ometric phase, and the baseline angle between a master M
and slave S acquisition, respectively.

Each interferometric pair provides a derived observation
of change in look-angle (θ PR) [(Hanssen 2001), pp. 34–
40]. When a radar scatterer is measured from a stack of
m repeat-pass acquisitions with different baselines

[
B⊥,1,

B⊥,2, . . . , B⊥,m−1

]
, then θ PR and hence ĉP and its preci-

sion σ 2
ĉP

can be better estimated using BLUE (best linear
unbiased estimation) (Teunissen et al. 2005):

ĉP = x̂(1) and σ 2
ĉP

= σ 2
x̂ (1, 1),with

x̂ = (GT Q−1
y G)

−1
GT Q−1

y y and σ 2
x̂ = (GT Q−1

y G)
−1

,

(16)

given the following functional and stochastic models with
initial values (roP , Bo⊥,1, B

o⊥,2, . . . , Bo⊥,m−1),

E

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ
PR,1

φ
PR,2
.
.
.

φ
PR,m−1
B⊥,1
B⊥,2

.

.

.

B⊥,m−1
r P

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
y

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4π ·Bo⊥,1
λ·roP−4π ·Bo⊥,2
λ·roP
.
.
.

−4π ·Bo⊥,m−1
λ·roP

1
1

. . .

1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
G

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cP
B⊥,1

B⊥,2

.

.

.

B⊥,m−1

rP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x

and diagonal (considering negligible covariance) matrix

D{y} = Qy

with entries
[
σ 2

φPR,1
, σ 2

φPR,2
, . . . , σ 2

φPR,m−1
, σ 2

B⊥,1
, σ 2

B⊥,2
,

. . . , σ 2
B⊥,m−1

, σ 2
rP

]
, (17)

where D{·} is the second moment, σ 2
rP is given by Eq. (13),

and
[
σ 2

φPR,1
, σ 2

φPR,2
, . . . , σ 2

φPR,m−1

]
is from interferometry.[

σ 2
B⊥,1

, σ 2
B⊥,2

, . . . , σ 2
B⊥,m−1

]
represents the baseline quality

due to orbit inaccuracies in (m − 1) interferometric pairs,
which are derived from the precision of the satellite state-
vectors in 3D.

2.4.1 Quality description

The quality of the range σ 2
rP and azimuth σ 2

aP distances is
derived as explained in Sect. 2.3. The cross-range precision
σ 2
ĉP

depends on: (i) sub-pixel positions (of both reference
point R and scatterer P); (ii) temporal phase stability of the
reference point R; (iii) phase unwrapping; (iv) the number of
images; (v) the perpendicular baseline distribution, and (vi)
phase noise. In this work, (i) and (ii) are handled, while (iii)
is assumed to be error-free, and factors (iv) to (vi) are subject
to data availability and not discussed here.

Sincewe use PSI to obtain the cross-range component, our
3D position estimates viz. range, azimuth, and cross-range
are relative in nature. Therefore, the secondary (azimuth and
range) positioning components are applied with respect to a
master image. In order to obtain the absolute 3D position for
scatterers, we choose a scatterer with known 3D position as
reference point during PSI processing. Then, from Eqs. (13),
(14), and (16), the uncertainty in positioning a scatterer P
in 3D radar geometry is expressed using the following VC
matrix:
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Qrac =
⎡
⎣

σ 2
rP

σ 2
aP

σ 2
ĉP

⎤
⎦ . (18)

From this VC matrix, the 3D position error ellipsoid per
scatterer can be drawn. Though the error in azimuth and range
positions will have some influence in cross-range estimation,
in our study, the error covariances are assumed to be negligi-
ble and hence the 3DVCmatrix is considered to be diagonal.

2.5 Transformation to the ellipsoidal 3D TRF datum
and national/local 3D coordinate system

The position of a scatterer in the 3D radar geometry (rP , aP ,

cP ) is transformed to a 3D TRF reference system expressed
in (xP , yP , zP ) using a non-linear mapping transformation
known as geocoding. It is described by the following equa-
tions (Schreier 1993; Small et al. 1996; Hanssen 2001):

Doppler: Vs/c(aP ) ·
(

P − S(aP )

|P − S(aP )|
)

− λ

2
· f

D
(aP ) = 0,

(19)

Range: (P − S(aP )) · (P − S(aP )) − r2P = 0, (20)

Surface parallel to the reference ellipsoid:

x2P
(l + HP )2

+ y2P
(l + HP )2

+ z2P
(b + HP )2

− 1 = 0, (21)

Height of scatterer P above reference surface and its variance:

HP = HR + ĉP · sin(θinc,P ), (22)

σ 2
HP

= σ 2
HR

+ σ 2
ĉP

· sin(θinc,P )2, (23)

where bold-faced parameters represent vectors, HR is the
position (height above reference surface) of the reference
point R (see Fig. 3), and its variance σ 2

HR
. P = [xP , yP ,

zP ]T is the position of scatterer in TRF, θinc,P is the inci-
dence angle at P , and f

D
(aP ) is the Doppler frequency

while imaging scatterer P at azimuth position aP . For prod-
ucts provided in zero-Doppler annotation, f

D
(aP ) = 0.

S(aP ) = [sx (aP ), sy(aP ), sz(aP )]T , and Vs/c(aP ) =
[vx (aP ), vy(aP ), vz(aP )]T are the respective position and
velocity vectors of the spacecraft at the instant of imaging
scatterer P at aP during the master acquisition. l and b are
the semi-major (equatorial) and semi-minor (polar) axis of
the reference ellipsoid, respectively.

Optionally, to ease identification and visualization of scat-
terers at object level, the 3D TRF coordinates (xP , yP , zP )
are further transformed into a national or local reference coor-
dinate system (Fig. 4). This national or local 3D Cartesian
coordinate system is usually defined by coordinates East (e),
North (n) and Up or Height (h). Here, we project the 3D
TRF coordinates using a procedure called RDNAPTRANS

Fig. 4 Transformation from radar to map geometry

(de Bruijne et al. 2005) into the Dutch National Trian-
gulation system RD (‘Rijksdriehoeksstelsel’ in Dutch) and
vertical NAP (‘Normaal Amsterdams Peil’) reference sys-
tem, denoted as RDNAP. This procedure includes the usage
of geoid model for the vertical component. After transform-
ing to RDNAP coordinates, we used a local origin in the area
of interest, and considered X(RD) as East, Y(RD) as North,
and NAP as Up/Height components.

2.5.1 Quality description

The 3D position uncertainity in radar measured by the VC
matrix Qrac can be propagated to map geometry Qenh by
Monte Carlo simulation, linearization of the geocoding (see
Eqs. (19)–(22)) and projection (de Bruijne et al. 2005) steps,
or in a geodetic manner by computing the transformation
parameters between the radar and map coordinate systems.
The geocoding, and projection steps form a complex non-
linear process, thus the error propagation is not performed by
linearization. Monte Carlo simulation based approaches are
not preferred as they are relatively time consuming to apply
for several (e.g., to millions of) scatterers in a radar image. In
this paper, we use the geodetic approach for error propaga-
tion. We know that the geocoding and subsequent projection
steps provide point clouds in both the radar [ai , ri , ci ] and
local map [ei , ni , hi ] coordinates, ∀i ∈ {1, 2, . . . , N } scat-
terers. Therefore, the available point clouds in both radar and
local map coordinates are exploited to form the following
S-transformation (Baarda 1981):
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E

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1
n1
h1
...

eN
nN
hN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= F

⎡
⎣
d3×1

− − −
vec{R3×3}

⎤
⎦

with F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 r1 a1 c1 0 0 0 0 0 0
0 1 0 0 0 0 r1 a1 c1 0 0 0
0 0 1 0 0 0 0 0 0 r1 a1 c1

...
...

1 0 0 rN aN cN 0 0 0 0 0 0
0 1 0 0 0 0 rN aN cN 0 0 0
0 0 1 0 0 0 0 0 0 rN aN cN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(24)

where d is the translation vector, R is the rotation matrix and
operator vec{·} is the column vector of a matrix. The trans-
formation given by Eq. (24) is not a traditional (7 parameter)
3D similarity transformation since the orientation of the local
reference frame is changing with the Earths curvature. This
follows from the Eqs. (19)–(22) where the local incidence
angle changes depending on range. For a given area of inter-
est, transformation parameters d and R are estimated using
BLUE (Teunissen et al. 2005). Then the 3D position error
ellipsoid (or VCmatrix) can be propagated from radar geom-
etry to a given local reference frame (Fig. 4) and vice-versa.
Note that the actual transformation from the radar coordi-
nates (r, a, c) to local coordinates (e, n, h) is performed
directly by solving Eqs. (19)–(22) along with the RDNAP-
TRANS procedure—the above approximation via Eq. (24)
only serves to facilitate error propagation. From Eq. (18) and
the variance propagation law, the VC matrix in local map
geometry is given by

Qenh = R3×3 · Qrac · RT
3×3 =

⎡
⎣

σ 2
e σ 2

en σ 2
eh

σ 2
en σ 2

n σ 2
nh

σ 2
eh σ 2

nh σ 2
h

⎤
⎦ , (25)

where the diagonal (σ 2
e , σ 2

n , σ 2
h ) and non-diagonal (σ

2
en, σ 2

eh,

σ 2
nh) entries are the variances and covariances in east, north

and up coordinates, respectively.
Then, for each coherent scatterer, from the eigenvalues

of Qenh, a 3D error ellipsoid is drawn with the estimated
position as its center. The error ellipsoid can be described by
its size, shape and orientation:

• the dimensions of the error ellipsoid are given by the
eigenvalues of Qenh, which are the diagonal elements of
Qrac. Therefore, σrP , σaP , and σcP describe the three
semi-axis lengths of the ellipsoid.

Table 2 Depending on the values of γ1 and γ2, the shape of error
ellipsoid will vary from a prolate ellipsoid to a spheroid

Case Shape

1 � γ1 � γ2 A prolate (cigar-shaped) ellipsoid

elongated in cross-range direction

γ1 ≈ γ2 ≈ 1 A spheroid

Fig. 5 A cross-section of error ellipsoid in range and cross-range
dimensions. Error ellipse for the cases γ1 � γ2 (prolate ellipsoid) and
γ1 ≈ γ2 (spheroid) are drawn in black and blue, respectively

• the shape the ellipsoid is derived from the ratio of their
axis lengths, given by (1/γ1/γ2), where γ1 = σaP

σrP
, and

γ2 = σcP
σrP

, see Table2.

• the orientation (inclination) of the error ellipsoid is
dependent on the local incidence angle of the radar beam
at the target. A cross-section of the error ellipsoid for
γ1 � γ2 (in black) and γ1 ≈ γ2 (in blue) is shown in
Fig. 5.

3 Scatterer position validation

Here, the position obtained in the previous section is assessed
in 2D and 3D with the ground truth position measurements.
Scatterer positioning accuracy or error is defined as the differ-
ence between the ground truth and measured (or estimated)
positions. The measured position, retrieved from the image,
is obtained by performing complex FFT oversampling and
detecting the sub-pixel location of a target in a given SLC
image and correcting for the secondary positioning com-
ponents as stated in the previous section. The ground truth
position, used for validation, is obtained with the aid of an
external measurement technique such as DGPS. The GNSS
receivers are used to measure the phase center of a target of
interest such as a trihedral corner reflector.
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3.1 2D accuracy

The position accuracy in 2D is computed in radar geome-
try as the difference between the ground truth and measured
positions for azimuth and range coordinates. In 2D, two out-
comes are produced:

1. Similar to Small et al. (2004a), Schubert et al. (2010),
Eineder et al. (2011), the accuracy is computed without
taking into account the stochastic properties of the mea-
surements and the secondary positioning components.
This computation will serve as an independent validation
of the results reported in Schubert et al. (2010), Eineder
et al. (2011), Small et al. (2004a), Small et al. (2004b)
for TSX SM images.

2. Then, 2D accuracy is computed taking into account all
the stochastic properties as described below.
Let

[
a1,E , a2,E , . . . , am,E

]
and

[
σ 2
a1,E , σ 2

a2,E , . . . , σ 2
am,E

]
be the measured azimuth positions (denoted with sub-
script E) and their respective variances in m images. If
the target is measured with DGPS and then radar-coded
by range-Doppler positioning (Meier et al. 1993; Small
et al. 1996) to obtain the ground truth positions (denoted
with subscript T ) in m images

[
a1,T , a2,T , . . . , am,T

]
with its variances given by

[
σ 2
a1,T , σ 2

a2,T , . . . , σ 2
am,T

]
, then

the functional and stochasticmodels for the azimuth posi-
tion error (accuracy) can be written as

E{y} = A μa, with y =

⎡
⎢⎢⎢⎣

a1,T − a1,E
a2,T − a2,E

...

am,T − am,E

⎤
⎥⎥⎥⎦ ,

A =

⎡
⎢⎢⎢⎣

1
1
...

1

⎤
⎥⎥⎥⎦ , and Qy =

⎡
⎢⎢⎢⎣

κ1
κ2

. . .

κm

⎤
⎥⎥⎥⎦ , (26)

where κi is the part of the a priori Qy matrix representing
i th image, defined as:

κi = σ 2
ai,T + σ 2

ai,E , ∀ i ∈ {1, 2, . . . ,m}. (27)

Taking into account of Qy , the first (μ̂a
) and second (σ̂ 2

a )
moments of the azimuth position error are given by:

μ̂
a

= (AT Q−1
y A)

−1
AT Q−1

y y, and

σ̂ 2
a = m

m − 1
· ê

T Q−1
y ê

Tr(Q−1
y )

, with residual ê = y−Aμ̂
a
,

(28)

where the operator Tr{.} denotes the trace of a matrix. If
μ̂
a

�= 0 then it represents the existence of a systematic

bias in the azimuth position estimate, which might have
been left uncompensated during the satellite’s (geomet-
ric) calibration phase.
Similar to Eq. (26), given the ground truth range positions
inm images by

[
r1,T , r2,T , . . . , rm,T

]
and their variances[

σ 2
r1,T , σ 2

r2,T , . . . , σ 2
rm,T

]
, the functional and stochastic

models of the range position error is written by,

E{y} = A μr , with y =

⎡
⎢⎢⎢⎣

r1,T − r1,E
r2,T − r2,E

...

rm,T − rm,E

⎤
⎥⎥⎥⎦ ,

A =

⎡
⎢⎢⎢⎣

1
1
...

1

⎤
⎥⎥⎥⎦ , and Qy =

⎡
⎢⎢⎢⎣

κ1
κ2

. . .

κm

⎤
⎥⎥⎥⎦ ,

(29)

where
[
r1,E , r2,E , . . . , rm,E

]
and

[
σ 2
r1,E , σ 2

r2,E , . . . ,

σ 2
rm,E

]
are the measured range positions and their vari-

ances in m images. κi is the part of the Qy matrix
representing i th image, defined as:

κi = σ 2
ri,T + σ 2

ri,E , ∀ i ∈ {1, 2, . . . ,m}. (30)

The first (μ̂
r
) and second (σ̂ 2

r )moments of the range posi-
tion error is computed by substituting Eq. (29) in Eq. (28).
Similarly, when μ̂

r
�= 0, it represents the existence of a

systematic bias in the range position estimate. It is an esti-
mate of the residual range timing offset, left uncorrected
during calibration.

3.2 3D accuracy

The 3D position accuracy proposed in our study, expressed
as the difference between the ground truth and estimated
positions, is computed in 3D Cartesian coordinates. For tar-
gets with known effective phase centers such as CR, the
ground truth position is obtained bymeasuring it withDGPS.
But, for non-CR targets such as PS, the effective phase
center is neither known precisely nor can it necessarily be
measured per individual scatterer. For such targets, the 3D
position accuracy was validated using external 3D building
and city models. For 3D positioning, we demonstrate three
key results:

1. The improved absolute 3D positioning capability with its
precision drawn as error ellipsoid.

2. Validation of 3D positioning accuracy and the error ellip-
soid concept using a hypothesis testing procedure for
scatterers whose phase center can be precisely measured
(such as CR).
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We assume the null hypothesis H0 that the estimated 3D
position PE = [eE , nE , hE ]with uncertainty Qenh,E and
the ground truth position (obtained from DGPS) PT =
[eT , nT , hT ] with uncertainty Qenh,T measure the same
position [e, n, h] of a scatterer. Therefore, the functional
and stochastic models of our observations (y) are given
by:

H0 :

⎡
⎢⎢⎢⎢⎢⎢⎣

eE
nE
hE
eT
nT
hT

⎤
⎥⎥⎥⎥⎥⎥⎦

=
[
I
I

]⎡
⎣
e
n
h

⎤
⎦ + ε,

with Qenh,ET =
[
Qenh,E

Qenh,T

]
, (31)

where I is the identity matrix, ε̂ = y − ŷ is the vector
of residuals, and Qenh,ET is the a priori VC matrix. The
overall model test (OMT) statistic

tomt = ε̂
T · Q−1

enh,ET · ε̂

3
∼ χ2(3) (32)

is then applied to infer whether the null hypothesis is
accepted at a given confidence level (Teunissen et al.
2005). The test statistic tomt isChi-square (χ2) distributed
with 3 degrees of freedom. The higher the confidence at
which H0 is accepted, the lower the false rejection rate
and the better the position accuracy validation.

3. Identification of potential radar scatterers by the inter-
section of the 3D position error ellipsoid with real-life
objects.

4 Experiment setup

4.1 Configuration

Six small (45cm sides) and one big (1m sides) trihedral
corner reflectors were deployed near Delft in August 2012,
see Fig. 6a, and oriented for TSX stripmap descending pass
acquisitions with an incidence angle of 24.1◦, and a head-
ing angle of 192.2◦. The TSX stripmap images are provided
with a resolution of approximately 3.3 and 2.9m in azimuth
and ground range, respectively. The mean intensity image
with the corner reflectors is shown in Fig. 6b. 45 SM images
acquired by a combination of TSX and TDX satellites from
Aug 2012 to March 2014 were used in our study. We con-
centrated on the results of one small (CR6) and one big
(CR7) reflector, since they were least interfered by the side-
lobes of other reflectors. The CR’s ground truth position was
measured using a DGPS and tachymetry setup as shown

Fig. 6 Delft corner reflector experiment setup. aDelft corner reflector
experiment site. Six small (CR 1 to 6) and one big (CR 7) corner reflec-
tors were imaged with TSX SM descending pass acquisitions. b Mean
intensity image (from 45 acquisitions) covering seven corner reflectors.
Color represents the intensity expressed in dB. Subpixel locations are
marked with red dots along with their CR numbers. c Ground truth
measurement setup using DGPS and tachymetry
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in Fig. 6c. Trimble R7 GPS receivers were placed at refer-
ence locations marked R1, R2, and R3 for 40min and at
R4 for 5h. Station R4 served as a local GPS reference. The
total station (TOPCON GPT-7003i) was placed at R1, R2,
and R3 to measure the apex of the CR with respect to R1,
R2 and R3, respectively, as illustrated by the measurement
lines (in red) in Fig. 6c. The local positions were found to
exhibit a better than 1cm precision as shown in Table3. The
GPS data were processed using the Netherlands Positioning
Service (NETPOS 2015). The total station local measure-
ments were then combined with GPS coordinates to get
coordinates in RDNAP. From the final position estimates,
the overall precision was found to be ∼1cm in the horizon-
tal (e and n) and ∼2 cm in the vertical (h) directions (see
Table3).

4.2 Computation of the secondary positioning
components

The secondary positioning components (“Appendix1”) were
computed for the Delft experiment site. Figure7a shows the
azimuth timing shift values retrieved from the TSX and TDX
metadata for the experiment period. During our experiment’s
time span, the TSX and TDX processors were updated a
few times with new (radiometric and geometric) calibration
constants. As a result, the azimuth time shift value changed
depending on the processor version with which the image
was processed and the satellite, as shown in “Appendix2”.
The precision of the timing offset is given in nanoseconds
(resulting in <1mm standard deviation), hence the stochas-
ticity of this term was neglected. Atmospheric slant range

Table 3 Precision of ground
truth CR position measurements
in East, North, and Up
coordinates

Local position (tachymetry) Final position(DGPS and tachymetry)

σe (mm) σn (mm) σh (mm) σe (mm) σn (mm) σh (mm)

CR6 2.0 2.2 1.4 10.2 10.2 20.1

CR7 6.4 0.9 0.7 11.9 10.0 20.0

Fig. 7 Position correction factors for Delft test site computed for TSX
SMacquisitions: a azimuth time shift,b total path delay (ionosphere and
troposphere) in slant range direction, c SET component in azimuth and
slant range directions, andd impact of platemotion (between ITRF2008

at epoch of the image acquisition relative to the ETRF89) in azimuth
and slant range dimensions. Error bars in b and c are drawn with 1σ
confidence
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one-way path delay (ionosphere and troposphere combined)
at the time of satellite pass along with its 1σ uncertainty in
meters is plotted in Fig. 7b. The ionospheric path delay con-
tribution retrieved from Global Ionosphere Maps was given
with a precision in the order of 5–10mm. The tropospheric
delay was obtained from a GNSS station located in Delft,
∼7 km from the test site. The use of GPS phase measure-
ments provided tropospheric delays with a precision <5mm
(Baltink et al. 2002; Bender et al. 2008). Taking the flat
topography of the terrain into account, it is assumed that the
troposphere contribution at the test site was not significantly
different from the location of the GNSS station. Please note,
the impact of the ionospheric component for a X-band radar
satellite (TSX/TDX) flying at an altitude of∼514km is in the
order of 5cm in range direction, while tropospheric compo-
nent is∼2.5m. Figure7c shows the SET at the time of image
acquisition projected in azimuth and range directions. For our
Delft test site, SETwas computed using a Fortran programby
Milbert (2011). This implementation of the SET is essentially
a porting of the official international earth rotation and ref-
erence systems service (IERS) convention routines provided
in McCarthy and Petit (2004). The convention technical note
states that the tidal model to be accurate to the 1mm level
(McCarthy and Petit 2004; Petit and Luzum 2010). An inde-
pendent validation by Schubert et al. (2012) confirmed the
SET obtained to have at least 1 cm precision, representing
1σ of the estimated SET as shown in the error bar of Fig. 7c.
Finally, the corrections due to plate tectonics were computed
between ITRF2008 (TSX orbits) at each epoch of the satel-
lite pass and ETRF89 (ground truth measurements) using
the EUREF [the international association of geodesy (IAG)
Regional Reference Frame Sub-Commission for Europe]
permanent network services (Bruyninx 2004; Bruyninx et al.
2009). Plate motion corrections were applied before com-
paring the estimated and ground truth positions. The impact
of plate motion in azimuth and range is plotted in Fig. 7d.
The precision of GNSS station velocities was in the order of
1mm/year, hence the stochasticity of this effect is ignored.

5 Results

5.1 2D absolute CR positional accuracy

CRphase center positionsmeasuredwithDGPS and tachym-
etrywere radar-coded and comparedwith image pixelswhich
were FFT oversampled by a factor of 128 × 128. The sec-
ondary positioning components such as SET, azimuth time
shift, path delay and plate tectonics were computed as shown
in Fig. 7, and corrected to improve the absolute positioning
of CR6 and CR7.

Figure8 shows the 2D absolute position error as a func-
tion of time, before and after applying the listed corrections.
After applying the corrections, CR6 exhibited a positional

Fig. 8 Delft experiment site: 2D absolute position accuracy of small
CR6 (top) and big CR7 (bottom) for TSX SM descending mode acqui-
sitions. Dashed lines indicate the azimuth and range pixel spacings.
Color represents the variation of position accuracy over time. Images
affected by strong wind or heavy rain are marked with black rectangles
andwere removed in the error computations. a Small reflector CR6with
accuracy of −6.1 ± 8.7 cm in azimuth and 32.7 ± 4.2 cm in range. b
Big reflector CR7 with accuracy of −1.8 ± 6.9 cm and 32.3 ± 2.2 cm
in azimuth and range, respectively.

offset of −6.1 ± 8.7 cm in azimuth and 32.7 ± 4.2 cm in
range direction, while CR7 showed an offset of −1.8 ± 6.9
cm and 32.3 ± 2.2 cm in azimuth and range, respectively.
The bigger CR7 showed slightly better positional accuracy
in comparison to its small-sized counterpart CR6. Using the
results from CR7, one can say that the biases of μ̂

a
≈ 2

cm in azimuth and μ̂
r

≈ 32 cm in range were due to resid-
ual azimuth and range timing errors. Taking the SM mode
into account, these 2D position accuracies are comparable to
the results reported by Schubert et al. (2010), Eineder et al.
(2011), Balss et al. (2013) and will serve as a benchmark for
future SM mode validations.

The amplitude response of CR’s impacted by adverse
weather conditions (marked with black rectangles in Fig. 8)
were considered outliers and removed in the error compu-
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tations. The meteorological data, obtained from the Royal
Netherlands Meteorological Institute, were used to under-
stand the outliers. Due to strong wind gusts of up to∼40 and
∼90km/h on days before the acquisitions 24-Sep-2012 and
21-Apr-2013, respectively,CR6andCR7appear to have been
affected. For images dated 11-Sep-2013 and 22-Sep-2013,
CR6 showed a 5–10dB dip in SCR due to the accumula-
tion of rain water in the reflector. Heavy rainfall of ∼14mm
was recorded days before the satellite pass. Similarly, CR7
showed a decrease in SCR of about 16dB on 05-Nov-
2013 and 27-Nov-2013 due to strong winds (∼60km/h)
and rainfall (∼5mm). For the duration of the experiment,
after detecting abnormal amplitude changes, field inspections
were carried out to repair (fix the screws or clean the drainage
hole) the affected CR.

It should be noted (refer the color coding in Fig. 8) that
the position was not found to systematically drift over time,
which could signal either an excellent performance of the
onboard local oscillator or that the relevant corrections were
being performed regularly for the respective timing parame-
ters in themetadata, see Balss et al. (2014). Similar reasoning
holds for instantaneous CoM changes of the satellite.

5.2 2D absolute positional accuracy of CR using
stochastic information

Here, the 2D accuracy was computed by taking into account
the stochastic properties of position estimates, ground truth
and the secondary positioning components, as described in
Eqs. (13), (14), and Sect. 3.1. As a result, every azimuth and
range position was now associated with a 2 × 2 diagonal
VC matrix and represented by an error ellipse as depicted
in Fig. 9 for CR6 and CR7. CR6 exhibited a position offset
of −4.8 ± 8.6cm in azimuth and 32.6 ± 4.0cm in range,
while CR7 showed −1.7 ± 6.8cm and 32.3 ± 2.2cm in
azimuth and range, respectively.With all other errors sources
being identical for CR6 and CR7, the difference in sizes of
their error ellipses comes from their SCR differences and
variations as a function of time. CR6 and CR7 showed an
average SCR of about 25dB and 36dB, respectively, and as
a result, CR7 has smaller error ellipse compared to CR6, see
Fig. 9a, b. Compared to the other sources (secondary com-
ponents (Fig. 7) and SCR), the precision of the TSX timing
information had negligible impact on the azimuth and range
precisions (see Eqs. 13 and 14). Comparing Fig. 9with Fig. 8,
the accuracy estimates were improved, for example in case
of the smaller CR6, the azimuth error offset decreased more
than 20% from −6.1 to −4.8cm accompanied by a reduc-
tion in standard deviation of about 5% (from 4.2 to 4.0cm).
The improvements were not drastic, because the stochas-
tic characteristics of the secondary positioning components
estimates and the quality of the azimuth and range position
estimates did not vary significantly.

Fig. 9 Delft experiment site: 2D absolute position accuracy of CR6
(top) and CR7 (bottom) taking stochastic properties into account. Color
represents variations in position over time. Error ellipses scaled down
to 25% confidence interval (0.32 σ ) for clear visualization. a Small
reflector CR6 with accuracies of −4.8± 8.6 cm in azimuth and 32.6±
4.0 cm in range. b Big reflector CR7 with accuracies of −1.7± 6.8 cm
and 32.3 ± 2.2 cm in azimuth and range, respectively

5.3 3D absolute positioning and its uncertainty for CR

During PSI and geocoding, CR1 (whose height in RDNAP
was known a priori) was taken as a reference point, making
the estimated scatterer heights easier to interpret. Azimuth
and range corrections were applied with respect to themaster
image (30-Mar-2013). 3D position error modeling and error
propagation were applied as described in Sects. 2.4 and 2.5,
respectively. The resulting error ellipsoids for CR6 and CR7
before (in red) and after (in blue) considering the secondary
positioning component corrections are drawn in comparison
to their ground truth position (in black) obtained from GPS
and tachymetry (Fig. 10a).

An offset between the estimated (in blue) and ground
truth 3D positions (in black) was computed to be 1.12m
for CR6 (Fig. 10b) and 0.66m for CR7 (Fig. 10c). CR6
and CR7 exhibited an error ellipsoid with a ratio of axis
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Fig. 10 Demonstration of 3D position accuracy of corner reflectors
with its 3D uncertainty expressed using error ellipsoids. All error ellip-
soids are drawn with 1σ confidence intervals. With a 0.01 level of
significance, the estimated 3D position of CR6 and CR7 with error
ellipsoid (in blue) represents the ground truth position (in black). The
error ellipsoids in b and c are projected in en, nh, and he planes (indi-
cated with dashed lines) to illustrate their intersection with the ground
truth position. a 3D absolute position accuracy with its quality drawn
as an error ellipsoid. CR6 and CR7 are plotted before (with red ellip-
soid) and after corrections (with blue ellipsoid), both with respect to the
ground truth given by its GPS position (indicated with a black dot). b
The 3D accuracy of CR6 was 1.12 m. It exhibited a cigar-shaped error
ellipsoid with a ratio of axis lengths 1/2/129 (with σ̂r = 0.04 m). c
The 3D accuracy of CR7 was 0.66 m. It exhibited a cigar-shaped error
ellipsoid with a ratio of axis lengths 1/3/213 (with σ̂r = 0.022 m)

lengths 1/2/129 (with σ̂r = 0.04m) and 1/3/213 (with
σ̂r = 0.022m), respectively. The ratio of axis lengths repre-
sents the precision of range, azimuth, and cross-range relative
to range, respectively. The quality in the range, and azimuth
were obtained from Eqs. (26)–(30) and the quality in cross-
range were from Eq. (16). For both CR (see Fig. 10b, c), the
uncertainty in cross-rangepositionwas larger than the error in
azimuth and range positions. Therefore, the case of γ1 � γ2
(see Table2; Fig. 5) was observed for both reflectors. This
implies cigar-shaped error ellipsoids which are elongated in
the cross-range direction. The orientation of the error ellip-
soids was attributed to the steep incidence angle of about 24◦
for theTSXdescending pass acquisitions overDelft. Hypoth-
esis testing (OMT) was carried out as stated in Sect. 3.2, and
as a result, the estimated positions of CR6 and CR7 were
found to represent their ground truth positions with a 0.01
level of significance (Fig. 10b, c).

CR7exhibited better positioning capability (with a smaller
error ellipsoid) compared to CR6 due to its higher signal-to-
noise ratio as seen in Fig. 8b. The ground truth 3D position of
corner reflectors was plotted in black for comparison. It can
be seen that the error ellipsoid (in blue) intersects with the
ground truth position (in black), demonstrating our proposed
methodology. This demonstrates that positional corrections
and 3D modeling make it possible to identify the origin of
radar reflections, in this case a known trihedral corner reflec-
tor object.

5.4 3D absolute positioning and its uncertainty for
(non-CR) coherent scatterers

As explained in Sect. 5.3, TerraSAR-X SM acquisitions cov-
ering Delft were processed using PSI. Here, the 3D position-
ing ability of opportunistic (non-CR) coherent scatterers was
studied. The methodology proposed in Sects. 2.4 and 2.5 was
applied to all coherent scatterers in the image and for each
scatterer the uncertainty in the range, azimuth and cross-
range were obtained from Eqs. (13), (14), and (16), respec-
tively. The results are presented for two typical situations:

i. A single isolated radar target (a pole) was selected and its
improved (after corrections) 3D position with error ellip-
soids (blue 3σ and green 1σ ) are drawn over a Google
Earth Street View map as illustrated in Fig. 11. The ratio
of ellipsoid axis lengths was 1/2/22 with σr = 0.128m
observed. From its 3D position and error ellipsoid, based
on its intersectionwith a lamp-post, wewere able to asso-
ciate the radar scatterer with an object. The precision of
the estimated cross-range of the lamp-post was found to
be better than the CR, which we attribute to the poor
stability of the CR structure.

ii. A complex urban environment (see Fig. 12a) with a 3D
building model as shown in Fig. 12b was selected. The
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Fig. 11 Demonstration of 3D absolute positioning and error ellipsoid
concept for a coherent scatterer (a metal pole in this case) in a Google
Earth Street View map (GoogleInc. 2015). Here, the error ellipsoid is
outlined by discrete points to ease visualization. a PS deformation rate
(inmm/year)map. The scatterer of interest (a PS on a lamp pole) is high-
lighted in magenta. b 3D absolute position with error ellipsoids (blue:
3σ and green: 1σ ). The slant range (line of sight) viewing geometry is
marked in red and the ellipsoid’s center is indicated in black

3D building model was constructed using high qual-
ity LiDAR data from Lesparre and Gorte (2012). The
improved 3D positions along with the error ellipsoid are
shown (in blue color) for a set of coherent scatterers in
the area (see Fig. 12c) and from a side view perspective
in Fig. 12d. Each coherent scatterer had different ellip-
soid dimensions, especially visible in the cross-range
direction due to different accuracies in the cross-range
dimension for each scatterer.

Similar to corner reflectors, the error ellipsoids of coher-
ent scatterers were also cigar-shaped, and elongated in the

Fig. 12 Demonstration of 3D absolute positioning and error ellipsoid
concept for coherent scatterers using a 3D building model.a Geometry
of a building of interest in a Google Earth map (GoogleInc., 2015). b
3D building model constructed from LiDAR data. cCoherent scatterers
along with their error ellipsoids drawn in blue with 1σ confidence. d
Error ellipsoids seen from the side. e Zoomed to visualize scatterers
with ellipsoids intersecting at roof level
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cross-range direction. These error ellipsoids (drawn with 1σ
confidence interval) not only represent the quality of the 3D
position but also its intersectionwith objects such as a facade,
the roof of buildings, the ground surface, etc., as shown in
Fig. 12d and e, helping to associate the effective phase center
of the radar scatterers to real-world objects.

6 Outlook and conclusions

In this study, we set out to demonstrate a systematic geodetic
procedure to precisely estimate the radar scatterer position
and quality description in a geodetic datum. The proposed
method was assessed in 2D and 3D with DGPS, tachymetry,
and 3D building models.

In the 2D case, the absolute positioning offset for TSXSM
images was found to be approximately 1.8cm in azimuth and
32.3cm in range. By removing these decimeter-level position
biases, we were able to achieve a 1σ position accuracy of
6.9cm in azimuth and 2.2cm in range. It is inferred that, one
tie point (aCR target) ismandatory to demonstrate centimeter
accuracy positioning capability. Taking the stochastic prop-
erties of measurements, models and noise into account, an
improvement of upto 1.3cm was demonstrated. The results
improved mainly for the reflector with low SNR (CR6) in
azimuth with an offset of approximately 4.8cm and a stan-
dard deviation of 4.0cm in range. These independent 2D
accuracy estimates were found to be comparable with results
reported from other groups and should serve as a benchmark
for future TSX SM mode images.

In the 3D case, the positions and error ellipsoids were val-
idated for trihedral corner reflectors. For the CR, absolute
positioning offsets of 1.12m for CR6 and 0.66m for CR7
were achieved. Their error ellipsoids were cigar-shaped with
the ratio of axis lengths 1/2/129with σ̂r = 0.04m (CR6) and
1/3/213 with σ̂r = 0.022m (CR7). The CR estimated 3D
positions were in accordance with the ground truth positions
given by DGPS and tachymetry at a 0.01 level of signifi-
cance. The intersection of the reflector reference positions
with the error ellipsoids justifies the proposed method. Fur-
ther, the proposed technique was also shown to apply equally
well for any (non-CR) coherent scatterer in an urban envi-
ronment. Despite not using very-high resolution spotlight
images, the positioning results achieved in 2D and 3D using
TSX stripmap images are very encouraging. Therefore, we
strongly believe the proposed improvements will enhance
the geodetic capability of InSAR and open the doors for sev-
eral applications, independent of the availability of spotlight
images.

In the current experimental setup, a single tropospheric
delay (from a nearby GNSS station) was used for all the
scatterers, introducing small errors in the range component,
impacting both the 2Dand 3Dpositioning. In the future, com-

bining the relative atmosphere from PSI with GNSS could
be used to generate target-specific path delay estimates. It
should be noted that the 3D positioning results could be
further enhanced by improving the cross-range component
estimation.

In our study, the scatterer identificationwas done by visual
inspection. In the future, when a complete 3D city model
is available, automated algorithms could be implemented to
identify intersections and their associated radar counterparts.
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Appendix 1: Secondary positioning components

The secondary positioning components are the auxiliary ele-
ments measured by the radar and considered as noise (with
E{noise} �= 0) in the position estimation process. They are
broadly divided into four groups: (i) radar satellite instru-
ment effects; (ii) signal propagation effects; (iii) geodynamic
effects, and (iv) coordinate transformation effects. In the fol-
lowing, we will discuss the parameterization of each of these
correction factors, followed by a quality description.

Radar satellite instrument effects

During the in-orbit geometric calibration phase, the radar sys-
tem is corrected for the pixel positions in the SAR image for
the internal delays in the satellite, particularly, cable lengths,
and frequency offsets. This results in an azimuth time shift,
denoted as t sys expressed in meters as:

ashift = vs/c · t sys. (33)

For satellite missions such as TSX and TDX, an external
azimuth timing offset is provided per image. This offset
accounts for the range and frequency dependent azimuth
shifts which result from the relativistic Doppler effect and
instrument timing errors, see Fritz (2007).
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Quality description

The quality of the azimuth shift estimate depends on the
precision of the time shift (σ 2

tsys ) and velocity of spacecraft

(σ 2
vs/c

). For TSX science orbit products, state vector veloc-
ities are given with 5 mm/s 3D RMS (root mean square)
value (Fritz 2007). Linearizing Eq. (33) with initial values
(tosys, v

o
s/c), the variance is given by

σ 2
ashift = [

tosys vos/c
] [

σ 2
vs/c

σ 2
tsys

] [
tosys vos/c

]T
. (34)

Signal propagation effects: atmospheric path time delay

The total path length (or time delay) of radio signal prop-
agation increases due to the refractivity of the atmosphere,
mainly from ionosphere and troposphere (Hanssen 2001). In
addition, due to the side looking SAR imaging geometry, this
time delay scales with the look angle of the radar satellite.

The ionosphere component of path delay is approximated
via the vertical total electron content (vT EC) from Global
Ionosphere Maps. According to the ionospheric refraction
equation, the one way zenithal ionospheric delay in seconds
is given by

τ iono = K · H
v0· f 2 · vT EC, (35)

where K = 40.28m3/s2 is a refractive constant, v0 is the
speed of microwaves in vacuum, vT EC is the total electron
content in zenith direction expressed in 1016 electrons

m2 , H is a
factor due to the flight height of satellite with respect to the
total extent of ionosphere, and f is the radar signal center
frequency. For TSX, H ≈ 0.75 is reported (Balss et al. 2012).

The troposphere component (τ tropo) of the path delay is
very difficult to estimate due to the strong spatio-temporal
variability of refractivity, but a first-order estimate can be
obtained from collocated global navigation satellite system
(GNSS) delays or even from numerical weather models. In
this study, the tropospheric component is obtained from the
permanent GNSS station (within the scene). The total path
delay in the radar line of sight direction expressed in meters
is then obtained as:

rpd = v0 · (τ iono + τ tropo)

cos(θinc)
, (36)

where θinc is the incidence angle, and 1
cos(θinc)

is the mapping
function.

Quality description

The quality of the path delay estimation

σ 2
rpd =

(
v0

cos(θinc)

)2

· (σ 2
τiono

+ σ 2
τtropo

) (37)

depends on the variance of ionospheric (σ 2
τiono

) and tro-
pospheric (σ 2

τtropo
) delays estimations.

Geodynamic effects

The Earth as a whole reacts to external and internal forces
as a deformable body due to several geodynamic phenom-
ena resulting in surface displacements. These phenomena
vary from: solid earth tides [the Earth’s deformation due
to gravitational forces of the Moon and the Sun (Melchior
1974; Petit and Luzum 2010)], ocean pole tides [generated
by the centrifugal effect of polar motion on the oceans (Desai
2002; Petit and Luzum 2010)], pole loading [deformation
of the Earth due to polar motion (Petit and Luzum 2010)],
ocean tidal loading [loading on crust caused by a temporal
variation of the ocean mass distribution (Petit and Luzum
2010)], atmospheric pressure loading [atmospheric circula-
tion causes the redistribution of air masses resulting in the
Earth’s surface deformation (Petrov and Boy 2004; Petit and
Luzum 2010)] to atmosphere tidal loading [surface displace-
ment as a result of atmospheric tides (van Dam and Ray
2010)]. All these factors yield an integrated surface displace-
ment at the time of satellite data acquisition. Here, only the
major contributor, namely “Solid Earth Tide” is computed
and mitigated.

Fig. 13 SET displacement estimates for one full day (30-Mar-2013)
at Delft, and their impact in azimuth and range directions are drawn for
an ascending and a descending satellite pass
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Fig. 14 Impact of mismatch between ETRF89 and ITRF reference
frames. a Relation between a scatterer in ETRF89 and the satellite state
vector in ITRF reference frames. bThe effect of tectonic platemotion in
azimuth (atect) and range (rtect) for a descending right-looking satellite
pass

When the Earth rotates within the gravitational fields of
the Sun and Moon, due to the Earth’s elasticity the Earth’s
surface experiences displacements of up to 40cm in verti-
cal direction and a few tens of cm in horizontal direction.
This response to lunisolar gravitational attraction is called
solid earth tide or body tide (Melchior 1974). SET for
one full day (30-Mar-2013) is shown in Fig. 13. For the
Delft test site, the SET shows a displacement of ±15cm
in radial (dh) and ±5cm in horizontal (dn and de) direc-
tions. Using Eq.38, the radial and horizontal displacements
are projected into azimuth (aset) and line of sight (r set) range
directions for ascending and descending orbits as shown in
Fig. 13.

r set = −dh · cos(θinc) + sin(θinc) ·
(−dn · sin(αh) + de · cos(αh))

aset = dn
cos(αh)

, (38)

where αh is the azimuth heading angle. The displacement
and hence the corrections will be significant in range when
compared to azimuth direction in Sect. 2.3.

Quality description

Given the variance of SET in North (σ 2
dn
), East (σ 2

de
) and Up

(σ 2
dh
) components, the quality of the SET estimates in radar

coordinates (σ 2
rset and σ 2

aset ) can be given by

σ 2
rset = σ 2

dh · cos(θinc)2 + sin(θinc)
2·

(σ 2
dn · sin(αh)

2 + σ 2
de · cos(αh))

2

σ 2
aset = σ 2

dn

cos(αh)2
. (39)

Coordinate transformation effects: tectonic plate motion

When a measurement in one coordinate reference system
is to be compared with another measurement in a second
reference system, the changes in reference systems have to
be taken into account.

In the end, we want scatterer position in a local map
geometry defined by a TRF, e.g., in ETRF89 (European ter-
restrial reference frame 1989) reference. But, the satellite
orbit state-vectors are given in the ITRF (international ter-
restrial reference frame). The ITRF and ETRF are linked
relative to epoch 1989.0, since then ETRF89 has been drift-
ing north-east at a rate of∼2.44cm/year as shown in Fig. 14a.
This drift in reference frames, when neglected leads to a pal-
pable position error of approximately 60cm (for a period of
25years from 1989.0 to 2014.0) along north-east direction
as depicted in Fig. 14b.

Quality description

The quality of plate motion corrections in range (σ 2
rtect ) and

azimuth (σ 2
atect ) are obtained by substituting the variance of

plate motion corrections in North, and East components in
Eq. (39) instead of the respective SET components.

Appendix 2: Variation of time shift

See Table 4.
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Table 4 Change in external azimuth time shift for TSX and TDX
processor versions

Satellite Processor Azimuth shift
version |ashift| [cm]

TSX-1 v4.6 ∼33.34

TSX-1 v4.7,v4.8,v4.9 ∼7.94

TDX-1 v4.8,v4.9 ∼4.81
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