
Controllability and observability in two-phase porous media flow 1/27 

Controllability and observability in two-phase porous 
media flow§ 
Jorn F.M. Van Doren*, Paul M.J.Van den Hof‡, Okko H. Bosgra* and Jan Dirk 
Jansen† 
*) Delft University of Technology, Delft Center for Systems and Control 
‡) Eindhoven University of Technology, Department of Electrical Engineering 
†) Delft University of Technology, Department of Geoscience and Engineering 

Abstract 

Reservoir simulation models are frequently used to make decisions on well locations, 
recovery optimization strategies etc. The success of these applications is, among other 
aspects, determined by the controllability and observability properties of the reservoir 
model. In this paper it is shown how the controllability and observability of two-phase 
flow reservoir models can be analyzed and quantified with aid of generalized 
empirical Gramians. The empirical controllability Gramian can be interpreted as a 
spatial covariance of the states (pressures or saturations) in the reservoir resulting 
from input perturbations in the wells. The empirical observability Gramian can be 
interpreted as a spatial covariance of the measured bottom hole pressures or well bore 
flow rates resulting from state perturbations. Based on examples in the form of simple 
homogeneous and heterogeneous reservoir models we conclude that the position of 
the wells and of the front between reservoir fluids, and to a lesser extent the position 
and shape of permeability heterogeneities that impact the front, are the most important 
factors that determine the local controllability and observability properties of the 
reservoir.  
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Nomenclature 

A system matrix 
B input matrix 
c compressibility, or constant 
C output matrix 
C  controllability matrix 
d depth 
D direct throughput matrix 
e unit vector 
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E  set of unit vectors 
f fractional flow 
f vector-valued function 
F fractional flow matrix 
g acceleration of gravity 
h vector-valued function 
I identity matrix 
J well index matrix 
k  permeability, or discrete time 
K total number of time steps 
K permeability tensor 
m number of inputs (size of u) 
M subset of m  
M  set of positive constants 
n number of states (size of x) 
N subset of n  
O  observability matrix 
p pressure, or number of outputs (size of y) 
p pressure vector 
P subset of p  
P  controllability Gramian 
q flow rate 
q  flow rate per unit volume 
q flow rate vector 
Q  observability Gramian 
r number of elements in T  
s number of snapshots, or number of elements in M  
S saturation 
s saturation vector 
t time 
T temperature 
T transmissibility matrix, or orthonormal matrix, or transformation matrix 
T  set of orthonormal matrices 
u input vector, or left singular vector 
U matrix of input vectors, or matrix of left singular vectors 
V accumulation matrix, or matrix of right singular vectors 
x state vector 
y output vector 
z number of elements in ‘weighted singular vector’ 
Γ  diagonal scaling matrix 
  eigenvalue 
  viscosity 
  density 
  singular value 
Σ  diagonal matrix of singular values 
  porosity 
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Φ  auxiliary matrix 
Ψ  auxiliary matrix 

subscripts 

c capillary, or continuous-time 
e empirical 
o oil 
op oil-pressure 
os oil-saturation 
p pressure 
r rock 
ro relative, oil 
rw relative, water 
s saturation 
t total 
u input 
y output 
w water 
wp water-pressure 
ws water-saturation 

superscripts 

T  transpose 

In memoriam 

After preparation of this manuscript, the third author, Okko Bosgra, passed away too 
early on 21 February 2013. Prof. Okko Bosgra was one of the founders of our Dutch 
systems and control theory network. Through his role of bringing together 
mathematical systems theory and control engineering he has had a key role in 
establishing a strong national community with international recognition. The present 
paper is a clear example of his keen interest in combining system-theoretical aspects 
with industrial applications. We remember Okko as a passionate and sharp-minded 
scientist, an inspiring adviser, and an amicable colleague and friend. 

Jorn Van Doren, Paul Van den Hof, Jan Dirk Jansen.   

1 Introduction 

In an earlier paper [1] we analyzed several system-theoretical aspects of single-phase 
flow through porous media. In particular, we addressed single-phase, slightly 
compressible flow. In that case the dynamic system behavior can be described with 
linear differential equations in terms of a single state variable (dynamic variable), i.e. 
pressure, which is a function of space and time. As a typical system parameter (static 
variable) we considered permeability, which is a function of space only. As system 
inputs (controls) we considered prescribed flow rates or bottom hole pressures in the 
wells, while as system outputs (measurements) we took the bottom hole pressures in 
those wells where the rates were prescribed and vice-versa. For such a set-up 
controllability can be defined, loosely speaking, as the extent to which we can 
influence the state variables at any particular point in the reservoir by manipulating 
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the inputs. Observability can be defined as the extent to which we reconstruct the state 
variables at any particular point in the reservoir from the outputs. Identifiability is the 
extent to which we can reconstruct parameter values at any particular point from 
input-output data. In the present paper we will extend our earlier analysis to 
controllability and observability of slightly compressible two-phase (oil-water) flow. 
Unlike the case of single-phase flow which leads to linear equations, the two-phase 
case is nonlinear, which complicates the analysis. Moreover, whereas the equations 
for single-phase flow are diffusive, we are now considering combined diffusive-
convective behavior of coupled pressures and saturations which causes further 
complications. 

Controllability is of relevance for the optimization of flooding processes, see e.g. 
[17], while observability and identifiability are of relevance to state and parameter 
estimation in computer-assisted history matching; see e.g. [1, 8]. Moreover, the 
concepts of controllability and observability can be used to quantify those parts of a 
reservoir model that are most important to the input-output behavior, which offers 
scope to reduce the computational complexity through control-relevant upscaling [14, 
15]. The concepts are also closely related to reduced-order modeling with the aid of 
proper orthogonal decomposition (POD) although the link is not always explicitly 
mentioned in the papers concerned; see e.g. [16Error! Reference source not 
found.]. Traditionally, controllability, observability and identifiability are considered 
to be qualitative measures, i.e. they provide yes/no answers to the question if a system 
is controllable/observable/ identifiable over the full spatial domain. However, this 
presupposes the availability of controls that can provide arbitrarily strong input 
signals, and sensors that can observe arbitrarily weak output signals. This is clearly 
unrealistic, and therefore it is more meaningful to use a quantitative measure. Using 
such a quantitative measure we showed in our earlier paper that the extent to which 
the reservoir pressures are controllable and observable is very limited, and restricted 
to pressures in areas close to the wells. Although we did not analyze identifiability in 
detail, we showed a close relationship between the identifiability of permeabilities, 
and the observability of pressures, such that the same conclusion hold, i.e. 
permeabilities can only be identified to a very limited extent. Further aspects of the 
identifiability of permeabilities in single-phase flow, and its relation to observability 
and controllability, are given in [11, 12]. Moreover, the identifiability of reservoir 
parameters from measured data is closely related to the ability to compute 
‘sensitivities’ of measured data to reservoir parameters. This is an important topic for 
computer-assisted history matching or well testing, about which, therefore, exist many 
publications. However, most of the literature on sensitivities is focused on 
computational aspects; see e.g. [19]. A much smaller number of authors has 
addressed identifiability, or related concepts such as resolution or information content. 
For a recent discussion, see [13]; for specific papers see e.g. [8, 9, 11, 12]. Although 
the identifiability of parameters, or related concepts, has been treated before, to our 
knowledge very few papers have been published on controllability and observability 
of state variables in reservoir flow. We are aware of two publications that address the 
controllability of pressures in single-phase flow [1, 4], where the latter is restricted to 
homogeneous reservoirs, and of two publications that address the controllability of 
saturations (oil-water fronts) in two-phase flow [3, 6]. However, the latter only treat 
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the special case of incompressible flow of two near-identical fluids using the theory of 
potential flow. Here we present a general technique to analyze and quantify the (local) 
controllability and observability of pressures and saturations in multiphase flow. 

2 Controllability and observability for nonlinear models 

2.1 Introduction 

In Appendix A a brief derivation is presented of the equations for two-phase flow 
through porous media in state space form. The resulting equations are the 
(differential) state equations  

    1 , 0,1,..., 1,k k k k k k K    x A x x B x u  (1) 

and the (algebraic) output equations 

    k k k k k y C x x D x u , (2) 

where [ ]T T T n
k k k N  x p s   is a vector of state variables (i.e. of grid block 

pressures kp  and grid block saturations ks ), m
k M u   is a vector of inputs 

(pressures, total flow rates or valve settings in the wells), p
k P y   is a vector of 

measurements (pressures or phase rates in the wells), k is the discrete time index, and 
K is the total number of time steps. The sets M, N and P are subsets of m , n  and 

p  respectively because their elements are constrained to stay within physical limits; 
e.g., pressures are always positive and saturations have values between zero and one. 
To simplify the notation we will from now on define all variables as members of x  
with x an appropriate dimension, where the necessary subsets are to be tacitly 
understood. The state-dependent matrices ( ) n n

k
A x  , ( ) n m

k
B x  , ( ) p n

k
C x   

and ( ) p m
k

D x   are given by expressions (A.35) to (A.38) with details in equations 
(A.19) to (A.22). 

2.2 Nonlinearity of two-phase flow equations 

Equations (1) and (2) are nonlinear because of various dependencies of the 
coefficients on the state variables xk such as, e.g., the dependency of the relative 
permeablities on saturations, and of the fluid compressibilities and densities, and rock 
porosity on pressures. The equations are control affine, because the inputs uk enter the 
equations linearly. (An affine function is a linear function plus a translation. Control 
affine functions are an important topic of study in nonlinear control theory.) We note 
that although we present the theory in explicit discrete-time notation (for notational 
convenience), the results that follow do not depend on implicit or explicit time 
discretization or on the particular value of the discretization time-step, and also apply 
to the continuous-time case. The nature of two-phase flow equations is much more 
complex than that of the single-phase equations. The latter describe a pressure field 
that is diffusive, i.e. the corresponding equations are parabolic and become elliptic in 
the limit of zero compressibility. However, the two-phase equations describe both 
pressures and saturations. The pressures kp  behave similarly as in the single-phase 
case although somewhat modified by two-phase effects, but the saturations ks  behave 
completely different and can be characterized as diffusive-convective, i.e. their 
corresponding equations are mixed parabolic-hyperbolic and become completely 
hyperbolic in the case of zero capillary pressure . 
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From a control perspective this implies a markedly different dynamic behavior. In the 
single-phase case, the dynamic response of the autonomous equations (i.e. without 
inputs uk) to a small disturbance (in the form of an initial condition x0) from an 
equilibrium situation (constant pressures in two horizontal dimensions, or hydrostatic 
pressures in three dimensions) results in a return to the equilibrium situation. 
However, in the two-phase case the saturations are driven by convection (which is 
governed by the spatial distribution of the pressures), and a small disturbance (in the 
pressures and/or the saturations) from an equilibrium situation will result in a 
permanent small change in the saturations. Correspondingly, the eigenvalues of a 
continuous-time linear (or linearized) single-phase system have real negative values 
(the fact that they are real implies that the response is non-oscillatory because inertia 
does not play a role in the governing equations), whereas only half of the eigenvalues 
of a linearized two-phase system are real and negative (for the pressures states) while 
the other half are equal to zero (for the saturation states). The two-phase response is 
therefore still bounded and non-oscillatory. In other words, the single-phase system 
equations are asymptotically stable, whereas the linearized two-phase equations are 
only Lyapunov stable. 

Another difference between single-phase and two-phase flow is in the steady-state 
behavior of the system. In the single-phase case, steady-state flow may occur after 
dampening out of the pressure transients. However, the effect of the convective 
behavior of the saturations is that there does not exist any non-trivial two-phase 
steady-state solution for inputs that result in flow (i.e. that produce a non-hydrostatic 
pressure gradient). This is because flow produces (very slow) saturation changes as 
long as there are two mobile phases present. (The trivial solution occurs when all 
mobile oil has been flushed out of the reservoir which effectively makes the reservoir 
single-phase.) The typical timescale for pressure changes (e.g. defined as the half time 
for dampening out of an impulsive pressure disturbance in a well) is very small 
(typically in the order of hours to days) compared to the time for saturation changes to 
propagate through the entire reservoir (typically in the order of years to decades). 
Therefore it is usually justified to consider the saturation field to be very slowly time-
varying. The pressure response is then governed by linear equations with (very 
slowly) time-varying coefficients, and, after dampening out of pressure transients 
resulting from initial conditions, may be considered to be in near-steady state. 

2.3 Controllability and observability 

For formal definitions of the controllability and observability of nonlinear models we 
refer to [22]. Here we will present a practical approach to analyze and quantify the 
controllability and observability in a reservoir simulation setting. Reservoir models 
are large-scale and hence have a large number of state variables. Consequently not all 
approaches to analyze the controllability and observability of nonlinear models are 
currently computationally feasible for this application area. Examples of methods that 
are currently not feasible are the nonlinear local controllability and observability 
analysis with a differential geometric approach [23] and the application of the 
nonlinear controllability and observability function [24]. However, there are other 
approaches that can be used. The first one is to linearize the model equations around a 
steady-state operating point and analyze the linearized model with controllability and 
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observability tools for linear time-invariant (LTI) models, or to linearize them along a 
nominal state trajectory (i.e. a sequence of state vectors in time) and analyze the 
model with controllability and observability tools for linear time varying (LTV) 
systems. The second approach is to use empirical Gramians [25, 26] to approximate 
the controllability and observability Gramians of nonlinear models. Empirical 
Gramians can be computed for nonlinear large-scale models such as reservoir models. 
All these methods are ‘local’ in the sense that they only address the controllability 
observability of state variables in the neighborhood of the linearization point or 
trajectory, i.e. for small changes in the inputs and initial conditions compared to the 
values used for the linearization. Here we will use the empirical Gramian approach.  

2.4 Controllability Gramian interpreted as covariance matrix 

Recall that a discrete-time LTI system 

 1 , 0,1, , 1,k k k k K    x Ax Bu   (3) 

is controllable if its controllability matrix, 

 2 1n n k    B AB A B A B  C , (4) 

has full rank (see e.g. [27]). This is equivalent to requiring that the controllability 
Gramian, 

  
1

0

K kn n T k T T

k






 A BB A P CC , (5) 

has full rank. (Note that we make no distinction between ‘reachability’ to reach a state 
starting from an initial condition, or ‘controllability’ to drive back a state to a zero 
condition, because these concepts lead to identical requirements for a discrete-time 
formulation). In a reservoir simulation setting, equation (3) represents a single-phase 
reservoir model or a linearized version of a multi-phase reservoir model; see 
equations (A.39) and (A.40) in Appendix A, from which we dropped the overbars to 
simplify the notation. An interpretation of equation (5) can be obtained by rewriting 
equation (3) as a recursive sequence: 

 

1 0 0

2
2 0 0 1

3 2
3 0 0 1 2

1
0 0 2 1

,

,

,

.K K
K K K


 

 

  

   

    

x Ax Bu

x A x ABu Bu

x A x A Bu ABu Bu

x A x A Bu ABu Bu




 (6) 

Starting from an initial condition x0 = 0, and a unit impulse input at time zero, i.e., 
u0 = 1; u1 = u2 = … = uk-1 = 0, where 1 is a vector of unit length, it follows that 

 1 ,k
k

 x A B  (7) 

where the accent indicates that the response results from a unit impulse input. 
Equation (5) can therefore be written as 
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1

2
1 2

1

T

TK
T

i i K
i

T
K



 
       
 
 
  



x

x
x x x x x

x




P . (8) 

Next, consider the definition of the (sample) covariance between elements of the state 
vector x: 

    
1

2
1 2

1
,

1

T

T
n n

s

T
s

Cov
s



 
 
 
 
 
  

x

x
x x x x x

x




    



, (9) 

where s is the sample size, i.e., the number of state vector ‘snapshots’ in time used to 
estimate the covariance, and x  indicates a (sample) mean-centered snapshot: 

 
1

1 s

i i j
js 

 x x x  . (10) 

Comparison of equations (8) and (9) illustrates that the controllability Gramian P  
can be interpreted as a generalized spatial covariance matrix of the state response to a 
unit impulse input. Note that for the Gramian to be full rank it is required that the 
number of time steps K is at least as large as the number of states n.  

2.5 Empirical controllability Gramian 

For a nonlinear state equation, an empirical controllability Gramian can be computed 
from an ensemble of the state ‘snap shots’ taken from state trajectories corresponding 
to a set of input signals. The Gramian for a linear system, if full rank, guarantees that 
any possible combinations of states can be reached from a zero initial condition 
(although possibly with input signals of unrealistically large magnitudes). An 
empirical Gramian is less powerful, and, if full rank, only guarantees ‘local’ 
controllability, i.e. that those combinations of states can be reached that are ‘close’ to 
the state trajectories used to derive the Gramians. The original derivation of empirical 
Gramians by Lall et al. [25] is expressed in continuous time. Here we will follow 
largely their approach and notation but express the results in discrete time. To 
compute an empirical controllability Gramian consider the following auxiliary 
variables: 

1. a set 1 2{ , , , }m
m e e eE  of standard unit vectors , 1,2, ,m

i i m e   , 
2. a set 1 2{ , , , }m

r T T TT  of orthonormal matrices , 1,2, ,m m
l l r T   , 

3. a set M  of positive constants , 1, 2, ,jc j s   . 

With sets mE , mT , and M , where m is the number of inputs to the system (i.e. the 
dimension of u) one can generate a total of m r s   ‘perturbed’ time sequences 

ilj m KU   of input vectors defined as 

 0 1 1 ,ilj ilj ilj ilj
K  U u u u   (11) 

where 
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 , 0,1, , 1ilj
k j l i kc k K   u Te u

  , (12) 

k is the Kronecker delta (defined as 1if 0, 0 if 0k kk k     ), and u


 is a 
nominal steady-state input around which the perturbations are taken. The role of the 
unit vectors is to select each of the components of u one by one. The matrices jT  can 
be used to select different combinations of components, and the constants cu to select 
different magnitudes of the perturbations, which may all be of importance because of 
the nonlinear nature of the system equations. Next, the input sequences Uilj are used to 
generate state trajectories, and the empirical controllability Gramian is defined as 

 
2

1 1 1 1

1
,

m r s K
ilj

e k
ji l j krsc   

 ΦP  (13) 

with the rank-one matrices ilj n n
k

Φ   given by 

   ,
Tilj ilj ilj

k k kΦ x x   (14) 

where ilj
kx  are mean-centered snapshots as defined in equation (10) with s = K. If the 

system is stable, linear, control affine, and excited with an impulse input, then the 
empirical controllability Gramian is identical to the controllability Gramian [25, 26]. 
Hahn et al. [26] extended definition (12) to include other forms of inputs, such as 
(series of ) step inputs, resulting in more general covariance matrices of which 
empirical Gramians form a subset. (Alternatively, these covariance matrices could be 
referred to as generalized empirical Gramians). As discussed by Hahn et al. [26] the 
definition of empirical controllability Gramians is restricted to control-affine 
Lyapunov-stable systems starting from a steady-state situation. The first two 
conditions are met without problems for our two-phase reservoir flow equations. The 
third one is met approximately because, as discussed in Section 2.2, the saturation 
changes are typically so slow that the saturation field may be considered to be near-
constant and the pressure field to be near-steady state. In that case we can compute 
empirical Gramians (or covariance matrices) by taking ‘snap shots’ of states resulting 
from perturbed inputs along a (near-steady state) trajectory in input-state space. This 
is identical to the typical approach to compute covariance matrices for use in POD.  

2.6 Empirical observability Gramian 

The observability Gramian for an LTI system (3) observed according to an LTI output 
equation 

 k k k y Cx Du , (15) 

is observable if its observability matrix, 

 2

1K

 
 
 
 
 
 
  

C

CA

CA

CA


O , (16) 
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has full rank (see e.g. [27]). This is equivalent to requiring that the observability 
Gramian, 

  
1

0

K in n T T T i

i






  A C CA Q O O , (17) 

has full rank. For nonlinear systems, an empirical observability Gramian can be 
defined which can be interpreted as the covariance of the output resulting from a large 
number of initial state vectors [25]. With the aid of sets nE , nT , and M  as defined 
above, where n is the number of state variables (i.e. the dimension of x), one can 
generate a total of n r s   initial state vectors 0

ilj nx   defined as 

 0 0
ilj

j l ic x Te x
 , (18) 

where 0x


 is a nominal initial condition around which the perturbations are taken. 
Next, the initial conditions are used, with zero inputs, to generate states and outputs 
and the empirical observability Gramian is defined as 

 
1

2
1 1 0

1
,

r s K
lj T

e l lk
jl j krsc



  
 TΨ TQ  (19) 

in which the elements ,
lj
iu k  of matrix lj n n

k
Ψ   are given by 

    , ,
Tlj ilj ulj

iu k k k  y y   (20) 

where ulj
ky  are mean-centered outputs of the system. If the system is stable and linear, 

then the empirical observability Gramian is identical to the observability Gramian 
[25]. The empirical observability Gramian is calculated based on the outputs of the 
model for a large number ( n r s  ) initial conditions. For applications with a large 
number of states this approach is computationally very demanding, because of the 
need to perform a large number of simulations and to store all corresponding output 
vectors. References [28] and [29] therefore present an alternative approach to 
approximate the observability Gramian by taking snapshots of a dual linearized 
system (a.k.a. an adjoint system), which is computationally much more efficient if the 
number of outputs p is much smaller than the number of states n (as is usually the 
case). In the present paper we followed the latterapproach 

2.7 Balancing and Hankel singular values 

A state that is sensitive to inputs, i.e. that is strongly controllable, is not necessarily 
also strongly observable, or vice versa, an effect that is also reflected in the difference 
between the corresponding (empirical) Gramians. However, it is possible to find a 
linear ‘balancing’ coordinate transformation T  of the (empirical) Gramians P  and 
Q such that the transformed Gramians P  and Q  are equal diagonal matrices that 
satisfy  

 TT T  P P  ,  1T T T  Q Q  ,  1T T   PQ PQ . (21, 22, 23) 

The transformation matrix T  can then also be used to define transformed (balanced) 
states x Tx  such that states that are strongly controllable are also strongly 
observable and vice versa, which implies that they are important to the input-output 
behaviour. Although (empirical) Gramians themselves are coordinate dependent, the 
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eigenvalues of their product are not. The latter are called the Hankel singular values, 
and are defined as 

    , 1,2, ,i i i i n     PQ PQ . (24) 

If the Hankel singular values decrease rapidly this is an indication that the input–
output behavior is determined by only the first few balanced states. For details about 
balancing, see e.g. Moore [30] (the original paper), Antoulas [31] (a textbook), or [1] 
(an application to single phase flow; our earlier paper). 

3 Quantifying controllability and observability 

3.1 Singular value decompositions (SVDs) 

To quantify observability and controllability, SVDs can be used to compute subspaces 
that are most controllable or observable. In reference [1] we applied this method to 
single-phase porous media flow and here we will use the same approach for two-
phase flow using empirical Gramians. The controllable states (i.e. the subspace 

Im( )conX  C ) can be approximated by using an approximate version of C  defined as  

   1 1
1 2 1 1 1

2 2

T
T T

T

  
    

   

Σ 0 V
UΣV U U U Σ V

0 Σ V
C ,

 
(25) 

where the separation between 1Σ  and 2Σ  is chosen in such a way that the singular 
values in 2Σ  are considerably smaller than those in 1Σ . The first few left singular 
vectors, i.e. the first few columns of U1, are now just the most controllable linear 
combinations of states. Alternatively, an SVD can be applied to the controllability 
Gramian, 

 2T T  UΣ UP CC , (26) 

or to the empirical controllability Gramian eP , resulting in the same matrices U and Σ 
as in equation (25).  

The observable states, (i.e. the orthogonal complement to the unobservable subspace 
 OKer( )unobsX ) can be approximated by applying an SVD to the transpose of the 

observability matrix TO , 

 1 1 1
T T T UΣV U Σ VO , (27) 

or, alternatively, to the transpose of the (empirical) observability Gramian Q , 

 2 . Q O OT TUΣ U  (28) 

In this case the first few columns of U1 are just the most observable linear 
combinations of states. Note that the values of U,  and V in equations (25) and (27) 
are usually not identical, and the same holds for those values in equations (26) and 
(28). 

In a similar fashion it is possible to determine the SVD of the product of the balanced 
Gramians  PQ . The first few left singular vectors are in this case the linear 
combinations of states that contribute most to the input-output behavior of the system. 
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3.2 Scaling 

Consider the case in which the controllable subspace is approximated by removing 
columns U2 in U which correspond to (very) small singular values. In case the values 
of the input variables vary several orders of magnitude, the values of the input matrix 
B related to those inputs influence the numerical values that occur in 1Σ  and 2Σ , and 
as such can influence the separation between 1Σ  and 2Σ . In order to make the 
selection mechanism scaling-independent, matrix B can be scaled to 

 uB BΓ , (29) 

where 1
1 2diag(| | | | | |)u mu u u Γ  , with iu , 1,2, ,i m  , representing typical 

(nominal) input values. Alternatively, the values can be scaled with respect to the well 
indices, as will be discussed below. Subsequently, the controllability matrix and 
Gramians are calculated. This is illustrated in the next section in which examples are 
presented where the inputs contain pressures that have values in the range of 107 Pa 
and rates that have values in the range of one m3/s. The same reasoning also applies to 
the output variables. In order to make the selection mechanism scaling-independent, 
matrix C can be scaled to 

 yC Γ C , (30) 

where, in this paper, 1
1 2diag(| | | | | |)y py y y Γ  , with iy , 1,2, ,i p  , 

representing typical output values. 

3.3 Time-varying controllability 

The controllability and observability properties of a nonlinear model can change with 
time, i.e. states can become more or less controllable or observable with time. In this 
paper we have therefore chosen to analyze these properties per time interval. To this 
end the total simulation time of K time steps is split into intervals 

, 1[ , , , ]i f i i fk k k k  , where ik  and fk  are the first and last time step of the interval. 
Subsequently, the controllability of each interval is analyzed. This approach is 
comparable to the ‘sliding interval balancing’ procedure described in, e.g., reference 
[32]. 

3.4 Graphical representation 

Each column of U in equation (25), (26), (27) or (28) contains a singular vector of 
dimension n, where n is the total number of states. In the case of spatially discretized 
reservoir models the states represent grid block pressures and/or grid block 
saturations. Since each state is connected to a grid block, each column of U can be 
interpreted as a set of two spatial patterns (basis functions), representing a pressure 
field and a saturation field respectively. The spatial patterns contained in 1U , which 
correspond to large singular values, are combinations of states that are most 
controllable or observable. To graphically represent these dominant spatial patterns in 
a compact way , we have chosen to depict them as a single ‘weighted singular vector’ 

zu , consisting of the sum of the first z singular vectors weighted by their 
corresponding singular values: 

 
1 1

z
z i

i
i




u u
 

(31) 
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where i  is the ith singular value on the diagonal of Σ , and ui is the ith column vector 
of U (not to be confused with the input vector u). The value of z is chosen such as to 
maintain 99% of the total ‘energy’ in the system, i.e. of the sum of all singular values. 
The weighted singular vectors vizualise which parts of the reservoir model contain the 
dominant, i.e. the most controllable or observable, states. In a geometric interpretation 
the columns of the unitary matrix U represent a direction in the controllable or 
observable subspace, where the length of the vectors is given by the corresponding 
singular values. The vectors weighted by their singular value as in equation (31) can 
then be considered as a vector sum, characterizing the dominant directions in the 
controllable or observable subspace. 

4 Controllability and observability of saturations and pressures in two-phase 
porous media flow  

4.1 Introduction 

In reference [1] we analyzed the controllability and observability of pressures in 
single-phase flow. It was concluded that pressures near wells in which the flow rate or 
bottom-hole pressure can be controlled are most controllable, whereas pressures near 
wells in which the flow rate or bottom-hole pressure can be measured are most 
observable. Furthermore, the controllability and observability properties are primarily 
determined by the well configuration (i.e. the number and location of wells) and to a 
lesser extent by the heterogeneity of the reservoir. In reference [33], which formed the 
basis for the present paper, the controllability and observability of saturations in a 
one-dimensional horizontal reservoir were analyzed. The reservoir was modeled with 
a linear and nonlinear convection-diffusion equation (CDE) discretized in space and 
time. Regarding the nonlinear CDE it was concluded that: 

 The saturation states of the nonlinear CDE are most controllable near the oil-
water front. 

 The saturation states located at the observation point are most observable. 

 The saturation states that are most relevant (i.e. least irrelevant) for the input-
output behavior are situated around the oil-water front. 

 The Hankel singular values decrease rapidly, indicating that reservoir models 
behave as models of much lower order than the order that follows from the 
number of grid blocks. 

These results are in line with the results of the single-phase controllability and 
observability analysis in [1]. Additional details on the controllability and observability 
analysis of the linear and nonlinear CDE can be found in Chapter 3 of [33]. In the 
remainder of this section we turn our attention to two-dimensional two-phase 
reservoir models, where the states are the pressures and saturations in each grid block. 
Our aim is to identify the dominant grid block pressures and saturations, i.e. those that 
are most controllable and observable, during the simulation period of the reservoir 
model.  
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Note that the use of a PRBS implies that the inputs are piecewise constant, and that, 
strictly speaking, we do not compute empirical Gramians (for which we would need 
impulsive inputs for the controllability Gramian and no inputs for the observability 
Gramian) but ‘generalized empirical Gramians’ or simply ‘empirical covariance 
matrices’. This is tacitly assumed whenever we use the expression ‘empirical 
Gramian’ in the discussion below.  

Recall that the state vector x consists of stacked pressure and saturation vectors. The 
time scales of the dynamic behavior of the pressure and saturation states are very 
different from each other, as indicated by the clear separation in eigenvalues of the 
linearized system matrix cA (see Appendix A and the discussion in Section 2.2). The 
pressure states of the linearized equations are associated with eigenvalues with high 
absolute values and exhibit a fast behavior, while the saturation states are associated 
with eigenvalues with very low values (in case of nonzero inputs) or even zero values 
(in the absence of inputs) and exhibit a very slow behavior. Therefore it is reasonable 
to analyze the controllability and observability of the pressure and saturation states 
separately. 

In reference [33] the controllability and observability of the pressure states are 
analyzed with the aid of two methods: 1) LTV observability and controllability 
matrices and 2) empirical Gramians. The controllability and observability of the 
saturation states are analyzed with three methods: 1) LTV observability and 
controllability matrices, 2) empirical Gramians, and 3) after time scale separation and 
linearization, with LTI controllability and observability Gramians. The conclusions 
following from these approaches were nearly identical, and therefore in this paper 
only the results obtained with empirical Gramians will be presented. 

For the first example, with a homogeneous permeability distribution, we computed the 
Hankel singular values of all states and of the pressure and saturation states separately 
using empirical Gramians; see Figure 2. The values decrease rapidly, indicating that 
the reservoir model behaves as a model of much lower order than the order suggested 
by the number of states. Empirical controllability and observability Gramians were 
calculated for intervals around the nominal input-state trajectory, where 0x


 is chosen 

as the state vector in the middle of the interval. The interval length is chosen as 60 
time steps. The results are shown in Figure 3. The first two rows depict snapshots of 
pressures and saturations at the beginning of each of the five consecutive time 
intervals. The next three rows depict ‘weighted singular vectors, as defined in 
equation (31), for the empirical controllability, observability and balanced Gramians 
respectively. The notation 1:20 e,1:60| ( )|U P  indicates the (base 10) logarithm of the 
weighted singular vector based on the first twenty columns of U, obtained from the 
SVD of eP  computed over the time interval from 1 to 60 timesteps. The key 
observation is that the pressures are most controllable around the wells. Also, after 
balancing, the pressures most relevant for the input-output behavior are located 
directly around the wells. This is completely in line with the observations for the 
single-phase reservoir models presented in reference [1]. 
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Appendix A – State space formulation of two-phase porous media flow 

This Appendix presents a derivation of the equations for flow through porous media 
in state space form [34]. As an example we consider two-phase (oil-water) isothermal, 
slightly compressible flow. Following the usual approach (see e.g. [35]) we can 
combine mass conservation equations and Darcy’s law for each phase to obtain 
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where K is the permeability tensor,  is fluid viscosity, kr is relative permeability, p is 
pressure, g is acceleration of gravity, d is depth,  is fluid density,  is porosity, S is 
fluid saturation, t is time, q  is a source term expressed as flow rate per unit volume, 
and subscript i Î {o, w} indicates the oil and water phases respectively. Equations 
(A.1) (one for each phase) contain four unknowns, pw, po Sw and So, two of which can 
be eliminated with aid of the relationships 

 1w oS S   ,   o w c wp p p S  , (A.2, A.3) 

where pc(Sw) is the oil-water capillary pressure. Substituting equations (A.2) and (A.3) 
in equations (A.1), expanding the right-hand sides, applying chain-rule differentiation, 
and substituting isothermal oil, water and rock compressibilities 
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where T is temperature, allows us to express equations (A.1) in terms of po and Sw as 
follows: 

 

  (A.7) 
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Equations (A.7) and (A.8) contain two state variables: the oil pressure po and the 
water saturation Sw. The equations are nonlinear because of the saturation dependency 
of the capillary pressure pc and the relative permeabilities kro and krw. In the more 
general case there may also be a pressure dependency of the densities , the porosity 
, and the compressibilities c. In this paper we considered, without loss of generality, 
a simplified case where gravity and capillary forces can be neglected. After semi-
discretization of the equations in space, e.g. with a finite difference or finite element 
procedure, we obtain the following system of nonlinear first-order differential 
equations, 
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where p and s are vectors of pressures po and water saturations Sw in the grid block 
centers, V is an accumulation matrix (with entries that are functions of the porosity , 
and the oil, water and rock compressibilities co, cw and cr), T is a transmissibility 
matrix (with entries that are functions of the rock permeabilities k, the oil and water 
relative permeabilities kro and krw and the oil and water viscosities o and w), F is a 
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fractional flow matrix (with entries that have functional dependencies similar to those 
of T), and qwell,t is a vector of total well flow rates with non-zero values in those 
elements that correspond to grid blocks penetrated by a well. The matrices V, T and F 
are all functions of s, either directly or through the parameters. In the more general 
case of high compressibility they are also a function of p. The fractional flow matrices 
Fw and Fo are diagonal with fractional flows fw and fo as the elements that correspond 
to well grid blocks and zeros otherwise. In practice the source terms are often not the 
flow rates in the wells but rather the pressures. This can be accounted for by rewriting 
equation (A.9) in partitioned form as [34] 

  (A.10) 

Here, the elements of vector 1p  are the pressures in those grid blocks that are not 
penetrated by a well. The elements of 2p  are the pressures in the blocks where the 
source terms are prescribed total well flow rates ,well tq


, and those of 3p  are the 

pressures in the blocks where the source terms are obtained through prescription of 
the bottom hole pressures wellp


 with the aid of a diagonal matrix of well indices 3J . 

To compute the oil and water flow rates in the wells with prescribed pressures we use 
the relationship 

  . (A.11) 

To compute the bottom hole pressures wellp  in the wells with prescribed total flow 
rates we need an additional diagonal matrix 2J  of well indices such that 

  , 2 2well t well q J p p


 , (A.12) 

from which we obtain 

 1
2 , 2well well t
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To bring these equations in state space form we define the state vector x, input vector 
u and output vector y as 
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Equations (A.10), (A.11) and (A.13) can then be rewritten in nonlinear state space 
form 

      , c c  x f x u A x x B x u  , (A.17 

      ,  y h x u C x x D x u  , (A.18) 

where the state-dependent matrices ( )cA x , ( )cB x , ( )C x  and ( )D x  are defined as 
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  (A.19, A.20, A.21, A.22) 

The equations are nonlinear because almost all elements of the matrices V, T, F and J 
are functions of the states x. The equations are control affine because they are linear 
in the controls u. In the systems and control literature Ac is usually called the system 
matrix, Bc the input matrix, C the output matrix and D the direct throughput matrix. 
These matrices are normally applied in a linear setting, i.e. they are not supposed to be 
functions of x. The inverse of the accumulation matrix V as required in equations 
(A.19) and (A.20) can be computed at low computational costs because it consists of 
four diagonal sub matrices. However, we emphasize that there is no need to perform 
the inverse operation if the equations serve as a basis for computation, and that the 
explicit state space form (A.17) and its linearization (A.29) are only required for 
analysis of the system-theoretical properties of the equations. 

We can linearize equation (A.17) in a point 0x  or along an entire trajectory 0 ( )tx  
with the aid of the Taylor expansion 
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where we have neglected terms of second order and higher, and applied the usual 
short-cut notation 
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Defining 

 0u u u , 0x x x , (A.25, A.26)  

equation (A.23) can be rewritten as  
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which, because 

  0 0 0,x f u x  , (A.28) 

can be reduced to the linearized system equations  

    0 0 0,c c x A u x x B x u  , (A.29) 

where the Jacobian matrices cA  and cB  are defined as 
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In a similar fashion we can linearize the nonlinear output equation (A.18) to obtain 

    0 0 0, y C u x x D x u  , (A.32) 

where the Jacobian matrices C  and D  are defined as 

          0 0 0 0

0 0 0 0 0
,

,
  

  
  

h u x C x D x
C u x C x x u

x x x
 , (A.33) 

      
0 0

0 0
,




h u x
D x D x

u
 . (A.34) 

Using an explicit time discretization, equations (A.17) and (A.18) can be rewritten in 
discrete-time form as  

    1k k k k k  x A x x B x u  ,     k k k k k y C x x D x u , (A.35, A.36) 

where 

     k c kt  A x I A x ,     k c kt B x B x  . (A.37, A.38) 
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Here we apply the usual notation xk to indicate x(kt), where the subscript k is the 
time step counter or discrete time. In a similar fashion equations (A.29) and (A.32) 
can be written in discrete time form as  

    0 0 0
1 ,k k k  x A u x x B x u  , (A.39) 

and 

    0 0 0,k k k y C u x x D x u  . (A.40) 

The discretization time step is chosen as 

 
 min
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 , (A.41) 

where λmin represents the most negative eigenvalue. This theoretical results leads to 
quite small time steps and is referred to as the so-called Nyquist–Shannon sampling 
time needed to accurately capture all of the dynamics in equation (A.17); see e.g. [36]. 
We note that both the theory and results in the paper do not depend on implicit or 
explicit time discretization or on the particular value of the discretization time-step t, 
and also apply to the continuous-time case. In the numerical examples we therefore 
used an implicit scheme with times steps considerably larger than the theoretical 
minimum given by equation (A.41). We verified that reduction of the timestep size 
did not lead to a change in the results.  


