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Abstract

Reservoir simulation models are frequently used to make decisions on well locations,
recovery optimization strategies etc. The success of these applications is, among other
aspects, determined by the controllability and observability properties of the reservoir
model. In this paper it is shown how the controllability and observability of two-phase
flow reservoir models can be analyzed and quantified with aid of generalized
empirical Gramians. The empirical controllability Gramian can be interpreted as a
spatial covariance of the states (pressures or saturations) in the reservoir resulting
from input perturbations in the wells. The empirical observability Gramian can be
interpreted as a spatial covariance of the measured bottom hole pressures or well bore
flow rates resulting from state perturbations. Based on examples in the form of simple
homogeneous and heterogeneous reservoir models we conclude that the position of
the wells and of the front between reservoir fluids, and to a lesser extent the position
and shape of permeability heterogeneities that impact the front, are the most important
factors that determine the local controllability and observability properties of the
reservoir.
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set of unit vectors

fractional flow

vector-valued function

fractional flow matrix

acceleration of gravity

vector-valued function

identity matrix

well index matrix

permeability, or discrete time

total number of time steps

permeability tensor

number of inputs (size of u)

subset of R”

set of positive constants

number of states (size of x)

subset of R”

observability matrix

pressure, or number of outputs (size of'y)
pressure vector

subset of R”

controllability Gramian

flow rate

flow rate per unit volume

flow rate vector

observability Gramian

number of elements in ./~

number of snapshots, or number of elements in . /
saturation

saturation vector

time

temperature

transmissibility matrix, or orthonormal matrix, or transformation matrix
set of orthonormal matrices

input vector, or left singular vector

matrix of input vectors, or matrix of left singular vectors
accumulation matrix, or matrix of right singular vectors
state vector

output vector

number of elements in ‘weighted singular vector’
diagonal scaling matrix

eigenvalue

viscosity

density

singular value

diagonal matrix of singular values

porosity
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(] auxiliary matrix

b 4 auxiliary matrix
subscripts

c capillary, or continuous-time
e empirical

o oil

op oil-pressure

os oil-saturation

)% pressure

r rock

7o relative, oil

rw relative, water

s saturation

t total

u input

y output

w water

wp water-pressure
ws water-saturation
superscripts

T transpose

In memoriam

After preparation of this manuscript, the third author, Okko Bosgra, passed away too
early on 21 February 2013. Prof. Okko Bosgra was one of the founders of our Dutch
systems and control theory network. Through his role of bringing together
mathematical systems theory and control engineering he has had a key role in
establishing a strong national community with international recognition. The present
paper is a clear example of his keen interest in combining system-theoretical aspects
with industrial applications. We remember Okko as a passionate and sharp-minded
scientist, an inspiring adviser, and an amicable colleague and friend.

Jorn Van Doren, Paul Van den Hof, Jan Dirk Jansen.

1 Introduction

In an earlier paper [1] we analyzed several system-theoretical aspects of single-phase
flow through porous media. In particular, we addressed single-phase, slightly
compressible flow. In that case the dynamic system behavior can be described with
linear differential equations in terms of a single state variable (dynamic variable), i.e.
pressure, which is a function of space and time. As a typical system parameter (static
variable) we considered permeability, which is a function of space only. As system
inputs (controls) we considered prescribed flow rates or bottom hole pressures in the
wells, while as system outputs (measurements) we took the bottom hole pressures in
those wells where the rates were prescribed and vice-versa. For such a set-up
controllability can be defined, loosely speaking, as the extent to which we can
influence the state variables at any particular point in the reservoir by manipulating
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the inputs. Observability can be defined as the extent to which we reconstruct the state
variables at any particular point in the reservoir from the outputs. Identifiability is the
extent to which we can reconstruct parameter values at any particular point from
input-output data. In the present paper we will extend our earlier analysis to
controllability and observability of slightly compressible two-phase (oil-water) flow.
Unlike the case of single-phase flow which leads to linear equations, the two-phase
case is nonlinear, which complicates the analysis. Moreover, whereas the equations
for single-phase flow are diffusive, we are now considering combined diffusive-
convective behavior of coupled pressures and saturations which causes further
complications.

Controllability is of relevance for the optimization of flooding processes, see e.g.
[1-7], while observability and identifiability are of relevance to state and parameter
estimation in computer-assisted history matching; see e.g. [1, 8—13]. Moreover, the
concepts of controllability and observability can be used to quantify those parts of a
reservoir model that are most important to the input-output behavior, which offers
scope to reduce the computational complexity through control-relevant upscaling [14,
15]. The concepts are also closely related to reduced-order modeling with the aid of
proper orthogonal decomposition (POD) although the link is not always explicitly
mentioned in the papers concerned; see e.g. [16—Error! Reference source not
found.]. Traditionally, controllability, observability and identifiability are considered
to be qualitative measures, i.e. they provide yes/no answers to the question if a system
is controllable/observable/ identifiable over the full spatial domain. However, this
presupposes the availability of controls that can provide arbitrarily strong input
signals, and sensors that can observe arbitrarily weak output signals. This is clearly
unrealistic, and therefore it is more meaningful to use a quantitative measure. Using
such a quantitative measure we showed in our earlier paper that the extent to which
the reservoir pressures are controllable and observable is very limited, and restricted
to pressures in areas close to the wells. Although we did not analyze identifiability in
detail, we showed a close relationship between the identifiability of permeabilities,
and the observability of pressures, such that the same conclusion hold, i.e.
permeabilities can only be identified to a very limited extent. Further aspects of the
identifiability of permeabilities in single-phase flow, and its relation to observability
and controllability, are given in [11, 12]. Moreover, the identifiability of reservoir
parameters from measured data is closely related to the ability to compute
‘sensitivities’ of measured data to reservoir parameters. This is an important topic for
computer-assisted history matching or well testing, about which, therefore, exist many
publications. However, most of the literature on sensitivities is focused on
computational aspects; see e.g. [19—21]. A much smaller number of authors has
addressed identifiability, or related concepts such as resolution or information content.
For a recent discussion, see [13]; for specific papers see e.g. [8, 9, 11, 12]. Although
the identifiability of parameters, or related concepts, has been treated before, to our
knowledge very few papers have been published on controllability and observability
of state variables in reservoir flow. We are aware of two publications that address the
controllability of pressures in single-phase flow [1, 4], where the latter is restricted to
homogeneous reservoirs, and of two publications that address the controllability of
saturations (oil-water fronts) in two-phase flow [3, 6]. However, the latter only treat
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the special case of incompressible flow of two near-identical fluids using the theory of
potential flow. Here we present a general technique to analyze and quantify the (local)
controllability and observability of pressures and saturations in multiphase flow.

2 Controllability and observability for nonlinear models

2.1 Introduction

In Appendix A a brief derivation is presented of the equations for two-phase flow
through porous media in state space form. The resulting equations are the
(differential) state equations

X =A(x,)x, +B(x, )u,, £=0,1,...K -1, (1)
and the (algebraic) output equations
Yi ZC(Xk)Xk+D(Xk)uk’ (2)

where x; =[pi si]' e NcR”" is a vector of state variables (i.e. of grid block
pressures p; and grid block saturations s; ), u, e M —R™ is a vector of inputs
(pressures, total flow rates or valve settings in the wells), y, € Pc R” is a vector of
measurements (pressures or phase rates in the wells), & is the discrete time index, and
K is the total number of time steps. The sets M, N and P are subsets of R”, R" and
R?” respectively because their elements are constrained to stay within physical limits;
e.g., pressures are always positive and saturations have values between zero and one.
To simplify the notation we will from now on define all variables as members of R*
with x an appropriate dimension, where the necessary subsets are to be tacitly
understood. The state-dependent matrices A(x;) € R, B(xx) e R™™, C(x;) € R”"
and D(x;) € R”™™ are given by expressions (A.35) to (A.38) with details in equations
(A.19) to (A.22).

2.2 Nonlinearity of two-phase flow equations

Equations (1) and (2) are nonlinear because of various dependencies of the
coefficients on the state variables x; such as, e.g., the dependency of the relative
permeablities on saturations, and of the fluid compressibilities and densities, and rock
porosity on pressures. The equations are control affine, because the inputs uy enter the
equations linearly. (An affine function is a linear function plus a translation. Control
affine functions are an important topic of study in nonlinear control theory.) We note
that although we present the theory in explicit discrete-time notation (for notational
convenience), the results that follow do not depend on implicit or explicit time
discretization or on the particular value of the discretization time-step, and also apply
to the continuous-time case. The nature of two-phase flow equations is much more
complex than that of the single-phase equations. The latter describe a pressure field
that is diffusive, i.e. the corresponding equations are parabolic and become elliptic in
the limit of zero compressibility. However, the two-phase equations describe both
pressures and saturations. The pressures p, behave similarly as in the single-phase
case although somewhat modified by two-phase effects, but the saturations s, behave
completely different and can be characterized as diffusive-convective, i.e. their
corresponding equations are mixed parabolic-hyperbolic and become completely
hyperbolic in the case of zero capillary pressure .
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From a control perspective this implies a markedly different dynamic behavior. In the
single-phase case, the dynamic response of the autonomous equations (i.e. without
inputs u;) to a small disturbance (in the form of an initial condition X() from an
equilibrium situation (constant pressures in two horizontal dimensions, or hydrostatic
pressures in three dimensions) results in a return to the equilibrium situation.
However, in the two-phase case the saturations are driven by convection (which is
governed by the spatial distribution of the pressures), and a small disturbance (in the
pressures and/or the saturations) from an equilibrium situation will result in a
permanent small change in the saturations. Correspondingly, the eigenvalues of a
continuous-time linear (or linearized) single-phase system have real negative values
(the fact that they are real implies that the response is non-oscillatory because inertia
does not play a role in the governing equations), whereas only half of the eigenvalues
of a linearized two-phase system are real and negative (for the pressures states) while
the other half are equal to zero (for the saturation states). The two-phase response is
therefore still bounded and non-oscillatory. In other words, the single-phase system
equations are asymptotically stable, whereas the linearized two-phase equations are
only Lyapunov stable.

Another difference between single-phase and two-phase flow is in the steady-state
behavior of the system. In the single-phase case, steady-state flow may occur after
dampening out of the pressure transients. However, the effect of the convective
behavior of the saturations is that there does not exist any non-trivial two-phase
steady-state solution for inputs that result in flow (i.e. that produce a non-hydrostatic
pressure gradient). This is because flow produces (very slow) saturation changes as
long as there are two mobile phases present. (The trivial solution occurs when all
mobile oil has been flushed out of the reservoir which effectively makes the reservoir
single-phase.) The typical timescale for pressure changes (e.g. defined as the half time
for dampening out of an impulsive pressure disturbance in a well) is very small
(typically in the order of hours to days) compared to the time for saturation changes to
propagate through the entire reservoir (typically in the order of years to decades).
Therefore it is usually justified to consider the saturation field to be very slowly time-
varying. The pressure response is then governed by linear equations with (very
slowly) time-varying coefficients, and, after dampening out of pressure transients
resulting from initial conditions, may be considered to be in near-steady state.

2.3 Controllability and observability

For formal definitions of the controllability and observability of nonlinear models we
refer to [22]. Here we will present a practical approach to analyze and quantify the
controllability and observability in a reservoir simulation setting. Reservoir models
are large-scale and hence have a large number of state variables. Consequently not all
approaches to analyze the controllability and observability of nonlinear models are
currently computationally feasible for this application area. Examples of methods that
are currently not feasible are the nonlinear local controllability and observability
analysis with a differential geometric approach [23] and the application of the
nonlinear controllability and observability function [24]. However, there are other
approaches that can be used. The first one is to linearize the model equations around a
steady-state operating point and analyze the linearized model with controllability and
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observability tools for linear time-invariant (LTI) models, or to linearize them along a
nominal state trajectory (i.e. a sequence of state vectors in time) and analyze the
model with controllability and observability tools for linear time varying (LTV)
systems. The second approach is to use empirical Gramians [25, 26] to approximate
the controllability and observability Gramians of nonlinear models. Empirical
Gramians can be computed for nonlinear large-scale models such as reservoir models.
All these methods are ‘local’ in the sense that they only address the controllability
observability of state variables in the neighborhood of the linearization point or
trajectory, i.e. for small changes in the inputs and initial conditions compared to the
values used for the linearization. Here we will use the empirical Gramian approach.

2.4 Controllability Gramian interpreted as covariance matrix

Recall that a discrete-time LTI system
X, =Ax, +Bu,, £=0,1,...,K -1, 3)
is controllable if its controllability matrix,
CcR™2[B AB A’B - A“'B], (4)

has full rank (see e.g. [27]). This is equivalent to requiring that the controllability
Gramian,

P eR™ 2 @E" = EA"BBT (A7), ()
k=0

has full rank. (Note that we make no distinction between ‘reachability’ to reach a state
starting from an initial condition, or ‘controllability’ to drive back a state to a zero
condition, because these concepts lead to identical requirements for a discrete-time
formulation). In a reservoir simulation setting, equation (3) represents a single-phase
reservoir model or a linearized version of a multi-phase reservoir model; see
equations (A.39) and (A.40) in Appendix A, from which we dropped the overbars to
simplify the notation. An interpretation of equation (5) can be obtained by rewriting
equation (3) as a recursive sequence:

X, = Ax, +Bu,,
X, = A’x, + ABu, +Bu,,
x, = A’x, + A’Bu, + ABu, + Bu,, (6)

Ak K-1
X, =A"x,+A" Bu,+...+ ABu, , +Bu, ,.

Starting from an initial condition xo =0, and a unit impulse input at time zero, i.e.,
u=1;u =u,=... =u,; =0, where 1 is a vector of unit length, it follows that

x, =A""'B, (7)

where the accent indicates that the response results from a unit impulse input.
Equation (5) can therefore be written as
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2=Yx(x) =[x x, - x] 2| (8)

Next, consider the definition of the (sample) covariance between elements of the state
vector X:

<7
cov(x,x)eR"*"éﬁ[il 5, - %] 7| ©)

where s is the sample size, i.e., the number of state vector ‘snapshots’ in time used to
estimate the covariance, and X indicates a (sample) mean-centered snapshot:

% 2x-~%x . (10)
s

Comparison of equations (8) and (9) illustrates that the controllability Gramian %
can be interpreted as a generalized spatial covariance matrix of the state response to a
unit impulse input. Note that for the Gramian to be full rank it is required that the
number of time steps K is at least as large as the number of states 7.

2.5 Empirical controllability Gramian

For a nonlinear state equation, an empirical controllability Gramian can be computed
from an ensemble of the state ‘snap shots’ taken from state trajectories corresponding
to a set of input signals. The Gramian for a linear system, if full rank, guarantees that
any possible combinations of states can be reached from a zero initial condition
(although possibly with input signals of unrealistically large magnitudes). An
empirical Gramian is less powerful, and, if full rank, only guarantees ‘local’
controllability, i.e. that those combinations of states can be reached that are ‘close’ to
the state trajectories used to derive the Gramians. The original derivation of empirical
Gramians by Lall et al. [25] is expressed in continuous time. Here we will follow
largely their approach and notation but express the results in discrete time. To
compute an empirical controllability Gramian consider the following auxiliary
variables:

1. aset " ={ey,e,,...,e,} of standard unit vectors e, e R",i=1,2,...,m,

2. aset ./ " ={T,T,...,T.} of orthonormal matrices T, e R™",/=1,2,...,r,

3. aset ./ ofpositive constants ¢; eR, j=12,...,s.

With sets ™, ./ ", and ./, where m is the number of inputs to the system (i.e. the
dimension of u) one can generate a total of mxrxs ‘perturbed’ time sequences
U% e R™¥ of input vectors defined as

il A il ilj ilj
Y _I:uo u; e uKl]’ (11)

where
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lll/-ffécj’I‘leié‘k +ﬁ, k=0,19--'aK_1’ (12)

O is the Kronecker delta (defined as o, =1if k=0,0, =0if k#0 ), and u is a
nominal steady-state input around which the perturbations are taken. The role of the
unit vectors is to select each of the components of u one by one. The matrices T, can
be used to select different combinations of components, and the constants ¢, to select
different magnitudes of the perturbations, which may all be of importance because of
the nonlinear nature of the system equations. Next, the input sequences U” are used to
generate state trajectories, and the empirical controllability Gramian is defined as

LI S I S
22353 Sap, 3)

i=1 1=l j=1 'SCj k=1
with the rank-one matrices ®% € R™" given by
@l A5l () 14
v g (g (14)

where X/ are mean-centered snapshots as defined in equation (10) with s = K. If the

system 1is stable, linear, control affine, and excited with an impulse input, then the
empirical controllability Gramian is identical to the controllability Gramian [25, 26].
Hahn et al. [26] extended definition (12) to include other forms of inputs, such as
(series of ) step inputs, resulting in more general covariance matrices of which
empirical Gramians form a subset. (Alternatively, these covariance matrices could be
referred to as generalized empirical Gramians). As discussed by Hahn et al. [26] the
definition of empirical controllability Gramians is restricted to control-affine
Lyapunov-stable systems starting from a steady-state situation. The first two
conditions are met without problems for our two-phase reservoir flow equations. The
third one is met approximately because, as discussed in Section 2.2, the saturation
changes are typically so slow that the saturation field may be considered to be near-
constant and the pressure field to be near-steady state. In that case we can compute
empirical Gramians (or covariance matrices) by taking ‘snap shots’ of states resulting
from perturbed inputs along a (near-steady state) trajectory in input-state space. This
is identical to the typical approach to compute covariance matrices for use in POD.

2.6  Empirical observability Gramian

The observability Gramian for an LTI system (3) observed according to an LTI output
equation

y, =Cx, +Du,, (15)
is observable if its observability matrix,
C -
CA
O=CA* |, (16)
(:.AK—I
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has full rank (see e.g. [27]). This is equivalent to requiring that the observability
Gramian,

K-l .
CeR™"E0O=Y (AT)C'CA', (17)

i=0
has full rank. For nonlinear systems, an empirical observability Gramian can be
defined which can be interpreted as the covariance of the output resulting from a large
number of initial state vectors [25]. With the aid of sets ", ./ ", and . / as defined
above, where n is the number of state variables (i.e. the dimension of x), one can
generate a total of nxrx s initial state vectors xi € R” defined as

X, 2c;Te +X,, (18)

where X, is a nominal initial condition around which the perturbations are taken.
Next, the initial conditions are used, with zero inputs, to generate states and outputs
and the empirical observability Gramian is defined as

s 1 K-1

€23y LS i, (19)

=1 j=1 V'SCj k=0

+ of matrix W/ e R™" are given by
) AN
Wi =(37) (71), (20)

where ¥4/ are mean-centered outputs of the system. If the system is stable and linear,
then the empirical observability Gramian is identical to the observability Gramian
[25]. The empirical observability Gramian is calculated based on the outputs of the
model for a large number (7 xrxs) initial conditions. For applications with a large
number of states this approach is computationally very demanding, because of the
need to perform a large number of simulations and to store all corresponding output
vectors. References [28] and [29] therefore present an alternative approach to
approximate the observability Gramian by taking snapshots of a dual linearized
system (a.k.a. an adjoint system), which is computationally much more efficient if the
number of outputs p is much smaller than the number of states n (as is usually the
case). In the present paper we followed the latterapproach

in which the elements W/

u

2.7 Balancing and Hankel singular values

A state that is sensitive to inputs, i.e. that is strongly controllable, is not necessarily
also strongly observable, or vice versa, an effect that is also reflected in the difference
between the corresponding (empirical) Gramians. However, it is possible to find a
linear ‘balancing’ coordinate transformation T of the (empirical) Gramians % and
& such that the transformed Gramians % and & are equal diagonal matrices that
satisfy

P=T2T , € =T"¢T", 70 =T7T". (21, 22, 23)

The transformation matrix T can then also be used to define transformed (balanced)
states X=Tx such that states that are strongly controllable are also strongly
observable and vice versa, which implies that they are important to the input-output
behaviour. Although (empirical) Gramians themselves are coordinate dependent, the
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eigenvalues of their product are not. The latter are called the Hankel singular values,
and are defined as

0,24 (2€)=|A(2€), i=1.2,....n. (24)
If the Hankel singular values decrease rapidly this is an indication that the input—
output behavior is determined by only the first few balanced states. For details about

balancing, see e.g. Moore [30] (the original paper), Antoulas [31] (a textbook), or [1]
(an application to single phase flow; our earlier paper).

3 Quantifying controllability and observability

3.1 Singular value decompositions (SVDs)

To quantify observability and controllability, SVDs can be used to compute subspaces
that are most controllable or observable. In reference [1] we applied this method to
single-phase porous media flow and here we will use the same approach for two-
phase flow using empirical Gramians. The controllable states (i.e. the subspace
X" =Im(€)) can be approximated by using an approximate version of € defined as

_ T _ E1 0 VT
e=uzv' =[U, U,] 0o x|[vr ~UZXV/, (25)

where the separation between X, and X, is chosen in such a way that the singular
values in X, are considerably smaller than those in X;. The first few left singular
vectors, i.e. the first few columns of U, are now just the most controllable linear
combinations of states. Alternatively, an SVD can be applied to the controllability
Gramian,

Z=CC" =Uur’U’, (26)
or to the empirical controllability Gramian &, resulting in the same matrices U and X

as in equation (25).

The observable states, (i.e. the orthogonal complement to the unobservable subspace
X = Ker(¢)) can be approximated by applying an SVD to the transpose of the
observability matrix &7,

0" =UxvV' =UXV/, (27)
or, alternatively, to the transpose of the (empirical) observability Gramian & ,
&=0"¢=UxU". (28)

In this case the first few columns of U; are just the most observable linear
combinations of states. Note that the values of U, £ and V in equations (25) and (27)
are usually not identical, and the same holds for those values in equations (26) and
(28).

In a similar fashion it is possible to determine the SVD of the product of the balanced
Gramians 2¢ . The first few left singular vectors are in this case the linear
combinations of states that contribute most to the input-output behavior of the system.
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3.2 Scaling

Consider the case in which the controllable subspace is approximated by removing
columns U, in U which correspond to (very) small singular values. In case the values
of the input variables vary several orders of magnitude, the values of the input matrix
B related to those inputs influence the numerical values that occur in X; and X, and
as such can influence the separation between X, and X, In order to make the
selection mechanism scaling-independent, matrix B can be scaled to

B=BI,, (29)

where T, =diag(|u, | |ua| -+ |un|)”", with w;, i=12,...,m, representing typical
(nominal) input values. Alternatively, the values can be scaled with respect to the well
indices, as will be discussed below. Subsequently, the controllability matrix and
Gramians are calculated. This is illustrated in the next section in which examples are
presented where the inputs contain pressures that have values in the range of 10’ Pa
and rates that have values in the range of one m’/s. The same reasoning also applies to
the output variables. In order to make the selection mechanism scaling-independent,
matrix C can be scaled to

C=r_C, (30)

where, in this paper, I', =diag(|yi| |»2| - |y, )", with y;, i=12,...,p,
representing typical output values.

3.3 Time-varying controllability

The controllability and observability properties of a nonlinear model can change with
time, i.e. states can become more or less controllable or observable with time. In this
paper we have therefore chosen to analyze these properties per time interval. To this
end the total simulation time of K time steps is split into intervals
ki =[ki,kin,...,k;], where k; and k, are the first and last time step of the interval.
Subsequently, the controllability of each interval is analyzed. This approach is
comparable to the ‘sliding interval balancing’ procedure described in, e.g., reference
[32].

3.4 Graphical representation

Each column of U in equation (25), (26), (27) or (28) contains a singular vector of
dimension n, where 7 is the total number of states. In the case of spatially discretized
reservoir models the states represent grid block pressures and/or grid block
saturations. Since each state is connected to a grid block, each column of U can be
interpreted as a set of two spatial patterns (basis functions), representing a pressure
field and a saturation field respectively. The spatial patterns contained in U,, which
correspond to large singular values, are combinations of states that are most
controllable or observable. To graphically represent these dominant spatial patterns in
a compact way , we have chosen to depict them as a single ‘weighted singular vector’
u® , consisting of the sum of the first z singular vectors weighted by their
corresponding singular values:

w => %y, 31)
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where o, is the i"™ singular value on the diagonal of X, and w, is the i column vector
of U (not to be confused with the input vector u). The value of z is chosen such as to
maintain 99% of the total ‘energy’ in the system, i.e. of the sum of all singular values.
The weighted singular vectors vizualise which parts of the reservoir model contain the
dominant, i.e. the most controllable or observable, states. In a geometric interpretation
the columns of the unitary matrix U represent a direction in the controllable or
observable subspace, where the length of the vectors is given by the corresponding
singular values. The vectors weighted by their singular value as in equation (31) can
then be considered as a vector sum, characterizing the dominant directions in the
controllable or observable subspace.

4 Controllability and observability of saturations and pressures in two-phase
porous media flow

4.1 Introduction

In reference [1] we analyzed the controllability and observability of pressures in
single-phase flow. It was concluded that pressures near wells in which the flow rate or
bottom-hole pressure can be controlled are most controllable, whereas pressures near
wells in which the flow rate or bottom-hole pressure can be measured are most
observable. Furthermore, the controllability and observability properties are primarily
determined by the well configuration (i.e. the number and location of wells) and to a
lesser extent by the heterogeneity of the reservoir. In reference [33], which formed the
basis for the present paper, the controllability and observability of saturations in a
one-dimensional horizontal reservoir were analyzed. The reservoir was modeled with
a linear and nonlinear convection-diffusion equation (CDE) discretized in space and
time. Regarding the nonlinear CDE it was concluded that:

e The saturation states of the nonlinear CDE are most controllable near the oil-
water front.

e The saturation states located at the observation point are most observable.

e The saturation states that are most relevant (i.e. least irrelevant) for the input-
output behavior are situated around the oil-water front.

e The Hankel singular values decrease rapidly, indicating that reservoir models
behave as models of much lower order than the order that follows from the
number of grid blocks.

These results are in line with the results of the single-phase controllability and
observability analysis in [1]. Additional details on the controllability and observability
analysis of the linear and nonlinear CDE can be found in Chapter 3 of [33]. In the
remainder of this section we turn our attention to two-dimensional two-phase
reservoir models, where the states are the pressures and saturations in each grid block.
Our aim is to identify the dominant grid block pressures and saturations, i.e. those that
are most controllable and observable, during the simulation period of the reservoir
model.
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Figure 1: Well locations for examples I and 2.

4.2  Example 1: homogeneous permeability

The first example represents a two-dimensional horizontal homogeneous reservoir in
which the oil will be replaced by water in a water flooding process. The model has 21
x 21 x 1 grid blocks of 10 m x10 m % 10 m. For the first example the absolute
permeability is 10" m* in every grid block. The porosity ¢ = 0.30 and is constant in
every grid block. The oil compressibility ¢, = 107'° Pa™', the water compressibility
¢y =107 Pa™, the oil viscosity ¢, = 107 Pa s and the water viscosity s, = 10 Pa
s. For the relative permeability the Corey model is used, with Corey exponents
n,=n,=2, k,o =0.9 and k,,o = 0.6. Connate water and residual oil saturation are
equal to 0.2. Capillary pressure is not included in the model. The initial pressure po=
100x10° Pa and the initial (connate) water saturation Sy = 0.2, and both are uniform
throughout the reservoir model. The reservoir model contains an injection well and a
production well at opposite corners; see Figure 1.

The inputs u represent the prescribed rate in the injection well (no pressure constraint)
and the prescribed pressure in the production well (no rate constraint). The well
indices are computed with a Peaceman model with well bore radius 7, = 0.1 m and no
skin. Similarly as in reference [1], the nonzero entry in input matrix B, corresponding
to the flow rate-controlled injection well, is scaled with I', to the well index of the
pressure controlled production well. Both wells are assumed to be equipped with
sensors to measure the bottom hole pressure and the oil and water rates. The reservoir
model is simulated for 10 years.

Since we consider the controllability and observability around a nominal input-state
trajectory, we need to choose input signals ¢;, as required in equations (12) and (19),
with magnitudes that can be considered as realistic during the operation of a
petroleum reservoir. For this example we have chosen pseudo-random binary signals
(PRBS) with rate inputs between 0.4 m’/s and 0.5 m’/s and pressure inputs between
90x10° Pa and 99x10° Pa. The matrices T, corresponding to a PRBS, as required in
equations (12), (18) and (19), are simply positive or negative unit matrices. The input
signal is constant over intervals with a length of at least 25 time steps before it
switches to another input level. Because we use a single signal we have r = s = 1.
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Note that the use of a PRBS implies that the inputs are piecewise constant, and that,
strictly speaking, we do not compute empirical Gramians (for which we would need
impulsive inputs for the controllability Gramian and no inputs for the observability
Gramian) but ‘generalized empirical Gramians’ or simply ‘empirical covariance
matrices’. This is tacitly assumed whenever we use the expression ‘empirical
Gramian’ in the discussion below.

Recall that the state vector x consists of stacked pressure and saturation vectors. The
time scales of the dynamic behavior of the pressure and saturation states are very
different from each other, as indicated by the clear separation in eigenvalues of the
linearized system matrix A, (see Appendix A and the discussion in Section 2.2). The
pressure states of the linearized equations are associated with eigenvalues with high
absolute values and exhibit a fast behavior, while the saturation states are associated
with eigenvalues with very low values (in case of nonzero inputs) or even zero values
(in the absence of inputs) and exhibit a very slow behavior. Therefore it is reasonable
to analyze the controllability and observability of the pressure and saturation states
separately.

In reference [33] the controllability and observability of the pressure states are
analyzed with the aid of two methods: 1) LTV observability and controllability
matrices and 2) empirical Gramians. The controllability and observability of the
saturation states are analyzed with three methods: 1) LTV observability and
controllability matrices, 2) empirical Gramians, and 3) after time scale separation and
linearization, with LTI controllability and observability Gramians. The conclusions
following from these approaches were nearly identical, and therefore in this paper
only the results obtained with empirical Gramians will be presented.

For the first example, with a homogeneous permeability distribution, we computed the
Hankel singular values of all states and of the pressure and saturation states separately
using empirical Gramians; see Figure 2. The values decrease rapidly, indicating that
the reservoir model behaves as a model of much lower order than the order suggested
by the number of states. Empirical controllability and observability Gramians were
calculated for intervals around the nominal input-state trajectory, where X, is chosen
as the state vector in the middle of the interval. The interval length is chosen as 60
time steps. The results are shown in Figure 3. The first two rows depict snapshots of
pressures and saturations at the beginning of each of the five consecutive time
intervals. The next three rows depict ‘weighted singular vectors, as defined in
equation (31), for the empirical controllability, observability and balanced Gramians
respectively. The notation |Up(Li60)| indicates the (base 10) logarithm of the
weighted singular vector based on the first twenty columns of U, obtained from the
SVD of £ computed over the time interval from 1 to 60 timesteps. The key
observation is that the pressures are most controllable around the wells. Also, after
balancing, the pressures most relevant for the input-output behavior are located
directly around the wells. This is completely in line with the observations for the
single-phase reservoir models presented in reference [1].
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Figure 2: Hankel singular values for example 1. Left: all singular values. Right: first
20 singular values.
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Figure 3: Controllability and observability of the pressure states for example 1.
Columns indicate five consecutive time intervals. The top two rows display the
pressure and saturation fields respectively. The three bottom rows display the (base
10) logarithm of the ‘weighted singular vectors’ corresponding to the empirical
controllability Gramian, the empirical observability Gramian and the balanced
Gramian respectively.

Next, we analyze the controllability and observability of the saturation states with
empirical controllability and observability Gramians. As before, these are calculated
for consecutive ‘sliding’ intervals with a length of 60 time steps. The first two rows in
Figure 4 show again the snapshots of pressure and saturation. The third row shows the

Controllability and observability in two-phase porous media flow 16/27



weighted singular vector of the empirical controllability Gramian indicating that the
saturation states are most controllable in the grid blocks where the fluid front is
located. This is understandable since the saturation values around the front are the
only values that change using the specific input signal. All other saturation values are
either near their maximum value (upstream of the front) or at their minimum value
(downstream of the front). The fourth row in Figure 4 shows the weighted singular
value of the empirical observability Gramian, indicating that the saturation in the grid
blocks close to the wells are most observable. There seems to be no influence of the
arrival of the saturation front on the observability. The fifth row shows the weighted
value of the balanced states, indicating that the saturation states around the front are
most relevant (i.e. least irrelevant) for the input-output behavior. Furthermore,
upstream of the front, the states seem to be slightly more relevant than downstream of
the front, since the values of the weighted singular vector are higher upstream of the

front.
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Figure 4: Controllability and observability of the saturation states for example 1. Key
as in Figure 3.

4.3  Example 2: heterogeneous permeability

As a next step, we analyzed the controllability and observability of a reservoir model
with a heterogeneous permeability distribution in the form of a high permeable streak
or fracture from the injector to the producer with an absolute permeability of 10~* m?.
The absolute permeability in the other grid blocks is 10™'° m%; see Figure 5. (We note
that these values are unusually high; however, the results of our study are dependent
on the permeability contrast and the absolute values are therefore not relevant).

Controllability and observability in two-phase porous media flow 17/27



[, w Boy]

y—grid

1 3 5 7 9 11 13 15 17 19 2
x—grid

Figure 5: Permeability field for example 2. Magnitude in "’log m’.

First, the controllability and observability of the pressure states are analyzed for this
example. From Figure 6 we can conclude that the pressure states are controllable
around the wells and in the high permeable streak downstream of the oil-water front.
When the front has reached the producer, the most controllable states are again
located around the wells and in the high permeable streak. The most observable
pressure states coincide with the most controllable pressure states. For this example
the pressure states that are most relevant for the input-output behavior are, according
to the bottom row in Figure 6, also located around the wells and in the high permeable
streak.

Next, the controllability and observability of the saturation states are analyzed. In
Figure 7 the results are shown. As in the previous case, the saturation states are most
controllable around the oil-water front. The saturation states that are most observable
are located close to the wells and furthermore in the high-permeable streak. The last
row indicates that the saturation states around the front are most relevant for the input-
output behavior, where the states upstream of the front are more relevant than
downstream of the front.
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Figure 6: Observability and controllability of pressure states for example 2. Key as in
Figure 3.

5 Conclusions

In this work the controllability and observability of the states (pressures and
saturations) in two-phase (oil-water) reservoir models have been analyzed. For these
nonlinear models we analyzed the local controllability and observability around a
nominal input-state trajectory with the aid of generalized empirical Gramians
(covariance matrices)

Based on the analyzed examples we conclude that the Hankel singular values of
reservoir models decrease rapidly, indicating that these models are effectively of
much lower order than the state-space models that results after spatial discretization.
Furthermore, pressures are most controllable and observable around the wells that can
control and observe the pressure states. The saturations are most controllable around
the fluid front and most observable around the wells. After balancing the model we
can conclude that the most relevant (in terms of input-output behavior) pressure states
are located around the wells and the most relevant saturation states are located around
the fluid front.

From an example with a heterogeneous permeability distribution we can conclude that
model parameters, such as permeability, that alter the shape and position of the fluid
front, do influence the observability and controllability properties of the reservoir, and
hence generalize the results. We conclude that the position of the wells and of the
front between reservoir fluids, and to a lesser extent the position and shape of
permeability heterogeneities, are the most important factors that determine the local
controllability and observability properties of the reservoir. Therefore, research into
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effective reduced-order models for two-phase flow should focus on ways to capture,
in some sense, the position of the fluid front(s).

P ” !81 X 10 pMD

| i
lu In M

120 ?6160 120 9161120 I}D es!}HBO 11‘0 0\131240 120 es?-m)W

-
02 K
0 0

120 es1ﬁo 120 esollzo 120 051?1130 120 t.'s181240 ) IU120 e5240'299

-15 -15

Q Q) U Q) P Q)

120 e\ c‘s 120 es es 120 ea. es IED es es 120 es o5

| u
-15 -15 -15

1

VOWY
SR2

Figure 7: Observability and controllability of saturation states for example 2. Key as

in Figure 3.
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Appendix A — State space formulation of two-phase porous media flow

This Appendix presents a derivation of the equations for flow through porous media
in state space form [34]. As an example we consider two-phase (oil-water) isothermal,
slightly compressible flow. Following the usual approach (see e.g. [35]) we can
combine mass conservation equations and Darcy’s law for each phase to obtain
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i

where K is the permeability tensor, 4 is fluid viscosity, &, is relative permeability, p is
pressure, g is acceleration of gravity, d is depth, p is fluid density, ¢ is porosity, S is
fluid saturation, ¢ is time, ¢" is a source term expressed as flow rate per unit volume,
and subscript i e {0, w} indicates the oil and water phases respectively. Equations
(A.1) (one for each phase) contain four unknowns, p,, p, S, and S,, two of which can
be eliminated with aid of the relationships

S, +S,=1, p,-p,=p.(S,) (A2, A.3)
where p.(S,) is the oil-water capillary pressure. Substituting equations (A.2) and (A.3)

in equations (A.1), expanding the right-hand sides, applying chain-rule differentiation,
and substituting isothermal oil, water and rock compressibilities

cwziapw| RN e =199 (A4 A5 A6
; P, op, \T P, b, \T ¢ op,

where T is temperature, allows us to express equations (A.l) in terms of p, and S,, as
follows:

_V{pw_kWKKVpo —SL;VSWJ—%Wme{SW (c. +Cr)%+%}—pwq$’ Lo,

i ] o ot
(A7)

k’ a aS ) n
_v.[%K(vpo —pong):|+po¢{(l—Sw)(co +c}_)%—a—;}—pgqg =0. (AS8)

Equations (A.7) and (A.8) contain two state variables: the oil pressure p, and the
water saturation S,,. The equations are nonlinear because of the saturation dependency
of the capillary pressure p. and the relative permeabilities 4, and k. In the more
general case there may also be a pressure dependency of the densities p, the porosity
@, and the compressibilities c¢. In this paper we considered, without loss of generality,
a simplified case where gravity and capillary forces can be neglected. After semi-
discretization of the equations in space, e.g. with a finite difference or finite element
procedure, we obtain the following system of nonlinear first-order differential

equations,
el Wt W T
R S

where p and s are vectors of pressures p, and water saturations S, in the grid block
centers, V is an accumulation matrix (with entries that are functions of the porosity ¢,
and the oil, water and rock compressibilities ¢,, ¢,, and ¢,), T is a transmissibility
matrix (with entries that are functions of the rock permeabilities k, the oil and water
relative permeabilities k,, and &, and the oil and water viscosities £, and ), F is a
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fractional flow matrix (with entries that have functional dependencies similar to those
of T), and .. 1s a vector of total well flow rates with non-zero values in those
elements that correspond to grid blocks penetrated by a well. The matrices V, T and F
are all functions of s, either directly or through the parameters. In the more general
case of high compressibility they are also a function of p. The fractional flow matrices
F,, and F, are diagonal with fractional flows f,, and f, as the elements that correspond
to well grid blocks and zeros otherwise. In practice the source terms are often not the
flow rates in the wells but rather the pressures. This can be accounted for by rewriting
equation (A.9) in partitioned form as [34]

Vi 0 0 Vin 0 0 P,
0 V,» 0 0 V., 0 p,
0 0 Va3 0 0 V. & N
Vo, 0 0 V. 0 0 S,
0 Vo2 0 0 V,» 0 S
0 0 V., 1 0 0 Vs || $;
- - T (A.10)
T,, T, T,;|0 0 0p, 0 0 0
Tw,21 Tw,22 Tw,23 0 0 0fp, 0 F, . 0 0
T, T, T,5](0 00 Ps|_ 0 0 F, 3
T, T, T,;[0 0 0fs 0 0 0 jlwe”’l
T, T, T5[|0 0 0fs, 0 F, 0 1; (pwe” P )
_T0,31 T, T 0 0 0_ N _0 0 F,

Here, the elements of vector p, are the pressures in those grid blocks that are not
penetrated by a well. The elements of p, are the pressures in the blocks where the
source terms are prescribed total well flow rates ..., and those of p; are the
pressures in the blocks where the source terms are obtained through prescription of
the bottom hole pressures p..; with the aid of a diagonal matrix of well indices J;.
To compute the oil and water flow rates in the wells with prescribed pressures we use
the relationship

qwell w Fw 33 _
7Les ) e A1l
|:6well,o :| |:F0’33 3 (pWell p3) ( )

To compute the bottom hole pressures p..; in the wells with prescribed total flow
rates we need an additional diagonal matrix J, of well indices such that

(lwell,t = JZ (ﬁwell - pZ) s (A12)
from which we obtain
ﬁwell = J;(\iwell,t _pZ . (A13)

To bring these equations in state space form we define the state vector X, input vector
u and output vector'y as
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ué|:qwell,t:|’ Xé|:pj|= & , yé a . (A14, AlS,A16)

— well ,w
p well q
well ,o

Equations (A.10), (A.11) and (A.13) can then be rewritten in nonlinear state space
form

X=f(x,u)=Ac(x)x+Bc(x)u , (A.17
y=h(x,u)=C(x)x+D(x)u , (A.18)
where the state-dependent matrices A.(x), B.(x), C(x) and D(x) are defined as
I Tw,l 1 Tw,lZ Tw,13 0 0 0_ i 0 0
w,21 Tw,22 Tw,23 0 0 0 Fw,22 0
AC é _V—l Tw,3l Tw,32 Tw,33 + Fw,33J3 0 0 0 , BC é V—l 0 Fw,33J3 ,
To,ll To,lZ Tu,13 0 0 0 0 0
To,Zl Tu,22 To,23 0 0 0 Fo,22 0
_T0,31 T0,32 To,33 + Fu,33J3 0 0 0_ L 0 Fu,33J3 B
01 0 |00 0] N0
C2/0 0 -FJ,|0 0 0|, D£| 0 F,J,
0 0 -F.J,|0 0 0] 0 F.J,

(A.19, A.20, A.21, A.22)

The equations are nonlinear because almost all elements of the matrices V, T, F and J
are functions of the states x. The equations are control affine because they are linear
in the controls u. In the systems and control literature A, is usually called the system
matrix, B. the input matrix, C the output matrix and D the direct throughput matrix.
These matrices are normally applied in a linear setting, i.e. they are not supposed to be
functions of x. The inverse of the accumulation matrix V as required in equations
(A.19) and (A.20) can be computed at low computational costs because it consists of
four diagonal sub matrices. However, we emphasize that there is no need to perform
the inverse operation if the equations serve as a basis for computation, and that the
explicit state space form (A.17) and its linearization (A.29) are only required for
analysis of the system-theoretical properties of the equations.

We can linearize equation (A.17) in a point x° or along an entire trajectory x’(¢)
with the aid of the Taylor expansion

8f(u°,x°)

— (x-x"),  (A23)
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where we have neglected terms of second order and higher, and applied the usual
short-cut notation

af(uo’xo) A 8f(“=")|

. A.24
Ox Ox uet® x=x’ ( )
Defining
azu-u’, xX=x-x’, (A.25, A.26)
equation (A.23) can be rewritten as
, of (u’,x° of (u’,x°
X+x' ~f(u',x")+ ( )ﬁ+ ( )i, (A.27)
ou ox
which, because
0 =f(u’,x"), (A.28)
can be reduced to the linearized system equations
X=A, (uo,xo)i+ﬁc(x°)ﬁ , (A.29)
where the Jacobian matrices A, and B, are defined as
_ of (u’,x’ oA (x° oB (x°
Ac(uo,xo)é—( )=Ac(x0)+ | )x°+ | )uo, (A.30)
ox ox 10).¢

_ of (u’,x’
BC(XO)é¥=BC(XO). (A31)

In a similar fashion we can linearize the nonlinear output equation (A.18) to obtain

yz(_j(uo,xo)i+]_)<x°)ﬁ ,

(A.32)
where the Jacobian matrices C and D are defined as
0 0 0 0
C(uo,xo)éM=C(xo)+aC(x )x°+8D(X )uO, (A.33)
19). ox ox

p(x) 2 2y,

(A.34)

Using an explicit time discretization, equations (A.17) and (A.18) can be rewritten in
discrete-time form as

X :A(Xk)xk +B(Xk)uk > Vi :C(Xk)xk +D(Xk)uk >

(A.35, A.36)
where

A(x,)=(T+AtA (x,)), B(x,)=ABx,) . (A.37, A.38)
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Here we apply the usual notation x; to indicate x(kAf), where the subscript & is the
time step counter or discrete time. In a similar fashion equations (A.29) and (A.32)
can be written in discrete time form as

X, =K(u°,x0)ik +l_3(x°)ﬁk : (A.39)
and
¥, =C(u.x")x, +D(x)u, . (A.40)
The discretization time step is chosen as
0.5
At =7——, A4l
‘ﬂ’min (Ac) ( )

where 4,;, represents the most negative eigenvalue. This theoretical results leads to
quite small time steps and is referred to as the so-called Nyquist—-Shannon sampling
time needed to accurately capture all of the dynamics in equation (A.17); see e.g. [36].
We note that both the theory and results in the paper do not depend on implicit or
explicit time discretization or on the particular value of the discretization time-step A¢,
and also apply to the continuous-time case. In the numerical examples we therefore
used an implicit scheme with times steps considerably larger than the theoretical
minimum given by equation (A.41). We verified that reduction of the timestep size
did not lead to a change in the results.
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