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Abstract
The single-pixel integrated superconducting spectrometer DESHIMA 2.0 on 10 m Atacama Submillime-
ter Telescope Experiment (ASTE) aims to provide broadband spectra from 200 to 400 GHz at medium
resolution. This spectral range enables observations of (sub) millimetre-wave astronomy, especially
for uncovering dust-obscured cosmic star formation and galaxy evolution over cosmic time. To test its
scientific capabilities, the nearby star-forming and AGN galaxy NGC 1068 was observed. This study
compares the observed DESHIMA 2.0 spectrum against published literature on NGC 1068, addressing
the research question:

Is the wideband spectrum of NGC 1068 obtained with DESHIMA 2.0 consistent with pre-
viously published observational data?

The dust continuum was extracted by fitting a grey-body with a statistical model using a Markov Chain
Monte Carlo (MCMC) sampler over the 250-280 GHz window. The best-fit parameters were found to
agree with values obtained by Z-spec at the 1𝜎 level, with a reduced 𝜒2 = 1.37 achieved with the data
and 𝜒2 = 3.32 with continuum model over Z-spec observed data, showing good continuum recovery.
Voigt profiles were fitted to the CO(2-1) and CO(3-2) lines using single fits on continuum-subtracted
spectra. The emission line fluxes comparable to those obtained with the James Clerk Maxwell Tele-
scope (JCMT) by Qiu et al. were measured by DESHIMA 2.0, agreeing within 6–12%. However,
significant differences were observed in line widths and main beam temperatures, attributed to instru-
mental effects such as beam dilution and smearing, as well as methodological differences between
single Voigt profile and multi-component Gaussian fitting approaches.
It is demonstrated that DESHIMA 2.0 delivers reliable broadband continuum and integrated emission
line fluxes consistent with other instruments for NGC 1068, validating its utility for spectral surveys
of bright dusty star-forming galaxies. The observed differences in line widths and channel-to-channel
calibration highlight opportunities for improved MKID correspondence and noise reduction to enable
the detection of fainter emission lines in future observations.
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1
Introduction

1.1. Dusty Star-forming Galaxies and Their Importance
Luminous Infrared Galaxies (LIRGs) were first discovered in the late 1990s and are known to be among
the brightest galaxies in the Universe [26]. They dominate the far-infrared/sub-millimetre sky at high
redshift [5]. Yet, they are almost invisible in optical/X-ray because dust absorbs the high-energy ra-
diation and re-emits it in the sub-millimetre. Investigating their basic properties, like dust continuum
and bright molecular lines, provides important information about the early star-forming Universe [3,
1]. These star-forming regions produce hundreds to thousands of solar masses of stars each year
(102 — 103 𝑀⊙ yr−1) [26, 12]. Observing the high-redshift properties of these star-forming galaxies
can be achieved through various spectroscopic techniques. However, to efficiently characterize these
distant galaxies and capture multiple redshifted lines simultaneously, ultra-wideband spectrometers
are needed. For this reason, integrated superconducting spectrometers (ISS) have been developed.
These ISSs enable ultra-wideband and medium-resolution spectroscopy by its on-chip filter bank and
microwave kinetic inductance detectors (MKIDs) for spectral coverage. While some spectrometers may
offer better spectral resolution, the ISS approach, especially for high-redshift LIRGs, creates coverage
over a broad range of frequencies in a single observation. An ISS specifically designed for the detection
and identification of these high-redshift (3.3 < z < 7.6) LIRGs is the Deep Spectroscopic High-redshift
Mapper (DESHIMA) [8]. DESHIMA stands out due to its wide field of view and extensive bandwidth,
which contribute to its effectiveness in capturing more redshifted spectral lines.

1.2. DESHIMA
The first generation of DESHIMA (DESHIMA 1) is a single-pixel spectrometer that covers the 332-
377 GHz band with 49 spectral channels offering a spectral resolution 𝑅 ≈ 380 [8]. This first light
experiment of the single pixel spectrometer was performed in October 2017 and managed to detect
some astronomical targets, for instance, a redshifted CO(J = 3−2) line of VV 114, a luminous infrared
galaxy at the redshift of 0.020 [8]. This success led to the development of the second version of
DESHIMA: DESHIMA 2.0.

DESHIMA 2.0 is a single-pixel ISS designed to simultaneously capture a frequency range from 220 to
440 GHz across 347 spectral channels. It achieves a resolving power 𝑅 = 𝐹/Δ𝐹 ≈ 500, here 𝐹 is the
centre frequency of a spectral channel and Δ𝐹 is the width of that spectral channel. Data acquisition
uses DESHIMA 2.0’s filterbank readout system [23], where individual Microwave Kinetic Inductance
Detectors (MKIDs) monitor each spectral channel at the same time. For its observations, DESHIMA
2.0 was specifically designed to be mounted on the 10m Atacama Submillimetre Telescope Experiment
(ASTE). ASTE is a Telescope in the Atacama Desert in Chile at an altitude of 4860 meters. This high
altitude creates an arid climate and is one of the driest places on Earth [2]. These rigorous conditions
make it one of the best places on earth for far-infrared spectroscopy because water vapour absorbs
this kind of radiation, making ASTE a well located telescope.
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2 1. Introduction

Figure 1.1: A comparison of the designs for DESHIMA 1.0 (left) and DESHIMA 2.0 (right). DESHIMA 1.0 features 49 spectral
channels, while DESHIMA 2.0 showcases a design with 347 spectral channels and wider frequency coverage (220-440 GHz vs.
332-377 GHz)

Before a spectrometer can make real astronomical discoveries, it must be verified by comparing its
measurements with high-quality reference data from a well-studied galaxy. An excellent example of
such a galaxy is NGC 1068, a well-studied, highly luminous, and proximal galaxy [27]. Therefore, the
verification process for DESHIMA 2.0 in this thesis is guided by the following research question:

Is the wideband spectrum of NGC 1068 obtained with DESHIMA 2.0 consistent with pre-
viously published observational data?

To address this question, the verification process is decomposed into three objectives:

1. Continuum extraction Model the continuum emission from dust in NGC 1068 and subtract it
from the entire wideband spectrum.

2. Line-fluxmeasurementDetect and characterize bright molecular transitions, focussing on 12CO(3–
2) and 12CO(2–1), by fitting spectral profiles to the continuum-subtracted data.

3. ComparisonCompare the derived continuum parameters and line fluxes with the literature values
for NGC1068.

1.2.1. Commissioning and Science-Verification Observations
DESHIMA 2.0 was used during a special Commissioning and Science Verification (CSV) campaign
on the 10-m ASTE telescope from September 2023 to December 2024. During observation runs, the
instrument recorded several astronomical sources. For the verification phase in this study, one target
was chosen to provide a strong, well-studied reference. The resulting 220–440 GHz data set serves
as the foundation for the continuum modelling, line-flux analysis, and comparison mentioned earlier.

1.3. NGC 1068 as a Benchmark Galaxy
NGC 1068 (shown in figure 1.2) is one of the closest LIRGs (approximately 78 Mpc) and one of the
best-studied examples of a luminous Seyfert 2 galaxy that also contains an intense starburst (SB) ring
in its central ≈ 2.5 kpc [20]. The galaxy, therefore, offers an excellent opportunity to investigate the
complex relationship between star formation and AGN activity in dusty environments [14, 24].
NGC 1068 is characterized by two primary regions that DESHIMA 2.0 captured and investigated:

1. A large star-burst (SB) ring, approximately 30 arcseconds in diameter, rich in molecular clouds
and active star formation. This large SB ring emits a significant part of the continuum, with its dust
having a temperature of approximately 34 K, at which it emits continuum radiation. Its emissivity 𝜖
is less than 1, indicating it is not a perfect blackbody [27]. The density of these continuum-emitting
regions is detailed in Figure 1.3.

2. A compact circumnuclear disk (CND), about 312 pc in diameter, surrounding the AGN and respon-
sible for feeding it with dense molecular gas. This CND also powers a prominent radio jet directed
toward the northeast [25, 16]. The compact CND, on the other hand, is responsible mainly for
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Figure 1.2: Image of NGC 1068 captured by the Hubble Space Telescope, the inset are hydrogen clouds as small as 10 light-
years across within 150 light-years of the core.[18].

the prominent emission line features, as evidenced by the brightness scale distributions for both
CO(2-1) and CO(3-2) shown in Figure 1.4.

Figure 1.3: Continuum emission density of NGC 1068 [20]. The image displays velocity-integrated H I brightness in grayscale,
with contours showing 850 𝜇m (top) and 450 𝜇m (bottom) continuum emission.

The galaxy’s continuum and emission line properties, combined with its proximity, make it an ideal
calibration source for testing and validating the DESHIMA 2.0 instrument.

Structure of this Thesis
First, the methodology for validating the DESHIMA 2.0 instrument will be explained in Chapter 2. This
will be followed by elaborating on the values and models obtained through the methodology in Chapter
3. In Chapter 4, these results will be discussed and explained through physical interpretations. Finally,
in Chapter 5, the key findings will be summarized, and we will provide recommendations for future
improvements and observational strategies.
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Figure 1.4: Density of CO(3-2) (left) and CO(2-1) (right) emission in NGC 1068. The left panel shows CO emission from the
J=3−2 transition at a resolution of 16” with a grayscale range of 0.060–0.456 K. The right panel shows CO emission from the
J=2−1 transition at a resolution of 24” with a grayscale range of 0.075–0.535 K. The velocity interval for both maps is Δv=950–
1300 km s−1.
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Methods

In this chapter, we discuss the methods used to analyze and compare the DESHIMA 2.0 data collected
at ASTE during the CSV campaign in 2023. We begin by detailing the attachment of DESHIMA 2.0 to
ASTE for data acquisition relevant to this thesis. Following this, we describe the observational cam-
paign and the subsequent data processing. Next, we outline the Markov Chain Monte Carlo (MCMC)
methods and Bayesian statistics used for continuum fitting, which form the foundation for obtaining
model parameters. Once the continuum fitting is completed and the relevant parameters are obtained,
the processed data will be adjusted by subtracting the MCMC fitted continuum. This allows us to
derive the parameters associated with the emission lines. Ultimately, this chapter establishes the nec-
essary groundwork for comparing our observational analysis results with those previously reported by
Kamenetzky et al. [15] and Qiu et al. [22].

2.1. DESHIMA 2.0 on ASTE system overview
DESHIMA 2.0 was deployed on the ASTE telescope in 2023 for the observational campaign. As men-
tioned, DESHIMA 2.0 was initially designed for the 220-440 GHz range. However, in the fabrication
process this changed to a 200-400 GHz range.

2.1.1. DESHIMA 2.0 on ASTE System Setup
Beyond the characteristics of DESHIMA 2.0 explained in Section 1.2, the overall setup, including
DESHIMA 2.0 attached to ASTE, played a crucial role in the data acquisition process. DESHIMA
2.0 is equipped with a two-beam setup, which allows for rapid switching between the sky (atmosphere)
and an astronomical source. This two-beam setup is further explained in Subsection 2.1.2. A chop-
per, shown in Figure 2.1, was used to switch between these two beams. The primary objective of this
switching is to filter out atmospheric fluctuation.

Finally, to function as superconductors, the MKIDs require extremely low temperatures, which is
achieved using a cryostat. For this the DESHIMA 2.0 system is cooled to around 120 mK. This tem-
perature creates a state in which the MKIDs work as superconductors in the photon-noise limit [7].

2.1.2. Data Acquisition and Initial Processing
During data acquisition, ON-OFF position switching, also called beam-switching, was used. This tech-
nique involves quickly alternating between observing the astronomical source and a ”blank” area of the
sky. By looking at the blank sky area, the atmospheric fluctuations contributing to irrelevant observa-
tional data can be isolated.

For effective beam-switching, the two beam positions need to be far enough apart to avoid contami-
nation of the ”blank” region data by the source. In this study, the two beams were positioned 233.6
arcseconds apart and alternated between beams at a frequency of 10 Hz [21]. Since the maximum
beam size is at the lowest frequency and is about 30 arcseconds [17], this separation ensures that
there is no overlap between the two beam positions in the sky, as the distance is more than seven
times the beam size.

5



6 2. Methods

Figure 2.1: Schematic and 3D rendering of the DESHIMA 2.0 chopper system. a) The optical path shows how the chopper
(Wch) switches between two exits, Exit A and Exit B, using mirrors (Mch1, Mch2, Mch3) for beam switching. b) A 3D rendering
of the chopper mechanism within the DESHIMA 2.0 system.

The specific method used for beam-switching was the ABBA-chopping technique, which helped obtain
a spectrum with the atmospheric noise filtered out as much as possible. A detailed analysis of the
ABBA-chopping technique is outside the scope of this report but can be found in [21].

ON-OFF chopping effectively minimizes the impact of atmospheric fluctuations. However, slower and
static offsets, for instance, can still be present. To account for these, a technique known as ”nodding”
is used. Nodding means moving the entire telescope dish periodically to switch between two slightly
different sky positions. This helps subtract any leftover background signals that remain after chopping.

2.1.3. From Gathered Data to Antenna Temperature 𝑇∗𝐴
The incoming signal is measured as a resonance shift of the MKID in our readout system. Through
skydip calibrations this resonance frequency shift of a MKID is converted to line-of-sight brightness
temperature of the sky 𝑇𝑠𝑘𝑦 using a setup based on the model in the report of Takekoshi [28]. This sky
temperature can change based on atmospheric conditions like precipitable water vapor (PWV), wind,
and the elevation of the telescope (which can vary between . This sky temperature is defined as [7]:

𝑇𝑠𝑘𝑦 = (1 − 𝜂𝑎𝑡𝑚)𝑇𝑠𝑘𝑦,𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 (2.1)

In this equation, 𝑇sky,physical is about 270 K and 𝜂atm is the atmospheric transmission factor. Obser-
vations by Peters [21], shown in Figure 2.2, reveal peaks in the plot around 325 GHz and after 360
GHz.

Figure 2.2: 𝑇𝑠𝑘𝑦 against frequency for each channel corresponding to a frequency band using equation 2.1. This figure was
created in the report of Peters [21].

These peaks indicate very low atmospheric transmission, as they correspond to water vapor ab-
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Figure 2.3: Diagram illustrating the relationship between the observed antenna temperature (𝑇∗𝐴) and the change in sky temper-
ature (Δ𝑇𝑠𝑘𝑦) due to an astronomical source observed through the atmosphere

sorption lines. In these regions, which then re-emit this energy as their own thermal radiation. This
makes the atmosphere appear very bright, which introduces additional noise into observations within
these frequency regions. The peaks suggests that 𝜂𝑎𝑡𝑚 ≈ 0, which implies 𝑇𝑠𝑘𝑦 ≈ 𝑇𝑠𝑘𝑦,𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙. This is
important since this explains the increased noise for the given regions in figure 2.4.

The data, initially expressed as 𝑇𝑠𝑘𝑦, was processed using the beam-switching technique. This pro-
duced Δ𝑇𝑠𝑘𝑦, which represents the sky temperature after chopping. The final data product used in
this thesis is the atmosphere-corrected antenna temperature, 𝑇∗𝐴 . It is related to Δ𝑇𝑠𝑘𝑦 by the equation
𝑇∗𝐴 =

Δ𝑇𝑠𝑘𝑦
𝜂𝑎𝑡𝑚

. In Figure 2.3, we can clearly see the average spectrum of atmosphere-corrected antenna
temperature in relation to the sky temperature.

2.1.4. Observation runs on ASTE
While DESHIMA 2.0 was installed to the ASTE telescope, it obtained several observations of NGC
1068. For this research, five distinct on-sky observations of the galaxy were utilized. These observa-
tions were taken on consecutive days: September 19, 20, 21, 22, and 23, 2023. All observations were
conducted between 8:00 and 10:00 UTC. The spectra obtained by the observation runs are shown in
figure 2.4 (All individual spectra are shown in figure C.1).

2.2. Data Reduction Pipeline
The on-sky observations of NGC 1068, conducted with DESHIMA 2.0 during the September 2023 ASTE
observation runs, provided data that needed processing to get reliable results. These measurements
captured useful information, but also included outliers and missing data in some channels. This could
affect the reliability of the results. A data reduction pipeline was created to transform these initial noisy
observations into a new dataset. The process involved two main steps: sigma-clipping to remove
outliers and spectra stacking to combine multiple observation runs and achieve full spectral coverage
over the frequency range obtained by DESHIMA 2.0.

2.2.1. Sigma-Clipping: Outlier Mitigation
Sigma-clipping is a method used to remove outliers from a dataset [30]. This technique is used for
reducing data, where peaks in noise caused by instrumental interference lead to significant deviations
in its data. The method first calculates the mean and standard deviation of data and then removes
repeatedly data points that fall outside a specific multiple of the standard deviation from the mean.

In this study, we used sigma-clipping on the frequency-domain spectral data. For each of the five
observation runs, we applied sigma-clipping to the flux uncertainty values of individual spectral chan-
nels. This process eliminated channels, for the spectra of each observation run apart, where the
measurement uncertainty was an outlier. As a result, we improved the data quality. We used the
𝑎𝑠𝑡𝑟𝑜𝑝𝑦.𝑠𝑡𝑎𝑡𝑠.𝑠𝑖𝑔𝑚𝑎𝑐𝑙𝑖𝑝 function with a 3 𝜎 clipping factor and a maximum of 5 iterations. The 3𝜎
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Figure 2.4: This figure displays the observed flux density in (Jy/beam) as a function of frequency in (GHz). The data shown is
are the spectra obtained by the individual observation runs. Each run has its own colour for distinction. Error bars represent the
1-sigma uncertainty on each individual flux measurement.

clipping factor refers to the method of removing data points that are more than three standard devi-
ations from the mean. This process took place for a maximum of 5 iterations. During each iteration,
the mean and standard deviation were recalculated, and outliers were removed. This continued up to
five times or until there were no more outliers within the 3𝜎 limit. This approach helped us obtain more
reliable data before further processing. The impact of this sigma-clipping on the data is shown in Figure
3.1, where the removed data points are highlighted in red.

2.2.2. Data Stacking: Enhancing Signal-to-Noise and Completeness
Even with sigma-clipping, individual observation runs can have data gaps that hinder fitting. To address
this, we stacked five observation runs. This process improved the signal to noise ratio (SNR).

Stacking involved precisely aligning and summing data from each observation run, performed step-by-
step for each spectral channel. This primarily increased the overall SNR by averaging out random noise
components through a weighted average, where the weights used were the inverse of the individual
observation’s variance (1/𝜎2𝑖 ) for that specific spectral channel. As demonstrated in Figure 2.5, the
noise was significantly reduced with the increasing number of stacked spectra. This confirmed the
effectiveness of our stacking approach in improving the SNR per channel. The relationship between
the standard deviation (𝜎) and the on source time in seconds is quantitatively described by the following
equation:

𝜎 ∝ 𝑡−0.56±0.04 (2.2)

This relationship found by stacking shows that for each extra spectra observation of a certain period
the standard deviation scales with a factor 𝑡−0.56, showing the efficiency of stacking. After stacking,
a mask based on a Signal-to-Noise Ratio (SNR) of at least three was applied to the data, ensuring a
robust data basis for further analysis shown in figure 3.2.

2.2.3. Converting parameters for comparison
For the comparison to the literature, the observed parameters need to be in the same units as those
in the compared literature. However, the initial data obtained from DESHIMA 2.0 for this thesis were
in different units as the parameters used in the paper of Kamenetzky et al. [15] and Qiu et al. [22].
The data obtained from the observation runs of DESHIMA 2.0 are in units of Kelvin. To convert these
measurements into flux density (𝐹𝜈) in Jansky per beam (Jy/beam), the following conversion factor
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Figure 2.5: Comparison of Signal-to-Noise Ratio (SNR) before and after stacking. This figure illustrates the reduction in noise
and therefore consequent increase in SNR per channel achieved by coherently stacking the multiple observations of NGC 1068.
With on the y-axis the variance of the data points and on the x-axis the on source time (each observation had the same 45 minute
length). The stacking was done over channel 170 (corresponding to channel with centre frequency of 230.72 GHz) which had
values for the flux density for every observation

based on the telescope’s effective aperture was applied. The brightness temperature and flux density
values were calculated for each data point.

The conversion utilizes the Rayleigh-Jeans approximation, valid for the observed frequencies, and is
given by:

𝐹𝜈 =
2𝑘𝐵𝑇𝐴
𝐴𝑒

where the flux density 𝐹𝜈 is typically expressed in W/m2/Hz. To convert this to Jansky, a factor of 1026
is applied, as 1 Jy = 10−26 W/m2/Hz. Thus, the final equation for conversion used is:

𝐹𝜈 (Jy/beam) = (
2𝑘𝐵𝑇𝐴
𝐴𝑒

) × 1026

The variance corresponding to the flux density (𝐹𝑠𝑖𝑔) is converted similarly to the equations above.

2.3. Continuum Fitting: Problem Definition and Model Selection
To get a robust conclusion to the research question both the continuum and the emission lines need
to be analysed and compared to literature. However, the continuum also provides a challenge for the
observation of the emission lines as it forms a baseline flux, which rises with the frequency, as shown
in figure 2.6. Therefore, it is essential to subtract this continuum before analysing the emission line
features. Fortunately, galaxy NGC 1068 is well-studied with a reliable continuummodel. Kamenetzky et
al. (2011) characterised this continuum through observations with the Z-spec instrument at the Caltech
Submillimeter Observatory (CSO) [19] [15]. The approximated continuum out of measurements with
Z-spec is given in the following equation:

𝐹𝜈 = 𝐴(
𝜈

240 GHz)
𝐵−2

Ω𝐵𝜈(𝑇) (1 − 𝑒−(𝜈/𝜈0)
𝛽) + 𝐹0,core+jet (

𝜈
230 GHz)

−𝛼
Jy. (2.3)

The continuum fit, 𝐹𝜈, is represented by two terms: a beam-scaled graybody and a power-law com-
ponent from the core and jet. The first term describes the beam-scaled graybody. Here, 𝐴, 𝐵, 𝛼, and
𝛽 were treated as free parameters for the fit. The other parameters were held fixed, with Ω being the
source size (e.g., 1.66×10−8 sr for a 30” ring), 𝐵𝜈(𝑇) being a blackbody of dust temperature 𝑇 = 34 K,
𝜈0 = 3000 GHz characterizing the dust emissivity, and 𝐹0,core+jet = 0.028 Jy representing the measured
flux density at 230 GHz. All these fixed parameters (Ω, 𝑇, 𝜈0, 𝐹0,core+jet) were adopted directly from
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Figure 2.6: Stacked spectrum, derived from five different sigma-clipped spectra. The horizontal axis shows frequency in GHz.
The vertical axis indicates flux density in Jy beam−1. The yellow rectangular areas illustrate the spectral coverage of each
channel. The solid orange line represents the continuum according to the Kamenetzky (2011) model. Two prominent emission
features, labeled as CO(2-1) and CO(3-2) transitions, are clearly visible.

Kamenetzky et al. [15]. The second term, 𝐹0,core+jet (
𝜈

230 GHz)
−𝛼

Jy, accounts for the core and jet con-
tribution. The SB ring dominates the continuum of Kamenetzky, this is the first part of the equation,
but a small contribution (≈ 10%) is also present from the central disk and the jet of the Active Galactic
Nucleus (AGN), which is present by the 𝐹0,core+jet part of the equation. Following this continuum model,
a fitting can be done on the data of DESHIMA 2.0.

2.4. Bayesian Framework for Spectral Analysis
Now that we have put together a framework for the continuum fitting, we need a statistical method that
will estimate the continuum parameters with the highest likelihood. Using a statistical method provides
a robust way of minimizing the uncertainties and finding an interval in which the parameters are most
likely to be found. Bayesian statistics provide a good framework by integrating prior knowledge and
quantifying the degree of conviction in hypotheses based on observed evidence. This approach was
used in finding parameters based on the data observed by DESHIMA 2.0.

2.4.1. Bayesian statistics
Bayesian statistics offers a powerful approach by incorporating prior beliefs about a hypothesis and
subsequently updating these beliefs based on observed evidence, and with that quantifying our degree
of conviction. Bayesian statistics are based on Bayes theorem:

𝑃(𝐻|𝐸) = 𝑃(𝐸|𝐻) × 𝑃(𝐻)
𝑃(𝐸) (2.4)

In this fundamental equation:

• 𝑃(𝐻|𝐸) represents the posterior probability: the probability that the hypothesis (𝐻) is true given
the observed evidence (𝐸). This is our updated belief after considering the data.

• 𝑃(𝐸|𝐻) is the likelihood: the probability of observing the evidence (𝐸) if the hypothesis (𝐻) were
true. It quantifies how well the hypothesis explains the observed data.

• 𝑃(𝐻) is the prior probability: the initial probability assigned to the hypothesis (𝐻) being true,
before any evidence is considered. This reflects our pre-existing knowledge or assumptions.

• 𝑃(𝐸) is the marginal likelihood or evidence: the total probability of observing the evidence (𝐸)
across all possible hypotheses. It acts as a normalizing constant.
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The advantage of Bayesian statistics lies in its ability to incorporate prior information (𝑃(𝐻)) and then,
through the likelihood function (𝑃(𝐸|𝐻)), systematically update this prior to form a robust posterior
probability (𝑃(𝐻|𝐸)). This iterative process of updating beliefs based on evidence is why Bayesian
statistics is well-suited for the analysis of the continuum model.

2.4.2. Prior selection
In the Bayesian framework, prior probabilities are essential for forming posterior probabilities. These
prior beliefs constitute the initial knowledge for estimating the continuum model parameters before
incorporating the DESHIMA 2.0 observation data. For this study, Gaussian prior distributions were
selected for all four free parameters (𝐴, 𝐵, 𝛼, 𝛽) of the continuum model. As Kamenetzky measured
with a similar type of spectrometer and a similar type of Telescope (the CSO), it is reasonable to adopt
the posterior distributions found by Kamenetzky as the prior distributions for the data exploration. This
approach ensures that the priors have a comprehensive parameter range without imposing strict re-
strictions. The prior specifications are detailed in Table 2.1.

Table 2.1: Prior distributions used for the MCMC continuum fitting.

Parameter Prior Type Mean (μ) Std. Dev. (σ)
A Gaussian 0.0446 ±0.01
B Gaussian 0.421 ±0.27
α Gaussian 0.9 ±0.2
β Gaussian 2.0 ±0.5

2.4.3. Likelihood formulation
The likelihood function, 𝑃(𝐸|𝐻), quantifies the probability of observing the DESHIMA 2.0 spectral data
(𝐸) given a set of continuum model parameters (𝐻). For a given set of model parameters, the likelihood
was formulated assuming normally distributed residuals between the observed flux density and the
model’s predicted observed flux density, weighted by the observational uncertainties. Specifically, a
Gaussian likelihood function was used, where the observed data points (𝑓𝑖) were compared against
the continuum model (𝑚𝑖) as defined in Equation 2.2. For this model the likelihood is given by:

𝐿(𝜃) =
𝑁

∏
𝑖=1

1

√2𝜋𝜎2𝑖
exp(−(𝑓𝑖 −𝑚𝑖)

2

2𝜎2𝑖
) (2.4) (2.5)

where 𝐿(𝜃) represents the likelihood for the parameter set 𝜃, summed over 𝑁 observed data points,
with 𝜎2𝑖 being the variance of each observed data point.

2.4.4. Forming Posteriors
Combining our Gaussian priors (Table 2.1) with the likelihood defined in Equation 2.5 via Bayes’ theo-
rem (Equation 2.4) yields the joint posterior distribution for the continuum parameters {𝐴, 𝐵, 𝛼, 𝛽}. How-
ever, the multi-dimensional integral required to normalize this distribution cannot be evaluated ana-
lytically. To overcome this, we approximate the posterior by drawing a large ensemble of parameter
samples using Markov Chain Monte Carlo (MCMC) explained in the next section 2.5.

2.5. MCMC method and implementation
To sample the high dimensional posterior introduced above, we implement a Markov Chain Monte Carlo
(MCMC) algorithm. MCMC is particularly well suited for Bayesian inference when multiple, potentially
correlated parameters must be estimated simultaneously, since it builds up the posterior distribution
through repeated sampling rather than analytic integration. Specifically, we use theMetropolis-Hastings
algorithm [13]. This iteration of MCMC proposes new states based on a proposal distribution. Then, it
accepts or rejects these states based on likelihood.

The MCMC approach relies on two key ideas:
• Monte Carlo sampling: Random proposals are drawn to explore the parameter space, accumu-
lating a numerical representation of the target distribution.



12 2. Methods

• Markov chain: Each proposed sample depends only on the current state, so after an initial burn-
in period the chain converges to the true posterior. The burn-in period refers to the first iterations
of the chain that are removed afterwards. These iterations are affected by the starting values
(priors) and do not represent the target distribution yet.

At each iteration, the sampler proposes a new set of parameters and computes the ratio of posterior
probabilities between the trial and the current point. The trial is then accepted or rejected with a prob-
ability equal to this ratio. Once the burn in phase is discarded, the remaining samples form a faithful
ensemble of the posterior, from which we extract best fit values and credible intervals.

2.5.1. Software choice
For the MCMC method, the emcee module [9] in Python was used. The emcee module makes use of
an affine-invariant ensemble sampler. This algorithm is an advanced variant of the Metropolis-Hastings
algorithm. It operates with an ensemble of ”walkers,” where each walker’s proposal for a new position
is informed by the current positions of other walkers within the ensemble [11]. This approach creates a
way of effectively and efficiently exploring multiple parameters that can be correlated, which increases
the convergence speed and reliability for multiple parameter models. Making it amore suiteed approach
than traditional single-chain methods.

2.5.2. Computational setup
Several parameters should be configured to start the MCMC sampling process with the emcee module.
Increasing these parameters, like the number of walkers, usually results in a more accurate and reliable
estimate of the model parameters. To define the spectral region for characterizing the continuum, the
initial MCMC fitting was done on data within the range of 250 GHz to 300 GHz. This specific range
was selected because it is expected to be free from atmospheric absorption features and molecular
emission lines, ensuring the continuum is as pure as possible for effective modelling. The particular
setup for the MCMC algorithm used in this application is outlined in Table 2.2.

Table 2.2: Relevant Specifications of the MCMC method for continuum fitting.

Parameter Value
Number of walkers 32
Number of steps 2 × 106
Burn-in Period 2 × 104

2.6. Line Fitting
After the continuum is removed from the stacked spectra obtained in the figure 2.6 the line fitting pro-
cedure can be performed. The molecular emission lines are affected by both astrophysical and in-
strumental broadening effects. While Doppler motions within galaxies broaden emission line profiles
into Gaussian shapes [4], DESHIMA 2.0’s finite spectral resolution introduces additional instrumental
broadening that can be seen as a Lorentzian response, causing incoming signals to spread across
multiple channels [29]. These broadening mechanisms show the need for an approach to line fitting
that can disentangle these effects and extract the physical parameters needed for comparison. These
physical parameters include the line width, peak main beam temperature and flux density.

For this, a line fitting procedure was formed that accounts for both broadening mechanisms. The
approach begins by subtracting the fitted continuum model (as demonstrated in Figure 2.6) from the
observed spectrum to isolate the emission line features, resulting in the residual spectrum. This residual
spectrum, which already includes the instrumental broadening from the DESHIMA channel response,
is then modelled.

The core of our fitting method uses Voigt profiles. These profiles naturally include a convolution of
a Lorentzian with a Gaussian, representing independent broadening mechanisms. In our model, the
Voigt profile combines the instrumental broadening from the DESHIMA channel (Lorentzian) response
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with the intrinsic astrophysical line shape (Gaussian). The Voigt model is expressed as:

𝑉(𝑥; 𝛾, 𝜎) = (𝐿 ∗ 𝐺)(𝑥) = ∫
∞

−∞
𝐿(𝑥 − 𝑥′; 𝛾)𝐺(𝑥′; 𝜎)𝑑𝑥′ (2.6)

where 𝑥 represents the frequency, 𝜈0 is the center frequency, 𝜎 represents the width of the Gaussian
component, and 𝛾 is the half-width at half-maximum (HWHM) for the Lorentzian component. Impor-
tantly, the Lorentzian HWHM, 𝛾, is determined by the center frequency 𝜈0 and the quality factor 𝑄 of
the DESHIMA channel through the equation 𝛾 = 𝜈0

2𝑄 . We used pre-measured, frequency-dependent
𝑄-factor values to accurately the instrumental broadening, these Q factors are also shown in figure
D.1a.

Our fitting procedure follows a four-step approach to ensure reliable parameter extraction:
Data Selection and Windowing: For each target emission line, we set a frequency window centered
on the expected line position based on literature values. For example, CO(2-1) is at 230.538 GHz and
CO(3-2) is at 345.796 GHz. This method narrows the fitting to the relevant spectral area while trying
to avoid possible interference from nearby features.
Parameter Estimation: Instead of random starting values, we get initial guesses based on the ob-
served spectrum. The peak flux density gives us the amplitude estimate, and the apparent line width
provides the initial width parameter. This approach based on data helps make convergence more
reliable and lowers the chance of finding false local minima.
Weighted Optimization: We use curve fitting to minimize the weighted least-squares difference be-
tween the observed data and the Voigt model. The weighting scheme includes measurement uncer-
tainties, or error bars, to ensure that areas with higher signal-to-noise ratios influence the fit more. This
approach improves the precision of the parameters.
Parameter Derivation: After successful convergence, we change the fitted parameters into meaningful
quantities. We convert the line width in GHz to km/s using the relativistic Doppler formula E.2. We
also compute the line flux by integrating the fitted profile over a velocity range. This line flux is then
converted from Jy⋅km/s to milliKelvin⋅km/s E.1. These derived parameters allow for direct comparison
with literature values and evaluation of the instrument’s scientific performance.

This fitting method helps us obtain four important parameters for each emission line: the integrated flux
density, the line width (in both frequency and velocity units), the exact centre frequency, and the peak
temperature. By comparing these values with results from existing literature, we can assess DESHIMA
2.0’s scientific performance and confirm its ability for precise submillimeter spectroscopy.

2.7. Comparing Observational Analysis Results
With the method for continuum and line fitting procedures set, the next step is to apply these techniques
to the observed data from the NGC 1068 observation runs. Themain goal of this research is to compare
the parameters from our analysis with those reported in the literature. We specifically compare the
continuum model parameters from Kamenetzky et al. (2011) [15] and the emission line parameters
from Qiu et al. (2020) [22].

Weighted Least Squares Chi-Squared (𝜒2) test To compare the continuum, we use the Weighted
Least Squares Chi-Squared (𝜒2) statistic to measure how well the observed data matches the model
predictions. In this thesis, we calculate the reduced 𝜒2 values for the MCMC-derived model, which
uses DESHIMA 2.0 on ASTE data, and a reference model with fixed parameters from Kamenetzky’s
work with Z-spec on CSO. This allows us to evaluate how well each model describes the observed
continuum.
The (𝜒2) statistic is calculated as follows:

𝜒2 =
𝑁

∑
𝑖=1

(𝑂𝑖 − 𝐸𝑖)2
𝜎2𝑖

(2.7)
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Here, 𝑂𝑖 represents the 𝑖𝑡ℎ observed data point, 𝐸𝑖 is the corresponding model-predicted value, 𝜎2𝑖 is
the variance of the 𝑖𝑡ℎ observed data point and 𝑁 is the total number of data points.
The reduced (𝜒2): (𝜒2𝑟𝑒𝑑) is defined as

𝜒2𝑟𝑒𝑑 =
𝜒2
𝑁 − 𝑘 (2.8)

In this equation, 𝑘 represents the number of free parameters. The reduced 𝜒2 accounts for the degrees
of freedom. A 𝜒2𝑟𝑒𝑑 value close to one indicates a good fit, meaning that the differences between the
model and data align with the measurement uncertainties. However, a value larger than one shows a
poor fit or a discrepancy between the two models.

The continuum model parameters from Kamenetzky et al. are listed in table 2.3. The emission line
fitting parameters for the CO(2-1) and CO(3-2) transitions from Qiu et al. are shown in table 2.4.
These comparisons will help evaluate the precision of DESHIMA 2.0’s observational abilities and its
consistency with established models in the literature.

Table 2.3: Values found for the continuum model parameters by Kamenetzky et al. [15].

Parameter Mean (μ) Std. Dev. (σ)
A 0.0446 ±0.01
B 0.421 ±0.27
α 0.9 ±0.2
β 2.0 ±0.5

Table 2.4: Rotational transition emission line properties from Qiu et al. [22], including multiple velocity components for Gaussian
fitting of CO(2-1) from JCMT observations.

Transition Frequency (GHz) Flux (mK km/s) Line width (km/s) Main beam Temperature (mK)
CO(2-1) 230.538
Component 1 203600 ± 20500 63 ± 9 313.3
Component 2 220000 ± 26000 179 ± 16 802.0
Component 3 203600 ± 20500 81 ± 10 337.4

CO(3-2) 345.796 166000 ± 20000 (-) 630

The rotational transition emission line properties for CO(2-1) in Table 2.4 include three components.
Qiu et al. (2020) used three different velocity components for their Gaussian CO(2-1) emission fitting.
To compare these values with what we obtain from our analysis, which uses a Voigt profile fit, we need
to find the best way to bridge these different methods.

The most straightforward comparison is for the integrated flux. The individual Gaussian fits and a single
Voigt profile fit show the total emission across the line. We can directly compare the fluxes from the
three components reported by Qiu et al. (2020) with the integrated flux from our single Voigt profile fit.
This straightforward comparison lets us accurately assess the total observed line strength.

Our single Voigt profile fit provides an overall line width describing the blended emission feature. In
contrast, Qiu et al.’s analysis breaks this down into individual line widths for each of their three compo-
nents. A weighted average (given in table 2.5) of these individual line widths, based on their respective
fluxes, gives us a sense of the average intrinsic broadening of the gas. We expect the overall line
width from our single Voigt fit to be larger than this weighted average. This is because our single Voigt
profile captures not only the broadening within each gas component but also the spread caused by the
different velocities and velocity structures of these multiple components across the entire line.

Table 2.5: Weighted Average Properties for CO(2-1) derived from Qiu et al. [22] components.

Transition Parameter Weighted Average Value
CO(2-1) Line Width (km/s) 116.5

Main Beam Temperature (mK) 602.8
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Results

This chapter presents the results of the observational analysis of NGC 1068 using DESHIMA 2.0 data
collected during the commissioning and science verification (CSV) campaign at ASTE. The results are
organised according to the framework described in Chapter 2. They progress from data reduction
through continuum fitting to emission line analysis and comparison with literature values.

3.1. Data reduction
Before the results could be analysed, the data reduction pipeline was performed on spectra obtained by
the five individual observation runs (shown in figure 2.4). The data after sigma clipping had an overall
average SNR across all observation runs of 2.32. However, a minimum of an SNR ratio of 3 was used
to obtain the results.

3.1.1. Sigma-clipping and masking effectiveness
From the data across all five observation runs, we identified and removed outliers using a sigma clipping
algorithm. This excluded approximately 26% of the data points in the frequency domain. Most of the
removed points were located around 325 GHz and in the 375-400 GHz range, where atmospheric
absorption is strong. After this, we applied the SNR threshold mentioned in the method section, which
further filtered the data before the continuum removal step (see figure ??). This SNR criterion resulted
in an additional 27% of the points being excluded. The impact of the reduction process is shown in
figure 2.6. We validated the effectiveness of the sigma-clipping process by comparing the clipped
dataset against the raw data (shown in figure 3.1). The figure clearly shows that the points removed by
the clipping algorithm are mainly around the frequency regions where atmospheric interference takes
place, confirming the working of the concept. Similarly, we validated the SNR filtering by looking at the
changes to the stacked flux density spectrum (figure 3.2). The figure shows that, by applying the SNR
threshold, the points with sufficient signal quality are kept. This ensures a robust final spectrum.

3.2. Continuum fitting results
The fitting procedure for characterizing the continuum was conducted on the modified stacked spectra
we obtained. As described in the methodology section, we used the MCMC method to determine the
continuum parameters. This section will present the trace plots for all four free parameters. These
plots will visually show the convergence and sampling efficiency of our MCMC chains. We will also
display corner plots illustrating these parameters’ correlations. In addition, we will directly compare our
continuum model defined by the derived parameters with the continuum characterized by Kamenetzky
[15]. This will help us evaluate any differences or agreements with the existing literature.

3.2.1. Chain convergence
For the MCMC run with the refined frequency range, all parameters initialized walkers with the number
of steps and the burn-in period are listed in table 2.2. As can be seen in the trace plot 3.3 the parameters
converged well to an estimated continuum model parameter value. The trace plots are displayed in

15
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Figure 3.1: Observed flux density across frequency of the five observations all shown in different colours. Error bars represent the
1-sigma uncertainty, capped at 1 Jy for visual clarity. Outliers were removed using a 3-sigma clipping algorithm with 5 iterations
on the flux density uncertainties. Points removed by the clipping are shown as small red crosses and red error bars.

Figure 3.2: Stacked flux density spectrum showing the effect of SNR masking. Points with SNR > 3 are shown in black and kept,
while points with SNR ≤ 3, which are removed from the final spectrum, are shown in red.

figure 3.3, where the burn-in of 2×104 steps has been applied. The trace plots show stable behaviour
with no significant trends, suggesting that the chains havemixed and represent the posterior distribution
for each parameter.

3.2.2. Posterior distributions
The MCMC run estimated all parameters. The numerical results of these parameters are shown in the
table 3.2.
The MCMC analysis reveals varying levels of constraint across parameters. Parameter 𝛽 shows the
highest precision (5.2% relative uncertainty), followed by 𝛼 (22% relative uncertainty) and A (25% rela-
tive uncertainty). In contrast, parameter B exhibits the largest uncertainty (242% relative uncertainty),
suggesting this parameter is less well-constrained by the available data.
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Figure 3.3: Trace plot showing how the MCMC sampler changes for the four free parameters of the continuum model (A, B, 𝛼,
and 𝛽) over the 250-300 GHz range. After an initial burn-in phase, the chains mix well and show stability. This indicates that the
sampler has converged to the posterior distribution.

Table 3.1: Best-fit parameters and parameter estimates for the MCMC run over the 250-300 GHz range

Parameter Best-fit value Uncertainty (±)
A 0.0400 ± 0.0101
B 0.0951 ± 0.2306
𝛼 0.9121 ± 0.1985
𝛽 2.0624 ± 0.1079

The correlation between the free parameters is shown in the corner plot 3.10. The corner plot analysis
shows that most parameters do not relate to each other. However, an exception can be seen in the
correlation between A and 𝛽. They have a positive correlation coefficient of approximately (Found value
from the plot).

3.2.3. Continuum model fit
The continuum model, derived from the MCMC run on the 250-300 GHz frequency range can be seen
in figure 3.11.
The MCMC run resulted in a model based on the Kamenetzky framework for the continuum, using the
obtained posterior values. The reduced 𝜒2 values were calculated, giving:

• Reduced 𝜒2 for the MCMC best-fit model (250-300 GHz): 1.10

• Reduced 𝜒2 for the Kamenetzky values inserted into the model: 4.54

The MCMC model’s reduced 𝜒2 value of 1.10 shows a good fit, meaning this model captures the data
well. In contrast, the Kamenetzky model’s reduced 𝜒2 value of 4.54 suggests it underfits the data and
does not account for the observed variability effectively.

3.2.4. Refined Frequency Range Selection: 250-280 GHz
Our first continuum fit, done over the 250-300 GHz range as discussed in Section 3.2.3, showed some
significant differences between our derived parameters (Table 3.1) and the established values from
Kamenetzky [15] (Table 2.1), this was derived by the high reduced 𝜒2 values. These differences indi-
cate the need for a more accurate method to determine the free continuum model parameters for our
DESHIMA 2.0 data.

The difference between the Kamenetzky continuummodel and our observed data at higher frequencies
is a key observation driving this revision. As shown in Figure 2.6, the Kamenetzky model accurately



18 3. Results

Figure 3.4: Marginalized posterior distributions for the continuum model parameters A, B, 𝛼, and 𝛽 from the MCMC sampling
on the 250-300 GHz range. The diagonal panels present the one-dimensional posteriors with the displayed median and 1𝜎
uncertainties. The off-diagonal panels show the two-dimensional posterior distributions. The green lines indicate the prior
(Kamenetzky) parameter values, while the orange lines represent the best-fit parameters from the MCMC run. The plot reveals
possible correlations between parameters.

Figure 3.5: Observed flux data (black points with error bars) as a function of frequency (𝜈). The orange solid line represents
the continuum model evaluated at the MCMC best-fit parameters for the 250-300 GHz range. The dashed green line shows the
model using the initial Kamenetzky (prior) parameter values.
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predicts the continuum for lower frequencies up to approximately 280 GHz. However, in the higher
frequency range > 280 GHz, the Kamenetzky model consistently overestimates our data points. This
gives that the Kamenetzky model predicts a steeper increase than we measure (Figure 2.6). While
Kamenetzky’s results came from the Z-Spec instrument at the Caltech Submillimeter Observatory
(CSO), our DESHIMA 2.0 observations may have different beam characteristics.

Kamenetzky [15] explains that the continuum emission in NGC 1068 primarily comes from its SB ring.
There are also contributions from the central disk and AGN jet (≈ 10%). Importantly, the beam width
of DESHIMA 2.0 changes significantly with frequency, narrowing as the frequency increases. Figure
3.7 indicates that the Full Width at Half Maximum (FWHM) of the DESHIMA 2.0 beam along its major
axis decreases from about 27.02 arcseconds at 250 GHz to 23.49 arcseconds at 300 GHz, with the
minor axis FWHM also narrowing from 25.89 arcseconds at 250 GHz to 22.65 arcseconds at 300 GHz.
This change in beam size with frequency, especially at higher frequencies, affects how much of the
extended SB ring emission we capture within our aperture. A narrower beam at higher frequencies
would cover less of the continuum emission, which can clearly be seen in figure 3.6. However, for this
all to be true the beam width of Z-spec on CSO should indeed be larger then that of DESHIMA 2.0 on
ASTE. As can be seen in figure 3.8, the beam width of Z-spec is larger then that of DESHIMA 2.0 for
the observation data [6], this validates our understanding of the differences between the observations.
Therefore, the observed continuumwill indeed be smaller compared to the model of Kamenetzky based
on the observations of Z-spec on CSO.

Figure 3.6: Continuum emission density of NGC 1068 [20]. The image displays velocity-integrated H I brightness in grayscale,
with contours showing 850 𝜇m (top) and 450 𝜇m (bottom) continuum emission. Red labels indicate circles with diameters of 20,
30, and 40 arcseconds.

To reduce these beam-related effects and get themost reliable continuum parameters for our DESHIMA
2.0 data, we changed theMCMC fitting frequency range to 250GHz to 280GHz. We selected this range
because it covers the main area emitting the continuum. This minimizes the effect of different beam
coupling to the extended source and reduces the differences with earlier models at higher frequencies.
This adjusted range helps us derive continuum parameters that better reflect the actual emission seen
with DESHIMA 2.0.
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Figure 3.7: Plot 1 shows the beam width over the frequency range for the major axis, plot 2 shows the beam width over the
frequency range for the minor axis. These beam widths are beam widths for DESHIMA 2.0 on ASTE [17]

Figure 3.8: In this figure, the beam width of Z-spec attached to CSO [6] and of DESHIMA 2.0 on ASTE is plotted in arcseconds
against the frequency in GHz. It can be seen that the beam width of Z-spec is larger at comparable frequencies.

3.2.5. Improved Continuum Fit: 250-280 GHz Range
With the refined frequency range of 250-280 GHz, the MCMC fitting procedure was re-executed. This
section presents the results of this improved fit.
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Chain convergence (250-280 GHz)
Similar to the first run, the MCMC chains for the 250-280 GHz range showed good convergence. All
parameters used walkers initialized with the steps and burn-in period listed in table 2.2. As can be
seen in the trace plot 3.9 the parameters converged well to an estimated continuum model parameter
value. Figure 3.9 shows the trace plots, applying a burn-in of 2×104 steps. These plots display stable
behaviour without significant trends. This confirms that the chains mixed well and accurately represent
the posterior distribution for each parameter.

Figure 3.9: Trace plot showing how the MCMC sampler changes for the four free parameters of the continuum model (A, B, 𝛼,
and 𝛽) over the 250-280 GHz range. After an initial burn-in phase, the chains mix well and show stability. This indicates that the
sampler has converged to the posterior distribution.

Posterior distributions (250-280 GHz)
Table 3.2 presents the numerical results of the estimated parameters from the MCMC run in the refined
frequency range.

Table 3.2: Posterior values for the MCMC run over the free continuum model parameters

Parameter Mean (μ) Std. Dev. (σ)
A 0.0441 ±0.0097
B 0.4392 ±0.258
α 0.9008 ±0.198
β 2.0941 ±0.091

The MCMC analysis for the 250-280 GHz range shows different levels of constraint across parameters.
Parameter 𝛽 has the highest precision at 4.3% relative uncertainty. It is followed by A and 𝛼, with 22%
relative uncertainty. Parameter B shows the largest uncertainty at 59% relative uncertainty, indicating
it is less well-constrained by the data.
Figure 3.10 shows the correlations between the free parameters. Most parameters show no correlation,
which indicates strong parameter estimation. However, a positive correlation exists between A and 𝛽
(approximately (Found value from the plot)). This correlation makes sense physically since (explain
the physical relationship), suggesting these parameters may describe similar physical aspects.

Continuum model fit (250-280 GHz)
The continuum model from the MCMC run over the 250-280 GHz range is shown in figure 3.11.
The MCMC model, based on the Kamenetzky framework and derived from the obtained posterior val-
ues, resulted in an improvement for the reduced 𝜒2 value against the Kamenetzky values:
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Figure 3.10: Marginalized posterior distributions for the continuum model parameters A, B, 𝛼, and 𝛽 come from the MCMC
sampling. The diagonal panels present the one-dimensional posteriors with the displayed median and 1𝜎 uncertainties. The
off-diagonal panels show the two-dimensional posterior distributions. The green lines indicate the prior (Kamenetzky) parameter
values, while the orange lines represent the best-fit parameters from the MCMC run. The plot reveals possible correlations
between parameters.

Figure 3.11: Observed flux data (black points with error bars) as a function of frequency (𝜈). The orange solid line represents
the continuum model evaluated at the MCMC best-fit parameters. The dashed green line shows the model using the initial
Kamenetzky (prior) parameter values.

• Reduced 𝜒2 for the MCMC best-fit model: 1.37

• Reduced 𝜒2 for the Kamenetzky values inserted into the model: 3.32

The MCMC model’s reduced 𝜒2 value of 1.37 shows a good fit, indicating it captures the observed
data well. In contrast, the Kamenetzky model’s [15] reduced 𝜒2 of 3.32 suggests it underfits the data
and does not account for the observed variability properly; however, it still gives a better approximation
when compared to the initial frequency range continuum fit model.

The full continuum model using the posteriors found by the MCMC run can be seen in figure 3.12.
As can be seen, the figure shows that for low frequencies (in the range between 250 - 300 GHz)
the continuum model does describe the continuum obtained by the stacked spectrum of observation
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Figure 3.12: Observed flux density (black points with error bars) as a function of frequency the flux, the flux is limited for the
points between 0 and 1 Jansky/beam. The solid green line shows the continuum model based on the best-fit parameters from
the MCMC analysis, covering the entire frequency range. Note that the MCMC fit was done only on data between 250 and 280
GHz.

runs. However, with an increasing frequency the model gets more off to the continuum obtained by the
observation runs.

3.2.6. Comparison to parameter values of Kamenetzky
This subsection provides a direct comparison of the continuum model parameters obtained from our
MCMC analysis with the values reported by Kamenetzky [15], which also served as the basis for the
prior distributions in our MCMC run.
Table 3.3 summarizes themean and standard deviation for each parameter from both ourMCMC results
and the Kamenetzky model.

Table 3.3: Comparison of continuum model parameters from MCMC fit with Kamenetzky values.

Parameter Kamenetzky (𝜇 ± 𝜎) MCMC (𝜇 ± 𝜎)
A 0.0446 ± 0.0100 0.0441 ± 0.0097
B 0.4210 ± 0.2700 0.4392 ± 0.2580
𝛼 0.9000 ± 0.2000 0.9008 ± 0.1980
𝛽 2.0000 ± 0.5000 2.0941 ± 0.0910

Visually, the agreement between the MCMC derived model and the Kamenetzky model, along with
their fit to the data, is shown in Figure 3.11. The MCMC best fit gives a good quantitative description
of our data. This is clear from its reduced 𝜒2 value of 1.37, for the comparison to Kamenetzky’s model
we see an improvement in 𝜒2 to 3.32.

When we compare the individual parameter values in Table 3.3, our MCMC results closely match
Kamenetzky’s values within their respective uncertainties for parameters A, B, and 𝛼. The most signif-
icant difference occurs in the uncertainty for parameter 𝛽. Our MCMC analysis shows a much smaller
standard deviation of ±0.0910, while Kamenetzky’s is ±0.5.

3.2.7. Obtained spectra with continuum removed
Now that we have completed the characterization of the continuum and determined its model param-
eters using the MCMC method, the spectrum can be set up for the emission line analysis. From the
stacked observation data (seen in figure 2.6) the continuum is subtracted from the stacked spectra.
The resulting continuum-subtracted spectrum, which highlights the emission line features, is shown in
figure 3.13.
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Figure 3.13: Continuum-subtracted stacked spectrum showing the emission line features. Black points represent observed flux
density with error bars, with CO(2-1) and CO(3-2) lines visible at their expected frequencies.

3.3. Emission Line fitting Results
With the continuum characterised and removed from the stacked spectrum, as described in the last
section and shown in Figure 3.13, the isolated emission line features can now be analysed. This section
presents the results of the individual line fitting procedures described in the methodology. Derived
properties of the observed molecular emission lines will be given, followed by direct comparison with
values obtained from Z-spec observations by Qiu et al. [22].

As shown in Figure 3.13, the DESHIMA 2.0 data clearly show strong emission line features at the
expected frequencies for the CO(2-1) and CO(3-2) molecular transitions. This visual evidence confirms
that the dataset is appropriate for line fitting and further comparative analysis.

3.3.1. Voigt Profile Fitting
The Voigt profile fitting procedure was used on the emission lines seen in Figure 3.13. The visual results
from the fitting process, explained in the methodology, are shown in Figure 3.14. The parameters from
this fitting procedure are summarized in Table 3.4.

Figure 3.14: Voigt profile fits the observed molecular emission lines. The solid lines show the areas where the Voigt profile fitting
took place. The dashed lines represent the extended Gaussian part of the fit used for flux integration. Grey dots represent the
observed data points after subtracting the continuum.

As shown in Figure 3.14, the data points used for the line fitting procedure were intentionally limited to
the area around the emission line features. This narrower fitting window was chosen to manage noise
levels. The uncertainties of the obtained line parameters are notably large: the line width uncertainties
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Table 3.4: Derived rotational transition emission line properties from Voigt profile fitting.

Transition Frequency (GHz) Flux (mK km/s) Line width (km/s) Main beam Temperature (mK)
CO(2-1) 230.8553 ± 0.0103 216976.0 ± 105327.0 305.80852 ± 148.3 170 ± 3.1
CO(3-2) 345.5763 ± 0.0101 185684.4 ± 38392.1 564.03887 ± 116.5 220 ± 1.9

are about 48% for CO(2-1) and 20.7% for CO(3-2), and the flux uncertainties are around 48% for
CO(2-1) and 20.7% for CO(3-2).

3.3.2. Comparison to parameter values of Qiu
To evaluate the scientific capabilities of the single-pixel ISS DESHIMA 2.0, a direct comparison is made
between the obtained values of the fitting procedure and Qiu [22]. This direct comparison is presented
in Table 3.5.

Table 3.5: Comparison between the rotational transition emission line properties obtained by DESHIMA 2.0 with Voigt fitting and
Qiu et a;. [22]. For the values of Qiu the weighted average was taken as stated in table 2.5.

Transition Property DESHIMA 2.0 (Voigt Fit) Qiu et al. [22] Ratio
CO(2-1) Frequency (GHz) 230.8553 ± 0.0103 230.538 1.00

Flux (mK km/s) 216976.0 ± 105327.0 203600 ± 20500 1.06
Line width (km/s) 305.81 ± 148.3 116.5 2.63
Main beam Temperature (mK) 170 ± 3.1 602.8 0.28

CO(3-2) Frequency (GHz) 345.796 345.5763 ± 0.0101 1.00
Flux (mK km/s) 185684.4 ± 38392.1 166000 ± 20000 1.12
Line width (km/s) 564.04 ± 116.5 (-) -
Main beam Temperature (mK) 220 ± 1.9 630 0.35

The comparison in Table 3.5 presents the measured performance of DESHIMA 2.0 alongside estab-
lished astronomical observations from Qiu et al. [22].

Frequency Accuracy For both CO(2-1) and CO(3-2) transitions, the central frequencies derived from
DESHIMA 2.0 data are in good agreement with the reported values from Qiu et al. [22], with ratios of
approximately 1.00.

Integrated Flux Consistency The integrated line fluxes for both CO(2-1) and CO(3-2) also show
agreement with values from Qiu et al. [22], with ratios of approximately 1.07 and 1.12, respectively.

Line Profile Differences The main beam temperatures (𝑇𝑀𝐵) observed by DESHIMA 2.0 are consis-
tently lower than those reported by Qiu et al. [22], with ratios of 0.28 for CO(2-1) and 0.35 for CO(3-2).
The line width measured by DESHIMA 2.0 for CO(2-1) is notably broader, with a ratio of 2.63 compared
to Qiu et al.’s weighted average. For CO(3-2), a direct comparison of line width was not possible as
Qiu et al. did not report this value.
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Discussion

This chapter interprets the results shown in Chapter 3. It provides context for the phenomena we
observed and assesses the scientific capabilities of the DESHIMA 2.0 spectrometer. We will discuss
how effective the data reduction process was. We will also look at the implications of the continuum
fitting. Additionally, we will evaluate the emission line properties obtained from NGC 1068. We will
pay special attention to the differences we noticed compared to existing literature. This discussion
aims to combine the findings and their broader implications for future spectroscopic observations with
DESHIMA 2.0.

4.1. Performance and validation of reduction process
In the reduction process, sigma clipping was applied, as well as a mask for the points with an SNR
lower than 3. This resulted in a decrease in data points of 26% due to the sigma clipping, as well as
27%. However, this can be validated by the fact that these points were mainly deleted at atmospheric
interference regions (200-205 GHz, around 325 Ghz and around 380 GHz), as can be seen in figure 3.1
and figure 3.2. However, as the filtering did manage to remove most outlier data, that would interfere
with our results in a bad way. This still is a more agressive approach as 54% of the data points remain
after filtering. This could lead to some valid data missing, which would have created more reliable esti-
mated parameters regarding the line fitting, for example. However, the estimation of the free continuum
model parameters was done over a larger array of data. Therefore, that effect was minimized.

4.2. Interpretation and Validation of continuum measurements
This section will give insights into the meaning of the continuum fitting results and their implications for
DESHIMA 2.0’s measurement abilities.

4.2.1. MCMC Fit Robustness and Parameter Constraints
The values from our MCMC continuum fitting in the range of 250-280 GHz are similar to those reported
by Kamenetzky, showing a good match with existing literature. However, the uncertainties in B and
alpha are 58% and 22% respectively. This suggests a high sensitivity due to the characteristics of the
data. The uncertainty might be related to the variability of the data points themselves or the fact that the
reduction process eliminated too many points. Unlike Kamenetzky’s findings regarding the relationship
between B and 𝛽, which were found to be degenerate, we discovered a different relationship: B and 𝛽
were not degenerate.
In addition to the constraints on individual parameters, the corner plot analysis, found in Figures 3.10
and 3.10, shows a positive correlation between parameters A and 𝛽. This relationship can be un-
derstood by looking at the functional form of our continuum model, which describes the flux density
as:

𝐹𝜈 ∝ 𝐴Ω𝑇𝜈−𝛽0 𝜈𝐵+𝛽 (4.1)

In this model, A is the amplitude scaling factor for the flux density, setting the baseline of the continuum.
At the same time, 𝛽 explains how dust emissivity changes with frequency, defining the spectral slope.
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The observed positive correlation between A and 𝛽 indicates a form of degeneracy within the model: an
increase in overall continuum brightness (A) can be offset by a corresponding increase in the spectral
slope (𝛽) to maintain a good fit to the observed data. This means that both parameters work together to
shape the intensity and spectral characteristics of the continuum emission across the observed band.

4.2.2. The Role of Beam Characteristics in Continuum Modelling
As explained in section 3.2.4, we adjusted the frequency fitting region to 250-280 GHz. Ideally, the
same method would have been applied to data from DESHIMA 2.0 on ASTE as Kamenetzky used for
Z-spec on CSO.We suspect that a more accurate and better description of the continuum for DESHIMA
2.0 data could be achieved if the continuum was fitted over a longer frequency range, for example, 200-
400 GHz, with a reduction of high noise data. However, this was not the goal for the continuum fitting
in this thesis. Therefore, for the purpose of comparison, a comparison between the free continuum
model parameters from the 250-280 GHz range provides a more accurate description that overlaps
with Kamenetzky’s values. We can elaborate on this because the reduced 𝜒2 value decreased from
the earlier 4.54 for the 250-300 GHz range to 3.32 for the 250-280 GHz range.

4.3. Interpretation of emission line fitting
This section will interpret the results for the emission line fitting, focussing on DESHIMA’s ability to
accurately describe line emissions.

4.3.1. Voigt Profile Fit Quality and Impact of Data Limitations
Visually, the line fitting has a good fit quality, as shown in figure 3.14. While the visual results demon-
strate reasonable fits to the emission line features, the analysis obtained high uncertainties in the values
for the line width and, therefore, the integrated flux density too (Table 3.4). These uncertainties primar-
ily arise because of the limit on using data points around the centre frequency (as seen in figure 3.14).
This narrow fitting was chosen to mitigate high noise level features in the so-called ’wings’ surrounding
the emission line. Therefore, a broader fitting range would have increased the noise and, thereby, the
uncertainties of the obtained parameters. For example, we see that for the CO(2-1) emission line in
the wings of the Voigt profile, there is more noise in the data points than in the range between 250-310
GHz range. When this noise can be limited or extracted, the uncertainties in the obtained parame-
ters will likely be smaller. However, as a result, the uncertainties of the obtained line parameters are
quite significant. These relatively large uncertainties directly reflect the SNR limitations of the current
dataset. While a fit was achieved, the overall quality for constraining individual line shape parameters
(like precise linewidths and peak temperatures) is limited by these noise characteristics as shown in
table 3.4, indicating a need for improved data quality in future observations to enhance precision.

A further complication adds to the uncertainty, specifically for the CO(2-1) line. The DESHIMA instru-
ment was initially designed for a frequency range of 220-440 GHz but that was later changed to 200-400
GHz. This change, however, created a problem in the 200-240 GHz range. In this range the filter banks
measure a frequency and its second harmonic. This means that for any frequency in this range, the
instrument measures a mix of the power of this frequency and its second harmonic. This effect raises
the antenna temperature, leading to higher uncertainty in the measured flux. Since the CO(2-1) line is
at 230.538 GHz, it falls within this problematic range, which explains the larger uncertainties seen for
this specific emission line.

4.3.2. Interpreting Line profile discrepancies
While the integrated line fluxes from the data of DESHIMA 2.0 on ASTE showed good agreement with
those reported by Qiu et al. [22], the obtained differences in peak main beam temperature and the
line widths ask for further discussion. These differences in values can primarily be explained by two
factors: instrumental beam characteristics and line fitting methodologies.

Instrumental beam characteristics Firstly, different instrumental beamwidths significantly affect our
measurements. DESHIMA 2.0 observed CO(2-1) and CO(3-2) with beam widths of about 27.5 and 20
arcseconds, respectively. In contrast, Papadopoulos et al. [20] used narrower beams of 21 and 14
arcseconds for the same transitions. A larger beam covers a larger area for an extended source like
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NGC 1068, whose CO emission is concentrated in the centre 1.4. This leads to ”beam dilution,” causing
a lower observed main beam temperature (𝑇𝑚𝑏) for DESHIMA 2.0 because it averages bright emission
with fainter regions.

Similarly, the larger beam captures a broader range of velocities from the galaxy’s complex internal
motions (e.g., rotation). This integration causes the observed line profile to broaden, an effect known
as ”beam smearing” [10]. While beam smearing likely contributes to the increased line width, a ratio of
2.63 for CO(2-1) compared to Qiu et al. [22] would be too high. This difference also reveals the impact
of different line fitting methods and possible uncertainties. A more reliable comparison could be made
when the circumstances are alike, and the approaches are consistent with each other.

Different line fittingmethods Secondly, a crucial factor in the differences in the derived emission line
properties comes from the different methods used. Our analysis used a single-component Voigt profile
to fit the observed emission lines. In contrast, Qiu et al. [22] used a more complicated three-component
Gaussian fit to model the CO(2-1) line. They specifically considered the complex kinematics of NGC
1068.

When a single Voigt profile is applied to a spectrum that is made up of multiple distinct kinematic
components, like those in NGC 1068, the fitting process tries to include all these components within one
broad profile. This leads to a significantly wider derived line width. Additionally, for a given integrated
line flux, which we found to be mostly consistent between the studies, a broader line profile results in a
lower peak main beam temperature (𝑇𝑚𝑏) to maintain the total area under the line. Thus, this method
difference explains the wider line widths and lower main beam temperatures seen in our DESHIMA 2.0
data compared to Qiu et al.’s multi-component analysis.

Conclusion on best comparisonmetric Given the complexities that arise from differing instrumental
beam characteristics and line fitting methods, it becomes clear that the integrated flux density is the
most reliable parameter for direct comparison between observations of DESHIMA 2.0 on ASTE and
existing literature, like that of Qiu et al. [22]. This parameter is the least sensitive to the model use and
specific observation parameters.
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Conclusion

This study asessed the scientific capabilities of DESHIMA 2.0 that made observation runs when at-
tached to ASTE by comparing to literature. The observations made by DESHIMA 2.0 on ASTE are in
line with literature. The results however, also highlight areas that will need further refinement.

The data reduction, despite the aggressive approach, did successfully prepare the spectrum for further
analyses.

In the 250-280 GHz range, DESHIMA 2.0’s estimated free continuum model parameters (𝐴, 𝐵, 𝛽, 𝛼)
aligned well with Kamenetzky (2011) [15] and established literature, also obtaining an A-𝛽 correla-
tion. However, across the wider 250-300 GHz frequency range, the derived parameters showed less
consistency with Kamenetzky’s findings, a difference that variations in beam width explained.

The spectrometer accurately measured the central frequencies of the CO(2-1) and CO(3-2) emission
lines. It provided integrated line fluxes close to the literature observed line fluxes [22]. Establishing this
as the most reliable metric for direct comparison. However, there were discrepancies in the main beam
temperatures and the line width in the literature. However, these discrepancies could be explained by
combining beam dilution/smearing effects and differing line fitting methods.

The study provided a clearer understanding of the capabilities of DESHIMA 2.0, showing consistency
with literature in certain areas. DESHIMA 2.0 did establish the ability to derive the continuum by showing
a good agreement with the existing studies [15]. The study also demonstrated the capacity of the
single pixel ISS to reliably measure integrated line fluxes by showing consistency with the reported
values by existing studies [22]. The detailed analysis of the line profile discrepancies provides insights
for future spectroscopic data observed by DESHIMA 2.0. Overall, the findings contribute to a better
understanding of DESHIMA 2.0

This study points out the limitations of the current dataset and observational method. First, the reduction
of data, which removed 46% of data points, increased uncertainties in the derived parameters, partic-
ularly in line fitting. Second, using a single Voigt profile for line fitting, rather than the multi-component
approaches used in other studies, made it hard to directly compare line shape properties such as
peak temperatures and line widths beyond the total integrated flux. Third, while the continuum model
was validated against the literature in the 250-280 GHz range, a full characterization of the continuum
across the entire observed bandwidth (200-400 GHz) was not performed in this study. This limits the
derivation of the full continuum of DESHIMA 2.0. The choice of NGC 1068, while it provided a valuable
test case, introduced challenges for direct comparison with its spatially varying properties for both the
emission lines and the continuum emission.

5.1. Recommondations and Future Prospects
To improve the verification of the scientific capabilities of DESHIMA 2.0, several recommendations
can be made for future work. First, future observations could aim for longer integration times for an
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improvement of SNR and reduce uncertainties in line parameters. Also, alternative or adaptive filtering
techniques could be explored to minimize the loss of valid data points while still removing noise from the
already observed data. Also, a more advanced modelling technique that accounts for the telescope’s
beam and source morphology can be used when analyzing extended sources.

Further investigation in different well studied galaxies can also lead to a better understanding of DESHIMA
2.0’s capabilities. By observing astronomical sources with different properties, like different dust con-
tent and different bright emission line features, and comparing them with existing well-studied data, we
can verify the instrument’s scientific capabilities in different settings. This will also showcase how beam
characteristics and fitting methods change measurements for different astronomical sources.
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Appendices

A
Continuum fitting code

1 import os
2 import sys
3 import numpy as np
4 import matplotlib.pyplot as plt
5 import corner
6 from astropy import constants as const
7 import emcee
8 from matplotlib.lines import Line2D
9 from matplotlib.patches import Rectangle
10

11 # Apply project styling (which may enable a grid by default)
12 sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
13 from Plotting import plot_settings
14

15 # Settings for MCMC fit
16 ROOT = ”Data/npys”
17 MASK_MIN, MASK_MAX = 250, 300
18 PRIOR = {
19 ’A’: (4.46e-2, 0.001 * 10),
20 ’B’: (0.421, 0.027 * 10),
21 ’alpha’: (0.9, 0.2),
22 ’beta’: (2.0, 0.5),
23 }
24 N_WALK, N_BURN, N_RUN = 32, 20000, 2000000
25

26 # Telescope constants
27 D = 10.0
28 etaA = 0.45
29 kB = const.k_B.value
30 Ae = etaA * np.pi * (D / 2) ** 2
31 conv = 2 * kB / Ae / 1e-26
32

33 # Model constants
34 T, NU0, OMEGA, F0 = 34.0, 3000.0, 1.66e-8, 0.028
35

36 # Planck function to compute blackbody radiation at given frequency
37 def planck(nu):
38 nu_hz = nu * 1e9 # Convert GHz to Hz
39 x = const.h.value * nu_hz / (const.k_B.value * T)

38



39

40 B_si = 2.0 * const.h.value * nu_hz ** 3 / const.c.value ** 2 / np.expm1(x)
41 return B_si * 1e26 # Return in Jy per beam
42

43 # Kamenetzky model for the continuum
44 def model(nu, A, B, alpha, beta):
45 gb = A * (nu / 240) ** (B - 2) * OMEGA * planck(nu) * (1 - np.exp(-(nu / NU0)

** beta))
46 cj = F0 * (nu / 230) ** (-alpha)
47 return gb + cj
48

49 # This function computes the log prior of the model parameters
50 def ln_prior(p):
51 A, B, alpha, beta = p
52 if A < 0 or beta < 0:
53 return -np.inf # If any parameter is out of bounds, return -infinity
54 lp = 0.0
55 for v, (c, q) in zip(p, PRIOR.values()):
56 lp += -0.5 * ((v - c) / q) ** 2 - np.log(np.sqrt(2 * np.pi) * q) #

Gaussian prior
57 return lp
58

59 # This function computes the log likelihood of the model given the data
60 def ln_like(p, nu, f, var):
61 m = model(nu, *p) # Get the model values for the parameters
62 return -0.5 * np.sum((f - m) ** 2 / var + np.log(2 * np.pi * var)) #

Likelihood function
63

64 # This function combines the prior and likelihood to compute the log posterior
65 def ln_post(p, nu, f, var):
66 lp = ln_prior(p) # Log prior
67 if not np.isfinite(lp):
68 return -np.inf # If prior is invalid, return -infinity
69 return lp + ln_like(p, nu, f, var) # Log posterior
70

71 # Load the data from the folder
72 def load(folder):
73 nu = np.load(os.path.join(folder, ’freq.npy’))
74 Tb = np.load(os.path.join(folder, ’avg.npy’))
75 varT = np.load(os.path.join(folder, ’var.npy’))
76 mask = (nu >= MASK_MIN) & (nu <= MASK_MAX)
77 good = mask & np.isfinite(Tb) & np.isfinite(varT) & (varT > 0)
78 if not np.any(good):
79 raise RuntimeError(”No continuum points after masking”)
80 nu, Tb, varT = nu[good], Tb[good], varT[good]
81 S = conv * Tb # Convert temperature to flux density
82 varS = (conv ** 2) * varT # Variance of the flux density
83 return nu, S, varS
84

85 # Main function to run the MCMC fitting
86 def run(folder):
87 nu, flx, var = load(folder)
88

89 # Initialize walkers
90 p0 = [[np.random.normal(c, q) for c, q in PRIOR.values()] for _ in range(

N_WALK)]
91 sampler = emcee.EnsembleSampler(N_WALK, len(PRIOR), ln_post, args=(nu, flx,

var))
92 sampler.run_mcmc(p0, N_BURN + N_RUN, progress=True)
93

94 # Compute autocorrelation times (if possible)
95 try:
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96 tau = sampler.get_autocorr_time(discard=N_BURN)
97 print(”Autocorrelation times per parameter:”)
98 for name, t in zip(PRIOR.keys(), tau):
99 print(f” {name}: {t:.1f} steps”)
100 except Exception as e:
101 print(”Warning: could not compute autocorr_time:”, e)
102

103 # Thinning and flattening the chain for best fit
104 flat_chain = sampler.get_chain(discard=N_BURN, thin=100, flat=True)
105 flat_lp = sampler.get_log_prob(discard=N_BURN, thin=100, flat=True)
106 best_idx = np.argmax(flat_lp)
107 best = flat_chain[best_idx]
108 params = dict(zip(PRIOR.keys(), best))
109

110 # Compute interval uncertainties
111 p16, p50, p84 = np.percentile(flat_chain, [16, 50, 84], axis=0)
112 perr_minus = p50 - p16
113 perr_plus = p84 - p50
114

115 print(”Parameter estimates (median σ+1 / σ-1):”)
116 for i, name in enumerate(PRIOR.keys()):
117 print(f” {name} = {p50[i]:.4f} (+{perr_plus[i]:.4f}/-{perr_minus[i]:.4f})

”)
118

119 prior_truths = np.array([c for (c, q) in PRIOR.values()])
120 found_truths = np.array(best)
121

122 # Corner plot with prior and found values
123 ndim = len(PRIOR)
124 fig = corner.corner(
125 flat_chain,
126 labels=list(PRIOR.keys()),
127 show_titles=True,
128 title_kwargs={”fontsize”: 12},
129 show_grid=False # �cornerinternal grid off
130 )
131 axes = np.array(fig.axes).reshape((ndim, ndim))
132

133 for i in range(ndim):
134 for j in range(ndim):
135 axes[i, j].grid(False)
136

137 # Overplot kamenetzky (prior) and found values
138 for i in range(ndim):
139 ax_diag = axes[i, i]
140 ax_diag.axvline(prior_truths[i], color=’#2ca02c’, ls=’-’, zorder=10)
141 ax_diag.axvline(found_truths[i], color=’C1’, ls=’-’, zorder=11)
142

143 for j in range(i):
144 ax = axes[i, j]
145 ax.axvline(prior_truths[j], color=’#2ca02c’, ls=’-’, zorder=10)
146 ax.axhline(prior_truths[i], color=’#2ca02c’, ls=’-’, zorder=10)
147 ax.axvline(found_truths[j], color=’C1’, ls=’-’, zorder=11)
148 ax.axhline(found_truths[i], color=’C1’, ls=’-’, zorder=11)
149

150 # Create rectangles around the prior and found values for style
151 xlim = ax.get_xlim()
152 ylim = ax.get_ylim()
153 dx = 0.05 * (xlim[1] - xlim[0])
154 dy = 0.05 * (ylim[1] - ylim[0])
155
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156 rect_p2 = Rectangle(
157 (prior_truths[j] - dx / 2, prior_truths[i] - dy / 2),
158 dx, dy,
159 facecolor=’#2ca02c’, alpha=1,
160 edgecolor=’#2ca02c’, lw=1,
161 zorder=10
162 )
163 rect_f2 = Rectangle(
164 (found_truths[j] - dx / 2, found_truths[i] - dy / 2),
165 dx, dy,
166 facecolor=’C1’, alpha=1,
167 edgecolor=’C1’, lw=1,
168 zorder=11
169 )
170 ax.add_patch(rect_p2)
171 ax.add_patch(rect_f2)
172

173 # Legend for prior and found values
174 prior_handle = Line2D([], [], color=’#2ca02c’, ls=’-’, label=’Kamenetzky

values’)
175 found_handle = Line2D([], [], color=’C1’, ls=’-’, label=’Found values’)
176 fig.legend(
177 handles=[prior_handle, found_handle],
178 loc=’upper right’,
179 fontsize=14,
180 frameon=False,
181 bbox_to_anchor=(0.95, 0.95),
182 bbox_transform=fig.transFigure
183 )
184

185 plt.show()
186 plt.close(fig)
187

188 # Create a plot of the best fit model and data
189 plt.figure(figsize=(10, 6))
190 plt.errorbar(nu, flx, yerr=np.sqrt(var), fmt=’.k’, label=’Data’)
191

192 nu_s = np.linspace(nu.min(), nu.max(), 200)
193 # MCMC best fit
194 plt.plot(nu_s, model(nu_s, *best), ’C1-’, lw=2, label=’MCMC best fit’)
195 # Kamenetzky (prior) fit
196 plt.plot(nu_s, model(nu_s, *prior_truths), ’--’, color=’#2ca02c’, lw=2, label=

’Kamenetzky model’)
197

198 plt.xlabel(r’$\nu$ [GHz]’)
199 plt.ylabel(’Flux [Jy]’)
200 plt.legend()
201 plt.tight_layout()
202 plt.show()
203

204 # Walker and trace plots
205 fig, axes = plt.subplots(len(PRIOR), 1, figsize=(8, 2 * len(PRIOR)), sharex=

True)
206 samples = sampler.get_chain()
207 for i, (ax, key) in enumerate(zip(axes, PRIOR.keys())):
208 ax.plot(samples[:, :, i], ’k’, alpha=0.3)
209 ax.set_ylabel(key)
210 axes[-1].set_xlabel(’MCMC step’)
211 plt.show()
212

213 if __name__ == ’__main__’:
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214 if not os.path.isabs(ROOT):
215 script_dir = os.path.dirname(os.path.abspath(__file__))
216 ROOT = os.path.join(os.path.dirname(script_dir), ROOT)
217

218 print(f”Looking for data in: {ROOT}”)
219 try:
220 obs_folders = os.path.join(ROOT, ”stacked”)
221 run(obs_folders)
222 except Exception as e:
223 print(f”Error: {e}”)
224 import traceback; traceback.print_exc()
225 sys.exit(1)

Listing A.1: Python script for fitting continuum model of Kamenetzky using its priors ad MCMC



B
Line fitting code

1 import os
2 import numpy as np
3 import matplotlib.pyplot as plt
4 from scipy.optimize import curve_fit
5 from scipy.special import wofz
6 from scipy.interpolate import interp1d
7 import sys
8

9 # Add the project root directory to the path to access the Plotting module
10 sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
11 # Import for side effects - this applies matplotlib styling parameters
12 from Plotting import plot_settings
13

14 # Load stacked, continuum-subtracted, SNR-filtered and sigma clipped data
15 save_dir = os.path.join(’Data’, ’npys’, ’stacked_snr_filtered’)
16 freq = np.load(os.path.join(save_dir, ’freq_filtered.npy’))
17 residual = np.load(os.path.join(save_dir, ’avg_flux_minus_cont.npy’))
18 var = np.load(os.path.join(save_dir, ’var_flux_minus_cont.npy’))
19 sigma_fd = np.sqrt(var)
20

21 # Load per-channel Q-factor
22 Q_factor = np.load(os.path.join(save_dir, ’Q_factor_filtered.npy’))
23 Q_interp = interp1d(freq, Q_factor, bounds_error=False, fill_value=’extrapolate’)
24

25 # load beam parameters for main beam temperature conversion
26 beam_dir = os.path.join(’Data’, ’beam_width’)
27 beam_freqs = np.load(os.path.join(beam_dir, ’freqs_20240717114731.npy’))
28 beam_fwhm_maj = np.load(os.path.join(beam_dir, ’fwhm_maj_20240717114731.npy’))
29 beam_fwhm_min = np.load(os.path.join(beam_dir, ’fwhm_min_20240717114731.npy’))
30

31 # Fix NaNs in beam data by using nearest valid values
32 for arr in (beam_fwhm_maj, beam_fwhm_min):
33 mask = np.isnan(arr)
34 if mask.any():
35 valid = np.where(~mask)[0]
36 for i in np.where(mask)[0]:
37 arr[i] = arr[valid[np.abs(valid-i).argmin()]]
38

39 # Interpolate beam FWHM values
40 fwhm_maj_interp = interp1d(beam_freqs, beam_fwhm_maj, bounds_error=False,

fill_value=’extrapolate’)
41 fwhm_min_interp = interp1d(beam_freqs, beam_fwhm_min, bounds_error=False,

fill_value=’extrapolate’)

43
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42

43 # Function to calculate beam solid angle in steradians
44 def beam_solid_angle(nu):
45 maj = fwhm_maj_interp(nu) * np.pi / 648000 # Convert FWHM to radians
46 min = fwhm_min_interp(nu) * np.pi / 648000
47 return 1.133 * maj * min
48

49 # Function to convert flux density in Jy to main beam temperature in K
50 def flux_to_temperature(flux_jy, nu_ghz):
51 c, k_B, Jy = 2.998e8, 1.381e-23, 1e-26 # Constants for speed of light,

Boltzmann, and Jy
52 nu = nu_ghz * 1e9 # Convert GHz to HzΩ
53 = beam_solid_angle(nu_ghz) # Get the beam solid angle
54 return (c**2) / (2 * k_B * nu**2 * Ω) * (flux_jy * Jy)
55

56 # Voigt model with wofz as Faddeeva function
57 def voigt_model(x, amp, cen, sig):
58 Q = Q_interp(x) # Get Q-factor at each frequency
59 gamma = cen / (2 * Q) # Line width
60 sig_v = sig / np.sqrt(2) # Adjust standard deviation for Voigt profile
61 z = ((x - cen) + 1j * gamma) / (sig_v * np.sqrt(2)) # Complex argument for

Faddeeva function
62 return amp * np.real(wofz(z)) / (sig_v * np.sqrt(2 * np.pi))
63

64 # Fit settings, define the lines to fit and window for fitting
65 lines = {’CO(2-1)’: 230.538, ’CO(3-2)’: 345.796} # in GHz
66 window = 1 # GHz for selecting the fit region
67 c_kms = 2.998e5 # km/s for speed of light
68

69 results = {}
70 fit_models = {}
71 colors = {’CO(2-1)’: ’blue’, ’CO(3-2)’: ’orange’}
72

73 # Plot the data with error bars
74 plt.figure(figsize=(10,5))
75 plt.errorbar(freq, residual, yerr=sigma_fd, fmt=’.’, c=’gray’, alpha=0.5,

markersize=4, label=’Data’)
76

77 # Loop through each line to fit
78 for name, center in lines.items():
79 mask_fit = (freq >= center - window) & (freq <= center + window)
80 x_fit, y_fit, e_fit = freq[mask_fit], residual[mask_fit], sigma_fd[mask_fit]
81 A0 = y_fit.max()
82

83 # Set initial parameters and bounds for the fit
84 if name == ’CO(2-1)’:
85 p0 = [A0, center, 0.25]
86 bounds = ([0, center - 1.5, 0.1], [10 * A0, center + 1.5, 0.3])
87 else:
88 p0 = [A0, center, 0.30]
89 bounds = ([0, center - 1.5, 0.1], [10 * A0, center + 1.5, 0.3])
90

91 # Perform the Voigt fit using curve_fit
92 popt, pcov = curve_fit(voigt_model, x_fit, y_fit,
93 p0=p0, sigma=e_fit,
94 absolute_sigma=True,
95 bounds=bounds, maxfev=5000)
96 amp, nu0, sig = popt
97 amp_err, nu0_err, sig_err = np.sqrt(np.diag(pcov))
98

99 # Calculate peak temperature and its error
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100 peak_Tmb = flux_to_temperature(amp, nu0)
101

102 # Numerical perturbation for peak_Tmb error
103 peak_Tmb_plus_amp_err = flux_to_temperature(amp + amp_err, nu0)
104 peak_Tmb_minus_amp_err = flux_to_temperature(amp - amp_err, nu0)
105 delta_Tmb_amp = (peak_Tmb_plus_amp_err - peak_Tmb_minus_amp_err) / 2
106

107 peak_Tmb_plus_nu0_err = flux_to_temperature(amp, nu0 + nu0_err)
108 peak_Tmb_minus_nu0_err = flux_to_temperature(amp, nu0 - nu0_err)
109 delta_Tmb_nu0 = (peak_Tmb_plus_nu0_err - peak_Tmb_minus_nu0_err) / 2
110

111 peak_Tmb_err = np.sqrt(delta_Tmb_amp**2 + delta_Tmb_nu0**2)
112

113 # Compute velocity sigma + its error
114 sigma_v = c_kms * sig / nu0
115 sigma_v_err = np.sqrt((c_kms * sig_err / nu0)**2 +
116 (c_kms * sig * nu0_err / nu0**2)**2)
117

118 # Compute FWHM and its error
119 fwhm_v = 2 * np.sqrt(2 * np.log(2)) * sigma_v
120 fwhm_v_err = 2 * np.sqrt(2 * np.log(2)) * sigma_v_err
121

122 # Overlay of the window fit
123 x_win_plot = np.linspace(center - window, center + window, 200)
124 y_win_plot = voigt_model(x_win_plot, amp, nu0, sig)
125 plt.plot(x_win_plot, y_win_plot, color=colors[name], lw=2,
126 label=f”{name} fit window”)
127

128 # Integrate over 20 GHz grid for full line
129 Agrid = 20
130 nu_min = nu0 - Agrid
131 nu_max = nu0 + Agrid
132 nu_grid = np.linspace(nu_min, nu_max, 2000)
133 flux_fit = voigt_model(nu_grid, amp, nu0, sig)
134 vel = c_kms * (nu_grid - nu0) / nu0
135 idx = np.argsort(vel)
136

137 I_Jykms = np.trapezoid(flux_fit[idx], vel[idx])
138 rel_err = np.sqrt((amp_err / amp)**2 + (sig_err / sig)**2)
139 err_Jykms = I_Jykms * rel_err
140

141 Tmb_per_Jy = flux_to_temperature(1.0, nu0)
142 I_mKkms = I_Jykms * Tmb_per_Jy * 1e3
143 err_mKkms = err_Jykms * Tmb_per_Jy * 1e3
144

145 # Overlay the full 20 GHz fit curve
146 plt.plot(nu_grid, flux_fit, color=colors[name], ls=’--’, lw=1.5,
147 label=f”{name} fit σ±5”)
148

149 # Store results
150 results[name] = {
151 ’amp (Jy)’: (amp, amp_err),
152 ’cen (GHz)’: (nu0, nu0_err),
153 ’sig (GHz)’: (sig, sig_err),
154 ’σ_v (km/s)’: (sigma_v, sigma_v_err),
155 ’FWHM (km/s)’: (fwhm_v, fwhm_v_err),
156 ’I [Jy·km/s]’: (I_Jykms, err_Jykms),
157 ’I [mK·km/s]’: (I_mKkms, err_mKkms),
158 ’SNR’: amp / amp_err,
159 ’Peak T_mb (K)’: (peak_Tmb, peak_Tmb_err)
160 }
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161 fit_models[name] = popt
162

163 # Print results
164 print(f”\n{name} @ {center} GHz:”)
165 print(f” Peak T_mb = {peak_Tmb:.2f} ± {peak_Tmb_err:.4f} K”)
166 print(f” Amp = {amp:.3f} ± {amp_err:.3f} Jy”)
167 print(f” Cen = {nu0:.4f} ± {nu0_err:.4f} GHz”)
168 print(f” σ _v = {sigma_v:.5f} ± {sigma_v_err:.1f} km/s”)
169 print(f” FWHM_v = {fwhm_v:.5f} ± {fwhm_v_err:.1f} km/s”)
170 print(f” ∫ flux = {I_mKkms:.1f} ± {err_mKkms:.1f} mK·km/s”)
171 print(f” SNR = {amp / amp_err:.2f}”)
172

173 # Plotting
174 plt.xlabel(’Frequency (GHz)’)
175 plt.ylabel(’Flux density (Jy/beam)’)
176 #plt.title(’Voigt Fits (±1GHz window, σ±5 integration)’)
177 #plt.legend()
178 plt.grid(alpha=0.3)
179 plt.tight_layout()
180 plt.show()

Listing B.1: Python script for fitting bright lines using the voigt model



C
Individual observation runs

Figure C.1: The five representive observation runs on NGC 1068 as mentioned in the method section
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48 D. Q-factor and Apperture efficiency

D
Q-factor and Apperture efficiency

(a) Q factor for each frequency used for line fitting (b) Aperture efficiency used for channels/frequencies



E
Relevant equations

𝐼K km/s = (∫𝐹𝑣 , 𝑑𝑣) × 𝑇mb per Jy (E.1)

FWHMkm/s = 𝑐
FWHMGHz

𝜈0
(E.2)
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