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Abstract

A severe incident with the cargo ship MSC Zoe, which lost hundreds of containers near the Dutch coast,
shows how important it can be to detect and localise hidden objects at sea quickly. Also in defence appli-
cations localisation of hidden objects in water is important. If the objects are made of magnetic materials,
they disturb the Earth magnetic field. This disturbance is called the object’s magnetic signature. An aerial
drone that carries magnetic field sensors could in principle be able to locate magnetic objects autonomously.
Another defence-related application of such a drone would be estimating magnetic signatures of ships under
water, using measurements above water - signature translation. For both applications, algorithms need to be
developed that process magnetic field data, and computes estimates. In this thesis, data-driven techniques
are applied to the localisation problem and the magnetic signature translation problem.

For the localisation problem, an algorithm is proposed to localise a magnetic dipole using a limited number
of noisy measurements from a sensor array forming a horizontal grid. The algorithm is based on the theory of
compressed sensing, and exploits the sparseness of the magnetic dipole in the location domain. Beforehand,
a basis consisting of magnetic dipole fields belonging to individual magnetic dipoles in an evenly spaced 3D
grid is constructed. In the algorithm, a number of sensors is chosen which perform each a measurement of
the three magnetic field components. The sensors can be chosen randomly from the sensor array, but also
optimal placement using QR pivoting is considered. Using the pre-constructed basis and the obtained field
measurements, a sparse representation in the location domain is computed using `1 optimisation. The opti-
misation is performed using a primal-dual path-following algorithm. Based on the resulting sparse represen-
tation, a classification is produced, which consists of estimates on its location and on its magnetic moment
magnitude and orientation. The possibility of performing iterations is explored, where the basis and chosen
sensors improve after every location estimate. Using results from simulations as well as experiments, the
algorithm is shown to be effective in localising magnetic dipoles.

To solve the signature translation problem, two approaches are investigated. One algorithm was developed
using the Gappy POD technique, and one using neural networks. Gappy POD is an adaptation of the proper
orthogonal decomposition (POD), where signals are decomposed in orthogonal components. Using only a
few measurements (a gappy measurement), a full signal can be reconstructed. This method is adapted to
also be able to translate from a field above a ship to a field below a ship. Tikhonov regularisation is applied in
the process to obtain better results. Second, different neural networks are created, trained using data above
and below a ship. Linear and non-linear networks are compared, and standard loss functions are compared
to physics-guided losses. Both the Gappy POD based algorithm and linear neural networks are shown to
give good magnetic signature estimates. The Gappy POD method is greatly improved by applying Tikhonov
regularisation. Results show to improve when more basis modes are considered, and when more sensors
are used for measurements. Linear neural networks show the same results as Gappy POD using Tikhonov
regularisation, indicating that some regularisation is done while training the neural network. Non-linear
neural networks show no improvement over linear ones, and a physics-guided loss function is not needed for
a resulting field that obeys known laws of magnetism.
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1
Introduction

1.1. Introduction and motivation

In 2019, 342 containers fell of the container ship MSC Zoe during rough weather conditions, close to the
Dutch and German Frisian Islands. In total, the MSC Zoe lost 3 million kilograms of freight, in 6 different
locations [36]. Some of the containers contained toxic chemicals, which could have a severe negative envi-
ronmental impact if not found quickly. One of these was filled with the toxic substance benzoyl peroxide,
and was only found after almost four months [26]. Another container with highly toxic lithium-ion batteries
was never found. In total, 25 percent of lost freight was never recovered [36], and it took more than a year to
clean all parts of the Dutch Wadden Sea [27]. This incident shows how important it can be to quickly localise
hidden objects at sea.

Now envision an aerial drone, equipped with a magnetic sensor, that can autonomously locate these con-
tainers using its magnetic field measurements. With these drones, the container detection problem, and
localisation problem, could efficiently be solved. Besides containers, there are more relevant detection prob-
lems that could be solved with such drones, for example related to defence. Hostile ships or objects need to be
detected when getting into protected waters, or near a naval fleet. In these cases, detection and localisation
is crucial for safety. Even though the applications are very different, the detection problem is similar.

There are several techniques used for detection of objects at sea, whether floating or under water. Some of
these are acoustics (for instance sonar), radar, and of course using ’normal’ vision or cameras. The technique
that is central in this thesis is detection using magnetism.

Virtually all vessels, and also steel containers, are at least partly made of magnetic materials. The Earth cre-
ates an Earth magnetic field, and when a magnetic material is placed in this background field, it becomes a
magnetic source itself. In this way, the Earth magnetic field is disturbed, and this disturbance (anomaly) can
be detected. The disturbance in the magnetic field that a vessel (or other object) creates is called its mag-
netic signature. The overarching name for detection of magnetic sources from the air is Magnetic Anomaly
Detection (MAD).

When the object of interest is magnetic, it can be useful to use MAD as detection technique. Unlike other
signals, the magnetic field propagates freely through non-magnetic materials: this is called a strong penetra-
bility. For instance, there will not be much difference between the magnetic field of a floating container and
one that is slightly under water [19]. Other techniques like radar or cameras can easily fail in these situations.
Another advantage of MAD in defence-related applications is that it is a passive technique [29]. The sensor or
sensing process can in principle not be revealed by the target, in contrast to for instance sonar, where signals
are sent actively in the detection process.

1



2 1. Introduction

Apart from the detection problem described above, a drone equipped with magnetic field sensors can also
help in another problem: magnetic signature estimation. Staying in the domain of defence, it can be impor-
tant to know the magnetic signature of a ship. For instance, to make sure it is not detected. This is important
in areas where naval mines form a threat. These mines can have different sensors on board, among which
magnetic field sensors. The mines are set to explode if a ship is detected, or sometimes if a certain type of
ship is detected.

On the one hand, for vessels that must not be detected, it is crucial that their magnetic field disturbance
is small enough. Only then - disregarding many other requirements - can they safely enter an area that is
potentially filled with naval mines. On the other hand, magnetic signatures are important in minesweep-
ing operations - detonating mines on purpose to clear an area for an upcoming fleet. Usually, a so called
minesweeper tows equipment that emulates the signatures of a naval vessel. The goal is to detonate mines
that would be triggered by the real version of this ship. If this succeeds, the route is clear for the real vessel. In
this case, it is important that the signatures of the real vessel and the emulation are similar [17, Chapter 3].

For these reasons, it can be beneficial to run a ’signature check’ before a dangerous area is entered, or before a
mission is started. This is where the aerial drone comes into play. At sea, an efficient way of performing such
a check would be with one of these drones. When carrying one or more magnetic field sensors, it would be
able to scan the area above a ship. Then, this signature above the ship needs to be translated into a signature
below the ship. If this final signature is as expected, the mission can proceed as planned. And if the signature
contains unexpected features, adjustments need to be done beforehand.

We covered two problems where magnetic field measurements conducted from an aerial drone can be used:
(1) to detect magnetic objects at sea, and (2) to obtain a full magnetic signature around the ship - in particular
below it. In the process of solving these problems, the field measurements need to be processed, since they
will not be perfect. Measurements will typically be noisy, and field measurements can only be done along the
drone’s flight path. Then, in the detection problem, an estimated target location needs to be produced from
the field measurements. And in the signature estimation problem, the measurements above a ship must be
translated to a field below the ship. The goal of this thesis is to develop data-driven techniques to solve these
problems.

1.2. Background of data-driven techniques

A standard approach to a physical problem like this is to analyse which physics laws are relevant. From
these laws and rules, a physical model can be constructed. Then a simulation can be built using numerical
approximations, or in the case of processing measurements, an inverse problem can be defined and solved.
This whole approach is based on physics, in particular on behaviour that is already well-understood. But what
if the laws of physics covering the problem are unknown, or the situation is too complex to model without
oversimplification? In that case, another approach can be used: data-driven techniques.

Data-driven science focuses on the discovery of information just from observations, or data. It is not a new
field in science: already in the 17th century, Johannes Kepler formulated his laws of planetary motion solely
based on astronomical observations [38]. However, developments in the field are accelerating nowadays, with
the rise of machine learning and statistical learning [7]. Using the large amounts of available computational
power, data can be used to make new discoveries and to create new models or improve existing ones. In
this thesis, the focus will be on three different data-driven techniques: compressed sensing, Gappy POD, and
neural networks.

For magnetic source localisation, the method of compressed sensing is explored. This technique uses the
concept of compression, but turns it around. The original idea of compression is that information can be
stored using less storage space than originally, losing a negligible or at least very small amount of quality.
Well-known examples are sound and image compression: with just a small loss of quality, huge amounts
of storage space can be saved. In classical compression, only after performing the full measurement, the
measurement data is encoded to be stored efficiently. The idea of compressed sensing is to never perform the
full measurement in the first place, since it was apparently larger than needed to cover all needed information.
Compressed sensing uses few - or sparse - measurements to estimate the encoded information as well as
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possible. It turns out that this is possible since the final goal is the information in compressed form, and not
the full data including all (unnecessary) details.

In the case of magnetic signature reconstruction, Gappy POD and neural networks are used. The proper
orthogonal decomposition (POD) aims to find ’basis modes’ in data. For example, audio data can be decom-
posed in sine waves, each with a separate frequency. In this case, the sine waves are the modes. In audio, this
is quite straightforward, but in many situations, one has to search for the modes in a large set of data. A POD
algorithm finds similarities between data entries. When the basis modes are found, the algorithm will try to
fit these modes to measurements. In Gappy POD, the measurements are gappy, as the name suggests. Then
it comes down to fitting the basis modes to the few measurements that are available. In the end, Gappy POD
constructs a linear system to solve, hence non-linearities in the data cannot be found.

Neural networks are perhaps the most well-known recent innovation within data-driven science. The idea
is simple: construct a network that is inspired by the functioning of the human brain. The network consists
of so called neurons, that work approximately like neurons in a brain - each individual neuron is capable of
receiving, modifying and then transmitting information to all connected neurons. Some input can be fed to
the first neurons, and in the end, after possibly many layers of neurons, the last neurons produce an output.

This network is then trained to recognise input data and create proper output data. Some networks are
trained using labelled data. For instance, input images are marked by humans as either dogs or cats, and
based on this information, the network is trained to recognise dogs and cats. This is called supervised learn-
ing. A contrasting way of training neural networks is unsupervised learning. In this method, target informa-
tion is not provided - the dog and cat images would not be labelled, for instance. It is the goal of the network
to discover patterns on its own [7, Chapter 5].

In this thesis, the focus is on supervised learning. If an unseen magnetic field input is given to a well-trained
network, it should be able to predict the desired output - a full magnetic field estimate below a ship. In
contrast to Gappy POD, the total system can be non-linear due to the way neurons receive information from
previous layers of neurons. In this way, the network could ’catch’ non-linearities in the training data that
would be disregarded by the linear Gappy POD.

1.3. Research goals and approach

As described in the previous sections, the goal of this research is to explore data-driven techniques for lo-
calisation using magnetic field measurements, and magnetic signature reconstruction. The main research
question of this thesis summarises this, and consists of two parts:

How can data-driven techniques be used for

• localisation of magnetic sources?
• reconstruction of the magnetic signatures of ships?

Both questions are focused on achieving the goal in challenging situations, in particular when few and/or
noisy measurements are available. To answer the two parts of the main question, the research is divided in
two parts as well. Each contains a number of relevant steps towards the final goals:

Localisation:

1. Investigating the concept of compressed sensing;

2. Developing an algorithm to localise a magnetic dipole in a 3D space;

3. Exploring possibilities to choose optimal sensor locations when the number of measurements is re-
stricted;

4. Analysing the algorithm performance using simulated data;

5. Validating the algorithm using real-world measurements.
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Signature reconstruction:

1. Investigating the concepts of Gappy POD and neural networks;

2. Implementing a Gappy POD algorithm for signature reconstruction around a ship;

3. Designing a neural network for signature reconstruction around a ship;

4. Analysing and comparing the performance of the developed Gappy POD algorithm and neural network.

1.4. Outline

This report starts with two introductory chapters: Chapter 2 presents some background knowledge about
magnetostatics, and Chapter 3 contains all relevant knowledge of linear algebra that is used throughout this
thesis. The rest of the report is divided into two parts: Part I is about magnetic source localisation, and Part II
about signature reconstruction. Each of them has a separate chapter with conclusions and recommenda-
tions.

Part I is divided into four chapters. An introduction to compressed sensing, including relevant mathematical
background, is given in Chapter 4. The design and implementation of the compressed sensing algorithm for
localisation is discussed in Chapter 5. Chapter 6 contains results and analysis of the implemented algorithm.
This includes both results using simulated data and using real-world data. Finally, Chapter 7 describes the
conclusions drawn from the results, and recommendations for future research.

Part II is divided into four chapters. Chapter 8 presents the problem of signature translation and the physical
model used in the implementations in the following chapters. Chapter 9 discusses all relevant background
information about Gappy POD, presents the implementation of a Gappy POD algorithm, and gives the results
of an analysis. Chapter 10 has the same structure, but now for neural networks. At the end of this chapter,
a comparison between the Gappy POD and neural network methods and implementations is made. Finally,
Chapter 11 presents the conclusions of this thesis, and provides recommendations for future research.



2
Magnetostatics

All techniques in this research focus on magnetic field measurements. In particular, measurements of mag-
netic fields that do not change in time, or static fields. As an introduction, this chapter covers the basis of the
theory of magnetostatics, mostly based on [16, Chapter 5].

2.1. Maxwell’s equations and the vector potential

In the 19th century, James Clerk Maxwell combined, and improved, the set of four equations which are now
together called Maxwell’s equations. The set consists of Gauss’s, Faraday’s, and Ampère’s law, and Gauss’s law
for magnetism. Together, these provide the overarching framework for electrodynamics. Each of the four
equations describes a property of either the magnetic field B [T] or electric field E [NC−1] or equivalently
[Vm−1], or a relation between both. Two of these describe the divergence of the fields, and the other two
describe the curl. Maxwell’s equations are given by [16, p. 326]:

∇·E = ρ

ε0
, (Gauss’s law)

∇·B = 0, (Gauss’s law for magnetism)

∇×E =−∂B

∂t
, (Faraday’s law)

∇×B =µ0

(
J+ε0

∂E

∂t

)
. (Ampère’s law)

Here, ρ [Cm−3] denotes the total electric charge density, J [Am−2] the total electric current density, ε0 [Fm−1]
the permittivity of free space, and µ0 ≈ 1.257 ·10−6 Hm−1 the permeability of free space [16, p. 216].

Considering only the magnetostatic field B now, the time derivatives vanish and the following remains:

∇·B = 0, (2.1)

∇×B =µ0J. (2.2)

5
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2.1.1. Solving the magnetostatic equations

Eq. (2.1) gives rise to the use of a vector potential A in magnetostatics, allowed by Theorem 2.1:

B =∇×A. (2.3)

Theorem 2.1. The following conditions for a vector field F are equivalent:

(1) ∇·F = 0 everywhere.
(2) F is the curl of some vector function: F =∇×A.

Since the divergence of a curl is always zero, Eq. (2.1) is satisfied. Calculating the curl of B, using Eq. (2.2),
gives:

∇×B =∇× (∇×A) =∇(∇·A)−∇2A =µ0J. (2.4)

To A, it is possible to add any function whose curl is zero, and Eq. (2.3) will still hold. In particular, it is always
possible to choose a vector potential A that is divergence-less:

∇·A = 0. (2.5)

This equation is also called the gauge fixing condition which defines the Coulomb gauge. Combining Eq. (2.4)
and Eq. (2.5) results in

∇2A =−µ0J, (2.6)

which is a system of Poisson equations with known solution [18, p. 180]

A(r) = µ0

4π

�
J(r′)

||r− r′||d 3r′. (2.7)

Here, r is some point in space, and r′ is the integration variable.

2.2. Biot-Savart

From Eq. (2.3) and Eq. (2.7), the Biot-Savart law for volume currents can be derived. This law gives the relation
between the magnetic field B and volume current density J. The magnetic field is equal to

B(r) =∇×A(r) =∇× µ0

4π

�
J(r′)

||r− r′||d 3r′ = µ0

4π

�
∇×

(
J(r′)

||r− r′||

)
d 3r′, (2.8)

where the last operation is allowed since the curl is calculated over the r coordinates, while the integral is
taken over the r′ coordinates. Using the product rule for some scalar function φ and vector field F,

∇× (φF) =∇φ×F+φ∇×F, (2.9)

the following is obtained:

∇×
(

J(r′)
||r− r′||

)
=

(
1

||r− r′||
)
∇× J(r′)+∇

(
1

||r− r′||
)
× J(r′)

= 0−
(

r− r′

||r− r′||3
)
× J(r′)

= J(r′)× (r− r′)
||r− r′||3 .

(2.10)

Inserting this identity into Eq. (2.8) results in the Biot-Savart law for volume currents [25]:

B(r) = µ0

4π

�
J(r′)× (r− r′)
||r− r′||3 d 3r′. (2.11)
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2.3. Multipole expansion

A magnetic field originating from materials or objects can be described by a distribution of magnetic mo-
ments m [Am2] with each its own orientation and magnitude. Far enough from the object, the field will tend
to be that of a point magnetic dipole. A perfect magnetic dipole field can be thought of as the field of an
infinitesimally small bar magnet or current loop.

The vector potential A can be approximated at a distance from the source by a multipole expansion, starting
from the magnetic dipole (magnetic monopoles do not exist in nature). The expansion comes in the form of
a power series in 1

r , with r the distance to the source. The vector potential of a current loop can be written as
[16, p. 243]

A(r) = µ0I

4π

∞∑
n=0

1

r n+1

�
(r ′)nPn(cosα)dI′, (2.12)

where I is the current flowing through the loop, r is the distance to the source, r ′ is the distance from the vol-
ume element to the source, and α is the angle between the vectors r and r′. Pn are the Legendre polynomials,

starting with P1(x) = x, P2(x) = 3x2−1
2 , P3(x) = 5x3−3x

2 , and dI′ is the current element considered.

Since no magnetic monopoles are present in nature, the monopole term (n = 0) vanishes [16, p. 243]. From
the remaining terms in the expansion, the dipole is the dominant term at large distance. In these cases, the
field originating from a source sufficiently far away can be approximated by the field of a magnetic dipole. Its
vector potential is given by

Adip(r) = µ0I

4πr 2

�
r ′ cosαdI′

= µ0I

4πr 3

�
(r · r′)dI′

= µ0

4π

m× r

r 3 ,

(2.13)

where m is the dipole moment of the current loop, defined by the vector area a of the loop, with orientation
determined by the right hand rule:

m := I a.

2.4. Magnetic field of a point dipole

From this vector potential, it is possible to derive the magnetic field of a point dipole. To this end, Eq. (2.3) is
used:

Bdip(r) =∇×Adip(r)

= µ0

4π

(
∇×

(
m× r

r 3

))
.

(2.14)

Now the following identity is used [32, p. 123]:

∇× (u×v) = u(∇·v)−v(∇·u)+ (v ·∇)u− (u ·∇)v. (2.15)

Combining with ∇·m = 0 and ∇m = 0 (the Jacobian of m only has zero entries) gives:

∇×
(

m× r

r 3

)
=

(
∇· r

r 3

)
m− (m ·∇)

r

r 3 . (2.16)

The first term in Eq. (2.16) vanishes:

∇· r

r 3 = 1

r 3 ∇· r+
(
∇ 1

r 3

)
· r

= 3

r 3 − 3r

r 5 · r

= 0.

(2.17)
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For the second term of Eq. (2.16), the Jacobian of r
r 3 is needed (here notation is r = x î+ y ĵ+ zk̂ and r 2 =

x2 + y2 + z2):

∇ r

r 3 = 1

r 3


1− 3x2

r 2 − 3x y
r 2 − 3xz

r 2

− 3x y
r 2 1− 3y2

r 2 − 3y z
r 2

− 3xz
r 2 − 3y z

r 2 1− 3z2

r 2

 . (2.18)

Then, the full second term of Eq. (2.16) becomes:

(m ·∇)
r

r 3 = 1

r 3

mx − 3
r 2 (mx x2 +my x y +mz xz)

my − 3
r 2 (mx x y +my y2 +mz y z)

mz − 3
r 2 (mx xz +my y z +mz z2)

= 1

r 3

mx − 3
r 2 x(mx x +my y +mz z)

my − 3
r 2 y(mx x +my y +mz z)

mz − 3
r 2 z(mx x +my y +mz z)


= m

r 3 − 3r(m · r)

r 5 .

(2.19)

Combining the previous equations, and letting r̂ = r
r gives the magnetic field of a point dipole:

Bdip(r) = µ0

4π

(
3r̂(m · r̂)−m

r 3

)
. (2.20)

2.5. Magnetisation

Magnetic fields are related to currents flowing in materials, see Eq. (2.2). For a wire or coil through which
current is flowing, it is obvious that a current (J) and therefore a magnetic field (B) is present. For materials, for
example permanent magnets, this is not so obvious. However, in every magnetic material, tiny bits of currents
can be found in the form of spinning electrons in atoms. These spins can be thought of as small dipoles.
Normally, the atoms in a material are not aligned and hence the dipoles point in random directions and
cancel out. Under influence of an external magnetic field, the dipoles can be realigned, causing the material
to be magnetised. Some materials magnetise in the same direction as the applied field (paramagnetism), and
some in the opposite direction (diamagnetism). However, the strongest form of magnetism - and the one
that you encounter in daily life - is ferromagnetism. In ferromagnetic material, the electron spins are aligned.
When an external field is applied, the spins align with this field. Ferromagnetic material can retain some of
its magnetism after time.

Magnetisation of a material is indicated by the symbol M [Am−1], and defined as the magnetic dipole mo-
ment per unit volume. Magnetisation is the result of the alignment of dipole moments m inside the material.
Bound currents in the material can be related to the magnetisation of an object by

Jb =∇×M. (2.21)

Apart from bound currents in the material Jb , there can be other currents flowing through the material. The
latter are called free currents and are denoted by J f . Free currents are, in fact, the currents that can be con-
trolled directly in an experiment. Bound currents, on the other hand, result from magnetisation of material,
and cannot be controlled separately. The total current present in the material is then

J = Jb + J f . (2.22)

It is possible to rewrite Ampère’s law in terms of only free current, which is useful since these currents are
controllable in experiments. Starting from Eq. (2.2), this results in

1

µ0
(∇×B) = J = J f + Jb = J f + (∇×M), (2.23)

and from there, defining the auxiliary field H [Am−1] as

H := 1

µ0
B−M, (2.24)
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a new form of Ampère’s law in terms of the auxiliary field and free current arises:

∇×H = J f . (2.25)

Note that outside material, M = 0, and therefore

B =µ0H.

In many magnetic materials, both paramagnetic and diamagnetic, the magnetisation is linearly dependent
on the applied magnetic field. For these linear media, the magnetic susceptibility χm is defined as the (di-
mensionless) proportionality constant:

M =χm H. (2.26)

From Eq. (2.24) it then follows that there is a constant µ such that

B =µH. (2.27)

µ [Hm−1] is called the permeability of the material.

If there are no free currents present in a region, Eq. (2.25) indicates that the curl of the H-field is zero, hence
it is possible to define a magnetostatic scalar potentialΦ, such that

H =−∇Φ. (2.28)

In linear media, Eq. (2.1) then produces the Laplace equation

∇2Φ= 0. (2.29)

Not all magnetic materials are linear media: ferromagnets have the ability to maintain a non-zero magnetisa-
tion even when no external field is applied. Examples of ferromagnetic materials include iron, cobalt, nickel
and their alloys. Within ferromagnetic material, many small domains exist. A picture of such domains is
shown in Fig. 2.1. Inside one domain, all dipoles formed by unpaired electron spins are aligned. In case the
material is not magnetised, these individual domains cancel out, even though the dipoles within domains
are aligned. When applying an external magnetic field to a ferromagnetic substance, most dipoles will not be
affected by the torque created by the external magnetic field, with the help of surrounding dipoles in paral-
lel orientation. At the borders between different domains, however, the torque originating from the applied
magnetic field will cause some changes. The torque helps dipoles in the less similarly oriented domain to
’join’ the domain that is oriented more parallel to the external field. In other words, borders between do-
mains move. This effect causes a net magnetisation of the material in the same direction as the applied field.

A part of the magnetisation remains after the external field is switched off: not all dipoles change back to their
original orientation. What is left can be called a permanent magnet. When applying an increasing external
field which now oriented in exactly opposite direction of the previous field, at some point enough dipoles will
have switched to reach zero magnetisation again. Increasing the field even more, the ferromagnetic material
will eventually have a permanent magnetisation in opposite direction as before. This process, or path, is
called a hysteresis loop. An example of such a loop or curve is shown in Fig. 2.2.
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Figure 2.1: Magnetic domains in a grain of electrical steel (outlined). The orientation of the domains is
indicated with arrows [39].

Figure 2.2: A hysteresis curve for ferromagnetic material [17, p. 9].



3
Prerequisites from linear algebra

Throughout this thesis, many techniques, definitions, and methods from linear algebra are used. This chapter
presents an overview of the relevant topics. These are divided into the following: norms, general definitions,
the singular value decomposition, the QR decomposition, and the condition number.

3.1. Relevant definitions in linear algebra

Definitions from the field of linear algebra that are used throughout this thesis are given below.

• Two vectors x,y ∈Cn are orthogonal if 〈x,y〉 = 0, where 〈x,y〉 :=∑n
i=1 xi yi is the standard inner product.

• Two vectors x,y ∈ Cn are orthonormal if they are orthogonal and ‖x‖ = ∥∥y
∥∥ = 1. Refer to Section 3.2.1

for a description of norms.

• The projection of a vector y ∈Cn onto a vector x ∈Cn is defined by projx(y) = 〈x,y〉
〈x,x〉x, with 〈x,y〉 the inner

product between vectors x and y.

• A matrix U is unitary if UU∗ = U∗U = I.

• A matrix A is upper triangular if ai , j = 0 for all i > j .

• The linear span of a set of vectors S is the set of all linear combinations of the vectors in S.

• The rank of a matrix is the dimension of the vector space spanned by its columns (or rows). A matrix is
said to be of full column rank if all its columns are linearly independent.

3.2. Norms

To describe the size of the elements of vectors or matrices, one uses the concept of norms. An introduction
to norms for both vectors and matrices is given in this section.

11
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3.2.1. Vector norms

Consider an n-dimensional vector x, which is an element of the vector space Rn . On a vector space, a norm
can be introduced, which will be able to determine the size of all vectors within the space. For the considered
vector x ∈Rn , the following norms are defined:

‖x‖1 :=
n∑

i=1
|xi | (`1 norm)

‖x‖2 :=
√

n∑
i=1

x2
i (`2 norm)

The `0 "norm", which is sometimes called a pseudo-norm, is defined to be the number of non-zero elements
in a vector, written more mathematically as

‖x‖0 := #{xi : xi 6= 0}. (`0 "norm")

Note that this is not a norm, since it does not satisfy the scaling property: ‖αx‖0 is in general not equal to
|α|‖x‖0 as required.

3.2.2. Matrix norms

For some m ×n matrix A, the Frobenius norm is defined as:

‖A‖F :=
√√√√ m∑

i=1

n∑
j=1

|ai , j |2. (Frobenius norm)

3.3. Singular value decomposition (SVD)
A very useful concept in linear algebra, especially in the field of compressed sensing, is the singular value
decomposition (SVD). The SVD allows for creating lower-dimensional approximations to high-dimensional
systems. This section is based on [7, Chapter 1].

Suppose that some measurements have been done, and each measurement is represented as a column vector
xi ∈Cn . For instance, this vector could contain pixels from an image, or magnetic field measurements. After
doing m such measurements, all data is gathered in a matrix X ∈Cn×m :

X = [
x1 x2 · · · xm

]
. (3.1)

Now, the SVD for any matrix X ∈Cn×m is the following unique decomposition:

X = UΣΣΣV∗, (3.2)

with U ∈ Cn×n and V ∈ Cm×m unitary matrices with orthonormal columns, and ΣΣΣ ∈ Rn×m a matrix with non-
negative entries on the diagonal, in descending order, and zeros everywhere else. Note that the descending
order of the elements in ΣΣΣ causes the uniqueness of this decomposition. These elements are called singular
values. The number of non-zero singular values is equal to the rank of X. The conjugate transpose ∗ can be
replaced by a regular transpose T if the transposed matrix is real-valued.

A special and very useful property of the SVD is that a matrix X̃ with reduced rank r can be created from it,
providing an optimal approximation to X. This is done by keeping the leading r singular values and columns
of U and V. The following theorem, proved by Eckart and Young in [13], as formulated in [7, p. 7-8], states this
for the Frobenius norm (see Section 3.2.2):

Theorem 3.1. The optimal rank-r approximation to X, in a least-squares sense, is given by the rank-r SVD
truncation X̃:

argmin
X̃, s.t . rank(X̃)=r

∥∥X− X̃
∥∥

F = ŨΣ̃ΣΣṼ∗. (3.3)

Here, Ũ and Ṽ denote the first r leading columns of U and V, and Σ̃ΣΣ contains the leading r ×r sub-block of ΣΣΣ.

Using this theorem, it now becomes clear why the SVD helps creating lower-dimensional approximations to
high-dimensional systems, as said at the beginning of this section. In fact, once the SVD has been computed,
this is only a matter of deleting part of the matrices.
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3.4. QR decomposition

Any matrix A ∈Cm×n , with rank(A) = n, can be factorised as

A = QR, (3.4)

where Q ∈ Cm×m is unitary and R ∈ Cm×n is upper triangular with positive diagonal elements [6, p.254]. This
is called a QR decomposition, or QR factorisation. In this thesis, we will only look at matrices A of full col-
umn rank. For these matrices, it holds that col(Q) = col(A) and since Q is unitary the columns of Q form an
orthonormal basis of the column space of A. A well-known way to compute the QR decomposition is the
Gram-Schmidt process.

3.4.1. Gram-Schmidt process

The Gram-Schmidt process applied to a matrix A with n columns returns a QR decomposition. The idea of
the process is to find an orthonormal basis for the columns of A. The first vector of an orthogonal basis, u1,
can be the first column a1:

u1 = a1. (3.5)

For the second vector, the column a2 is used, but it needs to be modified to be orthogonal to the first. This is
done by subtracting from a2 the projection of a2 onto u1. This projection can be seen as the part that makes
u1 and a2 not orthogonal. Hence,

u2 = a2 −proju1
(a2) (3.6)

is orthogonal to u1. For the next column a3, its projection onto both u1 and u2 needs to be subtracted, and so
on:

uk = ak −
k−1∑
j=1

proju j
(ak ). (3.7)

Finally, to make the basis orthonormal, every column uk must be normalised:

ek = uk∥∥uk
∥∥ , k = 1, . . . ,n. (3.8)

The vectors ek form the matrix Q in the QR decomposition, and the matrix R is formed by the inner products
of the columns a j and the vectors ek :

Q = [e1 e2 · · · en]; (3.9)

R =


〈e1,a1〉 〈e1,a2〉 〈e1,a3〉 · · ·

0 〈e2,a2〉 〈e2,a3〉 · · ·
0 0 〈e3,a3〉 · · ·
...

...
...

. . .

 . (3.10)

3.4.2. Column pivoting

A variation to this technique is the so-called QR decomposition with column pivoting. The focus here will
be on the inclusion of column pivoting in the Gram-Schmidt process. This method is used if A is not of full
column rank, and to improve numerical stability of the Gram-Schmidt process. It decomposes the m ×n
matrix A such that

AP = QR, (3.11)

where P ∈ Rn×n is a permutation matrix. Such a matrix consists of rows that contain one element equal to 1
and have their other elements equal to zero. There can be no duplicate rows. Multiplying by such a matrix
results in the same matrix, but with its columns switched up [7, p. 111-112].

If column pivoting is incorporated into the Gram-Schmidt process, the columns are not just iterated over
from left to right, but in each iteration the largest column is chosen. Such a method where in every iteration
a best action is chosen is called a greedy approach. Later in this thesis, the concept of compressed sensing is



14 3. Prerequisites from linear algebra

introduced, where a limited number of measurements are used to reconstruct signals. There, column pivot-
ing within the QR decomposition algorithm will be exploited to obtain optimal measurements. This will be
demonstrated in Section 5.3.2.

In the Gram-Schmidt process, P is constructed throughout the iterations. The matrix P is initialised as the
identity matrix: P(0) = In . Instead of iterating over the columns a j in order of appearance in A, the next
column in step k is chosen as

ap = max
j≥k

∥∥∥a j

∥∥∥
2

. (3.12)

In other words: the largest remaining column of A is chosen next. This process is called column pivoting. If
p 6= k then columns p and k of A are swapped, and this is described by a change in the permutation matrix P.
Columns p and k are swapped, for example in the first iteration (k = 1):

P(1) =
[

ep e2 . . . ep−1 e1 ep+1 . . . en

]
, (3.13)

where ek here denotes the unity vector with a 1 at position k [6, p. 292]. The consequence of this scheme is
that the diagonal elements of R will be non-increasing:

rkk ≥ r j j , k > j . (3.14)

In fact, the elements in R satisfy the following inequalities [5]:

r 2
kk ≥

j∑
i=k

r 2
i j , j = k +1, . . . ,n. (3.15)

An interesting property of QR algorithms with column pivoting is that they are rank-revealing. If rkk = 0, then
ri j = 0 for i , j ≥ k. The rank of A is k −1 if rkk is the first diagonal element of R equal to zero. However, it must
be noted that the algorithm can fail in identifying nearly rank-deficient matrices [5, p. 105].

Column pivoting is not restricted to the Gram-Schmidt process alone. Another way to compute a QR decom-
position is using Householder transformations. In this algorithm - and others - the idea is the same: choose
a next column such that their norm is largest. An excellent description of the Householder method and the
modification of column pivoting to it is given in [10].

3.5. Condition number

Suppose we have a linear system of equations
y = Ax, (3.16)

and the goal is to approximate x from some noisy measurement y. How sensitive this approximation is to
errors in the input y is indicated by the condition number of A, defined by

κ(A) =
∥∥∥A−1

∥∥∥ ‖A‖ . (3.17)

In the `2 norm, this condition number is given by

κ(A) = σmax(A)

σmin(A)
, (3.18)

where σmax(A) is the maximum singular value of A, and σmin(A) the minimum singular value. To ensure a
small error in the approximation of x, the condition number κ(A) must be small. Refer to Section 3.3 for an
explanation of singular values.
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4
Compressed sensing

Data compression techniques have been around for decades, and can be found in a wide range of applica-
tions, from audio to video and from web traffic to genetic sequences. The key concept is similar in all of these
areas: reducing the size of data (mostly measured in number of bits for digital data) by encoding it. The trick
is to find a balance between the quality of the encoded data and its size.

Typically, compression is applied after measuring data. For example, after a digital image is captured, the
image data is encoded in order to store it efficiently. The compressed image can be many times smaller than
the original. The original image is made up of a large amount of measurements, for example the pixel values
in an image. The smaller the size of the compressed image, the less detail from the original image is preserved.

Compressed sensing turns the idea of compression around completely: if the goal is to have a small, com-
pressed image with only marginal loss of quality, why not perform less measurements in the first place? After
all, the small details acquired by the many measurements would get lost in the compression process anyway.

Compressed sensing, also referred to as compressive sensing, is the technique of recovering a signal using a
very limited number of measurements. Note that such a signal can also be an image, for example in 2D. With
this method, fewer measurements are needed than prescribed by classical information theory, such as the
famous Shannon-Nyquist theorem [31]. For this technique to work, the measured signal must be sparse in
some basis. The sparseness property determines the level at which a signal can be compressed, without the
loss of information. This concept will be further explained in the upcoming sections - it is the same property
that makes signal compressible.

The mathematical background of compressed sensing was developed in the 1980s, with new optimisation
techniques to recover sparse signals. In recent years, the field has been growing quickly, thanks to the de-
velopment of efficient algorithms, growing computing power, and the establishment of solid mathematical
foundations. Today, compressed sensing techniques are applied in many important applications, ranging
from imaging techniques in cameras, MRI and seismology to RADAR and communication networks [30].

This chapter contains a short background of data compression, including an example based on a sound sig-
nal. This is followed by a discussion of compressed sensing, consisting of an introduction to the topic, and an
explanation of the optimisation principles that form the cornerstones of compressed sensing.

17
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Figure 4.1: Signal (left) and power spectral density (right) of a two-tone sounds signal
x(t ) = c1 cos(2π ·97t )+ c2 cos(2π ·777t ) [7, p. 94].

4.1. Compression

Compression in general makes use of the sparsity of a signal. If a signal can be described well by a limited
number of modes in some domain, only these modes have to be stored and one can save storage space. Such
a signal is called sparse. Think of sound, that can be described by a collection of frequencies, as illustrated in
Fig. 4.1. The left plot shows the signal in time, and the right plot shows the discrete cosine transform (DCT)
of this signal.

For example, the JPEG image compression method and mp3 audio compression technique make use of the
DCT. After transformation, the signal can be heavily truncated - and hence less information needs to be
stored. There is no or small quality loss detectable after transforming back using the inverse DCT. There
are many variants of the DCT, each slightly altered, in which x0 to xN−1 are transformed to X0 to XN−1. The
basic idea of all of them is to express a signal as the sum of cosine waves of various frequencies. The most
commonly used of these is DCT-II, given by [1]

Xk =
N−1∑
n=0

xn cos

[
π

N

(
n + 1

2

)
k

]
k = 0, . . . , N −1. (4.1)

and inverse

xn =
√

2

N

N−1∑
k=0

Xk
1√

1+δk1

cos

[
π

2N
(2n −1)(k −1)

]
n = 0, . . . , N −1. (4.2)

Coefficients xn represent the original signal, and Xk are the basis coefficients. δi j denotes the Kronecker
delta. Eq. (4.2) is in fact a summation with basis coefficients sk and basis functions ψ(k,n):

xn =
N−1∑
k=0

snψ(k,n) n = 0, . . . , N −1, (4.3)

sk = Xk , (4.4)

ψ(k,n) =
√

2

N

1√
1+δk1

cos

[
π

2N
(2n −1)(k −1)

]
. (4.5)

And finally, this is nothing more than a matrix-vector product

x =ΨΨΨs, (4.6)

where x and s contain elements xn and sk , respectively, andΨΨΨ has elements Ψkn =ψ(k,n). In other words,
the columns of ΨΨΨ contain the basis modes - in this case cosine waves - and the elements of s describe the
magnitude of these modes in the original signal x.

Many signals are sparse in Fourier or wavelet bases. These are called universal bases, since they can be applied
to a lot of different problems. For some signals, one can find a specific basis that will only work for that type
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of signal. Then the basis is called a tailored basis. A main advantage of considering a signal in one of these
domains is that it provides useful information. For instance, for sound signals, a collection of frequencies and
their magnitudes is obtained, just like in Fig. 4.1. Based on this information, one could start filtering noise
or unwanted frequencies, or even just perform a meaningful analysis of the signal. Besides, if a time-varying
signal is periodic, one needs a lot less storage space to save exactly the same information. Instead of the full
signal in time, just a starting condition and the magnitudes of all frequency (or different basis) components
is needed to exactly reconstruct the full signal in time. On the other hand, it requires some processing power
to convert between original signals and their basis representations.

4.2. Sparse representation

Just as derived in the previous section for the DCT, in general it is possible for a sparse signal to write

x =ΨΨΨs, (4.7)

where x ∈ Rm is the signal, ΨΨΨ ∈ Rm×n is some basis used for transformation and s ∈ Rn is a sparse vector,
containing only a small number of non-zero elements. ΨΨΨ is called a transform basis: it transforms a signal
from the domain in which the signal is sparse to the original domain. In the example of sound, x would be the
sound signal, ΨΨΨ could contain cosine basis functions with different frequencies, and s would be the vector
indicating which cosine basis functions are present and with what amplitude.

Many of the elements in s for a real measurement are nearly zero - the non-zero part is often just noise. Setting
these components to exactly zero saves a lot of space: only the few non-zero components that are left need
to be stored in order to reconstruct the signal. In the case of the sound signal in Fig. 4.1, just 2 components
need to be stored: one at 97 Hz and one at 777 Hz. The loss of quality after transforming back is small or zero.

4.3. Compressed sensing

While compression needs highly detailed measurements x, which can then be truncated, compressed sens-
ing uses the sparsity of a signal (see Section 4.2) before measuring to require relatively few measurements.
Specifically, only a part of x needs to be measured. These measurements are transformed to the sparse do-
main, where the full sparse representation s is estimated. Transforming the latter back to the original domain,
an estimate of the original signal x can be produced.

First, what is meant by a measurement? Consider a vector x as in Eq. (4.7). This vector could represent the
pixels of an image, a sound signal, or any other physical state of a system. A measurement y of this state reveals
part of the components of x, for example a few pixels of the image. The goal is to reconstruct the original
image in x using the measurement. Performing p measurements can be described by a multiplication of x by
a measurement matrix C ∈Rp×m containing rows with zeroes and one value of 1, resulting in a measurement
vector y ∈Rp :

y = Cx. (4.8)

Essentially, this matrix C selects some entries from x that will end up in the measurement vector y.

The system from Eq. (4.7) can then be written as

y = CΨΨΨs =ΘΘΘs, (4.9)

with ΘΘΘ ∈ Rp×n . Now, C selects certain rows from ΨΨΨ that end up in ΘΘΘ. Hence, ΘΘΘ transforms a signal from
the sparse domain to a measurement in the original domain. An illustration of these matrices and vectors is
shown in Fig. 4.2 [7, p. 89].
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Figure 4.2: Visualisation of matrices and vectors in a compressed sensing system y = CΨΨΨs, where y is a
measurement, C a measurement matrix,ΨΨΨ a transform basis, and s the sparse representation of the original

signal in this basis [7, p. 90].

4.4. Sparse solution recovery

The system in Eq. (4.9) is underdetermined: there are infinitely many vectors s that solve the system for a
certain y and ΘΘΘ. The solution s that needs to be found is the sparsest solution possible that leads to the
obtained measurement: y =ΘΘΘs. Following the theory of Occam’s razor [3], it is assumed that of two possible
models, the simplest one is most likely correct. This sparsest solution can be found by optimisation in the `0

pseudo-norm. In case of noise-free measurements:

Minimise ‖s‖0 s.t. y =ΘΘΘs. (P0)

Unfortunately, this optimisation is non-convex, which in general means that either the objective function
(here ‖s‖0) or the feasible set (here y =ΘΘΘs) is not convex. A convex set is, simply put, a set that contains no
holes or indents. More strictly: for any two points in the set, the line segment connecting these points is
fully contained in the set as well. A convex function has a graph with a hollow shape: for any two function
values, the line segment connecting these points is above the rest of the graph. For many convex optimisation
problems - in contrast to non-convex problems - efficient algorithms are available.

In this case, the problem (P0) is non-convex since the function ‖·‖0 is non-convex. The problem requires
a brute-force search to find the solution, making it impractical at the very least, and in most cases simply
unusable [7, p. 89].

There are multiple possibilities to go from here. For this kind of problem, greedy algorithms have been pro-
posed, solving an iterative matching pursuit problem [35]. Others have explored approximating the function
‖·‖0 by smoothing functions, for example in sound localisation [21]. Due to these smoothing functions, the
optimisation problem becomes convex and therefore solvable. Details of such methods will not be discussed
here, but these methods could be used in further research to provide alternatives or additions to the com-
pressed sensing approach that is central in this thesis. In this work, the focus is on replacement of the `0

optimisation by an `1 optimisation:

Minimise ‖s‖1 s.t. y =ΘΘΘs. (P1)

This replacement is allowed if certain conditions hold. These conditions will be described in the upcoming
sections. Why these problems lead to similar solutions can intuitively be made clear by a geometric rep-
resentation of the different norms, shown in Fig. 4.3. The visualisation can be seen in this context as the
optimisation of a sparse vector of size 2. The `0 optimisation ensures the sparsest solution with as many ele-
ments of the resulting vector equal to zero. The `1 optimisation will give the same result in many cases, with
an intersection in one of the axes. In contrast, `2 optimisation will almost never result in a sparse solution.
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Figure 4.3: Geometric interpretation of optimisation in the `0, `1, and `2 norms [7, p. 96].

For convex `1 optimisation, many good solvers are available. Hence, the relaxation from `0 to convex `1 op-
timisation, enables sparse optimisation and has made compressed sensing techniques viable. Under what
conditions this is possible is described for noise-free and noisy measurements in Section 4.4.1 and Sec-
tion 4.4.2, respectively.

When using the `1 norm optimisation, the compressed sensing process can be illustrated by Fig. 4.4. It gives
an example in image reconstruction: a few pixels are measured, and the goal is to reconstruct the full image
from that. It is done by solving a minimisation problem such as (P1), followed by a transformation back to the
original domain with x =ΨΨΨs. In this specific case,ΨΨΨ (and theΘΘΘ that follows from it) is a Fourier transformation
base.

Figure 4.4: Illustration of the compressed sensing process for image reconstruction. Note that this
illustration is dramatised according to the author: in reality, a lot more measurements would be needed for

proper reconstruction [7, p. 91].

4.4.1. Relaxation from `0 to `1 for noise-free measurements

To make compressed sensing viable, the relaxation from `0 to `1 optimisation needs to be possible. For
randomly chosen measurement matrices C - think of randomly chosen pixels such as in Fig. 4.4 - it turns out
that the results of (P0) and (P1) are equal if enough measurements are done. In other words: the solution of
the sparse vector s in (P1) is exact.

To understand exactly how many measurements would be needed, first the concept of incoherence must be
explained. If C is incoherent with respect to ΨΨΨ, it means that rows of C are not correlated with columns of
ΨΨΨ. Suppose that rows in C are almost equal to columns - modes - inΨΨΨ. In other words, C is very coherent
with respect toΨΨΨ. The multiplication CΨΨΨ=ΘΘΘ then results in rows with entries that are very small, except for
one. This situation is illustrated in Fig. 4.5, where rows of C are taken exactly equal to the last columns ofΨΨΨ.
A measurement here provides no information on the sparse vector, unless one of the last modes is active. In
contrast, measurements in the case of an incoherent C provide information on many different modes, making
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it better possible to infer which modes are active and hence estimate s. A formal calculation for the coherence
µ of C andΨΨΨ is given by [9]:

µ(C,ΨΨΨ) =p
n max

j ,k
|〈ck ,ψψψ j 〉|, (4.10)

with ck rows of C, andψψψ j columns ofΨΨΨ.

Figure 4.5: Visualisation of matrices in the undesirable case where C is coherent with respect toΨΨΨ [7, p. 99].

Now, Theorem 4.2, adapted from [9], gives an exact lower bound on the amount of measurements. It confirms
the intuition that the less coherent measurements are with respect to the sparsifying basis, the less measure-
ments are needed. Furthermore, the sparser a signal is, the less measurements are needed. This makes sense:
if just a few modes can be active at the same time, these modes can likely be caught by performing few mea-
surements. For Theorem 4.2, first a definition is needed on sparseness of vectors.

Definition 4.1. A vector s ∈Rn is K -sparse if at most K entries of s are non-zero.

Theorem 4.2. Let s ∈Rn be a signal that is K -sparse in the basisΨΨΨ. LetΦΦΦ be an orthonormal basis. Suppose m
measurements are taken randomly in theΦΦΦ domain. If for some positive constant k1,

m ≥ k1 ·µ2(ΦΦΦ,ΨΨΨ) ·K · logn, (4.11)

then the solution to (P1) is exact with overwhelming probability.

Remark. This probability exceeds 1−δ if m ≥ k1 ·µ2(ΦΦΦ,ΨΨΨ) ·K · log(n/δ) [9].

4.4.2. Relaxation from `0 to `1 for noisy measurements

Until now, the focus has been on noise-free measurements and exact reconstruction of a sparse signal. In
reality, this ideal situation is almost never encountered. For compressed sensing techniques to be powerful
in real-life applications, they need to be able to handle noisy data. Suppose that instead of Eq. (4.8), the
measurement y is noisy:

y = Cx+z =ΘΘΘs+z, (4.12)

where z ∈Rn is a bound error term: ‖z‖2 ≤ ε.

Looking at the optimisation problem (P1), the condition y =ΘΘΘs cannot hold exactly if noise is present. There-
fore, a relaxed condition is considered:

Minimise ‖s‖1 s.t.
∥∥y−ΘΘΘs

∥∥
2 ≤ ε. (P1,ε)

Here, ε is some bound related to the noise level of z. This optimisation problem is convex - refer to Sec-
tion 4.4.3 for details and the proof.

For a good recovery, the aim is to have little difference between the solution s of (P1,ε) and the sparsest solu-
tion s0 of

Minimise ‖s‖0 s.t.
∥∥y−ΘΘΘs

∥∥
2 ≤ ε. (P0,ε)
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Results on how well the solution of (P1,ε) approximates the solution of (P0,ε) depend on a certain property of
the matrix ΘΘΘ: the restricted isometry property (RIP). Mathematically, the isometry constant δK is defined as
the smallest number such that

(1−δK )‖s‖2
2 ≤

∥∥ΘΘΘs
∥∥2

2 ≤ (1+δK )‖s‖2
2 (4.13)

for all K -sparse vectors s. If δK is not too close to one, then the RIP of order K is said to hold forΘΘΘ. The idea
of this property is that if a matrix satisfies the RIP, then multiplying a sparse vector s by this matrix will not
influence its `2 norm much - its Euclidean length is approximately preserved. Another useful perspective on
this property is that it indicates that any subset of K columns ofΘΘΘ is approximately orthogonal [7, 9].

Why is this property useful in compressed sensing? Recall that the goal is to have a solution to (P1,ε) that is
close to the sparsest solution, of (P0,ε). If the RIP holds, thenΘΘΘ does not alter the Euclidean length of s much.
Suppose we have two K -sparse vectors, s and s∗, with a reasonable distance between them. Multiplying by
ΘΘΘ creates measurements y and y∗. The RIP ensures that these measurements cannot be very close together,
nor can they be very far apart. Plugging the 2K -sparse vector s−s∗ in Eq. (4.13) gives:

(1−δ2K )
∥∥s−s∗

∥∥2
2 ≤

∥∥y−y∗
∥∥2

2 ≤ (1+δ2K )
∥∥s−s∗

∥∥2
2 . (4.14)

This gives confidence that it is possible to properly reconstruct sparse signals based on compressive mea-
surements. [9] The RIP is used in many results obtained in the field of compressed sensing. One of them is
stated in Theorem 4.3, and is due to [8]. It establishes a bound on the `2 error of s1,ε, the solution to (P1,ε). A
proof can also be found in [8].

Theorem 4.3. Consider the vector s in the system of Eq. (4.12), with ‖z‖2 ≤ ε. Let sK be the vector s, but with
all but the largest K components set to 0. Consider the optimisation problem (P1,ε), and assume that for the
isometry constant of ΘΘΘ, δ2K <p

2−1 holds. Then the solution s1,ε to (P1,ε) obeys

∥∥s1,ε−s
∥∥

2 ≤C0

∥∥s−sK
∥∥

1p
K

+C1ε, (4.15)

for constants C0 and C1 depending on δ2K as follows:

C0 = 2
1− (1−p

2)δ2K

1− (1+p
2)δ2K

;

C1 = 4
√

1+δ2K

1− (1+p
2)δ2K

.

(4.16)

Remark. If s is K -sparse, then s = sK , hence the reconstruction error is given by∥∥s1,ε−s
∥∥

2 ≤C1ε. (4.17)

Remark. The constants C0 and C1 are in general small. For example, when δ2K = 0.2, then
∥∥s1,ε−s

∥∥
2 ≤

4.2‖s−sK‖1p
K

+8.5ε [8]. A graph of C0 and C1 versus δ2K is shown in Fig. 4.6.

Considering this result, the aim is to find a measurement matrix C such thatΘΘΘ satisfies the RIP. If that is the
case, the relaxed optimisation problem (P1,ε) may be used. The first result on matricesΘΘΘ= CΨΨΨ satisfying the
RIP is for a random measurement matrix C and an orthonormal basisΨΨΨ. Random measurement matrices can
be Bernoulli or Gaussian distributed, for example. If the number of measurements m is large enough, thenΘΘΘ
satisfies the RIP. To be precise,

m ≥C K log(n/K ), (4.18)

where K is the sparsity of the signal to be reconstructed, n is the size of the signal vector, and C is some
constant depending on both. For a more in-depth discussion, see [4].

Throughout this project, some matrices C in ΘΘΘ = CΨΨΨ are chosen randomly. For those, it is assumed that
they satisfy the RIP. For other matrices ΘΘΘ, it will become clear in Section 5.3.2 that rows of ΨΨΨ are chosen to
be in ΘΘΘ such that the condition number of ΘΘΘ is minimised. This corresponds to ΘΘΘ being as orthogonal as
possible at the chosen elements. As discussed before, satisfying the RIP corresponds to have approximately
orthogonal columns. Hence, it will be assumed that also the matrices ΘΘΘ that are not created by a randomly
chosen measurement matrix C satisfy the RIP.
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Figure 4.6: Values of C0 and C1 plotted against δ2K , as in Eq. (4.16).

4.4.3. Convexity of the minimisation problems

In this section, convexity of optimisation problems (P1) and (P1,ε) is proved. In fact, we present the proof for
the general optimisation problem Eq. (4.19). The vector c appearing in the objective function can be seen as
additional weights to the sparse vector s. A motivation to use such weights will be presented in Section 5.3.4.
Problems (P1) and (P1,ε) can be obtained from Eq. (4.19) by making c a vector of all ones. To obtain (P1), one
must additionally set ε= 0.

Lemma 4.4. The following optimisation problem, with s ∈ Rn , for given c ∈ Rn , y ∈ Rp , ΘΘΘ ∈ Rp×n , and ε real
and non-negative, is convex:

Minimise
s

‖c¯s‖1 s.t.
∥∥y−ΘΘΘs

∥∥
2 ≤ ε. (4.19)

Here, ¯ denotes element wise multiplication (the Hadamard product).

Proof. To show that the problem is convex, we must show that both the objective function

f0(s) = ‖c¯s‖1 (4.20)

and the inequality constraint function

f1(s) = ∥∥y−ΘΘΘs
∥∥

2 −ε=
∥∥ΘΘΘs−y

∥∥
2 −ε (4.21)

are convex functions.

Let λ ∈ [0,1], and let s1,s2 ∈ Rn . For both of the following proofs, the triangle inequality is used, which holds
by definition for norms. For f0, we have, using the Hadamard product’s distributive property:

f0(λs1 + (1−λ)s2) = ∥∥c¯ (λs1 + (1−λ)s2)
∥∥

1

= ∥∥λc¯s1 + (1−λ)c¯s2)
∥∥

1

≤λ∥∥c¯s1
∥∥

1 + (1−λ)
∥∥c¯s2

∥∥
1

=λ f0(s1)+ (1−λ) f0(s2).

(4.22)
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Likewise, we obtain for f1:

f1(λs1 + (1−λ)s2) = ∥∥ΘΘΘ(λs1 + (1−λ)s2)−y
∥∥

2 −ε
= ∥∥λ(ΘΘΘs1 −y)+ (1−λ)(ΘΘΘs2 −y)

∥∥
2 −ε

≤λ∥∥ΘΘΘs1 −y
∥∥

2 + (1−λ)
∥∥ΘΘΘs2 −y

∥∥
2 −ε

=λ
(∥∥ΘΘΘs1 −y

∥∥
2 −ε

)
+ (1−λ)

(∥∥ΘΘΘs2 −y
∥∥

2 −ε
)

=λ f1(s1)+ (1−λ) f1(s2).

(4.23)

4.5. Characterising and solving the minimisation problems
Consider again the minimisation problem of Eq. (4.19). This problem needs to be solved numerically in the
application of compressed sensing in this work. To determine what kind of solver is needed for this, it is first
important to identify what class the problem belongs to.

This task becomes easier when the problem is rewritten slightly. The objective function ‖c¯s‖1 is equal to∑n
i=1 |ci si |. It turns out to be helpful to introduce a second variable to get rid of these absolute values in the

objective function. Let |ci si | ≤ ti for all i = 1, . . . ,n. Then minimising all elements of t is at the same time
minimising the original objective function. Since t is positive (its elements are larger than some absolute
values), the new objective function can be set to 1T t. The new constraint |ci si | ≤ ti is equivalent to ci si ≤ ti

and ci si ≥−ti . Hence, the problem can be rewritten as

min
t,s

1T t (4.24)

s.t.
∥∥y−ΘΘΘs

∥∥
2 ≤ ε; (4.25)

ci si ≤ ti for all i = 1, . . . ,n; (4.26)

ci si ≥−ti for all i = 1, . . . ,n. (4.27)

Then, the `2 inequality is rewritten by squaring the norm:∥∥y−ΘΘΘs
∥∥2

2 = (y−ΘΘΘs)T (y−ΘΘΘs) = yT y+sTΘΘΘTΘΘΘs−2yTΘΘΘs. (4.28)

Since the norm is always positive, this term can be taken to be less or equal than ε2. This leaves us with the
following form of the problem:

min
t,s

1T t (4.29)

s.t.yT y+sTΘΘΘTΘΘΘs−2yTΘΘΘs ≤ ε2; (4.30)

ci si ≤ ti for all i = 1, . . . ,n; (4.31)

ci si ≥−ti for all i = 1, . . . ,n. (4.32)

This is a linear program with quadratic constraints (QCLP). That the objective function 1T t is linear needs no
further explanation, and the first constraint is indeed of the form 1

2 sT Ps+qT s+ r ≤ 0, making it quadratic.
The other two constraints are linear, and are therefore also part of the class of quadratic constraints.

If the problem at hand would not have involved noisy data, then the first constraint would have been linear:
y =ΘΘΘs, and therefore the problem would be an instance of linear programming (LP). This type of problems if
fairly easy to solve using the simplex method.

However, since we are dealing with QCLP, another optimisation algorithm must be used. QCLP is a subclass
of SOCP (second-order conic programming), where the objective function must also be linear, but the con-
straints may also be of the form

∥∥Ax−b
∥∥

2 ≤ cT x+d , where the objective function is optimised over x. SOCP
problems can be solved efficiently using interior point methods, in which the solution is found after iterations
in which a path through the feasible region is followed.

The solver that will be used in this study is SDPT3 [33], which implements interior point methods for SDP
problems. The class of SOCP problems is contained within the larger class of SDP problems. In particular,
the interior point methods that are used in SDPT3 are primal-dual path-following algorithms. These contain
prediction and correction steps that were first introduced by Mehrotra [24].





5
Localisation algorithm

Using magnetic field sensors, magnetised objects can be detected, localised and classified. The objects that
must be detected are mostly far away from the sensors that are used to detect them. In these situations, their
field is approximately that of a magnetic dipole. In this algorithm, the focus is on estimation of the location
and moment of a single magnetic dipole. The detection problem is not considered - it is assumed a magnetic
dipole is present.

In the upcoming sections, first a description of the problem is given, and then it is explained how compressed
sensing is applied to it. After that, the implemented algorithm is described, and the results obtained by ap-
plying this algorithm are shown.

5.1. Problem description

In the magnetic dipole localisation problem, a search space Ω is considered. This space contains a single
magnetic dipole, with an unknown location and magnetic moment. The goal of the implemented algorithm
is to estimate the location and moment of this magnetic dipole using simulated measurements of a limited
number of optimally chosen sensors. The problem is illustrated in Fig. 5.1.

magnetic
dipolerc

r

Ω magnetic �ield
sensors

Figure 5.1: Illustration of the localization problem, showing the search spaceΩ containing one magnetic
dipole with centre location rc , and magnetic field sensors outsideΩ. The location of a field measurement is

denoted by r.

27
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In the specific instance of the problem that is discussed in this thesis, a horizontally placed sensor array is
considered. In a 3D space above, a single magnetic dipole (with random location and magnetic moment)
is placed. One can think of this as the sensor array containing evenly spaced drone measurements, and the
object being in some space below the drone flight path. The goal of the implemented algorithm is to estimate
the location and moment of this magnetic dipole using simulated measurements of a limited number of
sensors of the sensor array.

The exact considered setup is as follows: the search area spans from x = -0.3 m to 0.3 m, from y = -0.15 m to
0.15 m and from z = -0.35 to -0.15 m. The sensor array is placed at z = 0.145 m and sensors are evenly spaced
between x = -0.38 m and 0.38 m and between y=-0.18 m and 0.18 m, with a distance of 4 cm between sensors
in both directions. An illustration of this setup is given in Fig. 5.2.

Figure 5.2: An illustration of the setup, where the black dots indicate the sensors of the array, and the red box
indicates the area in which the magnetic dipole is located. Note that the convention of the z-axis pointing

downwards is used.

5.2. Applying compressed sensing to magnetic dipole localisation

For the localisation problem as described in the previous section, the sparseness that is needed is present in
the location domain - it is assumed that there is only one magnetic dipole. In other words, the sparse domain
is here chosen to be the location domain. Recall that the goal in compressed sensing applications is to solve
a system

y = CΨΨΨs =ΘΘΘs, (5.1)

where s is sparse, as described in Section 4.3. It makes sense to think of the vector s as representing unique
locations and moments of single magnetic dipoles. An arbitrary magnetic dipole could then be represented
by an ’average’ of a few magnetic dipoles. The entries corresponding to these dipoles would then be non-zero,
and other entries would be zero, making s sparse. To cover the full search area, a grid of magnetic dipoles is
chosen. At each grid point, six magnetic dipoles are considered: with their magnetic moment pointing in the
positive and negative x, y , and z direction. This interpretation of the sparse vector is illustrated in Fig. 5.3.
The assumption here is that the field of a dipole can be represented as an average of the fields of other dipoles
close by.

The signal x is defined as the magnetic field B at the locations of all sensors in the sensor array, ordered as
[Bx,1,By,1,Bz,1,Bx,2, . . . ,Bz,k ], with 1,2, . . . ,k representing all the available sensors. A measurement y contains
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Figure 5.3: The interpretation of the sparse vector s. The left and middle vector represent two different
dipoles, and from the right vector, an ’average’ dipole (dotted line) can be reconstructed.

a selection of this field, with just the x-, y-, and z-component of selected sensors. Hence, C is a matrix con-
taining selected rows from the identity matrix - sometimes this is called a selection matrix.

The entries of s correspond to unique magnetic dipoles, and y is a measurement of the field at the plane of
the sensor array. Following the system Eq. (5.1), the basisΨΨΨmust consist of columns representing the field of
a single magnetic dipole at the sensor plane. This basis must be generated at the start of the algorithm. The
details are be explained in Section 5.3.

5.3. Overview of the algorithm

A compressed sensing algorithm for estimating field, location and moment of a magnetic dipole has been
implemented. The algorithm must first be initialised by determining the basis ΨΨΨ, and then follows several
steps to produce an estimate. This section describes both the initialisation and the different steps.

The main algorithm can be summarised by the following steps, given that just a selection of n sensors of the
array can be used. The steps are also visualised in a flow diagram in Fig. 5.4.

1. Initialise basisΨΨΨ.

2. Choose n sensors to perform measurements, either randomly or using QR pivoting (see Section 5.3.2).
This results in a measurement matrix C. Multiplying by the initialised basisΨΨΨ gives the required matrix
ΘΘΘ.

3. Obtain the measurement vector y of size 3n from these chosen sensors.

4. Perform the `1 optimisation (P1,ε).

5. Classification: compute an estimated location and moment from the resulting sparse vector s. An esti-
mated magnetic dipole field also follows.

The upcoming subsections describe the basis initialisation and all steps of the algorithm one by one, in more
detail.

Figure 5.4: Flow diagram of the algorithm steps, where basis initialisation forms the starting point.
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5.3.1. Basis initialisation

For a compressed sensing algorithm to work, a basisΨΨΨmust be found that allows for transformation between
the original and sparse domain of the signal. To do this, a set of initialisation locations has been chosen, rep-
resentative of the locations the actual magnetic dipole might be in. For this, a predefined 3D grid of locations
is defined, covering the full search area.

Every entry of the sparse vector s corresponds to a single magnetic dipole at one of the initialisation locations,
with moments of 1 Am2 in x, y , z, and −x, −y , −z direction. Every one of these dipoles creates a unique
field at the sensors. Following Eq. (4.7), ΨΨΨ can be formed by putting the measurements (columns) of the
initialisation dipoles together. In the resulting matrix, the nth column is the field corresponding to the nth

initialisation dipole, as in Fig. 5.5. The measurements used for initialisation ofΨΨΨ are noise-free - in fact, they
are simply calculations.

�ield of x-oriented dipole at x1

�ield of y-oriented dipole at x1

�ield of -z-oriented dipole at x1

�ield of x-oriented dipole at x2

�ield of y-oriented dipole at x2

�ield of -z-oriented dipole at xM

T

Figure 5.5: Structure of the transformation matrixΨΨΨ for M grid points.

5.3.2. Sensor choice

In this compressed sensing application, we are interested in reconstructing the magnetic field (and thereby
obtaining a location and moment estimate) with just a few measurements. Each of the measurements is the
output of one of the sensors in the sensor array depicted in Fig. 5.2. Suppose that just n sensors are available
to perform measurements. Every sensor measures three components of the field, giving a total of p = 3n
measurements. It is not immediately clear how to choose these sensors, or how to show if a particular choice
is good or bad. This section discusses both topics, and introduces two methods of choosing sensors: random
selection and optimal selection using QR decomposition.

In the system x = CΨΨΨs =ΘΘΘs, the condition number κ(ΘΘΘ) determines how well s can be approximated from
some noisy measurement y (see Section 3.5). The goal is to minimise this condition number by choosing an
appropriate measurement matrix C. If ΘΘΘ is not square, the aim is to reduce the condition number of ΘΘΘTΘΘΘ.
This is because this term is involved in the pseudo-inverse, a generalisation of the inverse to non-square
matrices [7, p.110-111]. Now we consider two ways of choosing sensors: randomly and using QR pivoting.

Random choice

The first of the two considered ways to select n sensors is random selection. When this method is applied, n
sensors are drawn randomly from the set of available sensors, without repetition. All chosen sensors will then
measure the 3 components Bx , By and Bz , giving p = 3n measurements in total. The resulting measurement
matrix C consists of rows of the identity matrix corresponding to the measurements of the chosen sensors. It
turns out that the condition number ofΘΘΘ is generally very large in this case, indicating that a reconstruction of
s from y could contain a large error. The condition number can be reduced by oversampling. IfΨΨΨ is of rank r ,
performing p = r +10 or more measurements greatly reduces the condition number, allowing for better signal
reconstruction [7, p.111]. However, depending on the initialisation grid choice, ΨΨΨ has many columns. This
means that the rank r ofΨΨΨ is in general equal to the number of rows inΨΨΨ. This number of rows represents
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the amount of possible measurements. It is therefore not possible to choose an amount of measurements p
that is larger than the rank r ofΨΨΨ.

Choice using QR pivoting

For a smarter choice of sensors, QR decomposition is used, in combination with a singular value decomposi-
tion (SVD). As explained in Section 3.4, a QR decomposition with column pivoting of an m×n matrix A takes
the form

AP = QR, (5.2)

where Q is a unitary m ×m matrix, R an upper triangular m ×n matrix, and P an n ×n permutation matrix -
in other words, a matrix that describes how the columns of A are changed. For a detailed explanation of the
QR decomposition including column pivoting, refer to Section 3.4.

From applying a greedy algorithm for QR factorisation with column pivoting, an optimal choice for P follows,
where the condition number of A is minimal. A greedy algorithm tries to optimise a problem by choosing the
local optimum in each iteration. In this case: choosing a permutation for P such that the condition number
ofΘ is reduced most. That this method really works, becomes apparent when running a test with 16 sensors,
with both random sensor choice and using QR pivoting. Where condition numbers ofΘΘΘ for random sensor
choice vary between 100 and 1000, this is reduced to a (fixed) value around 50 for sensor choice with QR
pivoting - a reduction by a factor of 10 on average.

The goal is to find the optimal sensors, corresponding to rows ofΨΨΨ. This method is suited for finding optimal
columns, so in this context, the transposes of the basisΨΨΨ and the measurement matrix C are considered:

ΨΨΨT CT = QR. (5.3)

The pivots from the permutation in this decomposition indicate the order of best representing the basis
modes inΨΨΨ. The above decomposition is only applicable ifΨΨΨ is square. In the case whereΨΨΨ has more rows
than columns (oversampling), the condition number ofΘΘΘTΘΘΘ needs to be minimised, as mentioned earlier in
this section. Hence, the following decomposition can be used [7, p. 112]:

(ΨΨΨΨΨΨT )CT = QR. (5.4)

In general, depending on the chosen initialisation grid,ΨΨΨ has more rows than columns (undersampling). In
that case, this method is not directly applicable. This issue can be solved by a matrix of lower rank: a reduced
SVD-basis. This method is described later in this section.

It must be noted that the resulting pivots indicate specific measurement indices, not sensors. Not all three
measurements Bx , By , Bz from one sensor have to appear consecutively as pivots - in other words, three
components may have different importance in representing the basis modes. Therefore, sensors have been
chosen in order of either of their components appearing in the pivot sequence.

Reducing the rank of basisΨΨΨ

For a successful application of the QR pivoting method, it is needed that the number of columns of ΨΨΨ is
smaller or equal than the number of rows. This is dependent on the initialisation grid, and in general not the
case. It is possible to describe only a limited number of field modes using the columns of a new basisΨΨΨr .

In this algorithm, a reduction of the m×n matrixΨΨΨ to r modes is obtained by performing an SVD, of which a
more detailed discussion can be found in Section 3.3:

ΨΨΨ= UΣΣΣVT , (5.5)

where U ∈ Rm×m and V ∈ Rn×n are unitary matrices, and ΣΣΣ ∈ Rm×n is diagonal. Reduced versions of the
matrices are created, where Σ̃ΣΣ contains the upper left r × r block of ΣΣΣ, and Ũ and Ṽ the first r columns of U
and V, respectively. Then, the reduced basisΨΨΨr is computed by

ΨΨΨr = ŨΣ̃ΣΣṼT . (5.6)
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It might seem that a lot of the information from the original basis is lost when reducing it to much less modes.
However, it turns out that a very large part of the fields from the originalΨΨΨ can be represented as a combina-
tion of the first few modes available inΨΨΨr . This is quantified by looking at the singular values corresponding
to each of the columns ofΨΨΨr . The energy each of these modes contains is represented by its singular value.
The fraction of the energy η of the first r modes ofΨΨΨ is given by the sum of its singular values, divided by the
total sum of all n singular values:

η(r ) =
∑r

i=1σi∑n
i=1σi

(5.7)

From Fig. 5.6, it becomes clear that the first few dozen modes already contain a very large part of the total
energy.

If ΨΨΨr contains a large enough fraction of total energy from ΨΨΨ, almost all fields from ΨΨΨ can be described by
modes fromΨΨΨr . Sensors chosen with the QR pivoting method, and withΨΨΨr as a basis, are best for differenti-
ating between modes fromΨΨΨr with a measurement y. It is assumed that if modes inΨΨΨr contain most energy
from ΨΨΨ, then sensors resulting from QR pivoting using ΨΨΨr should also be good for distinguishing between
unique magnetic dipoles as represented in the basisΨΨΨ.

Figure 5.6: Left: sorted singular values. Right: the cumulative energy of the first 100 singular values.

5.3.3. Performing measurements

To simulate magnetic field measurements by the n chosen sensors, the following formula for the magnetic
field is used, see Eq. (2.13):

Bdip(r) = µ0

4π

(
3r̂(m · r̂)−m

r 3

)
. (5.8)

Here, µ0 is again the permeability of free space, m is the magnetic moment of the dipole, r̂ is the unit vector
pointing from the magnetic dipole to the sensor, and r is the absolute distance between the magnetic dipole
and sensor.

To every component (x, y , z) of every sensor measurement independently, some Gaussian noise is added,
i.i.d. with a standard deviation σ= 100nT.
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5.3.4. `1 optimisation

As described in Section 4.4, the computationally hard problem of finding the sparsest near-solution can be
replaced by an `1 optimisation. The minimisation problem stated in the previous chapter is (P1,ε):

Minimise ||s||1 s.t. ||y−ΘΘΘs||2 ≤ ε. (P1,ε)

There is, however, a problem with this formulation. The goal is to find the sparsest vector s, but this optimisa-
tion problem will not give such result. The issue here is that dipoles close to the sensor array generate a much
larger field in the sensors than dipoles far away. Since these fields are larger, smaller entries of s - or smaller
dipole moments - are needed to approximate the measurement y byΘΘΘs. The 1-norm of s is minimised, and
therefore the algorithm will always prefer activating multiple smaller moments close to the sensor array in-
stead of activating the expected dipoles near the actual location.

To overcome this problem, some compensation is needed such that dipoles near the sensor array are no
longer preferred over those further away. This is done by adding a penalty to each element of s, representing
’how preferred’ the dipole was. All penalties are stored in a vector c. Note that scaling the columns ofΘΘΘ could
also have been an option. Since the magnetic dipole field drops by a factor r 3, where r is the distance to
the dipole, a sensible choice is to make the penalty of a dipole location equal to 1

d 3 , where d is the vertical
distance from the dipole to the sensor array. This way, for sensors close to the array, d is small, and the penalty
is large. The resulting objective function becomes ||c¯ s||1. The resulting values in the compensation vector
are shown in Fig. 5.7. Since the initialisation grid consists of dipole layers, the penalty increases in steps, and
are constant per height level.

Figure 5.7: Example of the values of a compensation vector, where higher elements correspond to magnetic
dipole locations closer to the sensor array.

One last adaptation to the minimisation problem is that only positive elements of s are allowed, since the
basis already contains magnetic dipole moments in both positive and negative directions. An alternative
would be to store only magnetic dipole fields of magnetic dipoles pointing in positive x, y , and z-directions
inΨΨΨ. However, the optimisation algorithm provided better results with the restriction that each si must be
larger than or equal to zero. The resulting minimisation problem is:

Minimise ||c¯s||1
s.t. ||y−ΘΘΘs||2 ≤ ε;

si ≥ 0 ∀i .

(5.9)
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This problem is convex, as proved in Section 4.4.3, so it can be solved using efficient, existing convex opti-
misation algorithms. This implementation uses the CVX package [14, 15] for MATLAB with solver SDPT3,
version 4.0 [33, 34] as explained in Section 4.5.

Based on the noise with standard deviation σ as described in Section 5.3.3, an appropriate value for the error
bound ε is chosen. The random vector X := y−ΘΘΘs has uncorrelated elements with zero mean and variance
σ2. For a choice of ε, it is important to know the characteristic of ||X̃||2.

Scaling X results in X =σX̃, where X̃i
i.i.d.∼ N (0,1). Now, note that ||X̃||2 =

√∑p
i=1 X̃ 2

i is distributed according to

the chi distribution: ||X̃||2 ∼χp . This leads to the following mean and variance for ||X̃||2:

E||X||2 = E
[
σ||X̃||2

]=σE||X̃||2 =σ
p

2
Γ((p +1)/2)

Γ(p/2)
; (5.10)

Var||X||2 = Var
[
σ||X̃||2

]=σ2Var||X̃||2 =σ2(p −E||X̃||22). (5.11)

The gamma function fraction in Eq. (5.10) can be approximated using Stirling’s gamma function approxima-
tion [32, p.148]:

p
2
Γ((p +1)/2)

Γ(p/2)
=p

p

1− 1

4(p +1)
+O

(
1

p2

) . (5.12)

From this, the following approximate estimated value and variance are obtained:

E||X||2 ≈σpp

(
1− 1

4(p +1)

)
, (5.13)

Var||X||2 ≈σ2

p −p

(
1− 1

2(p +1)
+ 1

16(p +1)2

)
=σ2p

(
1

2(p +1)
− 1

16(p +1)2

)

=σ2p
8p +7

16(p +1)2 .

(5.14)

The chi distribution approaches the shape of a normal distribution for small values of p already. In this
application, p is never chosen very small. Therefore, just as for the normal distribution, it is assumed that
more than 95 percent of values lie within the two standard deviations interval:

P (E||X||2 −2
√

Var||X||2 ≤ ||X||2 ≤ E||X||2 +2
√

Var||X||2) > 0.95. (5.15)

The upper bound of this interval is

E||X||2 +2
√

Var||X||2 ≈σpp

(
1− 1

4(p +1)
+2

√
8p +7

4(p +1)

)

=σpp

(
1+ 2

√
8p +7−1

4(p +1)

)

≈σpp

(
1+ 2

p
2

2
p

p

)
=σ

(p
p +p

2
)

,

(5.16)

for reasonably large p. Hence, ε=σ
(p

p +p
2
)

is chosen as error upper bound.
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5.3.5. Classification: estimating magnetic dipole location and moment

To estimate the magnetic dipole’s location and magnetic moment, weighted averages are taken. The sparse
vector elements are used as weights to average over the initialisation locations and moments. For the mag-
netic moment and location, the n elements of s can be taken as weights:

x̂ =
n∑

i=1
si xi ; (5.17)

m̂ =
n∑

i=1
si mi , (5.18)

where xi and mi are the location and moment corresponding to magnetic dipole i in the initialisation, re-
spectively. Fig. 5.3 has illustrated this method of averaging as well.

A test was done to confirm in which situations the assumption can be made that the field of an ’averaged
magnetic dipole’ is equal to the sum of separate magnetic dipole fields. In the simulated test, four random
magnetic dipoles were placed at the corners of a square with each time a different distance between them.
The combined field of these dipoles was computed, as well as the field of the single dipole with location and
moment calculated as in Eq. (5.17). The fields were calculated at different heights: the further away from
the source(s), the better the separate dipole fields blend together to one field. The fields were calculated in a
40 cm by 40 cm grid. Each of the four magnetic dipoles was assigned three magnetic moment components
by drawing from a uniform distribution between 0 and 1 (Am2). That gives each of the ’average moment’
components a value between 0 and 4 Am2, which results in a moment magnitude in the order of a few Am2.

The results are shown in Table 5.1. Indeed, the error between the separate and combined field measurements
drops when height increases or when grid distance decreases. For reference, the field components and a cross
section of those at 0.1 m height, with a grid distance of 0.1 m, are shown in Fig. 5.8 and Fig. 5.9. At the same
height, for 0.02 m grid distance, the same plots are shown in Fig. 5.10 and Fig. 5.11. The fields for 0.1 m grid
distance are almost incomparable (RMSE of 2.8 ·104 nT). However, the fields for 0.02 m grid distance with an
average RMSE of 3.1 ·103 nT look very similar.

height [m] / grid distance [m] 0.02 0.05 0.1
0.1 3.1 ·103 1.0 ·104 2.8 ·104

0.2 2.2 ·102 1.1 ·103 2.5 ·103

0.3 76 2.2 ·102 5.6 ·102

Table 5.1: Average RMSE of the magnetic field in nT in a 0.4 by 0.4 m grid. The error is calculated over four
separate magnetic dipoles with random moments placed in a square and one averaged magnetic dipole.

The RMSE values are averaged over 10 random magnetic dipole moment allocations.

The question is now whether this grid discretisation error is significant in the optimisation. To answer this,
we must compare the RMSE values discussed here to the error bound that was derived in Section 5.3.4. Which
term is dominant depends completely on the magnitude of the sensor noise and the magnitude of the mag-
netic moment of the dipole. If sensor noise is large compared to the signal strength, then this will be the
dominant term. The tests described here were conducted using magnetic moments in the order of a few
Am2. When measuring magnetic moments of different magnitude, one needs to scale the expected RMSE
accordingly.

The feasible region in the optimisation problem Eq. (5.9) is equivalent to∥∥y−ΘΘΘs
∥∥2

2 ≤ ε2 =σ2(p +2
√

2p +2), (5.19)

where p is the number of measurements, as argued in Section 5.3.4. We must add to that the expected average
RMSE due to grid discretisation σgrid times the number of measurements p:∥∥y−ΘΘΘs

∥∥2
2 ≤σ2(p +2

√
2p +2)+σ2

gridp. (5.20)
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Hence, the adjusted value for ε is now:

ε=
√
σ2(p +2

√
2p +2)+σ2

gridp. (5.21)

For a large number of measurements, it is clear that σ and σgrid scale equally with p. Therefore, the RMSE
values reported here should be compared directly to the sensor noise standard deviation σ to check whether
discretisation errors have any influence.

Figure 5.8: Magnetic field components of one averaged magnetic dipole (combined), of the four magnetic
dipoles placed in a square, 0.1 m apart, that form the average magnetic dipole (separate), and the difference

between them (error). Measurements are done at a height of 0.1 m.

5.4. Extended algorithm using iterations

To improve the estimates produced by the algorithm, it can be applied iteratively. This has been implemented
by shrinking the search area. The algorithm described in the previous section is ran once to find an initial es-
timate for location (and moment). Based on this estimate, a new basis is constructed, as in Section 5.3.1.
Instead of using the full search area to choose initialisation locations from, a smaller volume was used, in the
form of a cube. The centre of this cube is the estimated location from the first iteration. Using this new basis,
the same steps as in Section 5.3 are followed, using n new sensors, and a new estimate is produced. This pro-
cess continues a predefined number of times. The search cube starts with length equal to ten times the dis-
tances between the initial magnetic dipoles, hence containing at most 103 dipole locations. Every iteration,
the search radius shrinks by the distance between the initial magnetic dipoles (grid distance), eliminating on
each side of the cube one row of grid points that were considered in the previous iteration.

Convergence properties of this algorithm are not proved. Instead, it is based on a heuristic approach, and
developed by trial and error. For instance, a sphere-shaped shrinking search space was tried, but results
were worse than for the box-shaped space. Also various staring sizes and shrinking parameters have been
tested, resulting in the iteration strategy described above. With these search tactics, good results have been
produced, as will be described in Section 6.1.4.
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Figure 5.9: Magnetic field components at a cross section parallel to the x-axis of one averaged magnetic
dipole (combined), and of the four magnetic dipoles placed in a square, 0.1 m apart, that form the average

magnetic dipole (separate). Measurements are done at a height of 0.1 m.

Figure 5.10: Magnetic field components of one averaged magnetic dipole (combined), of the four magnetic
dipoles placed in a square, 0.02 m apart, that form the average magnetic dipole (separate), and the

difference between them (error). Measurements are done at a height of 0.1 m.
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Figure 5.11: Magnetic field components at a cross section parallel to the x-axis of one averaged magnetic
dipole (combined), and of the four magnetic dipoles placed in a square, 0.02 m apart, that form the average

magnetic dipole (separate). Measurements are done at a height of 0.1 m.

5.5. Alternative field estimation algorithm using SVD-basis

In the main algorithm, the focus is on classifying a magnetic dipole (estimating its location and moment).
A field estimate follows directly from the system x =ΨΨΨs, but just as an additional result. If the goal is not
classification but field approximation, an alternative algorithm might work better.

In this version, the basis is initialised as before, but then immediately replaced by a reduced SVD-basisΨΨΨr .
The exact construction has been described in Section 5.3.2. There are two choices for how to reduce this
basis: one can use a predefined rank r , for example such that the reduced basis contains x percent of energy
of the original basis. Or one can use the same reduced basis as in Section 5.3.2, where the rank r is set equal
to the number of measurements p. Then, the QR pivoting method is always applicable using this same basis,
and it does not need to be reduced again.

In either case, the idea is that noise in measurements has such high frequency, that it cannot be described by
the first r modes inΨΨΨr that have a relatively low frequency. The frequency of the modes from the SVD-basis
increases, as is visualised in Fig. 5.12.
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Figure 5.12: Visualisation of the z component of the first 9 modes in U obtained from applying a SVD to the
basisΨΨΨ. The elements of the respective columns of U are reshaped to give a 2D interpretation.





6
Results and discussion

This chapter presents the results of the implemented localisation algorithm. First, the algorithm is tested
and analysed using several simulations. The results of these are presented in Section 6.1. Additionally, the
algorithm has been verified using measurement data. This analysis is given in Section 6.2

6.1. Simulation results

In this section, several simulation results of the implemented localisation algorithm are given. The influence
of important variables and parameters of the algorithm is analysed: the noise in the sensor measurements,
the location of the magnetic dipole that needs to be found, the number of sensors available, whether sensors
are chosen randomly or using QR pivoting, different minimisation problems, and number of iterations.

6.1.1. Noise

In general, the larger the noise is compared to the measurement, the harder it is to reconstruct the noise-free
field. It is expected that this also holds for this algorithm: decreasing the noise level should make results
better and better. Indeed, this is the case, as shown in Fig. 6.1. Here, a histogram of location errors is shown
for four different noise levels. These noise levels give rise to a signal-to-noise ratio, that is defined as

SN R :=
A2

signal

σ2 , (6.1)

where Asignal is the RMS amplitude of the signal (measurement) and σ is the noise standard deviation. From
large to small, these ratios in the figures are 24.0, 4.8, 2.4, and 1.2. As expected, results get worse when lower-
ing the signal-to-noise ratio. Still, the error is not too large for a ratio of 1.2, considering that the search area
is 60 cm x 30 cm x 20 cm, against an average location error of about 10 cm. This means that although the
location cannot be precisely estimated with such noise levels, the algorithm can still point in the right direc-
tion. The similar shape of all histograms can also be explained. One could expect that the x-coordinate of
the estimated locations forms a distribution that is shaped somewhat like the Gaussian distribution, centred
around the true x-coordinate. Hence, the error in the x-coordinate would be Gaussian-shaped around 0 m.
If this is the case for the x, y and z-coordinates of the estimate, then the resulting location error has approxi-
mately as a chi distribution with parameter 3 (because there are three dimensions). Indeed, this distribution
is similarly shaped to the histograms seen in Fig. 6.1.

For 150 runs, individual location errors for a range of signal-to-noise ratios have also been plotted against
these ratios in Fig. 6.2. It is clear that the average error, as well as the maximum encountered error, decreases
for larger signal-to-noise ratios, as expected. An offset of multiple centimetres is visible, even for larger signal-
to-noise ratios. It turns out that this is largely caused by an error in the z-coordinate estimate of the magnetic
dipole. In Fig. 6.3, the same scatter plot is produced, but now for just horizontal location error on the y-axis.
Indeed, the errors now have a range that extends to 0 m.

41
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Figure 6.1: Histogram of location errors for 150 runs with 16 chosen sensors using QR pivoting, comparing
four different noise levels (indicated by standard deviation). The corresponding average signal-to-noise

ratios are, from large to small (blue to purple), 24.0, 4.8, 2.4, and 1.2.
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Figure 6.2: Scatter plot of location errors versus average signal-to-noise ratio, for 150 runs with 8 chosen
sensors using QR pivoting.
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Figure 6.3: Scatter plot of horizontal location errors versus average signal-to-noise ratio, for 150 runs with 8
chosen sensors using QR pivoting.

6.1.2. Number of sensors and sensor choice

From the explanation in Section 5.3.2, an optimal QR sensor placement is expected to perform better than a
random sensor choice. Especially for a small number of measurements p, random sensor choice can be poor.
If just a few sensors are placed, there is a reasonable chance that those sensors are all located considerably
far away from the location of the magnetic dipole. If this is the case, the measured signal is small compared
to noise. An example of a particularly bad reconstruction due to a poor choice of sensors is shown in Fig. 6.4.
The error is given as NRMSE: normalised root mean squared error. It is the root of the mean of all field errors,
divided by the range of the original signal: its maximum value minus its minimum value. For a vector x of
length N and an estimate x̂ of it:

NRMSE(x, x̂) =
√

1
N

∑N
i=1(xi − x̂i )2

max(x)−min(x)
. (6.2)

The magnitude of the magnetic moment of the particular magnetic dipole in this example is 0.88 Am2. Here,
the sensors are all located away from the magnetic dipole location in the top right corner, measuring only
small signals.

Figure 6.4: Reconstruction of the z-component of the magnetic field using 6 randomly chosen sensors,
indicated by the black dots. The reconstruction has NRMSE = 0.12.

In the QR placement method, on the other end, sensors are chosen such that an optimal low-rank approxima-
tion can be made. Practically, this means the chosen sensors are spread over the whole sensor array, greatly
reducing the probability of not picking up strong signals.
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The expectations are tested by comparing location errors, moment angle errors and moment magnitude er-
rors, for 4, 8, and 16 sensors, and for random sensor choice and placement using QR pivoting. To show the
range of results for both the QR pivoting method and random sensor placement, 150 test runs were executed
for both methods, for 4, 8, and 16 available sensors. For each of the 150 runs, a different magnetic dipole
is placed randomly within the search area as seen in Fig. 5.2. Furthermore, its moment has a random ori-
entation and random magnitude between 5 and 15 Am2. Sensor noise was set to 0.5µT. In the case of the
QR pivoting method, the chosen sensors are in the same position for every run, since the basis remains un-
changed between runs. However, for random placement, a different subset of sensors is chosen in each run.

In Fig. 6.5, random sensor placement is compared to the QR pivoting method for a choice of 8 sensors. The
errors in location, moment angle, and moment magnitude are shown in error distributions. The moment
magnitude errors are given as relative numbers: a relative offset of -0.2 means that it is 80 percent of the
true size, and a relative offset of 0.1 means it is 110 percent of its true size. From the error distributions,
it becomes clear that the QR pivoting method performs slightly better. This is best visible for the moment
angle error. All distributions corresponding to QR pivoting are centred around a smaller error than that of
the random choice method. Also, the distributions corresponding to QR pivoting contain less large outliers
than for random choice. The latter shows for instance an outlier of approximately 30 cm in the location error.
These results are in line with the expectations for both methods.
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Figure 6.5: Distributions of errors for 150 runs with 8 sensors, comparing a random placement and QR
placement method.

When the number of sensors is increased, one would expect a shift of these error distributions towards zero.
Furthermore, the method of random sensor placement is expected to produce less outliers. For example, 16
sensors should be able to cover the area in many cases. These expectations are indeed met when running the
algorithm for 4, 8, and 16 sensors with both methods, of which the results are displayed in Fig. 6.6 and Fig. 6.7.
Going from 4 to 8 sensors, both the results for random and QR sensor choice improve visibly. When looking
at the random choice location errors, it can be seen that indeed all large outliers disappear. When doubling
the number of sensors again to 16 sensors, especially the results for random sensors choice are improved.
Results for QR pivoting improve slightly, but not as much as for random placement. This is expected, since
choosing sensors optimally already makes sure that a terrible sensor choice can not occur.
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Figure 6.6: Distributions of errors for 150 runs with random sensor choice, comparing 4, 8, and 16 sensors.
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Figure 6.7: Distributions of errors for 150 runs with QR pivoting sensor choice, comparing 4, 8, and 16
sensors.
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6.1.3. True magnetic dipole location

To see if the true magnetic dipole location influences the results, the scatter plot in Fig. 6.2 has been repro-
duced to show the influence of three parameters: vertical distance of the true magnetic dipole to the sensor
array, horizontal distance of the true magnetic dipole to the origin, and distance of the true magnetic dipole
to the closest initialisation grid point.

First, the vertical distance to the sensor array. The goal of the penalty vector introduced in Section 5.3.4 is to
avoid the preference for choosing magnetic dipoles too close to the sensor array. Therefore, it is expected that
for similar signal-to-noise ratio, there are similar location errors for magnetic dipoles close by and magnetic
dipoles far away from the sensor array.

In Fig. 6.8, the scatter plot is coloured by vertical distance to the sensor array. The first thing appearing here,
is the larger signal-to-noise ratio for magnetic dipoles closer to the sensor array. This, of course, makes sense:
the closer to the array, the larger the field measurements for equal noise. Now, is it possible to see if the
location errors are similar for each dipole height? Looking at the coloured dots along a vertical line, so for
equal signal-to-noise ratio, there is no clear concentration of blue or yellow dots on the lower or higher end of
the line. This indicates that adding the penalty vector to the minimisation problem successfully eliminated
the preference for magnetic dipoles close to the sensor array.
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Figure 6.8: Scatter plot of location errors versus average signal-to-noise ratio, for 150 runs with 8 chosen
sensors using QR pivoting. Colours indicate the vertical distance between the true magnetic dipole location

and the sensor array.

Next, the focus is on horizontal location of the true magnetic dipole. It could be the case that the algorithm
performs better or worse for magnetic dipoles near the edges of the search area. This can be quantified by
taking the horizontal distance from the true magnetic dipole location to the origin, which is the middle of the
search area. The larger this distance, the closer the true magnetic dipole is to one of the edges of the search
area.

The coloured results are shown in Fig. 6.9. It is again clear that on a vertical line of equal signal-to-noise
ratios, there is no concentration of either colour on the top or bottom half of the graph, which means that the
algorithm does not perform better or worse for magnetic dipoles closer to the edges.

The last considered factor is how close the true magnetic dipole is to one of the initialisation locations (grid
points). The results are shown in Fig. 6.10. Again, no clear distinction in location error is visible between
true magnetic dipoles close to one of the grid points and magnetic dipoles that are more in between several
different grid points.
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Figure 6.9: Scatter plot of location errors versus average signal-to-noise ratio, for 150 runs with 8 chosen
sensors using QR pivoting. Colours indicate the horizontal distance between the true magnetic dipole

location and the origin.

0 2 4 6 8 10 12

signal-to-noise ratio

0

0.05

0.1

0.15

0.2

0.25

0.3

lo
ca

tio
n 

er
ro

r 
[m

]

Location error versus SNR - comparing grid point distance

0.005

0.01

0.015

0.02

0.025

0.03

m
in

im
um

 d
is

ta
nc

e 
di

po
le

 to
 g

rid
 p

oi
nt

 [m
]

Figure 6.10: Scatter plot of location errors versus average signal-to-noise ratio, for 150 runs with 8 chosen
sensors using QR pivoting. Colours indicate the distance between the true magnetic dipole location and the

closest initialisation grid point.

6.1.4. Iterations

To illustrate how iterations help in finding the correct location, the distribution location and magnetic dipole
moment errors of 150 runs has been plotted in Fig. 6.12. The realisations are made with 8 sensors that are
chosen with QR pivoting, and noise with 0.5µT standard deviation. The first iteration is completed using the
full basis, over the full search area. In the second and third iteration the total length of the search box is made
4 cm smaller.
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The average location error is gradually reduced, as expected. By eliminating the possibility to activate dipoles
too far away from the estimated location, the estimate becomes more precise. Furthermore, new sensors are
chosen using QR pivoting in every iteration, based on the smaller bases. The activated sensors concentrate
towards the estimated location every iteration, to better describe the field originating from a magnetic dipole
in that area. This movement is nicely visible over the three iterations in the location error distribution in
Fig. 6.12.

Figure 6.11: Horizontal coordinates of 16 chosen sensors using QR pivoting for four iterations. Here, the true
magnetic dipole is located at approximately (x, y, z) = (0.03 m, 0.07 m, -0.12 m).

The shrinking of the search area is done gradually: although the estimate is already quite good on average
after the first iterations, the number of times the estimate is relatively far away from the real location is not
negligible. If the box is shrank too aggressively, the real magnetic dipole location might end up outside the
search box, eliminating the chances of finding this true location. Therefore, to create a robust algorithm, only
one layer of initial magnetic dipoles is removed on each side of the search box in every iteration.

On average, the moment magnitude is estimated really well, staying within 10 percent above or below the true
value. It is interesting to note the structural error - although not too large - in moment angle. This error is
by definition always positive, so it might match with the average structural error in location. Naturally, these
influence each other: if the magnetic dipole location estimate contains an error, the algorithm must have
compensated for this by rotating the estimated magnetic dipole bit, to still be able to match the resulting
field with the obtained measurement.

Comparing to similar results for randomly chosen sensors, depicted in Fig. 6.13, it appears that much of the
reason why these iterations improved results, is the better sensor choice each iteration. Now that the sensors
are chosen randomly in each iteration, the location estimates do not improve as much as before. However,
the moment magnitudes and angles are improving with each iteration. This indicates that some activated
moments fall outside the search box after iterating, forcing the algorithm to choose moments from a smaller
space around the previous location estimate. Hence, there is less room for creative activation of magnetic
dipole moments over the full search space to match noisy measurements.

6.2. Verification using measurements

For a verification of the proposed algorithm, also real-world measurement data has been used. This section
first describes the experimental setup and then present the results and a discussion.



6.2. Verification using measurements 49

0 0.05 0.1 0.15 0.2
location error [m]

0

5

10

15

20

25

30

35

nu
m

be
r 

of
 o

cc
ur

re
nc

es

Location error distribution

1 iteration
2 iterations
3 iterations

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4
relative offset of moment magnitude

0

10

20

30

40

50

nu
m

be
r 

of
 o

cc
ur

re
nc

es

Moment magnitude error distribution

1 iteration
2 iterations
3 iterations

0 10 20 30 40 50 60
moment angle error [degrees]

0

10

20

30

40

50

nu
m

be
r 

of
 o

cc
ur

re
nc

es

Moment angle error distribution

1 iteration
2 iterations
3 iterations

Figure 6.12: Error distributions for 150 runs, for 8 sensors chosen using QR pivoting, comparing 1, 2, and 3
iterations of the algorithm.

6.2.1. Experimental setup

The experimental setup is very similar to the one provided in the problem description in Section 5.1, and the
illustration in Fig. 5.2. The measurement setup also consists of a horizontally placed sensor array, now placed
at z = 0.045 m. It spans between x =−0.38 m and x = 0.38 m and between y =−0.18 m and y = 0.18 m with
0.04 m distance between sensors in both directions. This comes down to 200 sensors in total, each measuring
all three magnetic field components. Since each field component is measured by a different physical sensor
at a slightly different location, there can be a small offset in the sensor locations per component (a few mm).
Sensor choice was simulated in this test using only the measurements of 10 chosen sensors, even though all
data was collected.

A small magnet was moved over a grid in an S-shaped path. The grid was 9 grid positions wide and 7 grid
positions long, from x = −0.38 m to x = 0.38 and from y = −0.18 to y = −0.18. The magnet that is used pro-
duces a field close to that of a perfect magnetic dipole, with a magnetic moment of approximately 0.05 Am2.
This estimation is produced by running the algorithm developed in this thesis, and taking moment estimates
where the location estimates were excellent (within 1 cm distance). The magnetic moment is not given as an
input to the algorithm in any way - it is just a resulting output.

The sensor noise level has been estimated using two initial measurements of the background field. 200 sen-
sors have each measured the three magnetic field components twice. If no sensor noise would be present,
the two measurements would be equal. However, we assume that white Gaussian noise is added, with a nor-
mal distribution centred around 0, with a certain standard deviationσ. By calculating the difference between
the 600 first and second measurements, one can derive the value of σ. Suppose the first measurement is
X1 ∼N (0,σ2), and the second X2 ∼N (0,σ2). Then also by symmetry: −X2 ∼N (0,σ2). Hence:

X1 −X2 ∼N (0,2σ2). (6.3)
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Figure 6.13: Error distributions for 150 runs, for 8 randomly chosen sensors, comparing 1, 2, and 3 iterations
of the algorithm.

Therefore the following computation is used to determine the sensor noise standard deviation:

σ=
√

1

2
Var(X1 −X2). (6.4)

For the performed measurements, the computed value for σ is approximately equal to 21 nT.

For basis construction, a grid distance of 0.04 m was used. Following the discussion in Section 5.3.5, the
grid discretisation error needs to be estimated. Since the magnetic dipole was held at 0.24 m from the grid,
interpolation of the values in Table 5.1 gives a RMSE of around 600 nT. However, since the magnetic dipole
moment here is about 40 times smaller, the scaled RMSE value is estimated to be between around 15 nT.
Since we consider not just averaging within a horizontal plane, but averaging within a 3D cube, the RMSE
value was increased somewhat to 25 nT. This choice was also the result of some testing of the algorithm,
where this value gave the best performance. Here, neither the sensor noise nor the grid discretisation error
is dominant in the optimisation. One option would be to decrease the grid distance in basis construction.
However, this increases both size of stored matrices and computing power needed to optimise exponentially.
Therefore, an adjusted value for ε is chosen according to Eq. (5.21), where σgrid is taken equal to 25 nT.

6.2.2. Results

As mentioned before, the tests have been conducted using the measurements of 10 sensors at the same time.
Both random and optimal sensor choice using QR pivoting has been applied. The results for 1 iteration of
the algorithm are compared to the results for 3 iterations (only using QR pivoting). The magnetic moment
was not measured or estimated independently from this algorithm, and therefore only location estimates and
errors are discussed.



6.2. Verification using measurements 51

The resulting location estimates for random sensor choice are shown in Fig. 6.14, for 1 iteration with optimal
sensor choice in Fig. 6.15, and for 3 iterations they are shown in Fig. 6.16. These plots show the difference
between the true magnetic dipole location and the location estimate, in 3D and from above, following the
location path of the measurements.

An interesting behaviour that stands out immediately is the fact that estimates are almost always placed a
bit higher (smaller z) than they should. We perform `1 optimisation within error bounds, which means that
every possibility will used to minimise the `1 norm term. A somewhat large feasible region is used to make
sure the algorithm can also produce a good estimate when the data is noisier than average. This also means
that when the data is not as noisy as anticipated, the space will be taken by the `1 minimisation. Normally
that would result in higher placed magnetic dipoles, with a smaller magnetic moment, since only the moment
count for the minimisation. However, we compensated for this using the vector c. These results show that
either the height of the magnetic dipole was not measured correctly (however, an error of more than 1 cm is
highly unlikely), or the compensation vector does work exactly as planned. The latter is most likely, since the
compensation term that scales with 1

r 3 was a simplification.

Figure 6.14: True locations of the magnetic dipole (red) and location estimate by the algorithm after 1
iteration (blue), shown in 3D and from a top view. Random sensor choice has been used.

Figure 6.15: True locations of the magnetic dipole (red) and location estimate by the algorithm after 1
iteration (blue), shown in 3D and from a top view. Optimal sensor choice using QR pivoting has been used.

As expected from the numerical experiments, the algorithm including optimal sensor choice performs better
than with random choice. In Fig. 6.14, it is clear that random choice may produce outliers, when sensors
are chosen in such a poor pattern that reconstruction is almost impossible. This is more common when the
magnetic dipole is located at the borders of the search area, since that leaves a larger area with a small signal.
The performance of the algorithm with optimal sensor choice improves when 3 iterations are used. Indeed,
when looking at the paths, some of the worse estimates for 1 iteration are improved when performing 2 extra
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Figure 6.16: True locations of the magnetic dipole (red) and location estimate by the algorithm after 3
iterations (blue), shown in 3D and from a top view. Optimal sensor choice using QR pivoting has been used.

iterations. However, some of the good estimates are becoming worse.

The effects described above are also reflected in the location error histogram which compares the three meth-
ods, shown in Fig. 6.17. Clearly the same type of histograms are resulting from the test as in Section 6.1. The
outliers of the random sensor choice model are visible, and the improvement of 3 iterations over 1 iteration
is clear as well. Only location errors are shown, since the magnetic dipole moment was not measured inde-
pendently from the algorithm.

Figure 6.17: Histogram of location estimate errors, compared between random sensor choice with 1
iteration and optimal sensor choice with 1 and 3 iterations.



7
Conclusions and recommendations

7.1. Conclusions

Compressed sensing is an interesting method for processing relatively small amounts of data. An algorithm
for localisation of a magnetic dipole in a 3D space was implemented. For sensor choice, two options were
considered: random sensor choice, and optimal choice using QR pivoting. The algorithm is able to make
accurate predictions of location and magnetic dipole moment of a randomly placed magnetic dipole. This is
shown by simulation results, and verified using real-world measurements using a small magnet.

As expected, including noise in the measurements influences results: a larger noise standard deviation corre-
lates with a large location error when estimating. Doubling the noise standard deviation roughly corresponds
to a twice as large average location error. When the signal to noise ratio rises above 1, the average location
error decreases: a signal to noise ratio of 1 results in about 10 cm error, where a ratio of 3 corresponds to a 5
cm average error.

The number of sensors and sensor choice method also influence the results. For a similar number of sensors,
optimal choice using QR pivoting is especially beneficial compared to random choice if the number of sensors
is small. In that case, the probability of choosing mostly ’bad’ sensors is relatively large. For larger numbers of
sensors, the difference between both choice methods vanishes. Comparing different numbers of sensors for
equal choice methods, larger numbers of sensors perform slightly better. Again, the difference is largest for
smaller numbers of sensors: the benefit of increasing from 4 to 8 sensors is way larger than that of increasing
from 16 to 32 sensors.

The implemented algorithm features an option for iteration in combination with optimal sensor choice using
QR pivoting. Instead of performing all measurements, and then making one estimate, it can also loop: let a
few sensors measure, approximate the magnetic dipole location, and determine a new optimal set of sensors
to measure. The new set of sensors is a consequence of shrinking the search area after each estimate. Iterating
can indeed improve localisation performance.

Lastly, the influence of the source magnetic dipole location was analysed to discover a potential bias in the
algorithm. First, it can be concluded that the minimum distance of the magnetic dipole to one of the grid
points used for initialisation does not influence results. This indicates that the grid distances are chosen
properly. Second, the distance to the origin of the search space is also not of any importance for the local-
isation accuracy. And third, the height of the magnetic dipole - determining how close the magnetic dipole
is to the horizontal sensor array - does have a correlation with location error. However, this is solely due to
a different signal to noise ratio which is directly related to distance to the sensor array. When correcting for
signal to noise ratio, the height of the magnetic dipole does not influence results. All in all, the algorithm does
not present any bias towards certain dipole locations.
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7.2. Recommendations

For future research, there are some recommendations. First of all, there have been made some assumptions
and simplifications in the algorithm that might have influenced the results. For instance, sensor arrays that
are not horizontal have yet to be considered. Furthermore, a compensation vector has been introduced to
avoid unwanted bias towards certain magnetic dipole locations. The values of this vector are now based on
the vertical distance between the initialisation dipoles and the sensor array, which is a simplification of the
actual situation where distances of the initialisation locations to every sensor must be taken into account.
Besides, another way of computing this compensation must be found if the sensor array is not a horizontal
plane.

The grid discretisation error has been discussed in this thesis. Based on an estimated magnetic dipole mo-
ment, the initialisation grid distance, and the estimated height above the sensor array, it can be estimated
how large this discretisation error will be. However, in real-life applications the moment and height are often
not known. Therefore, a method needs to be developed to deal with the discretisation error based on the
actual magnetic field measurements. For example, an initial estimate of height and magnetic dipole moment
can be made, after which additional actions can be taken such as considering a finer grid or increasing the
error bound ε in the optimisation.

As discussed briefly in Section 4.4, the use of other methods to approximate the sparsest solution can be
explored. One option is the use of greedy algorithms, such as an iterative matching pursuit algorithm. An-
other possibility is approximating the `0-norm by smoothing functions, making the optimisation problem
that must be solved convex.

Regarding the iterative algorithm, the convergence properties must be proved. The approach taken in this
thesis is heuristic, and produces good results. However, mathematically it is not yet clear if there will always
be convergence to the true location of the magnetic dipole, and if so, under which conditions and at what
rate. Moreover, different search shapes apart from the considered box shape can be explored to potentially
improve results.

An important next step that can be taken is to consider not only the localisation problem, but also the de-
tection problem. Multiple questions come to mind: what if it is not sure yet whether a magnetic dipole is
present? Think for example of the container problem. It has to be found first, before it can be localised.
Also, what if multiple sources are present? Can we find all of them, and which adaptations are needed to the
proposed algorithm? Finding answers to these question is crucial on the way to actual application of this
localisation algorithm.
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Magnetic signature translation
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8
Magnetic signatures of a ship

In this chapter, the problem of magnetic signature translation is introduced, and the physics of magnetic
signatures of ships are discussed. First, the problem setup is given, followed by a brief description of the
physical model used to describe it.

8.1. Problem description

In this part of the thesis, magnetic signatures of a ship are considered. A ship, made of ferromagnetic material,
is placed in a homogeneous magnetic background field Bb - for example the Earth magnetic field. Apart from
the background field, there are no magnetic field sources. Ferromagnetism inside the ship creates an induced
magnetic field Bs . This induced field is what is meant by the magnetic signature of the ship.

A first goal could be to estimate this signature based on a limited amount of (potentially noisy) measurements.
To this end, imagine a sensor array present above the ship. This array is a 2D horizontal grid of sensors. The
grid is typically placed on a distance above the ship of the same order of magnitude as the height of the ship.
Some of the sensors in the array will measure all three components of the magnetic field, some of them will
not. In reality, these sensors would be measuring the total magnetic field Bb +Bs . However, since it is fairly
easy to measure the background field independently, and subtract it from the measurements, we assume that
just Bs is measured. With the measurements above the ship, the goal is then to estimate the full magnetic field
at all sensor locations - even the ones that did not measure. The field estimate will therefore be discrete, and
not continuous.

The second goal, which is more interesting and will be the focus of this thesis, is to perform measurements
above the ship, and use these to estimate the field below the ship. For this, a second 2D horizontal sensor
array is positioned under the ship. Its distance below the ship is similar to the distance of the upper array to
the ship. The setup is depicted in Fig. 8.1.
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Figure 8.1: Setup of the ship and sensor arrays.

Figure 8.2: First 20 singular values for linear magnetisation.

8.2. Physical model

Since it is rather hard and costly to perform experiments with a real ship, a simulation is used. This simulation
is able to calculate induced magnetic field values at certain points in space, using the geometry and properties
of a ferromagnetic object. The simulation uses the Method of Moments (MoM), based on [25]. A realistic,
generic ship geometry was used. Not a full model, but a simplified model without internal structure was
used, to speed up computations. This model is the one shown in Fig. 8.1.

In the implementation of the MoM, two options for magnetisation are used. The first option is linear mag-
netisation. As in Eq. (2.28), magnetism of each part of the ship scales linearly with the background field. In
that case, the singular values become as in Fig. 8.2: three singular values have similar non-zero value, and the
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others are equal to zero. These three values correspond to fields in three orthogonal directions, and a linear
combination of those can create any induced field.

The other option for the magnetisation includes hysteresis. For that, Rayleigh’s hysteresis model [2] has been
implemented. This is based on the Rayleigh law, which describes how magnetisation M depends on the
applied magnetic field H . The model is gives by two equations:

M(H) =χ0H +αRµ0H 2 (8.1)

and
M(H) =χ0H −αRµ0H 2, (8.2)

whereχ0 is the initial susceptibility andαR is called the Rayleigh constant. This model describes two branches:
Eq. (8.1) describes an upper branch, where H is decreasing, and Eq. (8.2) describes a lower branch, where H is
increasing. This law gives rise to a hysteresis loop: the induced magnetic field by the ship is no longer just the
result of the background field, but also of its previous magnetisation. αR determines the shape of this loop.
An illustration of a hysteresis loop is shown in Fig. 2.2. The corners of the loop correspond to turning points
of the applied field signal. This is where this signal changes direction and hence the loop changes branches.
Consequently, many more variations are possible in the magnetic field above and below the ship. Therefore,
the singular value spectrum has a smoothly decreasing shape, as can be seen in Fig. 8.3.

Figure 8.3: Example of singular values.

For the analysis that follows, always two datasets are constructed. The first set is used to construct the basis,
and if applicable to choose optimal sensor locations. The second set is used for the actual validation and
analysis. This set contains data that the algorithm has never ’seen’ before.

Both sets are initialised using a different permanent magnetisations of all element in the geometry. These
follow from real world measurements of a ship. In some of these measurements, a background field was
applied, and in others, none was present. First, the volume of steel in the model was matched with the actual
volume by adjusting the thickness of the triangular elements. Then, using some of the measurements with
background field, the model geometry was aligned with the measurement data. Additionally, the magnetic
susceptibility χm of the steel was estimated - the resulting value was 155, which is reasonable for steel. Using
all the acquired properties, a measurement without background field was taken, which means that the full
magnetic field present is caused by permanent magnetisation. Using an inversion technique, the field was
translated into a permanent magnetisation for each element of the geometry. This was done for two separate
ship measurements, which resulted in two permanent magnetisations.

After initialisation, the first dataset was constructed by applying randomly chosen background fields. The
second dataset, for analysis, was made by simulating a round trip around the Earth: the Earth magnetic field
present at each of the world locations served as background fields in the simulation. Here, hysteresis was also
included in the model.
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Gappy POD

As described in the Chapter 8, the goal of the signature problem is to perform some measurements above
a ship or another object, and process these to estimate the ship’s magnetic signature above and below it.
Specifically, imagine two grid layers of field sensors, placed above and below the ship. Only part of the sensors
above the ship perform measurements (possibly noisy), and we aim to reconstruct the field in both layers of
sensors with these measurements. The first of two ways to solve this problem is explored in this chapter:
Gappy POD. First, a background to the proper orthogonal decomposition (POD) and the adaptation of Gappy
POD is given. Then, a method to choose sensor locations is described, and the application of Gappy POD
to the magnetic field signature problem is explained. Lastly, the results of the implemented algorithms are
given.

9.1. POD: Proper orthogonal decomposition

The main idea of the proper orthogonal decomposition (POD) is to decompose a certain dynamic physical
field in orthogonal components:

u(x, t ) =
n∑

k=1
ak (t )ψk (x), (9.1)

where u is the field, ψk are orthogonal basis functions, and ak are the corresponding coefficients, or activa-
tions of these basis functions. When considering static problems, the coefficients ak can be taken constant in
time:

u(x) =
n∑

k=1
akψk (x). (9.2)

Alternatively, since we are exploring discrete magnetic fields in vector form, and not functions, this equation
can be rewritten in the form of vectors:

u =
n∑

k=1
akψψψk , (9.3)

or as a system:
u =ΨΨΨa. (9.4)

In discovering orthogonal components in sets of data, the singular value decomposition (SVD) naturally
comes to mind. Refer to Section 3.3 for a detailed explanation of this method. Say that the field of inter-
est is the field in a layer above the ship. Then all sensor measurements from that layer could be grouped in

61
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one column x1. One can gather measurements xk of many different fields, and add them as columns to a
matrix X = [x1 · · · xn]. Applying the SVD gives

X = UΣΣΣV∗, (9.5)

where ΣΣΣ contains all singular values, and U contains the left-singular vectors of X. In other words, U forms
an orthogonal basis for the fields in X. The singular value σk corresponding to singular vector uk can be seen
as a measure of energy, such as described earlier with Eq. (5.7). The larger σk , the more influential uk is in
describing the original fields x. An actual example of singular values from the application to ship signatures
is shown in Fig. 8.3.

The basis U can give rise to a reduced basis Ũ, containing not n, but less basis vectors. Since Ũ essentially
contains the basis fields ψk , it makes sense to rename the matrix toΨΨΨ.

The goal is to reconstruct a field x from a measurement x̃, which is for the moment equal to x. First, the
coefficients âk are estimated, by solving a system as in Eq. (9.4):

x̃ =ΨΨΨâ. (9.6)

SinceΨΨΨ is an orthogonal basis, the coefficients ak can simply be found by projecting the measurement x̃ onto
each of the orthogonal basis vectorsψψψk . In other words, taking the inner product:

âk = 〈x̃,ψψψk〉 . (9.7)

Then, the lower rank approximation of x is

x̂ =ΨΨΨâ =
r∑

k=1
âkψψψk . (9.8)

Note that in general, the system Eq. (9.6) will be underdetermined. If the complete basis ΨΨΨ = U is used,
instead of a reduced basis, the system Eq. (9.6) is not underdetermined, hence the reconstruction will be
perfect: x̂ = x.

9.2. Gappy POD: gappy proper orthogonal decomposition

It might be impossible or less practical to measure all elements of the magnetic field vector. For example,
if one sensor is used to measure at all grid positions, and there is not enough time to cover all of them. In
this case, the collected data is said to be gappy. The POD technique can be extended to this situation. The
resulting method is appropriately called Gappy POD.

Now, the measurement x̃ does not cover the complete vector x, but only part of it:

x̃ = Px. (9.9)

Here, P is a measurement matrix, which contains selected rows of the identity matrix. Note that this definition
is similar to that of the measurement matrix C in Part I, just with a different symbol. If the vector entry is
measured, the corresponding row is added to the matrix. For instance, when measuring a field vector of
length 6, and measuring only elements 1, 3, 4, and 5 of x, results in the measurement matrix

P =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 . (9.10)

Like in the original POD method, the coefficients ak of the basis fields need to be estimated to reconstruct the
original field x. However, the basis fieldsψψψk are not orthogonal in the measurement domain. To see how this
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can be the case, consider the measurement matrix P in Eq. (9.10). Examples of two orthogonal field vectors
x1, x2 and the corresponding measurements x̃1, x̃2 are:

x1 =



1
1
0
0
0
0


, x2 =



1
−1
0
0
0
0


; x̃1 =


1
0
0
0

 , x̃2 =


1
0
0
0

 . (9.11)

Obviously 〈x1,x2〉 = 0, hence the fields were orthogonal in the original domain. The resulting measurements,
however, are not orthogonal: 〈x̃1, x̃2〉 = 1.

The basis vectors are in general not orthogonal any more, and therefore it is not possible to estimate the
coefficients using a simple inner product as in Eq. (9.7). A reasonable way to estimate them in this situation
would be to minimise some norm of the difference between measurement entries and estimated field entries.
For that, it is needed to compare an incomplete vector and a full vector, only at the entries the incomplete
vector covers. We use the measurement matrix P to make the complete vector just as incomplete as the other
vector. For a measurement x̃ and an estimate x̂, the error to be minimised is:

ε= ∥∥x̃−Px̂
∥∥2

2 =
∥∥∥∥∥x̃−P

r∑
k=1

âkψψψk

∥∥∥∥∥
2

2

=
〈

x̃−P
r∑

k=1
âkψψψk , x̃−P

r∑
k=1

âkψψψk

〉
. (9.12)

To minimise ε, one can differentiate ε with respect to each of the â j , and set the result equal to zero:

∂ε

∂â j
= 0 =⇒

〈
x̃−P

r∑
k=1

âkψψψk , Pψψψ j

〉
= 0 j ∈ {1,2, . . . ,r }. (9.13)

Note that the inner product is linear in the first argument, hence:〈
P

r∑
k=1

âkψψψk , Pψψψ j

〉
=

〈
x̃, Pψψψ j

〉
, (9.14)

or
r∑

k=1

〈
Pψψψk , Pψψψ j

〉
âk =

〈
x̃, Pψψψ j

〉
. (9.15)

This defines the following linear system to solve for the coefficient vector â:

Mâ = f, (9.16)

where for i , j ∈ {1,2, . . . ,r }:

Mi j =
〈

Pψψψi , Pψψψ j

〉
; (9.17)

fi =
〈

x̃, Pψψψi
〉

. (9.18)

The matrix M is square: r × r . In the case that all entries of x are measured (P = I), it follows that M = I, since
ΨΨΨ is orthonormal. For increasingly dense measurements, vectors Pψψψi and Pψψψ j become increasingly more
similar toψψψi andψψψ j . Consequently, M converges to the identity matrix.

To solve for â, one must calculate the entries of M and f and then invert the system in Eq. (9.16). Since M is
square, there is in general a unique solution to â.
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9.2.1. Tikhonov regularisation

Apart from simple inversion, Tikhonov regularisation is explored. This enables taking the energy, or weight,
of the basis vectors into account. Usually, Tikhonov regularisation is used in cases where a linear system is
underdetermined. In our situation, we can use the method to create a better estimate in case the measure-
ments contain some error. Normally, every measurement error is contained in f directly, and propagates into
the solution â. However, we know that some basis vector describe generally a larger part of the solution than
others. Using Tikhonov regularisation, these properties can be used.

For an underdetermined linear system Ax = b, usually a simple least squares optimisation is used:

x = argmin
y

∥∥Ay−b
∥∥2

2 . (9.19)

Tikhonov regularisation adds an extra regularisation term to this optimisation, related to the solution vector
by some matrixΓΓΓ:

x = argmin
y

∥∥Ay−b
∥∥2

2 +λ
∥∥ΓΓΓy

∥∥2
2 . (9.20)

Then, a closed form solution of this minimisation problem (with parameter λ) is

xλ = (AT A+λΓΓΓTΓΓΓ)−1AT b. (9.21)

In this situation, we want to make sure that basis modes with a higher energy are used relatively more than
modes with low energy. Since the regularisation term acts as a penalty in the optimisation,ΓΓΓ should describe
something like inverse energy. From the SVD, a measure for energy of each of the basis fields (singular vectors)
is already present: singular values. The larger a singular value, the more energy that corresponding mode
contains. For ΓΓΓ, we can therefore use a diagonal matrix, with entries equal to one over the singular values
from the SVD:

ΓΓΓ=


1
σ1

0 . . . 0

0 1
σ2

. . . 0
...

...
. . .

...
0 0 . . . 1

σr

 , (9.22)

where σi denotes the singular value of basis modeψψψi .

The question that remains is how to choose the regularisation parameter λ properly. Too small and it has
virtually no effect on the optimisation result, too large and only the very few basis modes with a high energy
get a non-zero coefficient. A helpful tool in selecting a ’good’ λ is the so called L-curve criterion. In the L-

curve, the residual
∥∥Ax−b

∥∥2
2 is compared to the regularisation term

∥∥ΓΓΓx
∥∥2

2. The idea, which involves some
heuristics, is that these should be ’in balance’.

Suppose A, b, and ΓΓΓ are given. In the L-curve, a range of values for λ are explored. For every λ, a different

solution xλ can be calculated by Eq. (9.21). Then for every xλ, the residual
∥∥Axλ−b

∥∥2
2 and regularisation term∥∥ΓΓΓxλ

∥∥2
2 are computed. These values define one point in the L-curve, usually plotted on a logarithmic scale.

An example of such a curve is shown in the left plot of Fig. 9.1.

Now, good values for λ give a right balance between the residual (the values on the x-axis) and the regularisa-
tion term (values on the y-axis). L-curves - as the name suggests - have the shape of the letter ’L’, with a steep
vertical side and an almost horizontal side. A relatively sharp corner is connecting both sides. Choosing a
value for λ inside the corner makes sure that neither the residual term nor the regularisation term dominates.
Then how do we know which λ is most inside the corner? Hansen and O’leary suggest to use the value of λ
at which the L-curve has maximum curvature. At this point, the residual term and regularisation term can
be seen as most ’in balance’. Moving away from this point on the curve will either be a very vertical or very
horizontal movement. This indicates that one of the term is decreased slightly, but at the expense of a large
increase in the other term. When defining

η= log
∥∥ΓΓΓxλ

∥∥2
2 ; (9.23)

ρ = log
∥∥Axλ−b

∥∥2
2 , (9.24)
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and η′, ρ′, η′′, ρ′′ as their first and second derivatives with respect to λ, the curvature is given by:

κ= 2
ρ′η′′−ρ′η′′

(ρ′2 +η′2)
3
2

. (9.25)

In Fig. 9.1, next to an example of an L-curve, its curvature is plotted. The curvature clearly shows a peak, at
the top of which the value of λ is chosen. This value corresponds to the point most ’inside the corner’ in the
L-curve.

Figure 9.1: Example of an L-curve, and its curvature with respect to λ. The red circle indicates the value of
λ≈ 4.2 ·10−15 that was chosen here.

9.3. Choosing measurements

Up to this point, P has been an abstract measurement matrix. Imagine a scenario in which there is a fixed
number of measurements available. One could of course simply choose a random set of vector entries to
measure. However, it might very well be that certain entries provide much more information than others
about the activation of basis modes. This section describes how measurements, or sensor locations, can be
chosen in a smart way.

In the Gappy POD method, basis mode coefficients are estimated by solving a system Mâ = f, as in Eq. (9.16).
From there, a field estimate can be made, but all information is essentially contained in the estimate of co-
efficients â. Therefore, the quality of the final field estimate depends fully on how good the inversion of the
linear system Eq. (9.16) is. In particular, noise in the measurements should have minimal influence on the
solution. As described in more detail in Section 3.5, the condition number of M indicates how sensitive the
approximation is to measurement noise. A way to choose measurements is to choose ones that minimise the
condition number κ(M).

We consider a set of available sensor locations, where a sensor at each individual location can produce mul-
tiple measurements. In this case, not the best measurements, but the best sensor locations must be chosen.
To achieve this goal, Willcox [37] suggests using a greedy approach. For every new measurement that must be
chosen, the proposed algorithm loops over all possible measurements. For each, a new M is constructed, and
its condition number κ(M) is computed. The new measurement that resulted in the smallest value of κ(M) is
chosen. The algorithm is greedy in the sense that at every step, the optimal sensor is chosen, but the results
of all sensors together is never considered. In other words: a local minimiser is chosen at each step. The steps
are as follows:

1. To find the best new sensor location, for each uncovered sensor location:

(a) Place a sensor at that location.

(b) Construct the matrix M using new and previous sensors.

(c) Calculate the condition number κ(M).
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2. Identify the sensor location which resulted in the smallest value of κ(M).

3. Add this sensor, delete from the list of available locations, and repeat.

The algorithm has two main downsides, but they can both be surpassed more or less. First of all, the routine is
computationally expensive, since it loops over every available sensor location for every new sensor that must
be chosen. The good news, however, is that this can all be done beforehand. Once the basis modes ψψψi are
known, the matrices M can be constructed. Specific measurement data or other information is not needed.

Second, the algorithm does not guarantee an optimal result in terms of the condition number. Even though
the sensor location resulting in the smallest condition number is chosen, there might be another equally large
set of sensors that together produce an even lower condition number. Although the results might not be op-
timal, they are almost always good in practice [37]. Typically, the condition number decreases rapidly while
adding extra sensors. If the number of measurements chosen is approximately equal or larger than the num-
ber of modes covered in the basisΨΨΨ, then the condition number becomes low enough. More optimisation is
in that case not needed.

9.4. Application of Gappy POD to magnetic field signatures

As described in Chapter 8, the goal in this part of the thesis is magnetic signature translation from above to
ship to below it. In order to reconstruct a field below the ship using Gappy POD with just measurements
above the ship, the fields above and below need to be coupled. This is done when constructing the basisΨΨΨ.
Measurements are collected of the full sensor array above and below the ship. Each measurement is a column
vector xi , of which the upper half contains measurements from above the ship, and the lower half of below
the ship. A measurement vector has the following structure:

xi = [Bu1,x ,Bu1,y ,Bu1,z ,Bu2,x , . . . ,Bum,z ,Bl1,x , . . . ,Bln,z ]T , (9.26)

where for example Bu1,x is the x-component field measurement of the first upper sensor, and Bl n,z is the z-
component field measurement of the nth lower sensor. These measurement vectors are put together into a
large matrix X and the SVD is applied to it. Following the procedures from Section 9.1 and Section 9.2, a basis
ΨΨΨ is created. This basis then consists of basis fieldsψψψi that contain both the field above and below the ship.
Therefore, when using Gappy POD, the estimated mode coefficients in â not only describe the field above the
ship, but also below the ship.

9.5. Results

In this section, results are shown of applying the Gappy POD method to the ship magnetic signature prob-
lem. First, some example results are shown to illustrate what the obtained results typically look like. Then,
a number of properties are varied and their influence is analysed: sensor choice, the number of modes, the
number of sensors, the height of the sensor arrays, and measurement noise. Throughout the subsection, the
application of Tikhonov regularisation is explored as well. All the results in this section are created using the
MoM implementation with the Rayleigh hysteresis model and parameter α = 0.1. This value introduces a
relatively small hysteresis effect.
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Figure 9.2: Example of a Gappy POD estimate of the field above the ship, for 10 modes and 10 optimally
chosen sensors (depicted by black dots).

Figure 9.3: Example of a Gappy POD estimate of the field below the ship, for 10 modes and 10 optimally
chosen sensors (depicted by black dots).

9.5.1. Examples

In Fig. 9.2 and Fig. 9.3, an example of applying Gappy POD to a measurement using 10 random sensors is
shown. Fig. 9.2 shows the three field components above the ship, the locations where the field was measured
(chosen using the algorithm from Section 9.3), the estimated field components above the ship, and the er-
ror. Fig. 9.3 shows the corresponding estimated field components below the ship (computed from the same
estimated coefficients â) and the error.

Fig. 9.4 and Fig. 9.5 shows the exact same true field and measurements, but now the field reconstruction
is performed using Gappy POD including Tikhonov regularisation. Compared to the classic Gappy POD
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Figure 9.4: Example of a Gappy POD estimate of the field above the ship, for 10 modes and 10 optimally
chosen sensors (depicted by black dots). Tikhonov regularisation is used.

Figure 9.5: Example of a Gappy POD estimate of the field below the ship, for 10 modes and 10 optimally
chosen sensors (depicted by black dots). Tikhonov regularisation is used.

method, the reconstruction is much better, with the errors being around three times smaller in every field
component above the ship, and about ten times smaller below the ship.

In Fig. 9.6, an example of mode activation estimation is given, where in one estimate Tikhonov regularisation
is used, and in the other estimate classical Gappy POD is used. It is interesting to see how close the estimate
with Tikhonov gets, while classical Gappy POD is especially far off for the higher modes, which have much
lower energy.
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Figure 9.6: Comparison of the mode activation estimates when Tikhonov regularisation is used and not used.

9.5.2. Sensor choice

The behaviour of the optimal sensor choice algorithm described in Section 9.3 was analysed. Fig. 9.7 shows
how the sensor grid is being generated, and Fig. 9.8 shows the corresponding condition number of the matrix
M. It is clear that after just as much as four chosen sensors, the condition number of M drops spectacularly.
This is expected: in general, an equal or larger number of sensors is needed than the number of considered
basis fields [7]. Only with a larger or equal number of measurements than modes it is possible to determine
the coefficients of all basis fields. With less measurements, the system that is solved is underdetermined.
With three chosen sensors, nine measurements are available, which is still too few. After choosing the fourth
sensor, the inversion is possible without too large perturbations of the solution.

Figure 9.7: Sensor choice after choosing 5, 10, 20, and 50 sensors from the grid.

Interesting to note is the order of sensor choice: most of the sensors are chosen on the outside of the region,
far away from the centre of the ship. Apparently, the distinction between the first 10 basis modes is best made
using measurements near the edges of the grid.
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Figure 9.8: Condition number after each i th sensor choice.

9.5.3. Number of modes and sensors

In this subsection, the influence of the number of modes and the number of sensors is analysed. The number
of modes was varied from 1 to 25 or 30 depending on configuration. The number of sensors has been chosen
between 1 and 100. The white noise added to the signal was taken with a standard deviation of 5 percent of
the total signal reach (max - min). For each combination of a number of modes and sensors, 100 runs were
performed using Gappy POD. In each run, a new field was applied to the ship, resulting in new measurements
and a new estimate for the field below the ship. The root mean square error of the field below the ship was
computed, and subsequently the normalised root mean square error (NRMSE) was calculated. This error is
defined as the RMSE divided by the range of the true field (its maximum value over the whole sensors array
minus its minimum value).

The results are shown in Fig. 9.9 to Fig. 9.12. The experiment was done for random sensors choice and op-
timal choice, and for classic Gappy POD and including Tikhonov regularisation. All of the four methods are
given the same fields for reconstruction, so that the four figures are directly comparable. Since 100 runs were
performed for each ’block’ in the figures, the result can seem slightly non-smooth, due to some randomness
in the presented fields and measurements.

Figure 9.9: NRMSE error of field below ship for varying number of modes and number of sensors. Standard
Gappy POD with random sensor choice is used for reconstruction. Each block displays the average NRMSE

over 100 runs with Gappy POD. All yellow blocks have NRMSE 1.0 or above.

The first thing that immediately stands out, is the large difference in error between classical Gappy POD and
Gappy POD including Tikhonov regularisation. In equal situations, Tikhonov performs in almost all cases
way better. Especially in situations where the number of sensors is (way) smaller than the number of modes,
Tikhonov regularisation outperforms. The only situations where classical Gappy POD gives acceptable results
is in the case of very few basis modes (maximum around 8), and a relatively large number of sensors. This
can be explained by the idea that if more modes are available, chances of overfitting are larger. The extra
modes always have a smaller singular value, meaning that in general, these modes do not contribute much
to the signals. However, classical Gappy POD considers them equally to the first few very important modes.
Tikhonov regularisation solves this issue by taking into account the energy of each basis mode.
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Figure 9.10: NRMSE error of field below ship for varying number of modes and number of sensors. Gappy
POD with Tikhonov regularisation, with random sensor choice is used for reconstruction. Each block

displays the average NRMSE over 100 runs with Gappy POD.

Figure 9.11: NRMSE error of field below ship for varying number of modes and number of sensors. Standard
Gappy POD with optimal sensor choice is used for reconstruction. Each block displays the average NRMSE

over 100 runs with Gappy POD. All yellow blocks have NRMSE 1.0 or above.

Another behaviour that is clearly visible from the figures, is the improvement of results when the number of
sensors is increased (for equal number of basis modes). This makes complete sense: the more measurements
are taken, the more information is available to determine the basis modes coefficients â. Consequently, a
better field estimate can be made.

Third, optimal sensor choice improves the results for classical Gappy POD compared to random choice, espe-
cially when few sensors are chosen. This is visible by the border of the yellow part (NRMSE > 1.0) in Fig. 9.11
being clearly further to the left than in Fig. 9.9. This is not strange: if only four sensors are randomly selected,
chances are relatively large that it is hard to distinguish the different basis modes from from the measure-
ments. If more sensors are chosen, the randomly selected sensors are likely to be more or less spread out over
the region, which lowers the need for smartly chosen sensors.

On the other hand, when Tikhonov regularisation is included, the optimal sensor choice does not make
much difference. This is quite a spectacular result and emphasises how powerful Tikhonov regularisation
can be. Even when choosing four random sensors, Gappy POD is in general able to estimate the field well
with Tikhonov. This is in sharp contrast with classical Gappy POD, where reconstruction results can be ru-
ined because of badly chosen sensors.

9.5.4. Height of sensor arrays

The height of both the upper and lower sensor arrays as shown in Fig. 8.1 was varied. This was done for a
fixed number of 10 modes and 10 randomly chosen sensors (so 30 measured field components). The standard
deviation of the Gaussian noise added to each measurements was for each run 5 percent of the total signal
range above the ship (max - min). In this way, the influence of a changing signal to noise ratio while varying
heights was minimised. Tikhonov regularisation was included. Each block in the figure corresponds to the
average NRMSE of the field below the ship of 10 runs.



72 9. Gappy POD

Figure 9.12: NRMSE error of field below ship for varying number of modes and number of sensors. Gappy
POD with Tikhonov regularisation, with optimal sensor choice is used for reconstruction. Each block

displays the average NRMSE over 100 runs with Gappy POD.

Figure 9.13: NRMSE error of the field below the ship for a range of heights for the upper and lower sensor
array. The left bottom corner corresponds with both sensors arrays close to the ship. Each block displays the

average NRMSE over 100 runs with Gappy POD.

Striking is that errors are so small when the sensor array above the ship is far away from the ship, and get
larger when the array is moved towards it. Probably, the strong local field effects of the ship influence the
measurements more, causing the Gappy POD reconstruction to get worse. When the sensor array is further
away, it is better possible to estimate the basis field coefficients. It is also interesting that this is the only clear
relation between error and sensor array heights. There seems to be no relation for the error between the dis-
tances of the arrays above and below the ship. For instance, it might have been expected that a combination
of an array far away above and an array far away below would work better than one array close and another
far away. However, this is not the case.

9.5.5. Noise

In Fig. 9.14, the influence of measurement noise on the reconstruction errors is explored. Again, this was
done for a fixed number of 10 modes and 10 randomly chosen sensors. Tikhonov regularisation was used.
The normalised noise standard deviation was computed by dividing the standard deviation by the range of
the signal (max - min). As expected the potential reconstruction error increases when the noise is increased.
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Figure 9.14: NRMSE error of field below ship versus normalised noise standard deviation.





10
Neural networks

Neural networks are a specific kind of machine learning models. The overall goal in every neural network is to
predict some output based on a certain input. The output can be predicted by the network because it has been
trained before, with similar data. The output can for instance be a value, a set of values, or a label. Based on
the training data, consisting of inputs and corresponding targets (desired outputs), the network tries to learn
during the training process how to predict outputs from inputs. A neural network is no ordinary numerical
model, in the sense that it is not predefined by the author how the prediction must be done, but instead the
network trains itself. This chapter describes how neural networks have been applied to the magnetic field
signature estimation problem, and the results.

10.1. Introduction

There are many types of neural networks, each fitting for their specific purpose. Two main purposes of these
networks are classification and regression. For classification, one can think of recognising objects in images,
or face recognition. Regression, however, is the process of approximating a certain value or set of values.
The neural networks used in this research are all regression neural networks: we try to estimate field data,
hence we are performing a regression. The upcoming sections will discuss the general architecture of neural
networks - what are they, and what do they consist of - followed by an explanation of the training process.
Here, the focus will be on regression neural networks.

10.1.1. Architecture

Neural networks are networks of connected neurons. A very simple network is shown in Fig. 10.1. This is an
example of a feedforward neural network, the first, simplest, and most important form of neural networks.
When an input is fed into the network, all the neurons in the network will get a value, or activation. It starts
at the left of the network: in Fig. 10.1 there are three input values (the black dots). Each of these values is sent
to the first layer of three neurons (the column of gray circles). Each neuron receives three input values. Based
on these input values, the neuron calculates its own activation. For now, suppose this is linear. Then, taking
three input values x1, x2, and x3, the neuron calculates is own activation y as

y = a1x1 +a2x2 +a3x3 +b. (10.1)

The coefficients ai are called the weights. Every connection - each arrow in the image - has a weight. These
determine how important each piece of information is in the following step. The value b is called a bias.
Every neuron has a bias value. The weights and biases together form the learnable parameters: these will
change during the training process. Now, every neuron in the first layer has calculated its activation value, and
these values are propagated to the next layer, where the process repeats. This network is called feedforward,
because all information is only propagated from the start of the network to the end - no loops exist and no
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Figure 10.1: A very simple neural network architecture, consisting of neurons and connections between
them [28].

information is transferred back to a previous layer or part of the network. Additionally, the example network
is fully-connected (or dense), since all neurons in each layer are connected to all neurons in the following
layer.

In the previous explanation, it was assumed that the activation is a linear combination of the inputs. In reality,
the power of neural networks lies in their non-linearity. This non-linearity can be achieved by first calculating
the linear combination y of inputs as in Eq. (10.1). Then, some activation function is applied to y : z = f (y).
The value z is then the final activation of the neuron. Activation functions are in general non-linear. Four
widely used activation functions are shown in Fig. 10.2. Tanh and sigmoid are often used if the input needs
to be scaled between for instance 0 and 1 or -1 and 1. Linear activation functions do not alter the neuron
activations. The ReLU function ensures that the activations can only be non-negative. Sometimes, the ReLU
function is adapted slightly to a leaky ReLU function: f (x) = max(αx, x), whereα ∈ (0,1) is typically close to 0.
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Figure 10.2: Four activation functions, adapted from [23]. The sigmoid function is defined by
σ(x) = 1

1+exp(−x) . For ReLU, α = 1 is taken.

Finally, the activations of the last layer of neurons - the output layer - provide the output value(s). In the
training process, these output values are compared to the targets, and based on this comparison, the weights
and biases in the network are altered. This optimisation continues until the outputs are no longer improving.
The training process is described in more detail in the following section.

10.1.2. Training

As explained, the goal of training the neural network is to make sure any input can be converted as well as
possible to the corresponding desired output. This is done by optimising the learnable parameters in the
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network: the weights of each connection between neurons, and the biases of every neuron. The optimisation
is based on a comparison between the output and the target (desired output). In particular, a loss function
quantifies this: the closer output and target are, the smaller the loss. The loss function usually is a function of
just the output and target. Training algorithms aim to minimise this loss L(y, ŷ), where y is the target and ŷ) is
the output. In regression problems, mostly the mean squared error (MSE) is used as a loss function:

L(y, ŷ) = 1

n

n∑
i=1

(yi − ŷi )2, (10.2)

where n is the length of the output vector.

At first, all weights and biases need to be initialised. Usually, it suffices to take for example random weights
and zero biases, and let the training algorithm find its way in optimising them. If it turns out that the training
does not progress initially, it might be needed to specifically assign initial learnable parameters. This was
never needed during this research, hence a discussion of this topic is beyond the scope of the project.

Then, the training algorithm aims to minimise the loss L(y, ŷ) iteratively. To do this, it needs to know how
changing the weights and biases a little influences the loss. In particular, the algorithm needs the gradient of
the loss function to each learnable parameter pi :

∂L

∂pi
=

n∑
j=1

∂L

∂y j

∂y j

∂pi
. (10.3)

The chain rule is used for the summation. This can be rewritten as the product of the Jacobian matrix of y
with respect to p and the gradient of L to y:

∂L

∂pi
=

(
∂y

∂p

)T

∇yL. (10.4)

The gradient can of course be calculated beforehand, if the loss function L is known. The Jacobian, however,
needs to be determined every iteration. This can be done in an efficient way by using a backpropagation
algorithm. When the gradient with respect to the learnable parameters is known, the algorithm knows in
which direction to change these parameters to find a minimum.

One of the algorithms that performs the above process is stochastic gradient descent (SGD). Out of all training
samples (combinations of inputs and targets), it chooses a few random ones that form a minibatch. For each
of the samples, gradient descent is performed. In the opposite direction of the gradient, the loss function is
minimised most. The gradient descent algorithm then moves a small distance in that direction. If all goes
well, a minimum is found iteratively. This depends on how large the step size is taken - in machine learning
also called the learning rate. As illustrated in Fig. 10.3, a learning rate that is too large may cause moving away
from the minimum. An appropriate learning rate moves slowly into the minimum. A learning rate that is very
small obviously causes a very long running time of the algorithm. Sometimes, it might be beneficial to use
an adaptive learning rate, such as one that is large in the beginning, and becomes smaller towards the end of
the optimisation. The SGD algorithm takes an average over all the individual directions of steepest descent
of the samples, and moves in that direction. In this way, a too large influence of a single sample is avoided.

small learning rate larger learning rate too large learning rate

Figure 10.3: Illustration of the effect of the learning rate on gradient descent performance, adapted from [12].
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In this research, the Adam training algorithm is used. This is an extension of the SGD algorithm. The main
extra function of Adam is an adaptive learning rate that is individual per learnable parameter. It does so
using estimates of the first and second moments of the gradients (mean and uncentred variance). Detailed
information can be found in [22].

During training, a main risk is overfitting. In this context, it means that the network learns very well how to
handle the training inputs, but at the same time performs way worse on similar but unseen data. To avoid
this, a common practice is to use an independent training set and validation set. As long as the performance
on data from the validation set increases (measured by a decreasing loss function), the training continues. If
at some point the training performance keeps improving, while validation performance becomes worse for a
certain number of consecutive iterations, the training must be stopped. Final performance of the network is
always measured using test data that is independent from the training data.

10.2. Autoencoder

The autoencoder is a special type of neural network. It is designed to reproduce as its output the exact input.
Typically, one hidden layer in the middle of the autoencoder network has less nodes then inputs. This means
that all the information of the input is at some point stored in the activations of fewer hidden nodes. In other
words, the network tries to summarise the input data. This is especially useful if for example data can be
represented by a limited amount basis modes, as is the case for magnetic signatures of a ship. The neural
networks used in this project are based on the concept of the autoencoder.

The autoencoder consists of an input layer and an equally sized output layer - since the input needs to be
exactly reconstructed. In between, a few hidden layers are placed. A schematic of the network architecture is
shown in Fig. 10.4. The activations in the bottleneck hidden layer are together called the code. The first half
of the network is said to encode the input, and the second half decodes back to a signal. Typically, the number
of neurons per layer is decreasing towards the middle.

Figure 10.4: Schematic of an autoencoder network architecture [11].

The denoising autoencoder is a network similar in architecture, but it is used to process a noisy input. The
input can be noisy in two ways: noise can be added to the individual elements of the input vector, and the
input vector can be gappy. In practice the latter is equivalent to setting some of the input vector elements to
zero. When training the denoising autoencoder, the idea is to start with an original input vector x, which is
then altered such that it becomes noisy: xn . The noisy input propagates through the network and creates a
predicted output x̂. The output is compared to the original input x, and based on this result, the network is
trained.

At first, such a denoising autoencoder was used to reconstruct the full magnetic field above the ship from
noisy and gappy measurements. As an adaptation, the network was trained with noisy and gappy input data
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from above the ship as inputs, and the full field below the ship as targets. The setup for the sensors is equal to
that for Gappy POD, as in Fig. 8.1. Just like in Section 9.4, the field vectors had the following structure:

xi = [B1,x ,B1,y ,B1,z ,B2,x , . . . ,Bn,z ]T , (10.5)

where Bi ,x is the x-component field measurement of the i th sensor.

10.3. Implementation

In designing the neural networks, many parameters were tuned. Think of network architecture (number of
layers and neurons) but also learning rate, activation functions and loss functions. For some of these, finding
an optimal configuration is a matter of trial and error. For example, tuning the learning rate can be done by
inspecting the learning curve - performance versus iterations. For other, more fundamental choices, different
possibilities have been explored. An overview of these is given in the upcoming sections, and the results of
the analyses is given in Section 10.4.

10.3.1. Network purpose, architecture, and activation functions

The networks in this research are divided in two groups: one with as purpose reconstructing the field above a
ship using potentially noisy and gappy measurements above the ship. This is done using autoencoders. The
second purpose is estimating the field below the ship using measurements above the ship. The latter are no
longer autoencoders, but modified versions.

Many different architectures were tested, but all had some things in common. Each network consists of an
input layer, a similarly sized output layer, and one or more hidden layers. If multiple hidden layers are used,
the network is symmetric, and the number of neurons decreases towards the middle bottleneck layer which
contains the code, similar to the schematic in Fig. 10.4. A larger code can be seen as a larger amount of basis
fields considered, comparing to the Gappy POD method.

As activation functions, linear functions and leaky ReLU functions with slope 0.1 were used. If all activation
functions in the network are linear, then the output is just a linear combination of the input. It is expected
that results of such a network are therefore similar to Gappy POD, which is also solving a linear system. Using
leaky ReLU function, a non-linearity is introduced in the system.

10.3.2. Loss function: physics guided neural network

As a standard regression loss function, almost always the mean squared error between output and target is
used, see Eq. (10.2). Additionally, an extension to a physics guided neural network [20] was explored. We know
that a valid output field of the network must adhere to some governing physics laws. In this situation, where
we consider magnetism, these might be Maxwell’s equations. Therefore, it might be beneficial to introduce a
penalty in the loss function which becomes zero as the network output looks more like a valid magnetic field.

From Maxwell’s equations, for the magnetic field at a sensor array outside of the ship, the following must
hold:

∇·B = 0;

∇×B = 0.
(10.6)

Additionally, under the ship, the magnetic field magnitude must decay when moving away:

∂|B|2
∂z

≤ 0. (10.7)

Note that the z-axis is defined to point in the downward direction. Of course, above the ship, this relation
would be similar with ≥.
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Not all equations from Eq. (10.6) can be checked when measuring in a horizontal plane. However, from the
zero curl equation it immediately follows that

g (B) = ∂By

∂x
− ∂Bx

∂y
= 0 (10.8)

at all points within the horizontal plane.

Rewriting Eq. (10.7), gives

Bx
∂Bx

∂z
+By

∂By

∂z
+Bz

∂Bz

∂z
≤ 0, (10.9)

and using the fact that the field needs to be divergence-free, together with the zero curl, gives the following
relation:

h(B) = Bx
∂Bz

∂x
+By

∂Bz

∂y
+Bz (−∂Bx

∂x
− ∂By

∂y
) ≤ 0. (10.10)

This leaves us with two relations Eq. (10.8) and Eq. (10.10) that depend only on the horizontal derivatives
of the field, which can be calculated. These must hold at every location in the horizontal plane. The loss
function is extended using two additional physics terms:

L(y, ŷ) = 1

n

n∑
i=1

(yi − ŷi )2 +α∑
j ,k

(g j ,k (ŷ))2 +β∑
j ,k

ReLU(h j ,k (ŷ)), (10.11)

where j ,k denote the x and y locations of the sensor array. g j ,k denotes the evaluation of the function g at
the location ( j ,k). For the calculation of its value, also other measurements may be used, hence the ŷ inside.
The square in the first physics term is chosen such that the term has a minimum in 0. For the second physics
term, it only needs to be optimised when it is larger than zero. For every negative value it should be zero,
hence the ReLU function was chosen.

The derivatives are approximated using the forward difference method. This means that on the edges of the
sensor array, the relations cannot be checked. For training purposes, also the gradient of the loss function
with respect to each of the field components is needed. The gradient vector entries were also approximated
using the forward difference scheme.

10.4. Results

In this section, the results of the implemented neural networks will be discussed. First, a comparison is made
between linear and non-linear networks, and at the same time between a ’classic’ loss function and a physics-
guided loss function. Then, the number of nodes and sensors are varied, and the implications for the network
performance are discussed. Lastly, the influence of varying the height of the upper and lower sensor array is
analysed.
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10.4.1. Linearity of the neural network and physics-guidance

In this section, the results are shown and analysed of applying the neural network for estimating the magnetic
field below the ship. For these results, a network with the following structure was used: 100 - 50 - 10 - 50 - 100
hidden neurons. Now, a comparison is made between the results with linear activation function and ReLU
activation function. Furthermore, the physics guided neural network with adapted loss function is compared
to the standard regression network with mean squared error loss.

For the first analysis, a noisy and gappy input signal was used, where Gaussian noise with standard deviation
10 nT was added, and 10 percent of measurements was set to zero. In Fig. 10.5 and Fig. 10.6, the training and
validation results are shown, respectively.

When looking at the training performance, it is clear that the physics loss function is not improving results
at all. When checking the physics conditions for results from the network without physics guidance, they are
indeed already satisfied. Clearly, the network learnt from the target data how the results should look, and
copies that in the output. And since the targets are satisfying the derived physics rules, the outputs will too.

Other than that, the training performance of the network with nonlinear leaky ReLU activation functions
between all neurons is better than that of the linear networks. However, when comparing the validation data,
it becomes clear that this is in fact just overfitting. While the results are improved for the data that the network
has seen during training, they are not for the unseen data. The validation results of the linear networks are
even slightly better.

Figure 10.5: Training performance of neural networks with linear and nonlinear activation functions, and
with and without physics terms in the loss function. A noise with standard deviation 10 nT is added, and 10
percent of measurements is set to 0. The histogram shows the occurrences of RMSE in nT of all samples in

the training set.

For the second analysis, a noisy and gappy input signal was used, where Gaussian noise with standard de-
viation 50 nT was added, and 50 percent of measurements was set to zero. Fig. 10.7 and Fig. 10.8 show the
training and validation results.

As expected, the errors are in general larger than for the previous scenario, because the measurements are
5 times more noisy and gappy. Other than that, the results are virtually the same. In the remainder of this
chapter, only linear neural networks with a classic MSE loss function are considered. Judging from these first
results, this network structure is most effective.
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Figure 10.6: Validation performance of neural networks with linear and nonlinear activation functions, and
with and without physics terms in the loss function. A noise with standard deviation 10 nT is added, and 10
percent of measurements is set to 0. The histogram shows the occurrences of RMSE in nT of all samples in

the validation set.

Figure 10.7: Training performance of neural networks with linear and nonlinear activation functions, and
with and without physics terms in the loss function. A noise with standard deviation 50 nT is added, and 50
percent of measurements is set to 0. The histogram shows the occurrences of RMSE in nT of all samples in

the training set.

10.4.2. Number of nodes and sensors

In the same way as in Section 9.5.3, the neural network performance is analysed for varying number of sen-
sors, and for a varying number of nodes in the internal layer of the neural network. Note that the linear
network that is considered here consists of an input layer of full size, an internal layer of varying size, and an
output layer of full size. The activation functions between nodes of these layers are linear.
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Figure 10.8: Validation performance of neural networks with linear and nonlinear activation functions, and
with and without physics terms in the loss function. A noise with standard deviation 50 nT is added, and 50
percent of measurements is set to 0. The histogram shows the occurrences of RMSE in nT of all samples in

the validation set

The number of internal nodes can be seen as similar to the number of modes considered in Gappy POD: they
both determine how many degrees of freedom are available when fitting a field to the available measure-
ments. If there are three internal nodes, there are effectively only three ’basis fields’ that the network will try
to fit. In this way, the results are comparable to the results of Gappy POD in Fig. 9.9 to Fig. 9.12.

In Fig. 10.9, the results for varying number of internal nodes and sensors are shown. Each block in the figure
represents one trained neural network with corresponding number of internal nodes, trained on input data
from the corresponding number of sensors. The other input data is set to zero, just as in Section 10.4.1. The
NRMSE value that is shown is the average NRMSE over the validation set, which is independent from the
training set.

Figure 10.9: NRMSE error of the field the below ship for a varying number of nodes in the internal layer and
number of sensors. A linear neural network with random sensor choice is used for reconstruction. Each

block displays the average NRMSE of the validation set after training.

Of course, the results for only one or two internal nodes (similar to one or two basis modes) are not great. As
seen in Fig. 8.2, the data contains three basis modes and hence three degrees of freedom are needed. Apart
from that, it is clearly visible that results improve when the number of sensors increases. This makes sense,
because a larger number of measurements gives more certainty on the actual magnetic field. Noise can also
be separated better from the signal when more measurements are available. A comparison to the results of
Gappy POD presented in Section 9.5.3 will be made in Section 10.5.
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10.4.3. Height of sensor arrays

Again in the same way as for Gappy POD in Section 9.5.4, various heights of the upper and lower sensor array
are compared. The results have been produced with a linear neural network with 10 internal nodes, and
10 sensors that produced measurements (30 measurements). And again, the NRMSE values are the average
NRMSE of the validation set. These results are shown in Fig. 10.10.

Figure 10.10: NRMSE error of the field below the ship for a range of heights for the upper and lower sensor
array. The left bottom corner corresponds with both sensors arrays close to the ship. Each block displays the

average NRMSE of the validation set after training of the neural network.

Overall, all errors are quite small. It is interesting to note that there is one larger error, for the sensor arrays
20 m below the origin and 20 m above. It is not clear what causes this deviation. In general, the errors are
smaller for sensor arrays closer above the ship. Apparently, the neural network can handle local effects well,
and use them for a better estimate below the ship. This is in contrast to the performance of Gappy POD, as
explained further in Section 10.5.

10.5. Comparison between neural networks and Gappy POD

In this section, we will discuss the differences and similarities between Gappy POD and linear neural net-
works. First, the practical implications are discussed: what needs to be done for both methods to be brought
in practice? After that, the relations between the results from the simulations as discussed in Section 9.5 and
Section 10.4 are analysed.

10.5.1. Practical implications

Both the Gappy POD method and neural networks need initialisation. In this thesis, the methods are ini-
tialised using simulation data. To train the neural network, noise-free and non-gappy data is needed. There-
fore, it is hard to do this with only field measurements, and it may be an obstacle when only measurements
are available. If no model to generate data is available, it might be a better choice to use Gappy POD. When
constructing the basis using the SVD, in principle noisy data can be used. The noise will be represented in
some higher order basis modes resulting from the SVD. If a proper regularisation is used, such as the Tikhonov
regularisation proposed in this work, this does not need to be a problem in applying Gappy POD.

In initialisation, training a neural network costs significantly more time and computing power than initialis-
ing the Gappy POD basis using the SVD. However, all of this work can be done beforehand using simulated or
real life measured data, so the impact is not large. However, if in a true application of these methods updates
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need to be done to the basis or network on the fly, it may be a factor of interest. This can for example be the
case to correct for model errors when the training or initialisation data was generated.

Applying the methods to measurements is somewhat less efficient in Gappy POD, since a linear system needs
to be inverted. The network creates a linear function between input and output, of which the result is easier
to computer. Unless the Gappy POD basis is enormous, however, this will not be a problem.

10.5.2. Simulation results

The results of varying number of sensors and number of modes (in Gappy POD) or internal nodes (in neural
networks) are remarkably similar if we compare Gappy POD including Tikhonov regularisation. Looking at
the two relevant figures, Fig. 9.10 and Fig. 10.9, the results are almost the same, except for some effects of
randomness in the presented fields. This means that in the process of training the linear neural network,
some automatic regularisation is applied.

That effect is probably due to how input and target data are presented to the network during training. The
input data is always noisy and gappy, but each time with a different noise and different gaps. The target data,
however, is always ’perfect’: it is the full expected field, and without noise. After a while, the network learns
to ignore the noise in the data. In the training process, the internal parameters of the network (biases and
weights), are only altered slightly in the right direction after a new set of inputs and targets. This is due to the
principle of stochastic gradient descent. If noise or gappyness would influence the parameters in one way
(overfitting), the next set of inputs and targets will perhaps try to influence them the other way. Over a large
number of inputs, the influence of noise can be averaged out in this way.

In varying heights, there is some difference between the two methods. We compare the results in Fig. 9.13
and Fig. 10.10. Two effects are interesting. First, the area where errors are small are for Gappy POD more
located where the distance of the sensor array above the ship is larger. However, for the linear neural network,
the errors are smaller when this sensor array is closer to the ship. Second, there are some outliers with a
significantly larger error than for other array heights. For Gappy POD, these are when the sensor array above
the ship is very close. In the neural network results, there is one outlier, where the sensor array above is far
away. These locations corresponds to the general error results. When analysing the error scales closely, the
larger error at -20 m and 20 m is occurring in both figures. The only difference between the figures seems to
be caused by a different way of regularisation. The neural network is able to handle local effects in the field
better than Gappy POD.
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Conclusions and recommendations

11.1. Conclusions

For magnetic signature reconstruction of ships, two different approaches were taken. The first of these is the
implementation of a Gappy POD algorithm. In this algorithm, magnetic field data of a ship, resulting from
simulations, is used to find orthogonal modes. Only a restricted number of these are used in the remainder
of the algorithm. After this initialisation, these modes are fitted to gappy and noisy measurement data. Just
as in the localisation algorithm, a method for choosing good sensors was included. This time, it focuses on
minimising the condition number of the matrix used in the system that must be solved. As an additional
feature, Tikhonov regularisation was added as an option. When fitting a large number of modes to noisy data,
a risk of overfitting arises, and Tikhonov regularisation aims to prevent this from happening.

Overall, the algorithm is able to accurately reconstruct the magnetic field of a ship, especially when Tikhonov
regularisation is used in the process. This was tested using simulated data of a simplified model of a ship.
Results varied based on the number of sensors used and how they were chosen, the number of modes con-
sidered, height of the sensor arrays, whether Tikhonov regularisation was used, and measurement noise.

For Gappy POD without Tikhonov regularisation, the results are quite well in the case where the number of
considered basis modes is very small (10 or smaller) and the number of used sensors is not too small (larger
than 5). Performance when 5% noise is added to the measurements shows a NRMSE of about 10%. However,
the results quickly become worse outside this specific area, with even a NRMSE above 1 for large numbers of
modes in combination with small numbers of sensors. In this situation, the method is overfitting on the noisy
data. This behaviour is completely solved by applying Tikhonov regularisation in the process. Modes with a
small average energy in the original data are not considered equally to modes with a large average energy.
Results show that the NRMSE when Tikhonov regularisation is included is as low as 2% to 4%.

Secondary findings from the Gappy POD results include that reconstruction performance below the ship is
better when the sensor array above the ship is not placed too close. This way, the field does not contain too
many local effects, improving the estimation of basis mode coefficients. Also, increasing the measurement
noise decreases reconstruction accuracy, as expected.

Second, a neural network was designed and trained. The architecture was based on that of an autoencoder,
with layers of neurons that create two funnels towards a centre layer with the least neurons. With the amount
of neurons in the middle layer, one can control how much information is allowed to be stored - similar to
choosing the number of modes in Gappy POD. Four variations were designed and analysed: combinations
using linear and non-linear activation functions, and with or without physics guidance. For the non-linear
activation function, a leaky ReLU function was used. Physics guidance was created using a custom loss func-
tion. If the output field is not satisfying known physics rules for magnetism, a penalty is applied, forcing the
network to learn fields that satisfy physics. In this way, the neural network turns from a fully data-driven
method into a hybrid method: both data and underlying physics are used.

87
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In equal conditions, the non-linear neural network performs better than its linear counterpart in training.
However, its validation performance is slightly worse than for the linear network. This indicates overfitting:
the non-linear network is able to better learn how to process the given inputs, but this is less generalisable to
unseen inputs.

Neural network performance does not change when adding physics guidance. Even when no physics rules
are given to the network, it learns what a valid field looks like. This is possibly due to combining several basis
modes in the final output: if each of those fields satisfy physics rules, then the linear combination will too.
This behaviour was confirmed by checking the physics penalty terms, which were indeed (close to) zero.

The network performance does not differ much when altering the number of sensors or the number of middle
layer neurons. Overall, performance is better than Gappy POD without Tikhonov regularisation. This is true
especially when a large number of modes is chosen in Gappy POD, corresponding to a large number of middle
layer neurons. The neural network results remain consistent relative to a smaller number of ’modes’, while
the Gappy POD error increases spectacularly. Apparently, some regularisation is automatically applied when
training the network. However, the neural network performance is worse than Gappy POD with Tikhonov
regularisation.

The variation of number of internal nodes and number of sensors in a linear neural network gives results very
similar to Gappy POD with Tikhonov regularisation. The network turns out to be capable of recognising noise
in the training input, and avoid overfitting. This automatic regularisation comes from the way of training the
network: noisy and gappy data is fed into the network, but the target data is always noise-free and gap-free.
After being confronted with many noisy and gappy inputs, and perfect output data, the network is after a
while able to ignore input noise.

11.2. Recommendations

First, this thesis is somewhat theoretical, and not yet going into the actual application. The final goal of the
signatures part of this thesis would be to use actual magnetic field measurements conducted from an aerial
drone to estimate signatures. For that, some steps need to be taken. The signal will be measured in time, so
some processing needs to be done to get a spatial signal. This is not trivial, since speed can have a significant
impact on the signal in time, and errors in location data must be considered. Also, the height of the drone
may vary, so measurements in a 3D space need to be considered. This is of course an opportunity as well:
with height included, it can be very interesting to look at what optimal paths around a ship can be taken to
estimate its signature as well as possible.

Additionally, it would be interesting to look into time series neural networks and convolutional neural net-
works to catch hysteresis effects. In this thesis, just a brief exploration of non-linear neural networks was
done. However, deep structures were not considered. Using these, it might for example be possible to involve
the expected hysteresis effects in signature estimations.

Finally, throughout this thesis, only white noise has been considered as sensor noise. In real life, other errors
can play a role: there can be other magnetic sources, or there can be errors in location data. To compensate for
these is a lot harder than to compensate for white noise, which can eventually be averaged out. If a structural
error is present, it needs to be determined whether it belongs to the ship or is indeed an error that needs
to be compensated for. In solving these problems, the physics-guided neural network may come into play.
Further development of that model could potentially result in better error detection and suppression in the
final estimates.



Bibliography

[1] AHMED, N., NATARAJAN, T., AND RAO, K. R. Discrete Cosine Transform. IEEE Transactions on Computers
C-23, 1 (1974), 90–93.

[2] BALDWIN, J. Rayleigh hysteresis - A new look at an old law. IEEE Transactions on Magnetics 14, 2 (1978),
81–84.

[3] BALL, P. The tyranny of simple explanations. https://www.theatlantic.com/science/archive/2016/08/occams-
razor/495332/, aug 2016.

[4] BARANIUK, R., DAVENPORT, M., DEVORE, R., AND WAKIN, M. A simple proof of the restricted isometry
property for random matrices. Constructive Approximation 28, 3 (2008), 253–263.

[5] BJÖRCK, Å. Numerical methods for least squares problems. Society for Industrial and Applied Mathemat-
ics, 1996.

[6] BJÖRCK, Å. Numerical methods in matrix computations, vol. 59 of Texts in Applied Mathematics.
Springer, 2015.

[7] BRUNTON, S. L., AND KUTZ, J. N. Data-driven science and engineering: machine learning, dynamical
systems, and control. Cambridge University Press, 2019.

[8] CANDÈS, E. J. The restricted isometry property and its implications for compressed sensing. Comptes
Rendus Mathematique 346, 9-10 (2008), 589–592.

[9] CANDES, E. J., AND WAKIN, M. B. An introduction to compressive sampling. IEEE Signal Processing
Magazine 25, 2 (2008), 21–30.

[10] CLARK, E., KUTZ, J. N., AND BRUNTON, S. L. Sensor selection with cost constraints for dynamically
relevant bases. IEEE Sensors Journal 20, 19 (2020), 11674–11687.

[11] DERTAT, A. Applied deep learning - part 3: Autoencoders. https://towardsdatascience.com/applied-
deep-learning-part-3-autoencoders-1c083af4d798, oct 2017.

[12] DONGES, N. Gradient descent: an introduction to 1 of machine learning’s most popular algorithms.
https://builtin.com/data-science/gradient-descent, jun 2019.

[13] ECKART, C., AND YOUNG, G. The approximation of one matrix by another of lower rank. Psychometrika
1, 3 (1936), 211–218.

[14] GRANT, M., AND BOYD, S. Graph implementations for nonsmooth convex programs. In Recent Advances
in Learning and Control, V. Blondel, S. Boyd, and H. Kimura, Eds., vol. 371 of Lecture Notes in Control and
Information Sciences. Springer-Verlag Limited, 2008, pp. 95–110.

[15] GRANT, M., AND BOYD, S. CVX: Matlab Software for Disciplined Convex Programming, version 2.2.
http://cvxr.com/cvx, 2014.

[16] GRIFFITHS, D. J. Introduction to Electrodynamics, 4th ed. Prentice Hall, Upper Saddle River, N.J., 2017.

[17] HOLMES, J. J. Exploitation of a ship’s magnetic field signatures, vol. 9. Morgan & Claypool, 2006.

[18] JACKSON, J. D. Magnetostatics, Faraday’s law, quasi-static Fields. In Classical Electrodynamics, 3rd ed.
Wiley, New York, N.Y., 1998, ch. 5.

89



90 Bibliography

[19] JIN, H., GUO, J., WANG, H., ZHUANG, Z., QIN, J., AND WANG, T. Magnetic anomaly detection and
localization using orthogonal basis of magnetic tensor contraction. IEEE Transactions on Geoscience
and Remote Sensing 58, 8 (2020), 5944–5954.

[20] KARPATNE, A., WATKINS, W., READ, J., AND KUMAR, V. Physics-guided neural networks (pgnn): An
application in lake temperature modeling. ArXiv abs/1710.11431 (2017).

[21] KE, W., ZHANG, X., YUAN, Y., AND SHAO, J. Compressing sensing based source localization for con-
trolled acoustic signals using distributed microphone arrays. Mathematical Problems in Engineering
2017 (2017).

[22] KINGMA, D. P., AND BA, J. Adam: a method for stochastic optimization. In ICLR (2015).

[23] KOBRAN, D., AND BANYS, D. Activation Function. https://docs.paperspace.com/machine-
learning/wiki/activation-function, 2020.

[24] MEHROTRA, S. On the implementation of a primal-dual interior point method. SIAM Journal on Opti-
mization 2, 4 (1992), 575–601.

[25] MORANDI, A., FABBRI, M., AND RIBANI, P. L. A modified formulation of the volume integral equations
method for 3-D magnetostatics. IEEE Transactions on Magnetics 46, 11 (2010), 3848–3859.

[26] NOS. Container met gifstoffen uit MSC Zoe gelokaliseerd. https://nos.nl/artikel/2278154-container-
met-gifstoffen-uit-msc-zoe-gelokaliseerd, mar 2019.

[27] NOS. Laatste restanten MSC Zoe-containers in Waddenzee opgeruimd. https://nos.nl/artikel/2327802-
laatste-restanten-msc-zoe-containers-in-waddenzee-opgeruimd, mar 2020.

[28] OFFNFOPT. A neural network with multiple layers. https://commons.wikimedia.org/wiki/File:Multi-
Layer_Neural_Network-Vector.svg, apr 2015.

[29] PAPERNO, E., SASADA, I., AND LEONOVICH, E. A new method for magnetic position and orientation
tracking. IEEE Transactions on Magnetics 37, 4 (2001), 1938–1940.

[30] QAISAR, S., BILAL, R. M., IQBAL, W., NAUREEN, M., AND LEE, S. Compressive sensing: From theory to
applications, a survey. Journal of Communications and Networks 15, 5 (2013), 443–456.

[31] SHANNON, C. E. Communication in the presence of noise. Proceedings of the IRE 37, 1 (1949), 10–21.

[32] SPIEGEL, M. R., LIPSCHUTZ, S., AND LIU, J. Schaum’s outline of mathematical handbook of formulas
and tables, 3rd ed. McGraw-Hill, 2008.

[33] TOH, K.-C., TODD, M. J., AND TÜTÜNCÜ, R. H. SDPT3 — a Matlab software package for semidefinite
programming. Optimization Methods and Software 11 (1999), 545–581.

[34] TOH, K.-C., TODD, M. J., AND TÜTÜNCÜ, R. H. On the implementation and usage of SDPT3– A MATLAB
software package for semidefinite-quadratic-linear programming, version 4.0. International Series in
Operations Research and Management Science 166 (2012), 715–754.

[35] TROPP, J. A. Greed is good: Algorithmic results for sparse approximation. IEEE Transactions on Infor-
mation Theory 50, 10 (2004), 2231–2242.

[36] VAN DEN BERG, J. Hoe de MSC Zoe 342 containers verloor (en de kapitein het pas vijf uur later
doorhad). https://www.volkskrant.nl/nieuws-achtergrond/hoe-de-msc-zoe-342-containers-verloor-
en-de-kapitein-het-pas-vijf-uur-later-doorhad∼b38fe9af/, jun 2020.

[37] WILLCOX, K. Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition.
Computers & Fluids 35, 2 (2006), 208–226.

[38] WILSON, C. A. From Kepler’s laws, so-called, to universal gravitation: Empirical factors. Archive for
History of Exact Sciences 6, 2 (1970), 89–170.

[39] ZUREK, S. Magnetic domains in a single grain. https://www.e-
magnetica.pl/doku.php/magnetic_domain, apr 2021.


	Abstract
	Acronyms
	Introduction
	Introduction and motivation
	Background of data-driven techniques
	Research goals and approach
	Outline

	Magnetostatics
	Maxwell's equations and the vector potential
	Solving the magnetostatic equations

	Biot-Savart
	Multipole expansion
	Magnetic field of a point dipole
	Magnetisation

	Prerequisites from linear algebra
	Relevant definitions in linear algebra
	Norms
	Vector norms
	Matrix norms

	Singular value decomposition (SVD)
	QR decomposition
	Gram-Schmidt process
	Column pivoting

	Condition number

	I Magnetic dipole localisation
	Compressed sensing
	Compression
	Sparse representation
	Compressed sensing
	Sparse solution recovery
	Relaxation from 0 to 1 for noise-free measurements
	Relaxation from 0 to 1 for noisy measurements
	Convexity of the minimisation problems

	Characterising and solving the minimisation problems

	Localisation algorithm
	Problem description
	Applying compressed sensing to magnetic dipole localisation
	Overview of the algorithm
	Basis initialisation
	Sensor choice
	Performing measurements
	1 optimisation
	Classification: estimating magnetic dipole location and moment

	Extended algorithm using iterations
	Alternative field estimation algorithm using SVD-basis

	Results and discussion
	Simulation results
	Noise
	Number of sensors and sensor choice
	True magnetic dipole location
	Iterations

	Verification using measurements
	Experimental setup
	Results


	Conclusions and recommendations
	Conclusions
	Recommendations


	II Magnetic signature translation
	Magnetic signatures of a ship
	Problem description
	Physical model

	Gappy POD
	POD: Proper orthogonal decomposition
	Gappy POD: gappy proper orthogonal decomposition
	Tikhonov regularisation

	Choosing measurements
	Application of Gappy POD to magnetic field signatures
	Results
	Examples
	Sensor choice
	Number of modes and sensors
	Height of sensor arrays
	Noise


	Neural networks
	Introduction
	Architecture
	Training

	Autoencoder
	Implementation
	Network purpose, architecture, and activation functions
	Loss function: physics guided neural network

	Results
	Linearity of the neural network and physics-guidance
	Number of nodes and sensors
	Height of sensor arrays

	Comparison between neural networks and Gappy POD
	Practical implications
	Simulation results


	Conclusions and recommendations
	Conclusions
	Recommendations

	Bibliography


