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Abstract 

Given its geographical location and history, water defense is of utmost importance for the 

Netherlands. Structural Health Monitoring (SHM) offers a promising approach for system 

identification of hydraulic structures in this water defense system. The aim of SHM is to set 

sensors on structures and use the monitored responses to identify structural parameters of 

interest. However, many pertaining questions are unanswered concerning realistic hydraulic 

structures and monitoring systems: What type of sensors (e.g. strain gauge, SAAF, etc.) can 

and should be used in the monitoring system? How many sensors are needed, where and when 

to install these sensors? What is the influence of construction stages of structures on system 

identification? Considering the evaluation of a structure, what is the influence of system 

identification as well as construction stages on reliability (failure probability) of structures? 

Considering practical implementation: which computational algorithm is suitable and feasible? 

How to construct a proper surrogate model of the mechanical model to reduce computational 

time? 

To answer these questions, a single anchored sheet pile wall is studied using a probabilistic 

approach. The sheet pile wall is modeled using the finite element (FE) method, synthetic data 

are used and Bayesian approach is adopted to cope with measurement uncertainty and model 

uncertainty. The information conveyed by sensors is quantified by the Kullback–Leibler (KL) 

divergence between prior and posterior distributions. Moreover, the correlation in model 

uncertainty of various structural responses is quantified by comparing a full-scale experiment 

from the literature and a corresponding calibrated 3D finite element model.  

The results show that: 

• A combination of different sensor types (in our case they are SAAF and strain gauge) 

should be used in the monitoring system (e.g. the combination of four different types 

of sensors outperforms the strain sensors on the sheet pile wall by conveying 40% more 

information with respect to the former); 

• Even limited number of sensors can convey sufficient information. In our case, 3 

sensors placed at proper locations can convey 90% information carried by 6, 8 and 9 

sensors considering different responses. They should be installed as early as possible; 
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• The failure probability computed using posterior from system identification largely 

decreases compared with that computed using prior (the ratio of prior and posterior 

failure probabilities can go up to 1510  in our case); 

• Delay of the start of monitoring during the construction stages decreases the 

information conveyed by sensors in system identification (the conveyed information 

can decrease by 50% in our case) and increases the computed failure probability in 

reliability analysis: the ratio of prior and posterior failure probabilities can be as large 

as 
3010 ); 

• MultiNest performs well in Bayesian inference in high dimensional problems; 

• Gaussian process regression (GPR) with anisotropic radial basis function (RBF) kernel 

and white kernel as well as an adaptive infilling criterion is capable of constructing an 

accurate surrogate model even when it goes to high dimensionality. The error of 

surrogate model prediction can be explicitly explained. 

To my knowledge the work presented in this thesis is the first application of combined system 

identification and reliability assessment for hydraulic structures, and the first detailed analysis 

of the effect of sensor installation time on system identification and structural reliability of 

hydraulic structures. 

The findings imply that probabilistic system identification is a promising approach to 

substantially reduce our uncertainty in modelling hydraulic structures and in turns to increase 

their calculated safety. The approach has the potential to extend the working life of aging 

hydraulics structures and save costly strengthening and replacement. The analysis framework 

can also be applied to other structures in civil engineering. 

  



 

7 

 

Acknowledgement 

I am very much grateful to my daily supervisor Árpád Rózsás in TNO, who kindly provided 

me with help for all the difficulty I met during the graduation project. He patiently and clearly 

taught me on probabilistic knowledge, programming, presentation, writing, etc. These are the 

most precious treasure I gained during my study in the past two years. It is my pleasure and my 

honor to work with him and to learn from him. 

I would also like to thank Arthur Slobbe. He gave me a lot of advice on my work as well as my 

thesis writing at each progress meeting. I am thankful to Ana Teixeira for her advice related to 

geotechnical engineering and numerical setting of Plaxis. I would like to thank Max Hendriks, 

Timo Schweckendiek and Yuguang Yang to join my committee. They gave me valuable 

feedback on my results after every meeting and suggestions/comments on my thesis draft. 

I am also grateful to work in the Department of Structural Reliability in TNO, people here are 

all friendly and helpful. I would like to address special thanks to Diego Allaix, the 

conversations with him are really helpful and appreciated. I would also like to thank the support 

of Deltares, which kindly provides the laptop, the Plaxis license and the access to their powerful 

computer. The developers of the open-source applications, e.g. Plaxis and Python and the 

researchers who made their work public are highly appreciated. 

Many thanks to my friends with whom I enjoyed the two-year life in the Netherlands. The 

travelling with my friends over the Europe is a great memory and very much appreciated.  

I would like to express the greatest thanks to my father, who brought me up and supports my 

study at TU Delft financially and mentally. With his encouragement I have no fear to move 

forward!  



 

8 

 

Glossary 

The terminology and notation used here are based on the terminology accepted and used in (i) 

mathematical statistics and probability theory; (ii) structural reliability; (iii) 

geotechnical/hydraulic engineering. The roman numerals indicate precedence in case of 

conflicting terminology or notation in different fields. For clarity, the definition of some key 

terms are given here.  

Coupled physical-probabilistic model: a model which contains both a physical model and a 

probabilistic model that are coupled, e.g. some or all parameters in the physical model 

are represented as random variables. 

Distribution fitting: a part of statistical inference in mathematical statistics. In this study it is 

restricted to parameter estimation (inference) of probabilistic models. 

Hydraulic structure: a load bearing structure that is fully or partially submerged in water and 

disrupts the flow of water. 

Minimal problem: a problem that is as simple as possible yet able to capture the essential 

features of the examined question; “as simple as possible, but no simpler”. Minimal is 

used in the sense of minimal working example in programming. 

Model: a mathematical representation of selected characteristics of an object or phenomenon. 

Parameter estimation uncertainty: statistical uncertainty in the parameters of a given 

probabilistic model type, i.e. probabilistic model uncertainty is excluded. 

Physical model ( Ph ): a deterministic model which describes/represents a physical 

phenomenon. Note that it can be empirical, first principles based, analytical (symbolic), 

numerical, etc. Provided with the same inputs it always yields the same outputs. 

Examples of physical models:  

• a standardized, symbolic formula to calculate the shear resistance of a reinforced 

concrete beam; 

• a nonlinear finite element model. 
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Probabilistic model ( Pr ): a model which describes/represents uncertainties. Here, we 

consider only approaches which comply with probability theory, e.g. fuzzy models are 

excluded. 

Probabilistic model uncertainty: statistical uncertainty in the mathematical representation of 

the probabilistic model, i.e. model type. 

Statistical inference: “the process of drawing conclusions about populations or other 

collections of objects about which we have only partial knowledge from samples” (Simon, 

1997). 

Statistical uncertainty: uncertainty stemming from finite sample size and in turns from 

sampling variability. We treat it as composed of two components: parameter estimation 

uncertainty and probabilistic model uncertainty 

System identification: one of the key concepts in this study and referred to with many names in 

different disciplines and branches of engineering: in the geotechnical literature it is often 

termed back analysis, in aerospace and structural engineering system (or more 

particularly damage) identification. In structural reliability, although more encompassing, 

the term model (or Bayesian) updating is often used to refer to this problem. In almost 

all of the mentioned fields the term inverse analysis is frequently used. In this report the 

term system identification is decided to be used..  

Synthetic data: data that is generated from a fully known model opposed to real data that is 

measured on a real system. The model used to generate synthetic data is often meant to 

represent a real system. In this work, synthetic data refers to data that is generated 

(simulated) from a finite element model and contaminated with random realizations from 

a known probabilistic model to add uncertainty.  
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1 Introduction 

1.1 Motivation 

Given its geographical location and history, water defense is of utmost importance for the 

Netherlands, e.g. 21% of its population lives under the sea level, about 60% of the Netherlands 

is flood prone, and about 55% of its GDP is in the 50 km zone of its coastline (Slomp, 2012). 

To further illustrate the importance of the water defense system: it is estimated that the flood 

of 1953 incurred about 5.4 billion euros damage (present day cost) and claimed 1836 lives 

(Rijkswaterstaat). On a European level: “The value of the economic assets within 500 m of the 

coastline is estimated at € 500-1000 billion. In addition, 35% (€ 3.5 trillion) of the total GDP 

of the 22 European coastal member states is generated in the area within 50 km of the coast, an 

area which hosts moreover 1/3rd of the EU population.” (Union, 2009). 

Hydraulic structures, such as sheet pile walls, play an essential role in this water defense system, 

which are usually constructed to retain earth, water, or any other filling materials. Sheet pile 

walls (see Annex B) are usually steel-made and relatively thin, e.g. 12 mm, and hence 

susceptible to corrosion which can be undesirable aesthetically or compromise structural safety. 

In addition, most of these structures were built decades ago and are now approaching the end 

of their lifetime. Therefore, it is necessary to regularly inspect these retaining walls to assess if 

they still comply with safety requirements and to make decisions if they should be strengthened 

or even replaced.  

The current approach to make such decisions is based on engineers’ inspection and judgement, 

which is very costly, labor-intensive and time-consuming considering the enormous size of 

hydraulic structures. For example, it could take hours or even days to inspect a several 

kilometers long dike. These inspections occur on a regular basis or when signs of problems are 

observed/reported (e.g. when problems experienced with cranes standing on the high side of 

sheet pile wall due to increased settlement). Neither the regular or the warning-triggered 

inspections lead to an optimal intervention time. Moreover, such inspection is highly dependent 

on the skills and experience of the inspector, and it is often limited by the accessibility of 

elements, e.g. foundations, which means some damage may remain hidden for a long time. 

Besides, the result of these inspections is not guaranteed to be accurate or perfect as humans 

could make mistakes, especially during time-consuming and repetitive tasks, which may lead 

to waste of labor and budget (e.g. some sheet pile walls still in good condition are replaced). 
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All these considerations constitute the motivation of automated structural health monitoring 

(SHM).  

SHM offers an alternative and complementary approach to the current inspection techniques 

with reduced human labor. In a typical and complete SHM system, sensors are installed on a 

structure to collect data automatically, and then information is extracted that describes the 

response of the structure (e.g. deformation) and structural parameters (e.g. bending stiffness of 

a sheet pile) or soil parameters (e.g. elastic modulus). Another advantage of SHM is that since 

it is a real-time monitoring process, a warning system could be built on top of it based on 

collected data so that the abnormal behavior of structures, e.g. very large deformations, could 

be noticed quasi instantly. Moreover, considering the design and evaluation aspect, lower 

partial factor might be used due to reduced uncertainty gained by the SHM system. This has 

the potential to make structural design less conservative and thus may lead to a more economic 

design and maintenance. 

1.2 Research questions 

At present, there are hundreds of hydraulic structures in the Netherlands, and around 250 of 

them will have to be replaced in the coming decades and another 800 of them may no longer 

function properly in the future (Lassing & Barneveld). They are becoming vulnerable due to 

aging, erosion, etc. Thus, SHM could be used as an efficient tool to detect possible current 

damages, and in the long run, it could act as a warning system as mentioned above to 

dynamically provide warning on the onset of failure. To achieve this goal, system 

identification1 based on data from monitoring system could be performed to locate the damages 

(e.g. (Peeters, 2000)), and reliability based methods are widely used to assess structures by 

computing the failure probability (e.g. (Teixeira et al., 2015)). However, there is seldom a 

combination of SHM-based system identification and reliability analysis. This knowledge gap 

is the motivation of this study and raises the main research question: 

What is the effect of monitoring hydraulic structures on structural reliability? What is 

the influence of starting the monitoring at different construction stages? 

Although SHM has been developed for decades, it is still not widely applied in practice and 

there are important challenges both in theory and practice. One common and ubiquitous 

                                                 
1 It represents soil parameter identification in this thesis. Detailed description can be found in Glossary. 
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challenge in designing monitoring systems is the selection of sensor type and their placement 

(Papadimitriou, 2004). An optimized sensor configuration can largely reduce the number of 

needed sensors and thus save budget and labor. Although many methods exist to place sensors 

optimally in a SHM system, e.g. (Papadimitriou & Lombaert, 2012; Yi, Li, & Gu, 2011), and 

application of that in civil engineering, for instance a bridge example is presented in (Meo & 

Zumpano, 2005), there is limited information for hydraulic structures. Therefore, the following 

sub questions are considered for the SHM of hydraulic structures: 

1. What type of sensors can be and should be used? 

2. How many sensors are needed, where to put these sensors and when to install them 

(during construction or afterwards)? 

After the data is collected by the sensors of  a monitoring system, the assessment of the state 

of a structure (e.g. the determination of some structural parameters) is the most crucial aspect. 

This procedure is referred to as system identification, in which a physical model (e.g. finite 

element (FE) model) is included to describe the complex mechanical behavior of a typical civil 

engineering structure. The essence of system identification is to use the data from sensors to 

calibrate the physical model to minimize the difference between the measured values and 

model predictions (see e.g. (Capecchi & Vestroni, 1999)). However, by reviewing the system 

identification literature for hydraulic structures with focusing on requirements for practical 

applicability, the following limitations and/or challenges are identified (the details of the 

literature review with comprehensive references to the reviewed papers are presented in 

Chapter 2): 

• Uncertainties (i.e. the residual difference after calibration) are often not considered 

(deterministic analysis rather than probabilistic) (see e.g. (J. Deng, Lee, & sciences, 

2001; Levasseur, Malecot, Boulon, & Flavigny, 2008)), which are however inevitably 

present; 

• When uncertainty is considered, observations are almost always considered to be 

independent, i.e. the effect of correlation is not explored (see e.g. (J Zhang, Tang, 

Zhang, & Engineering, 2009; L. L. Zhang, Zhang, Zhang, & Tang, 2010)); 

• In case of probabilistic analysis (Bayesian inference) typically only two parameters are 

identified, and the highest number is four, see e.g. (Kelly & Huang, 2015; L. Wang, 
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Hwang, Luo, Juang, Xiao, et al., 2013), more parameters are expected to be influential 

in practical applications; 

Therefore, these limitations lead to the following sub question: 

3. Which Bayesian computational method fits best in the context of probabilistic system 

identification of realistic hydraulic structures that are characterized  by 

computationally expensive likelihood functions considering correlation, high 

dimensionality (i.e. more parameters are considered simultaneously) and multimodal 

and/or degenerate posteriors? 

Also, to evaluate the performance of such inference, or equivalently to estimate the information 

conveyed by sensors, it is favorable to introduce a quantitative criterion as it makes evaluation 

more straightforward. And thus it results in this sub question: 

4. How to quantitatively evaluate the information conveyed by sensors? 

In practical implementation, the physical model is usually required to run thousands or tens of 

thousands times to perform Bayesian inference. This is too computational expensive and 

practically intractable, for example it would not make sense to make decisions after days of 

calculation if structural failure really happens. Therefore, a surrogate model, which is 

considerably cheaper in computation, could be constructed to replace the physical model and 

to support the extensive calculations. Since the surrogate modeling approaches in the hydraulic 

structures system identification literature cannot be scaled to higher dimensional cases – as 

they deal with low dimensional, simplified cases, we have to seek an answer to another sub 

question: 

5. How to construct an accurate surrogate model of the physical model in a reasonable 

computation time? 

1.3 Approach 

In this study a probabilistic approach is selected to identify the non-directly observable soil 

parameters. In contrast with many hydraulic and geotechnical engineering studies we formulate 

the engineering problem in a rigorous mathematical form and adopt the language and methods 

widely used in mathematical statistics, probability theory, and information theory. The 

Bayesian paradigm is selected for representing, interpreting, and calculating probabilities. One 

of the main reasons for this is its compatibility with engineering and structural reliability way 
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of thinking about the world and models. A (physical) model based approach is selected that has 

at its core a numerical model that is based on our understanding of structural and soil mechanics. 

The other approach in SHM is a data-driven modelling (Worden & Manson, 2007), see for 

example to following applications (Diez et al., 2016; Lang et al., 2008). However, the data-

driven approach is deemed inadequate in our context where we aim to gain insight into the 

structural behavior on the abstraction and modeling level of current engineering, e.g. to learn 

about soil properties which are not directly observed. A high level, schematic overview of the 

adopted approach is shown in Figure 1.1. 

 

Figure 1.1: A schematic overview of the approach used in this study. 

The core idea of this probabilistic approach is to treat the unknown parameters as random 

variables and make inference of them by considering measurement and model uncertainties, 

and use the updated information of the unknowns in reliability analysis. When observations are 

collected from sensors on real structures, measurement uncertainty appears due to the potential 

error of measuring devices, improper installation, and/or operation of such devices. Moreover, 

there is also model uncertainty that is the difference between FE models (model predictions) 

and real structures. If these uncertainties are taken into account, a joint distribution of the 

estimated parameters can be obtained through Bayesian inference. Then reliability analysis can 

proceed straightforwardly2 using the joint distribution of the estimated parameters as inputs.  

Therefore, three main steps are taken to develop this approach:  

                                                 
2 Conceptually straightforward but numerically challenging as it is requires the accurate estimation of the tail of 

the joint density function since that is expected to govern reliability. 
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➢ The construction of surrogate models of the monitored structural responses (i.e. 

replacement of FE model to reduce computational time). 

➢ The estimation of the non-directly observed parameters, e.g. soil parameters by 

Bayesian inference. 

➢ The assessment of the structural safety (i.e. reliability analysis) based on the inferred 

parameter distributions to serve decision making. 

1.4 Scope and limitations 

In this thesis solely a (physical) model driven approach to SHM and system identification is 

considered. This study uses two sheet pile wall structures modelled in Plaxis 2D and Plaxis 3D 

(Brinkgreve, Kumarswamy, Swolfs, Zampich, & Manoj, 2019) respectively to explore the 

research questions given above. In case of the 2D sheet pile wall model, the considered number 

of dimensions of the probabilistic model is up to eight, while some crucial parameters are 

assumed to be known, i.e. deterministic (e.g. external loading). In this case, synthetic 

observations are used and generated using Plaxis. Model uncertainty and measurement 

uncertainty are both assumed to follow a multivariable normal distribution with correlation 

taken into consideration (model uncertainty is modelled as a Gaussian process regression). It 

is important to note that in this case, we use location based data rather than time series data, 

which might not be representative of realistic structural behavior over time. The measurement 

and model uncertainties are assumed to be fixed, i.e. not updated during the Bayesian inference. 

Then in the 3D model, which is calibrated to a full-scale experiment, the correlation between 

model uncertainties of different sensors is investigated. Bayesian inference is not performed as 

it takes too much time (i.e. more than one hour) to run a single Plaxis analysis.  

Even though this study is related to hydraulic structures, the method and the core idea of 

combining monitoring data, Bayesian inference and reliability analysis  can be easily applied 

to other engineering structures or even other fields as well. 

1.5 Contributions 

Since the domain of SHM is an active and rapidly evolving research area with contributions of  

researchers from all over the world, this section aims to mark briefly the main contributions of 

this work. They are harmonized with the research questions and the literature review. Detailed 

support for the novelty of these contributions can be found in Chapter 2 in the literature review. 
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➢ Combination of system identification and structural reliability for hydraulic structures, 

first time in the open literature. 

➢ Analysis of the impact of construction stages on SHM of hydraulic structures. 

➢ Application of nested sampling for SHM based inference and reliability analysis; to my 

knowledge the first time in the open literature. 

➢ Proposal of a novel surrogating approach (active learning Gaussian process regression). 

➢ Proposal for a general mathematical model that encompasses measurement 

uncertainties, physical model uncertainties, and surrogate model uncertainties. The 

quantification and inclusion of the latter in the system identification of hydraulic 

structures is believed to be the first time in the open literature.  

➢ Other implementation related contributions: implementation of a custom, Python-based 

program with the following features: programmatic control of Plaxis, inference, 

reliability assessment (reference to Annex A where all the particular packages are listed, 

given for the various tasks). 

1.6 Thesis structure 

This thesis has five chapters. First, an introduction including the research motivation and 

research goals is presented in chapter 1. Chapter 2 reviews the relevant literature on SHM with 

a particular focus on the domains of hydraulic structures and geotechnical structures. 

Furthermore, the contributions of this thesis are highlighted. Next, the adopted methodology is 

elaborated in chapter 3, including the handling of uncertainty, the essence of Bayesian 

inference, the construction of surrogate models, and the principals of a reliability-based 

assessment. With this, the ingredients to answer the research questions are introduced. Chapter 

4 presents the analysis to two sheet pile wall systems (namely 2D and 3D model) that are 

deemed to be complex enough to represent real life structures, which demonstrates the 

feasibility and utility of the proposed methodology, and to answer the research questions. 

Finally, the conclusions and recommendations are given along with an outlook for future work. 
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2 Literature review  

2.1 Overview 

As a preparation to answer the research questions, the relevant literature is studied to survey 

the current state-of-the-art and to find potential knowledge gaps with focus on hydraulic 

structures (and particular subtopics are treated in more details in chapter 3). Firstly, general 

monitoring systems in SHM are reviewed. Then some methods of system identification are 

discussed with particular focus on Bayesian approaches as it is a sound way to account for 

uncertainties. Different research studies are presented and their contributions and limitations 

are discussed. Furthermore, attention is paid to the implementation of several Bayesian 

computational methods, as well as the use of surrogate models in the civil engineering field. 

Finally, literature regarding the assessment of structures in the support of decision making is 

studied. 

2.2 Structural health monitoring – Data collection 

2.2.1 Definition  

During the service life of a civil structure, it may be subjected to natural actions (such as 

earthquakes, flood, and metal oxidation) and severe accidental impacts due to human behavior 

(e.g. collision), which can lead to a considerable damage and/or a reduction of its life time. It 

is crucial to detect such damage as early as possible and evaluate the reliability level of the 

structure. Besides, it is also crucial to learn the actual conditions of a structure to reduce 

uncertainty of structural properties (e.g. soil parameters in a sheet pile wall system). One 

approach to achieve these goals is via structural health monitoring (SHM) that is intensively 

researched for decades and still an active area with many open challenges. There are generally 

two components in SHM. One is monitoring, which is the process of collecting information 

about a structure in a systematic and often fully automated fashion, e.g. accelerometers 

installed on a bridge, continuously measuring and logging data into a database. The information 

collection in monitoring refers solely to the process of measuring and logging data that is 

measured by sensors, i.e. there is no or little post-processing of the data involved. This potential 

little post-processing is only considered at the sensor level and the structure itself will not be 
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involved. The second component of SHM is the post-processing of the data that requires 

knowledge of the structure. An example of that is system identification, which will be further 

discussed in section 2.3. The explanation of SHM above could also be found in (Balageas, 

2006), “Structural Health Monitoring (SHM) aims to give, at every moment during the life of 

a structure, a diagnosis of the “state” of the constituent materials, of the different parts, and of 

the full assembly of these parts constituting the structure as a whole”.  

2.2.2 Examples of application 

A complete and mature SHM system usually aims at continuously, remotely, and automatedly 

monitoring the performance of a structure by using different kinds of sensors to collect 

responses. This is a solid foundation to acquire and process data and then to detect the potential 

damage or learn the current condition of structures. And due to the boom of sensor technology, 

it is now possible to construct complex but efficient monitoring system in different structures. 

For example, Dascotte, Strobbe, and Tygesen (2013) described a wind and structural health 

monitoring system (WASHMS) that is deployed by the Hong Kong Highways Department to 

monitor the structural performance of the Stonecutters Bridge and to evaluate possible defects. 

H. S. Park, Lee, Adeli, and Lee (2007) proposed to include terrestrial laser scanning (TLS) in 

the monitoring system to overcome the difficulties of in situ instrumentation of sensors on large 

structures (e.g. high-rise buildings). Multiple sensors like inclinometers and Shaped Accel 

Arrays (SAAs) were installed on the retaining walls of the launch shaft at Aughoose to monitor 

its behavior after construction in (Baily, Kieran, Goggins, & McCabe, 2014). Furthermore, 

Fabbrocino, Laorenza, Rainieri, and Santucci de Magistris (2009) implemented a monitoring 

system, “Casa dello Studente” to monitor the dynamic behavior of a flexible retaining wall 

under seismic load. However, considering the efficiency of monitoring system, guidance is 

seldom available regarding how many and what type sensors should be installed, and where to 

install them. 

2.3 Structural health monitoring – Evaluation 

2.3.1 System identification 

Once the monitoring system is built and data is collected, the next step in the process of 

evaluating the “health” of a structure is system identification (Collins, Hart, Hasselman, & 

Kennedy, 1974). This widely adopted approach focuses on the estimation of structural 

properties from responses collected by sensors installed on a structure. For instance, Dragos 
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and Smarsly (2015) identified the potential loosening of the plate-to-column connections of a 

four-story frame structure by a comparison between the initial state of a finite element (FE) 

model and a simulated damaged state. In the hydraulic and geotechnical context, system 

identification is also broadly used to identify soil parameters. For example, Levasseur et al. 

(2008) adopted the least square method to identify the dilatancy angle and the shear modulus 

in a hypothetical sheet pile wall system. Tang and Kung (2009) proposed an efficient way, 

nonlinear optimization technique (NOT) to identify soil parameters like elastic modulus and 

Poisson’s ratio in case with deep excavation.  

Generally, the aforementioned applications of system identification use the data collected by 

sensors deterministically, which means that they neglect the potential uncertainty when moving 

from reality to physical model and from real structural responses to data collected by sensors. 

However, uncertainties are always present and often substantial in case of civil engineering 

structures (JCSS, 2000), particularly geotechnical structures (Phoon & Tang, 2019). Just 

consider the immensely expensive and hence scarce or often non-existent full-scale 

experiments which could be used to validate models and reduce modelling uncertainty. The 

Bayesian paradigm offers a framework to quantify and propagate uncertainties. Multiple 

researchers have explored its potential, for example, Kelly and Huang (2015) adopted Bayesian 

inference to identify soil parameters like unit weight in a synthetic one dimensional 

consolidation soil model. Their analysis includes measurement error. Miro, Konig, Hartmann, 

and Schanz (2015) used Bayesian inference with a lumped uncertainty (measurement and 

statistical uncertainty) in the system identification of a shallow tunnel. L. L. Zhang et al. (2010) 

inferred the cohesion coefficient and the friction angle in a hypothetical slop failure case, 

considering an additive model uncertainty. L. Wang, Hwang, Luo, Juang, and Xiao (2013) 

included measurement uncertainty in the identification of the slope failure on the NO.3 freeway 

in Taiwan. X. Y. Li, Zhang, and Jiang (2016) and Ering and Babu (2016) considered both 

measurement uncertainty and model uncertainty to infer soil properties in the excavation of a 

530m high rock slop and in a rainfall-induced landslide case respectively. Finally, L. Zhang et 

al. (2018) included only measurement uncertainty and used multiple types of observations (e.g. 

displacement, ground water level, water pressure, etc.) to conduct Bayesian inference in a soil 

slope under rainfall infiltration. More details of these studies are summarized in Table 2.1. 

Though the applications are different, the common limitation of these studies is that the 

considered dimensionality is quite low, i.e. the considered parameters are relatively small in 

number (i.e. on average four). In reality, however, more (soil) parameters could be influential. 
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Another limitation is that the effect of construction stages on system identification is rarely 

(not) investigated, as most of these studies focus on existing structures. And in their work, 

uncertainties are usually not explicitly explained (i.e. lumped uncertainties are used), or they 

are not complete (i.e. only measurement uncertainty or model uncertainty is considered). 

2.3.2 Bayesian computational methods 

Once the system identification problem is formulated as a Bayesian inference problem, we 

need a computational method to solve it. For low dimensional problems (i.e. when no more 

than 3 parameters are to be inferred), the brute force/straightforward numerical integration 

method can be used and there is no need for e.g. sophisticated sampling based methods. 

However, numerical integration becomes practically intractable when moving to higher 

dimensionality (arguments  supporting this claim can be found in section 3.4). Therefore, other 

computation algorithms are adopted to circumvent the integration. Considering the application 

in hydraulic structures, these algorithms often belong to the group of Markov Chain Monte 

Carlo (MCMC), among which Metropolis-Hastings (MH) MCMC is particularly preferred. For 

example, both L. L. Zhang et al. (2010) and L. Wang, Hwang, Luo, Juang, and Xiao (2013) 

adopt Metropolis-Hastings (MH) MCMC to replace the calculation of integrals.  

However, as summarized in (MacKay & JC, 2003), MH MCMC usually has a low acceptance 

rate and needs a large amount of evaluations. Furthermore, in its vanilla form it is not capable 

of exploring distributions with separate modes and it has difficulties with degenerate posterior. 

2.3.3 Surrogate model 

No matter which computational method as described in section 2.3.2 is selected, numerous 

calculations of the physical model (e.g. FE model) are inevitable, and the computation time 

could be easily in the order of days, which is never desirable. Hence, often a surrogate model 

is constructed as a cheap-to-evaluate replacement of the computationally demanding model. 

Some research studies demonstrate the feasibility of surrogate models in system identification 

within the hydraulic structures context. For example, D. Park and Park (2017) used a first 

order polynomial model to simulate the ground deformation to identify the deformation 

modulus and stress ratio of soil in a railway tunnel case. Both Miro et al. (2015) and L. L. 

Zhang et al. (2010) used a quadratic polynomial model to replace the costly outputs of FE 

software. Besides, Xu and Low (2006) used a second-order polynomial without intersection 

terms to surrogate the factor of safety in the assessment of stability of embankments.  
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Yet with reference to Forrester, Sobester, and Keane (2008), polynomials models (also called 

response surface models) are not suitable for the highly nonlinear and multidimensional cases 

that most engineering problems belong to, and once constructed, they provide very limited 

guidance about where we could continue the sampling process. And they often cannot be scaled 

to higher dimensional cases while maintaining a reasonable computational time. Therefore, a 

more flexible global surrogate model which is general and capable of tackling  realistic 

engineering problems should be explored to overcome such limitations. 

2.4 Assessment methods 

After the system identification is finished, there are typically two ways to decide whether a 

structure is safe or not as summarized by  Jonkman, Steenbergen, Morales-Napoles, 

Vrouwenvelder, and Vrijling (2015) . One is referred as semi-probabilistic method, which for 

example, the Partial Factor Design, relies on partial factors of inputs and is computationally 

cheap (e.g. could even be performed by a calculator). For instance, Ivanov (2013) adopted the 

semi-probabilistic method to assess the hull girder section modulus. And Sykora, Holicky, and 

Markova (2013) used the same way in verification of reinforced concrete bridges. The second 

way to assess the safety of a structure is the reliability-based method (also referred as 

probabilistic approach), such as Monte Carlo simulation and first order reliability method 

(FORM), which compute the failure probability of a structure. For example, Schweckendiek 

(2006) used FORM to calculate the structural failure probability (e.g. failure of sheet pile wall 

and anchor) and used directional adaptive response surface sampling (DARS) to assess the soil 

failure in a sheet pile system. The whole system failure is then considered by method 

‘Hohenbichler’ proposed by Hohenbichler and Rackwitz (1982). Wolters, Bakker, and De Gijt 

(2013) adopted FORM to perform reliability assessment for both soil failure and structural 

failure. Teixeira et al. (2015) used FORM to calculate the failure probability of soil and 

directional sampling for the structural failure. Beck and Au (2002) updated the reliability of a 

moment-resisting frame by Monte Carlo simulation. Schweckendiek and Kanning (2016) 

combined Bayesian reliability updating method and Monte Carlo simulation to analyze the 

slope stability of dikes. 

Nevertheless, semi-probabilistic approaches trade quick calculation for flexibility, and they are 

only applicable to cases to which they are calibrated using reliability methods.  . And in the 

literature where a reliability-based method is used, the distributions of input parameters are 

assumed to be known (e.g. normal distribution with a given mean and standard deviation), 
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seldom of them performs structural assessment using the results of SHM based system 

identification. 
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Table 2.1: Overview of previous works in system identification of hydraulic and geotechnical structures (the variables and acronyms are explained in Table 2.2). Studies with probabilistic system identifications where 

the uncertainty in the estimated parameters is quantified are highlighted with italic font. 

 ~ Probabilistic model ~Mechanical model Surrogate model 

Decision 

making 

support 

Reference 
Inferred 

parameters 

Dimensio

nality 

Parameter 

estimation 
Uncertainty 

Likelihood 

function 

Measured 

parameters 

Analysed 

case(s) 

Physical 

model 

Model type Model 

fitting 

 

(Arai, Ohta, 

& Kojima, 

1987) 

G, q, k 3 LS No (deterministic) NA 

Displacements 

(translation) over 

time 

Hypothetical 

and real 

2D LFEA 

& 2D 

NLFEA 

NA NA NA 

(Honjo, Wen-

Tsung, & 

Guha, 1994) 

E, k 

 
Up to 14 

Extended 

Bayesian method; 

(optimization to 

find the smallest 

AIC) 

Measurement noise 

MND 

without 

correlation 

Horizontal and 

vertical 

displacements 

3 m high control 

embankment 

2D LFEA NA NA NA 

(Ledesma, 

Gens, & 

Alonso, 1996) 

E, K0 2 ML Measurement error 
MND with 

correlation 

Horizontal and 

vertical 

displacements 

Hypothetical 

2D LFEA NA NA NA 

(Gens, 

Ledesma, & 

Alonso, 1996) 

3 × E, K0 4 ML and LS Measurement error 
MND with 

correlation 

Vertical, horizontal 

displacements 

Real (tunnel 

section) 

2D LFEA NA NA NA 

(J. H. Deng & 

Lee, 2001) 
6× E 6 LS with GA No (deterministic) NA Displacements  

Profile 17–17 of 

the permanent 

ship lock slope 

at the Three 

Gorges Project 

3D FEA 

linear and 

nonlinear 

as well 

Back-propagation 

neural network 

NA NA 

(Levasseur, 

Malécot, 

Boulon, & 

Flavigny, 

2007)  

G, φ, K0 or 

G, φ, ψ 
3 LS No (deterministic) NA 

Pressure meter curve 

and the horizontal 

displacements 

Sheet pile wall 

(hypothetical 

based on a real 

case) 

and pressure 

meter test 

2D 

NLFEA 

NA NA NA 
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(Tang & 

Kung, 2009) 

G/σv, E/G, 

Eur/G, Rf, ν 
5 LS (NOT) No (deterministic) NA 

Displacements 

(translation), wall 

deflection 

Deep 

excavations 

(hypothetical 

and real cases) 

NLFEA NA NA NA 

(L. L. Zhang 

et al., 2010)   
c, 2 × φ 3 

Bayesian, 

Metropolis-

Hastings 

Additive model 

uncertainty 

MND 

without 

correlation 

Observation of slop 

failure, indicated by 

safety factor 

Hypothetical 

slope failure; 

Morgenstern–

Price method 

NLFEA Quadratic 

polynomial 

response surface 

NA NA 

(J. Zhang, 

Tang Wilson, 

& Zhang, 

2010)  

c, φ, K0 

or 3× G, φ 
3, 4 MAP estimation Lumped 

MND 

without 

correlation 

Observation of slop 

failure, indicated by 

safety factor 

Slope stability 

Analytical 

model 

function 

NA NA NA 

(Moreira et 

al., 2013) 

c, φ, E, K0 

(not all 

together) 

3 LS (GA, ES) No (deterministic) NA 
Up to 4 

measurements 

Synthetic case 

with tunnel 

excavation 

3D 

NLFEA 

NA NA NA 

(L. Wang, 

Hwang, Luo, 

Juang, & 

Xiao, 2013) 

φ, T 2 Bayesian, MCMC 
Measurement 

uncertainty 

MND 

without 

correlation 

Observation of slop 

failure, indicated by 

safety factor 

Slope failure at 

a site on Free- 

way No. 3 in 

northern 

Taiwan 

Analytical 

model 

function 

NA NA NA 

(Kelly & 

Huang, 2015)  
m, H, ϒ, cv 4 

Bayesian, 

DRAM 
Measurement error 

MND 

without 

correlation 

Settlements and 

excess pore pressure 

Synthetic 

example 

one-

dimensional 

consolidation 

soil model 

Analytical 

model 

function 

NA NA NA 

(Miro et al., 

2015)  

Eur, Eoed, φ, 

ϒun 
4 

Bayesian 

Metropolis-

Hastings 

Lumped uncertainty 

MND 

without 

correlation 

Settlements and 

horizontal 

displacements 

Shallow tunnel 

3D 

NLFEA 

Quadratic 

polynomial 

response surface 

NA NA 

(Chen, Zhao, 

Ru, & Li, 

2015) 

4 × E, 2× 

K0 
6 

MAP (does not 

produce 
No (deterministic) 

MND with 

correlation 
Displacement 

Slope stability 

of a permanent 

ship lock within 

FLAC Support vector 

machine 

NA NA 
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uncertainty 

estimates) 

the Three 

Gorges project 

(X. Y. Li et al., 

2016) 
6 × E, v 7 

Bayesian 

MCMC (however 

no uncertainty 

ranges are 

reported, only 

mean values) 

Measurement 

uncertainty, 

model uncertainty 

MND 

without 

correlation 

Surface 

displacement 

Excavation of a 

530 m high rock 

slope 

FLAC 3D Second order 

polynomial function 

NA NA 

(Ering & 

Babu, 2016) 
c, φ, Ms 3 

Bayesian 

(conjugate 

posterior) 

measurement 

uncertainty, 

model uncertainty 

MND 

without 

correlation 

Slope behavior 

Rainfall-

induced 

landslide 

FLAC NA NA NA 

(D. Park & 

Park, 2017) 
E, K0 2 

Optimization 

using  successive 

response surfaces 

No (deterministic) NA Displacements Railway tunnel 

Analytical 

model 

function 

First order 

polynomial with 

mixed terms 

NA NA 

(L. Zhang et 

al., 2018) 
E, k 2 

Bayesian, 

DREAM 

Measurement 

uncertainty 

MND 

without 

correlation 

Displacements, 

ground water level, 

pore water 

pressures, water 

contents, etc. 

Soil slope under 

rainfall 

infiltration 

2D 

NLFEA in 

ABAQUS 

NA NA NA 

This work E, φ, ϒ, c Up to 8 
MultiNest (nested 

sampling) 

Measurement and 

model uncertainty 

(including physical 

and surrogate model 

uncertainty) 

MND with 

correlation 

Strain, displacement 

(up to 24 sensors 

considered) 

Synthetic case, 

Single anchored 

sheet pile wall 

Single 

anchored 

sheet pile 

wall, 

2D 

NLFEA 

Gaussian process 

regression 

Adaptive 

fitting 

strategy 

Prior and 

posterior 

reliability 

analyses 
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Table 2.2: Explanation of symbols used in Table 2.1. 

Symbols Description  Symbols Description 

q initial tangent modulus of rigidity ϒun Unsaturated unit weight 

E Young's modulus  cv coefficient of vertical consolidation 

Eur Unloading reloading stiffness Rf Failure ratio 

Eoed Tangent stiffness for primary oedometer loading v Poisson’s ratio 

k Coefficient of permeability σv Consolidation pressure 

K0 The ratio of horizontal to vertical in situ total stress MND Multivariate normal distribution 

G Shear modulus ML Maximum likelihood method 

φ Friction angle LS Least square method 

ψ Dilatancy angle DRAM Delayed rejection adaptive Metropolis 

c Cohesion coefficient DREAM Differential Evolution Adaptive Metropolis algorithm 

T Anchor force FLAC Fast Lagrangian analysis of continua 

m coefficient of volume compressibility NLFEA Nonlinear finite element analysis 

σc Uniaxial compressive stress MAP Maximum a posterior estimation 

ρ Coefficient of geological strength index GA Genetical algorithm 

Ms matric suction   
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3 Methods and tools 

3.1 Overview 

This chapter elaborates the adopted methods and tools. To start with and as a preparation of 

Bayesian inference, a surrogate model needs to be constructed to replace the computationally 

expensive FE model, which is used as a convenient tool to capture the mechanical behavior of 

structures.  Next, the details of the Bayesian inference are presented: how prior knowledge and 

measured data are combined while accounting for uncertainties in order to identify system 

parameters. After that, the performance of inference could be quantitatively evaluated and the 

reliability assessment which plays a key role in decision making is outlined.  

3.2 Surrogate models 

Bayesian inference requires a large number (> 103-104) of likelihood function evaluations (see 

section 3.4.1for further details), each of which requires an evaluation of the physical model. 

One typical example of physical model is the finite element (FE) model, which uses FE method 

to numerically solve differential equations that are commonly used to formulate the 

mathematical model of real structure. Even though FE model is widely used in engineering to 

model complex mechanical system, each evaluation time of it can vary from minutes to days 

depending on its scale. In our case considering the large number of evaluations, the 

computational time is a challenging issue and hence a surrogate model is usually adopted as a 

cheap-to-evaluate replacement of computationally demanding model. 

Surrogate modeling for low-dimensional (≤3) cases can be done with at a relatively low 

computational time by the naive approach of using a uniformly spaced grid. However, with 

increasing dimensionality the required number of points increases exponentially, hence 

rendering this naive approach computationally intractable. In these cases adaptive surrogate 

modeling approaches can be used to reduce the computational time. These approaches are 

generating new points for fitting the surrogate model in a sequential manner, while the new 

points are placed at locations where the expected improvement of the surrogate model is large. 

An advantage of the naive approach is that the same, single set of analyses can be used to obtain 

arbitrary number of surrogate models, e.g. horizontal displacement in point A and point B. This 
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advantage might be lost when the adaptive approach is used as that is specific to one surrogate 

model, i.e. (to some extent) separate adaptive surrogate model building is needed for point A 

and point B.  

In this study the more involved, adaptive approach is used as the considered dimensionality 

could be up to eight. Several type of surrogate models and tools are considered and listed in 

Table 3.1. 

With reference to Owen, Challenor, Menon, and Bennani (2017), Gaussian process regression 

has several advantages in our work and is chosen to build surrogate models. For example, it is 

suitable for a nonlinear model which most engineering problems are. Moreover, it provides 

estimation of prediction variance, which allows for an adaptive fitting that is driven by the 

largest variance (see section 3.2.4). Besides, it is possible to introduce noise by Gaussian 

process to avoid overfitting, which will be discussed in section 3.2.8. The introduction and 

derivation of this section are mainly from Williams and Rasmussen (2006) and  Forrester et al. 

(2008).
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Table 3.1: Overview of surrogating tools. 

Name Language Function type Adaptive modeling Comments 

pyKriging Python Ordinary kriging Yes  

(MSE and EI) 

Not maintained anymore 

pySOT Python GPR, MARS, polynomial, etc. Yes For surrogate based optimization, pure surrogating seems to be not available (adaptive sampling is probably driven 

by the optimization but we need a good fit over the entire support). 

SMT Python Kriging, polynomial, KPLS, etc.  No  

scikit-learn Python GPR, SVR, ridge regression, etc. No General machine learning package 

SUMO Matlab Radial basis function, polynomial, 

kriging 

Yes  

DACE Matlab Ordinary kriging No Only for fitting kriging models 

ooDACE Matlab Kriging No Object oriented version of DACE 

MSE – mean squared error 

EI – expected improvement 

GPR – Gaussian process regression 

SVR – support vector machine 

MARS - Multivariate Adaptive Regression Splines  

KPLS – Kriging Partial Least Squares 

http://pykriging.com/
http://pysot.readthedocs.io/en/latest/
https://smt.readthedocs.io/en/latest/
https://scikit-learn.org/stable/
http://sumo.intec.ugent.be/
http://www2.imm.dtu.dk/projects/dace/dace.pdf
http://sumo.intec.ugent.be/ooDACE
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3.2.1 Gaussian process  

Williams and Rasmussen (2006) gives a formal definition of Gaussian process (GP), “A 

Gaussian process is a collection of random variables, any finite number of which have a joint 

Gaussian distribution”. This joint distribution, denoted as ( )f x , is determined by a mean 

function ( )m x  and a covariance function ( , ')k x x : 

  ( ) ( )m E f=x x   (3.1) 

 ( , ) [( ( ) ( ))( ( ) ( ))]k E f m f m  = − −x x x x x x   (3.2) 

Where  and 'x x indicate any two values (or vectors) of variables. 

And this Gaussian process will be written as: 

 ( ) ~ ( ( ), ( , ))f GP m k x x x x   (3.3) 

Since a GP is a collection of random variables, it requires a property of consistency which is 

automatically met if the elements of the covariance matrix are obtained from the same 

covariance function. The consistency means that if a certain GP is defined, then any number of 

samples from this Gaussian process will be a multivariate normal distribution. For example, if 

a set of samples, 1 1 2 2( , ), ( , ), , ( , )n ny y yx x x  are drawn from the same GP, then 

 ( )( )

1

2

1
~ , n nn

n

y

y
N m

y



 
 
 
 
 
 

x K   (3.4) 

Where each entry in ( )
1n

m


x  is equal to µ, while n nK  is the correlation matrix in which each 

entry is calculated by covariance function ( , ')k x x . Equivalently, the sample y are drawn from 

a normal distribution with mean of µ and standard deviation σ , and then they are assigned 

correlation by covariance function ( , ')k x x . This property explains how we construct a 

Gaussian process regression (GPR) model: given a set of samples 1 2, , , nx x x  and the 

corresponding outputs (i.e. function values) 1 2, , , ny y y , they could be correlated by the 

covariance function and reconstructed to approximate the real corresponding GP. Then 

prediction at a new sampling point could be made by considering the correlation between the 

new point and the given points. This assumption implies that we expect that the to-be-
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surrogated function (i.e. an engineering function) will behave smoothly and continuously . And 

how the surrogated function behaves largely depends on the choice of covariance function, 

which will be detailed in section 3.2.1.1. 

3.2.1.1 Kernel 

The covariance function ( , ')k x x , which is called the kernel of GP, indicates the dependence 

or correlation between two points , 'x x . The parameters used to define a kernel function are 

called hyperparameters. The kernel could be classified into stationary and non-stationary types. 

The former means that the value of kernel function only depends on the relative distance 

between two points, and the closer the two points are, the more correlated and similar they are, 

and thus the closer their corresponding function values are. In contrast, the non-stationary 

kernel also considers the absolute location of the given points. In addition, kernels can also be 

classified into anisotropic and isotropic types. The former means that the kernel function 

behaves differently, or has different hyperparameters along different dimensions/axes, while 

the latter refers to a kernel which has the same hyperparameters in all directions (the 

terminology is equivalent to the terminology used in structural engineering for materials). In 

our work, only stationary kernels are considered. Several common kernels taken from 

Duvenaud (2014) are shown in Figure 3.1, of which two, namely the white kernel and radial 

basis function (RBF) kernel are detailed in the next two sections. 

 

Figure 3.1: Kernels in Gaussian process regression [Duvenaud (2014)]. 

3.2.1.2 White kernel 

This kernel can be used to introduce noise to the GPR model and can be defined by the 

following equation: 

 
if

( , )
0 otherwise

  i j

i jk
 =

= 


x x
x x   (3.5) 

Where 
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,i jx x   the ith and jth data points; 

   noise level. 

3.2.1.3 Radial basis function (squared exponential) kernel (RBF) 

Isotropic case: 

 

2

2

2

( )
ex)

2
( , p

i j

j fik 
 −
−  

=

 

x x
x x   (3.6) 

Anisotropic case: 
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j f
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k 
=

 −
 −
 

=

 


x x

x
L

x   (3.7) 

Where 

d  dimensionality (i.e. number of random variables); 

 length scale, is a scale for isotropic kernel, indicates the correlation between two 

sampling points; 

L  length scale, is a vector of length d  for anisotropic kernel; 

2

f  signal variance or function variance. 

3.2.2 Model construction of Gaussian process regression 

As explained previously, the construction of a Gaussian process regression (GPR) model aims 

at finding the approximation of corresponding real GP based on the given data and a selected  

kernel. There generally two steps needed. Firstly, a number of initial sampling points are 

selected to build a basic “framework” of the surrogate model. Then more sampling points are 

added adaptively to improve the accuracy.  

3.2.2.1 Initial design 

To construct a surrogate of the simulator, which refers to the to-be-surrogated function/model 

from herein, the selection of initial sampling points considering their position and  number is 

crucial. The former could be done based on for example, Latin Hypercube (LH) scheme, while 

the latter highly depends on the simulator and hence general recommendations of it cannot be 
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made. However, for expensive simulators it is advised to start with a minimal number of initial 

points and add additional ones (the strategy for adding further points is explained in section 

3.2.4). Razavi, Tolson, and Burn (2012) has summarized some recommendations about the 

number of initial points for different situations which are given in Table 3.2. 

Table 3.2: Overview of selected number of initial points. 

 Comments  

10p dim=   Kriging and RBFs 

2dimp =  Samples the corner of variable space 

2( 1)p dim= +  Kriging and RBFs 

max[2( 1),0.1 ]p dim n= +  If computational budget is permitted, it could achieve better 

global accuracy with more sampling points. 

0.35p n=  An upper bound for deceptive and multimodal simulators 

p: approximate number of initial points 

dim: dimensionality  

n: total number of simulator evaluations, accounts for computational budget. 

 

3.2.2.2 Hyperparameters estimation of kernel 

Given an initial set of sampling points, a proper kernel is required to connect these samples and 

make predictions. Even though there are many kernels available and some of them are even 

capable to capture periodicity in the output, such a behavior is not expected in our context. 

After experimenting with different options we settled with the following options for the 

surrogate modeling:  

A composite kernel which is the summation of an anisotropic RBF kernel and a white kernel.  

The former component ensures the smoothness of GPR model, while the latter can capture 

potential numerical noise. The noise part is crucial to avoid numerical error and overfitting. 

Then the last step to finish the construction of the GPR model is to estimate the 

hyperparameters from data based on the Maximum likelihood method.  

Suppose there are a set of initial sample data, 
1 2{ , ,..., }T

n=X x x x  and the corresponding output 

vector 
1 2{ , ,..., }T

ny y y=y generated from a GP. Based on the definition, the output y is 
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equivalently the observation of the GP with a mean µ and standard deviation σ. Then the 

probability of the occurrence of these y can be expressed in a likelihood function: 

 

2

1

2

( )

2

2 2

1
( | , )

(2 )

n

i

i

µy

n
L µ e 



=

− −

=y   (3.8) 

The to-be-estimated hyperparameters should maximize the likelihood to assure that the given 

output y is most likely to be drawn. But this likelihood function is not complete yet as the 

correlation between samples is not included. This correlation is represented by kernel function 

as introduced previously, and if correlation is considered, the likelihood function of y could be 

rewritten as: 

 

1

2

( ) ( )

2

1
2 2 2

1
( | , , )

(2 )

T

hyper

n
L eµ

 





−− −
−

=

y 1 K y 1
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  (3.9) 

Where 1 is a unit vector with length of n,
hyper

θ  is the hyperparameters in the kernel function 

embedded in K, which is the correlation matrix calculated based on the kernel function: 
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  (3.10) 

For simplification and numerical reasons (e.g. if the value is very close to zero, it can cause 

problems with double precision calculations), this likelihood function is often taken the natural 

logarithm: 

 ( )
1

2

2

( ) ( )
ln ( | , , ) ln(2 ) ln(2 ) ln( )

2 2 2 2

T
hyper n n n

L µ
 

  


−− −
= − − − −

y 1 K y 1
y θ K   (3.11) 

The estimation of m and σ ,indicated as ˆ ˆ,m    could be obtained by taking the derivatives of  

this equation: 

 

 

1

1
ˆ

T

T
µ

−

−
=

1 K y

1 K 1
  (3.12) 
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1
2 ˆ ˆ( ) ( )

ˆ
T

n

 


−− −
=

y 1 K y 1
  (3.13) 

These two result can be substituted back to equation (3.11) and since the aim is to maximize 

the likelihood, the constant components could be discarded and the result is: 

 ( )hyper 2ˆln ( | ) ln(2 ) ln( )
2 2

n n
L − −y θ K   (3.14) 

Then 
hyper
θ  could be found by either global search method like genetic algorithm, or by 

gradient-ascent based optimization method to maximize equation (3.14). This estimation is 

transformed into an optimization problem with potentially multiple maxima, hence the 

optimization is performed multiple times using different random initial values each time. For 

each time, there are (1 1)dim+ +  hyperparameters to be determined where dim is the 

dimensionality, corresponding to one signal variance (
f ), dim length scale (l), and one noise 

level ( ). Since each evaluation of the ln-likelihood function requires the inverse of the 

correlation matrix that is a square matrix with rows equal to the sample points, and also because 

more sampling points are needed for high dimensional spaces, the computational time will 

inevitably increase with higher dimensionality.   

3.2.3 Prediction by Gaussian process regression 

After the GPR model is constructed and the hyperparameters are estimated, prediction can be 

made straightforwardly. The core idea is to connect the to-be-predicted output ŷ  (at position 

x̂ ) with given outputs (y) using the kernel function, and then to maximize the likelihood of all 

outputs ( ŷ  and y). 

Firstly, ŷ and y are merged into a new vector ˆ{ , }Ty=y y  , then the correlation between ŷ  and 

y is indicated by: 
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  (3.15) 
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Now the new correlation matrix is: 

 
ˆ

ˆ

 
 
  

T

K K
K =

K 1
  (3.16) 

So the ln-likelihood of all outputs is: 
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And only the last term depends on ŷ , hence the ln-likelihood can be written as: 
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The maximum of equation (3.18) can be found easily taking derivative to ŷ  and setting the 

equation to zero. This will obtain the ultimate prediction of ŷ : 

 1ˆˆ ˆ( )µ̂y −= + −T
K K y 1   (3.19) 

Afterwards, the mean squared error (MSE) or variance of this prediction can be computed as: 
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  (3.20) 

The elaboration of this variance can be found in (Hoyle, 2006) and it is the key in adaptive 

fitting in next section. 

3.2.4 Adaptive fitting of Gaussian process regression model 

Generally, a surrogate constructed with initial sampling point is not accurate enough due to the 

limited number of initial points. It can be improved by adding additional sampling points based 

on a certain criterion (acquisition function). This process is referred as adaptive fitting or 

infilling. Forrester et al. (2008) summarizes two general ways to perform infilling. One is 

exploitation, which focuses on a particular region that is relevant from the application point of 

view, for example in case of optimization the region of the current optimum, the next infilling 
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point would be at where the expected improvement is the maximum. This is called local 

surrogate in this thesis. The other is exploration, which focuses on a general global 

improvement of the surrogate model and requests the next point where the predicted variance, 

or MSE is the largest. This is called global surrogate in this work. 

Considering the application of local surrogate in Bayesian inference, a few studies are 

summarized in Table 3.3. They are based on different infilling criteria, of which the core idea 

is to infill the next point to obtain the largest reduction in differential entropy or KL divergence. 

This is a much more efficient method as most of the infilling points will be around the peaks 

of likelihood or posterior.  

Table 3.3: A cursory overview of studies using local surrogating. 

 simulator Infilling criterion 

(Kandasamy, Schneider, & Póczos, 

2017) 

likelihood negative expected divergence (NDE) + 

exponentiated variance(EV) 

(J. Li & Marzouk, 2014) posterior KL divergence 

(H. Wang & Li, 2018) posterior entropy 

(Takhtaganov & Müller, 2018) physical model expected improvement 

 

As for the global surrogate, the infilling criterion could be used to add the next point where the 

largest MSE or variance calculated by equation (3.20) occurs. This maximum could be found 

by global search method, e.g. genetic algorithm (GA) or by gradient based techniques. Global 

surrogating is a more general problem and not limited to Bayesian inference as the simulator 

is usually the physical model (e.g. FE model). A comparison is given between global surrogate 

and local surrogate in Table 3.4. Also considering the advantage of global surrogate that it 

could be reused in reliability assessment in section 3.5, global surrogate is adopted in this thesis. 
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Table 3.4: Comparison between global surrogate and local surrogate. 

Global surrogate Local surrogate 

Surrogate of physical model is built with 

paying equal attention to all regions of the 

support. The total volume of the support is 

increasing exponentially with increasing 

dimensions. 

Surrogate of physical model, likelihood or 

posterior is built with paying more attention 

to regions of the support which are identified 

to be important for the analyzed case. The 

total volume of the important regions is 

expected to be much smaller than the total 

volume of the support. 

Good reusability.  

Once the surrogate model is constructed, it 

can be used for: 

• new observations of the same 

sensors; 

• new combination of sensors; 

• different likelihood function (with 

some limitations), 

• different priors (with some 

limitations). 

  

Not reusable. 

The surrogate model is built iteratively based 

on the obtained likelihood or posterior given 

a specific value of observation. In other 

words, it focuses on the accuracy only in the 

concentrated zone in likelihood or posterior. 

The surrogate model should be reconstructed 

if:  

• new observations are used 

• new combination of sensors are used, 

• the likelihood function changes, 

• the prior changes. 

It takes considerable computation time to 

achieve the global convergence, and some of 

the work is redundant (e.g. the extreme value 

of parameters might never be used). 

Computationally efficient as only the most 

crucial part is surrogated. 

 

3.2.5 Stopping criterion 

In this study the following  stopping criterion is proposed and used to break the process of 

adaptive fitting: 

 
max rangenoise y −     (3.21) 

where 
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max  The maximum of the predicted standard deviation (square root of equation (3.20)); 

noise  Square root of noise level in white kernel; it is set to zero if white kernel is not used. 

  A percentage controlling the stopping criterion. 

rangey  The range of the output of all sampling points (i.e. absolute difference between the 

maximum and the minimum). 

 

I did not find a general rule to set the value of   as it highly depends on the simulator and the 

dimensionality. In our work, a value of 0.005 =  works quite well to achieve a very low 

value of relative error (RE), which is defined as: 

 

 
predict simulator

simulator

y y
RE

y

−
=   (3.22) 

To demonstrate the adequacy of the stopping criterion an example with four dimensions is 

given. A set of (i.e. 166) initial sampling points are generated in Plaxis, then more sampling 

points are added based on the previous infilling criterion. After each additional point is added, 

the GPR model is updated and the value of max noise −  is displayed in Figure 3.3. Then 300 

testing points are used to calculate the relative difference, of which the maximum is displayed 

in Figure 3.2. It could be seen from both figures that after 0.005 =  is satisfied (i.e. around 

300 sampling points), the maximum of RE is stationary.  

 

Figure 3.2: Variance of RE with number of sampling points. 

 

Figure 3.3: Variance of threshold with number of sampling points. 
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3.2.6 Pseudo code  

For the general case of fitting a single surrogate model the pseudo code of the algorithm 

proposed and used in this study is given in Table 3.5. Firstly, a set of initial sampling points 

are selected based on LH scheme and the corresponding simulator values are calculated. Then 

these samples are used to construct a GPR model, in which the hyperparameters are optimized 

with 10 different initial values. The next step is to add additional sampling point one by one at 

where the maximum of prediction variance occurs using genetic algorithm. If the square root 

of this maximum variance excluding the noise component is below the threshold (i..e a certain 

percentage of the range of all simulator values), the infilling is terminated and the construction 

of this surrogate model is done. 

This process could be repeated for different surrogate models. In our case, the simulator is a 

FE model, meaning that the previous results can be reused. For example, suppose there is a 

case where the horizontal displacement at top point and middle point along a sheet pile wall 

are to be surrogated. When a certain sampling point is given to run the FE software, the 

horizontal displacement along the whole sheet pile wall can be saved. Then more points are 

added based on the stopping criterion at the top point and after the GPR model at the top point 

is converged, all the data including initial and additional sampling points as well as their 

corresponding response could be used as the initial input for the middle point. This route is 

reiterated if more surrogate models are required. In practice, this method works well as fewer 

and fewer infilling points are needed for the sequent surrogates. 



 

47 

 

 

Table 3.5: Pseudo code of the proposed adaptive Gaussian process surrogate method. 

General pseudo code Implementation details 

generate setx  from set initset, dim( ) ( , )    x n k=   Latin hypercube sampling to select the initial setx  

calculate set sety = Simulator( )x   The simulator could be e.g. FE model 

set Falseconvergence =   

while convergence  is False  

| calculate 
range set sety =[min( ),max( )]y y   

| fit a GPR to set set[ , ]x y : GPR  Maximum likelihood estimation with  10 different initial points 

| find 
max pred,  max ))  ( (GPR x x =   and 

max
x  Global search (genetic algorithm) 

| if 
pred, ,max rangeyGPR noise  −    

noise：square root of noise level in white kernel if it is used, otherwise 

set to zero 

| | set Trueconvergence =   

| else  

| | calculate 
maxnew Simulator( )y x= , 

maxnewx x=   

| | add to set  set set new[ , ]x x x= , set set new[ , ]y y y=   

return GPR   
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3.2.7 Illustrative example 

In this section, a simple example taken from Pedregosa et al. (2011) is shown to illustrate the 

whole process of global surrogating. Considering the symbolic function: ( ) sin( )f x x x=  , 6 

initial sampling points are selected and indicated by red dots shown in Figure 3.4. The RBF 

kernel is selected and the two hyper-parameters, namely signal variance 
f  and length scale l 

are estimated using the maximum likelihood method. Since there is considerably large  

prediction standard deviation at the tail, some additional sampling points are needed. One more 

sampling point can be added at 10x = where the maximum of standard deviation   calculated 

by equation (3.20) occurs. This point is indicated by a black dot in this figure. In this 1D 

problem (only one variable), this maximum can be found by calculating all the   along the 

support, but if more than one variable exists, more advanced methods like GA can perform this 

work properly. Even though gradient based optimizers are also widely used to find the 

maximum, they might be trapped in a local maximum considering this   function might have 

multiple maximums.  

 

Figure 3.4: Initial sampling points and fit. 

After the extra sampling point is added  the hyper-parameters of the kernel are re-optimized to 

maximize the likelihood. Even if the prediction and real function curve match well as displayed 

in Figure 3.5, there is still large standard deviation at 0x = . This is determined by the kernel 

function, as there are no sampling points near the left support point ( 0x = ). This can be shown 

more clearly in Figure 3.6 if prediction is performed far from the left support point where larger 

standard deviation would occur. 
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Figure 3.5: Demonstration of predictive error (1). 

 

Figure 3.6: Demonstration of predictive error (2). 

 

Since the true simulator function is never known beforehand,  it is necessary to add additional 

points at the boundary of supports or include them as initial sampling points to decrease the 

standard deviation..  Compared with Figure 3.5, not only do the prediction and real function 

matches well, but the corresponding standard deviation is also very low if one more point is 

added at 0x =  and shown in Figure 3.7. 

 

Figure 3.7: Demonstration of predictive error (3). 

3.2.8 Influence of noise 

The noise added in GPR model plays a crucial role in preventing overfitting. Overfitting can 

not only be observed from the response surface, but also be checked by the length scale of use 

RBF kernel. In this section, a simple 2D (i.e. dimensionality is 2) example is given to support 

this claim. 

In this example, the samples are still from Plaxis and the earlier shown steps in Table 3.5 are 

followed to build surrogate models, which are shown in Figure 3.8 and Figure 3.9. The only 
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difference between them is that the former uses solely a single RBF kernel while the latter uses 

an RBF as well as a white kernel. The hyperparameters are indicated above each figure (the 

number before RBF represents the signal variance).  

 

Figure 3.8: Response without noise component. 

 

Figure 3.9: Response with noise component. 

 

Intuitively, the one with a noise component on the right seems to be more reasonable as it is 

much more smooth, that corresponds to our understanding of the underlying physics. The 

superiority of the GPR model with noise term can be quantitatively demonstrated by calculating 

the relative difference with 300 test points. The results are shown in Figure 3.10 and Figure 

3.11 respectively. 

 

Figure 3.10: RE without noise component. 

 

Figure 3.11: RE with noise component 

 

From these two figures, it is clear that the GPR model with noise term does a much better job 

in prediction due to its considerably low relative error. Even though the magnitude of noise 

level is negligible compared with outputs (i.e. 0.000167 vs tens), it plays the crucial role to 

prevent the GPR model going through all sampling points precisely, and thus overfitting could 
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be avoided. Besides computing the relative difference, occurrence of overfitting could be 

quickly checked by the length scale of the used RBF. Overfitting usually appears with a very 

small length scale (e.g. 0.1 ~ 0.2 in the first GPR model), meaning that there is limited 

correlation between two nearby sampling points, which is inconsistent with the core idea of 

RBF kernel. 

3.3 Uncertainty 

3.3.1 Measurement uncertainty 

When collecting data from sensors, the observations are inevitably contaminated with 

measurement uncertainty, which reflects the discrepancy between the measured data and the 

true/real value. Measurement uncertainty can be caused for example by incorrect reading 

and/or installation of a measuring instrument. In this study for a particular sensor, we assume 

a simple additive relationship between the real and measured value: 

 measure real measureD d E= +   (3.23) 

Where 

reald  true value of response;  

measureD  the value of response measured by the sensor; 

measureE  measurement uncertainty (random variable).  

 

To aid the reader the used notation is summarized and explained in Table 3.6. 

Throughout this work, multiple sensor types, sensors instances, and load cases will be 

considered, hence the notation that will be used in later sections is introduced here.  

Table 3.6: Explanation of notation. 

 Example  Description 

Italic capital letter D  Random variable 

Italic smaller case letter d  Deterministic value (known or unknown) 

Bold letter ,d D  Vector or matrix 

 

For this case, equation (3.23) can be generalized to: 
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 measure, , , real, , , measure, , ,i j k i j k i j kD d E= +   (3.24) 

i i varies with different types of sensors or corresponding responses, e.g. strain, 

displacement. In this work, same type of response or sensors but of different 

structural elements are assumed to have different i values, e.g. strain of sheet 

pile wall and strain of anchor will have different i values. 

j j varies with different positions for a certain type-i response, e.g. the top and 

middle point along the sheet pile wall when considering its strain. 

k k varies with different load cases (e.g. different construction stages) 

real, , ,i j kd  true value of the jth  type-i response under the kth load case 

measure, , ,i j kD  the value of the jth  type-i response under the kth load case measured by sensors 

measure, , ,i j kE  measurement uncertainty of jth  type-i response under kth load case 

 

In this work, measure, , ,i j kE  is modeled with a normal distribution with zero mean and standard 

deviation of measure, , ,i j k , described below:   

 2

measure, , , measure, , ,~ (0, )i j k i j kE N    (3.25) 

It is assumed that each pair of measure, , ,i j kE  are mutually independent. If multiple sensors are 

used, the measureE  will be a multivariate normal distribution (MVN) with zero mean vector and 

covariance matrix of measureΣ which is a diagonal matrix with each entry of 2

measure, , ,i j k : 

 measure measure~ ( , )MVNE 0 Σ   (3.26) 

The justification of this additive Gaussian error model is slim and two-fold: 

- It is simple and prevalently applied in statistics and other fields. 

- We assume that measurement uncertainty is influenced by many processes and their 

additive effect is observed as a random variable. The central limit theorem supports the 

usage of a normal distribution in these situations. 
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3.3.2 Model uncertainty 

3.3.2.1 Physical model uncertainty  

An accurate physical model (e.g. FE model) is always essential to perform a mechanical 

analysis of a structure. In practice however, the physical model is always different than the real 

structure. This difference is stemming from simplifications and assumptions when building FE 

models. For example, the difference shows up when a sinusoidal function is modeled by a 

polynomial function, or when some loads are neglected, e.g. influence of temperature on 

structures. The details of the process that causes the difference is unknown3, hence it is replaced 

with a probabilistic model, this is commonly called model uncertainty. In this study this relation 

is assumed to have the following mathematical structure: 

 physical model, , , real, , , physical model, , ,i j k i j k i j kD d E= +   (3.27) 

Where  

physical model, , ,i j kD  the value of jth  type-i response under kth load case computed by physical 

model 

physical model, , ,i j kE  physical model uncertainty of jth  type-i response under kth load case 

 

In this work, it is assumed that physical model, , ,i j kE  follows as a normal distribution with mean of 

zero, and standard deviation of physical model, , ,i j k : 

 2

physical model, , , physical model, , ,~ (0, )i j k i j kE N    (3.28) 

If multiple sensors are used, physical modelE  becomes a multivariate normal distribution with mean 

vector of zero, and covariance matrix of physical modelΣ : 

 physical model physical model~ ( , )MVNE 0 Σ   (3.29) 

Consideration of correlation for model uncertainty is crucial as the assumption of independence 

would lead to unrealistic unacceptable behavior: a model with independent components would 

tell us that placing more and more sensors at the very same location brings us new information. 

                                                 
3 This includes the case of chosen ignorance as well, i.e. unknown in the selected model universe. 
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In the covariance matrix, each entry is described as: 

 ' ' ' ' ' '

,

physical model physical mode , , ,( , , ) ( , , ) physical mode , , ,

m n

l i j ki j k i j k l i j k
  


=Σ   (3.30) 

 

' ' '( , , ) ( , , )

' ' '( , , ) ( , , )
ˆ

i j k i j k

i

d

l

i j k i j k
e 


−


=   (3.31) 

where 

,

physical model

m n
Σ  mth row and nth column entry in the covariance matrix 

physicalΣ  

physical model, , ,i j k  physical model uncertainty of related mth sensor in covariance matrix 

(i.e. jth  type-i sensor under kth load case) 

' ' 'physical, , ,i j k
  physical model uncertainty of related nth sensor in covariance matrix 

(i.e. and j’th
  type-i' sensor under k’th load case) 

' ' '( , , ) ( , , )i j k i j k



 correlation coefficient of jth  type-i sensor under kth load case and j’th

  

type-i' sensor under k’th load case 

' ' '( , , ) ( , , )i j k i j k
d


 Euclidean distance between jth  type-i sensor under kth load case and j’th

  

type-i' sensor under k’th load case, always a positive value. 

li correlation length of type-i sensor 

̂  An additional term to account for the potential correlation between 

different type of sensors (i.e. different i values). It is set as 1.0 if 
'i i= , 

and smaller than 1.0 (e.g. 0.8) if 
'i i  

 

3.3.2.2 Surrogate model uncertainty 

When a surrogate model is adopted to replace a physical model, the difference between them 

should also be considered and included in model uncertainty. This uncertainty is prevalently 

neglected in the probabilistic system identification literature. In this study this uncertainty is 

explicitly considered and expressed in an additive form: 

 physical model, , , surrogate, , , surrogate, , ,i j k i j k i j kD d E= +   (3.32) 

where 

surrogate, , ,i j kd  the value of jth  type-i response under kth load case predicted by the surrogate 

model 
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surrogate, , ,i j kE  surrogate model uncertainty of jth  type-i response under kth load case 

 

In this work, 
surrogate, , ,i j kE  is modeled with a normal distribution with mean of zero, and 

standard deviation of 
surrogate, , ,i j k : 

 2

surrogate, , , surrogate, , ,~ (0, )i j k i j kE N    (3.33) 

If the surrogate model is constructed by GPR, surrogate, , ,i j k could be explicitly computed by 

equation (3.20) and taken the square root. Note the above mathematical model and probabilistic 

model are not approximations but exact representations and this is how GPR works. 

 

If multiple sensors are used, surroagteE  becomes a multivariate normal distribution with mean 

vector of zero, and covariance matrix of surroagteΣ  considering correlation: 

 surrogate surrogate~ ( , )MVNE 0 Σ   (3.34) 

Where each entry (mth row, nth column) in covariance matrix is described as: 

 ' ' ' ' ' '

,

surrogate surrogate, , ,( , , ) ( , , ) surrogate, , ,

m n

i j ki j k i j k i j k
  


=Σ   (3.35) 

The notations above are the same with those in physical model uncertainty.  

3.3.3 Combined uncertainty 

In this study, the measurement uncertainty and model uncertainty described in section 3.3.1 

and 3.3.2 are combined. The combination of all three sources of uncertainty gives the relation 

between real, , ,i j kd  and surrogate, , ,i j kd : 

 real, , , surrogate, , , measure, , , physical model, , , surrogate, , ,i j k i j k i j k i j k i j kd d E E E= + + +   (3.36) 

Given the assumptions in each component, the three uncertainties can be combined into a single 

normal distribution total, , ,i j kE  : 

 2

total, , , total, , ,~ (0, )i j k i j kE N    (3.37) 

Where 
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 total, , , measure, , , physical model, , , surrogate, , ,i j k i j k i j k i j kE E E E= + +   (3.38) 

 2 2 2 2

total, , , measure, , , physical model, , , surrogate, , ,i j k i j k i j k i j k   = + +   (3.39) 

And if multiple sensors are used, totalE  becomes a multivariate normal distribution: 

 total total~ ( , )MVNE 0 Σ , (3.40) 

 total measure physical model surrogateΣ = Σ +Σ +Σ . (3.41) 

The potential correlation is already contained in each component. 

3.3.4 Correlation length 

The covariance matrix is largely dependent on the selection of correlation length, on which 

however I did not find any studies to provide guidance. Hence in a later section, the correlation 

length is derived as the following: if we have access to both reald  and physical modelD  and their 

difference is modeled using GPR with RBF kernel, then the length scale of RBF kernel is 

naturally the correlation length of physical modelE according to its definition in section 3.2.1.3. Even 

though reald  is usually unavailable due to the contamination of measureE , measureD  could 

approximately replace reald  to compute correlation length, as measureE  is in reality tiny. Since 

surrogateE  varies not only with sensor type, sensor position and load case, but also with sampling 

points, meaning that we need a GPR that maps to a vector space (in contrast with the scalar 

space as in physical modelE ), it is difficult to determine its correlation length with the same method. 

Therefore, it is assumed in this work that physical modelE  and surrogateE  have the same correlation 

length for simplicity. 

3.4 Bayesian inference 

3.4.1 Parameter estimation 

Bayesian inference is a statistical inference method in which Bayes' theorem is applied to use 

data to identify unknown parameters. In Bayesian statistics, all unknown parameters are 

regarded as random variables and thus have a probability distribution. An advantage of this 
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thinking is that it is easy to implement further reliability analysis where distribution of 

parameters is needed. The core idea of Bayesian inference is Bayes’ rule, in which a prior 

knowledge (i.e. probability distribution) of random variables (i.e. refers to soil parameters in 

this thesis) is considered before any data (i.e. refers to responses of structures) is collected, then 

data is embedded into the likelihood function and the combination of prior and likelihood leads 

to a new distribution, the posterior distribution, which contains information of the prior and 

data.  

Bayes’ rule for discrete variables:  

 
( | ) ( ) ( | ) ( )

( | )
( ) ( | ) ( )i i

i

p p p p
p

p p p 

 
= =


D θ θ D θ θ

θ D
D D

  (3.42) 

For continuous variables: 

 
( | ) ( ) ( | ) ( )

( | )
( ) ( | ) ( )

p p p p
p

p p p d


 
= =

 

D θ θ D θ θ
θ D

D D θ θ θ
  (3.43) 

 total( | ) ~ ( ( ), )p MVN fD θ θ Σ   (3.44) 

where 

D  data (i.e. here refers to observations of responses of structures) 

θ  random variables (i.e. soil parameters to be inferred) 

( )p θ  prior distribution of random variables 

( | )p D θ  likelihood function, can be any form and equation (3.44) is a particular case to 

our application. 

( )p D  a constant known as evidence, obtained by integral or summation over the 

entire support 

( | )p θ D  posterior distribution, an update of prior distribution 

( )f θ   response computed by physical model or surrogate model 

totalΣ   Combined uncertainty described in section 3.3 
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3.4.2 Overview of computation algorithms 

If the number of unknown parameters are no more than three (the dimensionality of problems 

is no more than three), it is quite straightforward and computationally cheap to perform 

Bayesian inference or parameter estimation by directly calculating equation (3.43). But for 

higher dimensional problems (e.g. ten parameters are considered simultaneously), it is not 

desirable or even not feasible to calculate the integral in the denominator. Therefore, smarter 

and more advanced methods are usually adopted, which can directly draw samples from the 

posterior distribution and thus the calculation of evidence can be avoided. Most of these 

methods belong to the group of Markov Chain Monte Carlo (MCMC) methods, such as 

Metropolis-Hastings MCMC (MH) in (MacKay & JC, 2003), Hamiltonian Monte Carlo (HMC) 

in (Neal, 2011)and Transitional MCMC (TMCMC) in (Ching & Chen, 2007). In addition to 

these, Feroz, Hobson, and Bridges (2009) improved nested sampling developed by Skilling 

(2006), coined as MultiNest, which is also capable of doing Bayesian inference. The core 

difference among these methods is how they draw the next sampling point given the existing 

one and their main characteristics are collected in Table 3.7. 
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Table 3.7: Comparison of different computational algorithms. 

 Advantages Disadvantages 

MH Easy to implement 

 

Low acceptance rate 

Inefficient for correlated variables 

Not for multi-modal distributions 

HMC High acceptance rate 

Less iterations than MH 

Needs the calculation of the gradient 

Difficult to tune step size 

Much computational time 

Not for multi-modal distributions 

TMCMC Suitable for multi-modal 

distributions 

Versatile: sample from posterior as 

well as estimate the evidence 

Much computational time needed 

Accuracy decreases with the increase of 

dimension 

MultiNest Fast 

Suitable in multi-modal distributions 

Difficult to decide the initial number of 

active sampling points 

Difficult to implement MCMC diagnose 

as the number of sampling points is 

uncertain 

 

3.4.3 Nested sampling 

Considering all the aspects of Table 3.7 and based on the comparison of them (e.g. 

computational time, convergence, etc.) via simple examples, MultiNest is selected to perform 

the case studies. Since it is based on nested sampling, the description of this method will start 

with nested sampling. 

3.4.3.1 Sampling idea 

As introduced by Skilling (2006), in this method, the prior volume is split into a set of elements 

with equal mass dX : 

 ( )ddX p  =   (3.45) 

so the total prior mass X  could be accumulated from these elements in any order, so we define 

this equation: 
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( | )

( ) ( )d
P D

X p
 

  


=    (3.46) 

as the cumulative prior mass which contains all likelihood values larger than λ. The prior mass

X  will decrease from 1 to 0 with the increase of λ. Then the calculation of evidence is written 

as:  

 
0

( )dZ X


 =    (3.47) 

and if the inverse function of ( )X   is used, which is positive and monotonically decreasing, 

the evidence is finally transformed into a one-dimensional integral over the unit space 

regardless of the original dimensionality: 

 
1

0
( )dZ L X X=    (3.48) 

Then for a given sequence of X values, 1 2 10 1m mX X X X−      , trapezium rule could 

be used to approximate the evidence by: 

 
1

m

i i

i

Z L w
=

   (3.49) 

where 1 1( )
( ),

2

i i
i i i

X X
L L X w − +−
= =  represents the weight of each sample. 

A picture taken from (Skilling, 2006) shown in Figure 3.12: could help to indicate this idea: 

 

Figure 3.12: Showcase of nested sampling 

3.4.3.2 Implementation 

The general implementation details of nested sampling are given in the flowing way: 
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• N live points or active points are sampled randomly from the full space of prior, and 

the total evidence is initialized (i.e. 00, 1Z X= = ); 

• At each iteration i, the prior could be estimated as 
i

N
iX e

−

= . the point with the lowest 

likelihood ( iL ) and its corresponding prior volume ( iX ) will be restored; 

• The total evidence Z is increased by 1 1( )

2

i i
i

X X
L − +−

; 

• The point corresponding to iL  and iX  will be replaced by a new point drawing from 

the remaining prior volume ( )0, iX  , whose L must be strictly larger than iL ; 

• The above procedure will be repeated until the stopping criterion is met.  

To illustrate this implementation procedure,  an example (also the figure for comprehension, 

displayed in Figure 3.13) taken from (Skilling, 2006) is given below, which starts with N = 3 

points: 

• Three samples are taken from the unconstrained prior, (i.e. from (0,1) ), as shown on 

the lowest line in the right figure. They are indicated as point A, B, C in the left figure.  

• The point A which has lowest L of three points is labelled as point X1, with likelihood 

L1.  

• Point A is then replaced by a new point, point D, drawn from (0,X1) to assure its L is 

larger than L1.  

• Now point B, C, D are three survivors uniformly distributed in the reduced range (0, 

X1).  

• Since point D has the lowest L, it is then label as point 2 and replaced by point E. 

• Suppose after 5 repetition the process could be terminated, there are five “replaced” 

points labeled as point 1, 2, 3, 4, 5 and three remaining  survivors could be then labeled 

6, 7, 8 to give all 8 points (X1,...,X8) shown on the top line in the right figure.  

• The evidence and posterior could be estimated using these 8 points as described above. 
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Figure 3.13: Example of nested sampling. 

3.4.3.3 Stopping criterion  

In this algorithm, the specific number of sampling points is not given in advance as what other 

MCMC methods do, a different stopping criterion is adopted. In each iteration i, the remaining 

evidence is estimated and once the remaining evidence over the total evidence falls below a 

certain threshold, the iteration would stop: 

 maxest iZ L X=   (3.50) 

 log( ) logi est iZ Z Z dlogz+ −    (3.51) 

estZ  the remaining evidence at iteration i 

maxL  the highest likelihood in the region estimated by the current active points 

iX  the remaining prior volume. 

iZ  the currently cumulative evidence at iteration i 

dlogz  the threshold  

 

3.4.3.4 From nested sampling to MultiNest 

The most challenging part in implementing nested sampling is to sample uniformly from the 

restrained prior volume, and at the same time strictly fulfill the requirement that L>Li. If the 

samples are drawn randomly as done in MH,  the acceptance rate of new points will decrease 

gradually with the reduction of prior volume. To solve this problem, Mukherjee, Parkinson, 
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and Liddle (2006) proposed to use an ellipsoid to shrink the current prior volume and new 

samples will be drawn within this ellipsoid. This ellipsoid is determined by the covariance 

matrix of the current active points to just reach the maximum value of these points. And the 

ellipsoid will be expanded by an enlargement factor to avoid potential overestimation of 

evidence (if this is not done, the prior volume whose likelihood is below the current limit will 

probably not be included in the ellipsoid and thus the new sampling points will be biased to the 

center). Then the following procedure including the replacement of points who have the lowest 

likelihood is the same as original nested sampling. 

However, the work up to now does not perform well in multimodal problem as argued by Shaw, 

Bridges, and Hobson (2007), who then improved it by separating these active points into 

clusters and constructing individual ellipsoid for each cluster. In this cluster-based method, 

there is one more potential issue that some peaks of the posterior may show a degeneracy which 

leads to a ‘banana’. A picture is taken from Shaw et al. (2007) in Figure 3.14 to show this case. 

Later Feroz et al. (2009) proposed a novel method, MultiNest to further improve their approach 

in (Feroz & Hobson, 2008) which could already deal with such degeneracy.  

 

Figure 3.14: Showcase of degenerate distribution. 

The essence of MultiNest is still the “cluster” based method, but now the partition of active 

points into clusters and construction of corresponding ellipsoid are performed simultaneously. 

This process is based on “expectation-minimization” scheme such that the total volumes of 

these ellipsoids is minimized but larger than iX

e
 , where iX  is the current prior volume and 

e  is the desired sampling efficiency (i.e. the acceptance rate, 
1

e
is the enlargement factor). 

After the ellipsoids are constructed, assume that at iteration i there are K ellipsoids and a 

particular one will be chosen from them with probability of 
k

k

total

V
p

V
= , where kV is the volume 
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of chosen ellipsoid and 
1

K

total k

k

V V
=

=  is the total volume of all ellipsoids. Then a sampling point 

could be drawn uniformly from the chosen ellipsoid. This sampling process is repeated until 

its L is larger than the current smallest one (i.e. Li), where Li is the lowest-likelihood value 

among all the active points at that iteration. Then this sampling point is kept with a probability 

of 
1

en
 , where en is number of ellipsoids in which the sampling point lies (because it is possible 

that these ellipsoids are overlapped). The stopping criterion could be the same as the very 

original nested sampling. 

3.4.4 Information content 

Considering the following similar questions: 

• How to evaluate the performance of posterior distribution? 

• How well can the data - picked up by a set of sensors - explain the state of a structure? 

• How much information is carried by the data in respect of a specific state of a structure? 

The term information content is introduced and three measures of it is used in this study:  

• the area of the credible region; 

• Shannon information entropy (hereafter just entropy for brevity); 

• Kullback–Leibler divergence 

3.4.4.1 Credible region 

In Bayesian statistics, a credible region4is a range of values within which an unobserved 

parameter value falls with a particular, prescribed probability. Credible regions are not unique 

given a specific distribution, one method is to choose the smallest region, which can be shown 

to coincide with an region with highest minimum probability density. Therefore, this region is 

sometimes called the highest posterior density region. In this thesis,  always a 90% highest 

density credible region is used. This means that for a given distribution of a parameter, this 

parameter would fall into this region with a probability of 90%. Generally, the smaller the 

credible region, the more concentrated the posterior, which means that the parameter would 

approach more to a constant, and thus indicates a better parameter identification. Since most 

information of posterior is carried by sensors while such information can be reflected by 

                                                 
4 It is used in N-dimension case. In case of one-dimension problem, it is called credible interval. 
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credible region, it could be a criterion to configure sensors, including the number, the position 

and the type (i.e. which response should be measured). 

3.4.4.2 Information entropy 

The stochastic data can be considered to produce information at an average rate, such rate is 

called information entropy (or Shannon entropy). In case of discrete random variable θ, each 

possible θ value contributes to the information entropy, which is defined as:  

 
1

( ) ( ) log ( )
n

i n i

i

H p p
=

= −θ θ θ   (3.52) 

logn  is more of a convention, n could be any number, e.g. 2, e (natural logarithm), 10, etc. In 

this thesis, natural logarithm will be used for convenience. 

One generalization of the discrete Shannon entropy to continuous random variables is the 

differential entropy (or continuous entropy) which can be used as a measure of uncertainty: 

 ( ) ( ) ( )( )lognh p p d= − 
θ

θ θ θ θ   (3.53) 

θ  random variables (i.e. soil parameters to be inferred) 

( )p θ  probability distribution of random variables 

( )h θ  differential entropy 

Papadimitriou, Beck, and Au (2000) proposed information entropy (differential entropy) to be 

used as the measure of information content carried by sensors. They used the measure to find 

optimal location of sensors. Generally speaking, the less the value of entropy, the more the 

information is carried. 

3.4.4.3 Kullback–Leibler divergence (KL divergence) 

Both credible region and Shannon entropy reflect the information conveyed by the posterior 

distribution, meaning that both prior and observations are included. In our work, it is preferable  

to quantify the information content solely from new observations (i.e. from sensors), as it 

explicitly provides guidance on sensor placement. Therefore, Kullback-Leibler divergence 

(also called relative entropy) is introduced, which is a measure of how one probability 

distribution is different from the other one. In our case, this KL divergence reflects additional 

information when moving from prior to posterior, and in contrast with Shannon entropy, the 

larger the KL divergence, the more the information. It is defined as:: 
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 
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 

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θ
  (3.54) 

θ  random variables (i.e. soil parameters to be inferred) 

( )p θ  prior distribution of random variables 

( | )p θ D  posterior distribution, an update of prior distribution 

( ( | ) | ( ))p pH θ D θ  KL divergence 

In our work, this KL divergence reflects additional information when moving from prior to 

posterior, and in contrast with entropy, the larger the KL divergence, the more the information.  

3.5 Reliability assessment  

Structural reliability is related to the probabilistic analysis (e.g. failure probability) of 

engineering structures, as they usually have uncertain structural parameters (e.g. uncertain soil 

parameters in hydraulic structures) and uncertain behavior (e.g. nonlinear behavior of sheet 

pile wall). To solve this probabilistic problem, the concept of limit state was developed, by 

which the boundary between the safe domain and the failure domain is defined. The related 

function is termed as performance function ( )g θ . 

Then the limit state is indicated by ( ) 0g =θ  and the failure domain is indicated by ( ) 0g θ . 

With this definition, the failure probability can be calculated as the integral of the joint 

probability distribution over the failure domain: 

 
f

( ) 0

( ( ) 0) ( ) d
g

P P g f


=  = 
θ

θ θ θ   (3.55) 

Where 

( )f θ  joint probability distribution of θ ; 

fP  failure probability. 

Generally, the direct calculation of the integral in equation (3.55) is computationally not 

tractable for high dimensional problems. Therefore, there are many methods available to 

approximately replace the integral, e.g. first order reliability method (FORM), second order 

reliability method (SORM), Monte Carlo simulation (MCS), importance sampling (IS), 

directional simulation (DS), etc.  
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However considering the posterior distribution, it is in our work in the form of representative 

samples without a specific distribution type, hence the mentioned methods above, e.g. FORM, 

IS cannot be adopted in this case. MultiNest based on nested sampling can solve this issue. 

When it is adopted to draw samples from the posterior density as described in section 3.4.3, 

each sampling point has its weight ( iw ) indicated in equation (3.49). As the weight is already 

normalized in this algorithm, the failure probability is indeed the summation of the weights of 

those sampling points which fall in the failure domain: 

 
f iP w=   (3.56) 

where  

Pf failure probability 

iw  weight of ith sample in the failure domain 

 

In our work, there might be a case where there is no clear “line” to distinguish safety and failure 

such that each sample in the complete space is possible to result in failure, even though of 

which the probability might be tiny. Therefore, the failure probability can be calculated by the 

following: 

 𝑃f = ∑𝑝𝑖𝑤𝑖  (3.57) 

Where 

Pf the failure probability; 

iw  the weight of the ith sample in the entire space; 

ip  failure probability corresponding to each sample. 

ip  is calculated considering the value or values (ei) corresponding to the sample and wi as fixed 

and considering the rest of the parameters (R) as random variables: ( ( , ) 0 | )i ip P g=  =R E E e . 
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4 Case study: Sheet pile wall – modelling 

4.1 Overview 

In this chapter, the application of the framework described in the preceding chapters is 

illustrated through a numerical case study: a sheet pile wall system modeled in Plaxis 2D. The 

case study is representative for a wall of a lock chamber in fresh water. First an overview of 

the used finite element model is given in section 4.2, then section 4.3 describes how the 

synthetic observations are generated. Section 4.4 outlines the details of the soil parameters to 

be inferred, the measurement uncertainties, model uncertainties and the quantification of the 

correlation length. The generation of the surrogate models is briefly described in section 4.5. 

The last section pulls together all the components, describes the workflow, and provides an 

overview of the completed analyses. 

4.2 Physical model 

In this study, the finite element (FE) model in Plaxis 2D of a single anchored sheet pile wall 

structure is taken from Teixeira et al. (2015) with an increased sheet pile wall length. The main 

aspects of the model are recapitulated here. For the details of the model is the reader referred 

to Teixeira et al. (2015). The main dimensions and structural elements of the analyzed structure 

are indicated in Figure 4.1. 

 

Figure 4.1: Scheme of the case study: dimensions.  

There are three soil layers, named as top, mid, and bot respectively. Since in (Teixeira et al., 

2015), the soil properties are modified to capture relatively large failure probability and 

Top soil layer 

Mid soil layer 

Bot soil layer 

2
3
.4

m
 Anchor 
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experience soil failure as well. The former might not be realistic while the latter is decided to 

be avoided in this study for simplicity. Therefore, the main properties of the three soil layer 

used in this study are again modified and collected in Table 4.1 (since some of these soil 

parameters will be assumed unknown and inferred back, the values in this table are thus named 

as “real” values). The soil properties are selected to avoid soil failure, in order to make further 

analyses easier, i.e. we always have a numerical outcome. 

Table 4.1: Soil properties. 

Soil type 

Top soil  Mid soil  Bottom soil  

Medium stiff clay Medium stiff clay Dense sand 

Symbol “Real” value Symbol “Real” value Symbol “Real” value 

Elastic modulus [kN/m2] Etop 2850 Emid 4150 Ebot 200000 

Internal friction angle 

[degrees] 
𝜙top 19.1 𝜙mid 22.7 𝜙bot 45 

Saturated unit weight [kN/m3] ϒtop 17.8 ϒmid 20.3 ϒbot 20 

Cohesion coefficient [kN/m2] Ctop 18.2 Cmid 25.4 Cbot 1 

 

The sheet pile wall is set to prevent large soil movement and the anchor reinforces the sheet 

pile wall. The cross-sectional properties of the sheet pile wall are given in Figure 4.2. The 

anchor has a diameter of 60 mm (area = 2826 mm2) with longitudinal spacing of 1.6m. The 

construction stages are also taken into account, which are divided into seven phases in Plaxis: 

• P1: Undisturbed soil conditions with ground surface at NAP +5 m; 

• P2: Excavation of top soil layer to NAP +2 m; 

• P3: Placement of sheet pile wall and anchor; 

• P4: Complement of the inside5 top soil layer to NAP +5 m; 

• P5: Excavation of the outside6 top and mid soil layer to NAP -7.0 m; 

• P6: Water level fluctuation; 

• P7: Application of surface load. 

                                                 
5 Here inside refers to the part on the right hand side (behind) of sheet pile wall shown in Figure 4.1. 

6 Here outside refers to the part on the left hand side (front) of sheet pile wall shown in Figure 4.1. 
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Figure 4.2: Cross-sectional properties of sheet pile [Teixeira et al. (2015)]. 

The element type and material model of the components, e.g. soil, anchor, sheet pile wall, and 

soil-structure interaction are summarized in Table 4.2, while the ground surface load intensity 

is 19.75 kPa as shown in Figure 4.1.  

Table 4.2: Components in the FE model. 

Components in FE model Element Type Material Model 

Soil layer 

top 

15-node triangular element Mohr-Coulomb soil model mid 

bot 

Anchor 
Head part Mindlin beam element 

Uniaxial, linear elastic 
Body part Elastic spring element 

Sheet pile wall Mindlin beam element Uniaxial, linear elastic 

Soil-structure interaction 
Defined by pairs of nodes 

with identical coordinates 
Based on adjacent soil 

 

An illustrative picture of the cumulative displacements of the structure after its final 

construction stage is shown in Figure 4.3. The figure also shows the applied finite element 

mesh. 
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Figure 4.3: FE mesh a representative amplified, deformed shape of the analyzed sheet pile wall. 

 

4.3 Synthetic observations 

In this study, synthetic observations are used. We replace “reality” by a FE model that is also 

used for system identification. The usage of synthetic data has limitations, but there is also a 

big advantage:  now we have the ground truth to evaluate the inference results. And to make 

the synthetic data resemble a realistic one, four kinds of observations are considered as possible 

measurements, namely horizontal displacement of the sheet pile wall (Ux), strain of the sheet 

pile wall (εspw), vertical displacement of the top ground (Uy) and strain of the anchor (εanchor).  

These responses are selected as they can be easily observed and the corresponding sensors are 

widely used and easy to install. In practical implementation, it is not advocated to install sensors 

everywhere due to the limitation of budget as well as computational time. And higher sensor 

density does not necessarily carry more information due to the correlation among sensors in 

reality. Hence the sensors are selected with a space of around 2 meters in this work.  

These synthetic observations generated with the Plaxis model using the “real” values in Table 

4.1 are plotted in Figure 4.4, Figure 4.5 and Figure 4.6 (namely εspw, Ux and Uy), in which the 

cumulative responses from P4start to P4end, P5end, P6end and P7end are indicated. These generated 

responses are not yet contaminated with measurement uncertainty which will be included in 

the likelihood as described in section 3.3.3. Since the sheet pile wall is installed at P3, during 

which phase the responses related to it is tiny, it is assumed that the sheet pile wall is 

undeformed at P4start. And since the top soil layer is excavated firstly and then refilled, we still 

assume that the top ground is undeformed at P4start.  



 

72 

 

Therefore, we can reasonably arrange the sensors based on these figures: we do not consider 

to install sensors at where small magnitude of responses are. For example, strain sensors will 

not be installed above S#20 and below S#45 as it is expected to have small εspw value, and we 

do not install sensors below N#35 due to small Ux value.  

 

Figure 4.4: Strain of sheet pile wall corresponding to “real” values of soil properties. 
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Figure 4.5: Horizontal displacement of sheet pile wall corresponding to “real” values of soil properties. 

 

Figure 4.6: Vertical displacement of top ground corresponding to “real” values of soil properties. 

 

Therefore, the monitoring system is indicated in a simplified drawing in Figure 4.8 where in 

total there are up to 24 sensors to measure different responses of this structure. Specifically,  
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• 8 sensors (labeled N#) measuring the horizontal displacement of the sheet pile wall (Ux) 

(e.g. with SAAF (SAAF, 2019)); 

• 6 sensors (labeled S#) measuring the strain of the outer fiber of the sheet pile wall, as 

shown in Figure 4.7 (εspw) (e.g. with strain gauge); 

 

Figure 4.7: Top view of sheet pile to indicate strain gauge. 

• 9 sensors (labeled G#) measuring the vertical displacement of the top ground (Uy) ; 

• 1 sensors (labeled A#) measuring the strain of anchor (εanchor) (e.g. with strain gauge); 

 

Figure 4.8: Layout of full sensor configuration. 

These synthetic observations are assumed to be contaminated with noise (i.e. measurement 

uncertainty). The measurement uncertainty of different responses will differ and are 

summarized in Table 4.4.  
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4.4 Bayesian inference of soil parameters 

4.4.1 Soil properties to be inferred 

In the next step after the synthetic responses are generated, the “real” values are assumed to be 

unknown and the task is to infer the non-directly observable soil parameters based on the 

synthetic data and prior information using Bayes’ rule as shown in section 3.4.1. To perform 

Bayesian analysis, the properties in the top soil layer and mid soil layer (i.e. Etop, 𝜙top, ϒtop, Ctop, 

Emid, 𝜙mid, ϒmid and Cmid) are regarded as the unknown variables, while the properties  of the 

bottom soil layer (i.e. Ebot, 𝜙bot, ϒbot, and Cbot) are assumed to be deterministic and known. 

The prior information of soil parameters is taken from (JCSS, 2001) and (Rackwitz, 2000). 

Since the top soil layer and mid soil layer are both cohesive soils, the same priors are assigned 

to them. The prior of all parameters are assumed to be lognormally distributed, as they are 

strictly positive. Their possible ranges of mean and coefficient of variation (COV) are given in 

Table 4.3. In our analysis, the means and COVs of soil parameter distributions are selected as 

the mean value of corresponding range in this table. The adopted range of the parameter values 

(i.e. support) is set between 1% cumulative probability and 99% cumulative probability (see 

Figure 4.9),while the tails (i.e. extreme values) are discarded to avoid soil failure in Plaxis. In 

this way, the prior is actually composed of truncated lognormal distributions, and the joint prior 

distribution is constructed by assuming mutual independence between them. Note that in Table 

4.3, the selected prior mean and selected prior COV correspond to the untruncated lognormal 

distribution. 

Table 4.3: Prior information. 

 
Prior mean from 

(JCSS, 2001) 

Prior COV from 

(JCSS, 2001) 

Selected prior 

mean 

Selected prior 

COV 
Support 

Elastic modulus [kN/m2] 

Etop & Emid 
2000 –  4000 0.2 –  1.0 3000 0.6 [708, 9350] 

Internal friction angle [degrees] 

𝜙top & 𝜙mid 
19.3 – 22.8 0.1 – 0.2 21.05 0.15 [14.7, 29.5] 

Saturated unit weight [kN/m3] 

ϒtop & ϒmid 
18 – 20 0.05 – 0.1 19 0.075 [15.9, 22.6] 

Cohesion coefficient [kN/m2] 

Ctop & Cmid 
15 – 30 0.1 – 0.4 22.5 0.25 [12.3, 38.7] 
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Figure 4.9: Showcase of the selection of support. 

4.4.2  Uncertainties 

The Bayesian inference of the soil parameters requires the evaluation of the likelihood function 

(see equation (3.43)), which includes three sources of uncertainties: the measurement 

uncertainty, the physical model uncertainty and the surrogate model uncertainty (see section 

3.3). Table 4.4 summarizes the standard deviations of each uncertainty component, namely 

measure , 
physical model  and 

surrogate  in which the measure and 
physical model are based on expert 

judgement, while the physical model  is explicitly explained by GPR. Note that due to these input 

values, the measurement uncertainty is expected to have a negligible effect but is still included 

for completeness on a conceptual level. 

Table 4.4: Standard deviation of each uncertainty components. 

Observation measure  physical model  surrogate  

Ux [mm] 0.02 4 

Varies with different 

surrogate model 

εspw [
610−  ] 1 10 

Uy [mm] 0.02 4 

εanchor [
610−  ] 1 10 

Ux : Horizontal displacement of the sheet pile wall 

εspw : Strain in the sheet pile wall 

Uy : Vertical displacement of the top ground 

εanchor : Strain of the anchor 
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4.4.3 Correlation in physical model uncertainty 

As mentioned in section 3.2.3, the correlation in the physical model uncertainty 
physical modelE  is 

a crucial aspect in the Bayesian inference. In this numerical case study, the correlation length 

in 
physical modelE  is estimated on the basis of real measurement data from a pull-over test on a 

sheet pile wall and a Plaxis 3D model. The data and the Plaxis model are from (Naves, 2018). 

Figure 4.10 shows the finite element model, which was developed by (Naves, 2018) and has 

been calibrated to the experiment.  Figure 4.11 shows the horizontal traction force over time 

that is applied at the top of the sheet pile wall. During the test, horizontal displacements of the 

sheet pile wall were recorded by SAAF sensors. Note that the original aim of the pull-over test 

is to more reliably predict the strength and deformation behavior of a combination of structural 

elements and (un) drained soil under extreme (high water) conditions.  

The calculation of the correlation length consists the following steps: 

1. The measured displacement of two SAAFs at two loading time is selected and collected; 

2. The predicted displacements are generated using Plaxis positions and loading phases 

corresponding to SAAF measurement positions and loading phases respectively; 

3. The difference between measured displacement and predicted displacement is 

approximated using GPR with RBF kernel along the SAAF length; 

4. In total there are four length scales in four GPR models, and according to section 3.3.4, 

these length scales are equivalent to correlation length in physical model uncertainty. 

Their mean is selected as the final correlation length. 

This calculation relies on the following assumptions: 

- The measurement uncertainty is neglected and the difference between measured 

displacement and Plaxis prediction represents the physical model uncertainty; 

- A GPR model is a reasonable description of observed and predicted differences; 

- The measurement data at the selected two SAAFS and the time stamps are considered 

to be representative of the entire loading history. 



 

78 

 

 

Figure 4.10: A 3D view of the FE model of the pull-over test.  

Figure 4.11: Pull-over force over time during the experiment. 

 

 

Figure 4.12: Showcase of installed SAAFs. 

In our work, the horizontal displacements of two SAAFs (SAAF, 2019) are considered, which 

are installed along the sheet pile wall as indicated in Figure 4.12. Only the data collected at 

time 12:30:00 and 12:50:00 are used. The measured values and Plaxis predictions are displayed 

in Figure 4.13 ~ Figure 4.16. The colored areas in the figures are indicating the soil layers. 

Using the method described in section 3.3.4, their difference (i.e. measured-predicted, denoted 

as xU ) is modeled as a GPR with RBF kernel. The differences along the length of the sheet 

pile wall and the fitted GPR models are shown in Figure 4.17 ~ Figure 4.20. Then the length 

scale of the RBF kernel is naturally the correlation length of physical model uncertainty. The 

results are collected in Table 4.5.  
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Figure 4.13: SAAF#1 measured and Plaxis predicted values at 

12:30:00. 

 

Figure 4.14: SAAF#2 measured and Plaxis predicted values at 

12:30:00. 

 

 

Figure 4.15: SAAF#1 measured and Plaxis predicted values at 

12:50:00. 

 

Figure 4.16: SAAF#2 measured and Plaxis predicted values at 

12:50:00. 

 

 

Figure 4.17: Fitting the difference between SAAF#1 measured and 

Plaxis predicted values at 12:30:00. 

 

Figure 4.18: Fitting the difference between SAAF#2 measured and 

Plaxis predicted values at 12:30:00. 
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Figure 4.19: Fitting the difference between SAAF#1 measured and 

Plaxis predicted values at 12:50:00. 

 

Figure 4.20: Fitting the difference between SAAF#2 measured and 

Plaxis predicted values at 12:50:00. 

 

Table 4.5: Hyperparameters of the fitted GPR model. 

 
Mean of xU  

[mm] 

Signal variance 2

f  

[mm2] 
Length scale [m] 

12:30:00  SAAF#1 -3.20 4.242 1.40 

12:30:00  SAAF#2 -2.21 3.162 1.49 

12:50:00  SAAF#1 -3.47 4.322 1.26 

12:50:00  SAAF#2 -2.74 3.162 1.48 

Average value -2.91 3.762 1.41 

 

The average value (i.e. 1.41 m) is used as the correlation length of Ux in the physical model 

uncertainty. The use of the obtained correlation length in the 2D model entails the following 

assumptions: 

• The physical model uncertainty of the 3D Plaxis model is the same as that of the 2D 

Plaxis model; 

• The correlation length obtained for horizontal measurements is applicable to strain 

measurements and vertical measurements which are not available; 

• The correlation length for physical model uncertainty also holds for surrogate model 

uncertainty to avoid unrealistic independence; 

• The bias in the mean of xU is neglected for simplicity as it is unknown if this bias is 

particular for the displacement in the pull-over test. 
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4.5 Construction of surrogate models 

To perform a single Bayesian inference, tens of thousands of runs of the Plaxis model might 

be needed, which is prohibitively expensive from a computational point of view. Therefore, 

the GPR model described in section 3.2 is adopted to construct a computationally cheap 

surrogate model to replace the Plaxis model. Eight soil parameters (i.e. Etop, 𝜙top, ϒtop, Ctop, 

Emid, 𝜙mid, ϒmid and Cmid) are taken as unknown variables and hence eight dimensional surrogate 

models are constructed. The support of the surrogate models is the same as the support of the 

priors (Table 4.3). For convenience, the support is normalized to the unit hypercube in the 

fitting process hence all the figures presented in this report have a unit support. 

Since there are 4 construction phases considered to install the monitoring system and in each 

there are 24 sensors, we need in total 96 surrogate models; each maps from an eight 

dimensional space to a one dimensional one. The details of the surrogating: 

• the pseudo code of the used algorithm is described in section 3.2.6; 

• stopping criterion: 0.005 =  is used, see section 3.2.5; 

• the number of initial sampling points is set to 300 including 256 hypercube corners to 

speed up convergence as explained in section 3.2.7.  

The first surrogate model (i.e. S#20 at P4start) is constructed by running Plaxis for 628 times. 

Since in this process all responses generated by Plaxis are recorded, the initial sampling points 

will be 628 when moving to the next surrogate model (i.e. S#25 at P4start). However, since some 

to-be-surrogated responses may have different signs (e.g. positive and negative strain of sheet 

pile wall) or small value of 
rangey  (the range of sample values as in section 3.2.5, e.g. anchor 

strain at P6start and P7start), it can take considerable time to meet the originally set stopping 

criterion ( 0.005 = ). Therefore, the stopping criterion for the surrogate models at P5start, 

P6start and P7start is set as 0.01 = . In total 1445 Plaxis runs are required to construct the 96 

surrogate models with this more permissive stopping criterion for some models. The maximum 

of normalized prediction standard deviation excluding noise component (denoted as 

max
,max

range

noise

y





−
= ) for all surrogate models are shown in Figure 4.21. 
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Figure 4.21: Maximum of normalized prediction standard deviation of surrogate models. 

In this figure, the 
,max 0.005   cases are indicated with blue squares and the darker the blue 

the smaller the value. While values larger than 0.005 are indicated with red squares and the 

darker the red the larger the value. It can be seen that the 
,max  of sensor N# (i.e. to measure 

Ux) and sensor G# (i.e. to measure Uy) are all below 0.005, while that of strain sensors (e.g. 

A#1 at P6start and P7start) are relatively higher. 

To evaluate the performance of these surrogate models, 150 new sampling points (not used for 

the fitting) are generated with Plaxis to calculate the coefficient R2, which is defined as shown 

in equation (4.1). The results are plotted in Figure 4.22. The best score is 1.0 and the larger the 

score, the better model. 
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true,iy  the true value generated with Plaxis of ith sample; 

predict,iy  the surrogate model prediction of ith sample; 

true,meany  the mean of all 150 
true,iy . 

 

Figure 4.22: R2 value of surrogate models. 

In this figure, it is visible that the surrogate models related to S#20, S#25 and S#30 installed at 

P6start and P7start performs poorly in prediction as they have a relatively low R2 value. This is 

consistent with Figure 4.21 in which these surrogate models have higher value of 
,max . 

However, a high value of 
,max  does not necessarily lead to a low value of R2 as 

,max  is also 

influenced by 
rangey . For example, A#1 at P5start P6start and P7start have very high value of 

,max  

(i.e. close to 0.01) shown in Figure 4.21,  but their prediction performance is still good reflected 

by the high value of R2
.  

To visualize the surrogate models and further evaluate their performance, 20 additional Plaxis 

runs are performed where Etop is selected to be the only one varied while the rest of the soil 

parameters are fixed at their “real” values. Then the surrogate model predictions are calculated 

using the same way: varied Etop and the rest is fixed. The responses related to S#20 installed at 

P7start and G#35 installed at P4start are given as examples as they respectively have the lowest 
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and the highest value of R2 and are shown in Figure 4.23 and Figure 4.24. Note that the Plaxis 

outputs represented by circles in the figures were not used for fitting the GPR models. 

 

Figure 4.23: 1D visualization of S#20 at P7start. 

 

Figure 4.24: 1D visualization of G#35 at P4start. 

 

In both figures, the Plaxis outputs are indicated by black dots while the surrogate model 

prediction is indicated by the solid blue line. Additionally, the 95% confidence interval of the 

surrogate prediction is indicated by the blue area while the noise component is indicated by the 

yellow area. The range of sample values which are related to the stopping criterion is indicated 

by the red and yellow dashed lines and 1% of the range is indicated by the little black vertical 

line. In Figure 4.23 even though there is a visible difference between the Plaxis outputs and 

surrogate prediction, the former are all within the 95% credible region of the latter, meaning 

that the surrogate model is still reliable. And this figure can demonstrate that since the response 

may have different signs (i.e. positive or negative strain), the 
,max  is relatively high 

(corresponding to a red square in Figure 4.21) as described previously. This high 
,max  value  

thus leads to a wide 95% confidence interval. In Figure 4.24, the 95% confidence interval is 

quite narrow and the Plaxis output is overlapping with the surrogate prediction, which is 

consistent with its low value of 
,max  (corresponding to a blue square in Figure 4.21) and its 

high value of R2. Note that the relatively low R2 score for some models is not an issue from a 

modelling point of view as the GPR model captures this discrepancy and assigns a probabilistic 

model to it. In later analysis, e.g. Bayesian inference, the uncertainty in the GPR model – 

expressed by its probabilistic model – is directly considered. The low R2 score is more of an 

issue from a practical point of view as introducing additional uncertainties via the surrogate 

model is making our statistical inference weaker, i.e. lowers the information content we can 

extract from the measurements. 
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In the following analyses, if the number of considered unknown soil parameters is less than 8 

(see Subcase 1 in section 5.1 and Subcase 2 in section 5.2), then the generated surrogate models 

can still be used and prediction can be made by taking the rest of the known parameters at their 

“real” values. Two examples are given in Figure 4.25 and Figure 4.26 considering εspw at S#20 

and S#45 installed at P4start and the variables are Etop and Emid. 

 

Figure 4.25: εspw at S#20 installed at P4start. 

 

Figure 4.26: εspw at S#45 installed at P4start. 
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4.6 Overview of analyses 

The general steps of the completed analyses are the following: firstly, up to four kinds of 

observations are considered as possible measurements, namely horizontal displacement of the 

sheet pile wall, strain of the sheet pile wall, vertical displacement of the top ground, and strain 

of the anchor. The observations are generated with the Plaxis model. Next, surrogate models 

of the displacements and strains are constructed using Gaussian process regression to replace 

the computationally expensive Plaxis model. Then the observations (synthetic data) are used 

to identify soil parameters using the Bayesian approach (i.e. MultiNest algorithm). In this 

process, the uncertainty components, namely measurement uncertainty, physical model 

uncertainty and surrogate model uncertainty are considered in the likelihood function. Based 

on the performance of sensors, which is evaluated using KL divergence, the optimal sensor 

type, the optimal sensor placement, and the influence of construction stage (i.e. sensor 

installation time) are investigated.  

Table 4.6 gives an overview of the performed analyses, namely the optimal sensor selection, 

the parameter identification, the influence of construction stages and the reliability analysis for 

three subcases with respectively two, four and eight parameters to be inferred. The next chapter 

presents the results of these analyses. 

Table 4.6: Overview of analyses 

 Case 1 Case 2 
Case 3 

Case 3-1 Case 3-2 Case 3-3 Case 3-4 

Inferred 

parameters 
Etop Emid 

Etop, 𝜙top 

Emid, 𝜙mid 
Etop, 𝜙top, ϒtop, Ctop, Emid, 𝜙mid, ϒmid, Cmid 

Synthetic 

observation 
εspw εspw εspw Ux Uy 

εspw, Ux, Uy, 

εanchor 

Optimal sensor 

selection 
 √ √ √ √ √ 

Parameter 

identification 
√ √ √ √ √ √ 

Influence of 

construction 

stages 

 √ √ √ √ √ 

Reliability 

analysis 
√ √    √ 
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5 Case study: Sheet pile wall – results 

5.1 Subcase 1: Etop & Emid 

In subcase 1 the dimensionality of the inference problem is set to two. The following scenario 

is assumed (for an overview see Table 4.6): 

- The soil parameters Etop and Emid are considered as the unknown variables, while the 

other soil parameters are treated as known, deterministic values; 

- The sheet pile wall has a monitoring system that comprises of six strain gauges along 

the height of the sheet pile (they are labelled as S#20, S#25, S#30, S#35, S#40, and 

S#45 in Figure 5.1); 

- In this subcase, the effect of the time of installation of the monitoring system on the 

parameter estimation is not investigated yet, the monitoring system is assumed to be 

installed at the beginning of phases P4, P4start
7

 (see section 4.2). The strain 

measurements are collected at the end of phase P7, P7end
8

, in which the surface load is 

applied. 

  

Figure 5.1: Sensor placement measuring the strain of sheet pile wall. 

 

                                                 
7 It means that at the start of construction phase 4, analogously, there will be P5start, P6start, P7start. 

8 It means that at the end of construction phase 7, analogously, there will be P5end, P6end, P7end. 
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5.1.1 Parameter identification 

The Bayesian computation is performed with MultiNest (see section 3.4.3), in which process 

the combined uncertainty is set as described in section 3.3 and the priors shown in Figure 5.2, 

while the posterior distribution is displayed in Figure 5.3. 

In both prior and posterior plot, the red dashed lines indicate the ”real” value that is aimed to 

be recovered from the measurements. The marginal distributions of each single parameter are 

plotted in the diagonal, while the joint distributions of each pair of them is plotted in the off-

diagonal. The zones bounded by black lines in the off-diagonal represent 90% credible region. 

It can be seen that the 90% credible region of the posterior shrinks considerably compared with 

that of the prior, and both Etop and Emid are well identified as their marginal distributions are 

quite concentrated around the “real” value in the posterior.  

 

Figure 5.2: Prior distribution of Subcase 1. 

 

Figure 5.3: Posterior distribution of Subcase 1. 

 

For further comparison, the mean, COV, as well as the area of 90% credible region (90% ACR) 

of Etop and Emid in both prior and posterior are given Table 5.1. It is observed that that the 90% 

ACR of Etop and Emid of posterior is only around 4% of that of prior. The posterior mean of both 

Etop and Emid are very close to their “real” value. The COV of posterior is only 40%/15% of that 

of prior for Etop and Emid respectively. 

Table 5.1: Comparison of Etop - Emid between prior and posterior. 

 
Etop Emid 

90% ACR of Etop - Emid 
“Real” value Mean COV “Real” value Mean COV 

Prior 
0.248 

0.374 0.6 
0.398 

0.374 0.6 0.3531 

Posterior 0.277 0.244 0.406 0.091 0.0149 
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5.1.2 Reliability assessment 

In this section we investigate the effect of using updated probabilistic models of the soil 

parameters (posteriors) in the reliability assessment of the sheet pile wall. For this purpose, 

structural reliability is calculated using the prior and posterior from section 5.1.1. A 

serviceability limit state is considered that expresses the exceedance of a deterministic 

displacement threshold and thus no more random variables are required. The maximum 

horizontal displacement of the sheet pile wall is included in the performance function: 

 ( )SLS ,
ˆ( ) max ( )x x ig U U= −θ θ   (5.1) 

Where 

ˆ
xU  Maximum allowed horizontal displacement before failure (deterministic); 

, ( )x iU θ  i = 1, 5, 10, 15, 20, 25, 30, 35, represents cumulative horizontal displacement at 

N#1, N#5, N#10, N#15, N#20, N#25, N#30, N#35 as shown in Figure 4.8. 

Since the reliability analysis should start from the very beginning, the used responses (i.e. ˆ
xU , 

, ( )x iU θ  in this case) should be cumulative responses from when the structure is constructed to 

when the structure is assessed (in our case, it is from P4start to P7end). In this work, the ˆ
xU  is 

selected as 180mm, such that the failure probability for the prior distribution is around 10% 

(calculated using nested sampling and directional sampling). This failure probability 

corresponds to a reliability index of 1.3 which means relatively high cost of safety measure 

(see table 4.2 in (Honfi, 2013)). Based on expert judgement, we assume that the maximum of 

horizontal displacement of sheet pile wall occurs above N#35 and only at 
, ( )x iU θ  as described. 

In this way, the surrogate models for Bayesian inference can be reused. Then as described in 

section 3.5, the failure probabilities calculated using the prior (by directional simulation) and 

posterior (nested sampling) are collected in Table 5.2. 

From this table, it can be seen that the posterior failure probability is sharply decreased to a 

negligible value of 5.11×10-88  compared with the prior failure probability: 9.72×10-2. To gain 

further insight into this significant reduction, the projections of the failure region for both prior 

and posterior are plotted in Figure 5.4 and Figure 5.5. The red zones indicate the projection of 

the failure region and the darker the color, the larger the exceedance of allowed horizontal 

displacement. The black lines and red dashed lines are the same as in Figure 5.2 and Figure 5.3. 

The observed significant difference in prior and posterior failure probabilities can be explained 
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with the help of the projections: a considerable area of the projection falls within the 90% 

credible region of the prior (Figure 5.4) leading to a large failure probability, while the 

projection is far away from the 90% credible region of the posterior (Figure 5.5) resulting a 

tiny failure probability. 

Table 5.2: Prior and posterior failure probabilities in Subcase 1. 

 Prior Posterior 

Failure probability 9.72×10-2 5.11×10-88 

 

 

Figure 5.4: Failure region in prior distribution of Subcase 1. 

 

Figure 5.5: Failure region in posterior distribution of Subcase 1. 

 

5.2 Subcase 2: Etop, 𝜙top & Emid, 𝜙mid 

In Subcase 2 the dimensionality of the inference problem is set to four. The following scenario 

is assumed (for an overview see Table 4.6): 

- The soil parameters Etop, Emid, 𝜙top and 𝜙mid are considered as the unknown variables, 

while the other soil parameters are treated as known, deterministic values; 

- The sheet pile wall has a monitoring system that comprises of six strain gauges along 

the height of the sheet pile (they are labelled as S#20, S#25, S#30, S#35, S#40, and 

S#45 in Figure 5.1); 

- In this subcase, the effect of the time of installation of the monitoring system on the 

parameter estimation is investigated, the monitoring system is assumed to be installed 
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at, P4start, P5start, P6start, P7start (see section 4.2). The strain measurements are collected 

at P7end in which the surface load is applied.  

5.2.1 Parameter identification 

Firstly, all six sensors are considered and they are assumed to be installed at P7start. Then 

Bayesian analysis is conducted similarly as in section 5.1.1. The used prior distribution and 

obtained posterior distribution are shown in Figure 5.6 and Figure 5.7. In these two figures, the 

red lines indicate “real” values, and the 2D marginals and 1D marginals are plotted in the off-

diagonal squares and the diagonal squares, while the black lines in 2D marginals indicate the 

90% credible regions. 

 

 

Figure 5.6: Prior distribution of Case 2. 

 

Figure 5.7: Posterior distribution of Case 2. 

 

Based on the posterior distribution in Figure 5.7, Etop, 𝜙top and Emid can be relatively accurately 

identified, as their marginal distributions are concentrated around a certain value. For a 

comparison between this subcase and Subcase 1: Table 5.1 is extended to include the results 

of Etop and Emid of Subcase 2 and shown in Table 5.3. Comparingthe prior and the posterior in 

Subcase 2, both Etop and Emid can be properly identified (the posterior mean is close to the “real” 

value), and the COV of Etop and Emid in posterior decreases to 50%/18% of that in prior. 

However, compared with the posterior in Subcase 1 and that in Subcase 2, there is a slight 

increase of the marginal COV and an almost doubled 90% ACR. This can be explained by the 

increasing dimensionality of the inference problem: the parameter space is larger and the 
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probability mass is spread among a larger number of likely parameter combinations that match 

with the measured responses. 

Table 5.3: Comparison of Etop - Emid between prior and posterior. 

 
Etop Emid 90% ACR 

of Etop - Emid “Real” value Mean COV “Real” value Mean COV 

Prior 

0.248 

0.374 0.6 

0.398 

0.374 0.6 0.3531 

Posterior (Subcase 1) 0.277 0.244 0.406 0.091 0.0149 

Posterior (Subcase 2) 0.263 0.298 0.401 0.108 0.0263 

 

Another observation is very little information is gained about 𝜙mid (~not identifiable): its 

posterior marginal distribution is very much like its prior. This is caused by the mechanical 

behavior of this structure, i.e. the strain of the sheet pile wall is hardly influenced by 𝜙mid as 

shown in Figure 5.8. In this figure, the responses are calculated by keeping all parameters at 

their “real” value except one which is varied. The “real” values are indicated by red dashed 

lines. Even though the influence of variation of more than one parameters is not shown, this 

figure is still insightful as it roughly shows if the responses are sensitive to changes in the 

parameters. 
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Figure 5.8 Responses of sensors installed at P4start in Subcase 2. 

5.2.2 Optimal sensor selection 

Even though more sensors convey more information, the improvement is diminishing due to 

the correlation among the sensors. Moreover, considering that installing more sensors costs 

more (e.g. cost of sensors, cost of labor considering installation and maintenance) and will 

largely increase computational time, it is advocated to find an optimal set of sensors and to 

discard less informative ones. Here the optimal set is defined as a set of sensors that conveys 

the most information with a fixed number of sensors. To start with, a Bayesian inference 

calculation is performed using different sets of observations with a combination of a single 

sensor and  sensor pairs. For each calculation, the KLD between prior and posterior (see section 

3.4.4.3) is determined to evaluate the information content of the considered sensor or sensor 

pair. The obtained information content is shown in Figure 5.9, in which each square of the 

lower triangular matrix plot corresponds to a Bayesian analysis based on the synthetic εspw 

from the two corresponding sensors (row and column). In the diagonal only one sensor is 

considered in the Bayesian analysis. The larger the KLD value (i.e. the darker the red of the 

square), the more informative the corresponding sensors. If posterior is the same as the prior 

then KLD=0. 
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Figure 5.9: KLD matrix plot. 

 

Figure 5.10: Variation of KLD with different number of sensors. 

 

From this figure, it can be concluded that S#30 is the optimal single sensor, while S#35 and 

S#40 forms the optimal sensor pair. Since we are not confident if two sensors are enough, three 

optimal sensors is investigated following a similar analysis as for fewer sensors (i.e. the 

combination of six sensors taken three of them at a time without repetition). This calculation 

requires 20 Bayesian analyses and the obtained optimal sensors which carry the largest value 

of KLD are S#25, S#35 and S#40. The last Bayesian analysis uses the strains values εspw from 

all 6 sensors and quantifies the gained information using KLD. Then the normalized KLD 

values corresponding to the optimal sensor set for varying number of sensors are shown in 

Figure 5.10. It can be seen that one optimal sensor is far from sufficient to convey enough 

information, two optimal sensors have relatively good performance in inference, and three can 

convey almost 80% of the information content of six sensors. It is visible that more sensors are 

better, but the gained information gradually levels out with increasing number of sensors. As 

an example, the posterior distributions using three optimal sensors and all six sensors are 

displayed in Figure 5.11 and Figure 5.12 respectively. As expected, there is a small expansion 

of the 90% credible regions if only three sensors are used compared with usage of six sensors. 
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Figure 5.11: Posterior in Subcase 2 with 3 optimal sensors. 

 

Figure 5.12: Posterior in Subcase 2 with 6 sensors. 

 

5.2.3 Influence of construction stages 

The consideration of construction phases is important to describe the soil-structure interaction 

in hydraulic structures accurately. In this section we analyze the effect of the starting time of 

sensor monitoring on the Bayesian analysis. Four different series of Bayesian calculations are 

performed, in which the monitoring system is installed at the beginning of phase P4start, P5start
 

, P6start
 and P7start

 
 (see section 4.2). In all cases the strain measurements are collected at  the 

end of phase P7: P7end, when the surface load is applied. Within each series, first the three most 

informative strain sensors along the sheet pile wall are determined (as shown in the previous 

section), using their KLD matrix plots in Figure 5.13 ~ Figure 5.16. Next, the information 

content of the three most informative sensors per time of installation is normalized and 

compared in Figure 5.17. 
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Figure 5.13: KLD matrix plot with sensors installed at P4start, 

 

Figure 5.14: KLD matrix plot with sensors installed at P5start, 

 

 

Figure 5.15: KLD matrix plot with sensors installed at P6start, 

 

Figure 5.16: KLD matrix plot with sensors installed at P7start, 
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Figure 5.17: Variation of KLD with sensor installation phase. The 

three optimal sensors are indicated in brackets. 
 

Figure 5.18: Comparison between posterior with sensors installed 

at P4start and that with sensors installed at P7start. The contour plots 

in the off-diagonal plots are 90% credible regions. 

 

From this figure, we conclude that the earlier the sensors are installed, the more information 

they convey regarding the estimation of the soil parameters. For example, if sensors are 

installed just before the surface load is applied (i.e. at P7start), the conveyed information is only 

40% of that with sensors installed at P4start. This difference of information could also be 

reflected in their posterior distribution, i.e. there is a dramatic reduction of the 90% credible 

region with early sensor installation as shown in Figure 5.18. 

5.2.4 Reliability assessment 

In this section, the same serviceability limit state is applied as in section 5.1.2 (i.e. equation 

(5.1)). Since the aim of this section is to apply the method in section 3.5 to higher dimensional 

problem (i.e. 4D problem), only the prior and the posterior using sensors installed at P4start in 

section 5.2.1 are considered. Then the failure probability calculated using the prior distribution 

is 9.32×10-2, while using the posterior it is a negligible value: 2.43×10-80. Yet again we observe 

a sharp decrease compared with the prior value. These two failure probabilities can also be 

explained more straightforwardly by the projections of failure regions (i.e. the red zones) as 

shown in Figure 5.19 and Figure 5.20.  
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Figure 5.19: Failure projections in prior distribution. 

 

Figure 5.20: Failure projections in posterior distribution. 

 

Since now there are 4 unknown soil parameters, the projections are made by fixing the values 

of non-random variables to their prior means (see section Table 4.3). For example, when the 

projection of failure region considering the variation of Etop and 𝜙mid (e.g. the bottom left square 

in Figure 5.19) is plotted, the value of Emid and 𝜙top are fixed at the corresponding prior mean. 

Even though there is the limitation that the fixed parameters cannot be always at their prior 

mean values and the influence of variation of more than two parameters is unknown, this 

plotting approach is still insightful as it roughly shows how much the parameters contribute to 

the failure. For example, from the squares in the bottom row in Figure 5.20, it can be seen that 

𝜙mid has little influence on the failure as the projection hardly varies with the change of it. 

Similarly, 𝜙top also has little influence and this can be confirmed from the square in the 4th row 

and the 2nd column where there is no failure projection, meaning that if Etop and Emid are fixed 

at their prior mean, the limit state will not be exceeded regardless of the change of 𝜙top and 

𝜙mid. 

Based on the failure projections in Figure 5.19 and Figure 5.20, it can be explained why there 

is a huge decrease of failure probability: most of the failure regions are in the 90% credible 

region in prior, while that are considerably far away from the 90% credible region in posterior.  

5.2.5 Intermediate conclusions  

From the result of Subcase 2, the following intermediate conclusions are drawn: 

• Etop, 𝜙top and Emid can be relatively well identified using strain sensors: 
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o 
prior posteriorCOV COV   2.5-6.5 

o The posterior mass is concentrated around the “real” values. 

•  𝜙mid is not identifiable using strain sensors, i.e. its posterior marginal is very similar to 

the prior; 

• With the increase of dimensionality from two to four, the COV of marginal distributions 

of the same parameters and the 90% ACR both increase about 20% and 75% 

respectively; 

• It is demonstrated the KLD can be used to select the optimal set of sensors. Furthermore, 

it shown that by increasing the number of strain sensors the incremental information 

gain is diminishing, e.g. three optimal sensors convey 80% of the information (KLD) 

of six sensors (the total number of sensors considered in this Subcase);  

• It is advantageous to install sensors as early as possible to collect more information. 

The information gained when the sensors are installed before the last construction stage 

is only 40% of what can be obtained if they are installed at the earliest possible time; 

• It has been shown that the failure probability (under serviceability limit state) can 

decrease by multiple order of magnitudes (10-2 → 10-80) by considering the monitoring 

data and using the posterior distribution compared with the prior distribution. This 

substantial gain is largely attributed to the substantial decrease of the scatter in the joint 

distribution of soil parameters. The failure probability reduction is also affected by the 

dimensionality of the problem: the calculated failure probability is 10-88 for the 2D and 

10-80 for the 4D case after system identification. 

5.3 Subcase 3: Etop, 𝜙top, ϒtop, Ctop & Emid, 𝜙mid, ϒmid, Cmid 

In Subcase 3 the dimensionality of the inference problem is set to eight. Note that we 

purposefully keep the variables which have little influence on the measured responses (e.g. 

𝜙mid) as one of the objectives of the work is to explore and test methods and tools which can 

be used in higher dimensional cases. Therefore the following scenario is assumed (an overview 

is in Table 4.6): 

• The soil properties, namely Etop, 𝜙top, ϒtop, Ctop as well as Emid, 𝜙mid, ϒmid, Cmid are 

considered as unknown variables, while the other soil parameters are treated as known, 

deterministic values. 
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• As shown in Figure 4.8, the monitoring system that we apply consists of six strain 

sensors on the sheet pile wall (labeled as S#), eight sensors to measure the horizontal 

displacements of sheet pile wall (labeled as N#), nine sensors to measure the vertical 

displacements of top ground (labeled as G#), and one strain sensor in the anchor 

(labeled as A#, since the anchor is modeled as uniaxial elastic element, the anchor force  

is constant along the anchor, and thus only one sensor is needed). 

• The first three sets of observations are firstly considered separately in the Bayesian 

analysis to find an optimal set of sensors and to discard less informative ones for each 

of the sensor types. The performance of each observation will be compared based on 

KL divergence.  

• The optimal sensors per sensor type are combined in one new and complete set of 

sensors, for which again a Bayesian analysis is performed.  

• Finally, a reliability analysis is performed using the posterior distribution of soil 

parameters based on the complete set of optimal sensors.  

• Both for the parameter estimation and reliability analysis, the calculations are 

performed at different times of sensor installation during construction, but all the data 

is collected at P7end. 

• The used prior distribution is shown in Figure 5.21, in which the black closed line 

indicates the 90% credible region and the red dashed lines indicate the true value to be 

identified. The marginal distributions of a single parameter and the joint distributions 

of a parameter pair are plotted in the diagonal and the off-diagonal respectively. 
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Figure 5.21: Prior in Subcase 3. 

5.3.1 Optimal sensor selection 

5.3.1.1 Case 3-1: Strain of sheet pile wall as observation 

Firstly, only the strains of the sheet pile wall (εspw) are considered. The possible sensor locations 

are indicated in Figure 5.22, which is the same as what has been used in the previous Subcase 

1 and Subcase 2. 
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Figure 5.22: Sensor placement in Subcase 3-1. 

Using the same method as in Subcase 2, the optimal sensor sets for different number of sensors 

are determined based on KLD values. The results are collected in Table 5.4 and the KLD values 

for one and two optimal sensors are displayed in Figure 5.23 ~ Figure 5.26. 

Table 5.4: KLD in Case 3-1. 

Sensor installation time P4start P5start P6start P7start 

1 optimal sensor Location N#45 N#45 N#45 N#45 

KLD 2.38 2.19 1.28 0.88 

KLD (Normalized) 0.497 0.457 0.267 0.184 

2 optimal sensors Location N#30, N#40 N#35, N#45 N#35,  N#45 N#35, N#45 

KLD 3.53 3.13 2.19 1.58 

KLD (Normalized) 0.737 0.653 0.457 0.330 

3 optimal sensors Location N#25, N#35, N#45 N#25, N#35, N#45 N#20, N#35, N#45 N#20, N#35, N#45 

KLD 4.06 3.91 2.50 1.85 

KLD (Normalized) 0.848 0.816 0.522 0.386 

All sensors Location N#20,N#25,N#30, 

N#35,N#40,N#45 

N#20,N#25,N#30, 

N#35,N#40,N#45 

N#20,N#25,N#30, 

N#35,N#40,N#45 

N#20,N#25,N#30, 

N#35,N#40,N#45 

KLD 4.79 4.30 3.05 2.29 

KLD (Normalized) 1.000 0.898 0.637 0.478 
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Figure 5.23: KLD matrix plot with sensors installed at P4start. 

 

Figure 5.24: KLD matrix plot with sensors installed at P5start. 

 

Figure 5.25: KLD matrix plot with sensors installed at P6start. 

 

Figure 5.26: KLD matrix plot with sensors installed at P7start. 

 

The results are also visualized in Figure 5.27. For illustration, Figure 5.28 shows the posterior 

distributions of the soil parameters based on the three optimal sensors installed at P4start. The 

following observations can be made from all these results: 

• Three optimal sensors installed in all phases could convey sufficient information (i.e. 

approximately 90% of information conveyed by all six sensors installed in 

corresponding phase) as there is tiny correlation among the optimal sensors considering 

they are far away from each other; 

• The optimal sensors are generally located at the height of the mid and bottom soil layer. 

It is in line with what we expect from a mechanical point of view, as well as from Figure 

4.4 since large strain is expected at these positions; 

• With each delay of sensor installation phase, there will be a considerable decrease of 

gained information. For example, when using all the six strain sensors, the decrease of 

gained information is the largest when the sensors are installed at P6start instead of P5start 

(around 25%). This is consistent with Figure 4.4, in which the strain of the sheet pile 



 

104 

 

wall increases the most during P5 as there is an excavation of top and mid soil layer 

described in section 4.2. If sensors are installed at P6start, this portion of strain will not 

be measured and thus leading to a large decrease of KLD value; 

• Even three optimal sensors installed at P4start (hereafter named as optimal sensor 

placement) could not properly identify these soil parameters as shown in Figure 5.28.   

In the 2D and 4D problems (i.e. namely Subcase 1 and Subcase 2), most of the soil 

properties can be properly identified based on these strain measurements in the sheet 

pile wall. However in the 8D problem, only Etop and Emid reveal concentrated posteriors 

(but their most likely value is offset a bit from the real value), the other posteriors are 

not so informative. A possible explanation is that for an increasing dimensionality in 

the inference problem, the number of parameter value combinations that match with the 

measured responses could increase as well. Hence adding more sensors that are not or 

weakly correlated to the current set of sensors could help and lead to more concentrated 

posteriors, which will be illustrated in case 3-4. 

 

Figure 5.27: Variation of KLD in Case 3-1. 

 
 

Figure 5.28: The most informative posterior in Case 3-1. 

 

To gain more insight, the six strain sensors installed at P4start are used to perform a Bayesian 

inference to compare the results of Etop and Emid with that in Table 5.3. The posterior is given 

in Figure 5.29 and quantitative values are given in Table 5.5. From the comparison among the 

posterior in Subcase 1, in Subcase 2 and in Case 3-1, the COV of both Etop and Emid as well as 

the 90% ACR will increase with the increase of dimensionality. This again demonstrates that 
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more parameter combinations are possible to match with the measured responses with an 

increase of dimensionality in the inference problem. 

 

Figure 5.29: Posterior based on 6 strain sensors on sheet pile wall installed at P4start. 

Table 5.5: Comparison of Etop - Emid between prior and posterior. 

 
Etop Emid 90% ACR 

of Etop - Emid “Real” value Mean COV “Real” value Mean COV 

Prior 

0.248 

0.374 0.6 

0.398 

0.374 0.6 0.3531 

Posterior (Subcase 1) 0.277 0.244 0.406 0.091 0.0149 

Posterior (Subcase 2) 0.263 0.298 0.401 0.108 0.0263 

Posterior (Case 3-1) 0.245 0.304 0.449 0.150 0.0688 

 

5.3.1.2 Case 3-2: Horizontal displacement of sheet pile wall as observation 

In this section, the horizontal displacements of the sheet pile wall (Ux) are used as observations 

to identify the soil parameters. The potential sensor configuration is shown in Figure 5.30, and 

the analysis performed in previous section is repeated to find the optimal sensor locations. The 

results are given in Table 5.7 and the KLD values for one and two optimal sensors are displayed 

in Figure 5.31 ~ Figure 5.34. 
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Figure 5.30: Sensor placement in Case 3-2. 

Table 5.6: KLD in Case 3-2. 

Sensor installation time P4start P5start P6start P7start 

1 optimal sensor Location N#25 N#25 N#1 N#1 

KLD 1.62 1.29 0.75 0.63 

KLD (Normalized) 0.579 0.461 0.268 0.225 

2 optimal sensor Location N#1, N#30 N#10, N#30 N#1, N#15 N#1, N#5 

KLD 2.24 1.56 1.02 0.76 

KLD (Normalized) 0.800 0.557 0.364 0.271 

3 optimal sensor Location N#1, N#20, N#30 N#1, N#20, N#30 N#1, N#10, N#30 N#1, N#10, N#25 

KLD 2.46 1.74 1.10 0.91 

KLD (Normalized) 0.879 0.621 0.383 0.325 

All sensors Location N#1, N#5, N#10, 

N#15, N#20, N#25,  

N#30, N#35 

N#1, N#5, N#10, 

N#15, N#20, N#25,  

N#30, N#35 

N#1, N#5, N#10, 

N#15, N#20, N#25,  

N#30, N#35 

N#1, N#5, N#10, 

N#15, N#20, N#25,  

N#30, N#35 

KLD 2.80 2.01 1.38 0.95 

KLD (Normalized) 1.000 0.718 0.493 0.339 
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Figure 5.31 KLD matrix plot with sensors installed at P4start. 

 

Figure 5.32 KLD matrix plot with sensors installed at P5start. 

 

Figure 5.33 KLD matrix plot with sensors installed at P6start. 

 

Figure 5.34: KLD matrix plot with sensors installed at P7start. 

 

From the summary plot in Figure 5.35, we observe similar trends as in the previous section for 

the strain sensors in the sheet pile wall: 

• Three optimal sensors are sufficient to convey information regardless of the installation 

time (around 90% of information conveyed by all 8 sensors) as correlation among them 

is now negligible; 

• The earlier the sensor installation time, the more the carried information by sensors, 

and every time the installation is done one stage earlier, there is a visible increase of 

the conveyed information (averagely 30% from P4start to P5start and from P5start to P6start, 

even though only around 10% from P6start to P7start). This quantified trend is in line with 

Figure 4.5, in which for example, there is considerable horizontal displacement in the 

P4 and if sensors are installed at P5start, this portion of displacement will not be 

measured and leading to the large decrease of KLD value; 
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• Only Etop can be properly identified even with optimal sensor placement (i.e. three 

optimal sensors installed at P4start) as shown in Figure 5.36. Considering the same 

reasons as discussed in Case 3-1, we hope to improve this situation by adding more 

uncorrelated/weekly correlated sensors. 

 

Figure 5.35: Variation of KLD in Case 3-2. 

 
 

Figure 5.36: The most informative posterior in Case 3-2. 

 

5.3.1.3 Case 3-3: Vertical displacement of top ground as observation 

In this section, the vertical displacements of top ground (Uy) are considered as observations, 

and the sensor configuration is shown in Figure 5.37. The same analysis is performed as in 

Case 3-1 and Case 3-2 is repeated to find the optimal sensor locations. The results are collected 

in Table 5.7 and the KLD values for one and two optimal sensors are displayed in Figure 5.38 

~ Figure 5.41. 
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Figure 5.37: Sensor placement in Case 3-3. 

 

Table 5.7: KLD in Case 3-3. 

Sensor installation time P4start P5start P6start P7start 

1 optimal sensor Location G#46 G#10 G#5 G#10 

KLD 2.66 1.45 1.44 1.34 

KLD (Normalized) 0.507 0.276 0.274 0.255 

2 optimal sensor Location G#5, G#40 G#5, G#25 G#5, G#25 G#5, G#25 

KLD 3.82 1.99 1.93 1.87 

KLD (Normalized) 0.728 0.379 0.368 0.356 

3 optimal sensor Location G#5, G#25, G#35 G#5, G#20, G#40 G#5, G#20, G#35 G#5, G#20, G#35 

KLD 4.28 2.37 2.24 2.17 

KLD (Normalized) 0.815 0.451 0.427 0.413 

All sensors Location G#5, G#10, G#15, 

G#20, G#25, G#30, 

G#35, G#40, G#46 

G#5, G#10, G#15, 

G#20, G#25, G#30, 

G#35, G#40, G#46 

G#5, G#10, G#15, 

G#20, G#25, G#30, 

G#35, G#40, G#46 

G#5, G#10, G#15, 

G#20, G#25, G#30, 

G#35, G#40, G#46 

KLD 5.25 2.86 2.69 2.69 

KLD (Normalized) 1.000 0.545 0.512 0.512 
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Figure 5.38: KLD matrix plot with sensors installed at P4start. 

 

Figure 5.39: KLD matrix plot with sensors installed at P5start. 

 

Figure 5.40: KLD matrix plot with sensors installed at P6start. 

 

Figure 5.41: KLD matrix plot with sensors installed at P7start. 

 

From the summarized plot Figure 5.42, the main observations still hold the same: 

• Three optimal sensors are sufficient whenever they are installed (they can carry 90% of 

the information compared of all 9 sensors) as the influence of correlation is small. 

• The earlier the sensor installation, the more the carried information. However, it does 

make little difference whether the sensors are installed at P5start, P6start, P7start, sensors 

installed at P4start could carry around 40% more information than those installed later. 

This can be verified from Figure 4.6 where the increment of vertical displacement in 

the P5 and P6 is tiny. 

• Only Etop and Ctop can be properly inferred even with the optimal sensor placement 

shown in Figure 5.43. In Case 3-4, this can be improved by adding more weekly 

correlated sensors (i.e. the optimal sensors in Case 3-1, Case 3-2 and Case3-3 as well 

as strain sensor in anchor will be combined). 
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Figure 5.42: Variation of KLD in Case 3-3. 

 

Figure 5.43: The most informative posterior in Case 3-3. 

 

5.3.1.4 Case 3-4: Combination of all optimal sensors 

The results of previous sub-sections show that none of the three sets of observations εspw, Ux or 

Uy could accurately estimate the eight soil parameters. Therefore, in this section we analyze 

what happens if a mixture of sensor types are used in the parameter estimation. For each sensor 

type, the three optimal sensors from the sections 5.3.1.1, 5.3.1.2 and 5.3.1.3 are selected, since 

three optimal sensors carry a comparable (~80%) information content as all the available 

sensors. Together with the single strain sensor at the anchor (εanchor), these in total ten sensors 

are used in the Bayesian analysis. The correlation between the same type of sensors is kept the 

same as done previously, while the correlation between different type of sensors is considered 

by setting ˆ 0.8 =  as introduced in section 3.3.2.1. Since the optimal sensor placement varies 

with sensor installation phase, the corresponding configurations for each installation phase are 

displayed in Figure 5.44 ~ Figure 5.47. The KLD results obtained from the inference  are 

collected and compared with earlier results in Table 5.8. 
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Figure 5.44: Optimal sensor placement at P4start in Case 3-4. 

 

Figure 5.45: Optimal sensor placement at P5start in Case 3-4. 

 

Figure 5.46: Optimal sensor placement at P6start in Case 3-4. 

 

Figure 5.47: Optimal sensor placement at P7start in Case 3-4. 

 

Table 5.8: KLD in Case 3-4. 

Sensor installation time P4start P5start P6start P7start 

εspw  3 optimal sensors N#25, N#35, N#45 N#25, N#35, N#45 N#20, N#35, N#45 N#20, N#35, N#45 

KLD 4.06 3.91 2.50 1.85 

KLD (Normalized) 0.560 0.539 0.345 0.255 

Ux  3 optimal sensors N#1, N#20, N#30 N#1, N#20, N#30 N#1, N#10, N#30 N#1, N#10, N#25 

KLD 2.46 1.74 1.10 0.91 

KLD (Normalized) 0.339 0.240 0.152 0.126 

Uy  3 optimal sensors G#5, G#25, G#35 G#5, G#20, G#40 G#5, G#20, G#35 G#5, G#20, G#35 

KLD 4.28 2.37 2.24 2.17 

KLD (Normalized) 0.590 0.327 0.309 0.299 

εanchor  Only 1 sensor Not considered 

alone 

Not considered 

alone 

Not considered 

alone 

Not considered 

alone 

Combination of 

all 10 sensors 

KLD 7.25 5.42 4.35 3.79 

KLD (Normalized) 1.000 0.748 0.600 0.523 

 

The results in Table 5.8 are also plotted in Figure 5.48, leading to the following observations: 

• As expected, the general rule still holds for the combination of ten sensors: the earlier 

the sensor installation phase, the more the conveyed information. And each delay of 

installation phase (i.e. from P4start to P5start, from P5start to P6start, from P6start to P7start) 
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will respectively lose around 25%, 15% and 10% information (given as a percentage 

of the information that is gained with sensors installed at P4start).  

• Ux carries the least information (i.e. around 35% of the information conveyed by the 

combined ten sensors); 

• εspw and Uy are much better than Ux, they in average convey around 60% of the 

information carried by the combined sensors. Albeit their performance differs much 

if they are installed at P5start, in which case εspw conveys 20% more information than 

Uy. This large difference is due to that Uy occurred in P4 is the largest portion during 

the whole construction phase and if sensors are install at P5start, the corresponding 

information is not collected. 

• Even though the combination of all ten sensors can provide much more information 

regardless of sensor installation phase, only Etop, Ctop and Emid can be relatively well 

identified, while the marginal distributions of the remaining parameters are still more 

resembling their prior distributions as shown in Figure 5.49, which is based on sensors 

installed at P4start. 

 

Figure 5.48: Variation of KLD in Case 3-4. 

 

Figure 5.49: The most informative posterior in Case 3-4. 

This non-identifiability is determined by the mechanical behavior of the structure, because the 

unidentified parameters play limited role in the structural response. To support this claim, the 

responses corresponding to these ten optimal sensors installed at P4start are displayed in Figure 

5.50, in which each row corresponds to one of the optimal sensors, and each column 

corresponds to a soil parameter. In each subplot only one parameter (the soil parameter) is 

varied while the remaining parameters are fixed at the “real” values indicated by the red dashed 
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lines. From this figure, it can be clearly seen that changing 𝜙top, 𝜙mid, ϒmid, and Cmid hardly 

changes the responses (2nd, 6th, 7th, and 8th columns on the figure). 

 

Figure 5.50: Response with sensors installed at P4start in Case 3-4. 

5.3.2 Reliability assessment 

In this section, the influence of system identification on both the serviceability limit state and 

ultimate limit state of this sheet pile wall system is investigated. The posterior distributions of 

system identification are based on the data from the combined optimal sensors in section 5.3.1.4, 

and these posteriors are used as inputs for the reliability analyses. The exceedance of horizontal 

displacement of sheet pile wall is selected as the serviceability limit state as in section 5.1.2 
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and 5.2.4. The exceedance of strain/stress limit of the sheet pile wall or/and anchor is 

considered as the ultimate limit state, in which the sheet pile wall and anchor are firstly 

considered separately and then together as a system. Since cumulative responses are required 

for the reliability calculation, the surrogate models of the responses at sensors  corresponding 

to P4start are reused in the assessment. 

5.3.2.1 Serviceability limit state (SLS) 

The serviceability limit state concerns the exceedance of the horizontal displacement threshold 

of the sheet pile wall. The same performance function is used as in section 5.1.1 (see equation 

(5.1). Reliability analyses are completed using both the prior and posteriors obtained in Case 

3-4 (i.e. four posteriors in total corresponding to combined sensors installed at P4start, P5start, 

P6start and P7start). The calculated failure probabilities are collected in Table 5.9 and plotted in 

Figure 5.51. Notice the increase in prior failure probability: from 9.72×10-2 (Table 5.2) to 

1.50×10-1 (Table 5.9). The increase is solely caused by the increasing dimension of the 

probability space and in turn the introduction of additional uncertainties. 

Table 5.9: Failure probability in SLS. 

Sensor installation time P4start P5start P6start P7start 

Prior 1.50×10-1 1.50×10-1 1.50×10-1 1.50×10-1 

Posterior <1.50×10-300* 2.47×10-157 1.57×10-71 3.31×10-38 

* The failure probability is so small that nested sampling with the used settings could not estimate it 

reliably. 
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Figure 5.51: Prior and posterior failure probabilities in SLS for different sensor installation times. 

 

From this figure, the following observations can be made: 

• Even if the same ˆ
xU  is applied to the limit state function in this subcase, the prior failure 

probability is increased to 15% compared with that in Subcase 1 and Subcase 2 in which 

it is around 10%. This is because with the increase of dimensionality, the volume of 

random variables increases, leading to larger uncertainty about the variable space. 

• The failure probability is reduced dramatically from prior (i.e. 15%) to posterior. Even the 

largest value corresponding to sensors at P7start is a negligible value (i.e. 3.31×10-38). This 

comparison can be seen straightforwardly from Figure 5.52 and Figure 5.56, in which the 

red zones indicate the projection of the failure region. The huge difference of failure 

probability is due to that most of the failure projections fall within the 90% credible region 

in prior distribution (see Etop & Emid square in Figure 5.52), while the failure projections 

are far away from the 90% credible region in posterior distribution (by checking all the 

squares in Figure 5.56); 

• There is a sharp increase in failure probability with the delay of sensor installation time, 

since the posterior is more and more dispersed and the 90% credible regions are getting 

closer to the failure projections. 
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• The largest failure probability in posterior is still tiny (has the magnitude of 1×10-38). This 

is determined by the mechanical behavior of this structure and the selected “real” values 

of soil properties, since the posteriors concentrate around the “real” values, based on which 

the calculated maximum of horizontal displacement of sheet pile wall (i.e. around 100mm) 

is far below the threshold ˆ 180xU mm= .  
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Figure 5.52: Projection of failure regions in prior. 
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Figure 5.53: Projection of failure regions in posterior with 

sensors installed at P4start. 

 

Figure 5.54: Projection of failure regions in posterior with 

sensors installed at P5start. 

 

 

Figure 5.55: Projection of failure regions in posterior with 

sensors installed at P6start. 

 

Figure 5.56: Projection of failure regions in posterior with 

sensors installed at P7start. 

 

5.3.2.2 Ultimate limit state (ULS) 

Sheet pile wall failure  

Firstly, the exceedance of the yield stress of sheet pile wall is considered. The stresses are 

caused by the bending moments and axial forces. Since the strain of the sheet pile wall is 

already available and surrogated in system identification, we can reuse the responses to obtain 
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stresses by simply multiplying them by the elastic modulus of steel (i.e. 
5 22.1 10 /N mm ). Then 

the limit state function is given: 

 ( )spw spw ,spw
ˆ( ) max ( )ig  = −θ θ   (5.2) 

Where  

spw̂  Yield strength of sheet pile wall, taken as a random variable with lognormal 

distribution; 

,spw ( )i θ  Stress of sheet pile wall at S#i, i = 20, 25, 30, 35, 40, 45 as shown in Figure 5.22. 

These positions (i.e. S#i) are selected in reliability analysis as only limited strain is expected at 

the top part and bottom part of sheet pile wall (see Figure 4.4), it is hence efficient to discard 

the two portions to reduce computational time. The coefficient of variation (COV) of 
spw̂  is 

set as 0.07 according to (Teixeira et al., 2015), and the mean is set as 
2325 /N mm  to obtain a 

high failure probability (i.e. ~ 1% ) in prior distributions.  

Since in the performance function, the resistance (i.e. 
spw̂ ) is now a random variable instead 

of a constant as in serviceability limit state, the projection of failure regions is not available, 

and equation (3.57) is applied. The limit state function is applied to the four posteriors obtained 

in Case 3-4 (see section 5.3.1.4) and the results are collected in Table 5.10. 

Table 5.10: Failure probability in sheet pile wall failure. 

Sensor installation time P4start P5start P6start P7start 

Prior 1.11×10-2 1.11×10-2 1.11×10-2 1.11×10-2 

Posterior 3.60×10-26 5.14×10-25 1.18×10-13 3.29×10-11 

 

The results from Table 5.10 are also visualized in Figure 5.57, from which the following 

observations can be made: 

• The reduction of failure probability from prior to posterior after system identification 

is still dramatic (the smallest  f,priorP  to f,posteriorP  ratio is about  109 when sensors are 

installed at P7start); 

• The obtained failure probability is getting larger and larger with the delay of sensor 

installation phase, particularly from P5start to P6start the ratio of the calculated failure 

probabilities is1012. This is consistent with the trend of KLD value of εspw in Figure 
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5.48, since in P5 the excavation of top and mid soil layer (see section 4.2) will lead to 

large increase of strain/stress of sheet pile wall (see Figure 4.4), if sensors are installed 

after this phase, this large strain gain will not be collected, leading to a more dispersed 

posterior and a larger failure probability. 

• The largest failure probability (i.e. sensors are installed at P7start) in posterior is still 

small (has the magnitude of 1×10-11). This is likely caused by the mechanical behavior 

of this structure, the considerable reduction in uncertainty in the posterior, and the 

selected “real” values of soil properties as discussed in section 5.3.2.1. The maximum 

of stress of sheet pile wall calculated using the “real” values (i.e. around 
2175 /N mm ) 

is far below the threshold (mean of 
2

spw
ˆ 325 /N mm = ). 

 

Figure 5.57: Showcase of failure probability in sheet pile wall failure. 

Anchor failure 

The anchorage failure is defined as the exceedance of the maximum stress of the anchorage’s 

yield stress. Since the anchor is modeled as a truss element, only an axial force contributes to 

the stress and the stress is a considered to be a constant along the anchor. Then the limit state 

function is defined as: 

 anchor anchor anchor
ˆ( ) ( )g  = −θ θ   (5.3) 

where 
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anchor̂  yield strength of anchor, taken as a random variable with lognormal distribution; 

anchor ( ) θ  stress of anchor. 

The coefficient of variation (COV) of anchor̂  is set as 0.07 according to (Teixeira et al., 2015), 

and the mean is set as 
2120 /N mm  to obtain a high failure probability (i.e. ~1%) in prior 

distributions. Then the limit state function is applied to the four posteriors obtained in Case 3-

4 (see section 5.3.1.4) and the results are collected in Table 5.11. 

Table 5.11: Failure probability in anchor failure. 

Sensor installation time P4start P5start P6start P7start 

Prior 1.25×10-2 1.25×10-2 1.25×10-2 1.25×10-2 

Posterior 3.95×10-10 6.88×10-10 1.25×10-6 2.35×10-6 

 

The results in Table 5.11 are displayed in Figure 5.58, based on these results similar 

observations can be made as in the sheet pile wall failure: 

• The variation of failure probability from prior to posterior after system identification is 

huge (the minimum of ratio is 104 when sensors are installed at P7start). 

• The obtained failure probability is getting larger and larger with the delay of sensor 

installation phase, particularly from P5start to P6start the ratio of the calculated failure 

probabilities is 104 due to the same reason as explained in sheet pile wall failure. 

• The largest failure probability (i.e. sensors are installed at P7start) in posterior is still 

small (has the magnitude of 1×10-6) as explained in sheet pile wall failure: the stress of 

anchor calculated using the “real” values (i.e. around 
275 /N mm ) is far below the 

threshold (mean of 2

anchor
ˆ 120 /N mm = ).  
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Figure 5.58: Showcase of failure probability in anchor failure. 

Structural failure 

In this section, the failure of the entire system is considered, combining sheet pile wall failure 

and anchor failure which are assumed to form a series system. The performance function is the 

following: 

 

( )( ) ( )

( )( )
( )

structure spw ,spw anchor anchor

spw ,spw anchor anchor

spw anchor

ˆ ˆ( ) max ( ) ( )

ˆ ˆ               min max ( ) , ( )

               min ( ), ( )

i

i

g

g g

   

   

= − −

= − −

=

θ θ θ

θ θ

θ θ

  (5.4) 

The failure probability is calculated by the following equation: 

 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

spw anchor

spw anchor spw anchor

spw anchor spw anchor

( ) 0 ( ) 0

    ( ) 0 ( ) 0 ( ) 0 ( ) 0
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 

 =  +  −  
 

 +  −   

θ θ

θ θ θ θ

θ θ θ θ

  (5.5) 

It is crucial to mention that the last line in equation (5.5) holds only true if 
spw ( ) 0g θ  and 

anchor ( ) 0g θ  are independent. Since the failure of sheet pile wall and anchor are usually not 

independent, the result obtained using equation (5.5) is more conservative (i.e. larger failure 

probability than the exact solution). 
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The distributions of 
spw̂  and anchor̂ are set the same as in sheet pile wall failure and anchor 

failure. The prior and posterior (i.e. obtained in Case 3-4) failure probabilities are given in 

Table 5.12 and plotted in Figure 5.59. The obtained prior system failure probability is larger 

than that of the prior component failures separately (sheet pile wall failure and anchor failure). 

This is reasonable due to the expansion of failure domain. The posterior system failure 

probabilities are very close to those of the anchor failure alone. This indicates that the anchor 

failure is the dominating failure mode in the sheet pile wall system and thus the same 

observations due to the same reasons can be made as for the  anchor failure alone. 

Table 5.12: Failure probability in structural failure. 

Sensor installation time P4start P5start P6start P7start 

Prior 1.65×10-2 1.65×10-2 1.65×10-2 1.65×10-2 

Posterior 3.95×10-10 6.88×10-10 1.25×10-6 2.35×10-6 

 

 

Figure 5.59: Showcase of failure probability in structural failure. 

  



 

125 

 

5.4 Discussion 

The dimensionality of the probabilistic space has a large influence on system identification as 

well as reliability assessment. If we zoom into the marginal posterior distribution of Etop and 

Emid obtained from Subcase 1, Subcase 2 and Case 3-1 (see Figure 5.3, Figure 5.7 and Figure 

5.29) which are all based on 6 strain sensors installed at P4start, it can be seen that both Etop and 

Emid can be well identified as they are concentrated around the “real” value and have a much 

smaller COV compared with the prior. However, the COV in these three subcases increase 

gradually. The increment is 22%, 25% for Etop and 19%, 65% for Emid when moving from 2D 

to 4D and from 2D to 8D respectively (all percentages are calculated in respect of the 2D case). 

This is because with the increase of dimensionality, the number of parameter combinations that 

match with the measured responses increase as well and thus the uncertainty of the variable 

space increases. The quantitative values of 90% ACR in Table 5.5 also support this observation, 

in which the 90% ACR of Etop - Emid in posterior in Case 3-1 (i.e. 8D problem) is almost 5 times 

larger than that in Subcase 1 (i.e. 2D problem). This situation can be improved a bit by adding 

more sensors with no/weak correlation. For example, Ctop is not identifiable at all with only 

εspw sensors as shown in Figure 5.28, but it can be well inferred with combined sensors as 

shown in Figure 5.49. Due to the same reason, when the same serviceability limit state function 

is applied to 2D, 4D, and 8D posterior, the resulting failure probability increases (i.e. namely 

5.11×10-88, 2.43×10-80, and 7.39×10-56). 

The construction stages also play an essential role in system identification and reliability 

assessment. With each delay of sensor installation time, there will be a 10% ~ 25% decrease of 

gained information compared with that gained from sensors installed at P4start, leading to a 

dispersed posterior and thus a larger failure probability in the reliability analysis (both SLS and 

ULS). This decreasing trend holds true regardless of the type of sensors and number of sensors. 

There might be a particular construction phase after which the installed sensors carry much less 

information. For example, 20% more information can be gained by strain sensors if they are 

installed at P5start instead of P6start, because large strain is expected in P5 caused by excavation 

of soil but is not recorded. This also explains why there is a jump of ultimate limit state from 

P5start to P6start shown in Figure 5.57, Figure 5.58 and Figure 5.59. 

In both SLS and ULS, the gain from monitoring is huge: there is a dramatic decrease of failure 

probability in posterior compared with that in prior. One reason is that the responses calculated 
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by the selected “real” values are far below the threshold, while another is that the uncertainty 

of the selected prior (i.e. coefficient of variation) is much larger compared with the posterior.  
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6 Conclusions and recommendations 

6.1 Answers to main research question 

In the context of hydraulic structures, this thesis aims at finding a feasible way to  

1) identify soil parameters based on a monitoring system considering all relevant sources 

of uncertainty, correlation between measurements, and relatively high dimensionality; 

2) investigate the influence of the inclusion of monitoring data (updating the prior to 

posterior) on structural reliability; 

3) investigate the influence of construction stages on both parameter identification and 

reliability assessment.  

To answer the main research questions: 

What is the effect of monitoring hydraulic structures on structural reliability? What is 

the influence of starting the monitoring at different construction stages? 

A series of analyses are performed considering a single-anchor sheet pile wall system. Firstly, 

up to eight unknown soil parameters are identified by a Bayesian approach considering 

measurement uncertainty, physical model uncertainty, and surrogate model uncertainty as well 

as their correlation. This identification process is performed four times to obtain four sets of 

soil parameter posterior distributions, considering multiple types and number of sensors and 

that sensors could be installed at four different construction stages to collect structural 

responses. In the subsequent reliability assessment, the obtained four sets of posteriors serve 

as the inputs to calculate the failure probability of the structure considering both serviceability 

limit state and ultimate limit state. The following conclusions can be drawn related to the main 

research questions: 

• The monitoring of hydraulic structures (system identification) can largely decrease the 

failure probability ( fP ) in both SLS and ULS. Particularly, in this work the smallest 

f,priorP  to f,posteriorP  ratios (considering different construction stages) are 1×1037 in SLS 

and 1×104 in ULS; while the largest ratios are 1×10299 in SLS and 1×1024 in ULS. 

• The monitoring should start at as early construction stage as possible to collect 

sufficient information, which is beneficial for both parameter identification and 

reliability assessment. With each delay of sensor installation time, the gained 
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information will decrease, leading to a more dispersed posterior and thus an increase of 

failure probability. For example in this case study, the decrement of KLD value can be 

30% (see Case 3-4 in section 5.3.1.4 in which sensors are installed from P4start to P5start), 

while the 
f,priorP  to 

f,posteriorP  ratios 1×1012 (see sheet pile wall failure in section 5.3.2.2). 

This decreasing and increasing trend holds true regardless of dimensionality, type of 

sensors and number of sensors. 

Although some explanations are given in this thesis for the calculated unexpectedly large ratio 

of prior and posterior failure probabilities, the explanations are not deemed to be sufficiently 

detailed and deep. Therefore, further research is needed to better understand its source and gain 

further confidence in the conclusions: "The weight of evidence for an extraordinary claim must 

be proportioned to its strangeness.". 

6.2 Answers to sub research questions 

In practical implementation, the sub questions raised from the main research questions as 

introduced in section 1.3 can also be answered. 

1. What type of sensors can be and should be used? 

In this work, we consider four types of observations to give some insight, namely strain of 

sheet pile wall (εspw), horizontal displacement of sheet pile wall (Ux), vertical displacement of 

top ground (Uy) and strain of anchor (εanchor). Based on their conveyed information, we have 

this order: 
spw 1.5y xU U     (εanchor is not considered alone). However, none of them could 

solely and properly identify the soil parameters. Since their combination outperforms any one 

of them (i.e. 40% more information conveyed), a combination of sensor types is preferred. 

2. How many sensors are needed, where to put these sensors and when to install them 

(during construction or afterwards)? 

Generally, the more uncorrelated sensors, the better the inference result, which however in 

reality is usually restricted by the budget considering e.g. cost of sensors, cost of installation, 

cost of maintenance, etc. The sensor locations vary with different construction stages but 

should be installed as early as possible. In this case study, from the result in Subcase 2 and 

Subcase 3, three optimal sensors (here the optimal means the minimum number of sensors) for 

each observations (i.e. εspw, Ux, and Uy) are sufficient to do parameter identification (only one 

strain sensor is needed on the anchor as the axial force is assumed constant along the length), 
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as they can provide around 90% of information carried by full sensor configuration. The 

locations of these optimal sensors vary with observation types and sensor installation stage, 

and all of them should be installed at the earliest construction stage to carry the most 

information (e.g. sensors installed at P4start can convey double information compared with 

sensors installed at P7start). 

3. Which Bayesian computational method fits best in this context that is characterized  

by computationally expensive likelihood functions considering correlation, high 

dimensionality (i.e. more parameters are considered simultaneously) and multimodal 

and/or degenerate posteriors? 

MultiNest outperforms the traditional MCMC families considering the above requirements (the 

computationally expensive likelihood is coped with in sub question 5). Since MultiNest does 

not rely on random walk (e.g. Metropolis Hastings MCMC) which has high rejection rate or 

gradient of posterior (e.g. Hybrid MCMC) which slows down the calculation, but compresses 

the multidimensional integral of evidence into a one-dimensional integral, the calculation is 

efficient and a large amount of computation time can be saved. Due to the same reason, there 

is little trouble to deal with high dimensionality and multimodal/degenerate posteriors. Besides 

the posterior, the sample weight as a by-product in MultiNest can be used straightforwardly in 

reliability analysis without additional efforts. Based on the performance of MultiNest in our 

work, it can be applied to other hydraulic structures and even other civil structures as well. 

4. How to quantitatively evaluate the information conveyed by sensors? 

In this work, both 90% credible region and Kullback–Leibler (KL) divergence are used to 

evaluate the sensor based information. The former, which combines the information from both 

prior and sensors, is not quantitatively calculated but only plotted to intuitively assess how 

concentrated a posterior is, while the latter is numerically computed to quantitatively indicate 

the gained information solely from the sensors. With KL divergence, we can quantitatively 

evaluate and compare the performance of different sensors and determine the location and the 

number of optimal sensors.  

5. How to construct an accurate surrogate model of the physical model in a reasonable 

computation time? 

In this work, to deal with the computationally expensive likelihood function in sub question 3, 

surrogated models are constructed to replace the physical model (FE model). Gaussian process 
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regression (GPR) with anisotropic RBF kernel and white kernel is proved to perform well. An 

adaptive fitting procedure is used that is based on the prediction variance in GPR. The white 

kernel can protect against overfitting. These two components efficiently facilitate the accuracy 

of the surrogate models. The resulted surrogate models can be used not only in system 

identification but also in reliability assessment. 

As a general conclusion: I demonstrated that the system identification and reliability 

assessment of realistic hydraulic structures (complex physical model and relatively high (up to 

8) dimensional probabilistic space, large number of sensors (up to 10)) is feasible and I 

proposed, implemented, and tested all the components for such an analysis. 

The above conclusions focus on the practical relevance; although, while seeking answers to the 

main and sub research questions to following noteworthy contributions are made to the system 

identification literature (a brief recapitulation of section 1.5 for convenience). To my 

knowledge those ended with star (*) are believed to be the first time in the open literature: 

➢ Combination of system identification and structural reliability for hydraulic structures.* 

➢ Analysis of the impact of construction stages on SHM of hydraulic structures. 

➢ Application of nested sampling for SHM based inference and reliability analysis. * 

➢ Proposal of a novel surrogating approach (active learning Gaussian process regression). 

➢ Proposal for a general mathematical model that encompasses measurement 

uncertainties, physical model uncertainties, and surrogate model uncertainties.  

➢ The quantification and inclusion of the surrogate model uncertainties in the system 

identification of hydraulic structures.* 

➢ Implementation of a custom, Python-based program related to programmatic control of 

Plaxis, inference, reliability assessment (see Annex A to find the used Python packages). 

Although there are many limitations of this work, e.g. all the quantitative results are particular 

to the selected single anchored sheet pile wall and synthetic observations are used (see the 

detailed list in section 1.4), the obtained results are promising and encouraging to continue this 

line of research. 
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6.3 Recommendations 

Given the single case study considered in this work, it is too early to make general 

recommendations or recommendations for practical applications, hence I solely focus on 

recommendations for future research. 

Future analysis could investigate: 

• The influence of different priors (e.g. different COV of prior distribution); 

• The influence of different “real” values of soil properties on reliability analysis; 

• The influence of replacing the model that generates the synthetic data with a more 

sophisticated model (e.g. 3D and/or hardening soil model) while keeping the current 

model for system identification and reliability analysis; 

• The individual contribution of three uncertainty components, namely measurement 

uncertainty, physical model uncertainty and surrogate model uncertainty; 

• The influence of correlation length; 

• The influence of more candidates of optimal sensors; 

• The influence of dimensionality on the adaptive surrogating (e.g. when it becomes 

computationally expensive). 

Besides, more interesting aspects can be studied, such as: 

• What is the influence of sheet pile wall length on information content? 

• What if loads are mainly from water fluctuation? 

• What if sensors are installed at a fixed construction phase but data is collected at 

different phases? How to consider their correlation? 

Furthermore, the investigation should be extended to additional structures such as different 

sheet pile walls, quay walls, etc. to be able to generalize the conclusions and in turns to derive 

practical recommendations. 
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Annex A Used Python packages 

This annex summarizes the most important Python packages used for the analyses documented 

in this thesis. 

 Package name Comments 

Plaxis control plxscripting Related to API of Plaxis. 

Surrogate modelling scikit-learn Popular and free machine learning package. 

 SMT Consisting of different surrogate modeling 

methods, e.g. Kriging, least square 

approximation, etc. 

Bayesian inference pymc3 Used for Bayesian statistical modeling and 

probabilistic machine learning including 

advanced MCMC and variational inference 

algorithms. 

 nestle Implementation of nested sampling (also used 

for reliability assessment). 

 dynesty Implementation of nested sampling, including 

evidence-oriented static nested sampling and 

posterior-oriented dynamic nested sampling 

(also can be used for reliability assessment). 

Reliability assessment openturns Dealing with uncertainty propagation by 

probabilistic methods, including data analysis, 

probabilistic modelling, reliability, etc. 

 pyre Used for structural reliability analysis. 
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Annex B Sheet pile wall structures 

Sheet pile walls are retaining walls that are designed and used to resist the lateral pressure 

and/or potential lateral deformation of adjacent materials, e.g. soil and water. They are widely 

used in wharfs, dams and river bank protection. A sheet pile wall is “a vertical wall consisting 

of long thin elements (steel, concrete or wood), that are being driven into the ground. The 

elements are usually connected by joints, consisting of special forms of the element at the two 

ends. Compared to a massive wall (of concrete or stone), a sheet pile wall is a flexible structure, 

in which bending moments will be developed by the lateral load, and that should be designed 

so that they can withstand the largest bending moments” (Verruijt, 2012). Anchors are often 

used to strengthen sheet pile walls. In Figure 0.1 there are some typical sheet pile walls while 

in Figure 0.2 different type of anchor layouts are included. 

 

Figure 0.1: Cross-sections through some typical permanent sheet-pile structures (Clayton, Woods, Bond, & Milititsky, 2014). 
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Figure 0.2: Anchored sheet pile wall schemes (Clayton et al., 2014). 

Many materials can be used in the construction of sheet pile walls, of which the three most 

commonly used are steel, wood and concrete and their main features are summarized in Table 

0.1 based on (Clayton et al., 2014). 
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Table 0.1: Main features of different sheet pile wall materials. 

Used materials  Main features  

Steel Variety of cross sections with a wide range of strength; 

Economy; 

Lack of buckling under heavy driving; 

Availability in different combinations to increase wall section modulus; 

Reusability for temporary works; 

Relatively light weight; 

The possibility of increasing the pile length by welding or bolting; 

Suffering from corrosion. 

Wood Usually for temporary work; 

Short spans; 

Short life expectancy. 

Concrete Variety of cross sections; 

Durable; 

Thick section required; 

Large soil displacement and driving resistance during construction. 

 

Sheet pile walls are prevalent structures in the Dutch water defense system, since a considerable 

area of the Netherlands is below sea level and a large part of its population lives there. The 

existing sheet pile wall are aging and require a regular inspection and assessment to ensure that 

the water defense system meets a prescribed safety level. This consideration motivates this 

work. 
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