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Abstract

Given its geographical location and history, water defense is of utmost importance for the
Netherlands. Structural Health Monitoring (SHM) offers a promising approach for system
identification of hydraulic structures in this water defense system. The aim of SHM is to set
sensors on structures and use the monitored responses to identify structural parameters of
interest. However, many pertaining questions are unanswered concerning realistic hydraulic
structures and monitoring systems: What type of sensors (e.g. strain gauge, SAAF, etc.) can
and should be used in the monitoring system? How many sensors are needed, where and when
to install these sensors? What is the influence of construction stages of structures on system
identification? Considering the evaluation of a structure, what is the influence of system
identification as well as construction stages on reliability (failure probability) of structures?
Considering practical implementation: which computational algorithm is suitable and feasible?
How to construct a proper surrogate model of the mechanical model to reduce computational

time?

To answer these questions, a single anchored sheet pile wall is studied using a probabilistic
approach. The sheet pile wall is modeled using the finite element (FE) method, synthetic data
are used and Bayesian approach is adopted to cope with measurement uncertainty and model
uncertainty. The information conveyed by sensors is quantified by the Kullback—Leibler (KL)
divergence between prior and posterior distributions. Moreover, the correlation in model
uncertainty of various structural responses is quantified by comparing a full-scale experiment

from the literature and a corresponding calibrated 3D finite element model.
The results show that:

e A combination of different sensor types (in our case they are SAAF and strain gauge)
should be used in the monitoring system (e.g. the combination of four different types
of sensors outperforms the strain sensors on the sheet pile wall by conveying 40% more
information with respect to the former);

e Even limited number of sensors can convey sufficient information. In our case, 3
sensors placed at proper locations can convey 90% information carried by 6, 8 and 9

sensors considering different responses. They should be installed as early as possible;



e The failure probability computed using posterior from system identification largely
decreases compared with that computed using prior (the ratio of prior and posterior
failure probabilities can go up to 10™ in our case);

e Delay of the start of monitoring during the construction stages decreases the
information conveyed by sensors in system identification (the conveyed information
can decrease by 50% in our case) and increases the computed failure probability in
reliability analysis: the ratio of prior and posterior failure probabilities can be as large
as 10%);

e MultiNest performs well in Bayesian inference in high dimensional problems;

e Gaussian process regression (GPR) with anisotropic radial basis function (RBF) kernel
and white kernel as well as an adaptive infilling criterion is capable of constructing an
accurate surrogate model even when it goes to high dimensionality. The error of
surrogate model prediction can be explicitly explained.

To my knowledge the work presented in this thesis is the first application of combined system
identification and reliability assessment for hydraulic structures, and the first detailed analysis
of the effect of sensor installation time on system identification and structural reliability of

hydraulic structures.

The findings imply that probabilistic system identification is a promising approach to
substantially reduce our uncertainty in modelling hydraulic structures and in turns to increase
their calculated safety. The approach has the potential to extend the working life of aging
hydraulics structures and save costly strengthening and replacement. The analysis framework

can also be applied to other structures in civil engineering.
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Glossary

The terminology and notation used here are based on the terminology accepted and used in (i)
mathematical statistics and probability theory; (ii) structural reliability; (iii)
geotechnical/hydraulic engineering. The roman numerals indicate precedence in case of
conflicting terminology or notation in different fields. For clarity, the definition of some key

terms are given here.

Coupled physical-probabilistic model: a model which contains both a physical model and a
probabilistic model that are coupled, e.g. some or all parameters in the physical model

are represented as random variables.

Distribution fitting: a part of statistical inference in mathematical statistics. In this study it is

restricted to parameter estimation (inference) of probabilistic models.

Hydraulic structure: a load bearing structure that is fully or partially submerged in water and

disrupts the flow of water.

Minimal problem: a problem that is as simple as possible yet able to capture the essential
features of the examined question; “as simple as possible, but no simpler”. Minimal is

used in the sense of minimal working example in programming.
Model: a mathematical representation of selected characteristics of an object or phenomenon.

Parameter estimation uncertainty: statistical uncertainty in the parameters of a given

probabilistic model type, i.e. probabilistic model uncertainty is excluded.

Physical model ( .17, ): a deterministic model which describes/represents a physical

phenomenon. Note that it can be empirical, first principles based, analytical (symbolic),
numerical, etc. Provided with the same inputs it always yields the same outputs.

Examples of physical models:

e astandardized, symbolic formula to calculate the shear resistance of a reinforced

concrete beam;

e anonlinear finite element model.



Probabilistic model (.17, ): a model which describes/represents uncertainties. Here, we

consider only approaches which comply with probability theory, e.g. fuzzy models are
excluded.

Probabilistic model uncertainty: statistical uncertainty in the mathematical representation of

the probabilistic model, i.e. model type.

Statistical inference: “the process of drawing conclusions about populations or other
collections of objects about which we have only partial knowledge from samples” (Simon,
1997).

Statistical uncertainty: uncertainty stemming from finite sample size and in turns from
sampling variability. We treat it as composed of two components: parameter estimation

uncertainty and probabilistic model uncertainty

System identification: one of the key concepts in this study and referred to with many names in
different disciplines and branches of engineering: in the geotechnical literature it is often
termed back analysis, in aerospace and structural engineering system (or more
particularly damage) identification. In structural reliability, although more encompassing,
the term model (or Bayesian) updating is often used to refer to this problem. In almost
all of the mentioned fields the term inverse analysis is frequently used. In this report the

term system identification is decided to be used..

Synthetic data: data that is generated from a fully known model opposed to real data that is
measured on a real system. The model used to generate synthetic data is often meant to
represent a real system. In this work, synthetic data refers to data that is generated
(simulated) from a finite element model and contaminated with random realizations from

a known probabilistic model to add uncertainty.
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1 Introduction

1.1 Motivation

Given its geographical location and history, water defense is of utmost importance for the
Netherlands, e.g. 21% of its population lives under the sea level, about 60% of the Netherlands
is flood prone, and about 55% of its GDP is in the 50 km zone of its coastline (Slomp, 2012).
To further illustrate the importance of the water defense system: it is estimated that the flood
of 1953 incurred about 5.4 billion euros damage (present day cost) and claimed 1836 lives
(Rijkswaterstaat). On a European level: “The value of the economic assets within 500 m of the
coastline is estimated at € 500-1000 billion. In addition, 35% (€ 3.5 trillion) of the total GDP
of the 22 European coastal member states is generated in the area within 50 km of the coast, an

area which hosts moreover 1/3rd of the EU population.” (Union, 2009).

Hydraulic structures, such as sheet pile walls, play an essential role in this water defense system,
which are usually constructed to retain earth, water, or any other filling materials. Sheet pile
walls (see Annex B) are usually steel-made and relatively thin, e.g. 12 mm, and hence
susceptible to corrosion which can be undesirable aesthetically or compromise structural safety.
In addition, most of these structures were built decades ago and are now approaching the end
of their lifetime. Therefore, it is necessary to regularly inspect these retaining walls to assess if
they still comply with safety requirements and to make decisions if they should be strengthened

or even replaced.

The current approach to make such decisions is based on engineers’ inspection and judgement,
which is very costly, labor-intensive and time-consuming considering the enormous size of
hydraulic structures. For example, it could take hours or even days to inspect a several
kilometers long dike. These inspections occur on a regular basis or when signs of problems are
observed/reported (e.g. when problems experienced with cranes standing on the high side of
sheet pile wall due to increased settlement). Neither the regular or the warning-triggered
inspections lead to an optimal intervention time. Moreover, such inspection is highly dependent
on the skills and experience of the inspector, and it is often limited by the accessibility of
elements, e.g. foundations, which means some damage may remain hidden for a long time.
Besides, the result of these inspections is not guaranteed to be accurate or perfect as humans
could make mistakes, especially during time-consuming and repetitive tasks, which may lead
to waste of labor and budget (e.g. some sheet pile walls still in good condition are replaced).
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All these considerations constitute the motivation of automated structural health monitoring
(SHM).

SHM offers an alternative and complementary approach to the current inspection techniques
with reduced human labor. In a typical and complete SHM system, sensors are installed on a
structure to collect data automatically, and then information is extracted that describes the
response of the structure (e.g. deformation) and structural parameters (e.g. bending stiffness of
a sheet pile) or soil parameters (e.g. elastic modulus). Another advantage of SHM is that since
it is a real-time monitoring process, a warning system could be built on top of it based on
collected data so that the abnormal behavior of structures, e.g. very large deformations, could
be noticed quasi instantly. Moreover, considering the design and evaluation aspect, lower
partial factor might be used due to reduced uncertainty gained by the SHM system. This has
the potential to make structural design less conservative and thus may lead to a more economic

design and maintenance.
1.2 Research questions

At present, there are hundreds of hydraulic structures in the Netherlands, and around 250 of
them will have to be replaced in the coming decades and another 800 of them may no longer
function properly in the future (Lassing & Barneveld). They are becoming vulnerable due to
aging, erosion, etc. Thus, SHM could be used as an efficient tool to detect possible current
damages, and in the long run, it could act as a warning system as mentioned above to
dynamically provide warning on the onset of failure. To achieve this goal, system
identification! based on data from monitoring system could be performed to locate the damages
(e.g. (Peeters, 2000)), and reliability based methods are widely used to assess structures by
computing the failure probability (e.g. (Teixeira et al., 2015)). However, there is seldom a
combination of SHM-based system identification and reliability analysis. This knowledge gap

is the motivation of this study and raises the main research question:

What is the effect of monitoring hydraulic structures on structural reliability? What is

the influence of starting the monitoring at different construction stages?

Although SHM has been developed for decades, it is still not widely applied in practice and

there are important challenges both in theory and practice. One common and ubiquitous

LIt represents soil parameter identification in this thesis. Detailed description can be found in Glossary.
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challenge in designing monitoring systems is the selection of sensor type and their placement
(Papadimitriou, 2004). An optimized sensor configuration can largely reduce the number of
needed sensors and thus save budget and labor. Although many methods exist to place sensors
optimally in a SHM system, e.g. (Papadimitriou & Lombaert, 2012; Yi, Li, & Gu, 2011), and
application of that in civil engineering, for instance a bridge example is presented in (Meo &
Zumpano, 2005), there is limited information for hydraulic structures. Therefore, the following

sub questions are considered for the SHM of hydraulic structures:

1. What type of sensors can be and should be used?
2. How many sensors are needed, where to put these sensors and when to install them

(during construction or afterwards)?

After the data is collected by the sensors of a monitoring system, the assessment of the state
of a structure (e.g. the determination of some structural parameters) is the most crucial aspect.
This procedure is referred to as system identification, in which a physical model (e.g. finite
element (FE) model) is included to describe the complex mechanical behavior of a typical civil
engineering structure. The essence of system identification is to use the data from sensors to
calibrate the physical model to minimize the difference between the measured values and
model predictions (see e.g. (Capecchi & Vestroni, 1999)). However, by reviewing the system
identification literature for hydraulic structures with focusing on requirements for practical
applicability, the following limitations and/or challenges are identified (the details of the
literature review with comprehensive references to the reviewed papers are presented in
Chapter 2):

e Uncertainties (i.e. the residual difference after calibration) are often not considered
(deterministic analysis rather than probabilistic) (see e.g. (J. Deng, Lee, & sciences,
2001; Levasseur, Malecot, Boulon, & Flavigny, 2008)), which are however inevitably

present;

e When uncertainty is considered, observations are almost always considered to be
independent, i.e. the effect of correlation is not explored (see e.g. (J Zhang, Tang,
Zhang, & Engineering, 2009; L. L. Zhang, Zhang, Zhang, & Tang, 2010));

e In case of probabilistic analysis (Bayesian inference) typically only two parameters are
identified, and the highest number is four, see e.g. (Kelly & Huang, 2015; L. Wang,
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Hwang, Luo, Juang, Xiao, et al., 2013), more parameters are expected to be influential

in practical applications;
Therefore, these limitations lead to the following sub question:

3. Which Bayesian computational method fits best in the context of probabilistic system
identification of realistic hydraulic structures that are characterized by
computationally expensive likelihood functions considering correlation, high
dimensionality (i.e. more parameters are considered simultaneously) and multimodal

and/or degenerate posteriors?

Also, to evaluate the performance of such inference, or equivalently to estimate the information
conveyed by sensors, it is favorable to introduce a quantitative criterion as it makes evaluation

more straightforward. And thus it results in this sub question:
4. How to quantitatively evaluate the information conveyed by sensors?

In practical implementation, the physical model is usually required to run thousands or tens of
thousands times to perform Bayesian inference. This is too computational expensive and
practically intractable, for example it would not make sense to make decisions after days of
calculation if structural failure really happens. Therefore, a surrogate model, which is
considerably cheaper in computation, could be constructed to replace the physical model and
to support the extensive calculations. Since the surrogate modeling approaches in the hydraulic
structures system identification literature cannot be scaled to higher dimensional cases — as
they deal with low dimensional, simplified cases, we have to seek an answer to another sub

question:

5. How to construct an accurate surrogate model of the physical model in a reasonable

computation time?
1.3 Approach

In this study a probabilistic approach is selected to identify the non-directly observable soil
parameters. In contrast with many hydraulic and geotechnical engineering studies we formulate
the engineering problem in a rigorous mathematical form and adopt the language and methods
widely used in mathematical statistics, probability theory, and information theory. The
Bayesian paradigm is selected for representing, interpreting, and calculating probabilities. One

of the main reasons for this is its compatibility with engineering and structural reliability way
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of thinking about the world and models. A (physical) model based approach is selected that has
at its core a numerical model that is based on our understanding of structural and soil mechanics.
The other approach in SHM is a data-driven modelling (Worden & Manson, 2007), see for
example to following applications (Diez et al., 2016; Lang et al., 2008). However, the data-
driven approach is deemed inadequate in our context where we aim to gain insight into the
structural behavior on the abstraction and modeling level of current engineering, e.g. to learn
about soil properties which are not directly observed. A high level, schematic overview of the
adopted approach is shown in Figure 1.1.

:

Physical model

1Physical model uncertainty
/

Measurement uncertainty e /

Surrogate model

1 Surrogate model uncertainty

Measured, dc.s L(Clj_r::j(eEllstlu():?glias) e Predicted, dy0q(Eson)
Bayes’ rule
| p(Esowlldmeas-MphyS\calmodel) l
Reliability analysis Optimal sensor
placement

Figure 1.1: A schematic overview of the approach used in this study.

The core idea of this probabilistic approach is to treat the unknown parameters as random
variables and make inference of them by considering measurement and model uncertainties,
and use the updated information of the unknowns in reliability analysis. When observations are
collected from sensors on real structures, measurement uncertainty appears due to the potential
error of measuring devices, improper installation, and/or operation of such devices. Moreover,
there is also model uncertainty that is the difference between FE models (model predictions)
and real structures. If these uncertainties are taken into account, a joint distribution of the
estimated parameters can be obtained through Bayesian inference. Then reliability analysis can

proceed straightforwardly? using the joint distribution of the estimated parameters as inputs.

Therefore, three main steps are taken to develop this approach:

2 Conceptually straightforward but numerically challenging as it is requires the accurate estimation of the tail of

the joint density function since that is expected to govern reliability.
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» The construction of surrogate models of the monitored structural responses (i.e.
replacement of FE model to reduce computational time).

» The estimation of the non-directly observed parameters, e.g. soil parameters by
Bayesian inference.

» The assessment of the structural safety (i.e. reliability analysis) based on the inferred

parameter distributions to serve decision making.

1.4 Scope and limitations

In this thesis solely a (physical) model driven approach to SHM and system identification is
considered. This study uses two sheet pile wall structures modelled in Plaxis 2D and Plaxis 3D
(Brinkgreve, Kumarswamy, Swolfs, Zampich, & Manoj, 2019) respectively to explore the
research questions given above. In case of the 2D sheet pile wall model, the considered number
of dimensions of the probabilistic model is up to eight, while some crucial parameters are
assumed to be known, i.e. deterministic (e.g. external loading). In this case, synthetic
observations are used and generated using Plaxis. Model uncertainty and measurement
uncertainty are both assumed to follow a multivariable normal distribution with correlation
taken into consideration (model uncertainty is modelled as a Gaussian process regression). It
IS important to note that in this case, we use location based data rather than time series data,
which might not be representative of realistic structural behavior over time. The measurement
and model uncertainties are assumed to be fixed, i.e. not updated during the Bayesian inference.
Then in the 3D model, which is calibrated to a full-scale experiment, the correlation between
model uncertainties of different sensors is investigated. Bayesian inference is not performed as

it takes too much time (i.e. more than one hour) to run a single Plaxis analysis.

Even though this study is related to hydraulic structures, the method and the core idea of
combining monitoring data, Bayesian inference and reliability analysis can be easily applied

to other engineering structures or even other fields as well.
1.5 Contributions

Since the domain of SHM is an active and rapidly evolving research area with contributions of
researchers from all over the world, this section aims to mark briefly the main contributions of
this work. They are harmonized with the research questions and the literature review. Detailed

support for the novelty of these contributions can be found in Chapter 2 in the literature review.
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» Combination of system identification and structural reliability for hydraulic structures,
first time in the open literature.

» Analysis of the impact of construction stages on SHM of hydraulic structures.

» Application of nested sampling for SHM based inference and reliability analysis; to my
knowledge the first time in the open literature.

> Proposal of a novel surrogating approach (active learning Gaussian process regression).

> Proposal for a general mathematical model that encompasses measurement
uncertainties, physical model uncertainties, and surrogate model uncertainties. The
quantification and inclusion of the latter in the system identification of hydraulic
structures is believed to be the first time in the open literature.

» Other implementation related contributions: implementation of a custom, Python-based
program with the following features: programmatic control of Plaxis, inference,
reliability assessment (reference to Annex A where all the particular packages are listed,

given for the various tasks).
1.6 Thesis structure

This thesis has five chapters. First, an introduction including the research motivation and
research goals is presented in chapter 1. Chapter 2 reviews the relevant literature on SHM with
a particular focus on the domains of hydraulic structures and geotechnical structures.
Furthermore, the contributions of this thesis are highlighted. Next, the adopted methodology is
elaborated in chapter 3, including the handling of uncertainty, the essence of Bayesian
inference, the construction of surrogate models, and the principals of a reliability-based
assessment. With this, the ingredients to answer the research questions are introduced. Chapter
4 presents the analysis to two sheet pile wall systems (namely 2D and 3D model) that are
deemed to be complex enough to represent real life structures, which demonstrates the
feasibility and utility of the proposed methodology, and to answer the research questions.

Finally, the conclusions and recommendations are given along with an outlook for future work.
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2 Literature review

2.1 Overview

As a preparation to answer the research questions, the relevant literature is studied to survey
the current state-of-the-art and to find potential knowledge gaps with focus on hydraulic
structures (and particular subtopics are treated in more details in chapter 3). Firstly, general
monitoring systems in SHM are reviewed. Then some methods of system identification are
discussed with particular focus on Bayesian approaches as it is a sound way to account for
uncertainties. Different research studies are presented and their contributions and limitations
are discussed. Furthermore, attention is paid to the implementation of several Bayesian
computational methods, as well as the use of surrogate models in the civil engineering field.
Finally, literature regarding the assessment of structures in the support of decision making is
studied.

2.2 Structural health monitoring — Data collection

2.2.1 Definition

During the service life of a civil structure, it may be subjected to natural actions (such as
earthquakes, flood, and metal oxidation) and severe accidental impacts due to human behavior
(e.g. collision), which can lead to a considerable damage and/or a reduction of its life time. It
is crucial to detect such damage as early as possible and evaluate the reliability level of the
structure. Besides, it is also crucial to learn the actual conditions of a structure to reduce
uncertainty of structural properties (e.g. soil parameters in a sheet pile wall system). One
approach to achieve these goals is via structural health monitoring (SHM) that is intensively
researched for decades and still an active area with many open challenges. There are generally
two components in SHM. One is monitoring, which is the process of collecting information
about a structure in a systematic and often fully automated fashion, e.g. accelerometers
installed on a bridge, continuously measuring and logging data into a database. The information
collection in monitoring refers solely to the process of measuring and logging data that is
measured by sensors, i.e. there is no or little post-processing of the data involved. This potential

little post-processing is only considered at the sensor level and the structure itself will not be
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involved. The second component of SHM is the post-processing of the data that requires
knowledge of the structure. An example of that is system identification, which will be further
discussed in section 2.3. The explanation of SHM above could also be found in (Balageas,
2006), “Structural Health Monitoring (SHM) aims to give, at every moment during the life of
a structure, a diagnosis of the “state” of the constituent materials, of the different parts, and of

the full assembly of these parts constituting the structure as a whole”.
2.2.2 Examples of application

A complete and mature SHM system usually aims at continuously, remotely, and automatedly
monitoring the performance of a structure by using different kinds of sensors to collect
responses. This is a solid foundation to acquire and process data and then to detect the potential
damage or learn the current condition of structures. And due to the boom of sensor technology,
it is now possible to construct complex but efficient monitoring system in different structures.
For example, Dascotte, Strobbe, and Tygesen (2013) described a wind and structural health
monitoring system (WASHMS) that is deployed by the Hong Kong Highways Department to
monitor the structural performance of the Stonecutters Bridge and to evaluate possible defects.
H. S. Park, Lee, Adeli, and Lee (2007) proposed to include terrestrial laser scanning (TLS) in
the monitoring system to overcome the difficulties of in situ instrumentation of sensors on large
structures (e.g. high-rise buildings). Multiple sensors like inclinometers and Shaped Accel
Arrays (SAAs) were installed on the retaining walls of the launch shaft at Aughoose to monitor
its behavior after construction in (Baily, Kieran, Goggins, & McCabe, 2014). Furthermore,
Fabbrocino, Laorenza, Rainieri, and Santucci de Magistris (2009) implemented a monitoring
system, “Casa dello Studente” to monitor the dynamic behavior of a flexible retaining wall
under seismic load. However, considering the efficiency of monitoring system, guidance is
seldom available regarding how many and what type sensors should be installed, and where to

install them.

2.3 Structural health monitoring — Evaluation

2.3.1 System identification

Once the monitoring system is built and data is collected, the next step in the process of
evaluating the “health” of a structure is system identification (Collins, Hart, Hasselman, &
Kennedy, 1974). This widely adopted approach focuses on the estimation of structural

properties from responses collected by sensors installed on a structure. For instance, Dragos
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and Smarsly (2015) identified the potential loosening of the plate-to-column connections of a
four-story frame structure by a comparison between the initial state of a finite element (FE)
model and a simulated damaged state. In the hydraulic and geotechnical context, system
identification is also broadly used to identify soil parameters. For example, Levasseur et al.
(2008) adopted the least square method to identify the dilatancy angle and the shear modulus
in a hypothetical sheet pile wall system. Tang and Kung (2009) proposed an efficient way,
nonlinear optimization technique (NOT) to identify soil parameters like elastic modulus and

Poisson’s ratio in case with deep excavation.

Generally, the aforementioned applications of system identification use the data collected by
sensors deterministically, which means that they neglect the potential uncertainty when moving
from reality to physical model and from real structural responses to data collected by sensors.
However, uncertainties are always present and often substantial in case of civil engineering
structures (JCSS, 2000), particularly geotechnical structures (Phoon & Tang, 2019). Just
consider the immensely expensive and hence scarce or often non-existent full-scale
experiments which could be used to validate models and reduce modelling uncertainty. The
Bayesian paradigm offers a framework to quantify and propagate uncertainties. Multiple
researchers have explored its potential, for example, Kelly and Huang (2015) adopted Bayesian
inference to identify soil parameters like unit weight in a synthetic one dimensional
consolidation soil model. Their analysis includes measurement error. Miro, Konig, Hartmann,
and Schanz (2015) used Bayesian inference with a lumped uncertainty (measurement and
statistical uncertainty) in the system identification of a shallow tunnel. L. L. Zhang et al. (2010)
inferred the cohesion coefficient and the friction angle in a hypothetical slop failure case,
considering an additive model uncertainty. L. Wang, Hwang, Luo, Juang, and Xiao (2013)
included measurement uncertainty in the identification of the slope failure on the NO.3 freeway
in Taiwan. X. Y. Li, Zhang, and Jiang (2016) and Ering and Babu (2016) considered both
measurement uncertainty and model uncertainty to infer soil properties in the excavation of a
530m high rock slop and in a rainfall-induced landslide case respectively. Finally, L. Zhang et
al. (2018) included only measurement uncertainty and used multiple types of observations (e.g.
displacement, ground water level, water pressure, etc.) to conduct Bayesian inference in a soil

slope under rainfall infiltration. More details of these studies are summarized in Table 2.1.

Though the applications are different, the common limitation of these studies is that the
considered dimensionality is quite low, i.e. the considered parameters are relatively small in

number (i.e. on average four). In reality, however, more (soil) parameters could be influential.
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Another limitation is that the effect of construction stages on system identification is rarely
(not) investigated, as most of these studies focus on existing structures. And in their work,
uncertainties are usually not explicitly explained (i.e. lumped uncertainties are used), or they

are not complete (i.e. only measurement uncertainty or model uncertainty is considered).
2.3.2 Bayesian computational methods

Once the system identification problem is formulated as a Bayesian inference problem, we
need a computational method to solve it. For low dimensional problems (i.e. when no more
than 3 parameters are to be inferred), the brute force/straightforward numerical integration
method can be used and there is no need for e.g. sophisticated sampling based methods.
However, numerical integration becomes practically intractable when moving to higher
dimensionality (arguments supporting this claim can be found in section 3.4). Therefore, other
computation algorithms are adopted to circumvent the integration. Considering the application
in hydraulic structures, these algorithms often belong to the group of Markov Chain Monte
Carlo (MCMC), among which Metropolis-Hastings (MH) MCMC is particularly preferred. For
example, both L. L. Zhang et al. (2010) and L. Wang, Hwang, Luo, Juang, and Xiao (2013)
adopt Metropolis-Hastings (MH) MCMC to replace the calculation of integrals.

However, as summarized in (MacKay & JC, 2003), MH MCMC usually has a low acceptance
rate and needs a large amount of evaluations. Furthermore, in its vanilla form it is not capable

of exploring distributions with separate modes and it has difficulties with degenerate posterior.
2.3.3 Surrogate model

No matter which computational method as described in section 2.3.2 is selected, numerous
calculations of the physical model (e.g. FE model) are inevitable, and the computation time
could be easily in the order of days, which is never desirable. Hence, often a surrogate model
is constructed as a cheap-to-evaluate replacement of the computationally demanding model.
Some research studies demonstrate the feasibility of surrogate models in system identification
within the hydraulic structures context. For example, D. Park and Park (2017) used a first
order polynomial model to simulate the ground deformation to identify the deformation
modulus and stress ratio of soil in a railway tunnel case. Both Miro et al. (2015) and L. L.
Zhang et al. (2010) used a quadratic polynomial model to replace the costly outputs of FE
software. Besides, Xu and Low (2006) used a second-order polynomial without intersection

terms to surrogate the factor of safety in the assessment of stability of embankments.
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Yet with reference to Forrester, Sobester, and Keane (2008), polynomials models (also called
response surface models) are not suitable for the highly nonlinear and multidimensional cases
that most engineering problems belong to, and once constructed, they provide very limited
guidance about where we could continue the sampling process. And they often cannot be scaled
to higher dimensional cases while maintaining a reasonable computational time. Therefore, a
more flexible global surrogate model which is general and capable of tackling realistic

engineering problems should be explored to overcome such limitations.
2.4 Assessment methods

After the system identification is finished, there are typically two ways to decide whether a
structure is safe or not as summarized by Jonkman, Steenbergen, Morales-Napoles,
Vrouwenvelder, and Vrijling (2015) . One is referred as semi-probabilistic method, which for
example, the Partial Factor Design, relies on partial factors of inputs and is computationally
cheap (e.g. could even be performed by a calculator). For instance, Ivanov (2013) adopted the
semi-probabilistic method to assess the hull girder section modulus. And Sykora, Holicky, and
Markova (2013) used the same way in verification of reinforced concrete bridges. The second
way to assess the safety of a structure is the reliability-based method (also referred as
probabilistic approach), such as Monte Carlo simulation and first order reliability method
(FORM), which compute the failure probability of a structure. For example, Schweckendiek
(2006) used FORM to calculate the structural failure probability (e.g. failure of sheet pile wall
and anchor) and used directional adaptive response surface sampling (DARS) to assess the soil
failure in a sheet pile system. The whole system failure is then considered by method
‘Hohenbichler’ proposed by Hohenbichler and Rackwitz (1982). Wolters, Bakker, and De Gijt
(2013) adopted FORM to perform reliability assessment for both soil failure and structural
failure. Teixeira et al. (2015) used FORM to calculate the failure probability of soil and
directional sampling for the structural failure. Beck and Au (2002) updated the reliability of a
moment-resisting frame by Monte Carlo simulation. Schweckendiek and Kanning (2016)
combined Bayesian reliability updating method and Monte Carlo simulation to analyze the

slope stability of dikes.

Nevertheless, semi-probabilistic approaches trade quick calculation for flexibility, and they are
only applicable to cases to which they are calibrated using reliability methods. . And in the
literature where a reliability-based method is used, the distributions of input parameters are

assumed to be known (e.g. normal distribution with a given mean and standard deviation),
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seldom of them performs structural assessment using the results of SHM based system

identification.
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Table 2.1: Overview of previous works in system identification of hydraulic and geotechnical structures (the variables and acronyms are explained in Table 2.2). Studies with probabilistic system identifications where

the uncertainty in the estimated parameters is quantified are highlighted with italic font.
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Optimization
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Bayesian,
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NA
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MND with
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Surface

displacement

Slope behavior

Displacements
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contents, etc.

Strain, displacement
(up to 24 sensors
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the Three

Gorges project

Excavation of a
530 m high rock

slope

Rainfall-
induced

landslide
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Soil slope under
rainfall
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Single anchored
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FLAC 3D

FLAC
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model
function
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Second order

polynomial function
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First order

polynomial  with
mixed terms

NA

Gaussian  process

regression

NA

NA

NA

NA

Adaptive

fitting
strategy

NA

NA

NA

NA

Prior and
posterior
reliability
analyses
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Table 2.2: Explanation of symbols used in Table 2.1.

Symbols Description Symbols Description

q initial tangent modulus of rigidity Yun Unsaturated unit weight

E Young's modulus Cy coefficient of vertical consolidation
Eur Unloading reloading stiffness R¢ Failure ratio

Eoed Tangent stiffness for primary oedometer loading v Poisson’s ratio

k Coefficient of permeability Oy Consolidation pressure

Ko The ratio of horizontal to vertical in situ total stress MND Multivariate normal distribution

G Shear modulus ML Maximum likelihood method

® Friction angle LS Least square method

v Dilatancy angle DRAM Delayed rejection adaptive Metropolis
c Cohesion coefficient DREAM Differential Evolution Adaptive Metropolis algorithm
T Anchor force FLAC Fast Lagrangian analysis of continua
m coefficient of volume compressibility NLFEA Nonlinear finite element analysis

o. Uniaxial compressive stress MAP Maximum a posterior estimation

0 Coefficient of geological strength index GA Genetical algorithm

M matric suction
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3 Methods and tools

3.1 Overview

This chapter elaborates the adopted methods and tools. To start with and as a preparation of
Bayesian inference, a surrogate model needs to be constructed to replace the computationally
expensive FE model, which is used as a convenient tool to capture the mechanical behavior of
structures. Next, the details of the Bayesian inference are presented: how prior knowledge and
measured data are combined while accounting for uncertainties in order to identify system
parameters. After that, the performance of inference could be quantitatively evaluated and the

reliability assessment which plays a key role in decision making is outlined.
3.2 Surrogate models

Bayesian inference requires a large number (> 10%-10%) of likelihood function evaluations (see
section 3.4.1for further details), each of which requires an evaluation of the physical model.
One typical example of physical model is the finite element (FE) model, which uses FE method
to numerically solve differential equations that are commonly used to formulate the
mathematical model of real structure. Even though FE model is widely used in engineering to
model complex mechanical system, each evaluation time of it can vary from minutes to days
depending on its scale. In our case considering the large number of evaluations, the
computational time is a challenging issue and hence a surrogate model is usually adopted as a
cheap-to-evaluate replacement of computationally demanding model.

Surrogate modeling for low-dimensional (<3) cases can be done with at a relatively low
computational time by the naive approach of using a uniformly spaced grid. However, with
increasing dimensionality the required number of points increases exponentially, hence
rendering this naive approach computationally intractable. In these cases adaptive surrogate
modeling approaches can be used to reduce the computational time. These approaches are
generating new points for fitting the surrogate model in a sequential manner, while the new

points are placed at locations where the expected improvement of the surrogate model is large.

An advantage of the naive approach is that the same, single set of analyses can be used to obtain
arbitrary number of surrogate models, e.g. horizontal displacement in point A and point B. This
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advantage might be lost when the adaptive approach is used as that is specific to one surrogate
model, i.e. (to some extent) separate adaptive surrogate model building is needed for point A

and point B.

In this study the more involved, adaptive approach is used as the considered dimensionality
could be up to eight. Several type of surrogate models and tools are considered and listed in
Table 3.1.

With reference to Owen, Challenor, Menon, and Bennani (2017), Gaussian process regression
has several advantages in our work and is chosen to build surrogate models. For example, it is
suitable for a nonlinear model which most engineering problems are. Moreover, it provides
estimation of prediction variance, which allows for an adaptive fitting that is driven by the
largest variance (see section 3.2.4). Besides, it is possible to introduce noise by Gaussian
process to avoid overfitting, which will be discussed in section 3.2.8. The introduction and
derivation of this section are mainly from Williams and Rasmussen (2006) and Forrester et al.
(2008).
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Table 3.1: Overview of surrogating tools.

Name Language Function type Adaptive modeling Comments
pyKriging Python Ordinary kriging Yes Not maintained anymore
(MSE and EI)
pySOT Python GPR, MARS, polynomial, etc. Yes For surrogate based optimization, pure surrogating seems to be not available (adaptive sampling is probably driven

by the optimization but we need a good fit over the entire support).

SMT Python Kriging, polynomial, KPLS, etc. No
scikit-learn Python GPR, SVR, ridge regression, etc. No General machine learning package
SUMO Matlab Radial basis function, polynomial,  Yes

kriging
DACE Matlab Ordinary kriging No Only for fitting kriging models
00DACE Matlab Kriging No Object oriented version of DACE

MSE — mean squared error

El — expected improvement

GPR — Gaussian process regression

SVR - support vector machine

MARS - Multivariate Adaptive Regression Splines
KPLS — Kriging Partial Least Squares
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http://pykriging.com/
http://pysot.readthedocs.io/en/latest/
https://smt.readthedocs.io/en/latest/
https://scikit-learn.org/stable/
http://sumo.intec.ugent.be/
http://www2.imm.dtu.dk/projects/dace/dace.pdf
http://sumo.intec.ugent.be/ooDACE

3.2.1 Gaussian process

Williams and Rasmussen (2006) gives a formal definition of Gaussian process (GP), “A
Gaussian process is a collection of random variables, any finite number of which have a joint

Gaussian distribution”. This joint distribution, denoted as f(X), is determined by a mean

function m(x) and a covariance function k(x,x"):
m(x)=E[f(x)] (3.1)

k(x,x") = E[(f () =m(x))(f (x) —m(x))] 3.2)
Where x and x'indicate any two values (or vectors) of variables.
And this Gaussian process will be written as:
f (x) ~ GP(m(x),k(x,X")) (3.3)

Since a GP is a collection of random variables, it requires a property of consistency which is
automatically met if the elements of the covariance matrix are obtained from the same
covariance function. The consistency means that if a certain GP is defined, then any number of
samples from this Gaussian process will be a multivariate normal distribution. For example, if

a set of samples, (X, ¥,),(X,,¥,),"--,(X,,Y,) are drawn from the same GP, then
Y,
DN (M(X),, Ky ) (3.4)

Where each entry in m(x)nxl is equal to pu, while K is the correlation matrix in which each

nxn
entry is calculated by covariance function k(x,x"). Equivalently, the sample y are drawn from
a normal distribution with mean of p and standard deviation ¢, and then they are assigned
correlation by covariance function k(x,x") . This property explains how we construct a
Gaussian process regression (GPR) model: given a set of samples X;,X,,---,X, and the

corresponding outputs (i.e. function values) v,,Y,,-:-, Y, , they could be correlated by the

covariance function and reconstructed to approximate the real corresponding GP. Then
prediction at a new sampling point could be made by considering the correlation between the

new point and the given points. This assumption implies that we expect that the to-be-
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surrogated function (i.e. an engineering function) will behave smoothly and continuously . And
how the surrogated function behaves largely depends on the choice of covariance function,

which will be detailed in section 3.2.1.1.
3.2.1.1 Kernel

The covariance function k(x,x"), which is called the kernel of GP, indicates the dependence
or correlation between two points X,x". The parameters used to define a kernel function are

called hyperparameters. The kernel could be classified into stationary and non-stationary types.
The former means that the value of kernel function only depends on the relative distance
between two points, and the closer the two points are, the more correlated and similar they are,
and thus the closer their corresponding function values are. In contrast, the non-stationary
kernel also considers the absolute location of the given points. In addition, kernels can also be
classified into anisotropic and isotropic types. The former means that the kernel function
behaves differently, or has different hyperparameters along different dimensions/axes, while
the latter refers to a kernel which has the same hyperparameters in all directions (the
terminology is equivalent to the terminology used in structural engineering for materials). In
our work, only stationary kernels are considered. Several common kernels taken from
Duvenaud (2014) are shown in Figure 3.1, of which two, namely the white kernel and radial

basis function (RBF) kernel are detailed in the next two sections.

Kernel name: | Squared-exp (SE Periodic (Per Linear (Lin) Kernel name Rational quadratic (RQ Cosine (cos White noise (Lin)

k(z,x adexp(-52L) o Lsin? (1222))  o3(z - ) — ¢ k(z, 2" Ao a3 cos (2rz=2)
Plot of k(x.2") /\ MAM :/ Plot of kernel /\ “/V\/V\j\ |
o o ) — - 0
r r’ ¥ r r ( 4 r r r— r—x
|
v + v 3
Lo

AN Eaa Functions f(z) I essage AANANANANL
MWAMNAMNANAN —_— >
GP priom M\ \NNS
r

repeating structure linear functions I'vpe of structure multiscale variation sinusoida uncorrelated noise

Figure 3.1: Kernels in Gaussian process regression [Duvenaud (2014)].

3.2.1.2 White kernel

This kernel can be used to introduce noise to the GPR model and can be defined by the

following equation:

a ifx =X,

. (3.5)
0 otherwise

k(xi,xj):{

Where
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X X

the it and j" data points;
o noise level.
3.2.1.3 Radial basis function (squared exponential) kernel (RBF)

Isotropic case:

2 (Xi _Xj)z
k(X;,X;) =0 exp| ————— (3.6)
20
Anisotropic case:
¢ (x.% —x ()2
k(x,,x,)=0cexp| -y ——1- " (3.7)
] f é 2<L(k) )2
Where
d dimensionality (i.e. number of random variables);
( length scale, is a scale for isotropic kernel, indicates the correlation between two
sampling points;
L length scale, is a vector of length d for anisotropic kernel;
o> signal variance or function variance.

3.2.2 Model construction of Gaussian process regression

As explained previously, the construction of a Gaussian process regression (GPR) model aims
at finding the approximation of corresponding real GP based on the given data and a selected
kernel. There generally two steps needed. Firstly, a number of initial sampling points are
selected to build a basic “framework™ of the surrogate model. Then more sampling points are

added adaptively to improve the accuracy.
3.2.2.1 Initial design

To construct a surrogate of the simulator, which refers to the to-be-surrogated function/model
from herein, the selection of initial sampling points considering their position and number is
crucial. The former could be done based on for example, Latin Hypercube (LH) scheme, while

the latter highly depends on the simulator and hence general recommendations of it cannot be
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made. However, for expensive simulators it is advised to start with a minimal number of initial
points and add additional ones (the strategy for adding further points is explained in section
3.2.4). Razavi, Tolson, and Burn (2012) has summarized some recommendations about the
number of initial points for different situations which are given in Table 3.2.

Table 3.2: Overview of selected number of initial points.

Comments
p=10dim Kriging and RBFs
p=24" Samples the corner of variable space
p=2(dim+1) Kriging and RBFs
p = max[2(dim+1),0.1n] If computational budget is permitted, it could achieve better

global accuracy with more sampling points.

p=0.35n An upper bound for deceptive and multimodal simulators

p: approximate number of initial points
dim: dimensionality

n: total number of simulator evaluations, accounts for computational budget.

3.2.2.2 Hyperparameters estimation of kernel

Given an initial set of sampling points, a proper kernel is required to connect these samples and
make predictions. Even though there are many kernels available and some of them are even
capable to capture periodicity in the output, such a behavior is not expected in our context.
After experimenting with different options we settled with the following options for the

surrogate modeling:
A composite kernel which is the summation of an anisotropic RBF kernel and a white kernel.

The former component ensures the smoothness of GPR model, while the latter can capture
potential numerical noise. The noise part is crucial to avoid numerical error and overfitting.
Then the last step to finish the construction of the GPR model is to estimate the
hyperparameters from data based on the Maximum likelihood method.

Suppose there are a set of initial sample data, X ={x,,x,,...,x,} and the corresponding output

vector y ={y,,Y,,..., ¥, }' generated from a GP. Based on the definition, the output y is
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equivalently the observation of the GP with a mean p and standard deviation o. Then the

probability of the occurrence of these y can be expressed in a likelihood function:

=D (-w?
i=1

1 o
L(y W o) = Te (3.8)
(270%)?

The to-be-estimated hyperparameters should maximize the likelihood to assure that the given
output y is most likely to be drawn. But this likelihood function is not complete yet as the
correlation between samples is not included. This correlation is represented by kernel function
as introduced previously, and if correlation is considered, the likelihood function of y could be

rewritten as:

1 (1) K (y-1p)
20?2

L(y | o,08™") = (3.9)

1

(2770°)? K|z

Where 1 is a unit vector with length of n,8™" is the hyperparameters in the kernel function

embedded in K, which is the correlation matrix calculated based on the kernel function:

KX, %) - k(X,X,)
K=| : (3.10)
K(X,,X;) - k(x,,X

n

For simplification and numerical reasons (e.g. if the value is very close to zero, it can cause
problems with double precision calculations), this likelihood function is often taken the natural

logarithm:

In(L(y [0, 67)) = —gln(Zﬂ)—gln(Zaz) —gln(|K|) _b=14) 2*;2 V=14 515y

The estimation of m and ¢ ,indicated as M, could be obtained by taking the derivatives of

this equation:

(3.12)



o -1 K (y-17)
n

(3.13)

These two result can be substituted back to equation (3.11) and since the aim is to maximize

the likelihood, the constant components could be discarded and the result is:

In(L(y|0™)) = —gln(z&z)—gln(|K|) (3.14)

Then 0™ could be found by either global search method like genetic algorithm, or by
gradient-ascent based optimization method to maximize equation (3.14). This estimation is
transformed into an optimization problem with potentially multiple maxima, hence the

optimization is performed multiple times using different random initial values each time. For
each time, there are (1+dim+1) hyperparameters to be determined where dim is the
dimensionality, corresponding to one signal variance ( o, ), dim length scale (1), and one noise
level (« ). Since each evaluation of the In-likelihood function requires the inverse of the
correlation matrix that is a square matrix with rows equal to the sample points, and also because

more sampling points are needed for high dimensional spaces, the computational time will
inevitably increase with higher dimensionality.

3.2.3 Prediction by Gaussian process regression

After the GPR model is constructed and the hyperparameters are estimated, prediction can be
made straightforwardly. The core idea is to connect the to-be-predicted output ¥ (at position
X ) with given outputs (y) using the kernel function, and then to maximize the likelihood of all

outputs (Y and y).

Firstly, ¥ and y are merged into a new vector ¥ ={y, §} , then the correlation between Y and

y is indicated by:

K(x;,X)
K=| (3.15)
k(x_,%)

(nx1)
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Now the new correlation matrix is:
. | K K
K= l: ) :l (3.16)

So the In-likelihood of all outputs is:

In(L(y)) = —2 In(27) —gln(z&z) —g in(K)) - Y ‘“DT;;(V )

And only the last term depends on ¥ , hence the In-likelihood can be written as:

) (s 56
C@-1)'KRNy-1)  \Y-a) KT 1) \V-4

267 267

In(L(9))= (3.18)

The maximum of equation (3.18) can be found easily taking derivative to ¥ and setting the

equation to zero. This will obtain the ultimate prediction of Y :
v =0+ KK (y—-14) (3.19)
Afterwards, the mean squared error (MSE) or variance of this prediction can be computed as:

1-1"K'K

§=6"|1+a-K'KK+=——
1'K™'K

(3.20)
The elaboration of this variance can be found in (Hoyle, 2006) and it is the key in adaptive

fitting in next section.
3.2.4 Adaptive fitting of Gaussian process regression model

Generally, a surrogate constructed with initial sampling point is not accurate enough due to the
limited number of initial points. It can be improved by adding additional sampling points based
on a certain criterion (acquisition function). This process is referred as adaptive fitting or
infilling. Forrester et al. (2008) summarizes two general ways to perform infilling. One is
exploitation, which focuses on a particular region that is relevant from the application point of

view, for example in case of optimization the region of the current optimum, the next infilling
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point would be at where the expected improvement is the maximum. This is called local
surrogate in this thesis. The other is exploration, which focuses on a general global
improvement of the surrogate model and requests the next point where the predicted variance,
or MSE is the largest. This is called global surrogate in this work.

Considering the application of local surrogate in Bayesian inference, a few studies are
summarized in Table 3.3. They are based on different infilling criteria, of which the core idea
is to infill the next point to obtain the largest reduction in differential entropy or KL divergence.
This is a much more efficient method as most of the infilling points will be around the peaks

of likelihood or posterior.

Table 3.3: A cursory overview of studies using local surrogating.

simulator Infilling criterion
(Kandasamy, Schneider, & Poczos, likelihood negative expected divergence (NDE) +
2017) exponentiated variance(EV)
(J. Li & Marzouk, 2014) posterior KL divergence
(H. Wang & Li, 2018) posterior entropy
(Takhtaganov & Miller, 2018) physical model expected improvement

As for the global surrogate, the infilling criterion could be used to add the next point where the
largest MSE or variance calculated by equation (3.20) occurs. This maximum could be found
by global search method, e.g. genetic algorithm (GA) or by gradient based techniques. Global
surrogating is a more general problem and not limited to Bayesian inference as the simulator
is usually the physical model (e.g. FE model). A comparison is given between global surrogate
and local surrogate in Table 3.4. Also considering the advantage of global surrogate that it

could be reused in reliability assessment in section 3.5, global surrogate is adopted in this thesis.
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Table 3.4: Comparison between global surrogate and local surrogate.

Global surrogate

Local surrogate

Surrogate of physical model is built with
paying equal attention to all regions of the
support. The total volume of the support is
increasing exponentially with increasing

dimensions.

Surrogate of physical model, likelihood or
posterior is built with paying more attention
to regions of the support which are identified
to be important for the analyzed case. The
total volume of the important regions is
expected to be much smaller than the total
volume of the support.

Good reusability.

Once the surrogate model is constructed, it

can be used for:
e new observations of the same
Sensors;

e new combination of sensors;

e different likelihood function (with
some limitations),

o different  priors

(with  some

limitations).

Not reusable.
The surrogate model is built iteratively based
on the obtained likelihood or posterior given
a specific value of observation. In other
words, it focuses on the accuracy only in the
concentrated zone in likelihood or posterior.
The surrogate model should be reconstructed
if:

e new observations are used

e new combination of sensors are used,

o the likelihood function changes,

e the prior changes.

It takes considerable computation time to
achieve the global convergence, and some of
the work is redundant (e.g. the extreme value

of parameters might never be used).

Computationally efficient as only the most
crucial part is surrogated.

3.2.5 Stopping criterion

In this study the following stopping criterion is proposed and used to break the process of

adaptive fitting:

Omax —NOISE < £ - Yo

where

(3.21)
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The maximum of the predicted standard deviation (square root of equation (3.20));

max
noise  Square root of noise level in white kernel; it is set to zero if white kernel is not used.

£ A percentage controlling the stopping criterion.

Yaee  1He range of the output of all sampling points (i.e. absolute difference between the

maximum and the minimum).

| did not find a general rule to set the value of ¢_ as it highly depends on the simulator and the
dimensionality. In our work, a value of &_=0.005 works quite well to achieve a very low

value of relative error (RE), which is defined as:

RE = yPFEdict ~ Ysimutator (322)

ysimulator

To demonstrate the adequacy of the stopping criterion an example with four dimensions is
given. A set of (i.e. 166) initial sampling points are generated in Plaxis, then more sampling
points are added based on the previous infilling criterion. After each additional point is added,
the GPR model is updated and the value of o, —noise is displayed in Figure 3.3. Then 300
testing points are used to calculate the relative difference, of which the maximum is displayed

in Figure 3.2. It could be seen from both figures that after & =0.005 is satisfied (i.e. around

300 sampling points), the maximum of RE is stationary.

5.00% 9
§ 4.50% 8
_
DU 4.00% 4 74
o
= )
4+ 3.50% v 64
o o
E o
w“— 3.00% + 154
o by
g 2.50% § 4
£
= 2.00% 3
©
= 1.50% 2
166 196 226 256 286 316 166 196 226 256 286 316
Number of sampling points Number of sampling points
Figure 3.2: Variance of RE with number of sampling points. Figure 3.3: Variance of threshold with number of sampling points.
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3.2.6 Pseudo code

For the general case of fitting a single surrogate model the pseudo code of the algorithm
proposed and used in this study is given in Table 3.5. Firstly, a set of initial sampling points
are selected based on LH scheme and the corresponding simulator values are calculated. Then
these samples are used to construct a GPR model, in which the hyperparameters are optimized
with 10 different initial values. The next step is to add additional sampling point one by one at
where the maximum of prediction variance occurs using genetic algorithm. If the square root
of this maximum variance excluding the noise component is below the threshold (i..e a certain
percentage of the range of all simulator values), the infilling is terminated and the construction

of this surrogate model is done.

This process could be repeated for different surrogate models. In our case, the simulator is a
FE model, meaning that the previous results can be reused. For example, suppose there is a
case where the horizontal displacement at top point and middle point along a sheet pile wall
are to be surrogated. When a certain sampling point is given to run the FE software, the
horizontal displacement along the whole sheet pile wall can be saved. Then more points are
added based on the stopping criterion at the top point and after the GPR model at the top point
is converged, all the data including initial and additional sampling points as well as their
corresponding response could be used as the initial input for the middle point. This route is
reiterated if more surrogate models are required. In practice, this method works well as fewer

and fewer infilling points are needed for the sequent surrogates.
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Table 3.5: Pseudo code of the proposed adaptive Gaussian process surrogate method.

General pseudo code Implementation details
generate X, from X, dim(Xg) = (N, K) Latin hypercube sampling to select the initial X,
calculate y,, = Simulator(x,) The simulator could be e.g. FE model

set convergence = False
while convergence is False

| calculate y, . =[min(y,,), max(y,,)]
| fitaGPR1to [X,, Y«]: GPR Maximum likelihood estimation with 10 different initial points

| find o, =mMax(c,.eer (X)) xe X and x, Global search (genetic algorithm)

noise: square root of noise level in white kernel if it is used, otherwise

| if O pred,GPR, max noise < &5 yrange

set to zero
| | set convergence = True

| else

| | calculate y,, =Simulator(x, ), X, =X

new O nax

| | add to Set Xset = [Xset’ Xnew] ' yset = [yset’ ynew]

return GPR
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3.2.7 Hlustrative example

In this section, a simple example taken from Pedregosa et al. (2011) is shown to illustrate the
whole process of global surrogating. Considering the symbolic function: f(X)=xsin(x) , 6

initial sampling points are selected and indicated by red dots shown in Figure 3.4. The RBF

kernel is selected and the two hyper-parameters, namely signal variance o, and length scale |

are estimated using the maximum likelihood method. Since there is considerably large
prediction standard deviation at the tail, some additional sampling points are needed. One more
sampling point can be added at x =10 where the maximum of standard deviation o calculated
by equation (3.20) occurs. This point is indicated by a black dot in this figure. In this 1D
problem (only one variable), this maximum can be found by calculating all the o along the
support, but if more than one variable exists, more advanced methods like GA can perform this
work properly. Even though gradient based optimizers are also widely used to find the
maximum, they might be trapped in a local maximum considering this o function might have

multiple maximums.

4o fix) = x sin(x)
® Sampling points
1 —— Prediction

fix)
w

=
L

Standard deviation

o

Figure 3.4: Initial sampling points and fit.

After the extra sampling point is added the hyper-parameters of the kernel are re-optimized to
maximize the likelihood. Even if the prediction and real function curve match well as displayed
in Figure 3.5, there is still large standard deviation at x =0. This is determined by the kernel
function, as there are no sampling points near the left support point ( x =0). This can be shown
more clearly in Figure 3.6 if prediction is performed far from the left support point where larger

standard deviation would occur.
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Figure 3.5: Demonstration of predictive error (1). Figure 3.6: Demonstration of predictive error (2).

Since the true simulator function is never known beforehand, it is necessary to add additional
points at the boundary of supports or include them as initial sampling points to decrease the
standard deviation.. Compared with Figure 3.5, not only do the prediction and real function
matches well, but the corresponding standard deviation is also very low if one more point is

added at x =0 and shown in Figure 3.7.
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""" flx) = xsin(x)
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Standard deviation

Figure 3.7: Demonstration of predictive error (3).

3.2.8 Influence of noise

The noise added in GPR model plays a crucial role in preventing overfitting. Overfitting can
not only be observed from the response surface, but also be checked by the length scale of use
RBF kernel. In this section, a simple 2D (i.e. dimensionality is 2) example is given to support
this claim.

In this example, the samples are still from Plaxis and the earlier shown steps in Table 3.5 are

followed to build surrogate models, which are shown in Figure 3.8 and Figure 3.9. The only
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difference between them is that the former uses solely a single RBF kernel while the latter uses
an RBF as well as a white kernel. The hyperparameters are indicated above each figure (the

number before RBF represents the signal variance).

48.6**2 * RBF(length_scale=[0.142, 0.251])

Figure 3.8: Response without noise component.

utput from Plaxis

o

93**2 * RBF(length_scale=[6.54, 2.36])
WhiteKernel(noise_level=0.000167)

Figure 3.9: Response with noise component.

Intuitively, the one with a noise component on the right seems to be more reasonable as it is

much more smooth, that corresponds to our understanding of the underlying physics. The

superiority of the GPR model with noise term can be quantitatively demonstrated by calculating
the relative difference with 300 test points. The results are shown in Figure 3.10 and Figure

3.11 respectively.
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Figure 3.10: RE without noise component.
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Figure 3.11: RE with noise component

From these two figures, it is clear that the GPR model with noise term does a much better job

in prediction due to its considerably low relative error. Even though the magnitude of noise
level is negligible compared with outputs (i.e. 0.000167 vs tens), it plays the crucial role to

prevent the GPR model going through all sampling points precisely, and thus overfitting could



be avoided. Besides computing the relative difference, occurrence of overfitting could be
quickly checked by the length scale of the used RBF. Overfitting usually appears with a very
small length scale (e.g. 0.1 ~ 0.2 in the first GPR model), meaning that there is limited
correlation between two nearby sampling points, which is inconsistent with the core idea of
RBF kernel.

3.3 Uncertainty

3.3.1 Measurement uncertainty

When collecting data from sensors, the observations are inevitably contaminated with
measurement uncertainty, which reflects the discrepancy between the measured data and the
true/real value. Measurement uncertainty can be caused for example by incorrect reading
and/or installation of a measuring instrument. In this study for a particular sensor, we assume

a simple additive relationship between the real and measured value:

Dmeasure = dreal + Emeasure (323)
Where
d oy true value of response;
D, easure the value of response measured by the sensor;
E.essure measurement uncertainty (random variable).

To aid the reader the used notation is summarized and explained in Table 3.6.

Throughout this work, multiple sensor types, sensors instances, and load cases will be
considered, hence the notation that will be used in later sections is introduced here.

Table 3.6: Explanation of notation.

Example  Description

Italic capital letter D Random variable
Italic smaller case letter d Deterministic value (known or unknown)
Bold letter d,D Vector or matrix

For this case, equation (3.23) can be generalized to:
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D =d,_,. ,+E (3.24)

measure,i, j,k real,i, j, measure,i, j,k

i i varies with different types of sensors or corresponding responses, e.g. strain,
displacement. In this work, same type of response or sensors but of different
structural elements are assumed to have different i values, e.g. strain of sheet
pile wall and strain of anchor will have different i values.

J J varies with different positions for a certain type-i response, e.g. the top and

middle point along the sheet pile wall when considering its strain.

k k varies with different load cases (e.g. different construction stages)
rcari j true value of the j™ type-i response under the k™ load case
Dieasure,i i« the value of the j™ type-i response under the k™ load case measured by sensors

m

measurement uncertainty of j" type-i response under k™ load case

measure,i, j,k

In this work, E ..« 1S modeled with a normal distribution with zero mean and standard

deviation of o described below:

measure,i, j,k ?

E (3.25)

2
measure,i, j,k N (O, Gmeasure,i,j,k)

It is assumed that each pair of E are mutually independent. If multiple sensors are

measure,i, j,k

used, the E will be a multivariate normal distribution (MVN) with zero mean vector and

measure

covariance matrix of X, ... which is a diagonal matrix with each entry of &2

easure,i, j,k *

E___~MVN(Q,XZ

measure

(3.26)

measure)
The justification of this additive Gaussian error model is slim and two-fold:

- Itissimple and prevalently applied in statistics and other fields.
- We assume that measurement uncertainty is influenced by many processes and their
additive effect is observed as a random variable. The central limit theorem supports the

usage of a normal distribution in these situations.
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3.3.2 Model uncertainty

3.3.2.1 Physical model uncertainty

An accurate physical model (e.g. FE model) is always essential to perform a mechanical
analysis of a structure. In practice however, the physical model is always different than the real
structure. This difference is stemming from simplifications and assumptions when building FE
models. For example, the difference shows up when a sinusoidal function is modeled by a
polynomial function, or when some loads are neglected, e.g. influence of temperature on
structures. The details of the process that causes the difference is unknown?, hence it is replaced
with a probabilistic model, this is commonly called model uncertainty. In this study this relation

is assumed to have the following mathematical structure:

D =d +E (3.27)

physical model,i, j,k real i, J, physical model,i, j,k

Where

D the value of j™ type-i response under k™ load case computed by physical

physical model,i, j,k

model

physical model uncertainty of j*" type-i response under k™ load case

Ephysical model,i, j,k

In this work, it is assumed that E follows as a normal distribution with mean of

physical model,i, j,k

zero, and standard deviation of &, o moderi. . -

- ~N(O.6%, (3.28)

physical model,i, j,k ysical model,i, j,k)

If multiple sensors are used, E becomes a multivariate normal distribution with mean

physical model

vector of zero, and covariance matrix of X, ;o\

E ~ MVN(0, X (3.29)

physical model physical model )

Consideration of correlation for model uncertainty is crucial as the assumption of independence
would lead to unrealistic unacceptable behavior: a model with independent components would

tell us that placing more and more sensors at the very same location brings us new information.

3 This includes the case of chosen ignorance as well, i.e. unknown in the selected model universe.
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In the covariance matrix, each entry is described as:

m,n _
thysical model p(i’j’k)H(i"j‘,k')Gphysical model,i,j,kaphysicm model,i’, j k' (330)

d . oo

_ (ke k)

— A i
Piikod.ix) ~ P& (3:31)
where
, th th i H :
X sical model m™ row and n™ column entry in the covariance matrix x .

O physical model.i. i k physical model uncertainty of related m™ sensor in covariance matrix

(i.e. j" type-i sensor under k" load case)

physical model uncertainty of related n' sensor in covariance matrix

O-physical,i',j‘ K
(i.e. and j 't type-i' sensor under k't load case)
P L correlation coefficient of j type-i sensor under k™ load case and ;'
(AT _
type-i' sensor under k't load case
ke ) Euclidean distance between j™ type-i sensor under k™ load case and j i
L],K)e(, ],
type-i' sensor under & 't load case, always a positive value.
li correlation length of type-i sensor
D An additional term to account for the potential correlation between

different type of sensors (i.e. different i values). It is set as 1.0 if i = i

and smaller than 1.0 (e.g. 0.8) if i #i

3.3.2.2 Surrogate model uncertainty

When a surrogate model is adopted to replace a physical model, the difference between them
should also be considered and included in model uncertainty. This uncertainty is prevalently
neglected in the probabilistic system identification literature. In this study this uncertainty is

explicitly considered and expressed in an additive form:

Dphysical model,i, j,k = dsurrogate,i,j,k + Esurrogate,i,j,k (332)

where

d the value of j™ type-i response under k™ load case predicted by the surrogate

surrogate,i, j,k

model
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E surrogate model uncertainty of j* type-i response under k'™ load case

surrogate,i, j,k

In this work, E is modeled with a normal distribution with mean of zero, and

surrogate,i, j,k

standard deviation of o

surrogate,i, j,k *

~N(0,07

surrogate,i, j,k )

(3.33)

surrogate, i, j,k

If the surrogate model is constructed by GPR, o, . could be explicitly computed by

urrogate,i, j,
equation (3.20) and taken the square root. Note the above mathematical model and probabilistic
model are not approximations but exact representations and this is how GPR works.

If multiple sensors are used, E becomes a multivariate normal distribution with mean

surroagte

vector of zero, and covariance matrix of X considering correlation:

surroagte

Esurrogate - MVN (O’ Esurroga\te) (334)
Where each entry (m™ row, n' column) in covariance matrix is described as:
m,n _
Zsurrogate - p(i’j]k)e(i"j”k')o-surrogate,i,j,kasurrogate'i"j"k‘ (335)

The notations above are the same with those in physical model uncertainty.
3.3.3 Combined uncertainty

In this study, the measurement uncertainty and model uncertainty described in section 3.3.1
and 3.3.2 are combined. The combination of all three sources of uncertainty gives the relation

between d and d

real i, j,k surrogate,i, j,k *

d d (3.36)

real,i, j,k = surrogate, i, j,k + Emeasure,i,j,k + Ephysical model,i, j,k + Esurrogate,i,j,k

Given the assumptions in each component, the three uncertainties can be combined into a single

normal distribution E ;.

E ~N(0, 004 i) (3.37)

total,i, j,k

Where
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Etotal,i,j,k = Emeasure,i,j,k + Ephysical model,i, j,k + Esurrogate,i,j,k (338)

O_tital,i,j,k = Grieasure,i,j,k + O_pzhysical model,i,j.k T aszurrogate,i,j,k (3.39)

And if multiple sensors are used, E,,, becomesa multivariate normal distribution:
B ~MVN(0,Z,,) (3.40)
Ziotal = Simeasure T thysical model T Ssurrogate - (3.41)

The potential correlation is already contained in each component.
3.3.4 Correlation length

The covariance matrix is largely dependent on the selection of correlation length, on which
however | did not find any studies to provide guidance. Hence in a later section, the correlation

length is derived as the following: if we have access to both d,,,; and Dy i mose @Nd their

difference is modeled using GPR with RBF kernel, then the length scale of RBF kernel is

naturally the correlation length of E according to its definition in section 3.2.1.3. Even

physical model

though d,, is usually unavailable due to the contamination of E D could

real measure ! measure

approximately replace d,, to compute correlation length, as E, ... is in reality tiny. Since

E varies not only with sensor type, sensor position and load case, but also with sampling

'surrogate
points, meaning that we need a GPR that maps to a vector space (in contrast with the scalar

space as in B . moser ) 1 I8 difficult to determine its correlation length with the same method.

Therefore, it is assumed in this work that E . .o and E have the same correlation

'surrogate

length for simplicity.

3.4 Bayesian inference

3.4.1 Parameter estimation

Bayesian inference is a statistical inference method in which Bayes' theorem is applied to use
data to identify unknown parameters. In Bayesian statistics, all unknown parameters are

regarded as random variables and thus have a probability distribution. An advantage of this
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thinking is that it is easy to implement further reliability analysis where distribution of
parameters is needed. The core idea of Bayesian inference is Bayes’ rule, in which a prior
knowledge (i.e. probability distribution) of random variables (i.e. refers to soil parameters in
this thesis) is considered before any data (i.e. refers to responses of structures) is collected, then
data is embedded into the likelihood function and the combination of prior and likelihood leads
to a new distribution, the posterior distribution, which contains information of the prior and
data.

Bayes’ rule for discrete variables:

p(D|6)-p(@)  p(D|0)-p(6)

p(0|D) = = (3.42)
p(D) 2.p(D16)-p(@)
For continuous variables:
D|0)-p(0 D|0)- p(0
o(0| D)= PR10)-PO) ___ p(DI0)-p(©) .
p(D) | p(D|6)- p(6)-do
p(D]6) ~ MVN(f(0),X,) (3.44)
where
D data (i.e. here refers to observations of responses of structures)
0 random variables (i.e. soil parameters to be inferred)
n(0) prior distribution of random variables
p(D|0) likelihood function, can be any form and equation (3.44) is a particular case to
our application.
p(D) a constant known as evidence, obtained by integral or summation over the

entire support

p(0| D) posterior distribution, an update of prior distribution
f(0) response computed by physical model or surrogate model

Combined uncertainty described in section 3.3

total
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3.4.2 Overview of computation algorithms

If the number of unknown parameters are no more than three (the dimensionality of problems
IS no more than three), it is quite straightforward and computationally cheap to perform
Bayesian inference or parameter estimation by directly calculating equation (3.43). But for
higher dimensional problems (e.g. ten parameters are considered simultaneously), it is not
desirable or even not feasible to calculate the integral in the denominator. Therefore, smarter
and more advanced methods are usually adopted, which can directly draw samples from the
posterior distribution and thus the calculation of evidence can be avoided. Most of these
methods belong to the group of Markov Chain Monte Carlo (MCMC) methods, such as
Metropolis-Hastings MCMC (MH) in (MacKay & JC, 2003), Hamiltonian Monte Carlo (HMC)
in (Neal, 2011)and Transitional MCMC (TMCMC) in (Ching & Chen, 2007). In addition to
these, Feroz, Hobson, and Bridges (2009) improved nested sampling developed by Skilling
(2006), coined as MultiNest, which is also capable of doing Bayesian inference. The core
difference among these methods is how they draw the next sampling point given the existing

one and their main characteristics are collected in Table 3.7.
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Table 3.7: Comparison of different computational algorithms.

Advantages Disadvantages

MH Easy to implement Low acceptance rate
Inefficient for correlated variables
Not for multi-modal distributions

HMC High acceptance rate Needs the calculation of the gradient
Less iterations than MH Difficult to tune step size
Much computational time

Not for multi-modal distributions

TMCMC  Suitable for multi-modal Much computational time needed
distributions Accuracy decreases with the increase of
Versatile: sample from posterior as dimension
well as estimate the evidence

MultiNest Fast Difficult to decide the initial number of

Suitable in multi-modal distributions active sampling points
Difficult to implement MCMC diagnose
as the number of sampling points is

uncertain

3.4.3 Nested sampling

Considering all the aspects of Table 3.7 and based on the comparison of them (e.g.
computational time, convergence, etc.) via simple examples, MultiNest is selected to perform
the case studies. Since it is based on nested sampling, the description of this method will start

with nested sampling.
3.4.3.1 Sampling idea

As introduced by Skilling (2006), in this method, the prior volume is split into a set of elements

with equal mass dX :
dX = p(6)do (3.45)

so the total prior mass X could be accumulated from these elements in any order, so we define

this equation:
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X(z)=j p(6)do (3.46)

P(D|0)>A

as the cumulative prior mass which contains all likelihood values larger than A. The prior mass
X will decrease from 1 to 0 with the increase of A. Then the calculation of evidence is written
as:

Z = j(f X (A)dA (3.47)

and if the inverse function of X () is used, which is positive and monotonically decreasing,

the evidence is finally transformed into a one-dimensional integral over the unit space

regardless of the original dimensionality:
Z = [ L(x)dx (3.48)

Then for a given sequence of X values, 0< X, < X, , <---< X, < X, <1, trapezium rule could

be used to approximate the evidence by:
Z~Y Lw, (3.49)

(Xi—l — Xi+1)

where L =L(X,),w = represents the weight of each sample.

A picture taken from (Skilling, 2006) shown in Figure 3.12: could help to indicate this idea:

Parameter space

Figure 3.12: Showcase of nested sampling

3.4.3.2 Implementation

The general implementation details of nested sampling are given in the flowing way:
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N live points or active points are sampled randomly from the full space of prior, and
the total evidence is initialized (i.e. Z=0, X, =1);
At each iteration i, the prior could be estimated as X, =e N . the point with the lowest

likelihood (L;) and its corresponding prior volume ( X, ) will be restored;

The total evidence Z is increased by L, (X'—l—;X'ﬂ) ;

The point corresponding to L; and X; will be replaced by a new point drawing from
the remaining prior volume (0, X;) , whose L must be strictly larger than L;;

The above procedure will be repeated until the stopping criterion is met.

To illustrate this implementation procedure, an example (also the figure for comprehension,

displayed in Figure 3.13) taken from (Skilling, 2006) is given below, which starts with N = 3

points:

Three samples are taken from the unconstrained prior, (i.e. from (0,1) ), as shown on
the lowest line in the right figure. They are indicated as point A, B, C in the left figure.
The point A which has lowest L of three points is labelled as point X1, with likelihood
L1.

Point A is then replaced by a new point, point D, drawn from (0,X1) to assure its L is
larger than L1.

Now point B, C, D are three survivors uniformly distributed in the reduced range (0,
X1).

Since point D has the lowest L, it is then label as point 2 and replaced by point E.
Suppose after 5 repetition the process could be terminated, there are five “replaced”
points labeled as point 1, 2, 3, 4, 5 and three remaining survivors could be then labeled
6, 7, 8 to give all 8 points (X1,...,X8) shown on the top line in the right figure.

The evidence and posterior could be estimated using these 8 points as described above.
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Figure 3.13: Example of nested sampling.

3.4.3.3 Stopping criterion

In this algorithm, the specific number of sampling points is not given in advance as what other
MCMC methods do, a different stopping criterion is adopted. In each iteration i, the remaining
evidence is estimated and once the remaining evidence over the total evidence falls below a

certain threshold, the iteration would stop:

Z =L, X, (3.50)
log(Z, +Z,,)—log Z, <dlogz (3.51)
Z the remaining evidence at iteration i
L e the highest likelihood in the region estimated by the current active points
X, the remaining prior volume.
Z the currently cumulative evidence at iteration i
dlogz the threshold

3.4.3.4 From nested sampling to MultiNest

The most challenging part in implementing nested sampling is to sample uniformly from the
restrained prior volume, and at the same time strictly fulfill the requirement that L>L;. If the
samples are drawn randomly as done in MH, the acceptance rate of new points will decrease

gradually with the reduction of prior volume. To solve this problem, Mukherjee, Parkinson,
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and Liddle (2006) proposed to use an ellipsoid to shrink the current prior volume and new
samples will be drawn within this ellipsoid. This ellipsoid is determined by the covariance
matrix of the current active points to just reach the maximum value of these points. And the
ellipsoid will be expanded by an enlargement factor to avoid potential overestimation of
evidence (if this is not done, the prior volume whose likelihood is below the current limit will
probably not be included in the ellipsoid and thus the new sampling points will be biased to the
center). Then the following procedure including the replacement of points who have the lowest
likelihood is the same as original nested sampling.

However, the work up to now does not perform well in multimodal problem as argued by Shaw,
Bridges, and Hobson (2007), who then improved it by separating these active points into
clusters and constructing individual ellipsoid for each cluster. In this cluster-based method,
there is one more potential issue that some peaks of the posterior may show a degeneracy which
leads to a ‘banana’. A picture is taken from Shaw et al. (2007) in Figure 3.14 to show this case.
Later Feroz et al. (2009) proposed a novel method, MultiNest to further improve their approach
in (Feroz & Hobson, 2008) which could already deal with such degeneracy.

Figure 3.14: Showcase of degenerate distribution.

The essence of MultiNest is still the “cluster” based method, but now the partition of active
points into clusters and construction of corresponding ellipsoid are performed simultaneously.

This process is based on “expectation-minimization” scheme such that the total volumes of

these ellipsoids is minimized but larger than X , Where X, is the current prior volume and
e

€ is the desired sampling efficiency (i.e. the acceptance rate, 1 is the enlargement factor).
e
After the ellipsoids are constructed, assume that at iteration i there are K ellipsoids and a

V
particular one will be chosen from them with probability of p, = —*, where V, is the volume

total
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K
of chosen ellipsoid and Vi, = ZVk is the total volume of all ellipsoids. Then a sampling point
k=1

could be drawn uniformly from the chosen ellipsoid. This sampling process is repeated until
its L is larger than the current smallest one (i.e. Li), where Li is the lowest-likelihood value
among all the active points at that iteration. Then this sampling point is kept with a probability

1
of o where n, is number of ellipsoids in which the sampling point lies (because it is possible

that these ellipsoids are overlapped). The stopping criterion could be the same as the very
original nested sampling.

3.4.4 Information content
Considering the following similar questions:

e How to evaluate the performance of posterior distribution?

e How well can the data - picked up by a set of sensors - explain the state of a structure?

e How much information is carried by the data in respect of a specific state of a structure?
The term information content is introduced and three measures of it is used in this study:

e the area of the credible region;

e Shannon information entropy (hereafter just entropy for brevity);

e Kullback—Leibler divergence

3.4.4.1 Credible region

In Bayesian statistics, a credible region“is a range of values within which an unobserved
parameter value falls with a particular, prescribed probability. Credible regions are not unique
given a specific distribution, one method is to choose the smallest region, which can be shown
to coincide with an region with highest minimum probability density. Therefore, this region is
sometimes called the highest posterior density region. In this thesis, always a 90% highest
density credible region is used. This means that for a given distribution of a parameter, this
parameter would fall into this region with a probability of 90%. Generally, the smaller the
credible region, the more concentrated the posterior, which means that the parameter would
approach more to a constant, and thus indicates a better parameter identification. Since most

information of posterior is carried by sensors while such information can be reflected by

41t is used in N-dimension case. In case of one-dimension problem, it is called credible interval.
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credible region, it could be a criterion to configure sensors, including the number, the position

and the type (i.e. which response should be measured).

3.4.4.2 Information entropy

The stochastic data can be considered to produce information at an average rate, such rate is
called information entropy (or Shannon entropy). In case of discrete random variable 6, each

possible 6 value contributes to the information entropy, which is defined as:
H(8)=->_p(®,)log, p(6,) (3.52)
i=1

log, is more of a convention, n could be any number, e.g. 2, e (natural logarithm), 10, etc. In

this thesis, natural logarithm will be used for convenience.

One generalization of the discrete Shannon entropy to continuous random variables is the

differential entropy (or continuous entropy) which can be used as a measure of uncertainty:

h(0)=—[ p(0)-log, (p(6))do (3.53)
0
0 random variables (i.e. soil parameters to be inferred)
n(0) probability distribution of random variables
h(0) differential entropy

Papadimitriou, Beck, and Au (2000) proposed information entropy (differential entropy) to be
used as the measure of information content carried by sensors. They used the measure to find
optimal location of sensors. Generally speaking, the less the value of entropy, the more the

information is carried.
3.4.4.3 Kullback-Leibler divergence (KL divergence)

Both credible region and Shannon entropy reflect the information conveyed by the posterior
distribution, meaning that both prior and observations are included. In our work, it is preferable
to quantify the information content solely from new observations (i.e. from sensors), as it
explicitly provides guidance on sensor placement. Therefore, Kullback-Leibler divergence
(also called relative entropy) is introduced, which is a measure of how one probability
distribution is different from the other one. In our case, this KL divergence reflects additional
information when moving from prior to posterior, and in contrast with Shannon entropy, the

larger the KL divergence, the more the information. It is defined as::
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H(p(O1D)[ PO) = | p(e|D)-logn(M]-de (3.54)

p(6)
0 random variables (i.e. soil parameters to be inferred)
n(0) prior distribution of random variables
p(0|D) posterior distribution, an update of prior distribution

H(p(0|D)| p(@)) KL divergence

In our work, this KL divergence reflects additional information when moving from prior to

posterior, and in contrast with entropy, the larger the KL divergence, the more the information.
3.5 Reliability assessment

Structural reliability is related to the probabilistic analysis (e.g. failure probability) of
engineering structures, as they usually have uncertain structural parameters (e.g. uncertain soil
parameters in hydraulic structures) and uncertain behavior (e.g. nonlinear behavior of sheet
pile wall). To solve this probabilistic problem, the concept of limit state was developed, by

which the boundary between the safe domain and the failure domain is defined. The related

function is termed as performance function g(0).

Then the limit state is indicated by §(8) =0 and the failure domain is indicated by g(0)<0.

With this definition, the failure probability can be calculated as the integral of the joint

probability distribution over the failure domain:

R =P(g(0)<0)= [ f(8)-do (3.55)

g(0)<0

Where

f(8) joint probability distribution of © ;

P, failure probability.
Generally, the direct calculation of the integral in equation (3.55) is computationally not
tractable for high dimensional problems. Therefore, there are many methods available to
approximately replace the integral, e.g. first order reliability method (FORM), second order
reliability method (SORM), Monte Carlo simulation (MCS), importance sampling (IS),

directional simulation (DS), etc.
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However considering the posterior distribution, it is in our work in the form of representative
samples without a specific distribution type, hence the mentioned methods above, e.g. FORM,
IS cannot be adopted in this case. MultiNest based on nested sampling can solve this issue.
When it is adopted to draw samples from the posterior density as described in section 3.4.3,

each sampling point has its weight (w,) indicated in equation (3.49). As the weight is already

normalized in this algorithm, the failure probability is indeed the summation of the weights of

those sampling points which fall in the failure domain:
R=>w (3.56)
where

Ps failure probability

w, weight of i sample in the failure domain

In our work, there might be a case where there is no clear “line” to distinguish safety and failure
such that each sample in the complete space is possible to result in failure, even though of
which the probability might be tiny. Therefore, the failure probability can be calculated by the
following:

P = Y piw; (3.57)
Where

Ps the failure probability;

w,  the weight of the i sample in the entire space;
p, failure probability corresponding to each sample.
p, is calculated considering the value or values (e;) corresponding to the sample and w; as fixed

and considering the rest of the parameters (R) as random variables: p, = P(9(R,E) <0|E=¢,).
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4 Case study: Sheet pile wall — modelling

4.1 Overview

In this chapter, the application of the framework described in the preceding chapters is
illustrated through a numerical case study: a sheet pile wall system modeled in Plaxis 2D. The
case study is representative for a wall of a lock chamber in fresh water. First an overview of
the used finite element model is given in section 4.2, then section 4.3 describes how the
synthetic observations are generated. Section 4.4 outlines the details of the soil parameters to
be inferred, the measurement uncertainties, model uncertainties and the quantification of the
correlation length. The generation of the surrogate models is briefly described in section 4.5.
The last section pulls together all the components, describes the workflow, and provides an

overview of the completed analyses.
4.2 Physical model

In this study, the finite element (FE) model in Plaxis 2D of a single anchored sheet pile wall
structure is taken from Teixeira et al. (2015) with an increased sheet pile wall length. The main
aspects of the model are recapitulated here. For the details of the model is the reader referred
to Teixeira et al. (2015). The main dimensions and structural elements of the analyzed structure

are indicated in Figure 4.1.
11m : 8m

NAP +5m
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Mid-soil-layer——
®
L 19m .
- - Bot soil layer
Sheet pile wall

Figure 4.1: Scheme of the case study: dimensions.

There are three soil layers, named as top, mid, and bot respectively. Since in (Teixeira et al.,

2015), the soil properties are modified to capture relatively large failure probability and
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experience soil failure as well. The former might not be realistic while the latter is decided to
be avoided in this study for simplicity. Therefore, the main properties of the three soil layer
used in this study are again modified and collected in Table 4.1 (since some of these soil
parameters will be assumed unknown and inferred back, the values in this table are thus named
as “real” values). The soil properties are selected to avoid soil failure, in order to make further

analyses easier, i.e. we always have a numerical outcome.

Table 4.1: Soil properties.

Top soil Mid soil Bottom soil
Soil type Medium stiff clay Medium stiff clay Dense sand
Symbol “Real” value Symbol “Real” value  Symbol  “Real” value
Elastic modulus [kN/m?] Etop 2850 Enmid 4150 Ebot 200000
Internal friction angle
[degrees] Drop 19.1 Pmid 22.7 ot 45
Saturated unit weight [kN/mq] Yiop 17.8 Ymid 20.3 Yhot 20
Cohesion coefficient [kN/m?] Ctop 18.2 Cid 254 Chot 1

The sheet pile wall is set to prevent large soil movement and the anchor reinforces the sheet
pile wall. The cross-sectional properties of the sheet pile wall are given in Figure 4.2. The
anchor has a diameter of 60 mm (area = 2826 mm?) with longitudinal spacing of 1.6m. The

construction stages are also taken into account, which are divided into seven phases in Plaxis:

e P1: Undisturbed soil conditions with ground surface at NAP +5 m;

e P2: Excavation of top soil layer to NAP +2 m;

e P3: Placement of sheet pile wall and anchor;

e P4: Complement of the inside® top soil layer to NAP +5 m;

e P5: Excavation of the outside® top and mid soil layer to NAP -7.0 m;
e P6: Water level fluctuation;

e P7: Application of surface load.

5 Here inside refers to the part on the right hand side (behind) of sheet pile wall shown in Figure 4.1.

8 Here outside refers to the part on the left hand side (front) of sheet pile wall shown in Figure 4.1.
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b

flange

Height

Sheet pile:
Width Z-element

Thickness flange
Cross section area A
Elastic section modulus

b 630 [mm)]
h 427 [mm)]
t 13 [mm]
198 [cm?/m]
W, 2600 [cm®/m]

Figure 4.2: Cross-sectional properties of sheet pile [Teixeira et al. (2015)].

The element type and material model of the components, e.g. soil, anchor, sheet pile wall, and

soil-structure interaction are summarized in Table 4.2, while the ground surface load intensity

is 19.75 kPa as shown in Figure 4.1.

Table 4.2: Components in the FE model.

Components in FE model

Element Type

Material Model

15-node triangular element

Mohr-Coulomb soil model

Mindlin beam element

Elastic spring element

Uniaxial, linear elastic

top
Soil layer mid
bot
Head part
Anchor
Body part
Sheet pile wall

Mindlin beam element

Uniaxial, linear elastic

Soil-structure interaction

Defined by pairs of nodes
with identical coordinates

Based on adjacent soil

An illustrative picture of the cumulative displacements of the structure after its final

construction stage is shown in Figure 4.3. The figure also shows the applied finite element

mesh.
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Figure 4.3: FE mesh a representative amplified, deformed shape of the analyzed sheet pile wall.

4.3 Synthetic observations

In this study, synthetic observations are used. We replace “reality” by a FE model that is also
used for system identification. The usage of synthetic data has limitations, but there is also a
big advantage: now we have the ground truth to evaluate the inference results. And to make
the synthetic data resemble a realistic one, four kinds of observations are considered as possible
measurements, namely horizontal displacement of the sheet pile wall (Uy), strain of the sheet

pile wall (&pw), vertical displacement of the top ground (Uy) and strain of the anchor (&nchor).

These responses are selected as they can be easily observed and the corresponding sensors are
widely used and easy to install. In practical implementation, it is not advocated to install sensors
everywhere due to the limitation of budget as well as computational time. And higher sensor
density does not necessarily carry more information due to the correlation among sensors in

reality. Hence the sensors are selected with a space of around 2 meters in this work.

These synthetic observations generated with the Plaxis model using the “real” values in Table
4.1 are plotted in Figure 4.4, Figure 4.5 and Figure 4.6 (namely &espw, Ux and Uy), in which the
cumulative responses from P4start t0 P4end, PSend, P6end and P7eng are indicated. These generated
responses are not yet contaminated with measurement uncertainty which will be included in
the likelihood as described in section 3.3.3. Since the sheet pile wall is installed at P3, during
which phase the responses related to it is tiny, it is assumed that the sheet pile wall is
undeformed at P4sart. And since the top soil layer is excavated firstly and then refilled, we still

assume that the top ground is undeformed at P4star.
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Therefore, we can reasonably arrange the sensors based on these figures: we do not consider
to install sensors at where small magnitude of responses are. For example, strain sensors will
not be installed above S#20 and below S#45 as it is expected to have small &pw value, and we
do not install sensors below N#35 due to small Uy value.

—i— Pdgarlundeformed) - P4eng(PSstart) | 0.0
P4starf(undeformed) - PSeng(PBstart)
—i— PAgar(undeformed) - PBena(PTstart) | _5 g
—d— Pd lundeformed) - P7eng
= | ndeformed Sheet pile wall 5
o |
HY —
A L78 E
o | ©
> F-10.4 =
** )
w o E—
5
‘3* F—13.0 4
o
o
" p=
. L-15.6 Y
2
o
F—18.2
F—20.8
T T T ' T T T T —-23.4
—600 —400 —200 0 200 400 600 800
Espw X107°

Figure 4.4: Strain of sheet pile wall corresponding to “real” values of soil properties.
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Figure 4.5: Horizontal displacement of sheet pile wall corresponding to “real” values of soil properties.
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Figure 4.6: Vertical displacement of top ground corresponding to “real” values of soil properties.

Therefore, the monitoring system is indicated in a simplified drawing in Figure 4.8 where in

total there are up to 24 sensors to measure different responses of this structure. Specifically,
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e 8sensors (labeled N#) measuring the horizontal displacement of the sheet pile wall (Uy)
(e.g. with SAAF (SAAF, 2019));

e 6 sensors (labeled S#) measuring the strain of the outer fiber of the sheet pile wall, as

shown in Figure 4.7 (espw) (e.g. with strain gauge);

Soil

o
£
=
&

g
&

E=1

n

Figure 4.7: Top view of sheet pile to indicate strain gauge.

e 9 sensors (labeled G#) measuring the vertical displacement of the top ground (Uy) ;

e 1 sensors (labeled A#) measuring the strain of anchor (ganchor) (€.9. with strain gauge);

—#— S# Strain of sheet pile wall

N# Horizontal displacement of sheet pile wall N#1

—k— G# Vertical displacement of top ground
—k— A# Strain of anchor

N#5
N#10

N#15

N#20

N#25

N#30

G#5 G#15 G#25

G#35

G#10 G#20 G#30

G#40 G#46

Anchor

A#1l

S#20

Top soil layer
S#25

N#35

S#30
Mid soil layer
S#35

S#40

S#45 .
Bot Soil layer

sheet pile wall

Figure 4.8: Layout of full sensor configuration.

These synthetic observations are assumed to be contaminated with noise (i.e. measurement

uncertainty). The measurement uncertainty of different responses will differ and are

summarized in Table 4.4.
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4.4 Bayesian inference of soil parameters

4.4.1 Soil properties to be inferred

In the next step after the synthetic responses are generated, the “real” values are assumed to be
unknown and the task is to infer the non-directly observable soil parameters based on the
synthetic data and prior information using Bayes’ rule as shown in section 3.4.1. To perform
Bayesian analysis, the properties in the top soil layer and mid soil layer (i.e. Etop, ¢top, Ytop, Ctop,
Emid, ¢mid, Ymia and Cmig) are regarded as the unknown variables, while the properties of the

bottom soil layer (i.e. Ebot, ¢bot, Ybot, and Chot) are assumed to be deterministic and known.

The prior information of soil parameters is taken from (JCSS, 2001) and (Rackwitz, 2000).
Since the top soil layer and mid soil layer are both cohesive soils, the same priors are assigned
to them. The prior of all parameters are assumed to be lognormally distributed, as they are
strictly positive. Their possible ranges of mean and coefficient of variation (COV) are given in
Table 4.3. In our analysis, the means and COVs of soil parameter distributions are selected as
the mean value of corresponding range in this table. The adopted range of the parameter values
(i.e. support) is set between 1% cumulative probability and 99% cumulative probability (see
Figure 4.9),while the tails (i.e. extreme values) are discarded to avoid soil failure in Plaxis. In
this way, the prior is actually composed of truncated lognormal distributions, and the joint prior
distribution is constructed by assuming mutual independence between them. Note that in Table
4.3, the selected prior mean and selected prior COV correspond to the untruncated lognormal

distribution.

Table 4.3: Prior information.

Prior mean from Prior COV from Selected prior  Selected prior

Support
(JCss, 2001) (JCSS, 2001) mean cov
Elastic modulus [kN/m?]
2000 — 4000 02- 1.0 3000 0.6 [708, 9350]
Etop & Enmig
Internal friction angle [degrees]
19.3-228 0.1-0.2 21.05 0.15 [14.7, 29.5]
¢top & ¢mid
Saturated unit weight [kKN/m®]
18-20 0.05-0.1 19 0.075 [15.9, 22.6]
Y;op & Ymid
Cohesion coefficient [kN/m?]
15-30 01-04 22.5 0.25 [12.3, 38.7]
Ctop & Cmid
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Figure 4.9: Showcase of the selection of support.

4.4.2 Uncertainties

The Bayesian inference of the soil parameters requires the evaluation of the likelihood function
(see equation (3.43)), which includes three sources of uncertainties: the measurement
uncertainty, the physical model uncertainty and the surrogate model uncertainty (see section

3.3). Table 4.4 summarizes the standard deviations of each uncertainty component, namely

Gmeasure1 Gphysical model and O-surrogate n WhICh the Gmeasure and O-physical model

are based on expert
judgement, while the o, . mow 1S EXplicitly explained by GPR. Note that due to these input

values, the measurement uncertainty is expected to have a negligible effect but is still included

for completeness on a conceptual level.

Table 4.4: Standard deviation of each uncertainty components.

ObSE rvatlon Jmeasure O-physical model Gsurrogate
Uy [mm] 0.02 4
-6
gpw[X107 ] 1 10 Varies with different
Uy [mm] 0.02 4 surrogate model
&anchor [ ><10_6 ] 1 10

Uy : Horizontal displacement of the sheet pile wall
&pw  Strain in the sheet pile wall
Uy : Vertical displacement of the top ground

Eanchor: Strain of the anchor
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4.4.3 Correlation in physical model uncertainty

As mentioned in section 3.2.3, the correlation in the physical model uncertainty E IS

physical model
a crucial aspect in the Bayesian inference. In this numerical case study, the correlation length
in E is estimated on the basis of real measurement data from a pull-over test on a

physical model
sheet pile wall and a Plaxis 3D model. The data and the Plaxis model are from (Naves, 2018).
Figure 4.10 shows the finite element model, which was developed by (Naves, 2018) and has
been calibrated to the experiment. Figure 4.11 shows the horizontal traction force over time
that is applied at the top of the sheet pile wall. During the test, horizontal displacements of the
sheet pile wall were recorded by SAAF sensors. Note that the original aim of the pull-over test
is to more reliably predict the strength and deformation behavior of a combination of structural

elements and (un) drained soil under extreme (high water) conditions.
The calculation of the correlation length consists the following steps:

1. The measured displacement of two SAAFs at two loading time is selected and collected;

2. The predicted displacements are generated using Plaxis positions and loading phases
corresponding to SAAF measurement positions and loading phases respectively;

3. The difference between measured displacement and predicted displacement is
approximated using GPR with RBF kernel along the SAAF length;

4. Intotal there are four length scales in four GPR models, and according to section 3.3.4,
these length scales are equivalent to correlation length in physical model uncertainty.

Their mean is selected as the final correlation length.
This calculation relies on the following assumptions:

- The measurement uncertainty is neglected and the difference between measured
displacement and Plaxis prediction represents the physical model uncertainty;

- A GPR model is a reasonable description of observed and predicted differences;

- The measurement data at the selected two SAAFS and the time stamps are considered

to be representative of the entire loading history.
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Experiment date: 06-03-2018
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Figure 4.10: A 3D view of the FE model of the pull-over test. Fpenment ime
Figure 4.11: Pull-over force over time during the experiment.
£ SAAF#1 SAAF42

Ground

SAAF#1 SAAF#2

10m

Figure 4.12: Showcase of installed SAAFs.
In our work, the horizontal displacements of two SAAFs (SAAF, 2019) are considered, which

are installed along the sheet pile wall as indicated in Figure 4.12. Only the data collected at
time 12:30:00 and 12:50:00 are used. The measured values and Plaxis predictions are displayed
in Figure 4.13 ~ Figure 4.16. The colored areas in the figures are indicating the soil layers.
Using the method described in section 3.3.4, their difference (i.e. measured-predicted, denoted

as AU, ) is modeled as a GPR with RBF kernel. The differences along the length of the sheet

pile wall and the fitted GPR models are shown in Figure 4.17 ~ Figure 4.20. Then the length
scale of the RBF kernel is naturally the correlation length of physical model uncertainty. The
results are collected in Table 4.5.
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T: 2018-03-06 12:30:00 T:2018-03-06 12:30:00

Depth [m]
Depth [m]

T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4 0.5 0.6

Ux [m] Uy [m]
Figure 4.13: SAAF#1 measured and Plaxis predicted values at Figure 4.14: SAAF#2 measured and Plaxis predicted values at
12:30:00. 12:30:00.
T: 2018-03-06 12:50:00 T: 2018-03-06 12:50:00

Depth [m]
Depth [m]

T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 03 0.4 0.5 0.6

Uy [m] Uy [m]
Figure 4.15: SAAF#1 measured and Plaxis predicted values at Figure 4.16: SAAF#2 measured and Plaxis predicted values at
12:50:00. 12:50:00.
T: 2018-03-06 12:30:00 T: 2018-03-06 12:30:00
RBF kernel: 0.00424*+2 * RBF(length_scale=1.4) RBF kernel: 0.00316**2 * RBF(length_scale=1.49)

T

—— GPR prediction
*  SAAF#1

---- mean

—— GPR prediction
* SAAF#2
---- mean

Depth [m]
Depth [m]
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~12

~12

-144 -14

T T T T T T T T T T T T T T
—0.010 —-0.008 -0.006 -0.004 -0.002 0.000 0.002 0.004 —0.010 -0.008 -0.006 -0.004 —0.002 0.000 0.002 0.004
AUy [m] AUy [m]

Figure 4.17: Fitting the difference between SAAF#1 measured and  Figure 4.18: Fitting the difference between SAAF#2 measured and
Plaxis predicted values at 12:30:00. Plaxis predicted values at 12:30:00.
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T: 2018-03-06 12:50:00 T: 2018-03-06 12:50:00
RBF kernel: 0.00432**2 * RBF(length_scale=1.26) RBF kernel: 0.00316**2 * RBF(length_scale=1.48)

—— GPR prediction —— GPR prediction
*  SAAF#1 * SAAF#2

- * B
0 tA——— " - mean 0 --- mean

e =y
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8 * 81 *
~10 -10 L
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14 -14

—-0.010 —0.008 -0.006 -0.004 -0.002 0.000 0.002  0.004 —-0.010 —0.008 —0.006 -0.004 —0.002 0.000 0.002 0.004
AUy [m] AUy [m]

Figure 4.19: Fitting the difference between SAAF#1 measured and  Figure 4.20: Fitting the difference between SAAF#2 measured and
Plaxis predicted values at 12:50:00. Plaxis predicted values at 12:50:00.

Table 4.5: Hyperparameters of the fitted GPR model.

Mean of AU, Signal variance &2
Length scale [m]
[mm] [mm?]
12:30:00 SAAF#1 -3.20 4.24° 1.40
12:30:00 SAAF#2 -2.21 3.162 1.49
12:50:00 SAAF#1 -3.47 4.32? 1.26
12:50:00 SAAF#2 -2.74 3.167 1.48
Average value -2.91 3.76° 1.41

The average value (i.e. 1.41 m) is used as the correlation length of Uy in the physical model
uncertainty. The use of the obtained correlation length in the 2D model entails the following

assumptions:

e The physical model uncertainty of the 3D Plaxis model is the same as that of the 2D

Plaxis model;

e The correlation length obtained for horizontal measurements is applicable to strain

measurements and vertical measurements which are not available;

e The correlation length for physical model uncertainty also holds for surrogate model

uncertainty to avoid unrealistic independence;
e The bias in the mean of AU is neglected for simplicity as it is unknown if this bias is

particular for the displacement in the pull-over test.
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4.5 Construction of surrogate models

To perform a single Bayesian inference, tens of thousands of runs of the Plaxis model might
be needed, which is prohibitively expensive from a computational point of view. Therefore,
the GPR model described in section 3.2 is adopted to construct a computationally cheap
surrogate model to replace the Plaxis model. Eight soil parameters (i.e. Etop, ¢top, Yiop, Ctop,
Emid, ¢mid, Ymid and Cmig) are taken as unknown variables and hence eight dimensional surrogate
models are constructed. The support of the surrogate models is the same as the support of the
priors (Table 4.3). For convenience, the support is normalized to the unit hypercube in the

fitting process hence all the figures presented in this report have a unit support.

Since there are 4 construction phases considered to install the monitoring system and in each
there are 24 sensors, we need in total 96 surrogate models; each maps from an eight

dimensional space to a one dimensional one. The details of the surrogating:

e the pseudo code of the used algorithm is described in section 3.2.6;

e stopping criterion: ¢, =0.005 is used, see section 3.2.5;

e the number of initial sampling points is set to 300 including 256 hypercube corners to
speed up convergence as explained in section 3.2.7.

The first surrogate model (i.e. S#20 at P4start) is constructed by running Plaxis for 628 times.
Since in this process all responses generated by Plaxis are recorded, the initial sampling points
will be 628 when moving to the next surrogate model (i.e. S#25 at P4start). However, since some
to-be-surrogated responses may have different signs (e.g. positive and negative strain of sheet

pile wall) or small value of y_ . (the range of sample values as in section 3.2.5, e.g. anchor
strain at P6start and P7sart), it can take considerable time to meet the originally set stopping
criterion (&, =0.005). Therefore, the stopping criterion for the surrogate models at P5star,
PBstart and P7sirt is Set as &, = 0.01. In total 1445 Plaxis runs are required to construct the 96

surrogate models with this more permissive stopping criterion for some models. The maximum

of normalized prediction standard deviation excluding noise component (denoted as
o, —Nnoise I

&, max = ——— ) for all surrogate models are shown in Figure 4.21.

range
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Figure 4.21: Maximum of normalized prediction standard deviation of surrogate models.
In this figure, the £, <0.005 cases are indicated with blue squares and the darker the blue
the smaller the value. While values larger than 0.005 are indicated with red squares and the

darker the red the larger the value. It can be seen that the ¢_ . of sensor N# (i.e. to measure

Ux) and sensor G# (i.e. to measure Uy) are all below 0.005, while that of strain sensors (e.g.

A#1 at P6start and P7start) are relatively higher.

To evaluate the performance of these surrogate models, 150 new sampling points (not used for
the fitting) are generated with Plaxis to calculate the coefficient R?, which is defined as shown
in equation (4.1). The results are plotted in Figure 4.22. The best score is 1.0 and the larger the

score, the better model.

150 )
z (ytrue,i o ypredict,i)

- 150

Z (ytrue,i - ytrue,mean )2
i=1

R* =1

(4.1)

Where
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Yee;  thetrue value generated with Plaxis of i sample;
Yoredice; TNE sUrrogate model prediction of i sample;

Yiemean the meanofall 150 vy, ...
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Figure 4.22: R? value of surrogate models.

In this figure, it is visible that the surrogate models related to S#20, S#25 and S#30 installed at
P6start and P7swart performs poorly in prediction as they have a relatively low R? value. This is

consistent with Figure 4.21 in which these surrogate models have higher value of ¢ . .

However, a high value of ¢__does not necessarily lead to a low value of R*as &_ . isalso

ax

influenced by y,,.. . For example, A#1 at PSstart P6start and P7starthave very high value of &,

(i.e. close to 0.01) shown in Figure 4.21, but their prediction performance is still good reflected
by the high value of R?

To visualize the surrogate models and further evaluate their performance, 20 additional Plaxis
runs are performed where Eop is selected to be the only one varied while the rest of the soil
parameters are fixed at their “real” values. Then the surrogate model predictions are calculated
using the same way: varied Eop and the rest is fixed. The responses related to S#20 installed at

P7start and G#35 installed at P4start are given as examples as they respectively have the lowest
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and the highest value of R? and are shown in Figure 4.23 and Figure 4.24. Note that the Plaxis

outputs represented by circles in the figures were not used for fitting the GPR models.

S#20 installed at P7star G#35 installed at P4zt
50
—200 1
04 10.01XYrange
-
© —50 - '
o 2= = —400
% 100 E
Xg s s e = 10,01 X Yrange
g )

W' —150 A —-600 A

—— GPR prediction —— GPR prediction
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—200 Maximum of sample values Maximum of sample values
95% confidence interval —800 4 95% confidence interval
=250 1 Noise component Noise component
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Efop EfOP
Figure 4.23: 1D visualization of S#20 at P7start. Figure 4.24: 1D visualization of G#35 at P4ar.

In both figures, the Plaxis outputs are indicated by black dots while the surrogate model
prediction is indicated by the solid blue line. Additionally, the 95% confidence interval of the
surrogate prediction is indicated by the blue area while the noise component is indicated by the
yellow area. The range of sample values which are related to the stopping criterion is indicated
by the red and yellow dashed lines and 1% of the range is indicated by the little black vertical
line. In Figure 4.23 even though there is a visible difference between the Plaxis outputs and
surrogate prediction, the former are all within the 95% credible region of the latter, meaning
that the surrogate model is still reliable. And this figure can demonstrate that since the response

may have different signs (i.e. positive or negative strain), the &

o, max

is relatively high
(corresponding to a red square in Figure 4.21) as described previously. This high ¢ value

thus leads to a wide 95% confidence interval. In Figure 4.24, the 95% confidence interval is
quite narrow and the Plaxis output is overlapping with the surrogate prediction, which is

consistent with its low value of & (corresponding to a blue square in Figure 4.21) and its

high value of R?. Note that the relatively low R? score for some models is not an issue from a
modelling point of view as the GPR model captures this discrepancy and assigns a probabilistic
model to it. In later analysis, e.g. Bayesian inference, the uncertainty in the GPR model —
expressed by its probabilistic model — is directly considered. The low R? score is more of an
issue from a practical point of view as introducing additional uncertainties via the surrogate
model is making our statistical inference weaker, i.e. lowers the information content we can

extract from the measurements.
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In the following analyses, if the number of considered unknown soil parameters is less than 8
(see Subcase 1 in section 5.1 and Subcase 2 in section 5.2), then the generated surrogate models
can still be used and prediction can be made by taking the rest of the known parameters at their
“real” values. Two examples are given in Figure 4.25 and Figure 4.26 considering espw at S#20

and S#45 installed at P4start and the variables are Etop and Emia.

S#20 &spw S#45 espw

0.2 = = o0 42 04 (@b
04 06 e ’ 04 e
&op 0.8 top 0.8

10 00 10 00

0.0

Figure 4.25: e at S#20 installed at P4gan. Figure 4.26: espwat S#45 installed at P4an.
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4.6 Overview of analyses

The general steps of the completed analyses are the following: firstly, up to four kinds of
observations are considered as possible measurements, namely horizontal displacement of the
sheet pile wall, strain of the sheet pile wall, vertical displacement of the top ground, and strain
of the anchor. The observations are generated with the Plaxis model. Next, surrogate models
of the displacements and strains are constructed using Gaussian process regression to replace
the computationally expensive Plaxis model. Then the observations (synthetic data) are used
to identify soil parameters using the Bayesian approach (i.e. MultiNest algorithm). In this
process, the uncertainty components, namely measurement uncertainty, physical model
uncertainty and surrogate model uncertainty are considered in the likelihood function. Based
on the performance of sensors, which is evaluated using KL divergence, the optimal sensor
type, the optimal sensor placement, and the influence of construction stage (i.e. sensor

installation time) are investigated.

Table 4.6 gives an overview of the performed analyses, namely the optimal sensor selection,
the parameter identification, the influence of construction stages and the reliability analysis for
three subcases with respectively two, four and eight parameters to be inferred. The next chapter

presents the results of these analyses.

Table 4.6: Overview of analyses

Case 3
Case 1 Case 2
Case 3-1 Case 3-2 Case 3-3 Case 3-4
Inferred Etop, Prop
Etop Emid Etop, (btop, Y'top, Ctop, Emid7 (l’mid, Ymid, Cmid
parameters Emid, Pmid
Synthetic &pw, Ux, Uy,
. ESpW gSpW gSpW U)( Uy
observation Eanchor
Optimal sensor
P N v v N v
selection
Parameter
v v v v v v
identification
Influence of
construction v v v v v
stages
Reliabilit
y N N N
analysis
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5 Case study: Sheet pile wall — results

5.1 Subcase 1: Etop & Emid

In subcase 1 the dimensionality of the inference problem is set to two. The following scenario

is assumed (for an overview see Table 4.6):

- The soil parameters Ewp and Emig are considered as the unknown variables, while the
other soil parameters are treated as known, deterministic values;

- The sheet pile wall has a monitoring system that comprises of six strain gauges along
the height of the sheet pile (they are labelled as S#20, S#25, S#30, S#35, S#40, and
S#45 in Figure 5.1);

- In this subcase, the effect of the time of installation of the monitoring system on the
parameter estimation is not investigated yet, the monitoring system is assumed to be
installed at the beginning of phases P4, P4sart’ (see section 4.2). The strain
measurements are collected at the end of phase P7, P7end® in which the surface load is

applied.

—+— S# Strain of sheet pile wall

Anchor

S#20

Top soil layer
S#25

S#30
Mid soil layer

S#35

S#40

S#45
Bot Soil layer

sheet pile wall

Figure 5.1: Sensor placement measuring the strain of sheet pile wall.

It means that at the start of construction phase 4, analogously, there will be P5etart, P6start, P7start.

8 It means that at the end of construction phase 7, analogously, there will be P5end, PBend, P7end.
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5.1.1 Parameter identification

The Bayesian computation is performed with MultiNest (see section 3.4.3), in which process
the combined uncertainty is set as described in section 3.3 and the priors shown in Figure 5.2,
while the posterior distribution is displayed in Figure 5.3.

In both prior and posterior plot, the red dashed lines indicate the “’real” value that is aimed to
be recovered from the measurements. The marginal distributions of each single parameter are
plotted in the diagonal, while the joint distributions of each pair of them is plotted in the off-
diagonal. The zones bounded by black lines in the off-diagonal represent 90% credible region.
It can be seen that the 90% credible region of the posterior shrinks considerably compared with
that of the prior, and both Etwp and Emig are well identified as their marginal distributions are

quite concentrated around the “real” value in the posterior.

Prior distribution Posterior distribution [£5p,]
Sensors installed at Pdgare

Emia

Erop Ermd Etop Ermd

Figure 5.2: Prior distribution of Subcase 1. Figure 5.3: Posterior distribution of Subcase 1.

For further comparison, the mean, COV, as well as the area of 90% credible region (90% ACR)
of Etop and Emig in both prior and posterior are given Table 5.1. It is observed that that the 90%
ACR of Etopand Emig of posterior is only around 4% of that of prior. The posterior mean of both
Etop and Emiq are very close to their “real” value. The COV of posterior is only 40%/15% of that

of prior for Ewpand Emid respectively.

Table 5.1: Comparison of Ei, - Emig between prior and posterior.

Etop Emid
90% ACR of Etop - Emid
“Real” value Mean COV “Real” value Mean COV
Prior 0.374 0.6 0.374 0.6 0.3531
] 0.248 0.398
Posterior 0.277 0.244 0.406 0.091 0.0149
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5.1.2 Reliability assessment

In this section we investigate the effect of using updated probabilistic models of the soil
parameters (posteriors) in the reliability assessment of the sheet pile wall. For this purpose,
structural reliability is calculated using the prior and posterior from section 5.1.1. A
serviceability limit state is considered that expresses the exceedance of a deterministic
displacement threshold and thus no more random variables are required. The maximum

horizontal displacement of the sheet pile wall is included in the performance function:

gSLS (0) = ij —Mmax (Ux,i (0)) (51)
Where
J, Maximum allowed horizontal displacement before failure (deterministic);
U, () i=1,5,10, 15, 20, 25, 30, 35, represents cumulative horizontal displacement at

N#1, N#5, N#10, N#15, N#20, N#25, N#30, N#35 as shown in Figure 4.8.

Since the reliability analysis should start from the very beginning, the used responses (i.e. U_,

U,;(0) in this case) should be cumulative responses from when the structure is constructed to

when the structure is assessed (in our case, it is from P4start t0 P7eng). In this work, the ij is

selected as 180mm, such that the failure probability for the prior distribution is around 10%
(calculated using nested sampling and directional sampling). This failure probability
corresponds to a reliability index of 1.3 which means relatively high cost of safety measure
(see table 4.2 in (Honfi, 2013)). Based on expert judgement, we assume that the maximum of

horizontal displacement of sheet pile wall occurs above N#35 and only at U ;(8) as described.

In this way, the surrogate models for Bayesian inference can be reused. Then as described in
section 3.5, the failure probabilities calculated using the prior (by directional simulation) and

posterior (nested sampling) are collected in Table 5.2.

From this table, it can be seen that the posterior failure probability is sharply decreased to a
negligible value of 5.11x1088 compared with the prior failure probability: 9.72x1072. To gain
further insight into this significant reduction, the projections of the failure region for both prior
and posterior are plotted in Figure 5.4 and Figure 5.5. The red zones indicate the projection of
the failure region and the darker the color, the larger the exceedance of allowed horizontal
displacement. The black lines and red dashed lines are the same as in Figure 5.2 and Figure 5.3.

The observed significant difference in prior and posterior failure probabilities can be explained
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with the help of the projections: a considerable area of the projection falls within the 90%
credible region of the prior (Figure 5.4) leading to a large failure probability, while the
projection is far away from the 90% credible region of the posterior (Figure 5.5) resulting a
tiny failure probability.

Table 5.2: Prior and posterior failure probabilities in Subcase 1.

Prior Posterior
Failure probability 9.72x107 5.11x108
Prior distribution Posterior distribution [£spw]

Sensors installed at P4ggat

Emid

¥

Etop Emid Etop Emia

Figure 5.4: Failure region in prior distribution of Subcase 1. Figure 5.5: Failure region in posterior distribution of Subcase 1.

5.2 Subcase 2: Etop, ¢rop & Emid, ¢mid

In Subcase 2 the dimensionality of the inference problem is set to four. The following scenario

is assumed (for an overview see Table 4.6):

- The soil parameters Etop, Emid, ¢top and ¢mia are considered as the unknown variables,
while the other soil parameters are treated as known, deterministic values;

- The sheet pile wall has a monitoring system that comprises of six strain gauges along
the height of the sheet pile (they are labelled as S#20, S#25, S#30, S#35, S#40, and
S#45 in Figure 5.1);

- In this subcase, the effect of the time of installation of the monitoring system on the

parameter estimation is investigated, the monitoring system is assumed to be installed
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at, P4start, PSstart, PBstart, P7start (Se€ section 4.2). The strain measurements are collected

at P7eng in which the surface load is applied.
5.2.1 Parameter identification

Firstly, all six sensors are considered and they are assumed to be installed at P7start. Then
Bayesian analysis is conducted similarly as in section 5.1.1. The used prior distribution and
obtained posterior distribution are shown in Figure 5.6 and Figure 5.7. In these two figures, the
red lines indicate “real” values, and the 2D marginals and 1D marginals are plotted in the oft-
diagonal squares and the diagonal squares, while the black lines in 2D marginals indicate the

90% credible regions.

Prior distribution Posterior distribution [€£sp]

Sensors installed at P4stare
/\
I

el PNl A
=
s

Prop

Emia
a
J

¢’rmd

<

1 h I I
Emia ¢mrd Etop ¢rop Emia ¢'rmd

Figure 5.6: Prior distribution of Case 2. Figure 5.7: Posterior distribution of Case 2.

Based on the posterior distribution in Figure 5.7, Etop, ¢top and Emig can be relatively accurately
identified, as their marginal distributions are concentrated around a certain value. For a
comparison between this subcase and Subcase 1: Table 5.1 is extended to include the results
of Ewp and Emig of Subcase 2 and shown in Table 5.3. Comparingthe prior and the posterior in
Subcase 2, both Etop and Emid can be properly identified (the posterior mean is close to the “real”
value), and the COV of Eiwp and Emig in posterior decreases to 50%/18% of that in prior.
However, compared with the posterior in Subcase 1 and that in Subcase 2, there is a slight
increase of the marginal COV and an almost doubled 90% ACR. This can be explained by the

increasing dimensionality of the inference problem: the parameter space is larger and the

91



probability mass is spread among a larger number of likely parameter combinations that match

with the measured responses.

Table 5.3: Comparison of Ei, - Emia between prior and posterior.

Etop Enmid 90% ACR
“Real” value Mean cov “Real” value Mean Cov of Etop - Emia
Prior 0.374 0.6 0.374 0.6 0.3531
Posterior (Subcase 1) 0.248 0.277  0.244 0.398 0.406 0.091 0.0149
Posterior (Subcase 2) 0.263  0.298 0.401 0.108 0.0263

Another observation is very little information is gained about ¢mid (~not identifiable): its
posterior marginal distribution is very much like its prior. This is caused by the mechanical
behavior of this structure, i.e. the strain of the sheet pile wall is hardly influenced by ¢mid as
shown in Figure 5.8. In this figure, the responses are calculated by keeping all parameters at
their “real” value except one which is varied. The “real” values are indicated by red dashed
lines. Even though the influence of variation of more than one parameters is not shown, this
figure is still insightful as it roughly shows if the responses are sensitive to changes in the

parameters.
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Figure 5.8 Responses of sensors installed at P4,y in Subcase 2.

5.2.2 Optimal sensor selection

Even though more sensors convey more information, the improvement is diminishing due to
the correlation among the sensors. Moreover, considering that installing more sensors costs
more (e.g. cost of sensors, cost of labor considering installation and maintenance) and will
largely increase computational time, it is advocated to find an optimal set of sensors and to
discard less informative ones. Here the optimal set is defined as a set of sensors that conveys
the most information with a fixed number of sensors. To start with, a Bayesian inference
calculation is performed using different sets of observations with a combination of a single
sensor and sensor pairs. For each calculation, the KLD between prior and posterior (See section
3.4.4.3) is determined to evaluate the information content of the considered sensor or sensor
pair. The obtained information content is shown in Figure 5.9, in which each square of the
lower triangular matrix plot corresponds to a Bayesian analysis based on the synthetic &ypw
from the two corresponding sensors (row and column). In the diagonal only one sensor is
considered in the Bayesian analysis. The larger the KLD value (i.e. the darker the red of the
square), the more informative the corresponding sensors. If posterior is the same as the prior
then KLD=0.
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Figure 5.9: KLD matrix plot. Figure 5.10: Variation of KLD with different number of sensors.

From this figure, it can be concluded that S#30 is the optimal single sensor, while S#35 and
S#40 forms the optimal sensor pair. Since we are not confident if two sensors are enough, three
optimal sensors is investigated following a similar analysis as for fewer sensors (i.e. the
combination of six sensors taken three of them at a time without repetition). This calculation
requires 20 Bayesian analyses and the obtained optimal sensors which carry the largest value
of KLD are S#25, S#35 and S#40. The last Bayesian analysis uses the strains values &pw from
all 6 sensors and quantifies the gained information using KLD. Then the normalized KLD
values corresponding to the optimal sensor set for varying number of sensors are shown in
Figure 5.10. It can be seen that one optimal sensor is far from sufficient to convey enough
information, two optimal sensors have relatively good performance in inference, and three can
convey almost 80% of the information content of six sensors. It is visible that more sensors are
better, but the gained information gradually levels out with increasing number of sensors. As
an example, the posterior distributions using three optimal sensors and all six sensors are
displayed in Figure 5.11 and Figure 5.12 respectively. As expected, there is a small expansion

of the 90% credible regions if only three sensors are used compared with usage of six sensors.
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Figure 5.11: Posterior in Subcase 2 with 3 optimal sensors. Figure 5.12: Posterior in Subcase 2 with 6 sensors.

5.2.3 Influence of construction stages

The consideration of construction phases is important to describe the soil-structure interaction
in hydraulic structures accurately. In this section we analyze the effect of the starting time of
sensor monitoring on the Bayesian analysis. Four different series of Bayesian calculations are
performed, in which the monitoring system is installed at the beginning of phase P4start, P5start
, P6start and P7start (See section 4.2). In all cases the strain measurements are collected at the
end of phase P7: P7end, Wwhen the surface load is applied. Within each series, first the three most
informative strain sensors along the sheet pile wall are determined (as shown in the previous
section), using their KLD matrix plots in Figure 5.13 ~ Figure 5.16. Next, the information
content of the three most informative sensors per time of installation is normalized and

compared in Figure 5.17.
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4D Espw 4D Espw

Information content (sensors installed at P4start) Information content (sensors installed at P5start)
S#20 -
2.5 2.5
2.0 2.0
15 1.5
1.0 1.0
0.5 0.5
0.0 0.0
Figure 5.13: KLD matrix plot with sensors installed at P4, Figure 5.14: KLD matrix plot with sensors installed at P5tar,
4D Espw 4D Espw
Information content (sensors installed at P6start) Information content (sensors installed at P7start)
S#20 - S#20 -
25 2.5
S#25 - S#25 -
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15 1.5
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Figure 5.15: KLD matrix plot with sensors installed at P6tar, Figure 5.16: KLD matrix plot with sensors installed at P7r,
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Figure 5.17: Variation of KLD with sensor installation phase. The Etop rop Emid Pmia

three optimal sensors are indicated in brackets. . . . ) .
Figure 5.18: Comparison between posterior with sensors installed

at P4g,r and that with sensors installed at P74,rt. The contour plots

in the off-diagonal plots are 90% credible regions.

From this figure, we conclude that the earlier the sensors are installed, the more information
they convey regarding the estimation of the soil parameters. For example, if sensors are
installed just before the surface load is applied (i.e. at P7start), the conveyed information is only
40% of that with sensors installed at P4sar. This difference of information could also be
reflected in their posterior distribution, i.e. there is a dramatic reduction of the 90% credible

region with early sensor installation as shown in Figure 5.18.
5.2.4 Reliability assessment

In this section, the same serviceability limit state is applied as in section 5.1.2 (i.e. equation
(5.1)). Since the aim of this section is to apply the method in section 3.5 to higher dimensional
problem (i.e. 4D problem), only the prior and the posterior using sensors installed at P4start in
section 5.2.1 are considered. Then the failure probability calculated using the prior distribution
is 9.32x1072, while using the posterior it is a negligible value: 2.43x10%°. Yet again we observe
a sharp decrease compared with the prior value. These two failure probabilities can also be
explained more straightforwardly by the projections of failure regions (i.e. the red zones) as

shown in Figure 5.19 and Figure 5.20.
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Figure 5.19: Failure projections in prior distribution. Figure 5.20: Failure projections in posterior distribution.

Since now there are 4 unknown soil parameters, the projections are made by fixing the values
of non-random variables to their prior means (see section Table 4.3). For example, when the
projection of failure region considering the variation of Eiop and ¢mid (e.g. the bottom left square
in Figure 5.19) is plotted, the value of Emig and ¢rop are fixed at the corresponding prior mean.
Even though there is the limitation that the fixed parameters cannot be always at their prior
mean values and the influence of variation of more than two parameters is unknown, this
plotting approach is still insightful as it roughly shows how much the parameters contribute to
the failure. For example, from the squares in the bottom row in Figure 5.20, it can be seen that
¢mid has little influence on the failure as the projection hardly varies with the change of it.
Similarly, ¢wpalso has little influence and this can be confirmed from the square in the 4™ row
and the 2" column where there is no failure projection, meaning that if Eiop and Emig are fixed

at their prior mean, the limit state will not be exceeded regardless of the change of ¢:op and

Pmid.

Based on the failure projections in Figure 5.19 and Figure 5.20, it can be explained why there
is a huge decrease of failure probability: most of the failure regions are in the 90% credible

region in prior, while that are considerably far away from the 90% credible region in posterior.
5.2.5 Intermediate conclusions
From the result of Subcase 2, the following intermediate conclusions are drawn:

e Etop, ¢rop and Emia can be relatively well identified using strain sensors:
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o CoOV

prior

JCOV s = 2.56.5

posterior
o The posterior mass is concentrated around the “real” values.
¢mid IS not identifiable using strain sensors, i.e. its posterior marginal is very similar to
the prior;
With the increase of dimensionality from two to four, the COV of marginal distributions
of the same parameters and the 90% ACR both increase about 20% and 75%
respectively;
It is demonstrated the KLD can be used to select the optimal set of sensors. Furthermore,
it shown that by increasing the number of strain sensors the incremental information
gain is diminishing, e.g. three optimal sensors convey 80% of the information (KLD)
of six sensors (the total number of sensors considered in this Subcase);
It is advantageous to install sensors as early as possible to collect more information.
The information gained when the sensors are installed before the last construction stage
is only 40% of what can be obtained if they are installed at the earliest possible time;
It has been shown that the failure probability (under serviceability limit state) can
decrease by multiple order of magnitudes (102 — 10%) by considering the monitoring
data and using the posterior distribution compared with the prior distribution. This
substantial gain is largely attributed to the substantial decrease of the scatter in the joint
distribution of soil parameters. The failure probability reduction is also affected by the
dimensionality of the problem: the calculated failure probability is 10-% for the 2D and
108 for the 4D case after system identification.

5.3 Subcase 3: Etop, ¢top, Yiop, Ctop & Emid, Pmid, ¥'mid, Cmid

In Subcase 3 the dimensionality of the inference problem is set to eight. Note that we
purposefully keep the variables which have little influence on the measured responses (e.g.
¢mid) as one of the objectives of the work is to explore and test methods and tools which can
be used in higher dimensional cases. Therefore the following scenario is assumed (an overview
is in Table 4.6):

The soil properties, namely Etop, ¢top, Y1op, Ctop s Well as Emid, @mid, Ymid, Cmia are
considered as unknown variables, while the other soil parameters are treated as known,

deterministic values.
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As shown in Figure 4.8, the monitoring system that we apply consists of six strain
sensors on the sheet pile wall (labeled as S#), eight sensors to measure the horizontal
displacements of sheet pile wall (labeled as N#), nine sensors to measure the vertical
displacements of top ground (labeled as G#), and one strain sensor in the anchor
(labeled as A#, since the anchor is modeled as uniaxial elastic element, the anchor force
is constant along the anchor, and thus only one sensor is needed).

The first three sets of observations are firstly considered separately in the Bayesian
analysis to find an optimal set of sensors and to discard less informative ones for each
of the sensor types. The performance of each observation will be compared based on
KL divergence.

The optimal sensors per sensor type are combined in one new and complete set of
sensors, for which again a Bayesian analysis is performed.

Finally, a reliability analysis is performed using the posterior distribution of soil
parameters based on the complete set of optimal sensors.

Both for the parameter estimation and reliability analysis, the calculations are
performed at different times of sensor installation during construction, but all the data
is collected at P7eng.

The used prior distribution is shown in Figure 5.21, in which the black closed line
indicates the 90% credible region and the red dashed lines indicate the true value to be
identified. The marginal distributions of a single parameter and the joint distributions

of a parameter pair are plotted in the diagonal and the off-diagonal respectively.
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Figure 5.21: Prior in Subcase 3.

5.3.1 Optimal sensor selection

5.3.1.1 Case 3-1: Strain of sheet pile wall as observation

Firstly, only the strains of the sheet pile wall (&;w) are considered. The possible sensor locations
are indicated in Figure 5.22, which is the same as what has been used in the previous Subcase
1 and Subcase 2.
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—k— S# Strain of sheet pile wall

S#20

S#25

Top soil layer

Anchor

S#30

S#35
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Mid soil layer

S#45

Bot Soil layer

sheet pile wall

Figure 5.22: Sensor placement in Subcase 3-1.

Using the same method as in Subcase 2, the optimal sensor sets for different number of sensors

are determined based on KLD values. The results are collected in Table 5.4 and the KLD values

for one and two optimal sensors are displayed in Figure 5.23 ~ Figure 5.26.

Table 5.4: KLD in Case 3-1.

Sensor installation time Pdgtart PSstart PBstart P7start
1 optimal sensor Location N#45 N#45 N#45 N#45
KLD 2.38 2.19 1.28 0.88
KLD (Normalized) 0.497 0.457 0.267 0.184
2 optimal sensors  Location N#30, N#40 N#35, N#45 N#35, N#45 N#35, N#45
KLD 3.53 3.13 2.19 1.58
KLD (Normalized) 0.737 0.653 0.457 0.330

3 optimal sensors

Location
KLD
KLD (Normalized)

N#25, N#35, N#45
4.06
0.848

N#25, N#35, N#45
391
0.816

N#20, N#35, N#45
2.50
0.522

N#20, N#35, N#45
1.85
0.386

All sensors

Location

KLD
KLD (Normalized)

N#20,N#25,N#30,
N#35,N#40,N#45
4.79

1.000

N#20,N#25,N#30,
N#35,N#40,N#45
4.30

0.898

N#20,N#25,N#30,
N#35,N#40,N#45
3.05

0.637

N#20,N#25,N#30,
N#35,N#40,N#45
2.29

0.478
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Figure 5.23: KLD matrix plot with sensors installed at P4
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Figure 5.24: KLD matrix plot with sensors installed at P5gar.
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Figure 5.25: KLD matrix plot with sensors installed at P6an. Figure 5.26: KLD matrix plot with sensors installed at P7an.

The results are also visualized in Figure 5.27. For illustration, Figure 5.28 shows the posterior
distributions of the soil parameters based on the three optimal sensors installed at P4start. The

following observations can be made from all these results:

e Three optimal sensors installed in all phases could convey sufficient information (i.e.
approximately 90% of information conveyed by all six sensors installed in
corresponding phase) as there is tiny correlation among the optimal sensors considering
they are far away from each other;

e The optimal sensors are generally located at the height of the mid and bottom soil layer.
Itis in line with what we expect from a mechanical point of view, as well as from Figure
4.4 since large strain is expected at these positions;

e With each delay of sensor installation phase, there will be a considerable decrease of
gained information. For example, when using all the six strain sensors, the decrease of
gained information is the largest when the sensors are installed at P6start instead of P5start

(around 25%). This is consistent with Figure 4.4, in which the strain of the sheet pile
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Information content (normalized)
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wall increases the most during P5 as there is an excavation of top and mid soil layer
described in section 4.2. If sensors are installed at P6start, this portion of strain will not
be measured and thus leading to a large decrease of KLD value;

Even three optimal sensors installed at P4sart (hereafter named as optimal sensor
placement) could not properly identify these soil parameters as shown in Figure 5.28.
In the 2D and 4D problems (i.e. namely Subcase 1 and Subcase 2), most of the soil
properties can be properly identified based on these strain measurements in the sheet
pile wall. However in the 8D problem, only Etp and Emid reveal concentrated posteriors
(but their most likely value is offset a bit from the real value), the other posteriors are
not so informative. A possible explanation is that for an increasing dimensionality in
the inference problem, the number of parameter value combinations that match with the
measured responses could increase as well. Hence adding more sensors that are not or
weakly correlated to the current set of sensors could help and lead to more concentrated
posteriors, which will be illustrated in case 3-4.
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Figure 5.27: Variation of KLD in Case 3-1.

CEDGEGE
S OREE
& @ (@ ri»

s
-

S
3
3

Cmid

Figure 5.28: The most informative posterior in Case 3-1.

To gain more insight, the six strain sensors installed at P4t are used to perform a Bayesian

inference to compare the results of Ewp and Emig with that in Table 5.3. The posterior is given

in Figure 5.29 and quantitative values are given in Table 5.5. From the comparison among the

posterior in Subcase 1, in Subcase 2 and in Case 3-1, the COV of both Eipand Emid as well as

the 90% ACR will increase with the increase of dimensionality. This again demonstrates that
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more parameter combinations are possible to match with the measured responses with an

increase of dimensionality in the inference problem.

Posterior distribution [g5pw]
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Figure 5.29: Posterior based on 6 strain sensors on sheet pile wall installed at P4 .

Table 5.5: Comparison of Ei, - Emia between prior and posterior.

Etop Emid 90% ACR
“Real” value Mean  COV | “Real” value Mean cov Of Etop - Emid
Prior 0.374 0.6 0.374 0.6 0.3531
Posterior (Subcase 1) 0.277  0.244 0.406 0.091 0.0149
) 0.248 0.398
Posterior (Subcase 2) 0.263  0.298 0.401 0.108 0.0263
Posterior (Case 3-1) 0.245  0.304 0.449 0.150 0.0688

5.3.1.2 Case 3-2: Horizontal displacement of sheet pile wall as observation

In this section, the horizontal displacements of the sheet pile wall (Ux) are used as observations
to identify the soil parameters. The potential sensor configuration is shown in Figure 5.30, and
the analysis performed in previous section is repeated to find the optimal sensor locations. The
results are given in Table 5.7 and the KLD values for one and two optimal sensors are displayed
in Figure 5.31 ~ Figure 5.34.
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N# Horizontal displacement of sheet pile wall

N#1

N#5
N#10 Anchor
N#15
N#20
Top soil layer
N#25
N#30
Mid soil layer
N#35
Bot Soil layer
sheet pile wall
Figure 5.30: Sensor placement in Case 3-2.
Table 5.6: KLD in Case 3-2.
Sensor installation time P4star PSstart PBstart P7start
1 optimal sensor Location N#25 N#25 N#1 N#1
KLD 1.62 1.29 0.75 0.63
KLD (Normalized) 0.579 0.461 0.268 0.225
2 optimal sensor Location N#1, N#30 N#10, N#30 N#1, N#15 N#1, N#5
KLD 2.24 1.56 1.02 0.76
KLD (Normalized) 0.800 0.557 0.364 0.271
3 optimal sensor Location N#1, N#20, N#30 N#1, N#20, N#30 N#1, N#10, N#30 N#1, N#10, N#25
KLD 2.46 174 1.10 0.91
KLD (Normalized) 0.879 0.621 0.383 0.325

All sensors

Location

KLD
KLD (Normalized)

N#1, N#5, N#10,
N#15, N#20, N#25,
N#30, N#35

2.80

1.000

N#1, N#5, N#10,
N#15, N#20, N#25,
N#30, N#35

2.01

0.718

N#1, N#5, N#10,
N#15, N#20, N#25,
N#30, N#35

1.38

0.493

N#1, N#5, N#10,
N#15, N#20, N#25,
N#30, N#35

0.95

0.339
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Figure 5.31 KLD matrix plot with sensors installed at P4,
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Figure 5.33 KLD matrix plot with sensors installed at P8,
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Figure 5.32 KLD matrix plot with sensors installed at P5gart.
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Figure 5.34: KLD matrix plot with sensors installed at P7ar.

From the summary plot in Figure 5.35, we observe similar trends as in the previous section for

the strain sensors in the sheet pile wall:

Three optimal sensors are sufficient to convey information regardless of the installation

time (around 90% of information conveyed by all 8 sensors) as correlation among them

is now negligible;

The earlier the sensor installation time, the more the carried information by sensors,

and every time the installation is done one stage earlier, there is a visible increase of

the conveyed information (averagely 30% from P4start to PS5start and from P5start t0 P6Bstart,

even though only around 10% from P6start t0 P7start). This quantified trend is in line with

Figure 4.5, in which for example, there is considerable horizontal displacement in the

P4 and if sensors are installed at P5swr, this portion of displacement will not be

measured and leading to the large decrease of KLD value;
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e Only Eip can be properly identified even with optimal sensor placement (i.e. three
optimal sensors installed at P4swrt) as shown in Figure 5.36. Considering the same
reasons as discussed in Case 3-1, we hope to improve this situation by adding more

uncorrelated/weekly correlated sensors.
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Figure 5.35: Variation of KLD in Case 3-2.

Figure 5.36: The most informative posterior in Case 3-2.

5.3.1.3 Case 3-3: Vertical displacement of top ground as observation

In this section, the vertical displacements of top ground (Uy) are considered as observations,
and the sensor configuration is shown in Figure 5.37. The same analysis is performed as in
Case 3-1 and Case 3-2 is repeated to find the optimal sensor locations. The results are collected
in Table 5.7 and the KLD values for one and two optimal sensors are displayed in Figure 5.38
~ Figure 5.41.
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—k— G# Vertical displacement of top ground G#5 G#15 G#25 G#35
G#10 G#20 G#30 G#40 G#46
Anchor
Top soil layer
Mid soil layer
Bot Soil layer
sheet pile wall
Figure 5.37: Sensor placement in Case 3-3.
Table 5.7: KLD in Case 3-3.
Sensor installation time PAgart PSgtart PBgtart P7 start
1 optimal sensor Location G#46 G#10 G#5 G#10
KLD 2.66 1.45 1.44 1.34
KLD (Normalized) 0.507 0.276 0.274 0.255
2 optimal sensor Location G#5, G#40 G#5, G#25 G#5, G#25 G#5, G#25
KLD 3.82 1.99 1.93 1.87
KLD (Normalized) 0.728 0.379 0.368 0.356
3 optimal sensor Location G#5, G#25, G#35 G#5, G#20, G#40 G#5, G#20, G#35 G#5, G#20, G#35
KLD 4.28 2.37 2.24 2.17
KLD (Normalized) 0.815 0.451 0.427 0.413

All sensors

Location

KLD
KLD (Normalized)

G#5, G#10, G#15,
G#20, G#25, G#30,
G#35, G#40, G#46
5.25

1.000

G#5, G#10, G#15,
G#20, G#25, G#30,
G#35, G#40, G#46
2.86

0.545

G#5, G#10, G#15,
G#20, G#25, G#30,
G#35, G#40, G#46
2.69

0.512

G#5, G#10, G#15,

G#20, G#25, G#30,
G#35, G#40, G#46
2.69

0.512
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Figure 5.38: KLD matrix plot with sensors installed at P4 Figure 5.39: KLD matrix plot with sensors installed at P5gar.
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Figure 5.40: KLD matrix plot with sensors installed at P6an. Figure 5.41: KLD matrix plot with sensors installed at P7an.

From the summarized plot Figure 5.42, the main observations still hold the same:

Three optimal sensors are sufficient whenever they are installed (they can carry 90% of
the information compared of all 9 sensors) as the influence of correlation is small.

The earlier the sensor installation, the more the carried information. However, it does
make little difference whether the sensors are installed at PS5start, P6start, P7start, SENSOrS
installed at P4start could carry around 40% more information than those installed later.
This can be verified from Figure 4.6 where the increment of vertical displacement in
the P5 and P6 is tiny.

Only Etop and Ciop can be properly inferred even with the optimal sensor placement
shown in Figure 5.43. In Case 3-4, this can be improved by adding more weekly
correlated sensors (i.e. the optimal sensors in Case 3-1, Case 3-2 and Case3-3 as well
as strain sensor in anchor will be combined).
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Figure 5.43: The most informative posterior in Case 3-3.

5.3.1.4 Case 3-4: Combination of all optimal sensors

The results of previous sub-sections show that none of the three sets of observations espw, Ux or
Uy could accurately estimate the eight soil parameters. Therefore, in this section we analyze
what happens if a mixture of sensor types are used in the parameter estimation. For each sensor
type, the three optimal sensors from the sections 5.3.1.1, 5.3.1.2 and 5.3.1.3 are selected, since
three optimal sensors carry a comparable (~80%) information content as all the available
sensors. Together with the single strain sensor at the anchor (eanchor), these in total ten sensors
are used in the Bayesian analysis. The correlation between the same type of sensors is kept the

same as done previously, while the correlation between different type of sensors is considered
by setting p=0.8 as introduced in section 3.3.2.1. Since the optimal sensor placement varies

with sensor installation phase, the corresponding configurations for each installation phase are
displayed in Figure 5.44 ~ Figure 5.47. The KLD results obtained from the inference are
collected and compared with earlier results in Table 5.8.
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Figure 5.44: Optimal sensor placement at P4, in Case 3-4. Figure 5.45: Optimal sensor placement at PS5, in Case 3-4.
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Figure 5.46: Optimal sensor placement at P6gs,: in Case 3-4.
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Figure 5.47: Optimal sensor placement at P74 in Case 3-4.

Table 5.8: KLD in Case 3-4.

Sensor installation time P4star PSstart PBstart P7start

Espw 3 optimal sensors N#25, N#35, N#45 N#25, N#35, N#45 N#20, N#35, N#45 N#20, N#35, N#45
KLD 4.06 3.91 2.50 1.85
KLD (Normalized) 0.560 0.539 0.345 0.255

Uy 3 optimal sensors N#1, N#20, N#30 N#1, N#20, N#30 N#1, N#10, N#30 N#1, N#10, N#25
KLD 2.46 174 1.10 0.91
KLD (Normalized) 0.339 0.240 0.152 0.126

U, 3 optimal sensors Gi#5, G#25, G#35 G#5, G#20, G#40 G#5, G#20, G#35 Gi#5, G#20, G#35
KLD 4.28 2.37 224 2.17
KLD (Normalized) 0.590 0.327 0.309 0.299

Eanchor Only 1 sensor Not considered  Not considered  Not considered  Not considered

alone alone alone alone
Combination of KLD 7.25 5.42 4.35 3.79
all 10 sensors KLD (Normalized) 1.000 0.748 0.600 0.523

The results in Table 5.8 are also plotted in Figure 5.48, leading to the following observations:

e Asexpected, the general rule still holds for the combination of ten sensors: the earlier
the sensor installation phase, the more the conveyed information. And each delay of

installation phase (i.e. from P4start to PSstart, from PSstart t0 PBstart, from PBstart t0 P7start)
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will respectively lose around 25%, 15% and 10% information (given as a percentage
of the information that is gained with sensors installed at P4start).

e U, carries the least information (i.e. around 35% of the information conveyed by the
combined ten sensors);

e &y and U, are much better than Uy, they in average convey around 60% of the
information carried by the combined sensors. Albeit their performance differs much
if they are installed at P5start, in which case &spw conveys 20% more information than
Uy. This large difference is due to that Uy occurred in P4 is the largest portion during
the whole construction phase and if sensors are install at P5swrt, the corresponding
information is not collected.

e Even though the combination of all ten sensors can provide much more information
regardless of sensor installation phase, only Etop, Ctop and Emig can be relatively well
identified, while the marginal distributions of the remaining parameters are still more
resembling their prior distributions as shown in Figure 5.49, which is based on sensors
installed at P4start.
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Figure 5.48: Variation of KLD in Case 3-4.
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Figure 5.49: The most informative posterior in Case 3-4.

This non-identifiability is determined by the mechanical behavior of the structure, because the
unidentified parameters play limited role in the structural response. To support this claim, the
responses corresponding to these ten optimal sensors installed at P4st.rt are displayed in Figure
5.50, in which each row corresponds to one of the optimal sensors, and each column
corresponds to a soil parameter. In each subplot only one parameter (the soil parameter) is

varied while the remaining parameters are fixed at the “real” values indicated by the red dashed
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lines. From this figure, it can be clearly seen that changing ¢top, @mid, Ymid, and Cmia hardly

changes the responses (2", 6™, 71 and 8™ columns on the figure).
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Figure 5.50: Response with sensors installed at P4 in Case 3-4.

5.3.2 Reliability assessment

In this section, the influence of system identification on both the serviceability limit state and
ultimate limit state of this sheet pile wall system is investigated. The posterior distributions of
system identification are based on the data from the combined optimal sensors in section 5.3.1.4,
and these posteriors are used as inputs for the reliability analyses. The exceedance of horizontal

displacement of sheet pile wall is selected as the serviceability limit state as in section 5.1.2
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and 5.2.4. The exceedance of strain/stress limit of the sheet pile wall or/and anchor is
considered as the ultimate limit state, in which the sheet pile wall and anchor are firstly
considered separately and then together as a system. Since cumulative responses are required
for the reliability calculation, the surrogate models of the responses at sensors corresponding

to P4start are reused in the assessment.
5.3.2.1 Serviceability limit state (SLS)

The serviceability limit state concerns the exceedance of the horizontal displacement threshold
of the sheet pile wall. The same performance function is used as in section 5.1.1 (see equation
(5.1). Reliability analyses are completed using both the prior and posteriors obtained in Case
3-4 (i.e. four posteriors in total corresponding to combined sensors installed at P4start, P5star,
P6start and P7start). The calculated failure probabilities are collected in Table 5.9 and plotted in
Figure 5.51. Notice the increase in prior failure probability: from 9.72x102 (Table 5.2) to
1.50x10? (Table 5.9). The increase is solely caused by the increasing dimension of the

probability space and in turn the introduction of additional uncertainties.

Table 5.9: Failure probability in SLS.

Sensor installation time P4gtart P5¢tart PBstart P7start
Prior 1.50x10? 1.50x10? 1.50x10? 1.50x10?
Posterior <1.50x10-300* 2.47x107157 1.57x107"t 3.31x103%

* The failure probability is so small that nested sampling with the used settings could not estimate it

reliably.

115



Serviceability limit state: Uy

10-12 4
3.31e-38

10-56
157e-71

=
o
|

w

w

10-130 -

2.47e:257
10-167 4

Failure probability

10-204

10-241

107278 1 -
—— Prior: 1.50e-01

1.00e-300 Posterior

T T T T
Pasar Paena PSena P6eng
PSstart PBstart P start

Sensor installation phase

Figure 5.51: Prior and posterior failure probabilities in SLS for different sensor installation times.

From this figure, the following observations can be made:

e Evenif the same U, is applied to the limit state function in this subcase, the prior failure

probability is increased to 15% compared with that in Subcase 1 and Subcase 2 in which
it is around 10%. This is because with the increase of dimensionality, the volume of
random variables increases, leading to larger uncertainty about the variable space.

e The failure probability is reduced dramatically from prior (i.e. 15%) to posterior. Even the
largest value corresponding to sensors at P7sart is a negligible value (i.e. 3.31x107%®). This
comparison can be seen straightforwardly from Figure 5.52 and Figure 5.56, in which the
red zones indicate the projection of the failure region. The huge difference of failure
probability is due to that most of the failure projections fall within the 90% credible region
in prior distribution (see Ewp & Emid Square in Figure 5.52), while the failure projections
are far away from the 90% credible region in posterior distribution (by checking all the
squares in Figure 5.56);

e There is a sharp increase in failure probability with the delay of sensor installation time,
since the posterior is more and more dispersed and the 90% credible regions are getting

closer to the failure projections.
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The largest failure probability in posterior is still tiny (has the magnitude of 1x107®). This
is determined by the mechanical behavior of this structure and the selected “real” values
of soil properties, since the posteriors concentrate around the “real” values, based on which

the calculated maximum of horizontal displacement of sheet pile wall (i.e. around 100mm)

is far below the threshold U, =180mm.
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Figure 5.52: Projection of failure regions in prior.
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5.3.2.2 Ultimate limit state (ULS)

Sheet pile wall failure
Firstly, the exceedance of the yield stress of sheet pile wall is considered. The stresses are
caused by the bending moments and axial forces. Since the strain of the sheet pile wall is

already available and surrogated in system identification, we can reuse the responses to obtain
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stresses by simply multiplying them by the elastic modulus of steel (i.e. 2.1x10°N/mm?). Then

the limit state function is given:

U (0) = 6., —MaX (0, ,,, (6)) (5.2)
Where
> ow Yield strength of sheet pile wall, taken as a random variable with lognormal
distribution;
o, (8)  Stress of sheet pile wall at S#i, i = 20, 25, 30, 35, 40, 45 as shown in Figure 5.22.

These positions (i.e. S#i) are selected in reliability analysis as only limited strain is expected at
the top part and bottom part of sheet pile wall (see Figure 4.4), it is hence efficient to discard

the two portions to reduce computational time. The coefficient of variation (COV) of &, is

set as 0.07 according to (Teixeira et al., 2015), and the mean is set as 325N /mm” to obtain a
high failure probability (i.e. ~1%) in prior distributions.
Since in the performance function, the resistance (i.e. &, ) is now a random variable instead

of a constant as in serviceability limit state, the projection of failure regions is not available,
and equation (3.57) is applied. The limit state function is applied to the four posteriors obtained

in Case 3-4 (see section 5.3.1.4) and the results are collected in Table 5.10.

Table 5.10: Failure probability in sheet pile wall failure.

Sensor installation time P4gtart P5start PBstart P7start
Prior 1.11x10%2 1.11x10%2 1.11x10%2 1.11x10%2
Posterior 3.60x10% 5.14x10% 1.18x1013 3.29x10 1

The results from Table 5.10 are also visualized in Figure 5.57, from which the following

observations can be made:

e The reduction of failure probability from prior to posterior after system identification

to P,

f,posterior

is still dramatic (the smallest P, ratio is about 10° when sensors are

prior
installed at P7start);

e The obtained failure probability is getting larger and larger with the delay of sensor
installation phase, particularly from P5start t0 P6start the ratio of the calculated failure

probabilities is10'2. This is consistent with the trend of KLD value of esw in Figure
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5.48, since in P5 the excavation of top and mid soil layer (see section 4.2) will lead to
large increase of strain/stress of sheet pile wall (see Figure 4.4), if sensors are installed
after this phase, this large strain gain will not be collected, leading to a more dispersed
posterior and a larger failure probability.

e The largest failure probability (i.e. sensors are installed at P7start) in posterior is still
small (has the magnitude of 1x107Y). This is likely caused by the mechanical behavior
of this structure, the considerable reduction in uncertainty in the posterior, and the

selected “real” values of soil properties as discussed in section 5.3.2.1. The maximum
of stress of sheet pile wall calculated using the “real” values (i.e. around 175N / mm?)

is far below the threshold (mean of &, = 325N / mm?).

pw

Ultimate limit state: gspw
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Figure 5.57: Showcase of failure probability in sheet pile wall failure.
Anchor failure
The anchorage failure is defined as the exceedance of the maximum stress of the anchorage’s
yield stress. Since the anchor is modeled as a truss element, only an axial force contributes to
the stress and the stress is a considered to be a constant along the anchor. Then the limit state

function is defined as:

ganchor (9) = OA_anchor - O-anchor (9) (53)

where
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A

Ganchor

yield strength of anchor, taken as a random variable with lognormal distribution;
O nenor (@) Stress of anchor.
The coefficient of variation (COV) of 6, IS setas 0.07 according to (Teixeira et al., 2015),

and the mean is set as 120N / mm?® to obtain a high failure probability (i.e. ~1%) in prior
distributions. Then the limit state function is applied to the four posteriors obtained in Case 3-

4 (see section 5.3.1.4) and the results are collected in Table 5.11.

Table 5.11: Failure probability in anchor failure.

Sensor installation time Pdstart P5start PBstart P7start
Prior 1.25%1072 1.25%1072 1.25%107 1.25%107
Posterior 3.95x1010 6.88x1010 1.25x10° 2.35x10°

The results in Table 5.11 are displayed in Figure 5.58, based on these results similar
observations can be made as in the sheet pile wall failure:

e The variation of failure probability from prior to posterior after system identification is
huge (the minimum of ratio is 10* when sensors are installed at P7sart).

e The obtained failure probability is getting larger and larger with the delay of sensor
installation phase, particularly from P5start t0 P6start the ratio of the calculated failure
probabilities is 10* due to the same reason as explained in sheet pile wall failure.

e The largest failure probability (i.e. sensors are installed at P7start) in posterior is still
small (has the magnitude of 1x107) as explained in sheet pile wall failure: the stress of

anchor calculated using the “real” values (i.e. around 75N/mm®) is far below the

threshold (mean of &

anchor

=120N / mm?).
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Figure 5.58: Showcase of failure probability in anchor failure.

Structural failure
In this section, the failure of the entire system is considered, combining sheet pile wall failure
and anchor failure which are assumed to form a series system. The performance function is the

following:

gstructure (0) = (6spw —max (O-i,spw (6))) U ( OA_anchor ~ Oanchor (0))
= min (OA-spw —max (O-i,spw (9)) ! GAanchor - O-anchor (9)) (54)
= min (gspw (9)’ ganchor (B))

The failure probability is calculated by the following equation:

Pf = P[( gspw (9) < O)U(ganchor (9) < 0)]
(9 (8) < 0)+ P(Gyrenr () < 0) = P| (9, () < 0)[)(Gurerr ®) <0) | (5:5)
(G (0) < 0) + P (Gyngpor (8) < 0) = PGy (8) < 0) X P (G e (8) < 0)

=
=

It is crucial to mention that the last line in equation (5.5) holds only true if g, (8) <0 and

O.ncnor (0) <0 are independent. Since the failure of sheet pile wall and anchor are usually not

independent, the result obtained using equation (5.5) is more conservative (i.e. larger failure

probability than the exact solution).
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The distributions of &, and &, are set the same as in sheet pile wall failure and anchor

anchor
failure. The prior and posterior (i.e. obtained in Case 3-4) failure probabilities are given in
Table 5.12 and plotted in Figure 5.59. The obtained prior system failure probability is larger
than that of the prior component failures separately (sheet pile wall failure and anchor failure).
This is reasonable due to the expansion of failure domain. The posterior system failure
probabilities are very close to those of the anchor failure alone. This indicates that the anchor
failure is the dominating failure mode in the sheet pile wall system and thus the same

observations due to the same reasons can be made as for the anchor failure alone.

Table 5.12: Failure probability in structural failure.

Sensor installation time P4gtart P5¢tart PBstart P7start
Prior 1.65x107? 1.65x107? 1.65x1072 1.65x1072
Posterior 3.95x1010 6.88x1010 1.25x10° 2.35x10°
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Figure 5.59: Showcase of failure probability in structural failure.
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5.4 Discussion

The dimensionality of the probabilistic space has a large influence on system identification as
well as reliability assessment. If we zoom into the marginal posterior distribution of Etp and
Emia obtained from Subcase 1, Subcase 2 and Case 3-1 (see Figure 5.3, Figure 5.7 and Figure
5.29) which are all based on 6 strain sensors installed at P4sar, it can be seen that both Etop and
Emia can be well identified as they are concentrated around the “real” value and have a much
smaller COV compared with the prior. However, the COV in these three subcases increase
gradually. The increment is 22%, 25% for Etp and 19%, 65% for Emia when moving from 2D
to 4D and from 2D to 8D respectively (all percentages are calculated in respect of the 2D case).
This is because with the increase of dimensionality, the number of parameter combinations that
match with the measured responses increase as well and thus the uncertainty of the variable
space increases. The quantitative values of 90% ACR in Table 5.5 also support this observation,
in which the 90% ACR of Etop - Emid in posterior in Case 3-1 (i.e. 8D problem) is almost 5 times
larger than that in Subcase 1 (i.e. 2D problem). This situation can be improved a bit by adding
more sensors with no/weak correlation. For example, Ciop is not identifiable at all with only
espw SENSOrs as shown in Figure 5.28, but it can be well inferred with combined sensors as
shown in Figure 5.49. Due to the same reason, when the same serviceability limit state function
is applied to 2D, 4D, and 8D posterior, the resulting failure probability increases (i.e. namely
5.11x10%, 2.43x10%°, and 7.39x107°%).

The construction stages also play an essential role in system identification and reliability
assessment. With each delay of sensor installation time, there will be a 10% ~ 25% decrease of
gained information compared with that gained from sensors installed at P4sar, leading to a
dispersed posterior and thus a larger failure probability in the reliability analysis (both SLS and
ULS). This decreasing trend holds true regardless of the type of sensors and number of sensors.
There might be a particular construction phase after which the installed sensors carry much less
information. For example, 20% more information can be gained by strain sensors if they are
installed at P5start instead of P6start, because large strain is expected in P5 caused by excavation
of soil but is not recorded. This also explains why there is a jJump of ultimate limit state from
P5start t0 P6start Shown in Figure 5.57, Figure 5.58 and Figure 5.509.

In both SLS and ULS, the gain from monitoring is huge: there is a dramatic decrease of failure

probability in posterior compared with that in prior. One reason is that the responses calculated
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by the selected “real” values are far below the threshold, while another is that the uncertainty

of the selected prior (i.e. coefficient of variation) is much larger compared with the posterior.
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6 Conclusions and recommendations

6.1 Answers to main research question

In the context of hydraulic structures, this thesis aims at finding a feasible way to

1) identify soil parameters based on a monitoring system considering all relevant sources
of uncertainty, correlation between measurements, and relatively high dimensionality;

2) investigate the influence of the inclusion of monitoring data (updating the prior to
posterior) on structural reliability;

3) investigate the influence of construction stages on both parameter identification and

reliability assessment.
To answer the main research questions:

What is the effect of monitoring hydraulic structures on structural reliability? What is

the influence of starting the monitoring at different construction stages?

A series of analyses are performed considering a single-anchor sheet pile wall system. Firstly,
up to eight unknown soil parameters are identified by a Bayesian approach considering
measurement uncertainty, physical model uncertainty, and surrogate model uncertainty as well
as their correlation. This identification process is performed four times to obtain four sets of
soil parameter posterior distributions, considering multiple types and number of sensors and
that sensors could be installed at four different construction stages to collect structural
responses. In the subsequent reliability assessment, the obtained four sets of posteriors serve
as the inputs to calculate the failure probability of the structure considering both serviceability
limit state and ultimate limit state. The following conclusions can be drawn related to the main

research questions:

e The monitoring of hydraulic structures (system identification) can largely decrease the

failure probability (P, ) in both SLS and ULS. Particularly, in this work the smallest
P

f,prior

to P,

f,posterior

ratios (considering different construction stages) are 1x10%" in SLS

and 1x10% in ULS; while the largest ratios are 1x10%% in SLS and 1x10%* in ULS.

e The monitoring should start at as early construction stage as possible to collect
sufficient information, which is beneficial for both parameter identification and
reliability assessment. With each delay of sensor installation time, the gained
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information will decrease, leading to a more dispersed posterior and thus an increase of
failure probability. For example in this case study, the decrement of KLD value can be
30% (see Case 3-4 in section 5.3.1.4 in which sensors are installed from P4start to P5start),
while the P_. to P,

s orior 10 P posierior 121108 1x1012 (see sheet pile wall failure in section 5.3.2.2).
This decreasing and increasing trend holds true regardless of dimensionality, type of

sensors and number of sensors.

Although some explanations are given in this thesis for the calculated unexpectedly large ratio
of prior and posterior failure probabilities, the explanations are not deemed to be sufficiently
detailed and deep. Therefore, further research is needed to better understand its source and gain
further confidence in the conclusions: "The weight of evidence for an extraordinary claim must

be proportioned to its strangeness.".
6.2 Answers to sub research questions

In practical implementation, the sub questions raised from the main research questions as

introduced in section 1.3 can also be answered.
1. What type of sensors can be and should be used?

In this work, we consider four types of observations to give some insight, namely strain of
sheet pile wall (espw), horizontal displacement of sheet pile wall (Uy), vertical displacement of
top ground (Uy) and strain of anchor (eanchor). Based on their conveyed information, we have

this order: ¢, *U, ~1.5xU, (eancnor is not considered alone). However, none of them could

solely and properly identify the soil parameters. Since their combination outperforms any one
of them (i.e. 40% more information conveyed), a combination of sensor types is preferred.

2. How many sensors are needed, where to put these sensors and when to install them

(during construction or afterwards)?

Generally, the more uncorrelated sensors, the better the inference result, which however in
reality is usually restricted by the budget considering e.g. cost of sensors, cost of installation,
cost of maintenance, etc. The sensor locations vary with different construction stages but
should be installed as early as possible. In this case study, from the result in Subcase 2 and
Subcase 3, three optimal sensors (here the optimal means the minimum number of sensors) for
each observations (i.e. espw, Ux, and Uy) are sufficient to do parameter identification (only one

strain sensor is needed on the anchor as the axial force is assumed constant along the length),
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as they can provide around 90% of information carried by full sensor configuration. The
locations of these optimal sensors vary with observation types and sensor installation stage,
and all of them should be installed at the earliest construction stage to carry the most
information (e.g. sensors installed at P4sart can convey double information compared with

sensors installed at P7start).

3. Which Bayesian computational method fits best in this context that is characterized
by computationally expensive likelihood functions considering correlation, high
dimensionality (i.e. more parameters are considered simultaneously) and multimodal

and/or degenerate posteriors?

MultiNest outperforms the traditional MCMC families considering the above requirements (the
computationally expensive likelihood is coped with in sub question 5). Since MultiNest does
not rely on random walk (e.g. Metropolis Hastings MCMC) which has high rejection rate or
gradient of posterior (e.g. Hybrid MCMC) which slows down the calculation, but compresses
the multidimensional integral of evidence into a one-dimensional integral, the calculation is
efficient and a large amount of computation time can be saved. Due to the same reason, there
is little trouble to deal with high dimensionality and multimodal/degenerate posteriors. Besides
the posterior, the sample weight as a by-product in MultiNest can be used straightforwardly in
reliability analysis without additional efforts. Based on the performance of MultiNest in our

work, it can be applied to other hydraulic structures and even other civil structures as well.
4. How to quantitatively evaluate the information conveyed by sensors?

In this work, both 90% credible region and Kullback—Leibler (KL) divergence are used to
evaluate the sensor based information. The former, which combines the information from both
prior and sensors, is not quantitatively calculated but only plotted to intuitively assess how
concentrated a posterior is, while the latter is numerically computed to quantitatively indicate
the gained information solely from the sensors. With KL divergence, we can quantitatively
evaluate and compare the performance of different sensors and determine the location and the

number of optimal sensors.

5. How to construct an accurate surrogate model of the physical model in a reasonable

computation time?

In this work, to deal with the computationally expensive likelihood function in sub question 3,

surrogated models are constructed to replace the physical model (FE model). Gaussian process
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regression (GPR) with anisotropic RBF kernel and white kernel is proved to perform well. An
adaptive fitting procedure is used that is based on the prediction variance in GPR. The white
kernel can protect against overfitting. These two components efficiently facilitate the accuracy
of the surrogate models. The resulted surrogate models can be used not only in system

identification but also in reliability assessment.

As a general conclusion: | demonstrated that the system identification and reliability
assessment of realistic hydraulic structures (complex physical model and relatively high (up to
8) dimensional probabilistic space, large number of sensors (up to 10)) is feasible and |

proposed, implemented, and tested all the components for such an analysis.

The above conclusions focus on the practical relevance; although, while seeking answers to the
main and sub research questions to following noteworthy contributions are made to the system
identification literature (a brief recapitulation of section 1.5 for convenience). To my
knowledge those ended with star (*) are believed to be the first time in the open literature:

Combination of system identification and structural reliability for hydraulic structures.”
Analysis of the impact of construction stages on SHM of hydraulic structures.
Application of nested sampling for SHM based inference and reliability analysis.

Proposal of a novel surrogating approach (active learning Gaussian process regression).

YV V. V VYV V

Proposal for a general mathematical model that encompasses measurement

uncertainties, physical model uncertainties, and surrogate model uncertainties.

» The quantification and inclusion of the surrogate model uncertainties in the system
identification of hydraulic structures.”

> Implementation of a custom, Python-based program related to programmatic control of

Plaxis, inference, reliability assessment (see Annex A to find the used Python packages).

Although there are many limitations of this work, e.g. all the quantitative results are particular
to the selected single anchored sheet pile wall and synthetic observations are used (see the
detailed list in section 1.4), the obtained results are promising and encouraging to continue this

line of research.
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6.3 Recommendations

Given the single case study considered in this work, it is too early to make general
recommendations or recommendations for practical applications, hence | solely focus on

recommendations for future research.
Future analysis could investigate:

e The influence of different priors (e.g. different COV of prior distribution);

e The influence of different “real” values of soil properties on reliability analysis;

e The influence of replacing the model that generates the synthetic data with a more
sophisticated model (e.g. 3D and/or hardening soil model) while keeping the current
model for system identification and reliability analysis;

e The individual contribution of three uncertainty components, namely measurement
uncertainty, physical model uncertainty and surrogate model uncertainty;

e The influence of correlation length;

e The influence of more candidates of optimal sensors;

e The influence of dimensionality on the adaptive surrogating (e.g. when it becomes
computationally expensive).

Besides, more interesting aspects can be studied, such as:

e What is the influence of sheet pile wall length on information content?
e What if loads are mainly from water fluctuation?
e What if sensors are installed at a fixed construction phase but data is collected at

different phases? How to consider their correlation?

Furthermore, the investigation should be extended to additional structures such as different
sheet pile walls, quay walls, etc. to be able to generalize the conclusions and in turns to derive

practical recommendations.
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Annex A Used Python packages

This annex summarizes the most important Python packages used for the analyses documented

in this thesis.
Package name  Comments
Plaxis control plxscripting Related to API of Plaxis.
Surrogate modelling scikit-learn Popular and free machine learning package.
SMT Consisting of different surrogate modeling
methods, e.g. Kriging, least square
approximation, etc.

Bayesian inference pymc3 Used for Bayesian statistical modeling and
probabilistic machine learning including
advanced MCMC and variational inference
algorithms.

nestle Implementation of nested sampling (also used
for reliability assessment).
dynesty Implementation of nested sampling, including
evidence-oriented static nested sampling and
posterior-oriented dynamic nested sampling
(also can be used for reliability assessment).
Reliability assessment  openturns Dealing with uncertainty propagation by

probabilistic methods, including data analysis,
probabilistic modelling, reliability, etc.

pyre Used for structural reliability analysis.

139



Annex B Sheet pile wall structures

Sheet pile walls are retaining walls that are designed and used to resist the lateral pressure
and/or potential lateral deformation of adjacent materials, e.g. soil and water. They are widely
used in wharfs, dams and river bank protection. A sheet pile wall is “a vertical wall consisting
of long thin elements (steel, concrete or wood), that are being driven into the ground. The
elements are usually connected by joints, consisting of special forms of the element at the two
ends. Compared to a massive wall (of concrete or stone), a sheet pile wall is a flexible structure,
in which bending moments will be developed by the lateral load, and that should be designed
so that they can withstand the largest bending moments” (Verruijt, 2012). Anchors are often
used to strengthen sheet pile walls. In Figure 0.1 there are some typical sheet pile walls while

in Figure 0.2 different type of anchor layouts are included.

* Tg *

Bearing
...... " piles -

Anchored sheet-pile retaining wall Relieving platform wall

Figure 0.1: Cross-sections through some typical permanent sheet-pile structures (Clayton, Woods, Bond, & Milititsky, 2014).

140



Multiple anchored wall
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Soil or rock anchors Raking pile anchor

A-frame anchor

Figure 0.2: Anchored sheet pile wall schemes (Clayton et al., 2014).
Many materials can be used in the construction of sheet pile walls, of which the three most

commonly used are steel, wood and concrete and their main features are summarized in Table
0.1 based on (Clayton et al., 2014).
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Table 0.1: Main features of different sheet pile wall materials.

Used materials Main features

Steel Variety of cross sections with a wide range of strength;
Economy;
Lack of buckling under heavy driving;
Availability in different combinations to increase wall section modulus;
Reusability for temporary works;
Relatively light weight;
The possibility of increasing the pile length by welding or bolting;

Suffering from corrosion.

Wood Usually for temporary work;
Short spans;
Short life expectancy.

Concrete Variety of cross sections;
Durable;
Thick section required;

Large soil displacement and driving resistance during construction.

Sheet pile walls are prevalent structures in the Dutch water defense system, since a considerable
area of the Netherlands is below sea level and a large part of its population lives there. The
existing sheet pile wall are aging and require a regular inspection and assessment to ensure that
the water defense system meets a prescribed safety level. This consideration motivates this

work.
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