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Abstract

Tremendous advances in mass spectrometric and bioinformatic approaches have expanded proteomics into the field of microbial
ecology. The commonly used spectral annotation method for metaproteomics data relies on database searching, which requires sample-
specific databases obtained from whole metagenome sequencing experiments. However, creating these databases is complex, time-
consuming, and prone to errors, potentially biasing experimental outcomes and conclusions. This asks for alternative approaches
that can provide rapid and orthogonal insights into metaproteomics data. Here, we present Novolign, a de novo metaproteomics
pipeline that performs sequence alignment of de novo sequences from complete metaproteomics experiments. The pipeline enables
rapid taxonomic profiling of complex communities and evaluates the taxonomic coverage of metaproteomics outcomes obtained from
database searches. Furthermore, the NovolLign pipeline supports the creation of reference sequence databases for database searching
to ensure comprehensive coverage. We assessed the NovoLign pipeline for taxonomic coverage and false positive annotations using a
wide range of in silico and experimental data, including pure reference strains, laboratory enrichment cultures, synthetic communities,
and environmental microbial communities. In summary, we present NovolLign, a de novo metaproteomics pipeline that employs large-
scale sequence alignment to enable rapid taxonomic profiling, evaluation of database searching outcomes, and the creation of reference

sequence databases. The NovoLign pipeline is publicly available via: https://github.com/hbckleikamp/NovoLign.

Keywords: metaproteomics, sequence alignment, de novo sequencing, microbial communities

Introduction

Microorganisms form complex multi-species communities in
nature, inhabiting virtually every ecological niche on Earth. They
are involved in global biogeochemical cycles and significantly
affect human health and well-being [1-4]. Therefore, understand-
ing these complex microbial ecosystems is required to accelerate
the development of effective biotechnological solutions to address
global challenges [5-8]. This requires advanced metaomics
approaches to study them [9-12]. Among these techniques,
metaproteomics is particularly powerful as it allows to determine
expressed metabolic functions, the protein biomass composition,
and species-to-species interactions [11-25]. However, compared to
traditional single organism proteomics, metaproteomics faces the
challenge of analyzing highly complex systems with potentially
hundreds of species present at varying abundances [13, 22].
Consequently, metaproteomic experiments depend on reference
sequence databases that accurately cover all organisms present
in the microbial community [26-30]. Current strategies for
constructing metaproteomic databases involve comprehensive
generic reference databases, such as the NCBI nr, RefSeq, or
UniRef. However, large databases require focusing of the sequence
space to allow sensitive metaproteomics experiments. This can be

achieved by using empirical knowledge about the microbial niche
or by incorporating taxonomic information from other techniques
such as 16S ribosomal ribonucleic acid (rfRNA) sequencing [31-
34]. More recent focusing approaches employ also multi-round
searches and de novo sequence information. For example, iterative
and two-step search approaches were employed, where the
results of a primary search were used to create a smaller database
for subsequent searches. This approach improved the handling
of large databases and increased sensitivity [32, 33], albeit with
the risk of introducing false positive matches [35]. A novel
deep learning-based de novo tool KAIKO was employed, along
with Diamond, to perform de novo sequencing and sequence
matching against a large generic reference database [36]. However,
currently, only exact sequence matches were considered for
constructing a reference sequence database from genomes of
matching species. MetaNovo generates short sequence tags which
are then mapped to large generic databases [37]. The matching
proteins were further used to construct a focused reference
sequence database for subsequent DB searching, which peptide
spectrum matches were analyzed for taxonomic uniqueness
using Unipept [38]. These tools were primarily designed to focus
databases for subsequent searches. Nevertheless, the ability to
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annotate sequences from species not present in the database
at different taxonomic ranks is commonly limited, and the
capacity to match peptides with de novo sequencing errors has
either not been thoroughly evaluated or is not feasible. Moreover,
these tools do not evaluate database searching outcomes,
including metagenomic database coverage, and spectral quality
of metaproteomic experiments.

Generic reference sequence databases may also not encom-
pass all organisms, strains, and sequence variants present in
the community, which compromises accuracy and coverage.
Therefore, for most applications the preferred method to
create reference sequence databases is whole metagenome
sequencing of the target community [13, 26, 39]. However, whole
metagenome sequencing experiments are complex, expensive,
and time-consuming. The coverage of the metagenomic database
can be biased by the employed deoxyribonucleic acid (DNA)
extraction method, sequencing errors, and variations between
data processing pipelines [22, 27]. Consequently, metaproteomic
experiments are highly influenced by the database construction
procedure. Unfortunately, there are currently no dedicated
pipelines available for evaluating the outcomes of metaproteomic
experiments that use database searching and metagenomic
reference sequence databases.

However, peptide de novo sequencing allows to annotate mass
spectrometric fragmentation spectra with amino acid sequences
in a database-independent manner [40-43]. Therefore, de novo
sequencing has been already employed where reference sequence
database are not available, such as for determining the amino
acid sequence of antibodies [44, 45]. De novo sequencing has been
also used to access the suitability of reference sequence files in
proteomics experiments [46], and to string-search large public
reference sequence databases to obtain taxonomic information
from a microbial community [36, 47]. For example, the recently
developed NovoBridge pipeline automates quality evaluation and
matching of de novo sequences to a precomputed peptide database
(Unipept) to provide rapid taxonomic information from complex
samples [38, 47]. However, the quality of mass spectrometric
sequencing data, de novo sequencing errors, and incomplete ref-
erence sequence databases limit the number of sequencing spec-
tra that provide confident taxonomic information. Furthermore,
using precomputed peptide databases require continuous update
of the sequences and hamper the use of alternative proteolytic
enzymes or the search for amino acid modifications.

To overcome the limitations posed by de novo sequencing errors
and incomplete reference sequence databases, de novo sequence
tags can also be matched to reference databases using sequence
alignment. This has already been employed in tools such as
PeptideSearch, CIDentify, MS-BLAST, MS-HOMOLOGY, FASTS, MS-
Spider, and OpenSea, among others [48-55]. However, performing
sequence alignment of large volumes of data against very large
reference sequence databases is computationally highly demand-
ing, and not suitable for processing complete metaproteomics
experiments. In 2015, Buchfink et al. introduced the sequence
aligner DIAMOND, which allows to align large volumes of data
on standard desktops and eases the use of custom reference
sequence databases [56]. This laid the foundation for creating a
sequence alignment tool capable of handling large volumes of
metaproteomic sequencing data with custom databases.

In this study, we introduce NovoLign, a de novo metaproteomics
pipeline that classifies de novo sequences from complete metapro-
teomic experiments using sequence alignment against very
large reference sequence databases. The pipeline aligns de novo
sequences (including decoys) from complete metaproteomics

experiments against generic reference sequence databases in
short time frames on standard desktop personal computers
(PCs). The sequence alignment pipeline overcomes challenges
posed by de novo sequencing errors and incomplete reference
sequence databases. The fraction of false positive classifications
are estimated using randomized sequences. This metagenomics-
independent approach allows to perform rapid taxonomic profil-
ing with deep coverage, and to evaluate the sequence coverage of
conventional metaproteomics experiments that employ database
searching. Furthermore, the obtained taxonomic composition
can be used to construct or complement reference sequence
databases. We demonstrate the performance of Novolign with
a large spectrum of pure reference strains, enrichment cultures,
synthetic, and complex natural communities.

Materials and Methods
Application of publicly available data

Employed pure reference strains, enrichment cultures syn-
thetic and natural communities, taxonomic lineages, and
content of synthetic community samples are summarized in
SI EXCEL Table 1. Briefly, the equal protein synthetic community
proteomic raw data and reference database were obtained
from ProteomXchange server project PXD006118 (Kleiner et al.,
2017, Nat Commun) [24], the simplified human gut microbiota
model (SIHUMIx) proteomic raw data and reference database
were obtained from ProteomXchange server project PXD023217
(Van den Bossche et al,, 2021, Nat Commun) [13]. Acinetobacter
baumannii raw data and reference database were obtained
from PXD011302 (Di Venanzio et al, 2019, Nat Commun) [57],
Caldalkalibacillus thermarum from PXD042369 (de Jong et al., 2023,
Front Microbiol) [58], Nitrospira moscoviensis from PXD019583
(Lawson et al,, 2021, mSystems) [59], Chlamydomonas reinhardtii
from PXD010160 (Scholz et al., 2019, Plant Journal) [60], Lactobacillus
sakei from PXD011417 (Prechtl et al., 2018, Front Microbiol) [61],
Paracoccus denitrificans from PXD013274 (von Borzyskowski, 2019,
Nature) [62], Streptococcus mutans from PXD006735 (Ahn et al,
2017, Scientific Reports) [63], Halanaeroarchaeum sp. HSR-CO
from PXD028241 (Sorokin et al, 2022, The ISME Journal) [64],
the Clostridium kluyveri-dominated enrichment, preparation and
analysis was performed as described in Allaart et al, (2021),
Front. Bioeng. Biotechnol. [65], and Allaart et al., (2023) Scientific
Reports PXD040972 [66]. The raw data for the following samples
are provided via PXD050548. More specifically, the Saccharomyces
cerevisige tryptic digest was purchased from Promega (cat no.
V7461) and analyzed as described in Pabst et al., The ISME Journal,
2020 [67], except using a shorter 1D 60-minute gradient for
chromatographic separation. The preparation and analysis of
Aeromonas bestiarum is described in Tugui et al., 2024, bioRxiv [68].
The Ca. Kuenenia stuttgartiensis enrichment was prepared and
analyzed as described in Lawson et al., 2019, The ISME Journal [69].
The Ca. Accumulibacter phosphatis enrichment was prepared
and analyzed as described in Kleikamp et al.,, 2021, Cell Systems
[47]. Aerobic granular sludge was sampled from the wastewater
treatment plant in Utrecht, The Netherlands, and prepared and
analyzed as described in Kleikamp et al., Water Research, 2023 [22].
The MetaP reference sample measured with an Orbitrap Astral
mass spectrometer was obtained from Dumas and co-workers
(PXD045838) [70]. KO (KEGG Orthology) terms for the aligned and
database-search-matched proteins of the Orbitrap Astral dataset
were obtained using GhostKoala [71]. All analyzed proteomics
and metaproteomics reference sample data are summarized in
SI EXCEL Table 1.
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De novo sequencing and database searching of
mass spectrometric raw files

The mass spectrometric raw data were processed using PEAKS
Studio X (Bioinformatics Solutions Inc., Canada) [72] for database
search and de novo sequencing, or DeepNovo [73] for obtaining
additional de novo sequencing output files for developing the
pipeline. Both de novo sequencing and database searching were
performed allowing 20 ppm parent ion and 0.02 Da fragment
mass error. Carbamidomethylation was set as fixed and methio-
nine oxidation as variable modifications. Database searching
was performed with N/Q deamidation as additional variable
modifications. Database searching further used decoy fusion for
estimation of false discovery rates (FDRs) and subsequent filtering
of peptide spectrum matches for 1% FDR. Only the top-ranked de
novo sequence annotations were considered for processing. Pro-
teome reference sequence databases for comparative database
searching were obtained from the provided ProteomeXchange
server projects or published supplementary data. The proteome
reference sequence database for the MetaP reference dataset was
constructed by combining UniProt genomes from the organisms
listed in the SI data (40168_2024_1766_MOESM3_ESM.xlsx) of
Dumas et al. [70]. The proteome reference database for the C.
kluyveri dominated enrichment and the wastewater sludge was
obtained from whole metagenome sequencing experiments.
The aerobic granular sludge was fractionated by size and then
homogenized, following the protocol described in Kleikamp
et al., 2023, Water Research [22]. For both samples (C. kluyveri
enrichment and wastewater granule fractions), DNA was then
extracted using a DNeasy UltraClean Microbial Kit (Qiagen,
Germany), and the extracted DNA was quantified with a Qubit
fluorometer. Whole metagenome sequencing was performed on
an Illumina NovaSeq platform with paired-end reads (Novogene
Co. Ltd, China). Raw reads were quality checked, trimmed
and then assembled using MEGAHIT (v1.0.4-beta). Thereafter,
open reading frames (ORFs) were predicted with MetaGeneMark
(v3.05) using default parameters, for scaftigs >500 bp. Finally,
redundancy in the predicted ORFs was eliminated using CD-
HIT (v4.5.8). The individual metagenomic databases of the
granule size fractions were merged before employing a two-
round database search approach. All other samples, including the
C. kluyveri enrichment, were analyzed using the above outlined
database searching procedure.

Training sequences with de novo errors and
mutations

The developed Python code and additional documentation to
generate peptides with simulated de novo sequencing errors and
mutations are freely available via GitHub: https://github.com/
hbckleikamp/De-Novo-ErrorSIM/. De novo error files were created
for “equal mass substitutions”, “inversions of amino acids”, and
“Other” mutations [41]. Equal mass substitutions involve substi-
tuting a combination of one or more amino acids with another
combination of amino acids that have the same mass. This,
for example, includes the substitution of asparagine (N) with
two glycine residues (GG). Equal mass combinations of up to
6 amino acids were created, where a sliding window detected
substitutable regions within a peptide, which are then selected
for substitution at a 25%, 50%, and 100% chance. For inversions,
the peptide sequence was divided into fragments of two or three
consecutive amino acids. Each fragment was iteratively tested for
a 5% chance of randomization. If a randomization event occurred,
the order of amino acids within the fragment was randomized.

Finally, the fragments were reassembled to form the inverted
sequence. The “Other” category included mutations where amino
acid sequences were reverse-translated into trinucleotide codons.
Each nucleotide had a 1% chance of being substituted by a dif-
ferent nucleobase. The mutated nucleotide sequences were then
translated back into amino acid sequences to form the final
mutated sequence. However, larger peptides are more likely to
contain multiple de novo sequencing errors. To make sure that
each error type generated similarly different peptides, the Lev-
enshtein distance between the original and altered peptide was
computed [74]. While inversions and mutations can occur in
any position, equal mass substitutions can only occur if certain
combinations of amino acids are present. Therefore, if similarly
“different” peptides need to be generated, they need to occur at a
higher error rate. Various error rates were tested for the different
error types to create a similar distribution to 5% mutation rate.
Final error rate was selected as 5% for mutation and inversion, and
25% for substitution errors. The individual de novo error sequences
were combined using rates of occurrence for the individual error
types as observed for common sequencing tools recently [41]
(substitution of 1 by 1 or 2 AAs=6.3%, substitution of 2 by 2
AAs=13.7%, substitution of 3 by 3 AAs=6.3%, substitution of 2
by 3 AAs=3.7%, substitution of 4 by 4 AAs=9.7%, substitution of
5by 5 AAs=7.6%, substitution of 6 by 6 AAs=6.8%, inversion of 2
or 3 AAs=16.1%, other=29.7%).

Outline of NovoLign pipeline

The Novolign pipeline is a single “tunable” python script in
which parameters can be altered manually. The pipeline can
be used with the commonly employed proteomic reference
sequence databases including NCBI, UniprotKB, and GTDB. The
pipeline, additional documentation and example data are freely
available via GitHub: https://github.com/hbckleikamp/NovoLign.
Setup of the pipeline and databases is described in the online
documentation of the GitHub page. Novolign was tested with
output file formats from PEAKS Studio X [72] and DeepNovo [73].
Nevertheless, any tabular or .txt-like format can be supplied,
provided it contains a column of peptide sequences with the
header “Peptide”. Supplying database-searched peptides (PSM file)
and a reference sequence database (FASTA file with NCBI TaxIDs)
will furthermore allow the evaluation of spectral and database
coverage. The pipeline comprises the following modules:

1. DIAMOND  alignment  (write_to_fasta.py, diamond_
alignment.py): firstly, peptide sequence lists are imported
into the Python environment and filtered based on de
novo score thresholds. Default filters include a minimum
quality score of 70 ALC% for PEAKS data or —0.1 minimum
score for DeepNovo. Optional (additional) filters include
maximum ppm mass error, minimum peptide length, and
peak intensity or area. Filtered sequences are written to
a FASTA file. Decoy peptide sequences are created by
scrambling the order of amino acids in front of the cleavage
site (R or K) of every sequence. The resulting peptide file
is aligned using the sequence aligner DIAMOND [56], using
parameters optimized for de novo sequencing errors. Default
parameters include a minimum percent identity of 85%, a
minimum coverage of 80%, and a PAM70 matrix with gap
opening penalty 2 and gap extension penalty of 4.

2. Lowest common ancestor (LCA) analysis (process_alignment.
py): output files from sequence alignment are filtered
for a minimum bitscore of 25. The obtained taxonomy
IDs are then mapped to lineages for subsequent LCA
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analysis. NovoLign includes 3 algorithms for LCA analysis,
which contain different levels of stringency and false
positives. The conventional LCA algorithm (CON) has the
highest stringency and retains all aligned sequences. The
weighted LCA algorithm (W) [75] counts the frequencies
of all aligned taxonomies, which act as weights. For each
peptide, the taxonomic weights of aligned sequences are
sorted, cumulatively summed, and normalized to 1. The
most frequent taxonomies are kept for LCA until the
“weight_cutoff” (default 0.6) is reached. The bitscore LCA
(BIT), operates similarly, but instead groups the aligned
sequences by their taxonomic lineages for each ranks
and sums the bitscores. Only taxa with a weight over the
“weight_cutoff” (default 0.6) are retained [47, 76].

3. Taxonomic composition (bar_graphs.py): once the LCA has
been determined, a frequency cutoff “freq_cut” (default 5) is
applied, in order to remove taxonomies that occur at very low
frequency. The remaining taxonomies are grouped together
to provide a taxonomic composition of the analyzed micro-
bial community. The results are then written to a table and
displayed in bar graphs. Furthermore, the sequences from
the target database (against which the query peptides were
aligned) can be collected to create a specialized protein ref-
erence database. Optional arguments include an exclusion
list, addition of decoy sequences, or addition of the query
de novo peptides to the database. Alternatively, all sequences
that belong to the identified taxonomies (at different levels,
e.g. identified proteins, all species, genera, families) can be
extracted and compiled into a database. Functional profiling
can be performed using the compiled protein database, for
example, by retrieving KO numbers for these proteins from
GhostKoala [71].

4. Spectral quality analysis (experiment_gc.py): for spectral
quality control, aligned de novo peptides are visualized with
a scatter plot, histograms, and a stacked bar chart, based
on de novo scores and annotation rates. Aligned de novo
peptides are grouped into: “exact” (100% identity, 100% cov-
erage), “exact tag” (100% identity, <100% coverage), “aligned”
(<100% identity, 100% coverage), “aligned tag” (<100% iden-
tity, <100% coverage), and unmatched spectra. Optionally, if
database searched peptides are also supplied, the stacked
bar chart will show if the spectra of de novo sequenced
peptides are detected in database searching (“matched” or
“not detected”).

5. Analysis of reference sequence database (database_qgc.py): to
access the coverage of the reference sequence database used
for database searching, the aligned de novo sequences are
compared to the database searching outputs. The annotated
taxonomies will be compared for the ranks, order, family, and
genus, and visualized with stacked bar charts. Taxonomic
distributions will be shown for peptide spectrum matches
detected exclusively with de novo sequencing (DN_only), all
de novo peptides (DN_all), peptides detected exclusively in
database searching (DB_only), and all database searching
peptides (DB_all).

Results

Here, we present NovoLign, a de novo metaproteomics pipeline that
performs large-scale sequence alignment of de novo sequences
from complete metaproteomics experiments against large refer-
ence sequence databases (Fig. 1). To optimize the alignment and

post-processing parameters, as well as to evaluate the accuracy
of the taxonomic profiling, we employed a wide range of in silico
and experimental data. These included de novo error datasets,
pure reference strains, laboratory enrichments, and samples from
synthetic and natural microbial communities.

Sequence alignment of de novo sequences

The sequence alignment of de novo sequences presents two major
challenges. Firstly, bottom-up proteomics experiments result in
short peptide sequences which are only poorly aligned using
DIAMOND default settings. Secondly, in practice, many mass
spectrometric fragmentation spectra show gaps in the fragment
ion series and misleading fragments, resulting in sequencing
errors such as amino acid inversions or substitutions [41, 43].
However, many of these errors occur in blocks within the amino
acid sequence, and thus may still provide alignment to the
correct taxonomy. To evaluate the correct alignment of such
short sequences and sequences with errors, we created 13 in
silico datasets, with 1000 sequences each (SI DOC Table 1), to
reflect commonly observed sequencing errors like different
types of amino acid inversions, substitutions, and mutations.
Additionally, we constructed a dataset that combined all these
errors, with error rates as commonly observed for the individual
error types in proteomics experiments [41] (SI DOC Figs 1 and 2).
This combined error dataset was then used to determine the most
suitable DIAMOND parameters. First, we compared the alignment
performance when using different scoring matrices, seed shapes,
and DIAMOND seed search algorithms. Generally, for short
sequences, PAM substitution matrices are more suitable than
BLOSUM matrices. Shevchenko et al. (2001) used a PAM30 scoring
matrix in their MS BLAST tool [50]. To improve the reporting
of highly similar sequences, the authors made modifications
to the matrix, such as adding scores for isobaric amino acids,
trypsin cleavage sites, and substitutions. However, a modified
matrix may interfere with the identification of homologous
sequences from related organisms, which could be a disadvantage
for metaproteomics experiments where the analyzed organisms
may not be present in the database. Therefore, we accounted in
our pipeline only for the isobaric amino acids isoleucine (I) and
leucine (L) by replacing all “T" with an “L” in our reference sequence
databases and sequencing data, but we did not modify scoring
matrices. Additionally, the DIAMOND default sensitivity mode
employs seeds with lengths of 12 and 15, which may discriminate
shorter sequences. Furthermore, the different seed search
algorithms (i.e. 0=double-indexed, default algorithm, for large
input files, less efficient for small query files; 1=query-indexed,
better performance for small query files; ctg=contiguous-seed
mode, further improved performance for small query files) can
affect the alignment of short sequences (with errors) and smaller
datasets [77]. When aligning the combined error dataset against
the UniRef100 and Swiss-Prot databases, we found that (as
expected) the PAM 30 and 70 matrices generally performed better
than BLOSUMS62. Additionally, using shorter custom seeds and
the “ctg” mode improved alignment for shorter peptides (<10
amino acids) significantly (SI DOC Figs 3 and 4). Furthermore,
standard scoring matrices often use high gap opening and low
gap extension penalties. This is suboptimal when aligning de novo
peptide sequences with errors. Therefore, we evaluated different
combinations of gap opening and gap extension penalties and
found that a 2/4 (gap opening/extension penalties) combination
performed best for our established in silico de novo sequences
(SIDOC Figs 5 and 6). Finally, when comparing different reporting
parameters for “query cover” and “percentage of sequence
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& Novolign

1) Prepare de novo peptide sequences

Filter de novo sequences for min ALC scores
Prepare randomized de novo control

dataset

2) Align de novo peptide sequences

DIAMOND sequence alignment, filter for min bitscores

* UniRef100: community composition, database construction
* SwissProt: ultrafast taxonomic profiling

3) Taxonomic grouping of alignments

Get consensus lineages from alignments
Group lineages to determine community composition

% random matches

4) Spectral quality

Visualize spectral quality of metaproteomic dataset
Determine “classifiable” fraction of spectra

5) Reference database coverage

Evaluate completeness of metagenomic databases
Construct de novo filtered UniRef100 database

Figure 1. The table outlines the main modules of the NovoLign pipeline, which conducts large-scale sequence alignment of complete metaproteomics
experiments. This enables rapid (database searching independent) taxonomic profiling with deep coverage. It also offers an alternative approach for
assessing the quality and coverage of metaproteomics outcomes obtained from database searching approaches. The pipeline contains five modules: (i)
preparation of de novo sequences and generation of randomized decoy sequence dataset, (ii) alignment of the de novo and decoy sequences using
DIAMOND, (iii) taxonomic grouping of the aligned sequences and determining the percentage of random matches, (iv) evaluating the spectral quality
of the analyzed metaproteomics experiment, and (v) evaluating the coverage of the reference sequence database used for database searching.

identity”, we found that a combination of % identity 85 with a
% query coverage in the range of 75-85 provided the highest
accuracy (SI DOC Figs 7 and 8). After determining the most
suitable DIAMOND parameters, we investigated the alignments
when working with larger reference sequence databases, such as
UniRef100. The main objective was to determine the fraction of
sequences which provide (i) exact sequence matches (alignments
to the correct sequence in the reference database), (ii) correct
taxonomy matches (alignments to different peptides that
correspond to the correct taxonomy), (iii) false-positive matches
(alignments to peptides from taxa not present in the sample), (iv)
random matches (alignments to the randomized decoy sequence
database), and (v) unmatched sequences (peptides which did
not return any alignments), as well as to investigate the length
distribution of the aligned sequences. Remarkably, the combined
error dataset provided for a large fraction of sequences exact or
correct matches (SI DOC Figs 9-12). For example, at the lower
ranks order, family, and genus, we obtained between 55.3%-62.8%
alignments to the correct taxonomy for Swiss-Prot and in the

range of 38.8%-59.7% for UniRef100. However, most importantly,
the fraction of sequences that provided alignments to wrong
taxonomies was between 3.4%-5.9% for Swiss-Prot and 5.0-8.0
for UniRef100. The remaining sequences did not return any
alignments. Furthermore, the length distribution of the aligned
sequences reflected the distribution of the input sequences,
with only a minor discrepancy toward smaller peptides with <10
amino acids. The UniRef100 database provided more alignments
for the random (decoy) sequences. These, however, generally
show lower bitscores and can thus be eliminated by setting
a minimum bitscore threshold. Overall, the individual de novo
error datasets provided outcomes comparable to the combined
dataset (SI DOC Figs 13-23). However, the randomly mutated
sequences (datasets 12 and 14, as shown in SI DOC Table 1 and
SI DOC Fig. 14) yielded significantly fewer alignments. Addition-
ally, sequences that underwent substitutions involving three or
more amino acids (datasets 31-42, detailed in SI DOC Table 1
and SI DOC Figs 20-23) exhibited increasing discrimination
against shorter sequences. In summary, the optimized DIAMOND
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parameters allowed to align and retrieve correct taxonomies for
a large fraction of de novo peptides with common sequencing
errors, on average 53.1% with a span from 31%-70.5% and
different lengths, from 10-50 amino acids. Most importantly,
erroneous annotations were < 10% (on average 4.1%, from 0.9%—
8%), which makes these alignments suitable for metaproteomic
applications (exact numbers for individual error datasets are
listed in SI EXCEL Table 2).

Rapid metaproteomic taxonomic profiling

As a first step, the sequences are filtered for high quality de
novo sequences by applying a minimum de novo quality score
threshold (e.g. ALC score for PEAKS [72]). Next, the sequences
are randomized to provide an additional set of decoy sequences,
as already introduced for the NovoBridge pipeline [47]. Both
sequence datasets are then aligned, where the decoy alignments
provide an estimate for the number of random alignments per
dataset. The results are then filtered for confident alignments by
applying a minimum bitscore threshold. Furthermore, because
sequences often provide alignments to several sequences
from different taxonomies, the pipeline includes algorithms
to determine a consensus lineage. In order to maximize the
annotations at lower taxonomic ranks, we investigated 3 different
LCA approaches. The first “conventional” LCA approach (“CON”)
strictly determines the LCA from all lineages above the bitscore
threshold. The second bitscore approach (“BIT” LCA) is based
on the recently published BAT tool [76], which determines the
consensus taxonomy stepwise. Thereby, for every taxonomic
rank, the taxonomy which accounts for the majority of the
total bitscore is chosen. The third approach is a “weighted”
approach (“W” LCA), which was introduced for processing of
metagenomics data, by Buchfink et al. in 2015 [75]. This approach
first assigns weights to all taxonomies based on their frequency
in the alignment results. Furthermore, the consensus lineage is
determined from taxonomies which combined account for at
least 80% of the sum of weights to which the query sequence
provided alignments. Next, the pipeline performs grouping of the
consensus lineages in order to estimate the microbial composition
(the fraction of peptide sequence alignments to a specific
taxonomy compared to the total number of sequences assigned to
all taxonomies). The sequence counts assigned to each taxonomic
group can be seen as an abundance estimate for these organisms.
Nevertheless, in order to avoid reporting extensive lists of very
low abundant taxonomies (with only few sequence counts), we
implemented a minimum frequency threshold for the taxonomic
reporting step, as also described earlier [47]. Sequence alighment
of short sequences with de novo sequencing errors may result in
some false positive annotations (SI DOC Figs 10-23). Although
the fraction of false positives is generally low, they can inflate
the number of identified taxa in the composition report. While
this approach prevents false taxonomies from being reported, it
may also result in the omission of low-abundance taxa (e.g. those
<1%).

In order to verify whether the sequence alignment provides
an accurate representation of the taxonomies present in the
microbial community, we processed two synthetic communities
with known content (SI EXCEL Table 1). For this purpose, raw data
from the “Kleiner equal protein” and SIHUMIx synthetic commu-
nities were de novo sequenced and processed using NovoLign with
various combinations of processing parameters. These included
different ALC score, bitscore, and taxon reporting thresholds,
as well as different LCA approaches. The evaluated parameter
combinations are summarized in SI DOC Table 2. The NovoLign

processing results are summarized in Fig. 2A (and SI DOC Fig. 24),
where the complete parameter evaluation output is provided in
SI EXCEL Table 2. This allowed to evaluate how these parameters
impact on the number of (i) sequences with correct alignments,
(ii) sequences with unexpected alignments (to other taxonomies),
and the number of (iii) aligned decoy sequences. For example,
the ALC and bitscore had the largest impact on % other matches
and % decoy matches, while the LCA algorithm and the taxon-
omy reporting threshold mostly influenced the target coverage
and the number of identified taxonomies (SI DOC Figs 25-29).
The best Novolign parameter combinations (namely those which
provide a high target coverage by maintaining <10% “other” and
“decoy matches”) for both synthetic communities are listed in
SIDOC Tables 3 and 4. These generally employed either weighted
or bitscore-based LCA, with a minimum ALC of 70 and a minimum
bitscore threshold of 25. Nevertheless, although all taxonomies
were identified for both synthetic communities at the family
level, the families Bifidobacteriaceae and Lactobacillaceae, present
in the SIHUMIx sample, were only observed when employing
lower taxonomic reporting thresholds of 5 instead of 15. However,
these microbes were also very low abundant in the database
searching results, at ~0.15 and 0.05%, respectively. Taxonomies
with >1% relative abundance could all be identified at the family
or genus levels. The highly compatible taxonomic profiles from
the NovoLign pipeline, compared to the expected composition
for the Kleiner and SIHUMIx synthetic communities, are shown
in SI DOC Figs 30 and 31 (for different LCAs and frequency
thresholds). Additionally, a taxonomic bar graph comparing the
Novolign and database searching compositions at the peptide
level is presented in SI DOC Fig. 32. A more detailed characteriza-
tion of the employed SIHUMIx samples has been provided by Van
Den Bossche et al. (2021) [13]. Moreover, the Kleiner synthetic com-
munity also included closely related strains and phages. While
strain differentiation can be possible, this depends on strain abun-
dance and the availability of complete genomes in the reference
database. For example, the exact genomes of Staphylococcus aureus
strains ATCC 13709 and ATCC 25923 could not be found in the
UniRef100 database used in this study. Similarly, for Rhizobium
leguminosarum, only the bv. viciae 3841 strain was available. The
phages were also unresolved due to their limited protein targets
or absence from the database.

Nevertheless, the overall microbial composition obtained by
the employed parameters showed a strong correlation to the true
(known) composition of both communities, as demonstrated by
the strong Spearman’s rank correlation shown in Fig. 2A (and
SI DOC Figs 30 and 31). Good performance was achieved at both
the family and genus levels. However, at the species level, perfor-
mance heavily depends on species abundance and the genome
coverage in the database. Species not present in the database will
provide alignments only to related genera or family ranks.

Finally, by using the optimized NovoLign processing parame-
ters, we aimed to demonstrate the application of the NovoLign
pipeline using a broad spectrum of taxonomies and sample
complexities. Therefore, we de novo sequenced and processed a
range of pure reference strains, synthetic communities, microbial
enrichment cultures, and complex microbial samples using
NovoLign (SI EXCEL Table 1). This approach yielded taxonomic
profiles for all samples that were very close to the expected
(known) microbial composition, or matched those obtained
from orthogonal database searching experiments (Fig. 2B, and
SI DOC Figs 30 and 31). Stacked bar graphs based on spectral
counts for the samples shown in Fig. 2B are provided in
SIDOC Fig. 33.
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A Novolign sequence alignment performance evaluation using synthetic communities
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Figure 2. (A) The left bar graphs depict the NovoLign performance across various parameter combinations (detailed in SI DOC Table 2 and

SI EXCEL Table 2) for the synthetic Kleiner equal protein (21 species/strains) and SIHUMIx communities (8 species). The influence of different
post-processing parameter combinations, including ALC score, bitscore, LCA, and taxon reporting thresholds, was assessed. The bar graphs show for
each parameter combination the number of (i) alignments to expected taxonomies, (ii) unexpected taxonomies, and the number of (iii) decoy
sequence matches (see figure legend for color code). The bars located on the right of the bar graphs depict the number of expected taxonomies that
were not identified (“number of missed taxa”). Generally, the proportion of decoy (random) and other taxonomies were very low for all parameter
combinations. Furthermore, missed taxonomies for the Kleiner community were observed only when using very high minimum ALC, bitscore, and
taxonomic reporting thresholds. For the SITHUMIx sample, only taxonomies with an abundance <1% were missed. The best parameter combinations
(namely those which provided the highest target coverage by maintaining <10% “other” and decoy matches) are listed in SI DOC Tables 3 and 4. The
line graphs on the right illustrate the
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Finally, we aimed to test the NovoLign pipeline using a complex
dataset obtained from an Orbitrap Astral mass spectrometer. The
information density of the Orbitrap Astral raw data is extremely
high due to its rapid MS/MS scan speed and high sensitivity. We
selected a shotgun proteomics experiment recently published
by Dumas et al. (2024), which analyzed a human fecal sample
spiked with two microbes at low abundance (MetaP reference
sample) [70]. Two 30-minute DDA runs were de novo sequenced
and processed using the default Novolign parameters. The
taxonomic profiles generated by the Novolign pipeline were
highly comparable to those obtained from database searching,
by Dumas et al. (SI DOC Fig. 34). Additionally, the spiked species
Deinococcus proteolyticus (2%) and B. vulgaris (1%) were both clearly
detected. Furthermore, we wanted to investigate how well the
global functional profiles obtained by NovoLign and database
searches compare. Therefore, we visualized the KO terms of the
sequence-aligned proteins, alongside the KO terms of the proteins
matched by database searching. The results showed that the
profiles were highly reproducible between replicates and very
comparable between both methods (SI DOC Figs 35 and 36).

Compared to the previously developed de novo pipeline,
which employed exact sequence matches (NovoBridge), sequence
alignment also significantly increased the number of annotated
sequences. For instance, for S. cerevisiae, Aeromonas, and Nitrospira,
as well as for the Kleiner and the complex Wastewater micro-
biome samples, the bitscore based LCA provided on average a
3.6-fold increase, and the weighted LCA on average a ~4.8-fold
increase in annotated sequences at the taxonomic levels, order,
family, and genus (SI DOC Fig. 37).

Finally, processing the S. cerevisicze dataset (58368 de novo
sequences, including decoys) was very time efficient. For example,
NovoLign processing using the complete Swiss-Prot database
(containing 567413 sequences, 280 MB) takes only 0.7 minutes,
and NovoLign processing with the extensive UniRef100 database
(containing 352965587 sequences, ~180 GB) only 32.4 minutes,
respectively (on a desktop with an Intel® Core(™) i7-7700K and
32 GB RAM). A more detailed breakdown of the processing times
for the individual NovoLign modules is presented in SIDOC Fig. 38.

Metaproteomic quality plots, database
completeness, and complementation

A crucial step in metaproteomics is constructing the reference
sequence database. To date, there is no consensus on the
best method for creating such databases. However, generic
reference sequence databases have a very large search space,
which reduces sensitivity and increases the likelihood of false
discoveries. Additionally, these databases can be regarded as
incomplete, potentially missing crucial organisms or proteins
[22, 27, 35]. Therefore, constructing sample-specific databases
through whole metagenome sequencing is currently regarded
as the most effective approach for many metaproteomic
applications. However, because metagenomics experiments are

time-consuming and expensive, generic databases are often
employed to enable rapid quality monitoring in laboratory
experiments. Furthermore, several factors can affect the coverage
and accuracy of these databases, including DNA extraction,
sequencing, genome assembly, identification of open reading
frames, and taxonomic classification. Moreover, differences in
the timing of sampling and the storage conditions of biomass
between metagenomics and metaproteomics experiments can
lead to significant discrepancies due to possible degradation and
alterations in the microbial composition [22, 26, 27, 30, 78]. As a
result, constructing an accurate protein sequence database from
metagenomic data remains a delicate task.

While the large number of comparable datasets in single-
species proteomics allows for setting expectations for peptide
spectrum matches, the increased complexity of metaproteomics
samples makes it more difficult to monitor the quality of
these experiments. Consequently, poorly constructed reference
sequence databases that miss members of the community may
go unnoticed without the application of additional approaches.

One advantage of the alternative de novo sequencing in pro-
teomics is that it provides next to a likely amino acid sequence
also a quality metric for each spectrum. Spectra with good frag-
ment ion coverage will obtain a high quality score, and are also
expected to give a strong peptide spectrum match if the sequence
is present in the reference database.

This offers the opportunity for Novolign to identify missed
taxonomies or proteins through processing de novo sequences
from unmatched high-quality spectra. In order to demonstrate
this procedure we determined the fraction of high-quality spectra
(ALC>90) that were matched during database searching for our
employed reference strains, enrichment cultures, and synthetic
and natural communities (Fig. 3A). In order to investigate for
missed taxonomies we also processed the de novo sequences from
unmatched high-quality spectra through NovoLign and compared
the taxonomic profile with those obtained from database search-
ing (Fig. 3B).

Interestingly, for most samples >80% of the high-quality spec-
tra were matched during database searching, with a strong agree-
ment between the taxonomic profiles obtained by NovoLign and
database searching. The remaining fraction of unmatched high-
quality spectra did also not reveal new organisms for most sam-
ples and may therefore originate from modified peptides that
were not considered during the database search process.

However, in one sample (“Clostridium kluyveri enrichment”),
the fraction of matched high-quality spectra was <25% (Fig. 3A,
sample 10e), and the taxonomic profile obtained from NovoLign
significantly differed from the one obtained through database
searching (Fig. 3B and C). For instance, while the NovoLign compo-
sition indicates that the family Clostridiaceae is dominant (~80%),
the outcomes from database searching shows that Desulfovibri-
onaceae is dominant, with Clostridiaceae being only a minor compo-
nent. This reveals that the metagenomic reference database used

Spearman’s correlation coefficients for both synthetic communities across the taxonomic ranks: superkingdom (SK), phylum, class, order, and family.
Both synthetic communities show an excellent correlation between the abundances derived from NovoLign and the expected abundances. For the
SIHUMIx sample, the composition determined by database searching served as the reference. Graphs detailing replicate experiments can be found in
SI DOC Figure 24. (A) The figure illustrates the family-level microbial profiles derived from the proteomics and metaproteomics reference samples
processed with NovoLign. The size of the circles corresponds to the sequence counts for each taxonomic identifier. Each sample is depicted through
six distinct outputs, specifically three different LCA approaches—weighted LCA (W), conventional LCA (CON), and bitscore LCA (BIT)—for duplicate
proteomics samples. The reference samples displayed the expected microbial profiles, with only minor portions of unexpected taxonomies, denoted as
“other” on the y-axis. The labels below the graph (x-axis) provide the microbial sample identifier, with 1p corresponding to A. baumannii, 2p to
Aeromonas b., 3p to N. moscoviensis, 4p to P. denitrificans, 5p to S. mutans, 6p to S. cerevisiae, 7p to Halanaeroarchaeum sp., 8e to Ca. Kuenenia stuttgartiensis
enrichment, and 9e to Ca. Accumulibacter phosphatis enrichment, 10e to C. kluyveri enrichment, 11p to Lactobacillus sakei, 12c to aerobic granular
sludge community, 13¢ to SIHUMIx synthetic community, 14c to Kleiner equal protein synthetic community, 15p to C. thermarum, and 16p to C.
reinhardtii. The letters next to each number stand for: p=pure reference strain, e =enrichment, and ¢ = community.

G20z AInr gz uo Jasn ABojouyoa] 10 AusisAlun wea Aq 22861.82/1Z198oA/L /p/a]o1le/unwiodswsl/wod dno olwapese//:sdiy Woll papeojumoc]


https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae121#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae121#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae121#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae121#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae121#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae121#supplementary-data

Metaproteomics by sequence alignment | 9

A % high quality spectra B Microbial composition from Novolign composition from
matched during DB searching spectra matched during DB spectra unmatched during DB
searching searching
A

16p

15p
|

” Kleiner

14c

N
F

13c SIHUMIx

12c

I
I
I wastewater treatment
I microbiome

11p

|| clostridium
[ | enrichment
e ]

l Novolign microbial
composition from
8p ~ spectra not matched
during DB searching

10e =——p

9e

7p
6p
5p
ap

p = pure strains
e = enrichments
c =community

3p

2p Novolign = Sequence
alignment of de novo (DN)

peptide sequences

1p

P

G20z AInr gz uo Jasn ABojouyoa ] Jo Ansisaiun wied Aq 22861.8//1 2L 8BIA/L /y/o191B/UNWILLOISWS]/WO09 dNo olWapeoe//:sdiy Wodj papeojumod

100% 50% 0% 100% 50% 0% 50% 100%

C Complementation of incomplete metagenomic database for Clostridium enrichment

B Clostridiaceae B Bacteroidaceae [ Acidaminococcaceae HEEl Dysgonomonadaceae

I Desulfovibrionaceae  mmm Oscillospiraceae Nocardioidaceae I Lachnospiraceae

100% 4

A
5 w 2E404 fter .
- s = complementation
= o 2.E+04 of MG database
o ® 3.75x
o O 1E+04
©
g 50% Eg 5.E+03 = QOriginal MG database
2 < 0.E+00
3
-g *DNC = Complementation of metagenomic
s (MG) database (DB) with taxonomies
E 0% identified from NovoLign processed de novo
(J

sequences
Novolign DB searching DB searching using
with MG debase  compl. MG database

Figure 3. (A) The graph depicts the percentage of high quality spectra (ALC >90) that were matched during the database searching for the individual
(meta)proteomics samples. Except for one sample (C. kluyveri enrichment, 10e), the fraction of spectra matched during the database search was very
high. The labels next to the bars indicate the microbial sample, with 1p corresponding to A. baumannii, 2p to Aeromonas b., 3p to N. moscoviensis, 4p to P.
denitrificans, 5p to S. mutans, 6p to S. cerevisiae, 7p to Halanaeroarchaeum sp., 8e to Ca. Kuenenia stuttgartiensis enrichment, and 9e to Ca. Accumulibacter
phosphatis enrichment, 10e to C. kluyveri enrichment, 11p to L. sakei, 12c to aerobic granular sludge microbial community, 13c to SIHUMIx synthetic
community, 14c to Kleiner equal protein synthetic community, 15p to C. thermarum, and 16p to C. reinhardtii. The letters next to each number stand for:
p=pure reference strain, e=enrichment, and c=community. (B) The graph compares the taxonomic profiles at the family level obtained by database
searching (left bars) with those obtained by processing spectra that were not matched during database searching using NovoLign (right bars). For the
majority of the samples, NovoLign provided only a few additional taxonomic annotations, and the taxonomic profiles were very similar compared to
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for database searching poorly represents the sample analyzed
in the proteomics experiment. Although there could be several
reasons for this (as described above), the observed discrepancy
is most likely due to differences in storage times and sample
processing between metagenomics and metaproteomics experi-
ments.

Advantageously, NovoLign allows also to extract sequences
of the identified taxonomies from the UniRefl00 database.
These can then be used to complement the existing database
with the missing organisms. Therefore, we complemented the
original C. kluyveri enrichment database with all de novo identified
taxonomies (at the family level) and repeated the database
searching with the complemented database. This resulted in a
database that was significantly larger (~3.5 million sequences,
compared to the original 50 K sequences in the metagenomic
database), which strongly increased the number of peptide-
spectrum matches (3.75x compared to the original metagenomic
database) and aligned the taxonomic profiles with the one
obtained by NovoLign (Fig. 3C). The microbial profile obtained
after database complementation is also consistent with the
16S rRNA amplicon sequencing data and performed reactor
experiments for the same enrichment previously [66].

Discussion

Metaproteomics relies on reference sequence databases that
comprehensively cover all organisms present in a microbial
community. Current methods for constructing these databases
vary, but most applications require creating reference sequence
databases from whole metagenome sequencing experiments.
However, these experiments are time-consuming and complex,
potentially biasing the content of reference sequence databases
toward certain taxonomies. For instance, in the Clostridium
enrichment analyzed in this study, the metagenomic sequence
database covered the taxonomies present in the sample only
partially. Although sampling for proteomics and metagenomics
was performed simultaneously, suboptimal storage or extraction
biases led to significant mismatches between both experiments.
Unfortunately, unlike in single-species proteomics, biases in
metaproteomics often remain unidentified due to the lack of
benchmarks for highly complex samples.

Nevertheless, de novo sequencing allows to obtain the amino
acid sequence directly from mass spectrometric fragmentation
spectra. While other tools already employed de novo sequencing,
they only used exact sequence matches or precomputed pep-
tide databases. However, the sequence alignment employed by
NovoLign overcomes these limitations, which improves coverage
and broadens the range of applications.

Nevertheless, the generation of comprehensive de novo peptide
sequence lists depends on robust validation strategies and high-
quality peptide sequencing spectra. Therefore, the pipeline was

established using shotgun data obtained from high-resolution
Orbitrap mass spectrometers and validated with a broad spec-
trum of in silico, randomized, and experimental data. Furthermore,
the de novo sequence lists in this study were predominantly gen-
erated using PEAKS. However, any sequence list (or sequence tags)
in a tabular or text-like format that includes a column of peptide
sequences with the header “Peptide” can be processed.

Rapid taxonomic and functional profiling of complex micro-
bial samples—without requiring parallel metagenomics experi-
ments or extensive databases—can be highly beneficial. It enables
quick monitoring of compositional changes over time or qual-
ity checks before undertaking more extensive experiments, thus
saving time and costs. However, beyond rapid taxonomic profil-
ing and validation of conventional metaproteomics experiments
that employ database searching, we foresee additional appli-
cations. For example, de novo sequence alignment will also be
useful for identifying fragmentation spectra of modified pep-
tides, which often remain unmatched in complex metaproteomics
experiments [67, 79, 80]. Advanced de novo pipelines will also
become increasingly important in other life sciences applica-
tions, where reference sequence databases are challenging to
obtain. For instance, de novo sequence alignment can help to
assemble antibody sequences when sequencing of the coding
mRNA is not feasible [44, 45], or in identifying HLA-associated
peptides that derive from mutated sequences, spliced peptides,
or from non-coding regions [81]. Additionally, viruses, particu-
larly bacteriophages that selectively target and kill bacteria, are
increasingly studied. However, many viruses mutate with high fre-
quency, which makes their proteomic analysis using conventional
database searching a challenge [82].

In summary, we introduce a novel de novo metaproteomics
pipeline based on sequence alignment, called NovoLign. This
pipeline enables rapid taxonomic profiling with deep coverage
and allows for the evaluation of the quality of metaproteomics
experiments and reference sequence databases. Additionally,
NovoLign facilitates the complementation of reference databases
with sequences from organisms not present in the existing
database.

We optimized the DIAMOND alignment for short sequences
and de novo sequencing errors using a wide spectrum of in silico
peptide data. Moreover, we validated NovoLign with a broad spec-
trum of data from pure reference strains, synthetic communities,
enrichment cultures, and environmental microbial communities.
We also evaluated post-processing parameters, including taxo-
nomic grouping, to enhance taxonomic coverage and minimize
false positive annotations.

Finally, the taxonomic profiles obtained for the reference
strains and synthetic communities closely matched the expected
taxonomic composition, with <10% unexpected taxonomies or
decoy sequence matches. Complete proteomics datasets (~50 K de
novo sequences) can be aligned to Swiss-Prot in <1 minute and to

those derived from database searching. However, in the case of the C. kluyveri enrichment (10e), NovoLign processing of unmatched spectra showed a
substantial number of additional annotations, and a taxonomic profile very different from that obtained through database searching. (C) The graphs
illustrate the complementation of the incomplete metagenomic sequence database for the C. kluyveri enrichment (10e). The bars, from left to right,
display the microbial composition identified by NovoLign, database searching using the metagenomic database, and database searching using the de
novo complemented metagenomic database. The taxonomic profile obtained from processing the metaproteomics dataset against the UniRef100
database with NovoLign was significantly different from that obtained through database searching using the metagenomic reference sequence
database. Therefore, family level taxonomies identified by NovoLign were extracted from the UniRef100 database and integrated with the
metagenomic database (DNC = de novo complementation). The complemented database was then utilized for database searching, providing a profile
that closely aligned with the one obtained by NovoLign. Furthermore, the graph on the right highlights the increase in peptide spectrum matches (~3.5
times more compared to using the original metagenomic database) after the database complementation.
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UniRef100 in ~30 minutes, using a conventional desktop PC. The
large set of validation data and the description of the NovoLign
pipeline are publicly available and can be used to further optimize
the pipeline for individual applications.

Novolign serves as the urgently needed orthogonal approach
to the widely used database searching in metaproteomics.
Thereby, NovoLign allows for assessing the quality of conven-
tional metaproteomics experiments and furthermore supports
complementation of reference sequence databases to improve
sequence coverage.
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