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Abstract. We introduce a distributionally robust minimium mean square error estimation
model with a Wasserstein ambiguity set to recover an unknown signal from a noisy obser-
vation. The proposed model can be viewed as a zero-sum game between a statistician
choosing an estimator—that is, a measurable function of the observation—and a fictitious
adversary choosing a prior—that is, a pair of signal and noise distributions ranging over in-
dependent Wasserstein balls—with the goal to minimize and maximize the expected
squared estimation error, respectively. We show that, if the Wasserstein balls are centered
at normal distributions, then the zero-sum game admits a Nash equilibrium, by which the
players’ optimal strategies are given by an affine estimator and a normal prior, respectively.
We further prove that this Nash equilibrium can be computed by solving a tractable con-
vex program. Finally, we develop a Frank–Wolfe algorithm that can solve this convex
program orders of magnitude faster than state-of-the-art general-purpose solvers. We
show that this algorithm enjoys a linear convergence rate and that its direction-finding
subproblems can be solved in quasi-closed form.

Funding: This research was supported by the Swiss National Science Foundation [Grants BSCGI0_
157733 and 51NF40_180545], an Early Postdoc.Mobility Fellowship [Grant P2ELP2_195149], and the
European Research Council [Grant TRUST-949796].
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1. Introduction
Consider the problem of estimating an unknown parameter x ∈ Rn based on a linear measurement y ∈ Rm

corrupted by additive noise w ∈ Rm. This setup is formalized through the linear measurement model

y �Hx+w, (1.1)

where the observation matrix H ∈ Rm×n is assumed to be known. We further assume that the distribution Pw of
w has finite secondmoments and thatw is independent of x. Thus, the conditional distribution Py|x of y given x is ob-
tained by shifting Pw by Hx. We emphasize that none of the subsequent results rely on a particular ordering of the
dimension n of the parameter x and the dimensionm of the measurement y. The linear measurement Model (1.1) is
fundamental for numerous applications in engineering (e.g., linear systems theory, Golnaraghi and Kuo [34], Ogata
[56]), econometrics (e.g., linear regression, Stock and Watson [71], Wooldridge [74]; time series analysis, Chatfield
[13], Hamilton [36]), machine learning and signal processing (e.g., Kalman filtering, Kay [44], Murphy [53], Oppen-
heim and Verghese [58]), or information theory (e.g., multiple-input, multiple-output systems, Cover and Thomas
[15], MacKay [51]), etc. In addition, Model (1.1) also emerges naturally in many applications in operations research,
such as traffic management and control (van Lint and Djukic [73]), inventory control (Aviv [2]), advertising and
promotion budgeting (Sriram and Kalwani [70]), or resource management (Rubel andNaik [63]).

An estimator of x given y is a measurable function ψ : Rm → Rn that grows at most linearly. Thus, there exists
C > 0 such that | ψ(y) |≤ C(1+ ‖y‖) for all y ∈ Rm. The function value ψ(y) is the prediction of x based on the mea-
surement y under the estimator ψ. In the following, we denote the family of all estimators by F . The quality of
an estimator is measured by a risk function R : F × Rn → R, which quantifies the mismatch between the parame-
ter x and its prediction ψ(y). A popular risk function is the mean square error (MSE):

R(ψ,x) � EPy|x ‖x−ψ(y)‖2
[ ]

,
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which defines the estimation error as the expected squared Euclidean distance between ψ(y) and x. If x is known,
then R(ψ,x) can be minimized directly, and the constant estimator ψ?(y) ≡ x is optimal. In practice, however, x is
unobservable. Otherwise, there would be no need to solve an estimation problem in the first place. With x un-
known, it is impossible to minimize the MSE directly. The statistics literature proposes two complementary
workarounds for this problem: the Bayesian approach and the minimax approach.

The Bayesian statistician treats x as a random vector governed by a prior distribution Px that captures the statis-
tician’s beliefs about x before seeing y (Kay [44, section 11.4]) and solves the minimum MSE (MMSE) estimation
problem

minimize
ψ∈F

EPx R(ψ,x)
[ ]

: (1.2)

If the distribution Px of x has finite second moments, then (1.2) is solvable. In this case, the optimal estimator,
which is usually termed the Bayesian MMSE estimator, is of the form ψ?

B(y) � EPx|y[x], where the conditional dis-
tribution Px|y of x given y is obtained from Px and Py|x via Bayes’ theorem. However, the Bayesian MMSE estima-
tor suffers from two conceptual shortcomings. First, ψ?

B is highly sensitive to the prior distribution Px, which is
troubling if the statistician has little confidence in the statistician’s beliefs. Second, computing ψ?

B requires precise
knowledge of the noise distribution Pw, which is typically unobservable and, thus, uncertain at least to some ex-
tent. Moreover, ψ?

B may generically have a complicated functional form, and evaluating ψ?
B(y) to high precision

for a particular measurement y (e.g., via Monte Carlo simulation) may be computationally challenging if the di-
mension of x is high.

These shortcomings are mitigated if we restrict the space F of all measurable estimators in (1.2) to the space

A � {ψ ∈ F : ∃A ∈ Rn×m, b ∈ Rn with ψ(y) � Ay+ b ∀y ∈ Rm} (1.3)

of all affine estimators. In this case, the distributions Px and Pw need not be fully known. Instead, in order to eval-
uate the optimal affine estimator ψ?

A(y) � A?y+ b?, it is sufficient to know the mean vectors μx and μw as well as
the covariance matrices Σx and Σw of the distributions Px and Pw, respectively. If HΣxH	 +Σw 
 0, which is the
case if the noise covariance matrix has full rank, then the coefficients of the best affine estimator can be computed
in closed form. Using (1.1) together with the independence of x and w, one can show that

A? � ΣxH	(HΣxH	 +Σw)−1 and b? � μx −A?(Hμx +μw): (1.4)

If the random vector (x, y) follows a normal distribution, then the best affine estimator is also optimal among all
measurable estimators. In general, however, we do not know how much optimality is sacrificed by restricting at-
tention to affine estimators. Moreover, the uncertainty about Px and Pw transpires through to their first- and
second-order moments. As the coefficients (1.4) tend to be highly sensitive to these moments, their uncertainty
remains worrying.

The minimax approach models the statistician’s prior knowledge concerning x via a convex closed uncertainty
set X ⊆ Rn as commonly used in robust optimization. The minimax MSE estimation problem is then formulated
as a zero-sum game between the statistician, who selects the estimator ψ ∈ F with the goal to minimize the MSE,
and nature, who chooses the parameter value x ∈ X with the goal to maximize the MSE:

minimize
ψ∈F

max
x∈X R(ψ,x): (1.5a)

By construction, any minimizer ψ?
M of (1.5a) incurs the smallest possible estimation error under the worst param-

eter realization within the uncertainty set X. For this reason ψ?
M is called a minimax estimator. Note that the MSE

R(ψ,x) generically displays a complicated nonconcave dependence on x for any fixed ψ, which implies that na-
ture’s inner maximization problem in (1.5a) is usually nonconvex. Thus, we should not expect the zero-sum
game (1.5a) between the statistician and nature to admit a Nash equilibrium. However, the inner maximization
problem can be convexified by allowing nature to play mixed (randomized) strategies, that is, by reformulating
(1.5a) as the (equivalent) convex–concave saddle point problem

minimize
ψ∈F

max
Qx∈M(X)

EQx R(ψ,x)
[ ]

, (1.5b)

where M(X) stands for the family of all distributions supported on X with finite second-order moments. As
EQx

[R(ψ,x)] is convex in ψ for any fixed Qx and concave (linear) in Qx for any fixed ψ, and F and M(X) are both
convex sets, the zero-sum game (1.5b) admits a Nash equilibrium (ψ?

M,Q?
x) under mild technical conditions.

Note that ψ?
M is again a minimax estimator. Moreover, ψ?

M is the statistician’s best response to nature’s choice Q?
x

and vice versa. Using the terminology introduced herein, this means that ψ?
M is the Bayesian MMSE estimator

Nguyen et al.: Wasserstein Distributionally Robust MMSE Estimator
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corresponding to the prior Q?
x. For this reason, Q

?
x is usually referred to as the least favorable prior. Even though

the minimax approach exonerates the statistician from narrowing down the statistician’s beliefs to a single prior
distribution Qx, it still requires precise information about Pw, which may not be available in practice. On the oth-
er hand, as it robustifies the estimator against any distribution on X, the minimax approach is often regarded as
overly pessimistic. Moreover, as in the case of the Bayesian MMSE estimation problem, ψ?

M may generically
have a complicated functional form, and evaluating ψ?

M(y) to high precision may be computationally challenging
if the dimension of x is high. A simple remedy to mitigate these computational challenges would be to restrict F
to the family A of affine estimators. The loss of optimality incurred by this approximation for different choices of
X is discussed in Juditsky and Nemirovski [42, section 4] and the references therein.

In this paper, we bridge the Bayesian and the minimax approaches by leveraging tools from distributionally
robust optimization. Specifically, we study distributionally robust estimation problems of the form

minimize
ψ∈F

max
Qx∈Qx

EQx
R(ψ, x)[ ]

, (1.6)

where Qx ⊆M(Rn) is an ambiguity set of multiple (possibly infinitely many) plausible prior distributions of x.
Note that if the ambiguity set collapses to the singleton Qx � {Px} for some Px ∈M(Rn), then the distributionally
robust estimation problem (1.6) reduces to the Bayesian MMSE estimation problem (1.2). Similarly, under the
ambiguity set Qx �M(X) for some convex closed uncertainty set X ⊆ Rn, Problem (1.6) reduces to the minimax
mean square error estimation problem (1.5b). By providing considerable freedom in tailoring the ambiguity set
Qx, the distributionally robust approach, thus, allows the statistician to reconcile the specificity of the Bayesian
approach with the conservativeness of the minimax approach.

The estimation model (1.6) still relies on the premise that the noise distribution Pw is precisely known, and this
assumption is not tenable in practice. However, nothing prevents us from further robustifying (1.6) against un-
certainty in Pw. To this end, we define M(Rn+m) as the family of all joint distributions of x and w with finite
second-order moments. Moreover, we define the average riskR : F ×M(Rn+m) → R through

R(ψ,P) � EP[‖x−ψ(Hx+w)‖2]:
If P � Px × Pw for some marginal distributions Px ∈M(Rn) and Pw ∈M(Rm), which implies that x and w are inde-
pendent under P, and if Py|x is defined as Pw shifted by Hx, then R(ψ,P) � EPx[R(ψ,x)]. Thus, the average risk
R(ψ,P) corresponds indeed to the risk R(ψ,x) averaged under the marginal distribution Px. In the remainder of
this paper, we study generalized distributionally robust estimation problems of the form

minimize
ψ∈F sup

Q∈B(P̂)
R(ψ,Q), (1.7)

where the ambiguity set B(P̂) ⊆M(Rn+m) captures distributional uncertainty in both Px and Pw. Specifically, we
model B(P̂) as a set of factorizable distributions Q �Qx ×Qw close to a nominal distribution P̂ � P̂x × P̂w in the
sense that Qx and Qw are close to P̂x and P̂w in Wasserstein distance, respectively.

Definition 1.1 (Wasserstein Distance). For any d ∈ N, the type 2 Wasserstein distance between two distributions
Q1,Q2 ∈M(Rd) is defined as

W(Q1,Q2) � inf
π∈Π(Q1,Q2)

∫
Rd×Rd

‖ξ1 − ξ2‖2π(dξ1,dξ2)
( )1

2

,

where Π(Q1,Q2) denotes the set of all joint distributions or couplings π ∈M(Rd × Rd) of the random vectors
ξ1 ∈ Rd and ξ2 ∈ Rd with marginal distributions Q1 and Q2, respectively.

The dependence of the Wasserstein distance on d is notationally suppressed to avoid clutter. Note that
W(Q1,Q2)2 is naturally interpreted as the optimal value of a transportation problem that determines the mini-
mum cost of moving the distribution Q1 to Q2, where the cost of moving a unit probability mass from ξ1 to ξ2 is
given by the squared Euclidean distance ‖ξ1 − ξ2‖2. For this reason, the optimization variable π is sometimes re-
ferred to as a transportation plan and the Wasserstein distance as the earth mover’s distance.

Formally, we define theWasserstein ambiguity set as

B(P̂) � Qx × Qw :
Qx ∈ M(Rn), W(Qx, P̂x) ≤ ρx

Qw ∈ M(Rm), W(Qw, P̂w) ≤ ρw

{ }
, (1.8)

where P̂x and P̂w represent prescribed nominal distributions that can be constructed via statistical analysis or

Nguyen et al.: Wasserstein Distributionally Robust MMSE Estimator
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expert judgment, and the Wasserstein radii ρx ≥ 0 and ρw ≥ 0 constitute hyperparameters that quantify the statis-
tician’s uncertainty about the nominal distributions of x and w. We emphasize that the distributionally robust
estimation model (1.7) generalizes all preceding models. Indeed, if ρw � 0, then (1.7) reduces to the first distribu-
tionally robust model (1.6), which, in turn, encompasses both the MMSE estimation problem (1.2) (for ρx � 0)
and the minimax estimation problem (1.5b) (for ρx �∞) as special cases.

The distributionally robust estimation model (1.7) is conceptually attractive because the hyperparameters
ρx and ρw allow the statistician to specify the statistician’s level of trust in the nominal prior distribution P̂x and
the nominal noise distribution P̂w. In the remainder of the paper, we show that (1.7) is also computationally at-
tractive. This is maybe surprising because mixtures of factorizable distributions are generally not factorizable,
which implies that the Wasserstein ambiguity set B(P̂) is nonconvex.

We remark that one could also work with an alternative ambiguity set of the form

B′(P̂) � Qx × Qw : Qx ∈ M(Rn), Qw ∈ M(Rm), W(Qx × Qw, P̂x × P̂w) ≤ ρ
{ }

, (1.9)

which involves only a single hyperparameter ρ ≥ 0 and is, therefore, less expressive but maybe easier to calibrate
than B(P̂). The following lemma is instrumental to understanding the relation between B(P̂) and B′(P̂). The proof
of this result is relegated to the appendix.

Lemma 1.1 (Pythagoras’ Theorem for Wasserstein Distances). For any Q1
x,Q

2
x ∈M(Rn) and Q1

w,Q
2
w ∈M(Rm), we

haveW(Q1
x ×Q1

w, Q2
x ×Q2

w)2 � W(Q1
x, Q

2
x)2 + W(Q1

w, Q2
w)2.

If we denote the ambiguity sets (1.8) and (1.9) temporarily by Bρx,ρw(P̂) and B′
ρ(P̂) in order to make their depen-

dence on the hyperparameters explicit, then Lemma 1.1 implies that

B′
ρ(P̂) �

⋃
ρ2x+ρ2w≤ρ2

Bρx,ρw(P̂):

This relation suggests that B′
ρ(P̂) could be substantially larger than Bρx,ρw(P̂) for any fixed ρ,ρx,ρw ≥ 0 with ρ2

x +
ρ2
w � ρ2 and, thus, lead to substantially more conservative estimators.
In the following, we summarize the key contributions of this paper.
1. We construct a safe approximation for the distributionally robust MMSE estimation problem (1.7) by restrict-

ing attention to affine estimators and by maximizing the average risk over an outer approximation of the Wasser-
stein ambiguity set, which is described through first- and second-order moment conditions. We then prove that
this safe approximation is equivalent to a tractable convex program.

2. We also study a dual estimation problem, which is obtained by interchanging the minimization and maximiza-
tion operations in the primal problem (1.7) and, thus, lower bounds the optimal value of (1.7). We then construct a
safe approximation for this dual problem by restricting the Wasserstein ambiguity set to contain only normal distri-
butions. Assuming that the nominal distribution is normal, we prove that this safe approximation is again equiva-
lent to a tractable convex program.

3. By construction, the primal and dual estimation problems are upper and lower bounded by their respective
safe approximations.We prove, however, that the optimal values of the safe approximations collapse if the nominal
distribution is normal. This result has three important implications.

a. The primal and dual estimation problems and their safe approximations are all equivalent. This implies
via contributions (1) and (2) that both original estimation problems are tractable.
b. The primal estimation problem is solved by an affine estimator, and the dual estimation problem is solved

by a normal distribution. In other words, we have discovered a new class of adaptive, distributionally robust
optimization problems for which affine decision rules are optimal.
c. The affine estimator and the normal distribution that solve the primal and dual estimation problems,

respectively, form a Nash equilibrium for the zero-sum game between the statistician and nature. Thus, the
optimal normal distribution constitutes a least favorable prior, and the optimal affine estimator represents the
corresponding Bayesian MMSE estimator.

4. We leverage these insights to prove that the optimal affine estimator can be constructed easily from the least fa-
vorable prior without the need to solve another optimization problem.

5. We argue that our main results remain valid if the nominal distribution is any elliptical distribution.
6. We develop a tailor-made Frank–Wolfe (FW) algorithm that can solve the dual estimation problem orders of

magnitude faster than state-of-the-art general-purpose solvers. We show that this algorithm enjoys a linear conver-
gence rate. Moreover, we prove that the direction-finding subproblems can be solved in quasi-closed form, which
means that the algorithm offers a favorable iteration complexity.

Nguyen et al.: Wasserstein Distributionally Robust MMSE Estimator
4 Mathematics of Operations Research, 2023, vol. 48, no. 1, pp. 1–37, © 2021 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

15
4.

59
.1

24
.1

13
] 

on
 1

9 
A

pr
il 

20
23

, a
t 0

0:
59

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



We highlight that the Wasserstein ambiguity set (1.8) is nonconvex as it contains only distributions under
which the signal and the noise are independent. To our best knowledge, we describe the first distributionally ro-
bust optimization model with independence conditions that admits a tractable reformulation. We also emphasize
that some of our results hold only if the nominal distribution P̂ is normal or elliptical. Although this is restrictive,
there is strong evidence that normal distributions are natural candidates for P̂. One reason for this is that the nor-
mal distribution has maximum entropy among all distributions with prescribed first- and second-order moments
(Cover and Thomas [15, section 12]). Therefore, it has appeal as the least prejudiced baseline model. Similarly, if
the parameter x in (1.1) is normally distributed, then a normal distribution minimizes the mutual information be-
tween x and the observation y among all noise distributions with bounded variance (Diggavi and Cover [18, lem-
ma II.2]). In this sense, normally distributed noise renders the observations least informative. Conversely, if the
noise in (1.1) is normally distributed, then a normal distribution maximizes the MMSE across all distributions of
x with bounded variance (Guo et al. [35, proposition 15]). In this sense, normally distributed parameters are the
hardest to estimate. Using normal nominal distributions, thus, amounts to adopting a worst-case perspective.

In the following, we briefly survey the landscape of existing MMSE estimation models that have a robustness
flavor. Several authors have addressed the minimax MMSE estimation problem (1.5a) from the perspective of
classical robust optimization (Beck and Eldar [3], Beck et al. [5], Eldar et al. [25, 26, 27], Juditsky and Nemirovski
[43]). To guarantee computational tractability, in all of these papers, the estimators are restricted to be
affine functions of the measurements. In this case, the minimax MMSE estimation problem can be reformulated
as a tractable semidefinite program (SDP) if the uncertainty set X is an ellipsoid (Eldar et al. [26, 27]) or an
intersection of two ellipsoids (Beck and Eldar [3]). Similar SDP reformulations are available if the observation
matrix H is also subject to uncertainty and ranges over a spectral norm ball (Eldar et al. [27]) or displays a block
circulant structure, with each block ranging over a Frobenius norm ball (Beck et al. [5]). If the uncertainty set is
described by an intersection of several ellipsoids, then the minimax MMSE estimation problem admits an
(inexact) SDP relaxation (Eldar et al. [25]). Even though the restriction to affine estimators may incur a loss of op-
timality, affine estimators are known to be near-optimal in all of these minimax estimation models (Juditsky and
Nemirovski [43]).

Another stream of literature investigates the distributionally robust estimation model (1.6) with an ambiguous
signal distribution and a crisp noise distribution. When focusing on affine estimators only, this model can be
reformulated as a tractable SDP if the uncertainty in the signal distribution is characterized through spectral con-
straints on its covariance matrix (Eldar and Merhav [24]). This tractability result also extends to uncertain obser-
vation matrices. Similar SDP reformulations are available for the distributionally robust estimation model (1.7)
when both the signal and the noise distribution are ambiguous and their covariance matrices are subject to
spectral constraints (Eldar [23]). Extensions to uncertain block circulant observation matrices are discussed in
Beck et al. [4].

Some authors study less structured distributionally robust estimation problems in which the signal x and the
measurement y are governed by a distribution that may not obey the linear measurement model (1.1). In this
case, the zero-sum game between the statistician and nature admits a Nash equilibrium if nature may choose
any distribution that has a bounded Kullback–Leibler divergence with respect to a normal nominal distribution
(Levy and Nikoukhah [48]). Intriguingly, the (affine) Bayesian MMSE estimator for the nominal distribution is
optimal in this model and, thus, enjoys strong robustness properties. On the downside, there is no hope to im-
prove this estimator’s performance by tuning the size of the Kullback–Leibler ambiguity set. The underlying dis-
tributionally robust estimation model also serves as a fundamental building block for a robust Kalman filter
(Levy and Nikoukhah [49]). Extensions to general τ-divergence ambiguity sets that contain only normal distribu-
tions are reported in Zorzi [77]. We emphasize that all papers surveyed so far merely derive SDP reformulations
or SDP relaxations that can be addressed with general-purpose solvers, but none of them develops a customized
solution algorithm.

The present paper extends the distributionally robust MMSE estimation model introduced in Shafieezadeh-
Abadeh et al. [67], which accommodates a simple Wasserstein ambiguity set for the distribution of the signal-
measurement pairs and makes no structural assumptions about the measurement noise. Note, however, that the
linear measurement model (1.1) abounds in the literature on control theory, signal processing, and information
theory, implying that there are numerous applications in which the measurement noise is known to be additive
and independent of the signal. As we see in Section 7, ignoring this structural information may result in weak es-
timators that sacrifice predictive performance. In Sections 2–4, we further see that constructing an explicit Nash
equilibrium is considerably more difficult in the presence of structural information. Finally, we describe here an
accelerated Frank–Wolfe algorithm that improves the sublinear convergence rate established in Shafieezadeh-
Abadeh et al. [67] to a linear rate. We emphasize that, in contrast to the robust MMSE estimators derived in Levy
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and Nikoukhah [48] and Zorzi [77] that are insensitive to the radii of the underlying divergence-based ambiguity
sets, the estimators constructed here change with the Wasserstein radii ρx and ρw. Thus, using a Wasserstein am-
biguity set to robustify the nominal MMSE estimation problem has a regularizing effect and leads to a parametric
family of estimators that can be tuned to attain maximum prediction accuracy. Similar connections between ro-
bustification and regularization have previously been discovered in the context of statistical learning (Shafieeza-
deh-Abadeh et al. [66]) and covariance estimation (Nguyen et al. [55]).

The paper is structured as follows. Sections 2 and 3 develop conservative approximations for the primal
and dual distributionally robust MMSE estimation problems, respectively, both of which are equivalent to
tractable convex programs. Section 4 shows that, if the nominal distribution is normal, then both approxi-
mations are exact and can be used to find a Nash equilibrium for the zero-sum game between the statistician
and nature. Extensions to nonnormal nominal distributions are discussed in Section 5. Section 6 develops
an efficient Frank–Wolfe algorithm for the dual MMSE estimation problem, and Section 7 reports on numer-
ical results.

1.1. Notation
For any A ∈ Rd×d, we use Tr[A] to denote the trace and ‖A‖ � ������������

Tr[A	A]√
to denote the Frobenius norm of A. By slight

abuse of notation, the Euclidean norm of v ∈ Rd is also denoted by ‖v‖. Moreover, Id stands for the identity matrix in
Rd×d. For any A,B ∈ Rd×d, we use 〈A,B〉 � Tr[A	B] to denote the inner product and A⊗B to denote the Kronecker
product of A and B. The space of all symmetric matrices in Rd×d is denoted by Sd. We use Sd+ (Sd++) to represent the
cone of symmetric positive semidefinite (positive definite) matrices in Sd. For any A,B ∈ Sd, the relation A � B
(A 
 B) means that A−B ∈ Sd+ (A−B ∈ Sd++). The unique positive semidefinite square root of a matrix A ∈ Sd+ is
denoted by A

1
2. For any A ∈ Sd, λmin (A) and λmax (A) denote the minimum and maximum eigenvalues of A,

respectively.

2. The Gelbrich MMSE Estimation Problem
The distributionally robust estimation problem (1.7) poses two fundamental challenges. First, checking feasibility
of the inner maximization problem in (1.7) requires computing the Wasserstein distances W(P̂x,Qx) and
W(P̂w,Qw), which is #P-hard even if P̂x and P̂w are simple two-point distributions and Qx and Qw are uniform
distributions on hypercubes (Taşkesen et al. [72]). Efficient algorithms for computing Wasserstein distances are
available only if both involved distributions are discrete (Cuturi [16], Peyré and Cuturi [60], Solomon et al. [69]),
and analytical formulas are only known in exceptional cases (e.g., if both distributions are Gaussian (Givens and
Shortt [33]) or belong to the same family of elliptical distributions (Gelbrich [32])). The second challenge is that
the outer minimization problem in (1.7) constitutes an infinite-dimensional functional optimization problem. In
order to bypass these computational challenges, we first seek a conservative approximation for (1.7) by relaxing
the ambiguity set B(P̂) and restricting the feasible set F . We begin by constructing an outer approximation for
the ambiguity set. To this end, we introduce a new distance measure on the space of mean vectors and covari-
ance matrices.

Definition 2.1 (Gelbrich Distance). For any d ∈ N, the Gelbrich distance between two tuples of mean vectors and
covariance matrices (μ1,Σ1), (μ2,Σ2) ∈ Rd × Sd+ is defined as

G((μ1,Σ1), (μ2,Σ2)) �
��������������������������������������������������
‖μ1 −μ2‖2 +Tr Σ1 +Σ2 − 2 Σ

1
2
2Σ1Σ

1
2
2

( )1
2

[ ]√
:

The dependence of the Gelbrich distance on d is notationally suppressed in order to avoid clutter. One can show
that G constitutes a metric on Rd × Sd+; that is, G is symmetric, nonnegative, vanishes if and only if
(μ1,Σ1) � (μ2,Σ2), and satisfies the triangle inequality (Givens and Shortt [33]).

Proposition 2.1 (Commuting Covariance Matrices (Givens and Shortt [33])). If μ1,μ2 ∈ Rd are identical andΣ1,Σ2 ∈ Sd+
commute (Σ1Σ2 � Σ2Σ1), then the Gelbrich distance simplifies to G((μ1,Σ1), (μ2,Σ2)) � ‖ ����

Σ1
√ − ����

Σ2
√ ‖.

Although the Gelbrich distance is nonconvex, the squared Gelbrich distance is convex in all of its arguments.

Proposition 2.2 (Convexity and Continuity of the Squared Gelbrich Distance). The squared Gelbrich distance
G((μ1,Σ1),(μ2,Σ2))2 is jointly convex and continuous in μ1,μ2 ∈ Rd and Σ1,Σ2 ∈ Sd+.
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Proof of Proposition 2.2. By Malagò et al. [52, proposition 2], the squared Gelbrich distance G((μ1,Σ1),(μ2,Σ2))2
coincides with the optimal value of the semidefinite program

min ‖μ1 −μ2 ||22 +Tr[Σ1 +Σ2 − 2C]
s:t: C ∈ Rd×d

Σ1 C
C	 Σ2

[ ]
� 0,

and see also Dowson and Landau [19, section 3]). Less general results that hold when one of the matrices Σ1 or
Σ2 is positive definite are reported in Givens and Shortt [33], Knott and Smith [46], and Olkin and Pukelsheim
[57]. The convexity of the squared Gelbrich distance then follows from Bertsekas [8, proposition 3.3.1], which
guarantees that convexity is preserved under partial minimization. Moreover, the continuity of the squared Gel-
brich distance follows from the continuity of the matrix square root established in Lemma A.2. w

Our interest in the Gelbrich distance stems mainly from the next proposition, which lower bounds the Wasser-
stein distance between two distributions in terms of their first- and second-order moments. We later see that this
bound becomes tight when Q1 and Q2 are normal or—more generally—elliptical distributions of the same type.

Proposition 2.3 (Moment Bound on the Wasserstein Distance (Gelbrich [32, Theorem 2.1])). For any distributionsQ1,
Q2 ∈M(Rd) with mean vectors μ1, μ2 ∈ Rd and covariance matrices Σ1, Σ2 ∈ Sd+, respectively, we have

W(Q1,Q2) ≥ G((μ1,Σ1), (μ2,Σ2)):
Proposition 2.3 prompts us to construct an outer approximation for the Wasserstein ambiguity set B(P̂) by using
the Gelbrich distance. Specifically, we define the Gelbrich ambiguity set centered at P̂ � P̂x × P̂w as

G(P̂) � Qx ×Qw :

Qx ∈M(Rn), μx � EQx[x], Σx � EQx[xx	] −μxμ
	
x

Qw ∈M(Rm), μw � EQw
[w], Σw � EQw

[ww	] −μwμ
	
w

G((μx,Σx), (μ̂x, Σ̂x)) ≤ ρx, G((μw,Σw), (μ̂w, Σ̂w)) ≤ ρw

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭,

where μ̂x and μ̂w denote the mean vectors and Σ̂x and Σ̂w the covariance matrices of P̂x and P̂w, respectively.

Corollary 2.1 (Relation Between Gelbrich and Wasserstein Ambiguity Sets). For any P̂ � P̂x × P̂w with P̂x ∈M(Rn)
and P̂w ∈M(Rm), we have B(P̂) ⊆G(P̂).
Proof of Corollary 2.1. Select any Q �Qx ×Qw ∈ B(P̂) and define μx and μw as the mean vectors and Σx and Σw as
the covariance matrices of Qx and Qw, respectively. By Proposition 2.3, we then have

G((μx,Σx), (μ̂x, Σ̂x)) ≤ W(Qx, P̂x) ≤ ρx and G((μw,Σw), (μ̂w, Σ̂w)) ≤ W(Qw, P̂w) ≤ ρw,

which, in turn, implies that Q ∈G(P̂). We may, thus, conclude that B(P̂) ⊆G(P̂). w

By restricting F to the set A of all affine estimators while relaxing B(P̂) to the Gelbrich ambiguity set G(P̂), we
obtain the following conservative approximation of the distributionally robust estimation problem (1.7).

minimize
ψ∈A

sup
Q∈G(P̂)

R(ψ,Q) (2.1)

From now on we call (1.7) and (2.1) the Wasserstein and Gelbrich MMSE estimation problems, and we refer to
their minimizers as Wasserstein and Gelbrich MMSE estimators, respectively. As the average risk R(ψ,Q) of a
fixed affine estimator ψ ∈A is convex and quadratic in the mean vector μ and affine in the covariance matrix Σ
of the distribution Q, the inner maximization problem in (2.1) is nonconvex. Thus, one might suspect that the
Gelbrich MMSE estimation problem is intractable. We show, however, that (2.1) is equivalent to a finite convex
program that can be solved in polynomial time. To this end, we first show that, under mild conditions, Problem
(2.1) is stable with respect to changes of its input parameters.

Proposition 2.4 (Regularity of the Gelbrich MMSE Estimation Problem). The Gelbrich MMSE estimation problem (2.1)
enjoys the following regularity properties:

i. Conservativeness: Problem (2.1) upper bounds the WassersteinMMSE estimation problem (1.7).
ii. Solvability: If ρx > 0 and ρw > 0, then the minimum of (2.1) is attained.
iii. Stability: If ρx > 0 and ρw > 0, then the minimum of (2.1) is continuous in (μ̂x, μ̂w, Σ̂x, Σ̂w).
The proof of Proposition 2.4 is lengthy and technical and is, therefore, relegated to the appendix. We are now

ready to prove the main result of this section.
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Theorem 2.1 (Gelbrich MMSE Estimation Problem). The Gelbrich MMSE estimation problem (2.1) is equivalent to the
finite convex optimization problem

inf γx(ρ2
x − Tr[Σ̂x]) + γ2

x〈[γxIn − (In − AH)	(In − AH)]−1, Σ̂x〉
+ γw(ρ2

w − Tr[Σ̂w]) + γ2
w〈(γwIm − A	A)−1, Σ̂w〉

s:t: A ∈ Rn×m, γx,γw ∈ R+
γxIn − (In − AH)	(In − AH) 
 0, γwIm − A	A 
 0:

(2.2)

Moreover, if ρx > 0 and ρw > 0, then (2.2) admits an optimal solution1 A?, and the infimum of (2.1) is attained by the affine
estimator ψ?(y) � A?y+ b?, where b? � μ̂x −A?(Hμ̂x + μ̂w).

The strict semidefinite inequalities in (2.2) ensure that the inverse matrices in the objective function exist.

Proof of Theorem 2.1. Throughout this proof, we denote by ψA,b ∈A the affine estimator ψA,b(y) � Ay+ b corre-
sponding to the sensitivity matrix A ∈ Rn×m and the vector b ∈ Rn of intercepts. In the following, we fix some A ∈
Rn×m and define K � In −AH in order to simplify the notation. By the definitions of the average risk R(ψ,Q) and
the Gelbrich ambiguity set G(P̂), we then have

inf
b

sup
Q∈G(P̂)

R(ψA,b,Q) �
inf
b

sup
μx,μw

Σx,Σw�0

〈K	K,Σx +μxμ
	
x 〉 + 〈A	A,Σw +μwμ

	
w〉 + b	b

− 2μ	
x K

	Aμw − 2b	(Kμx −Aμw)

s:t: G((μx , Σx), (μ̂x, Σ̂x))2 ≤ ρ2
x

G((μw, Σw), (μ̂w, Σ̂w))2 ≤ ρ2
w:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(2.3)

The outer minimization problem in (2.3) is convex because the objective function of the minimax problem is con-
vex in b for any fixed (μx,μw,Σx,Σw) and because convexity is preserved under maximization. Moreover, the
inner maximization problem in (2.3) is nonconvex because its objective function is convex in (μx,μw). This obser-
vation prompts us to maximize over (μx,μw) and (Σx,Σw) sequentially and to reformulate (2.3) as

inf
b

sup
μx,μw‖μx−μ̂x‖≤ρx‖μw−μ̂w‖≤ρw

sup
Σx,Σw�0

〈K	K,Σx +μxμ
	
x 〉 + 〈A	A,Σw +μwμ

	
w〉 + b	b

− 2μ	
x K

	Aμw − 2b	(Kμx −Aμw)

s:t: G((μx, Σx), (μ̂x , Σ̂x))2 ≤ ρ2
x

G((μw, Σw), (μ̂w, Σ̂w))2 ≤ ρ2
w:

(2.4)

As ‖μx − μ̂x‖ ≤ G((μx,Σx), (μ̂x, Σ̂x)) and as this inequality is tight for Σx � Σ̂x, the extra constraint ‖μx − μ̂x‖ ≤ ρx is
actually redundant and merely ensures that the maximization problem over Σx remains feasible for any admissi-
ble choice of μx. An analogous statement holds for μw and Σw. By the definition of the Gelbrich distance, the in-
nermost maximization problem over (Σx,Σw) in (2.4) admits the Lagrangian dual

inf
γx,γw≥0

sup
Σx,Σw�0

〈K	K,Σx +μxμ
	
x 〉 + 〈A	A,Σw +μwμ

	
w〉 + b	b− 2μ	

x K
	Aμw − 2b	(Kμx −Aμw)

+ γx(ρ2
x − ‖μx − μ̂x‖2 −Tr[Σx + Σ̂x − 2(Σ̂

1
2

xΣxΣ̂
1
2

x)
1
2])

+ γw(ρ2
w − ‖μw − μ̂w‖2 −Tr[Σw + Σ̂w − 2(Σ̂

1
2

wΣwΣ̂
1
2

w)
1
2]):

(2.5)

Strong duality holds by Bertsekas [8, proposition 5.5.4], which applies because the primal problem has a non-
empty compact feasible set. Next, we observe that the inner maximization problem in (2.5) can be solved analyti-
cally by using Proposition A.1, and thus, the dual problem (2.5) is equivalent to

inf
γx,γw

γxIn
K	K
γwIm
A	A

〈K	K,μxμ
	
x 〉 + 〈A	A,μwμ

	
w〉 + b	b − 2μ	

x K
	Aμw − 2b	(Kμx − Aμw)

+ γx(ρ2
x − ‖μx − μ̂x‖2 − Tr[Σ̂x] + γx〈(γxIn − K	K)−1, Σ̂x〉)

+ γw(ρ2
w − ‖μw − μ̂w‖2 − Tr[Σ̂w] + γw〈(γwIm − A	A)−1, Σ̂w〉): (2.6)
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Substituting (2.6) back into (2.4) then allows us to reformulate the Gelbrich MMSE estimation problem (2.6) as

inf
b

sup
μx,μw

‖μx−μ̂x‖≤ρx

‖μw−μ̂w‖≤ρw

inf
γx,γw

γxIn
K	K
γwIm
A	A

〈K	K,μxμ
	
x 〉 + 〈A	A,μwμ

	
w〉 + b	b − 2μ	

x K
	Aμw − 2b	(Kμx − Aμw)

+γx(ρ2
x − ‖μx − μ̂x‖2 − Tr[Σ̂x] + γx〈(γxIn − K	K)−1, Σ̂x〉)

+γw(ρ2
w − ‖μw − μ̂w‖2 − Tr[Σ̂w] + γw〈(γwIm − A	A)−1, Σ̂w〉):

(2.7)

The infimum of the inner minimization problem over (γx,γw) in (2.7) is convex quadratic in b. Moreover, it is
concave in (μx,μw) because K	K− γxIn ≺ 0 and A	A− γwIm ≺ 0 for any feasible choice of (γx,γw) and because con-
cavity is preserved under minimization. Finally, the feasible set for (μx,μw) is convex and compact. By Sion’s
classical minimax theorem, we may, therefore, interchange the infimum over b with the supremum over (μx,μw).
The minimization problem over b, thus, reduces to an unconstrained (strictly) convex quadratic program that
has the unique optimal solution b � Kμx −Aμw. Substituting this expression back into (2.7) then yields

sup
μx,μw‖μx−μ̂x‖≤ρx‖μw−μ̂w‖≤ρw

inf
γx,γw

γxIn
K	K
γwIm
A	A

γx(ρ2
x − ‖μx − μ̂x‖2 −Tr[Σ̂x]) + γ2

x〈(γxIn −K	K)−1, Σ̂x〉
+γw(ρ2

w − ‖μw − μ̂w‖2 −Tr[Σ̂w]) + γ2
w〈(γwIm −A	A)−1, Σ̂w〉: (2.8)

It is easy to verify that the resulting maximization problem over (μx,μw) is solved by μx � μ̂x and μw � μ̂w.
Substituting the corresponding optimal value into (2.3) finally yields

inf
b

sup
Q∈G(P̂)

R(ψA,b,Q) �
inf
γx,γw

γxIn
K	K
γwIm
A	A

γx(ρ2
x −Tr[Σ̂x]) + γ2

x〈(γxIn −K	K)−1, Σ̂x〉
+γw(ρ2

w −Tr[Σ̂w]) + γ2
w〈(γwIm −A	A)−1, Σ̂w〉:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
From this equation and the definition of K, it is evident that the Gelbrich MMSE estimation problem

inf
ψ∈A

sup
Q∈G(P̂)

R(ψ,Q) � inf
A, b

sup
Q∈G(P̂)

R(ψA,b,Q) (2.9)

is indeed equivalent to the finite convex optimization problem (2.2).
Assume now that ρx > 0 and ρw > 0. In this case, we know from Proposition 2.4(ii) that the Gelbrich MMSE es-

timation problem (2.9) admits an optimal affine estimator ψ?(y) � A?y+ b? for some A? ∈ Rn×m and b? ∈ Rm. The
reasoning in the first part of the proof then implies that A? solves (2.2). Moreover, it implies that b? is optimal in
(2.3) when we fix A � A?. As (2.3) is equivalent to (2.7) and as the unique optimal solution of (2.7) for A � A? is
given by b � μ̂x −A?(Hμ̂x + μ̂w), we may finally conclude that

b? � μ̂x −A?(Hμ̂x + μ̂w):
By reversing these arguments, one can further show that, if A? solves (2.2) and b? is defined as before, then the af-
fine estimator ψ?(y) � A?y+ b? is optimal in (2.9). This observation completes the proof. w

Using Schur complement arguments, the convex program (2.2) can be further simplified to a standard SDP,
which can be addressed with off-the-shelf solvers.

Corollary 2.2 (SDP Reformulation). The Gelbrich MMSE estimation problem (2.1) is equivalent to the SDP

inf γx(ρ2
x − Tr[Σ̂x]) + Tr[Ux] + γw(ρ2

w − Tr[Σ̂w]) + Tr[Uw]
s:t: A ∈ Rn×m, γx,γw ∈ R+

Ux ∈ Sn+, Vx ∈ Sn+, Uw ∈ Sm+ , Vw ∈ Sm+

Ux γxΣ̂
1
2

x

γxΣ̂
1
2

x Vx

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 0,

γxIn − Vx In −H	A	

In − AH In

[ ]
� 0

Uw γwΣ̂
1
2

w

γwΣ̂
1
2

w Vw

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 0,

γwIm − Vw A	

A In

[ ]
� 0:

(2.10)
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Proof of Corollary 2.2. Define the extended real-valued function hw : Rn×m × R+ → (−∞,∞] through

hw(A,γw) � γ2
w〈(γwIm −A	A)−1, Σ̂w〉 if γwIm −A	A 
 0,

∞ otherwise:

{
If γwIm −A	A 
 0, then we have

hw(A,γw) � inf
Uw�0

Tr[Uw] : Uw � γ2
wΣ̂

1
2

w(γwIm −A	A)−1Σ̂
1
2

w

{ }
� inf

Uw�0,Vw
0
Tr[Uw] : Uw � γ2

wΣ̂
1
2

wV
−1
w Σ̂

1
2

w, γwIm −A	A � Vw

{ }
� inf

Uw�0,Vw
0
Tr[Uw] :

γwIm −Vw A	
A In

[ ]
� 0,

Uw γwΣ̂
1
2

w

γwΣ̂
1
2

w Vw

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 0

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ⎫⎪⎪⎪⎬⎪⎪⎪⎭,
(2.11)

where the first equality holds because of the cyclicity of the trace operator and because Uw � Ūw implies
Tr[Uw] ≥ Tr[Ūw] for all Uw, Ūw � 0, the second equality holds because Vw � V̄w is equivalent to V−1

w � V̄
−1
w for all

Vw, V̄w 
 0, and the last equality follows from standard Schur complement arguments; see, for example, Boyd
and Vandenberghe [10, section A.5.5]. If γwIm −A	A�0, on the other hand, then the first matrix inequality in
(2.11) implies that Vw must have at least one nonpositive eigenvalue, which contradicts the constraint Vw 
 0.
The SDP (2.11) is, therefore, infeasible, and its infimum evaluates to ∞. Thus, hw(A,γw) coincides with the opti-
mal value of the SDP (2.11) for all A ∈ Rn×m and γw ∈ R+.

A similar SDP reformulation can be derived for the function hx : Rn×m × R+ → (−∞,∞] defined through

hx(A,γx) � γ2
x〈[γxIn − (In −AH)	(In −AH)]−1, Σ̂x〉 if γxIn − (In −AH)	(In −AH) 
 0,

∞ otherwise:

{
The claim now follows by substituting the SDP reformulations for hw(A,γw) and hx(A,γx) into (2.2). In doing so,
we may relax the strict semidefinite inequalities Vw 
 0 and Vx 
 0 to weak inequalities Vw � 0 and Vx � 0, which
amounts to taking the closure of the (nonempty) feasible set and does not change the infimum of Problem (2.2).
This observation completes the proof. w

Remark 2.1 (Numerical Stability). The SDP (2.10) requires the square roots of the nominal covariance matrices
as inputs. Unfortunately, iterative methods for computing matrix square roots often suffer from numerical instability

in high dimensions. As a remedy, one may replace those matrix inequalities in (2.10) that involve Σ̂
1
2

x and Σ̂
1
2

w with

Ux γxΛ
	
x

γxΛx Vx

[ ]
� 0 and Uw γwΛ

	
w

γwΛw Vw

[ ]
� 0,

where Λx and Λw represent the lower triangular Cholesky factors of Σ̂x and Σ̂w, respectively. Thus, we have Σ̂x �
ΛxΛ

	
x and Σ̂w � ΛwΛ

	
w . We emphasize that Λx and Λw can be computed reliably in high dimensions.

3. The Dual Wasserstein MMSE Estimation Problem over Normal Priors
We now examine the dual Wasserstein MMSE estimation problem

maximize
Q∈B(P̂)

inf
ψ∈F R(ψ,Q), (3.1)

which is obtained from (1.7) by interchanging the order of minimization and maximization. Any maximizer Q?

of this dual estimation problem, if it exists, is henceforth called a least favorable prior. Unfortunately, Problem
(3.1) is generically intractable. We demonstrate, however, that (3.1) becomes tractable if the nominal distribution
P̂ is normal.

Definition 3.1 (Normal Distributions). We say that P is a normal distribution on Rd with mean μ ∈ Rd and covari-
ance matrix Σ ∈ Sd+; that is, P �N (μ,Σ) if P is supported on supp(P) � {μ+Ev : v ∈ Rk} and if the density function
of Pwith respect to the Lebesgue measure on supp(P) is given by

�
P
(ξ) � 1�����������������

(2π)kdet (D)
√ e−(ξ−μ)

	ED−1E	(ξ−μ),

where k � rank(Σ), D ∈ Sk++ is the diagonal matrix of the positive eigenvalues of Σ and E ∈ Rd×k is the matrix
whose columns correspond to the orthonormal eigenvectors of the positive eigenvalues of Σ.
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Definition 3.1 also accounts for degenerate normal distributions with singular covariance matrices. We now re-
call some basic properties of normal distributions that are crucial for the results of this paper.

Proposition 3.1 (Affine Transformations (Fang et al. [28, Theorem 2.16])). If ξ ∈ Rd follows the normal distribution
N (μ,Σ) and A ∈ Rk×d and b ∈ Rk, then Aξ+ b ∈ Rk follows the normal distributionN (Aμ+ b,AΣA	).
Proposition 3.2 (Affine Conditional Expectations (Cambanis et al. [11, Corollary 5])). Assume that � 2 Rd follows the
normal distribution PNð�,�Þ and that

ξ � ξ1
ξ2

[ ]
, μ � μ1

μ2

[ ]
and Σ � Σ11 Σ12

Σ21 Σ22

[ ]
,

where ξ1,μ1 ∈ Rd1 , ξ2,μ2 ∈ Rd2 , Σ11 ∈ Rd1×d1 , Σ22 ∈ Rd2×d2 , and Σ12 � Σ	
21 ∈ Rd1×d2 for some d1,d2 ∈ N with d1 + d2 � d.

Then, there exist A ∈ Rd1×d2 and b ∈ Rd1 such that EP[ξ1 | ξ2] � Aξ2 + b P-almost surely.

Another useful but lesser known property of normal distributions is that their Wasserstein distances can be
expressed analytically in terms of the distributions’ first- and second-order moments.

Proposition 3.3 (Wasserstein Distance Between Normal Distributions (Givens and Shortt [33, Proposition 7])). The
Wasserstein distance between two normal distributions Q1 �N (μ1,Σ1) and Q2 �N (μ2,Σ2) equals the Gelbrich distance
between their mean vectors and covariance matrices; that is,W(Q1,Q2) �G((μ1,Σ1), (μ2,Σ2)).

Assume now that the nominal distributions of the parameter x ∈ Rn and the noise w ∈ Rm are normal; that is,
assume that P̂x �N (μ̂x, Σ̂x) and P̂w �N (μ̂w, Σ̂w). Thus, the joint nominal distribution P̂ � P̂x × P̂w is also normal;
that is,

P̂ �N (μ̂, Σ̂) where μ̂ � μ̂x
μ̂w

[ ]
and Σ̂ � Σ̂x 0

0 Σ̂w

[ ]
: (3.2)

Armed with the fundamental results on normal distributions summarized before, we are now ready to address
the dual Wasserstein MMSE estimation problem (3.1) with a normal nominal distribution. Analogous to Section
2, in which we proposed the Gelbrich MMSE estimation problem as an easier conservative approximation for the
original primal estimation problem (1.7), we now construct an easier conservative approximation for the original
dual estimation problem (3.1). To this end, we define the restricted ambiguity set

BN (P̂) � Qx × Qw ∈ M(Rn) × M(Rm) :
∃Σx ∈ Sn+, Σw ∈ Sm++ with
Qx � N (μ̂x,Σx), Qw � N (μ̂w,Σw),
W(Qx, P̂x) ≤ ρx, W(Qw, P̂w) ≤ ρw

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭:

By construction, BN (P̂) contains all normal distributions Q �Qx ×Qw from within the original Wasserstein ambi-
guity set B(P̂) that have the same mean vector (μ̂x, μ̂w) as the nominal distribution P̂ � P̂x × P̂w and for which the
covariance matrix of Qw is strictly positive definite. Thus, we have BN (P̂) ⊆ B(P̂). Note also that BN (P̂) is noncon-
vex because mixtures of normal distributions usually fail to be normal.

By restricting the original Wasserstein ambiguity set B(P̂) to its subset BN (P̂), we obtain the following conser-
vative approximation for the dual Wasserstein MMSE estimation problem (3.1):

maximize
Q∈BN (P̂)

inf
ψ∈F R(ψ,Q): (3.3)

We henceforth refer to (3.3) as the dual Wasserstein MMSE estimation problem over normal priors. The following
main theorem shows that (3.3) is equivalent to a finite convex optimization problem.

Theorem 3.1 (Dual Wasserstein MMSE Estimation Problem over Normal Priors). Assume that the Wasserstein ambi-
guity set BN (P̂) is centered at a normal distribution P̂ of the form (3.2). Then, the dual Wasserstein MMSE estimation
problem over normal priors (3.3) is equivalent to the finite convex optimization problem

sup Tr[Σx −ΣxH	 HΣxH	 +Σw( )−1HΣx]
s:t: Σx ∈ Sn+, Σw ∈ Sm++

Tr[Σx + Σ̂x − 2(Σ̂
1
2

xΣxΣ̂
1
2

x)
1
2] ≤ ρ2

x

Tr[Σw + Σ̂w − 2(Σ̂
1
2

wΣwΣ̂
1
2

w)
1
2] ≤ ρ2

w:

(3.4)
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If Σ̂w 
 0, then (3.4) is solvable, and the maximizer denoted by (Σ?
x,Σ

?
w) satisfies Σ?

x � λmin (Σ̂x)In and Σ?
w � λmin (Σ̂w)Im.

Moreover, the supremum of (3.3) is attained by the normal distribution Q? �Q?
x ×Q?

w defined through Q?
x �N (μ̂x,Σ

?
x)

and Q?
w �N (μ̂w,Σ

?
w).

Proof of Theorem 3.1. If (x, w) is governed by a normal distribution Q ∈ BN (P̂), then the linear transformation
(x,y) � (x,Hx+w) is also normally distributed by virtue of Proposition 3.1, and the average risk R(ψ,Q) is mini-
mized by the Bayesian MMSE estimator ψ?

B(y) � EPx|y[x], which is affine because of Proposition 3.2. Thus, in the
dual Wasserstein MMSE estimation problem with normal priors, the set F of all estimators may be restricted to
the setA of all affine estimators without sacrificing optimality, that is,

sup
Q∈BN (P̂)

inf
ψ∈F R(ψ,Q) � sup

Q∈BN (P̂)
inf
ψ∈A

R(ψ,Q): (3.5)

As the average risk R(ψ,Q) of an affine estimator ψ ∈A simply evaluates the expectation of a quadratic function in
(x,w), it depends onQ only through its first and secondmoments. Moreover, asQ and P̂ are normal distributions, their
Wasserstein distance coincideswith theGelbrichdistance between theirmeanvectors and covariancematrices; see Prop-
osition 3.3. Thus, themaximization problemoverQ on the right-hand side of (3.5) can be recast as an equivalentmaximi-
zation problemover thefirst and secondmoments ofQ. Specifically, by the definitions ofR(ψ,Q) andBφ(P̂), wefind

sup
Q∈BN (P̂)

inf
ψ∈A

R(ψ,Q) �

sup
Σx,Σw

inf
A,K

K�In−AH
inf
b

〈K	K,Σx + μ̂xμ̂
	
x 〉 + 〈A	A,Σw + μ̂wμ̂

	
w〉 + b	b

−2μ̂	
x K

	Aμ̂w − 2b	(Kμ̂x −Aμ̂w)
s:t: G((μ̂x,Σx), (μ̂x, Σ̂x)) ≤ ρx, G((μ̂w,Σw), (μ̂w, Σ̂w)) ≤ ρw

Σx � 0, Σw 
 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
where the auxiliary decision variable K � In −AH has been introduced to simplify the objective function. The in-
nermost minimization problem over b constitutes an unconstrained (strictly) convex quadratic program that has
the unique optimal solution b � Kμ̂x −Aμ̂w. Substituting this minimizer back into the objective function of the
preceding problem and recalling the definition of the Gelbrich distance then yields

sup
Q∈BN (̂P)

inf
ψ∈A

R(ψ,Q) �

sup
Σx,Σw

inf
A,K

K�In−AH
〈K	K,Σx〉 + 〈A	A,Σw〉

s:t: Tr[Σx + Σ̂x − 2(Σ̂
1
2

xΣxΣ̂
1
2

x)
1
2] ≤ ρ2

x

Tr[Σw + Σ̂w − 2(Σ̂
1
2

wΣwΣ̂
1
2

w)
1
2] ≤ ρ2

w
Σx � 0, Σw 
 0:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(3.6)

By using the equality K � In −AH to eliminate K, the inner minimization problem in (3.6) can be reformulated as
an unconstrained quadratic program in A. As Σw 
 0, this quadratic program is strictly convex, and an elementa-
ry calculation reveals that its unique optimal solution is given by

A? � ΣxH	 HΣxH	 +Σw
( )−1

:

Substituting A? as well as the corresponding auxiliary decision variable K? � In −A?H into the objective function
of (3.6) finally yields the postulated convex program (3.4).

Assume now that Σ̂w 
 0, and define

Sx � Σx ∈ Sn+ : G((μ̂x,Σx), (μ̂x, Σ̂x)) ≤ ρx

{ }
and Sw � Σw ∈ Sm+ : G((μ̂w,Σw), (μ̂w, Σ̂w)) ≤ ρw

{ }
:

Equations (3.5) and (3.6) imply that

sup
Q∈BN (̂P)

inf
ψ∈F R(ψ,Q) ≤ sup

Σx∈Sx

sup
Σw∈Sw

inf
A,K

K�In−AH
〈K	K,Σx〉 + 〈A	A,Σw〉

� sup
Σx∈Sx

Σx�λmin (Σ̂x)In

sup
Σw∈Sw

Σw�λmin (Σ̂w)Im

inf
A,K

K�In−AH
〈K	K,Σx〉 + 〈A	A,Σw〉, (3.7)

where the inequality holds because we relax the requirement that Σw be strictly positive definite, and the equality
follows from applying Lemma A.3 consecutively to each of the two maximization problems. If Σ̂w 
 0, then
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Problem (3.7) constitutes a restriction of (3.6) and, therefore, provides also a lower bound on the dual Wasserstein
MMSE estimation problem. In summary, we, thus, have

sup
Q∈BN (P̂)

inf
ψ∈F R(ψ,Q) �

sup
Σx,Σw

inf
A,K

K � In −AH

〈K	K,Σx〉 + 〈A	A,Σw〉

s:t: Tr[Σx + Σ̂x − 2(Σ̂
1
2

xΣxΣ̂
1
2

x)
1
2] ≤ ρ2

x

Tr[Σw + Σ̂w − 2(Σ̂
1
2

wΣwΣ̂
1
2

w)
1
2] ≤ ρ2

w

Σx � λmin (Σ̂x)In, Σw � λmin (Σ̂w)Im:

(3.8)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
This reasoning implies that, if Σ̂w 
 0, then the constraints Σx � λmin (Σ̂x)In and Σw � λmin (Σ̂w)Im can be appended
to Problem (3.6) and, consequently, to Problem (3.4) without altering their common optimal value. Problem (3.4)
with the additional constraints Σx � λmin (Σ̂x)In and Σw � λmin (Σ̂w)Im has a continuous objective function over a
compact feasible set and is, thus, solvable. Any of its optimal solutions is also optimal in Problem (3.4), which
has no redundant constraints. Thus, Problem (3.4) is solvable.

It remains to show that Q? as constructed in the theorem statement is optimal in (3.3). The feasibility of
(Σ?

x,Σ
?
w) in (3.4) implies that Q? ∈ BN (P̂), and thus, Q? is feasible in (3.3). Moreover, we have

sup
Q∈BN (P̂)

inf
ψ∈F R(ψ,Q) ≥ inf

ψ∈F R(ψ,Q?) � Tr[Σ?
x −Σ?

xH
	 HΣ?

xH
	 +Σ?

w
( )−1HΣ?

x], (3.9)

where the equality follows from elementary algebra, recalling that the affine estimator ψ(y) � A?y+ b? with

A? � Σ?
xH

	 HΣ?
xH

	 +Σ?
w

( )−1 and b? � μx −A?(Hμ̂x + μ̂w)
is the Bayesian MMSE estimator for the normal distribution Q?. As the right-hand side of (3.9) coincides with the
maximum of (3.4) and as Problem (3.4) is equivalent to the dual Wasserstein MMSE estimation problem (3.3)
over normal priors, we may, thus, conclude that the inequality in (3.9) is tight. Thus, we find

sup
Q∈BN (P̂)

inf
ψ∈F R(ψ,Q) � inf

ψ∈F R(ψ,Q?),

which, in turn, implies that Q? is optimal in (3.3). This observation completes the proof.

Remark 3.1 (Singular Covariance Matrices). A nonlinear SDP akin to (3.4) is derived in Shafieezadeh-Abadeh et al.
[67] under the stronger assumption that the covariance matrix of the nominal distribution P̂ is nondegenerate,
which implies that Σ̂x 
 0 and Σ̂w 
 0. However, the weaker condition Σ̂w 
 0 is sufficient to ensure that the ma-
trix inversion in the objective function of Problem (3.4) is well defined. Therefore, Theorem 3.1 remains valid if
the nominal covariance matrix Σ̂x is singular, which occurs in many applications. On the other hand, it is com-
mon to require that Σ̂w � σ2Im for some σ > 0; see, for example, Chang et al. [12].

Corollary 3.1 asserts that the convex program (3.4) admits a canonical linear SDP reformulation. The proof is
omitted as it relies on standard Schur complement arguments familiar from the proof of Corollary 2.2.

Corollary 3.1 (SDP Reformulation). Assume that the Wasserstein ambiguity set BN (P̂) is centered at a normal distribu-
tion P̂ of the form (3.2) with noise covariance matrix Σ̂w 
 0. Then, the dual Wasserstein MMSE estimation problem (3.3)
over normal priors is equivalent to the SDP

max Tr[Σx] −Tr[U]
s:t: Σx ∈ Sn+, Σw ∈ Sm+ , Vx ∈ Sn+, Vw ∈ Sm+ , U ∈ Sn+

Σ̂
1
2

xΣxΣ̂
1
2

x Vx
Vx In

[ ]
� 0, Σ̂

1
2

wΣwΣ̂
1
2

w Vw
Vw Im

[ ]
� 0

Tr[Σx + Σ̂x − 2Vx] ≤ ρ2
x, Tr[Σw + Σ̂w − 2Vw] ≤ ρ2

w
U ΣxH	

HΣx HΣxH	 +Σw

[ ]
� 0, Σx � λmin (Σ̂x)In, Σw � λmin (Σ̂w)Im:

(3.10)

We emphasize that the lower bounds on Σx and Σw are redundant but have been made explicit in (3.10).
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4. Nash Equilibrium and Optimality of Affine Estimators
If P̂ is a normal distribution of the form (3.2), then we have

inf
ψ∈A

sup
Q∈G(P̂)

R(ψ,Q) ≥ inf
ψ∈F sup

Q∈B(P̂)
R(ψ,Q) ≥ sup

Q∈B(P̂)
inf
ψ∈F R(ψ,Q) ≥ sup

Q∈BN (P̂)
inf
ψ∈F R(ψ,Q), (4.1)

where the first inequality follows from the inclusions A ⊆ F and B(P̂) ⊆G(P̂), the second inequality exploits
weak duality, and the last inequality holds because of the inclusion BN (P̂) ⊆ B(P̂). Note that the leftmost mini-
max problem is the Gelbrich MMSE estimation problem (2.1) studied in Section 2, and the rightmost maximin
problem is the dual Wasserstein MMSE estimation problem (3.3) over normal priors studied in Section 3. We
also highlight that these restricted primal and dual estimation problems sandwich the original Wasserstein esti-
mation problems (1.7) and (3.1), which coincide with the second and third problems in (4.1), respectively. The fol-
lowing theorem asserts that all inequalities in (4.1) actually collapse to equalities.

Theorem 4.1 (Sandwich Theorem). If P̂ is a normal distribution of the form (3.2), then the optimal values of the restricted
primal and dual estimation problems (2.1) and (3.3) coincide, that is,

inf
ψ∈A

sup
Q∈G(P̂)

R(ψ,Q) � sup
Q∈BN (P̂)

inf
ψ∈F R(ψ,Q):

Proof of Theorem 4.1. By Theorem 2.1, the Gelbrich MMSE estimation problem (2.1) can be expressed as

inf
ψ∈A

sup
Q∈G(P̂)

R(ψ,Q) � inf
A,K

K�In−AH
inf
γx,γw

γxIn
K	K
γwIm
A	A

γx(ρ2
x − Tr[Σ̂x]) + γ2

x〈(γxIn − K	K)−1, Σ̂x〉
+γw(ρ2

w − Tr[Σ̂w]) + γ2
w〈(γwIm − A	A)−1, Σ̂w〉,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
where the auxiliary variable K � In −AH has been introduced to highlight the problem’s symmetries. Next, we
introduce the feasible sets

Sx � Σx ∈ Sn+ : Tr[Σx + Σ̂x − 2(Σ̂
1
2

xΣxΣ̂
1
2

x)
1
2] ≤ ρ2

x

{ }
and

Sw � Σw ∈ Sm+ : Tr[Σw + Σ̂w − 2(Σ̂
1
2

wΣwΣ̂
1
2

w)
1
2] ≤ ρ2

w

{ }
,

both of which are convex and compact by virtue of Lemma A.4. Using Proposition A.2(i) to reformulate the inner
minimization problem over γx and γw, we then obtain

inf
ψ∈A

sup
Q∈G(P̂)

R(ψ,Q) � inf
A,K

K�In−AH
sup
Σx∈Sx
Σw∈Sw

〈K	K,Σx〉 + 〈A	A,Σw〉

� sup
Σx∈Sx

inf
A,K

K�In−AH
sup
Σw∈Sw

〈K	K,Σx〉 + 〈A	A,Σw〉,

where the second equality holds because of Sion’s [68] minimax theorem. Define now the auxiliary function

f (A) � sup
Σw∈Sw

〈A	A,Σw〉:

As Σw � 0 for any Σw ∈ Sw, f constitutes a pointwise maximum of convex functions and is, therefore, itself convex.
In addition, as the set Sw is compact by Lemma A.4, f is everywhere finite and, thus, continuous thanks to Rocka-
fellar and Wets [62, theorem 2.35]. This allows us to conclude that

inf
ψ∈A

sup
Q∈G(P̂)

R(ψ,Q) � sup
Σx∈Sx

inf
A,K

K�In−AH
〈K	K,Σx〉 + f (A)

� sup
Σx∈Sx

Σx�λmin (Σ̂x)In

inf
A,K

K�In−AH
〈K	K,Σx〉 + f (A)

� inf
A,K

K�In−AH
sup
Σx∈Sx

Σx�λmin (Σ̂x)In

sup
Σw∈Sw

〈K	K,Σx〉 + 〈A	A,Σw〉,
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where the second equality exploits Lemma A.3, and the last equality follows from Sion’s [68] minimax theorem.
Another (trivial) application of Lemma A.3 then allows us to append the constraint Σw � λmin (Σ̂w)Im to the maxi-
mization problem over Σw. Sion’s [68] minimax theorem finally implies that

inf
ψ∈A

sup
Q∈G(P̂)

R(ψ,Q) � sup
Σx∈Sx

Σx�λmin (Σ̂x)In

sup
Σw∈Sw

Σw�λmin (Σ̂w)Im

inf
A,K

K�In−AH
〈K	K,Σx〉 + 〈A	A,Σw〉

� sup
Q∈BN (P̂)

inf
ψ∈F R(ψ,Q),

where the last equality has already been established in the proof of Theorem 3.1; see Equation (3.8). Thus, the
claim follows.

Theorem 4.1 suggests that solving any of the restricted estimation problems is tantamount to solving both orig-
inal primal and dual estimation problems. This intuition is formalized in the following corollary.

Corollary 4.1 (Nash Equilibrium). If P̂ is a normal distribution of the form (3.2) with Σ̂w 
 0, then the affine estimator ψ?

that solves (2.1) is optimal in the primal Wasserstein MMSE estimation problem (1.7), and the normal distribution Q? that
solves (3.3) is optimal in the dual Wasserstein MMSE estimation problem (3.1). Moreover, ψ? and Q? form a Nash equilib-
rium for the game between the statistician and nature, that is,

R(ψ?,Q) ≤R(ψ?,Q?) ≤R(ψ,Q?) ∀ψ ∈ F , Q ∈ B(P̂) : (4.2)

Proof of Corollary 4.1. As Σ̂w 
 0, the Gelbrich MMSE estimation problem (2.1) is solved by the affine estimator
ψ? defined in Theorem 2.1, and the dual Wasserstein MMSE estimation problem (3.1) over normal priors is
solved by the normal distribution Q? defined in Theorem 3.1. Thus, we have

R(ψ?,Q?) ≥ inf
ψ∈F R(ψ,Q?) � max

Q∈BN (P̂)
inf
ψ∈F R(ψ,Q) �min

ψ∈A
sup
Q∈G(P̂)

R(ψ,Q) � sup
Q∈G(P̂)

R(ψ?,Q) ≥R(ψ?,Q?),

where the three equalities follow from the definition of Q?, Theorem 4.1, and the definition of ψ?, respectively.
As the left- and right-hand sides of the preceding expression coincide, we may then conclude that

R(ψ?,Q) ≤R(ψ?,Q?) ≤R(ψ,Q?) ∀ψ ∈ F , Q ∈G(P̂):
Moreover, as B(P̂) ⊆G(P̂), the preceding relation implies (4.2).

It remains to be shown that ψ? and Q? solve the primal and dual Wasserstein MMSE estimation problems (1.7)
and (3.1), respectively. As for ψ?, we have

sup
Q∈B(P̂)

R(ψ?,Q) ≤ sup
Q∈G(P̂)

R(ψ?,Q) � inf
ψ∈A

sup
Q∈G(P̂)

R(ψ,Q) � inf
ψ∈F sup

Q∈B(P̂)
R(ψ,Q),

where the inequality holds because B(P̂) ⊆G(P̂). The first equality follows from the definition of ψ?, and the sec-
ond equality exploits Theorem 4.1, which implies that all inequalities in (4.1) are, in fact, equalities. This reason-
ing shows that ψ? is optimal in (1.7). The optimality of Q? in (3.1) can be proved similarly. w

Corollary 4.1 implies that ψ? can be viewed as a Bayesian estimator for the least favorable prior Q? and that Q?

represents a worst-case distribution for the optimal estimator ψ?. Next, we argue that ψ? cannot only be con-
structed from the solution of the convex program (2.2), which is equivalent to the Gelbrich MMSE estimation
problem (2.1), but also from the solution of the convex program (3.4), which is equivalent to the dual MMSE esti-
mation problem (3.3) over normal priors. This alternative construction is useful because Problem (3.4) is amena-
ble to highly efficient first-order methods derived in Section 6.

Corollary 4.2 (Dual Construction of the Optimal Estimator). If P̂ is a normal distribution of the form (3.2) with Σ̂w 
 0,
and (Σ?

x,Σ
?
w) is a maximizer of (3.4), then the affine estimator ψ?(y) � A?y+ b? with

A? � Σ?
xH

	 HΣ?
xH

	 +Σ?
w

( )−1 and b? � μ̂x −A?(Hμ̂x + μ̂w) (4.3)

solves the Wasserstein MMSE estimation problem (1.7).

Proof of Corollary 4.2. Define ψ? as the affine estimator that solves (2.1) and Q? as the normal distribution that
solves (3.3). By Corollary 4.1, the second inequality in (4.2) holds for all admissible estimators ψ ∈ F , which im-
plies that ψ? ∈ argminψ∈FR(ψ,Q?); that is, ψ? solves the Bayesian MMSE estimation problem corresponding to
Q?. As any Bayesian MMSE estimator satisfies ψ?(y) � EQ?

x|y[x] for Q?-almost all y and as Σ?
w 
 0, we may use the

Nguyen et al.: Wasserstein Distributionally Robust MMSE Estimator
Mathematics of Operations Research, 2023, vol. 48, no. 1, pp. 1–37, © 2021 INFORMS 15

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

15
4.

59
.1

24
.1

13
] 

on
 1

9 
A

pr
il 

20
23

, a
t 0

0:
59

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



known formulas for conditional normal distributions to conclude that the unique affine Bayesian MMSE estima-
tor for Q? is of the form ψ?(y) � A?y+ b? with parameters defined as in (4.3). w

5. Nonnormal Nominal Distributions
We first show that the results of Sections 2–4 remain valid if P̂ is an arbitrary elliptical (but maybe nonnormal)
distribution. To this end, we first review some basic results on elliptical distributions.

Definition 5.1 (Elliptical Distributions). The distribution P of ξ ∈ Rd is called elliptical if the characteristic function
ΦP(t) � EP[exp (it	ξ)] of P is given by ΦP(t) � exp (it	μ)φ(t	St) for some location parameter μ ∈ Rd, dispersion
matrix S ∈ Sd+, and characteristic generator φ : R+ → R. In this case, we write P � Ed

φ(μ,S). The class of all d-dimen-

sional elliptical distributions with characteristic generator φ is denoted by Ed
φ.

The class of elliptical distributions is introduced in Kelker [45] with the aim to generalize the family of normal
distributions, which are obtained by setting the characteristic generator to φ(u) � e−u=2. We emphasize that, un-
like the moment-generating function MP(t) � EP[exp (t	ξ)], the characteristic function ΦP(t) is always finite for
all t ∈ Rd even if some moments of P do not exist. Thus, Definition 5.1 is general enough to cover also heavy-
tailed distributions with nonzero tail dependence coefficients (Hult and Lindskog [38]). Examples of elliptical
distributions include the Laplace, logistic, and t-distribution, etc. Useful theoretical properties of elliptical distri-
butions are discussed in Cambanis et al. [11] and Fang et al. [28]. We also highlight that elliptical distributions
are central to a wide spectrum of diverse applications ranging from genomics (Posekany et al. [61]) and medical
imaging (Ruttimann et al. [64]) to finance (Jondeau et al. [40, section 6.2.1]), to name a few.

If the dispersion matrix S ∈ Sd+ has rank r, then there exists Λ ∈ Rd×r with S �ΛΛ	, and there exists a
generalized inverse Λ−1 ∈ Rr×d with Λ−1Λ � Ir � Λ	(Λ−1)	. One easily verifies that, if ξ ∈ Rd follows an elliptical
distribution P � Ed

φ(μ,S), then ξ̃ �Λ−1(ξ−μ) ∈ Rr follows the spherically symmetric distribution P̃ � Ed
φ(0, Ir)

with characteristic function ΦP̃(t) � φ(‖t‖2). Thus, the choice of the characteristic generator φ is constrained by
the implicit condition that φ(‖t‖2) must be an admissible characteristic function. For instance, the normalization
of probability distributions necessitates that φ(0) � 1, and the dominated convergence theorem implies that φ
must be continuous, etc. As any distribution is uniquely determined by its characteristic function and as φ(‖t‖2)
depends only on the norm of t, the spherical distribution P̃ is indeed invariant under rotations. This implies that
EP̃[ξ̃] � 0 and, via the linearity of the expectation, that EP[ξ] � μ provided that ξ̃ and ξ are integrable, respective-
ly. Thus, the location parameter μ of an elliptical distribution coincides with its mean vector whenever the mean
exists. By the definition of the characteristic function, the covariance matrix of P̃, if it exists, can be expressed as

Σ̃ � −�2
tΦP̃(t) | t�0 � −�2

tφ(‖t‖2) | t�0 � −2φ′(0)Ir,
where φ′(0) denotes the right derivative of φ(u) at u � 0. Hence, Σ̃ exists if and only if φ′(0) exists and is finite.
Similarly, the covariance matrix of P is given by Σ � −2φ′(0)S, if it exists (Cambanis et al. [11, theorem 4]). We fo-
cus on elliptical distributions with finite first- and second-order moments (i.e., we only consider characteristic
generators with | φ′(0) |<∞), and we assume that φ′(0) � − 1

2, which ensures that the dispersion matrix S equals
the covariance matrix Σ. The latter assumption does not restrict generality. In fact, changing the characteristic
generator to φ( −u

2φ′(0)) and the dispersion matrix to −2φ′(0)S has no impact on the elliptical distribution P but
matches the dispersion matrix S with the covariance matrix Σ.

The elliptical distributions inherit many desirable properties from the normal distributions but are substantial-
ly more expressive as they include also heavy- and light-tailed distributions. For example, any class of elliptical
distributions with a common characteristic generator is closed under affine transformations and affine condition-
al expectations; see, for example, Cambanis et al. [11, theorem 1 and corollary 5]. Moreover, the Wasserstein
distance between two elliptical distributions with the same characteristic generator equals the Gelbrich distance
between their mean vectors and covariance matrices (Gelbrich [32, theorem 2.4]). Thus, Propositions 3.1–3.3 ex-
tend verbatim from the class of normal distributions to any class of elliptical distributions that share the same
characteristic generator. For the sake of brevity, we do not restate these results for elliptical distributions.

This discussion suggests that the results of Sections 2–4 carry over almost verbatim to MMSE estimation prob-
lems involving elliptical nominal distributions. In the following we, therefore, assume that

P̂ � En+m
φ (μ̂, Σ̂) with μ̂ � μ̂x

μ̂w

[ ]
and Σ̂ � Σ̂x 0

0 Σ̂w

[ ]
, (5.1)
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where φ denotes a prescribed characteristic generator. As the class of all elliptical distributions with characteristic
generator φ is closed under affine transformations, the marginal distributions P̂x and P̂w of x and w under P̂ are
also elliptical distributions with the same characteristic generator φ.

Note that, although the signal x and the noise w are uncorrelated under P̂ irrespective of φ, they fail to be inde-
pendent unless P̂ is a normal distribution. When working with generic elliptical nominal distributions, we must,
therefore, abandon any independence assumptions. Otherwise, the ambiguity set would be empty for small radii
ρx and ρw. This insight prompts us to redefine the Wasserstein ambiguity set as

B(P̂) � Q ∈M(Rn+m) : EQ[xw	] � EQ[x] ·EQ[w]	, W(Qx, P̂x) ≤ ρx, W(Qw, P̂w) ≤ ρw

{ }
, (5.2)

which relaxes the independence condition in (1.8) and merely requires x and w to be uncorrelated. When using
the new ambiguity set (5.2) to model the distributional uncertainty, we can again compute a Nash equilibrium
between the statistician and nature by solving a tractable convex optimization problem.

Theorem 5.1 (Elliptical Distributions). Assume that P̂ is an elliptical distribution of the form (5.1) with characteristic gen-
erator φ and noise covariance matrix Σ̂w 
 0, and define the ambiguity set B(P̂) as in (5.2). If (Σ?

x,Σ
?
w) solves the finite con-

vex program (3.3), then the affine estimator ψ?(y) � A?y+ b? with

A? � Σ?
xH

	 HΣ?
xH

	 +Σ?
w

( )−1 and b? � μ̂x −A?(Hμ̂x + μ̂w)
solves the Wasserstein MMSE estimation problem (1.7), and the elliptical distribution

Q? � En+m
φ (μ̂,Σ?) with Σ? � Σ?

x 0
0 Σw?

[ ]
solves the dual Wasserstein MMSE estimation problem (3.1). Moreover, ψ? and Q? form a Nash equilibrium for the game
between the statistician and nature, that is,

R(ψ?,Q) ≤R(ψ?,Q?) ≤R(ψ,Q?) ∀ψ ∈ F , Q ∈ B(P̂) :

Proof of Theorem 5.1. The proof replicates the arguments used to establish Theorems 2.1, 3.1, and 4.1 as well as
Corollary 4.1 with obvious minor modifications. Details are omitted for brevity. w

Theorem 5.1 asserts that the optimal estimator depends only on the first and second moments of the nominal
elliptical distribution P̂ but not on its characteristic generator. Whether P̂ displays heavier or lighter tails than a
normal distribution has, therefore, no impact on the prediction of the signal. Note, however, that the characteris-
tic generator of P̂ determines the shape of the least favorable prior.

If the nominal distribution fails to be elliptical, the minimum of the Gelbrich MMSE estimation problem (2.1)
may strictly exceed the maximum of the dual Wasserstein MMSE estimation problem (3.3) over normal priors.
Note that, in this case, the ambiguity set BN (P̂) may even be empty. Moreover, although typically suboptimal for
the original Wasserstein MMSE estimation problem (1.7), the usual affine estimator constructed from a solution
of the nonlinear SDP (3.4) still solves the Gelbrich MMSE estimation problem (2.1).

Proposition 5.1 (Nonelliptical Nominal Distributions). Suppose that P̂ � P̂x × P̂w, where P̂x and P̂w are arbitrary signal
and noise distributions with mean vectors μ̂x and μ̂w and covariance matrices Σ̂x � 0 and Σ̂w 
 0, respectively. Then, the
nonlinear SDP (3.4) is solvable, and for any optimal solution (Σ?

x,Σ
?
w) of (3.4), the affine estimator ψ?(y) � A?y+ b? with

A? � Σ?
xH

	 HΣ?
xH

	 +Σ?
w

( )−1 and b? � μ̂x −A?(Hμ̂x + μ̂w)
solves the Gelbrich MMSE estimation problem (2.1).

Proof of Proposition 5.1. Denote by P̂′ � P̂′
x × P̂′

w the normal distribution with the same first and second mo-
ments as P̂. As Σ̂w 
 0, the nonlinear SDP (3.4) is then solvable by virtue of Theorem 3.1. Theorem 4.1 further im-
plies that the first inequality in (4.1) with P̂′ instead of P̂ collapses to the equality

inf
ψ∈A

sup
Q∈G(P̂′)

R(ψ,Q) � inf
ψ∈F sup

Q∈B(P̂′)
R(ψ,Q): (5.3)

In addition, Corollary 4.2 ensures that the affine estimator ψ? defined in the proposition statement solves the
modified Wasserstein MMSE estimation problem with normal nominal distribution P̂′ on the right-hand side of
(5.3). Because ψ? is affine, it is also feasible in the modified Gelbrich MMSE estimation problem on the left-hand
side. In addition, the average risk of any affine estimator depends only on the mean vectors and covariance
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matrices of x and w. If we denote by T the mean-covariance projection that maps any distribution Q �Qx ×Qw of
(x, w) to the mean vectors and covariance matrices of x and w under Q, then the images of the ambiguity sets
G(P̂′) and B(P̂′) under T coincide by Proposition 3.3. These observations imply that the affine estimator ψ? also
solves the estimation problem on the left-hand side of (5.3). As P̂ and P̂′ share the same first and second mo-
ments, the Gebrich ball G(P̂) around the generic distribution P̂ coincides with the Gelbrich ambiguity set G(P̂′)
around the normal distribution P̂′. Thus, we find

sup
Q∈G(P̂ )

R(ψ?,Q) � sup
Q∈G(P̂′)

R(ψ?,Q) � inf
ψ∈A

sup
Q∈G(P̂′)

R(ψ,Q) � inf
ψ∈A

sup
Q∈G(P̂ )

R(ψ,Q),

where the second equality holds because ψ? solves the Gelbrich MMSE estimation problem with the normal
nominal distribution P̂′ on the left-hand side of (5.3). Hence, ψ? solves the Gelbrich MMSE estimation problem
(2.1) with the generic nominal distribution P̂.

6. Numerical Solution of Wasserstein MMSE Estimation Problems
By Corollaries 2.2 and 3.1, the primal and dual Wasserstein MMSE estimation problems (1.7) and (3.1) can be ad-
dressed with off-the-shelf SDP solvers. Unfortunately, however, general-purpose interior-point methods quickly
run out of memory when the signal dimension n and the noise dimension m grow. It is, therefore, expedient to
look for customized first-order algorithms that can handle larger problem instances.

In this section, we develop a Frank–Wolfe method for the nonlinear SDP (3.4), which is equivalent to the dual
Wasserstein MMSE estimation problem (3.1). This approach is meaningful because any solution to (3.4) allows
us to construct both an optimal estimator as well as a least favorable prior that form a Nash equilibrium in the
sense of Corollary 4.1; see also Corollary 4.2. Addressing the nonlinear SDP (3.4) directly with a Frank–Wolfe
method has great promise because the subproblems that identify the local search directions can be shown to ad-
mit quasi-closed form solutions and can, therefore, be solved very quickly.

In Section 6.1, we first review three variants of the Frank–Wolfe algorithm corresponding to a static, an adap-
tive, and a more flexible fully adaptive step-size rule, and we prove that the fully adaptive rule offers a linear con-
vergence guarantee under standard regularity conditions. In Section 6.2, we then show that the nonlinear SDP
(3.4) is amenable to the fully adaptive Frank–Wolfe algorithm and can, thus, be solved efficiently.

6.1. Frank–Wolfe Algorithm for Generic Convex Optimization Problems
Consider a generic convex minimization problem of the form

f ? � min
s∈S f (s) (6.1)

with a convex compact feasible set S ⊆ Rd and a convex differentiable objective function f : S → R. We assume
that, for each precision δ ∈ [0, 1], we have access to an inexact oracle F : S → S that maps any s ∈ S to a δ-approxi-
mate solution of an auxiliary problem linearized around s. More precisely, we assume that

F(s) − s( )	�f (s) ≤ δmin
z∈S z− s( )	�f (s): (6.2)

By the standard optimality condition for convex optimization problems, the minimum on the right-hand side of
(6.2) vanishes if and only if s solves the original problem (6.1). Otherwise, the minimum is strictly negative. If δ �
1, then the oracle returns an exact mininizer of the linearized problem. If δ � 0, on the other hand, then the oracle
returns any solution that is weakly preferred to s in the linearized problem. Given an oracle satisfying (6.2), one
can design a Frank–Wolfe algorithm whose iterates obey the recursion

st+1 � st + ηt(F(st) − st) ∀t ∈ N
⋃ {0}, (6.3)

where s0 ∈ S is an arbitrary initial feasible solution, δ is a prescribed precision, and ηt ∈ [0, 1] is a step size that
may depend on the current iterate st. The Frank–Wolfe algorithm was originally developed for quadratic pro-
grams (Frank and Wolfe [29]) and later extended to general convex programs with differentiable objective func-
tions and compact convex feasible sets (Demyanov and Rubinov [17], Dunn [20, 21], Dunn and Harshbarger [22],
Levitin and Polyak [47]). Convergence guarantees for the Frank–Wolfe algorithm typically rely on the assump-
tion that the gradient of f is Lipschitz continuous (Dunn [20, 21], Freund and Grigas [30], Garber and Hazan [31],
Levitin and Polyak [47]), that f has a bounded curvature constant (Clarkson [14], Jaggi [39]), or that the gradient
of f is Hölder continuous (Nesterov [54]).

Throughout this section, we assume that the decision variable can be represented as s � (s[1], : : : , s[K]), where
s[k] ∈ Rdk and

∑K
k�1dk � d. Moreover, we assume that the feasible set S � ×K

k�1 S
[k] constitutes a K-fold Cartesian
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product, for which the marginal feasible set S[k] ⊆ Rdk is convex and compact for each k � 1, : : : ,K. This assump-
tion is unrestrictive because we are free to set K � 1 and S[1] � S. For ease of notation, we use from now on �[k] to
denote the partial gradient with respect to the subvector s[k] ∈ S[k], k � 1, : : : ,K.

The subsequent convergence analysis relies on the following regularity conditions.

Assumption 6.1 (Regularity Conditions).
i. The objective function is β-smooth for some β > 0, that is,

‖�f (s) − �f (s̄)‖ ≤ β‖s− s̄‖ ∀s, s̄ ∈ S:

ii. The marginal feasible sets are α-strongly convex with respect to f for some α > 0, that is,

θs[k] + (1−θ)s̄[k] −θ(1−θ)α
2
‖ s[k] − s̄[k]‖2 �[k]f (s)

‖�[k]f (s)‖ ∈ S[k] ∀s, s̄ ∈ S, θ ∈ [0, 1], k � 1, : : : ,K:

iii. The objective function is ε-steep for some ε > 0, that is,

‖�[k]f (s)‖ ≥ ε ∀s ∈ S, k � 1, : : : ,K:

Assumption 6.1(ii) relaxes the standard strong convexity condition prevailing in the literature, which is obtained
by setting K � 1 and requiring that the condition stated here remains valid when the normalized gradient
�[1] f (s)=‖�[1] f (s)‖ is replaced with any other vector in the Euclidean unit ball; see, for example, Journée et al. [41,
equation (25)]. We emphasize that our weaker condition is sufficient for the standard convergence proofs of the
Frank–Wolfe algorithm but is necessary for our purposes because the feasible set of Problem (3.4) fails to be
strongly convex in the traditional sense. Similarly, Assumption 6.1(iii) generalizes the usual ε-steepness condition
from the literature, which is recovered by setting K � 1; see, for example, Journée et al. [41, assumption 1]. Under
this assumption, the gradient never vanishes on S, and the minimum of (6.1) is attained on the boundary of S.

In the following, we distinguish three variants of the Frank–Wolfe algorithm with different step-size rules. The
vanilla Frank-Wolfe algorithm employs the harmonically decaying static step size

ηt �
2

2 + t
,

which results in a sublinear O(1=t) convergence whenever Assumption 6.1(i) holds (Dunn and Harshbarger [22],
Frank and Wolfe [29]). The adaptive Frank-Wolfe algorithm uses the step size

ηt �min 1,
(st − F(st))	�f (st)
β‖st − F(st)‖2

{ }
, (6.4)

which adapts to the iterate st. If all of Assumption 6.1(i–iii) holds, then the adaptive Frank–Wolfe algorithm en-
joys a linear O(ct) convergence guarantee, with which c ∈ (0, 1) is an explicit function of the oracle precision δ, the
smoothness parameter β, the strong convexity parameter α, and the steepness parameter ε (Garber and Hazan
[31], Levitin and Polyak [47]). Note that the step size (6.4) is constructed as the unique solution of the univariate
quadratic program

min
η∈[0,1]

f (st) − η(st − F(st))	�f (st) + 1
2
βη2‖st − F(st)‖2,

which minimizes a quadratic majorant of the objective function f along the line segment from st to F(st).
The adaptive step-size rule (6.4) undergoes further scrutiny in Pedregosa et al. [59], where it is discovered that

one may improve the algorithm’s convergence behavior by replacing the global smoothness parameter β in (6.4)
with an adaptive smoothness parameter βt that captures the smoothness of f along the line segment from st to
F(st). This extra flexibility is useful because βt can be chosen smaller than the unnecessarily conservative global
smoothness parameter β and because βt is easier to estimate than β, which may not even be accessible.

Following Pedregosa et al. [59], we henceforth only require that βt > 0 satisfies the inequality

f (st − ηt(βt)(st − F(st))) ≤ f (st) − ηt(βt)(st − F(st))	�f (st) + 1
2
βtηt(βt)2‖st − F(st)‖2, (6.5)

where ηt(βt) is defined as the adaptive step size (6.4) with β replaced by βt. As it adapts to both st and βt, we from
now on refer to ηt � ηt(βt) as the fully adaptive step size. This discussion implies that (6.5) is always satisfiable if
Assumption 6.1(i) holds, in which case one may simply set βt to the global smoothness parameter β. In practice,
however, Inequality (6.5) is often satisfiable for much smaller values βt � β that may not even be related to the
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smoothness properties of the objective function. A close upper bound on the smallest βt > 0 that satisfies (6.5) can
be found efficiently via backtracking line search. Specifically, the fully adaptive Frank-Wolfe algorithm sets βt to the
smallest element of the discrete search space βt−1

ζ · 1,τ,τ2,τ3, : : :
{ }

that satisfies (6.5), where τ > 1 and ζ > 1 are pre-
scribed line search parameters. A detailed description of the fully adaptive Frank–Wolfe algorithm in pseudo-
code is provided in Algorithm 1.

Algorithm 1 (Fully Adaptive Frank-Wolfe Algorithm)
Input: initial feasible point s0 ∈ S, initial smoothness parameter β−1 > 0, line search parameters τ > 1, ζ > 1, ini-

tial iteration counter t � 0
while stopping criterion is not met do

solve the oracle subproblem to find s̃t � F(st)
set dt ← s̃t − st and gt ←−d	t �f (st)
set βt ← βt−1=ζ and η←min {1,gt=(βt‖dt‖2)}
while f (st + ηdt) > f (st) − ηgt + η2βt

2 ‖dt‖2 do
βt ← τβt and η←min{1,gt=(βt‖dt‖2)}

end while
set ηt ← η and st+1 ← st + ηtdt
set t← t+ 1

end while
Output: st

It is shown in Pedregosa et al. [59] that Algorithm 1 enjoys the same sublinear O(1=t) convergence guarantee
as the vanilla Frank–Wolfe algorithm when Assumption 6.1(i) holds. We leverage techniques from Garber and
Hazan [31] and Levitin and Polyak [47] to show that Algorithm 1 offers indeed a linear convergence rate if all of
Assumption 6.1(i)–(iii) holds.

Theorem 6.1 (Linear Convergence of the Fully Adaptive Frank-Wolfe Algorithm). If Assumption 6.1 holds and
β̄ �max {τβ,β−1}, then Algorithm 1 enjoys the linear convergence guarantee

f (st) − f ? ≤max 1− δ

2
,1− (1− �������

1− δ
√ )αε
4β̄

{ }t

( f (s0) − f ?) ∀t ∈ N:

The proof of Theorem 6.1 relies on the following preparatory lemma.

Lemma 6.1 (Bounds on the Surrogate Duality Gap). The surrogate duality gap gt � −d	t �f (st) corresponding to the
search direction dt � F(st) − st admits the following lower bounds.

i. If the objective function f is convex, then gt ≥ δ( f (st) − f ?).
ii. If the marginal feasible sets are α-strongly convex with respect to f for some α > 0 in the sense of Assumption 6.1(ii), then

gt ≥ min
k∈{1, : : : ,K}

(1− �������
1− δ

√ )α
2δ

‖dt‖2‖�[k] f (st)‖:
Proof of Lemma 6.1. By the definition of gt, we have

gt � (st − F(st))	�f (st) ≥ δ(st − s)	�f (st) ∀s ∈ S, (6.6)

where the inequality follows from the defining property (6.2) of the inexact oracle with precision δ. Setting s in
(6.6) to a global minimizer s? of (6.1) then implies via the first-order convexity condition for f that

gt ≥ δ(st − s?)	�f (st) ≥ δ(f (st) − f ?) :
This observation establishes assertion (i). To prove assertion (ii), we first rewrite the estimate (6.6) as

gt ≥ δ(st − s)	�f (s) � δ
∑T
t�1

(s[k]t − s[k])	�[k] f (st) ∀s ∈ S : (6.7)

In the following, we denote by F[k] : S → S[k] the kth suboracle for k � 1, : : : ,K, which is defined through the iden-
tity F � (F[1], : : : ,F[K]). Similarly, for any θ ∈ [0, 1], we define s(θ) � (s[1](θ), : : : , s[K](θ)) through

s[k](θ) � θF[k](st) + (1−θ)s[k]t − α

2
θ(1−θ)‖F[k](st) − s[k]t ‖2 �[k]f (st)

‖�[k]f (st)‖ :
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By Assumption 6.1(ii), we have s[k](θ) ∈ S[k] for every k � 1, : : : ,K. Thanks to the rectangularity of the feasible set,
this implies that s(θ) ∈ S. Setting s in (6.7) to s(θ), we, thus, find

gt ≥ δ
∑T
t�1

θ(s[k]t − F[k](st)) + α

2
θ(1−θ)‖F[k](st) − s[k]t ‖2 �[k]f (st)

‖�[k]f (st)‖
( )	

�[k]f (st)

� δ θgt +α

2
θ(1−θ) ∑K

k�1
‖F[k](st) − s[k]t ‖2‖�[k]f (st)‖

[ ]( )

≥ δ θgt + α

2
θ(1−θ)‖F(st) − st‖2

(
min

k∈{1, : : : ,K}
‖�[k]f (st)‖

)( )
∀θ ∈ [0, 1] ,

where the equality follows from the definition of gt and the last inequality exploits the Pythagorean theorem. Re-
ordering this inequality to bring gt to the left-hand side yields

gt ≥ min
k∈{1, : : : ,K}

α

2
‖F(st) − st‖2‖�[k] f (st)‖δθ(1−θ)

1− δθ
∀θ ∈ [0, 1]: (6.8)

A tedious but straightforward calculation shows that the lower bound on the right-hand side of (6.8) is maxi-
mized by θ? � (1− �������

1− δ
√ )=δ. Assertion (ii) then follows by substituting θ? into (6.8). w

Proof of Theorem 6.1. By Assumption 6.1(i), the function f is β-smooth, and thus, one can show that

f (st + ηdt) ≤ f (st) − ηgt + η2β

2
‖dt‖2 ∀η ∈ [0, 1] , (6.9)

where the surrogate duality gap gt ≥ 0 and the search direction dt ∈ Rd are defined as in Lemma 6.1. We empha-
size that (6.9) holds, in fact, for all η ∈ R. However, the next iterate st+1 � st + ηdt may be infeasible unless
η ∈ [0, 1]. Inequality (6.9) implies that any βt ≥ β satisfies the condition of the inner while loop of Algorithm 1,
and thus, the loop must terminate at the latest after �log (ζβ=β−1)=log (τ)� iterations, outputting a smoothness pa-
rameter βt and a step size ηt that satisfy Inequality (6.5). We henceforth denote by ht � f (st) − f ? the suboptimality
of the kth iterate and note that

ht+1 � f (st + ηtdt) − f (st) + ht ≤ −gt + 1
2
βtη

2
t ‖dt‖2 + ht , (6.10)

where the inequality exploits (6.5) and the definitions of gt and dt. In order to show that ht decays geometrically,
we distinguish cases (i) gt=(βt‖dt‖2) ≥ 1 and (ii) gt=(βt‖dt‖2) < 1. In case (i), the step size ηt defined in (6.5) satisfies
ηt �min{1,gt=(βt‖dt‖2)} � 1, and thus, we have

ht+1 ≤ βt‖dt‖2
2gt

− 1

( )
gt + ht ≤ −gt

2
+ ht ≤ 1− δ

2

( )
ht, (6.11)

where the first inequality follows from (6.10), and the third inequality holds because of Lemma 6.1(i).
In case (ii), the step size satisfies ηt � gt=βt‖dt‖2 < 1, and thus, we find

ht+1 ≤ −gt + g2t
2βt‖dt‖2

+ ht ≤ − g2t
2βt‖dt‖2

+ ht ≤ 1− δgt
2βt‖dt‖2

( )
ht

≤ 1− min
k∈{1, : : : ,K}

(1− �������
1− δ

√ )α
4βt

‖�[k]f (st)‖
( )

ht ≤ 1− (1− �������
1− δ

√ )αε
4β̄

( )
ht ,

(6.12)

where the first and second inequalities follow from (6.10) and from multiplying −gt with ηt < 1, respectively, and
the third and the fourth inequalities exploit Lemma 6.1(i) and (ii), respectively. The last inequality in (6.12) holds
because of Assumption 6.1(iii) and because βt ≤ β̄ for all t ∈ N; see Pedregosa et al. [59, proposition 2]. By Esti-
mates (6.11) and (6.12), the suboptimality of the current iterate decays at least by

max 1− δ

2
, 1− (1− �������

1− δ
√ )αε
4β̄

{ }
< 1

in each iteration of the algorithm. This observation completes the proof. w
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6.2. Frank-Wolfe Algorithm for Wasserstein MMSE Estimation Problems
We now use the fully adaptive Frank–Wolfe algorithm of Section 6.1 to solve the nonlinear SDP (3.4), which is
equivalent to the dual Wasserstein MMSE estimation problem over normal priors. Recall from Corollary 4.2 that
any solution of (3.4) can be used to construct a least favorable prior and an optimal estimator that form a Nash
equilibrium. Unlike the generic convex program (6.1), the nonlinear SDP (3.4) is a convex maximization problem.
This prompts us to apply Algorithm 1 to the convex minimization problem obtained from Problem (3.4) by turn-
ing the objective function upside down.

Throughout this section, we assume that Σ̂x 
 0, Σ̂w 
 0, ρx > 0 and ρw > 0, which implies via Theorem 3.1 that
the nonlinear SDP (3.4) is solvable and can be reformulated more concisely as

max
Σx∈S+

x ,Σw∈S+
w

f (Σx,Σw) , (6.13)

where the objective function f : S+
x × S+

w → R is defined through

f (Σx,Σw) � Tr[Σx −ΣxH	 HΣxH	 +Σw
( )−1HΣx] ,

and where the separate feasible sets for Σx and Σw are given by

S+
x � Σx ∈ Sn+ : Tr[Σx + Σ̂x − 2(Σ̂

1
2

xΣxΣ̂
1
2

x)
1
2] ≤ ρ2

x, Σx � λmin (Σ̂x)In
{ }

and

S+
w � Σw ∈ Sm+ : Tr[Σw + Σ̂w − 2(Σ̂

1
2

wΣwΣ̂
1
2

w)
1
2] ≤ ρ2

w, Σw � λmin (Σ̂w)Im
{ }

,

respectively. One readily verifies that f is concave and differentiable. Moreover, in the terminology of Section 6.1,
the feasible set of the nonlinear SDP (6.13) constitutes a Cartesian product of K � 2 marginal feasible sets S+

x and
S+
w, both of which are convex and compact thanks to Lemma A.4. Note that S+

x and S+
w constitute restrictions of

the feasible sets Sx and Sw, respectively, which appear in the proofs of Theorems 3.1 and 4.1. The oracle problem
that linearizes the objective function of the nonlinear SDP (6.13) around a fixed feasible solution Σx ∈ S+

x and
Σ+
w ∈ Sw can now be expressed concisely as

max
Lx∈S+

x ,Lw∈S+
w

〈Lx −Σx,Dx〉 + 〈Lw −Σw,Dw〉 , (6.14)

where Dx � �Σx f (Σx,Σw) and Dw � �Σw f (Σx,Σw) represent the gradients of f with respect to Σx and Σw. Lemma
A.5 offers analytical formulas for Dx and Dw and shows that they are both positive semidefinite.

The oracle problem (6.14) is manifestly separable in Lx and Lw and can, therefore, be decomposed into a sum of
two structurally identical marginal subproblems. The Frank–Wolfe algorithm is an ideal method to address the
nonlinear SDP (6.13) because these two marginal oracle subproblems admit quasi-closed form solutions. Specifi-
cally, Proposition A.2(iii) implies that Problem (6.14) is uniquely solved by

L?x � (γ?
x)2(γ?

xIn −Dx)−1Σ̂x(γ?
xIn −Dx)−1 and L?w � (γ?

w)2(γ?
wIm −Dw)−1Σ̂w(γ?

wIm −Dw)−1,
where γ?

x ∈ (λmax (Dx),∞) and γ?
w ∈ (λmax (Dw),∞) are the unique solutions of the algebraic equations

ρ2
x − 〈Σ̂x, (In − γ?

x(γ?
xIn −Dx)−1)2〉 � 0 and ρ2

w − 〈Σ̂w, (Im − γ?
w(γ?

wIm −Dw)−1)2〉 � 0, (6.15)

respectively. In practice, these algebraic equations need to be solved numerically. However, the numerical errors
in γ?

x and γ?
w must be contained to ensure that L?x and L?w give rise to a δ-approximate solution for (6.14) in the

sense of (6.2). In the following, we show that δ-approximate solutions for each of the two oracle subproblems in
(6.14) and for each δ ∈ (0, 1) can be computed with an efficient bisection algorithm.

Theorem 6.2 (Approximate Oracle). For any fixed ρ ∈ R++, Σ̂ ∈ Sd++ and D ∈ Sd+, D≠ 0, consider the generic oracle sub-
problem

max
L∈Sd+

〈L−Σ,D〉

s:t: Tr[L+ Σ̂ − 2(Σ̂
1
2LΣ̂

1
2)12] ≤ ρ2, L � λmin (Σ̂)Id ,

(6.16)

where Σ ∈ Sd+ represents a feasible reference solution. Moreover, denote the feasible set of Problem (6.16) by S+, let δ ∈ (0, 1)
be the desired oracle precision, and define φ(γ) � γ(ρ2 + 〈γ(γId −D)−1 − Id, Σ̂〉) − 〈Σ,D〉 for any γ > λmax (D). Then, Algo-
rithm 2 returns in finite time a matrix L̃ ∈ Sd+ with the following properties.
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i. Feasibility: L̃ ∈ S+
ii. δ-Suboptimality: 〈L̃ −Σ,D〉 ≥ δmax L∈S+ 〈L−Σ,D〉

Algorithm 2 (Bisection Algorithm for the Oracle Subproblem)
Input: nominal covariance matrix Σ̂ ∈ Sd++, radius ρ ∈ R++, reference covariance matrix Σ ∈ Sd+ feasible in (6.14),
gradient matrix D ∈ Sd+, D≠ 0, precision δ ∈ (0, 1), dual objective function φ(γ) defined in Theorem 6.2

set λ1 ← λmax (D), and let v1 ∈ Rd be an eigenvector for λ1

set γ← λ1(1+ (v	1 Σ̂v1)
1
2=ρ) and γ̄ ← λ1(1+Tr[Σ̂]12=ρ)

repeat
Set γ̃ ← (γ̄ + γ)=2 and L̃ ← (γ̃)2(γ̃Id −D)−1Σ̂(γ̃Id −D)−1
if dφ

dγ (γ̃) < 0, then set γ← γ̃ else Set γ̄ ← γ̃ end if

until dφ
dγ (γ̃) > 0 and 〈L̃ −Σ,D〉 ≥ δφ(γ̃)

Output: L̃

Proof of Theorem 6.2. Proposition A.2(iii) guarantees that the lower bound on L in (6.16) is redundant and can
be omitted without affecting the problem’s optimal value. By Proposition A.2(i), the oracle subproblem (6.16),
thus, admits the strong Lagrangian dual

min
γ>λmax (D)

φ(γ) ,

where the convex and differentiable function φ(γ) is defined as in the theorem statement. In the following, we
denote by λ1 > 0 the largest eigenvalue of D and let v1 ∈ Rd be a corresponding eigenvalue. By Proposition
A.2(iii), the dual oracle subproblem admits a minimizer γ? ∈ [γ, γ̄], that is, uniquely determined by the first-

order optimality condition dφ
dγ (γ?) � 0, where

γ � λ1 1+
���������
v	1 Σ̂v1

√
=ρ

( )
and γ̄ � λ1 1+

��������
Tr[Σ̂]

√
=ρ

( )
,

and the primal problem (6.16) admits a unique maximizer L? � L(γ?), where

L(γ) � γ2(γId −D)−1Σ̂(γId −D)−1:
From the proof of Proposition A.2(iii), it is evident that L(γ) 
 λmin (Σ̂)Id for every γ > 0. A direct calculation fur-
ther shows that

dφ
dγ

(γ) � ρ2 − 〈Σ̂, (Id − γ(γId −D)−1)2〉 � ρ2 −Tr[L(γ) + Σ̂ − 2(Σ̂
1
2L(γ)Σ̂

1
2)12]:

Recalling that φ(γ) is convex and that its derivative is nonnegative for all γ ≥ γ?, the reasoning implies that
L(γ) ∈ S+ for all γ ≥ γ?. Note also that the optimal value of the primal problem (6.16) is nonnegative because
Σ ∈ S+. The continuity of 〈L(γ) −Σ,D〉 at γ � γ?, thus, ensures that there exists δ′ > 0 with

〈L(γ) −Σ,D〉 ≤ δ〈L(γ?) −Σ,D〉 � δmax
L∈S+ 〈L−Σ,D〉 ∀γ ∈ [γ?,γ? + δ′]:

In summary, computing a feasible and δ-suboptimal matrix L̃ ∈ Sd+ is tantamount to finding γ̃ ∈ [γ?,γ? + δ′]. Al-
gorithm 2 uses bisection over the interval [γ, γ̄] to find a γ̃ with these properties. w

Theorem 6.2 complements Shafieezadeh-Abadeh et al. [67, theorem 3.2], which constructs an approximate ora-
cle for a nonlinear SDP similar to (6.13) that offers an additive error guarantee. The multiplicative error guarantee
of the oracle constructed here is needed to ensure the linear convergence of the fully adaptive Frank–Wolfe algo-
rithm. Next, we prove that the nonlinear SDP (6.13) satisfies all regularity conditions listed in Assumption 6.1.

Proposition 6.1 (Regularity Conditions of the Nonlinear SDP (6.13)). If ρx ∈ R++, ρw ∈ R++, Σ̂x ∈ Sn+ and Σ̂w ∈ Sm+ , then
the nonlinear SDP (6.13) obeys the following regularity conditions.

i. The objective function of Problem (6.13) is β-smooth in the sense of Assumption 6.1(i), in which

β � 2λ−1
min(Σ̂w) C + Cλ2

max(H	H) + λmax (H	H)
( )

,

which depends on the auxiliary constant C � λmax (H	H) ·λ−2
min(Σ̂w) · (ρx +Tr[Σ̂x]12)4.
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ii. The marginal feasible sets S+
x and S+

w of Problem (6.13) are α-strongly convex with respect to –f in the sense of Assump-
tion 6.1(ii), in which α �min {αx,αw}, which depends on the auxiliary constants

αx � λ
5
4
min (Σ̂x)

2ρx(ρx +Tr[Σ̂x]12)72
and αw � λ

5
4
min (Σ̂w)

2ρw(ρw +Tr[Σ̂w]12)72
:

iii. The objective function of Problem (6.13) is ε-steep in the sense of Assumption 6.1(iii), in which ε �min {εx,εw}, which
depends on the auxiliary constants

εx � λmin (Σ̂w)
(ρx +Tr[Σ̂x]12)2λmax (H	H) + (ρw +Tr[Σ̂w]12)2
( )2

and

εw � λmax (H	H) λmin (Σ̂x)
(ρw +Tr[Σ̂w]12)2 +λmin (Σ̂x)λmax (H	H)

( )2
:

Proof of Proposition 6.1. The proof repeatedly uses the fact that, for any A ∈ Rd1×d2 and B ∈ Sd2+ , we have

λmax (ABA	) � λmax (A	AB) ≤ λmax (A	A)λmax (B): (6.17)

The equality in (6.17) holds because all eigenvalues of ABA	 are nonnegative and because the nonzero spectrum
of ABA	 is identical to that of A	AB because of Bernstein [7, proposition 4.4.10]. The inequality follows from the
observation that λmax (A	A) and λmax (B) coincide with the operator norms of the positive semidefinite matrices
A	A and B, respectively.

As for assertion (i), recall first that the objective function f of the nonlinear SDP (3.4) is concave. In order to
show that f is β-smooth for some β > 0, it, thus, suffices to prove that the largest eigenvalue of the positive
semidefinite Hessian matrix of –f admits an upper bound uniformly across S+

x × S+
w. By Lemma A.5, the partial

gradients of f evaluated at Σx 
 0 and Σw 
 0 are given by

Dx � �Σx f (Σx,Σw) � (In −ΣxH	G−1H)	(In −ΣxH	G−1H)
Dw � �Σw f (Σx,Σw) � G−1HΣ2

xH
	G−1 ,

where G �HΣxH	 +Σw. Moreover, the Hessian matrix

H � Hxx Hxw
H	

xw Hww

[ ]
� 0

of the convex function –f evaluated at Σx 
 0 and Σw 
 0 consists of the submatrices

Hxx � −�2
xx f (Σx,Σw) � 2Dx ⊗H	G−1H

Hxw � −�2
xw f (Σx,Σw) � H	G−1 ⊗ (H	Dw −ΣxH	G−1) + (H	Dw −ΣxH	G−1) ⊗H	G−1

Hww � −�2
ww f (Σx,Σw) � 2Dw ⊗G−1,

where �x and �w are used as shorthand for the nabla operators with respect to vec(Σx) and vec(Σw), respectively.
To construct an upper bound on λmax (H) uniformly across S+

x × S+
w, we note first that

λmax (H) ≤ λmax (Hxx) +λmax (Hww) � 2 λmax Dx( )λmax H	G−1H
( )

+λmax Dw( )λmax G−1
( )( )

, (6.18)

where the inequality follows from Bernstein [7, fact 5.12.20] and the subadditivity of the maximum eigenvalue,
whereas the equality exploits the trace rule of the Kronecker product Bernstein [7, proposition 7.1.10]. In the re-
mainder of the proof, we derive an upper bound for each term on the right-hand side of the preceding expression.

By the definition of G and because Σw ∈ S+
w, we have G � λmin (Σw)Im � λmin (Σ̂w)Im. As Σ̂w 
 0 by assumption,

we may, thus, conclude that λmax (G−1) ≤ λ−1
min(Σ̂w), which, in turn, implies via (6.17) that

λmax (H	G−1H) ≤ λmax (G−1)λmax (HH	) ≤ λ−1
min(Σ̂w)λmax (H	H):

Similarly, by the definition of Dw, we find

λmax (Dw) � λmax (G−1HΣ2
xH

	G−1)
≤ λ2

max(Σx)λ2
max(G−1)λmax (H	H) ≤ (ρx +Tr[Σ̂x]12)4λ−2

min(Σ̂w)λmax (H	H),
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where the first inequality follows from applying Estimate (6.17) twice, and the last inequality reuses the bound
on λmax (G−1) derived earlier and exploits Lemma A.4. Finally, by the definition of Dw, we have

λmax (Dx) ≤ 1+λmax (−H	G−1HΣx) +λmax (−ΣxH	G−1H) +λmax (H	G−1HΣ2
xH

	G−1H)
≤ 1+λmax (H	G−1HΣ2

xH
	G−1H)

≤ 1+λ2
max(Σx)λ2

max(G−1)λ2
max(H	H)

≤ 1+ (ρx +Tr[Σ̂x]12)4λ−2
min(Σ̂w)λ2

max(H	H):
where the first inequality holds because of the subadditivity of the maximum eigenvalue and Bernstein [7, prop-
osition 4.4.10], which implies that the nonzero spectra of −ΣxH	G−1H and −H	G−1HΣx are both real and coin-

cide with the nonzero spectrum of the negative semidefinite matrix −Σ1
2
xH	G−1HΣ

1
2
x. The third inequality follows

from applying Estimate (6.17) three times, and the fourth inequality reuses the bound on λmax (G−1) and exploits
Lemma A.4. Substituting all these bounds into (6.18) completes the proof of assertion (i).

As for assertion (ii), we first show that the feasible set S+
x is αx-strongly convex with respect to –f in the sense of

Assumption 6.1(ii). To see this, fix any Σx,Σ′
x ∈ S+

x and θ ∈ [0, 1], and set

Σθ � θΣx + (1−θ)Σ′
x +θ(1−θ)αx

2
‖Σx −Σ′

x‖2
Dx

‖Dx‖ , (6.19)

where αx > 0 is defined as in the proposition statement and Dx denotes again the partial gradient of fwith respect
to Σx. To prove strong convexity of S+

x with respect to –f, we show that Σθ ∈ S+
x . Note first that Σθ � λmin (Σ̂x)In

because Σx,Σ′
x ∈ S+

x and because Dx is positive semidefinite. Next, define

S̄x � Σx ∈ Sn+ : λmin (Σ̂x)In � Σx � (ρx +Tr[Σ̂x]12)2In
{ }

,

and note that S+
x ⊆ S̄x by Lemma A.4. Moreover, Bhatia et al. [9, theorem 1] implies that the function gx : Sn+ → R

defined through gx(Σx) � Tr[Σx + Σ̂x − 2(Σ̂
1
2

xΣxΣ̂
1
2

x)
1
2] is κ1-strongly convex and κ2-smooth over S̄x, where

κ1 � λ
1
2
min(Σ̂x)

2(ρx +Tr[Σ̂x]12)3
and κ2 � ρx +Tr[Σ̂x]12

2λ
3
2
min(Σ̂x)

:

By Journée et al. [41, theorem 12], the sublevel set S+
x � {Σx ∈ S̄x : gx(Σx) ≤ ρ2

x} is, thus, strongly convex in the ca-
nonical sense—relative to S̄x—with convexity parameter αx � κ1=( �����

2κ2
√

ρx). This insight implies that gx(Σ̄x) ≤ ρ2
x,

which, in turn, ensures that Σ̄x ∈ S+
x . As θ ∈ [0, 1] was chosen arbitrarily, we may conclude that S+

x is αx-strongly
convex with respect to f. Using an analogous argument, one can show that S+

w is αw-strongly convex with respect
to f, and αw > 0 is defined as in the proposition statement. In summary, S+

x × S+
w is, therefore, α-strongly convex

with respect to f in the sense of Assumption 6.1(ii), in which α �min {αx,αw}.
In order to prove assertion (iii), we establish lower bounds on λmax (Dx) and λmax (Dw) uniformly across

S+
x × S+

w. The claim then follows from the observation that λmax (Dx) ≤ ‖Dx‖ and λmax (Dw) ≤ ‖Dw‖. We first derive
a lower bound on λmax (Dx). To this end, set T1 � In −ΣxH	G−1H and T2 �HΣxH	G−1, and note that both T1 and
T2 have real spectra thanks to Bernstein [7, proposition 4.4.10]. As Dx � T	

1 T1, we find

λmax (Dx) � λmax (T1T	
1 ) ≥ max

λ∈spec(T1)
| λ|2 � max

λ∈spec(T2)
| 1−λ|2 � λmax2(I−T2) � λmax2(ΣwG−1), (6.20)

where spec(T) denotes the eigenvalue spectrum of any square matrix T. The inequality in (6.20) follows from
Browne’s theorem Bernstein [7, fact 5.11.21], the second equality holds because the nonzero spectrum of
ΣxH	G−1H matches that of HΣxH	G−1 thanks to Bernstein [7, proposition 4.4.10], and the last equality follows
from the identity T2 � Im −ΣwG−1. Notice that all eigenvalues of ΣwG−1 are real because T2 has a real spectrum.

Estimate (6.20) implies that a uniform lower bound on the largest eigenvalue of Dx can be obtained by maxi-
mizing the largest eigenvalue of ΣwG−1 over S+

x × S+
w. By the definition of G, we have

inf
Σx∈S+

x
Σw∈S+

w

λmax (ΣwG−1) ≥ inf
Σx∈S+

x
Σw∈S+

w

λmin (Σw(HΣxH	 +Σw)−1)

≥ inf
Σx∈S+

x
Σw∈S+

w

λmin (Σw)λmin (HΣxH	 +Σw)−1
( )

≥ inf
Σx∈S+

x
Σw∈S+

w

λmin (Σw)
λmax (Σx)λmax (H	H) +λmax (Σw)

≥ λmin (Σ̂w)
(ρx +Tr[Σ̂x]12)2λmax (H	H) + (ρw +Tr[Σ̂w]12)2

,

(6.21)
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where the second inequality holds because λmin (T) � λ−1
max(T−1) for any T 
 0 and because the maximum eigen-

value of a positive definite matrix coincides with its operator norm. The third inequality exploits (6.17) and the
subadditivity of the maximum eigenvalue, and the last inequality follows from Lemma A.4. Combining (6.20)
and (6.21) shows that ‖Dx‖ ≥ λmax (Dx) ≥ εx, where εx is defined as in the proposition statement.

Using similar arguments, we can also derive a uniform lower bound on λmax (Dw). Specifically, we have

λmax (Dw)λmax (H	H) ≥ λmax (H	DwH) � λmax (H	G−1HΣx (H	G−1HΣx)	)
≥ λ2

max(HΣxH	G−1) � 1−λmin (ΣwG−1)( )2
� 1− 1

1+λmax (HΣxH	Σ−1
w )

( )2

� 1− 1

1+λmax Σ
−1
2

w HΣxH	Σ−1
2

w

( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2

,

(6.22)

where the first inequality follows from (6.17), and the first equality holds because of the definition of Dw. More-
over, the second inequality exploits Brown’s theorem Bernstein [7, fact 5.11.21], and the second equality uses the
definition of G. Finally, the third equality follows from the relation λmin (ΣwG−1) � λ−1

max(GΣw), and the fourth
equality holds because of Bernstein [7, proposition 4.4.10]. A uniform lower bound on Dw can, thus, be obtained
from the estimate

Σ
−1
2

w HΣxH	Σ−1
2

w � λmin (Σx)Σ−1
2

w HH	Σ−1
2

w � λmin (Σx)
λmax (Σw)HH	,

which implies via Lemma A.4 that

inf
Σx∈S+

x
Σw∈S+

w

λmax (Σ−1
2

w HΣxH	Σ−1
2

w ) ≥ inf
Σx∈S+

x
Σw∈S+

w

λmin (Σx)
λmax (Σw)λmax (H	H) ≥ λmin (Σ̂x)

(ρw +Tr[Σ̂w]12)2
λmax (H	H): (6.23)

Combining (6.22) and (6.23) shows that ‖Dw‖ ≥ λmax (Dw) ≥ εw, where εw is defined as in the proposition state-
ment. We, thus, conclude that f is ε-steep in the sense of Assumption 6.1(iii) with ε �min {εx,εw}. w

By Theorem 6.1, which is applicable because of Proposition 6.1, the fully adaptive Frank–Wolfe algorithm (see
Algorithm 1) solves the (minimization problem equivalent to the) nonlinear SDP (6.13) at a linear convergence
rate. Moreover, Theorem 6.2 ensures that the oracle problem (6.14), which needs to be solved in each iteration of
Algorithm 1, can be solved highly efficiently via bisection (see Algorithm 2).

We emphasize that, if Σ̂x is singular, then the strong convexity parameter α of Assumption 6.1(ii) vanishes,
and therefore, Theorem 6.1 is no longer applicable. In that case, however, Algorithm 1 is still guaranteed to con-
verge, albeit at a sublinear rate; see Pedregosa et al. [59] for further details.

7. Numerical Experiments
All experiments are run on an Intel XEON CPU with 3.40 GHz clock speed and 16 GB of RAM. All (linear) SDPs
are solved with MOSEK 8 using the YALMIP interface Löfberg [50]. In order to ensure the reproducibility of our
experiments, we make all source codes available at https://github.com/sorooshafiee/WMMSE.

7.1. Scalability of the Frank–Wolfe Algorithm
We first compare the convergence behavior of the Frank–Wolfe algorithm developed in Section 6 against that of
MOSEK. Each experiment consists of 10 independent simulation runs, in all of which we fix the signal and noise
dimensions to n � m � d and theWasserstein radii to ρx � ρw � ��

d
√

for some d ∈ N. In each simulation run, we ran-

domly generate two nominal covariance matrices Σ̂x and Σ̂w as follows. First, we sample Qx and Qw from the
standard normal distribution on Rd×d, and we denote by Rx and Rw the orthogonal matrices whose columns cor-
respond to the orthonormal eigenvectors of Qx +Q	

x and Qw +Q	
w , respectively. Then, we set Σ̂x � RxΛx(Rx)	 and

Σ̂w � RwΛwR	
w, where Λx and Λw are diagonal matrices whose main diagonals are sampled uniformly from [1,5]d

and [1,2]d, respectively. Finally, we set μ̂x � 0 and μ̂w � 0. The Wasserstein MMSE estimator can then be comput-
ed by solving either the nonlinear SDP (3.4) with a Frank–Wolfe algorithm or the linear SDP (3.10) with MOSEK.
Figure 1, (a) and (b), shows the execution time and the number of iterations needed by the vanilla, adaptive, and
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fully adaptive versions of the FW algorithm as well as by MOSEK to drive the (surrogate) duality gap below
10−3. MOSEK runs out of memory for all dimensions d > 100. Figure 1(c) visualizes the empirical convergence be-
havior of the three different Frank–Wolfe algorithms. We observe that the fully adaptive Frank–Wolfe algorithm
finds highly accurate solutions already after 20 iterations for problem instances of dimension d � 1, 000.

7.2. The Value of Structural Information
In the second experiment, we study the predictive power of different MMSE estimators. The experiment consists
of 100 independent simulation runs. In each run, we use the same procedure as in Section 7.1 to generate two
random covariance matrices Σx and Σw of dimensions n �m � 50, and we set the true signal and noise distribu-
tions to Px �N (0,Σx) and Pw �N (0,Σw), respectively. Next, we define Σ̂x and Σ̂w as the sample covariance
matrices corresponding to 100 independent samples from Px and Pw, respectively. Moreover, we set H � In. To
assess the value of structural information, we compare the Wasserstein MMSE estimator proposed in this paper
against the Bayesian MMSE estimator associated with the nominal signal and noise distributions and the un-
structured Wasserstein MMSE estimator proposed in Shafieezadeh-Abadeh et al. [67]. The latter uses a single
Wasserstein ball to model the ambiguity of the joint distribution of x and y, thereby ignoring the structural infor-
mation that w �Hy− x is independent of x. Both the structured and unstructured Wasserstein MMSE estimators
collapse to the nominal Bayesian MMSE estimator when the underlying Wasserstein radii are set to zero. Recall
also that the nominal Bayesian MMSE estimator is optimal in distributionally robust estimation problems whose
ambiguity sets are defined via information divergences (Levy and Nikoukhah [48, 49], Zorzi [76, 77]). This ro-
bustness property makes the nominal Bayesian MMSE estimator an interesting benchmark.

We quantify the performance of a given estimator by its regret, which is defined as the difference between the
estimator’s average risk and the least possible average risk of any estimator under the unknown true distribu-
tions Px and Pw. Note that the minimum average risk is attained by the (affine) Bayesian MMSE estimator
corresponding to the (normal) distributions Px and Pw. Figure 2(a) shows the regret of the Wasserstein MMSE es-
timator with ρx � ρ and ρw � 0, the Wasserstein MMSE estimator with ρx � 0 and ρw � ρ, and the unstructured
Wasserstein MMSE estimator from Shafieezadeh-Abadeh et al. [67] with Wasserstein radius ρ for all ρ ∈ [0:1, 10].
The solid lines represent the averages and the shaded areas the ranges of the regret across all 100 simulation
runs. The regret of the structured Wasserstein MMSE estimator with Wasserstein radii ρx,ρw ∈ [0:1, 10] averaged
across all 100 simulation runs is visualized by the surface plot in Figure 2(b).

We observe that the average regret of the nominal Bayesian MMSE estimator amounts to 16.7 (the leftmost val-
ue of all curves in Figure 2(a)), and the best unstructured Wasserstein MMSE estimator attains a significantly
lower average regret of 13.1 (the minimum of the blue curve in Figure 2(a)). The best structured Wasserstein
MMSE estimator without noise ambiguity (ρw � 0) displays a similar performance, attaining an average regret of
13.2 (the minimum of the red curve in Figure 2(a)), and the one without signal ambiguity (ρx � 0) further reduces
the average regret by more than 50% to 6.0 (the minimum of the yellow curve in Figure 2(a)). Finally, the best
among all structured Wasserstein MMSE estimators, which is obtained by tuning both ρx and ρw, attains an even
lower average regret of 2.2 (the minimum of the surface plot in Figure 2(b)). This experiment confirms our

Figure 1. (Color online) Scalability properties of different methods for computing theWasserstein MMSE estimator (shown are
the means (solid lines) and the ranges (shaded areas) of the respective performance measures across 10 simulation runs). (a) Scal-
ing of execution time. (b) Scaling of iteration count. (c) Convergence for d � 1,000.
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hypothesis that structural (independence) information as well as information about distributional ambiguity can
improve the predictive power of MMSE estimators.

Unlike in data-driven optimization, in which the nominal distribution and the radii of the ambiguity sets can
be tuned from data, we assume here that the nominal distribution and the radii of the ambiguity sets reflect the
modeler’s prior distributional information. Thus, they are reminiscent of prior distributions in Bayesian statistics.
The radii could be tuned using standard cross-validation techniques, for example, if we had access to samples
(x̂i, ŷi), i � 1, : : : ,N drawn independently from the true joint distribution of (x, y) under P. This conflicts, however,
with our central assumption that only y is observable. In this case, it is fundamentally impossible to assess the
empirical performance of an estimator and to tune the radii via cross validation.

Acknowledgments
The authors are grateful to Erick Delage for valuable comments on an earlier version of this paper.

Appendix. Auxiliary Results
We first prove Pythagoras’ theorem for the Wasserstein distance.

Proof of Lemma 1.1. By the definition of the Wasserstein distance and by Pythagoras’ theorem for the Euclidean
distance, we have

W(Q1
x × Q1

w ,Q2
x × Q2

w)2 � inf
π∈Π(Q1

x×Q1
w,Q2

x×Q2
w)

∫
Rn+m×Rn+m

‖ x1 − x2‖2 + ‖w1 − w2‖2 π(dx1, dw1, dx2, dw2)

≤ inf
πx∈Π(Q1

x,Q2
x)

∫
Rn×Rn

‖ x1 − x2‖2 πx(dx1, dx2) + inf
πw∈Π(Q1

w,Q2
w)

∫
Rm×Rm

‖w1 − w2‖2 πw(dw1, dw2)

� W(Q1
x ,Q

2
x)2 + W(Q1

w,Q2
w)2,

where the inequality follows from the restriction to factorizable transportation plans of the form π � πx × πw for some πx ∈
Π(Q1

x,Q
2
x) and πw ∈Π(Q1

w,Q
2
w). To prove the converse inequality, we define Πx(Q1

x,Q
2
x) as the set of all joint distributions π ∈

M(Rn+m × Rn+m) of (x1,w1) ∈ Rn+m and (x2,w2) ∈ Rn+m under which x1 and x2 have marginal distributions Q1
x and Q2

x,

Figure 2. (Color online) Regret of different estimators averaged across 100 simulation runs. (a) Regret of differentWasserstein
MMSE estimators involving a single hyperparameter ρ. (b) Regret of theWasserstein MMSE estimator involving two hyperpara-
meters ρx and ρw.
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respectively. Similarly, we define Πw(Q1
w,Q

2
w) as the set of all joint distributions π ∈M(Rn+m × Rn+m) of (x1,w1) ∈ Rn+m and

(x2,w2) ∈ Rn+m under which w1 and w2 have marginal distributions Q1
w andQ2

w, respectively. Using this notation, we find

W(Q1
x ×Q1

w ,Q2
x ×Q2

w)2 ≥ inf
π∈Π(Q1

x×Q1
w,Q2

x×Q2
w)

∫
Rn+m×Rn+m

‖x1 − x2‖2π(dx1,dw1,dx2,dw2)

+ inf
π∈Π(Q1

x×Q1
w,Q2

x×Q2
w)

∫
Rn+m×Rn+m

‖w1 −w2‖2π(dx1,dw1,dx2,dw2)

≥ inf
π∈Πx(Q1

x,Q2
x)

∫
Rn+m×Rn+m

‖x1 − x2‖2π(dx1,dw1,dx2,dw2)

+ inf
π∈Πw(Q1

w,Q2
w)

∫
Rn+m×Rn+m

‖w1 −w2‖2π(dx1,dw1,dx2,dw2)

� W(Q1
x ,Q

2
x)2 + W(Q1

w ,Q2
w)2,

where the first inequality exploits the superadditivity of the infimum operator, and the second inequality holds because
Π(Q1

x ×Q1
w,Q

2
x ×Q2

w) contains both Πx(Q1
x,Q

2
x) andΠw(Q1

w,Q
2
w) as subsets. The equality in the last line follows from the obser-

vation that, for any π ∈Πx(Q1
x,Q

2
x), the marginal distribution πx of (x1, x2) is an element of Π(Q1

x,Q
2
x), and for any

π ∈Πw(Q1
x,Q

2
x), the marginal distribution πw of (w1, w2) is an element ofΠ(Q1

w,Q
2
w). Thus, the claim follows.

In order to prove Proposition 2.4, we establish first general conditions for the solvability and stability of parametric
minimax problems and prove that the matrix square root is Hölder continuous.

Lemma A.1 (Parametric Minimax Problems). Consider the parametric minimax problem

J(θ) � inf
u∈U sup

v∈V(θ)
f (u, v), (A.1)

where U, V and Θ are nonempty convex subsets of Euclidean spaces equipped with the respective subspace topologies, f : U × V→ R

and g : V ×Θ→ R are continuous functions, and V :Θ¶V and V◦ :Θ¶V are set-valued mappings defined through V(θ) � {v ∈ V :

g(v,θ) ≤ 0} and V◦(θ) � {v ∈ V : g(v,θ) < 0}, respectively. Assume that, for each θ′ ∈Θ, there exists a compact neighborhood Θ′ ⊆Θ

of θ′ such that
i. V(θ) is convex and bounded uniformly across all θ ∈Θ′.
ii. V◦(θ) is nonempty and coincides with the interior of V(θ) for all θ ∈Θ′.
iii. There exist v′ ∈ V and J′ ∈ R such that v′ ∈ V(θ) and J(θ) ≤ J′ for all θ ∈Θ′ and such that the set U′ � {u ∈ U : f (u,v′) ≤ J′} is non-

empty and compact.
Then, the minimax problem (A.1) is solvable for all θ ∈Θ, and J is continuous on Θ.

Proof of Lemma A.1. Define F(u,θ) � sup v∈V(θ)f (u,v) and note that F(u,θ) is finite because it is the maximum of a con-
tinuous function over a compact feasible set. As V is locally bounded thanks to assumption (i) and as the graph of V is
closed thanks to the continuity of g, the closed graph theorem Aubin and Frankowska [1, proposition 1.4.8] ensures that
the set-valued mapping V is upper semicontinuous in the sense of Berge [6, chapter VI]. By Berge [6, theorem 2], the
optimal value function F is, thus, upper semicontinuous on U ×Θ. Next, note that F(u,θ) � sup v∈V◦(θ) f (u,v) because f is
continuous and because V◦(θ) coincides with the nonempty interior of V(θ) thanks to assumption (ii). As V◦ is convex-
valued thanks to assumption (i) and as the graph of V is open thanks to the continuity of g, the open graph theorem
Zhou [75, proposition 2] implies that the set-valued mapping V is lower semicontinuous in the sense of Berge [6, chapter
VI]. By Berge [6, theorem 1], the function F is, thus, lower semicontinuous on U ×Θ. In summary, F is, therefore, continu-
ous on U ×Θ.

To prove that J is lower semicontinuous, we select an arbitrary θ′ ∈Θ and a compact neighborhood Θ′ ⊆Θ of θ′ that
satisfies assumption (iii). For any θ ∈Θ′, we may then restrict the feasible set of the outer minimization problem in (A.1)
to U′ without affecting J(θ). Indeed, any u ∉ U′ and θ ∈Θ′ satisfies

F(u,θ) � sup
v∈V(θ)

f (u,v) ≥ f (u,v′) > J′ ≥ J(θ) ,

where the three inequalities hold because v′ ∈ V(θ) for all θ ∈Θ′, u ∉ U′ and J(θ) ≤ J′ for all θ ∈Θ′, respectively. Thus, u ∉ U′

is strictly suboptimal, and we have J(θ) � inf u∈U′F(u,θ) for all θ ∈Θ′. As U′ is compact and F(u,θ) is continuous, the restricted
minimax problem with U′ replacing U is solvable, and any minimizer also solves (A.1). Moreover, the constant feasible set
mapping that assigns each θ ∈Θ′ the same set U′ is continuous in the sense of Berge [6, chapter VI]. By Berge’s [6, theorem 1]
maximum theorem, the function J is, thus, continuous on Θ′ and, as θ′ ∈Θ was chosen arbitrarily, on all of Θ. w
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Lemma A.2 (H€older Continuity of the Matrix Square Root). The square root of a positive semidefinite matrix is Hölder-
continuous with exponent 1/2. More precisely, we have

‖ ����
A1

√ − ����
A2

√ ‖ ≤ 2
��
d

√ ‖A1 − A2 | |1=2 ∀A1,A2 ∈ Sd+ :

Proof of Lemma A.2. The proof exploits the following two facts.
i. By Schmitt [65, lemma 2.2], we have

‖ ����
A1

√ − ����
A2

√ ‖ ≤ 1
λmin (A1) + λmin (A2) ‖A1 − A2‖ ∀A1,A2 ∈ Sd++ :

ii. One can show that

‖ ����������
A + εId

√ − ���
A

√ ‖ ≤ d
��
ε

√
∀A ∈ Sd+, ε ≥ 0 :

To prove assertion (ii), denote by λi ≥ 0, i � 1, : : : ,d, the eigenvalues of A ∈ Sd+ and by ai ∈ Rd, i � 1, : : : , d, the correspond-
ing orthonormal eigenvectors, which implies that A � ∑d

i�1λiaia	i . Thus, we find

‖ ����������
A+ εId

√ − ���
A

√ ‖ � ‖∑d
i�1

( ����������(λi + ε)√ − ���
λi

√ )aia	i ‖ � ‖∑d
i�1

ε( ����������(λi + ε)√ + ���
λi

√ )−1aia	i ‖
≤∑d

i�1

ε����������(λi + ε)√ + ���
λi

√ ‖ aia	i ‖ ≤ d
��
ε

√
,

where the first inequality follows from the triangle inequality and the second inequality holds because the denominator of
the ith fraction grows with λi and is, therefore, minimal for λi � 0.

To prove the lemma, select now arbitrary A1,A2 ∈ Sd+ and ε > 0. The triangle inequality implies that

‖ ����
A1

√ − ����
A2

√ ‖ ≤ ‖ ����
A1

√ − �����������
A1 + εId

√ ‖ + ‖ �����������
A1 + εId

√ − �����������
A2 + εId

√ ‖ + ‖ �����������
A2 + εId

√ − ����
A2

√ ‖
≤ d

��
ε

√ + 1
λmin ( �����������

A1 + εId
√ ) +λmin ( �����������

A2 + εId
√ )‖A1 −A2‖ + d

��
ε

√ ≤ 2d
��
ε

√ + ‖A1 −A2‖
2

��
ε

√ ,

where the second exploits assertions (i) and (ii). The claim now follows by setting ε � ‖A1 −A2‖=4d, which actually minimizes
the right-hand side of the last expression. w

Armed with Lemmas A.1 and A.2, we are now ready to prove Proposition 2.4.

Proof of Proposition 2.4. The Gelbrich MMSE estimation problem (2.1) upper bounds the Wasserstein MMSE estima-
tion problem (1.7) because A ⊆ F and G(P̂) ⊇ B(P̂); see Corollary 2.1. Thus, assertion (i) follows. Recall now that any ψ ∈
A can be represented as ψ(y) � Ay+ b for some A ∈ Rn×m and b ∈ Rn. Moreover, for any distribution Q �Qx ×Qw ∈G(P̂),
denote by μx and μw the mean vectors and by Σx and Σw the covariance matrices of Qx and Qw, respectively. Hence, the
objective function and the constraints of (2.1) depend on ψ and Q only through u � (A,b), which ranges over
U � Rn×m × Rn, and v � (μx,μw,Σx,Σw), which ranges over V � Rn × Rm × Sn+ × Sm+ . Indeed, the average risk of ψ under Q

satisfies

R(ψ,Q) � EQ ‖x−A(Hx+w) − b‖2
[ ]

� EQ ‖(In −AH)x−Aw− b‖2
[ ]

� 〈(In −AH)	(In −AH),Σx +μxμ
	
x 〉 + 〈A	A,Σw +μwμ

	
w〉 + b	b

− 2μ	
x (In −AH)	Aμw − 2b	((In −AH)μx −Aμw) � f (u,v):

Similarly, the constraint Q ∈G(P̂) can be reformulated as g(v,θ) ≤ 0, where θ � (μ̂x, μ̂w, Σ̂x, Σ̂w) is shorthand for the prob-
lem’s input parameters ranging over the set Θ � Rn × Rm × Sn+ × Sm+ , and where

g(v,θ) �max G((μx ,Σx), (μ̂x , Σ̂x))2 − ρ2
x, G((μw ,Σw), (μ̂w , Σ̂w))2 − ρ2

w

{ }
:

Thus, the Gelbrich MMSE estimation problem (2.1) can be re-expressed more concisely as

J(θ) � inf
u∈U sup

v∈V(θ)
f (u, v) , (A.2)

where V(θ) � {v ∈ V : g(v,θ) ≤ 0} for all θ ∈Θ. Assume now that ρx > 0 and ρw > 0. In the remainder, we prove that the opti-
mal value J(θ) of the minimax problem (A.2) is attained and continuous in θ by showing that all assumptions of Lemma A.1
are satisfied.
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To this end, note first that f is continuous by construction and that g is convex and continuous thanks to Proposition
2.2. Next, select an arbitrary reference point θ′ � (μ̂x

′, μ̂w
′ , Σ̂x

′, Σ̂w
′) ∈Θ, and define

Θ′ � (μ̂x, μ̂w, Σ̂x, Σ̂w) ∈Θ :
G((μ̂x, Σ̂x), (μ̂′

x, Σ̂
′
x)) ≤ ρx

2

G((μ̂w, Σ̂w), (μ̂′
w, Σ̂

′
w)) ≤ ρw

2

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭:

Note that Θ′ is a neighborhood of θ′ because ρx and ρw are strictly positive and because Proposition 2.2 ensures that the
(squared) Gelbrich distance is continuous. Moreover, Θ′ is compact because of Lemma A.4.

In order to verify assumption (i) of Lemma A.1, we note first that V(θ) is a convex set for every θ ∈Θ because g is a
convex function. Moreover, we have

V(θ) � (μx,μw,Σx,Σw) ∈ V :
G((μx,Σx), (μ̂x, Σ̂x)) ≤ ρx

G((μw,Σw), (μ̂w, Σ̂w)) ≤ ρw

⎧⎪⎪⎨⎪⎪⎩ ⎫⎪⎪⎬⎪⎪⎭
⊆ (μx,μw,Σx,Σw) ∈ V :

G((μx,Σx), (μ̂′
x, Σ̂

′
x)) ≤ 3ρx

2

G((μw,Σw), (μ̂′
w, Σ̂

′
w)) ≤ 3ρw

2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭ � V′ ∀θ ∈Θ′,

where the first equality holds because of the definition of V(θ); the inclusion holds because of the definition ofΘ′ and because
the Gelbrich distance satisfies the triangle inequality; and the last equality defines the set V′, which is compact thanks to Lem-
ma A.4. This reasoning shows that V(θ) is uniformly bounded on Θ′.

In order to verify assumption (ii) of Lemma A.1, define

V◦(θ) � v ∈ V : g(v,θ) < 0
{ } � (μx,μw,Σx,Σw) ∈ V :

G((μx,Σx), (μ̂x, Σ̂x)) < ρx

G((μw,Σw), (μ̂w, Σ̂w)) < ρw

{ }

for any θ ∈Θ. As the Gelbrich distance satisfies the identity of indiscernibles and as ρx and ρw are strictly positive, we have
θ ∈ V◦(θ), which implies that V◦(θ) is nonempty. It remains to be shown that V◦(θ) coincides with the interior of V(θ). As the
Gelbrich distance is continuous by virtue of Proposition 2.2, it is clear that V◦(θ) is an open subset of V(θ) and, thus, con-
tained in int(V(θ)). To prove the converse inclusion, assume for the sake of argument that V◦(θ) is a strict subset of int(V(θ)).
Thus, there must exist an open set O ⊆ int(V(θ))\V◦(θ). Otherwise, each point in int(V(θ))\V◦(θ) would belong to the bound-
ary of int(V(θ)), which is impossible because int(V(θ)) is open. As O ⊆ V(θ)\V◦(θ), it is clear that at least one of the equalities
G((μx,Σx), (μ̂x, Σ̂x)) � ρx or G((μw,Σw), (μ̂w, Σ̂w)) � ρw is satisfied at any point in O. In fact, as the Gelbrich distance is continu-
ous, one of these equalities holds throughout an open set O′ ⊆O. Without loss of generality, we may, thus, assume that
G((μx ,Σx), (μ̂x ,Σ̂x))2 � ρ2

x on an open setO′ ⊆O, which implies that any point in O′ is a local minimizer of the squared Gelbrich
distance. As the squared Gelbrich distance is convex because of Proposition 2.2, this means that all points in O′ are, in fact,
global minimizers. This is not possible, however, because the (squared) Gelbrich distance adopts its global minimum only at
points at which μx � μ̂x and Σx � Σ̂x. No such point belongs to O′ because O′ ∩ V◦(θ) � ∅. Thus, we have int(V(θ)) � V◦(θ).

In order to verify assumption (iii) of Lemma A.1, select a point v′ � (μ′
x,μ

′
w,Σ

′
x,Σ

′
w) ∈Θ′ with Σ′

w 
 0. Such a point exists
because ρw > 0 and because the (squared) Gelbrich distance is continuous by virtue of Proposition 2.2, which implies that

(μx
′ ,μw

′ ,Σx
′ ,Σw

′ ) � (μ̂x, μ̂w, Σ̂x, Σ̂w +λ · Im) ∈Θ′

for all sufficiently small λ > 0. The triangle inequality for the Gelbrich distance then ensures that v′ ∈ V(θ) for all θ ∈Θ′. Next,
set J′ � sup v∈V′ f (0,v), which is finite because V′ is compact and f is continuous, and note that

J(θ) � inf
u∈U sup

v∈V(θ)
f (u,v) ≤ sup

v∈V′
f (0,v) � J′ ∀θ ∈Θ′,

where the inequality holds because V(θ) ⊆ V′ whenever θ ∈Θ′. Finally, define U′ � {u ∈ U : f (u,v′) ≤ J′}, which is nonempty.
Indeed, U′ contains at least the point u � 0 because v′ ∈Θ′ ⊆ V′. As Σw

′ 
 0, it is easy to verify that f (u,v′) is strictly convex
and quadratic in u, which implies that U′ is a compact ellipsoid.

In summary, Problem (A.2), which is equivalent to the Gelbrich MMSE estimation problem (2.1), satisfies all assump-
tions of Lemma A.1. Therefore, its optimal value J(θ) is attained and continuous in θ. w

In order to derive a tractable reformulation for the Gelbrich MMSE estimation problem studied in Section 2, we need
to be able to solve nonlinear SDPs of the form

J? � sup
Σ�0

〈D,Σ〉 − γTr[Σ − 2(Σ̂
1
2ΣΣ̂

1
2)12] (A.3)
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parameterized by D ∈ Sd, Σ̂ ∈ Sd+ and γ ∈ R+. It is known that, under certain regularity conditions, Problem (A.3) admits a
unique optimal solution that is available in closed form Nguyen et al. [55]. In the following, we review the construction of
this optimal solution under slightly more general conditions.

Proposition A.1 (Closed-Form Solution of (A.3)). For any D ∈ Sd, Σ̂ ∈ Sd+ and γ ∈ R+ the optimal value of the nonlinear SDP
(A.3) is given by

J? �
γ2〈(γId −D)−1, Σ̂〉 if γ > λmax (D),
liminf

γ̄↓γ
γ̄2〈(γ̄Id −D)−1, Σ̂〉 if γ � λmax (D),

+∞ if γ < λmax (D):

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Moreover, Problem (A.3) is solved by Σ? � γ2(γId −D)−1Σ̂(γId −D)−1 whenever γ > λmax (D). This solution is unique if Σ̂ 
 0.

Proof of Proposition A.1. Assume first that γ > λmax (D). Moreover, in order to simplify the proof, assume temporarily

that Σ̂ 
 0. By applying the nonlinear variable transformation B← (Σ̂
1
2ΣΣ̂

1
2)12, which implies that Σ � Σ̂

−1
2 B2 Σ̂

−1
2, we can re-

formulate Problem (A.3) as

J? � sup
B�0

〈D, Σ̂
−1
2 B2 Σ̂

−1
2〉 − γTr[Σ̂−1

2 B2 Σ̂
−1
2 − 2B]

� sup
B�0

〈B2, Σ̂
−1
2 (D− γId) Σ̂−1

2〉 + 2γ 〈B, Id〉,

where the second equality exploits the cyclicity of the trace operator. Introducing the auxiliary parameter

Δ � Σ̂
−1
2(D− γId)Σ̂−1

2, we can then rewrite the last maximization problem over Bmore concisely as

J? � sup
B�0

〈B2,Δ〉 + 2γ 〈B, Id〉: (A.4)

Note that (A.4) represents a convex maximization problem because γ > λmax (D) and Σ̂ 
 0, which imply that Δ ≺ 0. Ignor-
ing the positive semidefiniteness constraint on B, the objective function of (A.4) is uniquely minimized by the solution
B? � −γΔ−1 of the first-order optimality condition BΔ+ΔB+ 2γId � 0. Uniqueness follows from Hespanha [37, theorem

12.5]. As it is strictly positive definite, B?, thus, uniquely solves (A.4), which, in turn, implies that Σ? � Σ̂
−1
2(B?)2Σ̂−1

2 �
γ2(γId −D)−1Σ̂(γId −D)−1 uniquely solves (A.3). Substituting Σ? back into the objective function of (A.3) further shows
that J? � γ2〈(γId −D)−1, Σ̂〉.

Next, we argue that the analytical formula for J? in the regime γ > λmax (D) remains valid even when Σ̂ is rank-
deficient. To see this, define

J?(Σ̂) � γ2〈(γId −D)−1, Σ̂〉 and Σ?(Σ̂) � γ2(γId −D)−1Σ̂(γId −D)−1
as explicit continuous functions of the parameter Σ̂ ∈ Sd+. Similarly, define the function

F(Σ, Σ̂) � 〈D,Σ〉 − γTr[Σ− 2(Σ̂
1
2ΣΣ̂

1
2)12],

which is jointly continuous in Σ ∈ Sd+ and Σ̂ ∈ Sd+. We then have

J?(Σ̂) � liminf
ε↓0

J?(Σ̂ + εId) � lim inf
ε↓0

sup
Σ�0

F(Σ, Σ̂ + εId) ≥ sup
Σ�0

F(Σ, Σ̂) ≥ F(Σ?(Σ̂), Σ̂) � J?(Σ̂),

where the first equality follows from the continuity of J?(Σ̂), and the second equality holds because Σ̂ + εId 
 0 for every ε > 0
and because J?(Σ̂′) � supΣ
0F(Σ, Σ̂′) for every Σ̂

′ 
 0, which was established in the first part of the proof. The first inequality
exploits the fact that a pointwise supremum of continuous functions is lower semicontinuous, and the second inequality
holds because Σ?(Σ̂ + εId) 
 0 for every ε > 0. Finally, the last equality follows from elementary algebra. These arguments im-
ply that J?(Σ̂) and Σ?(Σ̂) represent the optimal value and an optimal solution of (A.3), respectively, even if Σ̂ ∈ Sd+ is rank-
deficient.

Assume next that γ < λmax (D), and denote by v̄ ∈ Rd a normalized eigenvector of D corresponding to the eigenvalue
λmax (D). By optimizing only over matrices of the form Σ � t v̄ v̄	 for some t ≥ 0, we find

J? ≥ sup
t≥0

t 〈D− γId, v̄ v̄	〉 + 2
��
t

√
γTr[(Σ̂

1
2v̄ v̄	Σ̂

1
2)12]

� sup
t≥0

t (λmax (D) − γ) + 2
��
t

√
γTr[(Σ̂

1
2v̄ v̄	Σ̂

1
2)12] � ∞:

Assume finally that γ � λmax (D). To investigate this limiting case, note that the objective function of (A.3) is linear in γ,
which implies that the optimal value of (A.3) is convex and lower semicontinuous in γ. Given the results for
γ≠ λmax(D), it is, thus, clear that, for γ � λmax(D), the optimal value of (A.3) must be given by
J? � lim inf γ̄↓γγ̄2〈(γ̄Id −D)−1, Σ̂〉. This observation completes the proof.
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In order to derive search directions for the Frank–Wolfe algorithm developed in Section 6, we need to be able to solve
constrained nonlinear SDPs of the form

sup
Σ�0

〈D,Σ〉

s:t: Tr[Σ + Σ̂ − 2(Σ̂
1
2ΣΣ̂

1
2)12] ≤ ρ2

(A.5)

parameterized by D ∈ Sd, Σ̂ ∈ Sd+ and ρ ∈ R+. It is known that Problem (A.5) admits a unique optimal solution that is available
in quasi-closed form (Nguyen et al. [55]). We review the construction of this optimal solution under more general conditions
and uncover several previously unknown properties of this solution.

Proposition A.2 (Quasi-Closed Form Solution of (A.5)). The following statements hold:
i. If D ∈ Sd, Σ̂ ∈ Sd+ and ρ ∈ R+, then Problem (A.5) is solvable, and its maximum matches that of the univariate convex minimization

problem

inf
γ ≥ 0

γ > λmax (D)
γ ρ2 + 〈γ(γId −D)−1 − Id, Σ̂〉
( )

: (A.6)

ii. If D≠ 0, Σ̂ 
 0 and ρ > 0, then Problem (A.6) has a unique minimizer γ? ∈ (λmax (D),∞), and Problem (A.5) is solved by
Σ? � γ?2(γ?Id −D)−1Σ̂(γ?Id −D)−1.

iii. If D � 0, D≠ 0, Σ̂ 
 0 and ρ > 0, then γ? is the unique solution of the algebraic equation

ρ2 − 〈Σ̂, (Id − γ?(γ?Id −D)−1)2〉 � 0 (A.7)

in the interval (λmax (D),∞), the matrix Σ? defined in assertion (iii) is the unique maximizer of (A.5), the Gelbrich distance constraint in
(A.5) is binding at Σ?, and Σ? 
 λmin (Σ̂)Id. Moreover, we have

γ � λ1 1+
���������
v	1 Σ̂v1

√
=ρ

( )
≤ γ? ≤ λ1 1+

��������
Tr[Σ̂]

√
=ρ

( )
� γ̄,

where λ1 is the largest eigenvalue of D, and v1 is an eigenvector corresponding to λ1.

Proof of Proposition A.2. As for assertion (i), note that the Lagrangian dual of (A.5) can be represented as

inf
γ≥0 sup

Σ�0
〈D,Σ〉 − γTr[Σ + Σ̂ − 2(Σ̂

1
2ΣΣ̂

1
2)12] + γρ2: (A.8)

Strong duality as well as primal solvability follow from Bertsekas [8, proposition 5.5.4], which applies because the primal
problem (A.5) has a continuous objective function and—by virtue of Lemma A.4—a nonempty, compact, and convex fea-
sible set. The postulated reformulation (A.6) then follows immediately from replacing the supremum of the inner maxi-
mization problem in (A.8) with the analytical formula derived in Proposition A.1. We emphasize that, for γ � λmax(D),
depending on the problem data, the inner supremum in (A.8) may evaluate to any nonnegative real number or to +∞. In
order to avoid cumbersome case distinctions, we, thus, exclude the point γ � λmax(D) from the feasible set of (A.6) with-
out affecting the problem’s infimum.

As for assertion (ii), note that Σ � Σ̂ represents a Slater point for the primal problem (A.5) because ρ > 0. Thus, the dual
problem (A.8) is solvable by Bertsekas [8, proposition 5.3.1]. To prove that (A.6) is also solvable, it remains to be shown that
(A.8) does not attain its maximum at the boundary point γ � λmax (D), which has been excluded from the feasible set of (A.6).
This is the case, however, because of the assumption that Σ̂ 
 0 and D≠ 0, which ensures that the objective function value of
γ � λmax (D) in (A.8) amounts to +∞. We may, thus, conclude that (A.6) admits a minimizer γ? ∈ (λmax (D),∞). This minimizer
is unique because the objective function of (A.6) is strictly convex when Σ̂ 
 0. Finally, the Karush–Kuhn–Tucker optimality
conditions Bertsekas [8, proposition 5.3.2] imply that any solution of the primal problem (A.5) also solves the inner maximiza-
tion problem in (A.8) at γ � γ?. The formula for Σ?, thus, follows from Proposition A.1.

To prove assertion (iii), note that the assumptions D � 0 and D≠ 0 imply that γ? > λmax (D) > 0. Therefore, none of the
constraints in (A.6) are binding at optimality. As the objective function of (A.6) is smooth and strictly convex, γ? is, thus,
uniquely determined by the first-order optimality condition (A.7), which forces the gradient of the objective function to
vanish. The uniqueness of Σ? follows from the uniqueness of γ? and the uniqueness of the inner maximizer in (A.8); see
Proposition A.1. Moreover, as γ? > 0, the Gelbrich distance constraint in (A.6) is binding at Σ?

ρ because of complementary
slackness. Next, we have

1
λmin (Σ?) � λmax Σ?( )−1

( )
� λmax γ?2(γ?In −D)−1Σ̂(γ?Id −D)−1

( )−1( )
� λmax (Id −D=γ?)Σ̂−1(Id −D=γ?)

( )
≤ λmax (Id −D=γ?)2 λmax Σ̂

−1( )
< λmax Σ̂

−1( )
� 1

λmin (Σ̂)
,

where the strict inequality holds because γ? > λmax (D) > 0. Thus, we conclude that λmin (Σ?) > λmin (Σ̂).
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To in order derive upper and lower bounds on γ?, we let D � ∑d
i�1λiviv	i be the eigendecomposition of D, where

λ1, : : : ,λd denote the eigenvalues of D indexed in descending order, and v1, : : : ,vd represent the corresponding normalized
eigenvectors. The left-hand side of (A.7) can, thus, be re-expressed as

ρ2 −∑d
i�1

λi

γ−λi

( )2
v	i Σ̂vi:

This expression is manifestly nondecreasing in γ ∈ (λ1,∞). Moreover, the sum admits the simple bounds

λ1

γ−λ1

( )2
v	1 Σ̂v1 ≤

∑d
i�1

λi

γ−λi

( )2
v	i Σ̂vi ≤

λ1

γ−λ1

( )2
Tr[Σ̂]:

Equating these lower and upper bounds to ρ2 and solving the resulting equation for γ yields γ and γ̄, respectively. This
observation concludes the proof. w

In Sections 3 and 4, we repeatedly encounter nonlinear SDPs of the form

sup
Σ�0

inf
L∈C 〈L	L,Σ〉 + f (L)

s:t: Tr Σ + Σ̂ − 2 Σ̂
1
2ΣΣ̂

1
2

( )1
2

[ ]
≤ ρ2

(A.9)

parameterized by Σ̂ ∈ Sd+ and ρ ∈ R+, where C ⊆ Rℓ×d is a convex set and f : C→ R a convex continuous function. Problem
(A.9) is reminiscent of (A.5) but accommodates a nonlinear convex objective function. We do not attempt to characterize
the maximizers of (A.9) for arbitrary choices of C and f, but we can prove that there is at least one well-behaved maximiz-
er that is bounded away from zero.

Lemma A.3 (Structural Properties of the Maximizers of (A.9)). Assume that Σ̂ ∈ Sd+ and ρ ∈ R+. If C ⊆ Rℓ×d is a nonempty
convex set and f : C→ R is a convex continuous function, then the nonlinear SDP (A.9) admits a maximizer Σ? � λmin (Σ̂)Id.
Proof of Lemma A.3. Note that, if ρ � 0 or λmin (Σ̂) � 0, then the claim holds trivially. Thus, we may henceforth assume
without loss of generality that ρ > 0 and Σ̂ 
 0. Denoting the feasible set of (A.9) by

S � Σ ∈ Sd+ : Tr[Σ+ Σ̂ − 2(Σ̂
1
2ΣΣ̂

1
2)12] ≤ ρ2

{ }
,

we then find

sup
Σ∈S

inf
L∈C 〈L	L,Σ〉 + f (L) � inf

L∈C sup
Σ∈S

〈L	L,Σ〉 + f (L)
� inf

L∈C sup
Σ∈S

Σ�λmin (Σ̂)Id

〈L	L,Σ〉 + f (L) � sup
Σ∈S

Σ�λmin (Σ̂)Id

inf
L∈C 〈L	L,Σ〉 + f (L) ,

where the first and the third equality follow from Sion’s [68] minimax theorem, which applies because 〈L	L,Σ〉 is convex
and continuous in L for every fixed Σ � 0 and because S is convex and compact by virtue of Lemma A.4. The second
equality follows readily from Proposition A.2(iii). The last maximization problem in the preceding expression has a solu-
tion Σ? � λmin (Σ̂)Id because its feasible set is compact and its objective function is upper semicontinuous. Clearly, Σ? also
solves (A.9), and thus, the claim follows. w

The proofs of Proposition A.2 and Lemma A.3 rely on the following auxiliary lemma, which extends Shafieezadeh-
Abadeh et al. [67, lemma A.6] to situations in which Σ̂ may be an arbitrary positive semidefinite covariance matrix.

Lemma A.4 (Compactness of the Feasible Set). For any Σ̂ ∈ Sd+ and ρ ∈ R+, the set

S � Σ ∈ Sd+ : Tr[Σ+ Σ̂ − 2(Σ̂
1
2ΣΣ̂

1
2)12] ≤ ρ2

{ }

is convex and compact. Moreover, for any Σ ∈ S, we have Tr[Σ] ≤ (ρ+Tr[Σ̂]12)2.
Proof of Lemma A.4. The convexity of the feasible set S follows from the convexity of the squared Gelbrich distance
proven in Proposition 2.2. To prove that S is compact, we recall from Malagò et al. [52, proposition 2] that

Tr[(Σ̂
1
2ΣΣ̂

1
2)12] � max

C∈Rd×d
Tr[C] : Σ C

C	 Σ̂

[ ]
� 0

{ }
≤ max

C∈Rd×d
Tr[C] : C2

ij ≤ ΣiiΣ̂jj ∀i, j � 1, : : : ,d
{ }

� ∑d
i�1

��������
ΣiiΣ̂ii

√
≤

����������������
Tr[Σ]Tr[Σ̂]

√
,
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where the first inequality holds because all second principal minors of a positive semidefinite matrix are nonnegative, and
the second inequality follows from the Cauchy–Schwarz inequality. Thus, any Σ ∈ S satisfies

ρ2 ≥ Tr[Σ+ Σ̂ − 2(Σ̂
1
2ΣΣ̂

1
2)12)] ≥ ��������

Tr[Σ]√ −
��������
Tr[Σ̂]

√( )2
,

which implies that Tr[Σ] ≤ (ρ+Tr[Σ̂]12)2. This allows us to conclude that S is bounded. Moreover, S is closed because of the
continuity of the matrix square root established in Lemma A.2. w

Finally, we derive the second-order Taylor expansion of the objective function

f (Σx,Σw) � Tr[Σx − ΣxH	 HΣxH	 + Σw
( )−1HΣx]

of the nonlinear SDP (6.13), which is needed for the proof of Proposition 6.1.

Lemma A.5 (Gradient and Hessian of f). If (Σx,Σw) ∈ Sn++ × Sm++ and G �HΣxH	 +Σw ∈ Sm++, then

Dx � �Σx f (Σx,Σw) � (In −ΣxH	G−1H)	(In −ΣxH	G−1H)
Dw � �Σw f (Σx,Σw) � G−1HΣ2

xH
	G−1

Hxx � −�2
xx f (Σx,Σw) � 2Dx ⊗H	G−1H

Hxw � −�2
xw f (Σx,Σw) �H	G−1 ⊗ (H	Dw −ΣxH	G−1) + (H	Dw −ΣxH	G−1) ⊗H	G−1

Hww � −�2
ww f (Σx,Σw) � 2Dw ⊗G−1,

where �x and �w stand for the nabla operators with respect to vec(Σx) and vec(Σw), respectively.
Proof of Lemma A.5. We first derive the second-order Taylor expansion of G−1. Specifically, if Δx ∈ Sn and Δw ∈ Sm rep-
resent symmetric perturbation directions of Σx and Σw, respectively, then we have

H Σx + tΔx[ ]H	 + Σw + tΔw[ ]( )−1
� G+ t HΔxH	 +Δw[ ]( )−1
� G−1

2(Im + tG−1
2 HΔxH	 +Δw[ ]G−1

2)−1G−1
2

� G−1
2(Im − tG−1

2 HΔxH	 +Δw[ ]G−1
2 + t2(G−1

2 HΔxH	 +Δw[ ]G−1
2)2 +O(| t|3))G−1

2

� G−1 − tG−1 HΔxH	 +Δw[ ]G−1 + t2G−1 HΔxH	 +Δw[ ]G−1 HΔxH	 +Δw[ ]G−1 +O(| t|3) ,
where the third equality follows from a Neumann series expansion Bernstein [7, proposition 9.4.13]. Thanks to Bernstein [7,
fact 7.4.9], the second-order Taylor expansion of f can, thus, be represented as

f (Σx + tΔx,Σw + tΔw)
� Tr[ Σx + tΔx[ ] − Σx + tΔx[ ]H	 H Σx + tΔx[ ]H	 + Σw + tΔw[ ]( )−1H Σx + tΔx[ ]]
� f (Σx,Σw) + t 〈Dx,Δx〉 + t 〈Dw,Δw〉 − t2

2
vec(Δx)
vec(Δw)

( )	 Hxx Hxw

H	
xw Hww

( )
vec(Δx)
vec(Δw)

( )
+O(| t|3) ,

where the matrices Dx, Dw, Hxx, Hxw andHww are defined as in the statement of the lemma.

Endnote
1 We say that A? solves (2.2) if adding the constraint A � A? does not change the infimum of (2.2). Note that the infimum of the resulting
problem over (γx,γw) may not be attained, that is, the existence of a solution A? does not imply that (2.2) is solvable.
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