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Abstract: Over the last few decades, reliability analysis has attracted significant interest due to its
importance in risk and asset integrity management. Meanwhile, Bayesian inference has proven its
advantages over other statistical tools, such as maximum likelihood estimation (MLE) and least
square estimation (LSE), in estimating the parameters characterizing failure modelling. Indeed,
Bayesian inference can incorporate prior beliefs and information into the analysis, which could
partially overcome the lack of data. Accordingly, this paper aims to provide a closed-mathematical
representation of Bayesian analysis for reliability assessment of industrial components while in-
vestigating the effect of the prior choice on future failures predictions. To this end, hierarchical
Bayesian modelling (HBM) was tested on three samples with distinct sizes, while five different prior
distributions were considered. Moreover, a beta-binomial distribution was adopted to represent
the failure behavior of the considered device. The results show that choosing strong informative
priors leads to distinct predictions, even if a larger sample size is considered. The outcome of this
research could help maintenance engineers and asset managers in integrating their prior beliefs into
the reliability estimation process.

Keywords: reliability analysis; hierarchical Bayesian modelling; prior information; beta-binomial
failure modelling

1. Introduction

Reliability analysis is of significant importance due to its essential role in dealing with
the risk arising from failure events. Indeed, possible failures or accidents may lead to
dangerous outcomes [1], resulting in injuries, death, or damage to the environment [2–4].
As a result, safety aspects have received a great deal of attention from the public, leading
to enterprises’ more stringent reliability requirements [5].

The components usually undergo extensive maintenance actions, which restore the ini-
tial operating condition to prevent failures. Any implemented maintenance task produces
a cost, mainly composed of three cost items: (i) cost of component, (ii) manpower cost,
and (iii) downtime cost. Moreover, when a component is replaced, part of its remaining
life is wasted. Therefore, within the development of a maintenance plan, one of the most
significant challenges is balancing the cost arising from maintenance interventions and
the risk arising from the degraded operating condition. Accordingly, a pivotal role is
played by the estimation process of the probabilities of failure. Indeed, estimating accurate
probabilities of failure could help to avoid early maintenance without generating safety
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issues. As a result, there is an ongoing effort in reliability analysis, which has resulted
in several methodologies based on different specific assistant tools, including fault-tree
(FT) [6,7], fuzzy FT [8–10], MLE [11], the first-order reliability method (FORM) [12–14]
and the second-order reliability method (SORM) [15,16]. Quite recently, Witek [17] pre-
sented a three-step approach to estimate the probability of failure when characterizing a
high-pressure gas pipeline. In this work, an inspection to assess the corrosion thickness is
required, then the probability of failure is computed through a Monte Carlo simulation.

Over the last few decades, Bayesian inference has been exploited by many researchers
in several applications, such as maintenance planning [18–20], human reliability assess-
ment [21–24], and reliability analysis [25–28]. A relevant example of Bayesian network
(BN) application for reliability purposes was presented by Abaei et al. [29]. The authors
conducted a hydrodynamic analysis to determine the wave load distribution on a floating
structure; then, a BN is adopted to estimate the probability of failure. A more recent work
by Khalaj et al. [30] displayed the application of BN to assess the reliability of a landslide
triggered by an earthquake in a mountainous area. The developed methodology high-
lighted the displacement of the slope between 1 and 1.5 cm as the most likely. Furthermore,
due to the importance of evaluating the operational condition of a component, subsystem,
or a system, Bayesian estimation is also widely exploited for failure prognosis and diag-
nosis [31–33]. Zárate et al. [34] proposed a two-phase framework to predict the length of
a fatigue crack in structural elements. In the first phase, the authors adopted Bayesian
inference to estimate the probability distributions of the fracture mechanism, while during
the second phase, the prognosis task was carried out through a Markov chain Monte Carlo
(MCMC) process. In another recent work by Sun et al. [35], the Bayesian inference was
integrated with least-squares support vector machine to predict the remaining useful life
of a microwave component through the specification of a failure threshold.

The attractiveness of BN is related to its key features, which make it one of the
most powerful tools for reasoning under uncertainty. Among its strengths, the ability
to consider conditional dependencies [36] and the ability to be updated as soon as new
information becomes available [37] are worth mentioning. Furthermore, many works have
demonstrated the higher efficiency of Bayesian inference compared to other statistical
approaches such as MLE [38,39] or FT [40,41]. In a work presented by Li et al. [41], the BN
and the FT were exploited for predicting the failure rate of an offshore wind turbine. The
results reveal an estimation error equal to 4.5% and 13% for the BN and the FT, respectively,
proving the greater accuracy of the BN.

Meanwhile, the improvements in opensource MCMC software, such as OpenBugs,
have resulted in wider adoption of the HBM [42], which, compared to the standard BN, pro-
vides more robust estimators [43], and it can also cope with source-to-source variability [44].
HBM has been exploited by many researchers for prioritizing maintenance tasks [45–47],
condition monitoring [48,49], and reliability analysis [50,51]. In a work presented by An-
drade and Teixeira [52], the HBM was adopted to evaluate the degradation of the railway
between Lisbon and Oporto in Portugal. The proposed methodology considers two quality
indicators to determine the evolution of the studied system, providing consistent help in
maintenance planning.

Another pivotal property of the Bayesian approach is incorporating into the analysis
prior information (e.g., users’ beliefs or expert judgments) for the unknown variables [53],
allowing one to deal with limited data. Despite all the ongoing efforts made for enhanc-
ing the reliability analysis through Bayesian inference, there is still space to address the
influence of the prior choice on the posterior distribution. Consequently, this paper aims at
implementing an HBM to conduct the reliability assessment in a closed-mathematical form
while considering the impact of the adopted priors on the prediction of future failures. The
developed model was verified on three samples characterized by a different number of
observations.
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1.1. Hierarchical Bayesian Modelling

The starting point of any statistical inference is represented by the ‘data’ collected from
a stochastic process. By manipulating, evaluating, and organizing data, ‘information’ is
obtained, while gathering information leads to acquiring ‘knowledge’. Finally, concluding
based on what is known is called ‘inference’ [54]. The HBM is a powerful statistical tool
that hinges on Bayes’ Theorem to perform inference [55], as shown by Equation (1).

π1(θ|x) =
f (x|θ)π0(θ)∫

θ f (x|θ)π0(θ)dθ
(1)

where θ = (θ1, θ2, . . . θn) is a vector that identifies the unknown parameters of interest (e.g.,
the mean and the standard deviation characterizing normal distribution). Equation (1)
illustrates the proportionality between the posterior distribution, represented by π1(θ|x),
and the product of the likelihood and prior distributions, which are respectively denoted
by f (x|θ) and π0(θ). Hence, the estimated posterior distribution is affected by both the
likelihood function (i.e., the data) and the prior distribution. Kelly and Smith [56] stated
that the HBM is so named due to the exploitation of multi-stage or hierarchical priors,
given by Equation (2).

π0(θ) =
∫
∅

π1(θ|ϕ)π2(ϕ)dϕ (2)

where π1(θ|ϕ) is regarded as the first-stage prior, representing the variability of θ for
a particular value of ϕ, while π2(ϕ) is the hyper-prior distribution. The hyper-prior
distribution considers the variability of ϕ, which is usually a vector whose components are
called hyper-parameters.

1.2. Prior, Likelihood, Posterior and Predictive Posterior Distribution

The prior, likelihood, and posterior distributions are the essential fundamentals required
to conduct Bayesian inference. The prior distribution represents our pre-experimented beliefs
on θ. When prior information is included in the Bayesian inference, the prior distribution is
regarded as informative. By contrast, the prior distribution is referred to as non-informative
when no external information is added to the analysis. The likelihood function specifies the
model from which the data are generated. It is the conditional probability of obtaining the
data for each possible value of θ, multiplied by a constant factor independent of θ. Finally,
the posterior is the Bayesian inference outcome, and denotes our updated knowledge based
on prior information and data. It is also worthwhile to introduce the posterior predictive
distribution (PPD), representing the prediction of future observations after observing the
available data. In other words, given a sample of observations x = (x1, x2, . . . xn), the PPD
estimates the probability of obtaining a sample x′ = (x′1, x′2 . . . x′m) after the starting data
have been analysed, as stated in Equation (3).

π
(

x′
∣∣x) = ∫

θ
π1
(
x′
∣∣θ, x

)
π1(θ|x)dθ (3)

Since future observations do not depend on past observations, π1(x′|θ, x) can be
rewritten as π1(x′|θ), which is a likelihood function. Furthermore, π1(θ|x) identifies the
posterior distribution obtained from the Bayesian inference.

1.3. Conjugate Prior

A prior distribution is defined as conjugate whenever its combination with the likeli-
hood provides a posterior distribution belonging to the same class of the prior. Let P be a
class of prior distribution for the unknown parameter θ, and let S be a class of sampling
distribution f (x|θ) . As reported by Gelman et al. [57], P is defined as a conjugate for S if
the following condition is verified:

f (x|θ) ∈ P f or all f (·|θ ) ∈ F and f (·) ∈ P



Int. J. Environ. Res. Public Health 2021, 18, 3349 4 of 16

Among the conjugate priors, the most relevant is the so-called natural conjugate prior,
characterized by the same functional form of the likelihood. Adopting a natural conjugate
prior leads to mathematical convenience; moreover, additional information and beliefs of
the user may be incorporated into the prior [58]. Indeed, by choosing a natural conjugate
prior, the posterior distribution can be expressed in a closed form.

The remainder of the paper is organized as follows; Section 2 illustrates the proposed
approach. Section 3 describes the implementation of the model for the three samples, while
Section 4 provides the discussion of the results. Finally, in Section 5, conclusions are drawn.

2. Methodology

A binomial distribution was chosen as the likelihood function to model the failure
behavior of the considered apparatus. Adopting a binomial likelihood distribution is
justified whenever a given device is characterized by a bi-state condition (i.e., failure
and safe, usually identified by 0 and 1, respectively). The beta-binomial model aims at
estimating the proportion of successes arising from a sequence of Bernoulli trials (or the
probability of success for a single trial). In the present work, the probability of success
was considered as the probability of failure characterizing the studied equipment (i.e., the
probability of obtaining a 0).

At first, three samples characterized by 10, 20, and 40 elements, respectively, were
considered, then 5 distinct prior distributions were adopted to assess the impact of the
prior choice on different sample sizes. Subsequently, the posterior distributions were found
for each prior, and their differences were highlighted. Finally, the PPD was exploited to
predict the expected number of failures for each combination of prior and sample size.

Beta-Binomial Failure Modelling

Let x1, x2, . . . xn be a sample of n independent and identically distributed (i.i.d.) ob-
servations belonging to a Bernoulli distribution with a probability of success denoted by
p, i.e.,:

p ∈ [0, 1]
xi ∈ {0, 1}, xi ∼ Bernoulli(p), i = 1, . . . , n i.i.d.

Let k be the sum of the outcomes of each Bernoulli trial, i.e., the total number of
successes:

k =
n

∑
i=1

xi , k ∼ Binomial(p, n)

Therefore, the likelihood distribution can be written as illustrated by Equation (4).

f (k|p, n) =
(

n
k

)
pk(1− p)n−k (4)

It emerges that the likelihood belongs to the following form:

f (k|p) ∝ pa(1− p)b

Consequently, a natural conjugate prior must be of the same functional form, i.e.,

π(p) ∝ pα−1(1− p)β−1

which is the kernel of a beta distribution p ∼ Beta(α, β), whose density is expressed by
Equation (5).

π(p) =
Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1 (5)

where α and β identify the hyperparameters of the adopted hierarchical model. As stated
by Gelman et al. [57], the prior distributions are equivalent to a sample of (α + β− 2)
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Bernoulli trials, where (α− 1) successes are observed. The mean and the variance of the
beta prior distribution are expressed by Equations (6) and (7), respectively.

E(p) =
α

α + β
(6)

Var(p) =
αβ

(α + β)2(α + β + 1)
(7)

Accordingly, prior information is inserted into the calculation by adopting specific
values for α and β. In reliability analysis, considering high values for α (or low values for β)
specifies an unreliable component since the prior mean shifts towards higher values. On the
other hand, choosing low values for α (or high values for β) reflects a belief that a particular
device is extremely reliable. Moreover, the higher the adopted α and β, the lower the
variance, and thus more information is incorporated into the analysis. Indeed, increasing
the values of α and β corresponds to a higher number of Bernoulli trials embedded into the
prior distribution.

As illustrated by Equation (1), through the application of Bayes’ Theorem, the posterior
distribution is obtained:

π(p|k, n) ∝ f (k|p)π(p)
= pk(1− p)n−k pα−1(1− p)β−1

= pα+k−1(1− p)β+n−k−1

which is also a beta density of the form p|k, n ∼ Beta(α + k, β + n− k), thus the posterior
distribution is given by Equation (8).

π(p|k, n) =
Γ(α + β + n)

Γ(α + k)Γ(β + n− k)
pα+k−1(1− p)β+n−k−1 (8)

The posterior mean, illustrated by Equation (9), is usually extracted from the posterior
distribution and adopted as a Bayesian estimator for p (i.e., the probability of success for
the next Bernoulli trial).

E(p|k, n) =
α + k

α + β + n
(9)

Both prior distribution and collected data are represented by the posterior mean,
whose value lies between the sample proportion of success kn and the prior mean. As
shown by Equation (9), the influence of the prior choice is demoted with large sample sizes,
since both k and n increase, and hence E(θ|y) ≈ y/n .

Even if the posterior mean is a good point estimator for the probability of success
related to a Bernoulli trial, a more general prediction regarding future observations can
be expressed through the PPD. Let n′ be a prospective sample size, then the probability of
obtaining precisely k′ successes, for a beta-binomial model, is given by the following PPD:

π(k′|k) =
∫ 1

0 π(k′|p, n′)π(p|k, n)dp
=
∫ 1

0
n′!

k′!(n′−k′)! pk′(1− p)n′−k′

X Γ(α+β+n)
Γ(α+k)Γ(β+n−k) pα+k−1(1− p)β+n−k−1

= n′!
k′!(n′−k′)!

Γ(α+β+n)
Γ(α+k)Γ(β+n−k)

X
∫ 1

0 pα+k+k′−1(1− p)β+n−k+n′−k′−1dp

which is a beta-binomial distribution of the form k′|k ∼ Beta− binomial(n′, α + k, β + n− k).
After solving the integral presented above, the PPD is obtained, as showed by Equation (10).

π(k′|k) = n′!
k′!(n′ − k′)!

Γ(α + β + n)
Γ(α + k)Γ(β + n− k)

Γ(α + k + k′)Γ(β + n + n′ − k− k′)
Γ(α + β + n + n′)

(10)
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The beta-binomial distribution is a binomial distribution with a probability of success
which follows a beta distribution with characteristic parameters equal to α+ k and β+ n− k
(i.e., the posterior parameters). Accordingly, the probability of obtaining k′ successes in n′

trials is computed by considering the posterior distribution of the probability of success
instead of a single value (e.g., the posterior mean).

3. Results: Application of the Methodology

To show the applicability of the proposed framework, three samples composed of
10, 20, and 40 observations are considered. From now on, the sample with 10 elements
will be referred as the first application, while the sample of 20 and 40 observations will
be regarded as the second and the third application, respectively. All the elements in
the samples represent distinct components of the same kind. Moreover, the number of
failures (i.e., the number of successes or the number of zeros) of each sample is tracked
for one year. At the beginning of the year, every component operates in its safe limit
condition, and it is regarded as good as new. As shown by Table 1, in the first sample,
three failures are observed during the first year of the operations, while in the second
sample, six failures occurred during the same time interval. Finally, the third sample is
characterized by 12 failures in one year.

Table 1. Adopted samples with their respective observations and observed failures.

Sample # Observations (n) # Failures (k)

Sample 1 10 3
Sample 2 20 6
Sample 3 40 12

3.1. Prior Choice

The five different prior distributions chosen for this study are illustrated in Table 2.
The adopted hyper-parameters were chosen to include in the study a prior distribution
concealing no information, two prior distributions reflecting a belief of unreliability with a
distinct level of information, and two prior distributions identifying a reliable component
with a distinct level of information once again.

Table 2. Parameters of the adopted beta prior distributions.

Beta Prior Distribution (BPD)
Hyper-Parameters

Prior Mean Prior Variance
Alpha Beta

BPD 1 (non-informative) 1 1 0.5 0.08
BPD 2 (very reliable) 2 9 0.18 0.01

BPD 3 (very unreliable) 9 2 0.82 0.01
BPD 4 (quite reliable) 1 3 0.25 0.04

BPD 5 (quite unreliable) 3 1 0.75 0.04

BPD 1 is regarded as non-informative since it is equivalent to a uniform distribution of
the form p ∼ Uni f (0, 1), hence all the values of the probability of failure are equally likely.
The prior sample size is given by (α + β− 2); therefore, p ∼ Beta(1, 1) is interpreted as
a zero-dimensional sample. BPD2 reflects a strong belief that the components are very
reliable since it represents a prior sample with one failure in nine observations. On the
other side, BPD 3 conceals a piece of robust information regarding the unreliability of the
considered device. Indeed, it can be seen as a sample of nine elements characterized by
4eight failures. Finally, BPD 4 and BPD 5 denote a high- and a low-reliability component,
respectively. Compared to the previous two distributions, less information is included in
the fourth and the fifth prior, since they both are interpreted as a sample composed of two
observations.
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3.2. Posterior Distribution

Adopting a beta conjugate prior for a binomial likelihood function, the posterior distri-
bution can be expressed as p|k, n ∼ Beta(α + k, β + n− k). Thus, the posterior distribution
parameters are obtained through a combination of the data and the hyperparameters.
Accordingly, the posterior distributions for the first application are found. From now on,
each posterior distribution will be associated with a number corresponding to the prior
distribution from which the posterior is generated (e.g., posterior 1 is obtained through the
adoption of BPD 1). Table 3 and Figure 1 show the posterior distributions obtained from
each prior choice.

Table 3. Parameters of each posterior distribution for the first application (sample with n = 10, k = 3).

# Posterior Alpha Beta Posterior Mean 95% Posterior Interval for p

Posterior1 4 8 0.33 [0.11, 0.61]
Posterior2 5 16 0.24 [0.086, 0.44]
Posterior3 12 9 0.57 [0.36, 0.77]
Posterior4 4 10 0.29 [0.09, 0.53]
Posterior5 6 8 0.43 [0.19, 0.68]
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A minimal difference is recognized between the first and the fourth posterior dis-
tribution. Indeed, the first posterior mean is estimated at 0.33, while the fourth is 0.29.



Int. J. Environ. Res. Public Health 2021, 18, 3349 8 of 16

Furthermore, the first and the fourth posterior distribution yields a 95% credible interval of
(0.11, 0.61) and (0.09, 0.53), respectively. As depicted by Figure 1, the posterior distribu-
tion is strongly prior-driven, in the cases when BPD 2 and BPD 3 are adopted. The third
posterior mean is computed at 0.57, which can be interpreted as predicting six failures in
10 observations. On the other hand, the second posterior yields a mean of 0.24, denoting a
much more reliable component. Finally, the fifth posterior distribution lies between the
third and the fourth, with a mean equal to 0.43 and a 95% credible interval (0.19, 0.68).

As previously executed for the first application, the posterior distributions are also
calculated for the second one. The results are illustrated in Table 4 and Figure 2.

Table 4. Parameters of each posterior distribution for the second application (sample with n = 20,
k = 6).

# Posterior Alpha Beta Posterior Mean 95% Posterior Interval for p

Posterior1 7 15 0.32 [0.14, 0.52]
Posterior2 8 23 0.26 [0.12, 0.42]
Posterior3 15 16 0.48 [0.31, 0.66]
Posterior4 7 17 0.29 [0.13, 0.48]
Posterior5 9 15 0.38 [0.20, 0.57]
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The posterior distributions of the second application are characterized by less uncer-
tainty than the posterior distributions calculated for the first application. Indeed, com-
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paring, for instance, the first posterior of the first application and the first posterior of
the second application, the calculation revealed smaller 95% credible intervals associated
with the posterior of the second application. The same results are obtained for all the
other posterior distributions as well. The first and the fourth posterior distributions show
remarkable similarities once again, having a 95% posterior credible interval of (0.14, 0.52)
and (0.13, 0.48), respectively. The third posterior distribution is still deeply influenced by
the prior; indeed, its mean is located at 0.48. Finally, the second and the fifth prior yield a
mean of 0.26 and 0.38, respectively.

Finally, the calculation process is replicated for the posterior distribution related to
the third application. The parameters of each posterior distribution are listed in Table 5,
while the obtained posterior distributions are plotted in Figure 3.

Table 5. Parameters of each posterior distribution for the third application (sample with n = 40,
k = 12).

# Posterior Alpha Beta Posterior Mean 95% Posterior Interval for p

Posterior1 13 29 0.31 [0.18, 0.45]
Posterior2 14 37 0.27 [0.16, 0.40]
Posterior3 21 30 0.41 [0.28, 0.55]
Posterior4 13 31 0.30 [0.23, 0.55]
Posterior5 15 29 0.34 [0.21, 0.48]
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The uncertainty of the posterior distributions is reduced compared to the previous
two applications; moreover, the influence of the prior choice is demoted. Indeed, the means
of the first, the second, the fourth, and the fifth posterior distribution are included between
0.27 and 0.34. The only distribution characterized by a mean higher than 0.4 is the third
posterior, which has a 95% credible interval of (0.28, 0.55).

3.3. Predictive Posterior Distribution

The beta-binomial posterior distributions are developed for each application to make
predictions about the future number of failures (Figure 4). As a future sample size, 40 ob-
servations were chosen.
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As depicted by Figure 4, varying the prior results in a striking difference among the
obtained PPDs for the first application. By contrast, the PPDs associated with the third
application shrink by similar values. The only PPD which falls further than the others
is the third one. Finally, the PPDs of the second application are less dispersed than the



Int. J. Environ. Res. Public Health 2021, 18, 3349 11 of 16

PPDs of the first application. However, they show fewer similarities compared to the PPDs
estimated for the third application.

4. Discussion

Given a certain prior, Figure 5 compares the obtained posterior distributions for
distinct applications. Figure 5 can be seen as a summary of Figures 1–3.
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graph. Posterior 1, Posterior 2, and Posterior 3 denote the posterior distributions obtained for the first, second, and third
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As depicted by Figure 5, the posterior distributions shift towards the likelihood for
greater sample size, identifying a weaker influence of the adopted prior on the posterior
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distribution. Moreover, the variance of the posterior distribution decreases for the samples
characterized by a higher number of observations, denoting less uncertainty (Figure 6)
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from the first application (the sample with n = 10, k = 3), the second application (the sample with n = 20, k = 6), and the third
application (the sample with n = 40, k = 12), respectively.

Finally, to underline how the prior choice affects the reliability analysis and the
subsequent maintenance planning, the inverse cumulative PPDs are exploited to predict
the expected number of failures during the next year of operation. Adopting cumulative
probabilities of 0.05 and 0.95, the corresponding number of failures was calculated. The
results are presented in Table 6 and Figure 7.

Table 6. Number of failures corresponding to a cumulative probability of 0.05 and 0.95 (considering
40 observations in the future sample).

First Application Second Application Third Application

# Posterior 0.05 0.95 0.05 0.95 0.05 0.95

Posterior 1 4 24 5 21 6 19
Posterior 2 3 18 4 18 5 17
Posterior 3 14 31 12 27 10 23
Posterior 4 3 21 5 20 6 19
Posterior 5 8 27 7 23 7 21

Considering the first application, the calculation revealed significant variability in
the expected number of failures for different prior choices. Adopting BPD 3, the inverse
beta-binomial predicted a number of failures between 14 and 31 with a confidence interval
of 0.90, while choosing BPD 2 results in expecting the component to fail between 3 and
18 times with the same confidence interval. Thus, the adoption of BPD 3 leads one to
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schedule more maintenance actions during the next year of operations, and consequently
higher costs related to the purchase and the management of the spare parts are accounted
for. By contrast, the exploitation of the BPD 2 predicts few maintenance efforts; therefore,
the cost associated with maintenance activities is lower; however, this could result in a
higher risk to the operations. Selecting BPD 1 and BPD 4 provides similar results for the
PPDs, predicting the device to fail between 4 and 24 times and 3 and 21 times, respectively.
Finally, picking the BPD 5 produces an expected number of failures between 8 and 27 with
a 0.90 confidence interval.

For the second application, the component is foreseen to fail between 12 and 27 times
with a 0.90 confidence interval if BPD 3 is adopted. When BPD 1 is chosen, between 5 and
21 failures are predicted. A similar result is provided by adopting BPD 4, which predicts
between 5 and 20 failures. The second PPD predicts few maintenance efforts; indeed, the
equipment is expected to have between 4 and 18 maintenance actions. Finally, choosing
BPD 5 results in predicting between 7 and 23 failures during the next year.
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As highlighted by Table 6 and Figure 7, the third sample is characterized by the lowest
PPD-to-PPD variability; thus, the calculation is mostly data-driven. Indeed, considering a
0.90 confidence interval, between 6 and 19 failures are predicted by both the first and the
fourth PPDs. Similar results are also produced by the second and the fifth PPD. Between 4
and 17 failures are foreseen by the second PPD, while the adoption of the BPD 5 results
in expecting the component to fail between 7 and 21 times. However, the third PPD,
which arises from a strong informative prior, is quite detached from the others, and it
is characterized by an expected number of failures between 10 and 23. Consequently,
considering the third PPD leads to much more maintenance effort than the other PPDs,
resulting in a different maintenance plan.
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Considering the obtained predictions, it is possible to state that the decision-making
process is influenced by the prior choice, even if many samples of observations are available.
Thus, going fully informative (for instance, BPD 3) could determine inaccurate predic-
tions, leading to improper maintenance strategies. On the other hand, adopting weakly
informative priors allows one to insert prior information while letting the data speak for
themselves. For instance, BPD 5 denotes a belief of unreliability, but the data are still able
to influence the posterior distribution strongly. By contrast, the BPD 3 overcomes the data
even in the case of a large sample, having a considerable impact on the predictions.

5. Conclusions

One of the major advantages of Bayesian Inference over other statistical tools is the
ability to consider prior information. Within the reliability analysis process, this feature
can be exploited to insert users’ beliefs regarding the reliability of a given device. However,
incorporating information into the analysis could deeply affect the reliability calculation
and the subsequent decision-making process regarding maintenance schedules. In this
paper, a mathematical application of Bayesian inference for reliability analysis is presented.
Furthermore, the influence of the prior choice on the reliability estimation process is investi-
gated. This task was carried out for three simple applications, considering a beta-binomial
failure modelling. The results depict that for greater sample sizes, less influence of the prior
choice and less uncertainty is presented by the posterior distributions. Nevertheless, the
posterior distributions and the predictions regarding the future number of failures are still
affected to a certain degree by particularly informative priors. As a result, adopting strong
informative priors is not always a wise choice, because the subsequent decisions could be
based on misleading information. Accordingly, the adoption of weakly informative priors
is strongly recommended in cases where few data are observed, while non-informative
priors should be exploited when sufficient data are available. It is worthwhile mentioning
that available prior knowledge could be enhanced through simulation processes. As a
further development, distinct failure modelling could be considered to address how the
prior choice affects the posterior distributions. Moreover, multi-state components (e.g.,
normal, degraded and fault) could be studied by grouping the distinct states into two
appropriate outcomes (e.g., normal and degraded could be grouped as working), which
allows one to repeat the binomial experiment. After finding the probability distributions
for the grouped outcomes, they could be split again to find the probability distribution of
the original single outcomes. To study multi-state components, a multinomial distribu-
tion could also be adopted. Indeed, multinomial distribution is the natural extension of
binomial distribution, and it can consider more than two outcomes for each trial.
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6. Volkanovski, A.; Čepin, M.; Mavko, B. Application of the fault tree analysis for assessment of power system reliability. Reliab.
Eng. Syst. Saf. 2009, 94, 1116–1127. [CrossRef]

7. Čepin, M.; Mavko, B. A dynamic fault tree. Reliab. Eng. Syst. Saf. 2002, 75, 83–91. [CrossRef]
8. Purba, J.H.; Lu, J.; Zhang, G.; Pedrycz, W. A fuzzy reliability assessment of basic events of fault trees through qualitative data

processing. Fuzzy Sets Syst. 2014, 243, 50–69. [CrossRef]
9. Mentes, A.; Helvacioglu, I.H. An application of fuzzy fault tree analysis for spread mooring systems. Ocean. Eng. 2011, 38,

285–294. [CrossRef]
10. Yuhua, D.; Datao, Y. Estimation of failure probability of oil and gas transmission pipelines by fuzzy fault tree analysis. J. Loss Prev.

Process. Ind. 2005, 18, 83–88. [CrossRef]
11. Odell, P.M.; Anderson, K.M.; D’Agostino, R.B. Maximum likelihood estimation for interval-censored data using a Weibull-based

accelerated failure time model. Biometrics 1992, 48, 951–959. [CrossRef]
12. Maier, H.R.; Lence, B.J.; Tolson, B.A.; Foschi, R.O. First-order reliability method for estimating reliability, vulnerability, and

resilience. Water Resour. Res. 2001, 37, 779–790. [CrossRef]
13. Keshtegar, B.; Chakraborty, S. A hybrid self-adaptive conjugate first order reliability method for robust structural reliability

analysis. Appl. Math. Model. 2018, 53, 319–332. [CrossRef]
14. Teixeira, A.; Soares, C.G.; Netto, T.; Estefen, S. Reliability of pipelines with corrosion defects. Int. J. Press. Vessel. Pip. 2008, 85,

228–237. [CrossRef]
15. Zhang, J.; Du, X. A second-order reliability method with first-order efficiency. J. Mech. Des. 2010, 132, 101006. [CrossRef]
16. Lee, I.; Noh, Y.; Yoo, D. A novel second-order reliability method (SORM) using noncentral or generalized chi-squared distributions.

J. Mech. Des. 2012, 134, 100912. [CrossRef]
17. Witek, M. Gas transmission pipeline failure probability estimation and defect repairs activities based on in-line inspection data.

Eng. Fail. Anal. 2016, 70, 255–272. [CrossRef]
18. Leoni, L.; BahooToroody, A.; De Carlo, F.; Paltrinieri, N. Developing a risk-based maintenance model for a Natural Gas Regulating

and Metering Station using Bayesian Network. J. Loss Prev. Process Ind. 2019, 57, 17–24. [CrossRef]
19. BahooToroody, A.; Abaei, M.M.; Arzaghi, E.; BahooToroody, F.; De Carlo, F.; Abbassi, R. Multi-level optimization of maintenance

plan for natural gas system exposed to deterioration process. J. Hazard. Mater. 2019, 362, 412–423. [CrossRef] [PubMed]
20. Abbassi, R.; Bhandari, J.; Khan, F.; Garaniya, V.; Chai, S. Developing a quantitative risk-based methodology for maintenance

scheduling using Bayesian network. Chem. Eng. Trans. 2016, 48, 235–240.
21. BahooToroody, A.; Abaiee, M.M.; Gholamnia, R.; Torody, M.B.; Nejad, N.H. Developing a risk-based approach for optimizing

human reliability assessment in an offshore operation. Open J. Saf. Sci. Technol. 2016, 6, 25. [CrossRef]
22. Abaei, M.M.; Abbassi, R.; Garaniya, V.; Arzaghi, E.; Toroody, A.B. A dynamic human reliability model for marine and offshore

operations in harsh environments. Ocean Eng. 2019, 173, 90–97. [CrossRef]
23. Golestani, N.; Abbassi, R.; Garaniya, V.; Asadnia, M.; Khan, F. Human reliability assessment for complex physical operations in

harsh operating conditions. Process Saf. Environ. Prot. 2020, 140, 1–13. [CrossRef]
24. Mkrtchyan, L.; Podofillini, L.; Dang, V.N. Bayesian belief networks for human reliability analysis: A review of applications and

gaps. Reliab. Eng. Syst. Saf. 2015, 139, 1–16. [CrossRef]
25. Zhai, S.; Lin, S. Bayesian networks application in multi-state system reliability analysis. In Proceedings of the 2nd International

Symposium on Computer, Communication, Control and Automation (ISCCCA-13), Shijiazhuang, China, 22–24 February 2013; Atlantis
Press: Paris, France, 2013.

26. Boudali, H.; Dugan, J.B. A discrete-time Bayesian network reliability modeling and analysis framework. Reliab. Eng. Syst. Saf.
2005, 87, 337–349. [CrossRef]

27. Torres-Toledano, J.G.; Sucar, L.E. Bayesian networks for reliability analysis of complex systems. In Ibero-American Conference on
Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 1998.

28. Wu, J.; Zhou, R.; Xu, S.; Wu, Z. Probabilistic analysis of natural gas pipeline network accident based on Bayesian network. J. Loss
Prev. Process Ind. 2017, 46, 126–136. [CrossRef]

29. Abaei, M.M.; Abbassi, R.; Garaniya, V.; Chai, S.; Khan, F. Reliability assessment of marine floating structures using Bayesian
network. Appl. Ocean Res. 2018, 76, 51–60. [CrossRef]

30. Khalaj, S.; BahooToroody, F.; Abaei, M.M.; BahooToroody, A.; De Carlo, F.; Abbassi, R. A methodology for uncertainty analysis of
landslides triggered by an earthquake. Comput. Geotech. 2020, 117, 103262. [CrossRef]

31. Przytula, K.W.; Choi, A. An implementation of prognosis with dynamic bayesian networks. In Proceedings of the 2008 IEEE
Aerospace Conference, Big Sky, MT, USA, 1–8 March 2008; IEEE: Piscataway, NJ, USA, 2008.

32. Chen, C.; Brown, D.; Sconyers, C.; Zhang, B.; Vachtsevanos, G.; Orchard, M.E. An integrated architecture for fault diagnosis and
failure prognosis of complex engineering systems. Expert Syst. Appl. 2012, 39, 9031–9040. [CrossRef]

http://doi.org/10.1016/j.jchas.2018.02.004
http://doi.org/10.1205/psep.04210
http://doi.org/10.1007/s13198-019-00927-1
http://doi.org/10.1016/j.ress.2009.01.004
http://doi.org/10.1016/S0951-8320(01)00121-1
http://doi.org/10.1016/j.fss.2013.06.009
http://doi.org/10.1016/j.oceaneng.2010.11.003
http://doi.org/10.1016/j.jlp.2004.12.003
http://doi.org/10.2307/2532360
http://doi.org/10.1029/2000WR900329
http://doi.org/10.1016/j.apm.2017.09.017
http://doi.org/10.1016/j.ijpvp.2007.09.002
http://doi.org/10.1115/1.4002459
http://doi.org/10.1115/1.4007391
http://doi.org/10.1016/j.engfailanal.2016.09.001
http://doi.org/10.1016/j.jlp.2018.11.003
http://doi.org/10.1016/j.jhazmat.2018.09.044
http://www.ncbi.nlm.nih.gov/pubmed/30261435
http://doi.org/10.4236/ojsst.2016.61003
http://doi.org/10.1016/j.oceaneng.2018.12.032
http://doi.org/10.1016/j.psep.2020.04.026
http://doi.org/10.1016/j.ress.2015.02.006
http://doi.org/10.1016/j.ress.2004.06.004
http://doi.org/10.1016/j.jlp.2017.01.025
http://doi.org/10.1016/j.apor.2018.04.004
http://doi.org/10.1016/j.compgeo.2019.103262
http://doi.org/10.1016/j.eswa.2012.02.050


Int. J. Environ. Res. Public Health 2021, 18, 3349 16 of 16

33. Patrick, R.; Orchard, M.E.; Zhang, B.; Koelemay, M.D.; Kacprzynski, G.J.; Ferri, A.A.; Vachtsevanos, G.J. An integrated approach
to helicopter planetary gear fault diagnosis and failure prognosis. In Proceedings of the 2007 IEEE Autotestcon, Baltimore, MD,
USA, 17–20 September 2007; IEEE: Piscataway, NJ, USA, 2007.

34. Zarate, B.A.; Caicedo, J.M.; Yu, J.; Ziehl, P. Bayesian model updating and prognosis of fatigue crack growth. Eng. Struct. 2012, 45,
53–61. [CrossRef]

35. Sun, F.; Li, X.; Liao, H.; Zhang, X. A Bayesian least-squares support vector machine method for predicting the remaining useful
life of a microwave component. Adv. Mech. Eng. 2017, 9, 1687814016685963. [CrossRef]

36. Bhandari, J.; Abbassi, R.; Garaniya, V.; Khan, F. Risk analysis of deepwater drilling operations using Bayesian network. J. Loss
Prev. Process Ind. 2015, 38, 11–23. [CrossRef]

37. Liu, Z.; Liu, Y. A Bayesian network based method for reliability analysis of subsea blowout preventer control system. J. Loss Prev.
Process Ind. 2019, 59, 44–53. [CrossRef]

38. BahooToroody, A.; Abaei, M.M.; Arzaghi, E.; Song, G.; De Carlo, F.; Paltrinieri, N.; Abbassi, R. On reliability challenges of
repairable systems using hierarchical bayesian inference and maximum likelihood estimation. Process Saf. Environ. Prot. 2020,
135, 157–165. [CrossRef]

39. Musleh, R.M.; Helu, A. Estimation of the inverse Weibull distribution based on progressively censored data: Comparative study.
Reliab. Eng. Syst. Saf. 2014, 131, 216–227. [CrossRef]

40. Khakzad, N.; Khan, F.; Amyotte, P. Safety analysis in process facilities: Comparison of fault tree and Bayesian network approaches.
Reliab. Eng. Syst. Saf. 2011, 96, 925–932. [CrossRef]

41. Li, H.; Soares, C.G.; Huang, H.-Z. Reliability analysis of a floating offshore wind turbine using Bayesian Networks. Ocean Eng.
2020, 217, 107827. [CrossRef]

42. Spiegelhalter, D.; Thomas, A.; Best, N.; Lunn, D. OpenBUGS User Manual, Version 3.0.2; MRC Biostatistics Unit: Cambridge,
UK, 2007.

43. Robert, C. The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation; Springer Science & Business
Media: Berlin/Heidelberg, Germany, 2007.

44. Kumari, P.; Lee, D.; Wang, Q.; Karim, M.N.; Kwon, J.S.-I. Root cause analysis of key process variable deviation for rare events in
the chemical process industry. Ind. Eng. Chem. Res. 2020, 59, 10987–10999. [CrossRef]

45. Leoni, L.; De Carlo, F.; Sgarbossa, F.; Paltrinieri, N. Comparison of Risk-based Maintenance Approaches Applied to a Natural Gas
Regulating and Metering Station. Chem. Eng. Trans. 2020, 82, 115–120.

46. Leoni, L.; BahooToroody, A.; Abaei, M.M.; De Carlo, F.; Paltrinieri, N.; Sgarbossa, F. On hierarchical bayesian based predictive
maintenance of autonomous natural gas regulating operations. Process Saf. Environ. Prot. 2021, 147, 115–124. [CrossRef]

47. BahooToroody, F.; Khalaj, S.; Leoni, L.; De Carlo, F.; Di Bona, G.; Forcina, A. Reliability Estimation of Reinforced Slopes to
Prioritize Maintenance Actions. Int. J. Environ. Res. Public Health 2021, 18, 373. [CrossRef]

48. BahooToroody, A.; De Carlo, F.; Paltrinieri, N.; Tucci, M.; Van Gelder, P. Bayesian Regression Based Condition Monitoring
Approach for Effective Reliability Prediction of Random Processes in Autonomous Energy Supply Operation. Reliab. Eng. Syst.
Saf. 2020, 201, 106966. [CrossRef]

49. BahooToroody, A.; Abaei, M.M.; BahooToroody, F.; De Carlo, F.; Abbassi, R.; Khalaj, S. A condition monitoring based signal
filtering approach for dynamic time dependent safety assessment of natural gas distribution process. Process Saf. Environ. Prot.
2019, 123, 335–343. [CrossRef]

50. Yang, M.; Khan, F.I.; Lye, L. Precursor-based hierarchical Bayesian approach for rare event frequency estimation: A case of oil
spill accidents. Process Saf. Environ. Prot. 2013, 91, 333–342. [CrossRef]

51. Abaei, M.M.; Arzaghi, E.; Abbassi, R.; Garaniya, V.; Javanmardi, M.; Chai, S. Dynamic reliability assessment of ship grounding
using Bayesian Inference. Ocean Eng. 2018, 159, 47–55. [CrossRef]

52. Andrade, A.R.; Teixeira, P.F. Statistical modelling of railway track geometry degradation using hierarchical Bayesian models.
Reliab. Eng. Syst. Saf. 2015, 142, 169–183. [CrossRef]

53. Yu, R.; Abdel-Aty, M. Investigating different approaches to develop informative priors in hierarchical Bayesian safety performance
functions. Accid. Anal. Prev. 2013, 56, 51–58. [CrossRef]

54. Kelly, D.L.; Smith, C.L. Bayesian inference in probabilistic risk assessment—the current state of the art. Reliab. Eng. Syst. Saf. 2009,
94, 628–643. [CrossRef]

55. El-Gheriani, M.; Khan, F.; Chen, D.; Abbassi, R. Major accident modelling using spare data. Process Saf. Environ. Prot. 2017, 106,
52–59. [CrossRef]

56. Kelly, D.; Smith, C. Bayesian Inference for Probabilistic Risk Assessment: A Practitioner’s Guidebook; Springer Science & Business
Media: Berlin/Heidelberg, Germany, 2011.

57. Gelman, A.; Carlin, J.B.; Stern, H.S.; Dunson, D.B.; Vehtari, A.; Rubin, D.B. Bayesian Data Analysis; CRC Press: Boca Raton, FL,
USA, 2013.

58. Yahya, W.; Olaniran, O.; Ige, S. On Bayesian conjugate normal linear regression and ordinary least square regression methods: A
Monte Carlo study. Ilorin J. Sci. 2014, 1, 216–227.

http://doi.org/10.1016/j.engstruct.2012.06.012
http://doi.org/10.1177/1687814016685963
http://doi.org/10.1016/j.jlp.2015.08.004
http://doi.org/10.1016/j.jlp.2019.03.004
http://doi.org/10.1016/j.psep.2019.11.039
http://doi.org/10.1016/j.ress.2014.07.006
http://doi.org/10.1016/j.ress.2011.03.012
http://doi.org/10.1016/j.oceaneng.2020.107827
http://doi.org/10.1021/acs.iecr.0c00624
http://doi.org/10.1016/j.psep.2020.08.047
http://doi.org/10.3390/ijerph18020373
http://doi.org/10.1016/j.ress.2020.106966
http://doi.org/10.1016/j.psep.2019.01.016
http://doi.org/10.1016/j.psep.2012.07.006
http://doi.org/10.1016/j.oceaneng.2018.03.039
http://doi.org/10.1016/j.ress.2015.05.009
http://doi.org/10.1016/j.aap.2013.03.023
http://doi.org/10.1016/j.ress.2008.07.002
http://doi.org/10.1016/j.psep.2016.12.004

	Introduction 
	Hierarchical Bayesian Modelling 
	Prior, Likelihood, Posterior and Predictive Posterior Distribution 
	Conjugate Prior 

	Methodology 
	Results: Application of the Methodology 
	Prior Choice 
	Posterior Distribution 
	Predictive Posterior Distribution 

	Discussion 
	Conclusions 
	References

