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Abstract
Detailed knowledge of biological structure has been key in understanding
biology at several levels of organisation, from organs to cells and proteins. Vol-
ume electron microscopy (volume EM) provides high resolution 3D structural
information about tissues on the nanometre scale. However, the throughput rate
of conventional electronmicroscopes has limited the volume size and number of
samples that can be imaged. Recent improvements inmethodology are currently
driving a revolution in volume EM, making possible the structural imaging of
whole organs and small organisms. In turn, these recent developments in image
acquisition have created or stressed bottlenecks in other parts of the pipeline, like
sample preparation, image analysis and data management. While the progress
in image analysis is stunning due to the advent of automatic segmentation
and server-based annotation tools, several challenges remain. Here we discuss
recent trends in volume EM, emerging methods for increasing throughput and
implications for sample preparation, image analysis and data management.

KEYWORDS
data management, image analysis, image processing, MB-SEM, methodology development,
volume EM

1 INTRODUCTION

Method development is a key factor in accelerating bio-
logical discovery. Advances in imaging techniques have
fulfilled the desire of biologists to unravel the structure
and function of biological systems across a wide spectrum
of spatial scales. Electron microscopy (EM) is especially
suited for this goal. With its high resolving power, the
structure of tissues can be revealed down to the nanoscale.
This makes it a useful tool for determining the wiring pat-
terns of neurons,1 but also the detailed investigation of cell
organelles,2 such as microtubules,3 mitochondria,4 ER5
and extracellular vesicles.6

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2022 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.

The imaging of tissues with EM has a long history
of development. The protocols and techniques used to
prepare the specimen, initially intended for transmis-
sion electron microscopy (TEM), were developed in
the early 1940s.7 Serial section transmission electron
microscopy (ssTEM) was introduced in the 1950s to
provide a three-dimensional context of the tissue.8,9
More than half a century later, resin-embedded tissue
samples are still cut into thin sections (albeit much
thinner than before) and subsequently imaged with
TEM.10,11 Until the introduction of computer-assisted
methods in the 1970s, 3D reconstructions of tissue had to
be done entirely by hand. For this reason, and because
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of the extensive manual labour involved in cutting and
handling sections, ssTEM applications remained quite
limited.10
Innovations in the 2000s led to more automated and

routine EM techniques for 3D reconstructions of tis-
sue (Table 1), thereby establishing a new research field:
volume electron microscopy (volume EM).12 As an alter-
native to ssTEM, serial section electron tomography (ET)
was introduced,13,14,15 in which a tomographic reconstruc-
tion of each serial section is made. Scanning electron
microscopes (SEM) allowed for the cutting device to be
integrated into the microscope, leading to serial blockface
scanning electron microscopy (SBF-SEM)16 and focused-
ion beam scanning electron microscopy (FIB-SEM).17,18
While both offer better axial resolution than ssTEM,
they lack the high lateral resolution of TEM and destroy
the sample during acquisition. Combining serial section-
ing with SEM led to the development of serial section
SEM, also known as array tomography (AT).19,20 Addition-
ally, Automated Tape-collecting Lathe UltraMicrotome
(ATLUM, later combined into ATUM-SEM) allows con-
sistent collection and handling of thousands of serial
sections.21,22
Volume EM techniques have been successfully applied

in various fields, such as connectomics research (i.e. map-
ping the connections between neurons),1 virology23,24 and
cell biology.25 However, when considering the imaging
of ‘large’ volumes (> 10

6 μm3), the aforementioned EM
approaches quickly run into their limits as the throughput
of modern electron microscopes remains low. The imag-
ing and reconstruction of larger volumes can take up to
several months or years in some cases.26,27,28,29 Additional
challenges include the increased risk of acquisition errors
and loss of material during long acquisitions, generation
of very large data sets (hundreds of terabytes) and enor-
mous manual annotation efforts.30,31 As a consequence,
every volume EM study is a tradeoff between resolution,
acquisition speed, long-term system stability and the effort
needed in annotation.
Despite these challenges, new light is shining on the

volume EM field. Powerful electron microscopes with
unrivalled acquisition speeds have recently made their
entrance.32,33 At the same time, the throughput of existing
methods has increased significantly by advancements in
software and hardware.27,29,34,35,36,37 Years of imaging with
conventional systems could now in principle be reduced to
a few weeks. In this review, we analyse trends in volume
EM and focus on the specific improvements in methodol-
ogy that relieve the bottleneck in throughput of electron
microscopes. We then discuss the implications of these
developments for sample preparation, image analysis and
data management respectively.

2 TRENDS IN VOLUME ELECTRON
MICROSCOPY

To distil general trends in volume EM, we summarised rel-
evant statistics from a pool of over 200 EM volumes from
115 unique studies (Figure 1) conducted between 2009–
2021, including those covered in earlier reviews.12,38,39 It is
inevitable that certain statistics aremissing from a number
of studies as certain data set parameters such as volume
size, voxel resolution and data set size are not consistently
reported and have yet to be standardised (connectomics
studies being an exception39).
We searched and grouped studies based on the

used techniques: serial section transmission electron
microscopy (ssTEM), serial blockface scanning electron
microscopy (SBF-SEM), focused ion beam scanning elec-
tron microscopy (FIB-SEM) or automated tape-collecting
ultramicrotome SEM (ATUM-SEM). The latter can be
considered as a subset of array tomography, but whereas
array tomography is also frequently associated with light
microscopy, ATUM-SEM is a more dedicated volume
EM technique. Certain application regimes can be dis-
tinguished (Figure 1A and B). FIB-SEM is clearly in the
high resolution but low volume regime, whereas ssTEM
studies typically target large volumes with high lateral
resolution – suitable for use in connectomics. ATUM-SEM
and ssTEM show great flexibility in the volume size and
resolution, because they allow re-imaging of parts of the
sample with different settings. SBF-SEM is a ‘mid-range’
method, covering a volume range from roughly 104 to 107
μm3. Additionally, the number of volume EM studies is
increasing at a steady rate. The majority of studies has
been conducted using SBF-SEM or FIB-SEM (Figure 1C).
Although the number of studies per year varies quite
a bit, there is a clear trend towards bigger data sets
(Figure 1D).
The push towards larger volumes can be explained by

connectomics research. Scientists have fully reconstructed
the nervous systems and determined the connectomes
of small organisms, and partially in bigger organisms
(Table 2). From the smallest (C. elegans larval brain40)
to the largest volume (mouse visual cortex41) at full res-
olution, the size difference is more than five orders of
magnitude. While connectomics research can be consid-
ered a driver for innovation in the field, the applica-
tion of volume EM is linked to several other research
fields.24,42,43,44,45,46 We found over 110 distinct applications
in 23 different organisms, including animals (and their lar-
val stages), plants, bacteria and cell lines (Supplementary
Table S1). Some studies feature reconstructions of single-
cell organisms and small organisms such as the budding
yeast (S. cerevisiae),47 parasite Trypanosoma brucei48 or the
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TABLE 1 Volume EMmethodology

Methodology Description

Typical x,
y resolu-
tion
(nm)

Typical z
resolu-
tion
(nm)

Typical
volume
(µm3) Reference

Serial section
transmission
electron
microscopy
(ssTEM)

Serial sections are cut with
a diamond knife and
collected in a water bath,
(manually) transferred to
a support grid and
imaged with
transmission electron
microscopy. Relatively
inexpensive but requires
high skill and labour.

4 50 103–104 10,11

Electron tomography
(ET)

Tomographic
reconstruction of
200–1000 nm thin
sections by recording at
multiple tilt angles.
Limited to small
volumes.

2–10 2–10 102–103 13,14,15

Serial block-face
scanning electron
microscopy
(SBF-SEM)

Automated method with
microtome inside
vacuum chamber.
Iteratively a thin layer of
material (down to 20 nm)
is removed from tissue
the block, after which the
surface of the block is
imaged and the scattered
electrons are recorded.

10 30 105–107 16

Focused ion beam
scanning electron
microscopy
(FIB-SEM)

A very thin (2–5 nm) layer
of material is iteratively
removed by a focused
gallium ion beam
positioned 45◦ with
respect to the sample,
after which the top of the
block is imaged. Offers
high isotropic resolution.

5 5 102–105 17,18

Automated
tape-collecting
ultramicrotome
SEM (ATUM-SEM)

Serial sections are
automatically cut by a
microtome and collected
from a water bath on
Kapton tape by a
computer-controlled
reel-to-reel conveyer belt
mechanism. Sections are
consecutively imaged
with SEM.

Flexible 60 107–1010 21,22

Array tomography
(AT)

Ribbons of serial sections
are collected on solid
surface (silicon wafer,
glass) and imaged
consecutively with SEM.

4 30, 60 104–106 19,20

Note: The development and application of these methods is reviewed in Refs. (12), (38), (175) and (176).
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F IGURE 1 Overview of VEM studies from 2009–2021 reporting voxel resolution, method, volume and data set size. (A) Voxel size (x vs.
z) and (B) volume size for all data sets. Ellipses indicate application regimes. (C) Cumulative sum of studies per method. (d) Increase in data
set size per year. All data points represent a single data set, except those marked by * and +, which are targeted re-acquisitions from Kasthuri
et al.72 and Hildebrand et al.26 respectively

ringed worm (P. dumerilii) at 6 days post-fertilisation.49
Some of the larger samples are intersegmental vessels and
dorsal-lateral lanastomotic vessels in zebrafish embyos50
(FIB-SEM), root tips of the barrelclover (M. truncatula),38
(SBF-SEM), human and mouse fibrous connective tissue51
(SBF-SEM) and mouse liver tissue52 (FIB-SEM).
The number of volumes with high isotropic resolution

is also increasing. Abnormalities in cell organelle struc-
ture and function are implicated in the development of
diseases,which can be studied in detailwith FIB-SEM.Vol-
ume EM studies with FIB-SEM have resulted in high res-
olution 3D reconstructions including (but not limited to)
HeLa cells, T cells and macrophages,2,43,53 cancer cells,54
mouse primary beta cells3 and COS-7 cells.55 Moreover,
studies have been performed onhuman cardiac telocytes,56
mouse liver tissue52 and lung alveolar epithelium.57 Stud-
ies of abnormal ultrastructure are emerging, including
breast carcinoma and pancreatic adenocarcinoma.46
In short, volume EM applications have expanded well

beyond the scope of connectomics, and the various
techniques can be demarcated into distinct application
regimes. Data sets are increasing in size and becom-
ing more diverse. We will show later that some trends
can be attributed to specific developments in hardware
(Section 3), while others may be a result of the general
increase in popularity of volume EM and access to better
equipment. We will now layout the new developments in
methodologywhich have contributed to some of the trends
that are described here.

3 IMAGING OF LARGER BIOLOGICAL
VOLUMES

A major feat in volume EM would be to routinely image
volumes larger than 1 mm3 at nanometre resolution in
a few months. Achieving this is not only a matter of

improving speed; instrumentationmust be able to robustly
image thousands of tissue sections or slices for extended
periods with minimal intervention. Therefore, instrumen-
tation development has focused not only on increasing
imaging speed, but also robustness and automation. New
developments can roughly be divided into four groups:
(1) parallelisation by multiple beams, (2) parallelisation
by multiple cameras, (3) parallel processing in block-
face imaging and (4) re-imaging of volumes at different
resolution scales (Figure 2).

3.1 Multiple scanning beams in parallel

The imaging speed in (volume) EM is limited by the
minimum signal-to-noise ratio (SNR) needed to make
biological features sufficiently visible against a noisy back-
ground. The SNR is influenced by the exposure time,
beam current, sample contrast and detection efficiency.32
In order to achieve faster imaging, it seems straightfor-
ward to increase the beam current. However, this leads
to lower resolution due to increased coulomb interac-
tions and can go at the cost of sample charging, inducing
sample drift and artefacts. A workaround would be to
use multiple beams in parallel. This idea has led to the
development of multibeam scanning electron microscopy
(MB-SEM).32,33 An MB-SEM scans the sample simulta-
neously with an array of beamlets produced by a single
electron source (Figure 2A), increasing the acquisition
speed proportionally to the number of beamlets with
theoretically no compromise on resolution compared to
single-beam SEM. Multiple concepts have been developed
for multibeam electron microscopy with different source
and column configurations, beam array sizes and detector
systems.32,33,58,59
The first commercially available MB-SEM (MultiSEM)

was released in 2015,32,60 producing 61 or 91 beams in a
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F IGURE 2 Four different methods for scaling up volume EM studies: (A) Multibeam electron microscopy. Throughput is increased by
using multiple beams in parallel. (B) TEMCA35 and AutoTEM29 principle. Throughput increase by multiple parallel cameras to enlarge the
field of view of the microscope. (C) ‘Enhanced FIB-SEM’: ultrathick sectioning34 is applied to a sample that is too thick to be handled by a
single FIB-SEM. Throughput increase is achieved by higher system stability and using multiple FIB-SEMs in parallel. (D) Single-beam
multiscale EM. ‘Increased’ throughput by scanning a large area at low magnification followed by multiple rounds of targeted acquisition at
higher resolution

hexagonal pattern (Figure 3A). The primary beams origi-
nate from a single source and go through a single column,
where they are separated from secondary electron signals
by a magnetic beam splitter. Each secondary electron
signal is lead to a dedicated secondary electron detector.
The number of beams can be increased without changing
the primary design; a 331 beam version has subsequently
been developed,61 though it is not yet commercially
available.
A single-source 196-beam MB-SEM was developed at

Delft University of Technology.58 This model employs
transmission electron detection instead of direct secondary
electron detection. The sample is placed on a luminescent
material (scintillator) coated with a thin conductive layer
which converts the electrons to photons. The light beams
are then imaged onto a detector array33,62 (Figure 3B). A
dedicated 64-beamMB-SEM system (FAST-EM) using this
technology has recently been commercialised.
While MB-SEM is not yet widely applied in volume

EM, the first study results are impressive. A large-scale
(2D) study of mouse and marmoset brain tissue was
performed.63 Another study revealed for the first time the
complex structure of the chicken retina.64 The latest result

is a 1.4 petabyte data set of human cerebral cortex acquired
in 326 days,41 which was fully segmented using automated
methods discussed later (Section 5). These pioneering
studies indicate great potential.

3.2 Multiple cameras: TEMCA and
AutoTEM

Transmission electron microscopy is inherently paral-
lel compared to scanning electron microscopy. However,
it is slowed down significantly by sample stage move-
ment, detector readout time and sample grid replacement.
TEM camera array (TEMCA, Figure 2B) was devel-
oped to improve the throughput of transmission electron
microscopes.35,65 The field of view of the TEM is increased
by using a 2 × 2 array of high-speed CCD (charge-
coupled device) cameras coupled to lenses, connected to
an extended vacuum column. To further improve through-
put, Zheng et al.27 built two second-generation TEMCA
systems (TEMCA2), equipped with four CMOS cameras, a
custom piezo-driven fast stage and an automated transport
and positioning system, which allow unsupervised sample
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F IGURE 3 Different multibeam systems. (A) Zeiss MultiSEM,32 which makes use of secondary electron detection by a multidetector.
The primary beams and detected electrons are separated by a magnetic beam splitter. (B) Delft Multibeam (FAST-EM).33,174 Instead of
secondary electron detection, this multibeam system detects transmitted electrons via conversion to a light signal by a scintillator located
directly under the sample

loading and imaging for extended periods. Together, these
innovations allow 40× faster imaging than conventional
TEM. The TEMCA2 design was used to image a full adult
fruit fly brain in 16 months.27
The TEMCA2 has inspired the development of a further

automated TEM system, autoTEM.29 AutoTEM consists
of 6 parallel TEMCA-inspired systems with a summed
burst acquisition rate of 3 Gpixel/s and a net rate of
600 Mpixel/s. A new nano-positioning sample stage
offers fast montaging of large areas.66,37 The sections
are loaded onto a new aluminium-coated polyimide
tape with regularly spaced TEM-grid-resembling holes
(GridTape37), which enables section collection with
ATUM. The implementation of a new reel-to-reel tape
translation system allows loading and selection of 5500
sections per vacuum cycle. With AutoTEM, two 1 mm3

volumes of mouse neocortex and primary visual cortex
were imaged in about 6 months, resulting in two petabyte
data sets.29,45 Additionally, a TEMCA system upgraded
with GridTape was used to reconstruct the ventral nerve
cord of a female fruit fly, resulting in a 172.6 terabyte
data set.37

3.3 Parallel processing in block-face
imaging

While serial block-facemethods are used in themajority of
volume EM studies (Figure 1C), increasing their through-
put is not trivial. So far, block-facemethods remain incom-
patible with MB-SEM. While acquisition in SBF-SEM is
highly automated, the samples are prone to charging and
sensitive to beam dose. Solutions to these problems are
described later (Section 4). An even bigger challenge is
increasing the low throughput of FIB-SEM, which is a
result of slow FIB-milling speeds and limited robustness
of FIB-SEM systems.

3.3.1 Parallel ‘Enhanced’ FIB-SEM

To make FIB-SEM systems more suitable for volume EM,
Xu et al.36 developed ‘Enhanced FIB-SEM’ (Figure 2C).
Enhanced FIB-SEM expands the scope of FIB-SEM from
1000 μm3 to 3 × 107 μm3 – four orders of magnitude. FIB-
milling limits the sample thickness to about 100 m in the
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milling direction because it introduces streaks and waves
of thickness variation. A solution was found in smooth
‘ultrathick’ partitioning of tissue volumes.34 Resin embed-
ded tissue is cut into multiple chunks of 20 μm with a
hot ultrasonic vibrating diamond knife to reduce distor-
tions and slips. The chunks can then be imaged separately
and stitched together. Additionally, signal detection is
improved by a small positive stage bias that filters out sec-
ondary electrons, allowing efficient backscatter detection
by an in-column detector. The working distance is reduced
by repositioning the FIB column to be 90◦ from the SEM
column. Lastly, a special closed loop control system is
used to maintain ion beam stability and allow seamless
restarts. Two ‘enhanced’ FIB-SEMs were employed in a
study that reconstructed the connectome of the fruit fly
central brain.28

3.3.2 Alternative milling approaches

Other milling approaches could potentially offer higher
throughput than conventional gallium ion FIB, including
gas cluster ion beam (GCIB),67 broad ion beam (BIB)68
and plasma focused ion beam (PFIB) milling.69 In GCIB-
SEM, 500 nm to 1 μm thick sections are collected from
the sample. These sections are pre-irradiated with the
SEM to reduce charging, followed by milling at 30◦ with
clusters of low energy argon ions. Volumes with 10 nm
isotropic resolution were acquired, but full integration
with high-throughput SEM (i.e. MB-SEM) has yet to be
demonstrated. With BIB, large areas (up to several mm)
can be milled while simultaneously offering a sputter
rate up to five times higher than in gallium ion FIB.70
Milling and imaging of liver and mouse brain tissue has
been demonstrated with an integrated BIB-SEM system,
although not with high isotropic resolution as in FIB-
SEM.Xenon ion PFIB offers lowdamagemilling compared
to gallium FIB with 20–60× faster rates,69 but has not
been widely adopted for biological samples. Oxygen has
also been proposed as an alternative ion species with
greater resin compatibility and similar potential gains in
throughput.71

3.4 Targeted reimaging with multiscale
EM

Unlike block-face methods, serial sectioning methods
like ssTEM and ATUM-SEM allow re-imaging of tissue
sections. This has inspired some researchers to use a mul-
tiresolution approach when imaging large volumes with
ATUM-SEM72,26 (Figure 2D), to limit acquisition time.
After recording the complete volume at low magnifica-

tion, targeted regions of interest can be re-imaged at higher
magnification to reveal smaller features. In connectomics,
this is convenient because most neuronal branches can
be traced at lower resolutions while only some parts are
needed in high resolution for completion.73 Moreover, the
different data sets can be registered and combined into a
multiresolution data set.
Another multiresolution approach combines ATUM

with targeted high isotropic resolution FIB-SEM, a new
method called ‘multiscale ATUM-FIB microscopy’.74 In
ATUM-FIB, serial sectioning of tissue into ‘semithick’
2–10 μm sections is done first to create a library by attach-
ing them onto glass slides that can be imaged with light
microscopy. Then, they are remounted onto silicon wafers
for serial section SEM to identify regions of interest to
target with high resolution FIB-SEM.

4 SAMPLE PREPARATION FOR
LARGE VOLUMES

The success of a volumeEMstudy is ultimately determined
by the quality of sample preparation. It is inherently diffi-
cult to prepare biological samples for electron microscopy;
they should be compatible with staining and residing in
vacuum, have sufficient and homogeneous contrast and
be resistant to sectioning and beam irradiation. While
sample preparation protocols are typically designed for a
specific target species or tissue type, they follow roughly
the same steps: (1) fixation with aldehydes, (2) staining
with heavy metals such as osmium, uranium and lead,
(3) tissue dehydration and (4) resin embedding, followed
by sectioning. The whole procedure, including sectioning,
can take up to a few weeks per sample.29,45 With acquisi-
tion times of large volumes being significantly reduced by
emerging new methods (Section 3), further optimisation
of sample preparation protocols with respect to through-
put becomes increasingly important. We describe next the
implications of the throughput increase in acquisition on
sample preparation.

4.1 Approaches in fixation and staining

Sample preparation protocols have been modified to allow
for higher throughput acquisition methods (Figure 4)
as well as for homogeneity of fixation and staining for
larger than before sample volumes. To provide homo-
geneous preservation of the tissue, it is either dissected
before fixation,27,28,75 or perfused with a fixative solution
before dissection.26,29,31,65,72,73,76 To further promote dif-
fusion of the fixative into the sample, the surrounding
skin can be removed.26 Fixation is typically followed by
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F IGURE 4 Sample preparation steps for high-throughput volume EM. Next to improvements in en bloc staining, ultrathick partitioning
was introduced in FIB-SEM and tape collection in ssTEM. Figure not to scale

en bloc staining, in which the sample is submerged into
one or more solutions of (different) heavy metal com-
pounds to increase electron scattering. In traditional serial
section TEM, samples are typically treated twice: first
en bloc, then by post staining the ultrathin sections to
enhance the contrast. However, post-staining is laborious,
prone to contamination and incompatible with block-face
techniques.
Hence, volume EM sample preparation protocols have

been designed to optimise en bloc staining. The traditional
osmium-thiocarbohydrazide-osmium (OTO) protocol,77 in
which thiocarbohydrazide acts as a bridging agent for
osmium tetraoxide to crosslink and stain cell membranes,
typically leads to inhomogeneous staining for larger vol-
umes. By addition of potassium ferri- or ferrocyanide, the
osmium can be reduced to make it more reactive (reduced
OTO or rOTO78).While this improves contrast and thereby
allows for lower dwell time, it still has a limited penetration
depth (∼200 μm) and weakens large tissue samples due to
the formation of nitrogen bubbles. The OTO protocol was
therefore modified further by separating the osmium and
ferrocyanide treatment steps.79 This allows the osmium to
penetrate deeply into the tissue, after which it is reduced to
allow for deeper staining. A variant on this protocol adds
formamide during the reducing osmium step and replaces
thiocarbohydrazide by pyrogallol, which prevents nitrogen
bubble formation.80 This protocol was further optimised
to reduce the long incubation times,81 thus allowing both

homogeneous, strong fixation and staining as well as faster
sample preparation.

4.2 Sectioning of large volumes

Three out of four emerging volume EM techniques dis-
cussed earlier rely on serial sectioning,motivating the need
for reliable sectioning approaches. Cutting and collect-
ing (thousands of) ultrathin serial sections is a delicate
process; many factors affect the consistency and continu-
ity. An inherent issue is that interruptions are needed to
resharpen or replace the knife, which impair sectioning
quality as the knife needs to be repositioned. A closed-loop
repositioning system as introduced in FIB-SEM may offer
a solution. Another issue is section collection. Multiple
tools have been developed that simplify the handling and
collection of moderate amounts of sections,82,83,84 but for
larger amounts automated collection (ATUM) is currently
the only viable option. The collection tape of ATUM has a
low packing density (∼200 sections per metre) and needs
to be carbon-coated for conductivity. Intrinsically conduc-
tive alternatives such as carbon-nanotube tape,85 on the
contrary, need plasma treatment for hydrophilisation and
manual grounding. In order to increase the packing den-
sity of sections, Templier86 introducedMagC, in which the
tissue block is glued to a magnetic resin, which allows
magnetic collection of the sections directly onto wafers.
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4.3 Charge-compensation and artefact
reduction

Artefacts created during sample preparation and acquisi-
tion increase the difficulty of reconstructing volumes with
automated image processingmethods.28,31,41 There are sev-
eral ways in which these artefacts can be reduced. Oneway
is focal charge compensation, in which surface charges
are neutralised by local injection and ionisation of nitro-
gen gas onto the sample.87 Additionally, the conductivity
can be increased by coating the sample with a thin metal-
lic film prior to each cycle of imaging.88 The embedding
material can also be made more conductive, either with a
metallic particle filler89 or adding carbon powder.90,91 New
types of resins can also offer higher contrast with low stain
concentrations, offering a way to reduce artefacts intro-
duced by staining.92 Lastly, the sample can be embedded
within another biological sample26 to improve stability of
the tissue block and prevent shrinkage and deformation.

5 IMAGE PROCESSING AND
ANALYSIS IN VOLUME EM

Image processing and analysis of volume EM data sets
are nontrivial tasks due to their size and complex nature.
Roughly speaking, the steps in image processing are
intensity normalisation, 2D stitching and 3D alignment,
while image analysis concerns the annotation (labelling
individual biological features in the data set) and seg-
mentation (assigning every pixel or voxel to a class) of
the reconstructed volume to extract biological informa-
tion (Figure 5). The computer algorithms that handle these
tasks have to overcome difficulties such as variable inten-
sity and contrast, sample drift, missing or low-quality data,
and imaging artefacts introduced by sample preparation,
sectioning (shear, distortion), pickup, inhomogeneous
staining and beam damage. The throughput increase also
poses additional challenges for image analysis. Manual
segmentation of volumes, already a time-consuming pro-
cess for small data sets, becomes impractical for large data
sets. We will illustrate the steps in image processing and
analysis while discussing the state of the art approaches
and methods.

5.1 Stitching of large FOVs and 3D
alignment

When a region of interest (ROI) is larger than the field of
view (FOV) of the microscope at the desired magnifica-
tion, multiple FOVs are acquired with a small overlap and
digitally stitched together to reconstruct the whole ROI

(commonly referred to as a montage or mosaic). There are
multiple algorithms for stitching, which generallywork for
all EM techniques considered here. The simplest in terms
of computational complexity is phase correlation, which
computes the translation between two overlapping image
tiles based on the normalised cross-correlation.93 How-
ever, phase correlation does not take into account affine
transformations and only allows for local optimisation. A
more robust approach is to find local point-pair correspon-
dences between images with a feature detection algorithm,
such as the scale-invariant feature transform (SIFT)94 or
speeded up robust features (SURF).95 Both algorithms use
scale-space representations – consisting of increasingly
downsampled versions of the images – to find scale-
invariant features. Corresponding point-pair matches are
selected using robust sampling methods (RANSAC)96 and
from these the affine transformations are determined to
generate a globally optimised alignment.
The same algorithms can be used to align individual

mosaics in 3D. First, each mosaic is downsampled and
roughly aligned to its neighbouring layers. This is then
refined by extracting and matching point-pair correspon-
dences between neighbouring tiles in different layers. In
serial block-face methods (FIB-SEM and SBF-SEM), only
subtle refinement may be needed as the FOV is inher-
ently highly similar between adjacent slices. Alignment
of ssTEM and ATUM-SEM is more complicated as it
requires significant corrections for rotation and non-linear
distortion compared to block-face data sets.
There are several dedicated software packages for

stitching and 3D alignment, including AlignTK,35,65 NCR
tools,97 StackReg98 and Big Feature Aligner (BigFeta).99
Popular tools that can perform EM image registration
are TrakEM2100 – implemented in Fiji (ImageJ), popu-
lar among bioimage analysts – IMOD101 and Microscopy
Image Browser (MIB).102 Lastly, a novel approach was
developed for multiscale EM alignment, known as sig-
nal whitening Fourier transform (SWiFT-IR),103 in which
modulated Fourier transform amplitudes produce more
robust image matching.

5.2 Manual annotation and
segmentation

After the volume is reconstructed, the next step is to extract
biological information from the data. To quantify the
morphology of tissues, cells and cell organelles, their 3D
structure has to be annotated and segmented. Successful
interpretation of biological EM images is time consuming
and requires training in anatomy. It was recently estimated
that it would take up to 60 years to manually segment each
organelle in a single cell by hand.2 Nevertheless, volume
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F IGURE 5 Image processing and analysis workflow. First, the images are normalised. Next, images that belong to one section are
stitched with help of point-pair matches and transformations. Similarly, the composite images of the sections are 3D aligned. When the 3D
volume has been solved, the segmentation can be performed (automatically). Segmentation is followed by annotation and visualisation. The
data can then be interpreted and analysed

EM studies still rely onmanual or semi-automatic segmen-
tation and annotation. Usually, only a fraction of the entire
volume is annotated by hand (sparse annotation) to reduce
the workload. These annotations can be used as training
data for machine learning algorithms to process the whole
volume in an automated fashion.

5.2.1 Voxel painting and neuron tracing

The most straightforward method is inspecting and
labelling voxels with the help of (web-based) software.
These applications allow browsing through a volume and
facilitate tracing of cells, membranes, cell organelles or
other features of interest. Groups of voxels can be assigned
a label with brush or bucket tools. Neurons are frequently
annotated by a centre-line tracing (skeleton). Software tools
often support multiple approaches. To get better accuracy,
tracings can be proofread by an additional annotator. In
large connectomics studies, typically a team of multiple
annotators performs the tracing and proofreading, with
assistance of anatomy experts.26,27,30,31 The exact segmen-
tation approach depends on the complexity of the tissue
and which type of annotation is desired (sparse or dense).

5.2.2 Tracing, annotation and segmentation
software

Annotation tools combine segmentation, annotation and
visualisation into one interface. A distinction can be made

between commercial and open-source software. Examples
of commercial software are Amira (Thermo Fisher Scien-
tific), Imaris (Oxford Instruments) and Vision4D (Arivis),
whereas often used open-source programs are the Collab-
orative Annotation Toolkit for Massive Amounts of Image
Data (CATMAID),104 KNOSSOS105 and its web version
WebKnossos,106 Volume Annotation and Segmentation
Tool (VAST)107 and earlier mentioned tools, TrakEM2,100
IMOD101 and MIB.102 Another distinction can be made
between offline and web-based tools. VAST, TrakEM2,
IMOD and MIB are offline tools, while CATMAID and
webKnossos retrieve image data and annotations hosted
on a remote server and work with databases to manage
annotations. It can be accessed anywhere (with an internet
connection) and multiple annotators can simultaneously
work on different parts of the volume. A comprehen-
sive list comparing various features of all tools has been
published elsewhere.108

5.3 Automated segmentation

The last 10 years have seen an increased usage and
improvement of automated segmentation, made possi-
ble by developments in machine and deep learning. The
choice for machine and/or deep learning seems obvi-
ous. Volume EM data sets are significantly growing in
size, rendering complete manual segmentation impossi-
ble. Traditional segmentation methods most often fail or
generalise poorly, because EM images are often noisy and
characterised by variations in contrast and texture as well
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as artefacts introduced during sample preparation or imag-
ing. Additionally, tissue structure can be very complex,
such as the dense wiring patterns found in neural tissue.
It has been shown that data driven models can cope with
complex segmentation problems—convolutional neural
networks (CNNs), from the domain of deep learning, out-
performed traditional segmentation methods more than
a decade ago.109 CNNs are very popular for image seg-
mentation because they efficiently extract and combine
information fromdifferent hierarchical levels in the image.
Automated segmentation using deep learning has become
the predominant strategy in two different domains: con-
nectomics and cell biology.

5.3.1 Automated segmentation in
connectomics

In connectomics, the interest lies mainly in cell bound-
ary segmentation and synapse detection. Many of the
new developments can be attributed to several crowd-
sourcing competitions for automated segmentation in
2D and 3D: the International Symposium on Biomedical
Imaging (ISBI),110 3D segmentation of neurites in EM
images (SNEMI3D)i and circuit reconstruction from
EM images (CREMI)ii challenges. State-of-the-art cell
boundary segmentation approaches are typically either
based on the popular U-Net CNN architecture111,112 or
variants thereof. Variants based on U-Net have achieved
near-human or even super-human segmentation perfor-
mance on neural EM data.113,114,115,116,117,118 Alternatively,
flood-filling networks have been employed to increase
segmentation accuracy at the expense of higher compu-
tational costs.119,120 A comprehensive overview of these
approaches and their implementation has been described
elsewhere.121
Synaptic relations can be used to infer connectivity

between neurons. Machine learning algorithms are there-
fore employed to find synaptic relations between neurons
by classifying each voxel as ‘synaptic’ or ‘non-synaptic’.
Classical machine learning algorithms such as the ran-
dom forest classifier are used,122,123 but also here CNNs are
gaining popularity.124,125,126,127,128,129,130,131 In short, these
methods try to predict candidate synapses and their direc-
tionality, while some also distinguish the pre- and post-
synaptic neurons.121 Recent efforts in automated synapse
detection resulted in a reliable connectivity graph in the
whole brain fruit fly data set.132

i http://brainiac2.mit.edu/SNEMI3D/home.
ii https://cremi.org/.

5.3.2 Cell organelle segmentation

In cell biology, the interest lies in segmentation of cell
organelles to enable quantification of their morphology,
distribution and size. A clear motive for this work is
evidence that links alterations of organelle structure to
neurodegenerative diseases and cancer.4,5,6,133 The high
axial resolution of SBF-SEM and especially FIB-SEM data
allows for accurate segmentation of cell organelles. Due to
the diversity of organelles and cell types as well as a lack
of publicly available training data, automated organelle
segmentation has not experienced the same surge as in
connectomics, which has benefited from years of substan-
tial manual annotation effort.27,30,72,134,135,136 Nonetheless,
there has been successful pioneering work within differ-
ent types of volume EM data (Table 3). Similar to dense
reconstructions of neural tissue, several studies have now
demonstrated (fully) automated multiclass segmentation
of organelles in single cells.2,3
Examples of important yet difficult segmentation prob-

lems in EMdata includemitochondria, nuclei and vesicles.
Mitochondria vary greatly in shape and size. This variation
is not well represented in commonly used training data
sets.137,138 Nuclei segmentation is a common segmentation
problem, also in light microscopy. Vesicles come in many
forms and sizes. Automated mitochondria segmentation
has been successfully applied to FIB-SEM4,5,139,140 and
ATUM-SEM data4,5,141 (despite its lower axial resolution).
While it is possible to segment plasma and nuclear mem-
branes with traditional segmentation algorithms,142,143
two different groups approached nuclear envelope and
nuclei segmentation with U-Net variants.46,133 To deal
with the limited availability of expert manual annota-
tions, the authors either aggregated multiple volunteer
annotations133 or utilised sparse labelling techniques.46
Automated vesicle segmentationwas developed for insulin
granules144 and small extracellular vesicles.6

5.3.3 Challenges with convolutional nets

There are several problems associated with CNN-based
segmentation. Generally, the performance is best on data
sets with high isotropic resolution and proper alignment
(SBF-SEM, FIB-SEM).120 Performance on serial section
EM data, which is characterised by anisotropic resolution
and slight defects in the alignment, can be improved by
encouraging topologically correct segmentations obtained
from the affinity graphs.118,145 A second problem is that
several methods do not generalise well outside of their par-
ticular source and tissues.146 To cope with this, domain
adaption techniques can be used that transform the image
content of different data sets to make themmore similar to

http://brainiac2.mit.edu/SNEMI3D/home
https://cremi.org/
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TABLE 3 Summary of studies on automatic organelle segmentation with machine learning and/or deep learning

Application Organelle(s) Technique Network architecture Reference
HeLa cells NE SBF-SEM U-Net 133

HeLa cells, Jurkat
cells, macrophages

Chromatin, ER,
endosomal
membranes,
lysosome, MTs, Mito,
NE, PM, vesicle
membrane

FIB-SEM U-Net 2

Rat hippocampus,
mouse cortex

Mitochondria, ER ATUM-SEM,
FIB-SEM

ResNet, region proposal
Net, Recursive Net,
Mask R-CNN

5

Rat hippocampus,
mouse cortex

Mitochondria ATUM-SEM,
FIB-SEM

ResNet 4

Mouse primary beta
cells

MTs, Golgi, centrioles,
insulin granules

FIB-SEM U-Net, random-forest
classifier

3

HeLa cells ER, mitochondria, PM FIB-SEM U-Net, EfficientUnet 186

Mouse hippocampus Vesicles, nuclei,
mitochondria,
membranes

SBF-SEM DeepEM3D 154

Human breast
carcinoma

Nuclei, nucleoli FIB-SEM ResNet, U-Net 46

Mouse hippocampus Mitochondria FIB-SEM ‘Conventional’ CNN 139

Mouse urinary bladder
urothelial cells

Mitochondria,
endolysosomes

FIB-SEM HighRes3DNet 140

Rat and human cortex Mitochondria ATUM-MBSEM U-Net 141

Pancreatic beta cells Insulin granules FIB-SEM Multibranch FCN 144

Ovarian cancer cells Extracellular vesicles ssTEM Fully residual U-Net 6

Note: The organelles, EM technique and neural network architecture are indicated.
NE: nuclear envelope; ER: endoplasmic reticulum; MTs: microtubules; PM: plasma membrane.

training data set.147,148 On the other hand, training on data
from various types of tissues may improve robustness.138
Lastly, problems arise due to artefacts introduced during
sample preparation and imaging, which are rare in com-
monly used training data sets (e.g. CREMI, SMEMI3D).
Solutions include increasing the occurrence artificially
using data augmentation,117 locally realigning image sub
volumes before region agglomeration120 or by supplement-
ing these public data sets with manually segmented data
from a portion of the imaging volume.

5.3.4 Deep learning for the masses

Although automatic segmentation methods are becoming
more powerful, they are often difficult to adopt by those
with limited programming skills. To leverage the power
of automatic segmentation in a more user-friendly way,
several state-of-the-art algorithms and architectures have
been integrated into popular image analysis tools. Fiji
contains plugins such as ‘Trainable WEKA segmentation’
for interactive training of machine learning algorithms149

and ‘DeepImageJ150 for straightforward importing and
deployment of deep learning models. Similarly, ilastik151
also supports simple and interactive training of machine
learning algorithms and currently offers limited sup-
port for pre-trained CNNs. Microscopy Image Browser
(MIB) has been extended with a user-friendly U-Net.152
UNI-EM153 is yet another user-friendly tool that inte-
grates multiple top-performing 2D and 3D network
architectures. Some tools work with cloud deployment
to circumvent the need for local computational resources
and software installation, such as DeepEM3D154 and
ZeroCostDL4Mic.155
While these applications have reduced the barrier to

entry for AI-based analysis, there are several potential
drawbacks. These include the limited number of imple-
mented models and the verification of performance, as
users generally look at visual segmentation quality with-
out employing quantitative performance statistics. Fur-
thermore, computational expertise and resources remain
necessary for the documentation andmaintenance of these
tools. Lastly, different implementations require a varying
level of knowledge about machine learning.
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6 CHALLENGES IN DATA STORAGE,
MANAGEMENT AND VISUALISATION

The output of volume EM is very information dense, but
there are several hurdles in maximising its potential use.
Currently, volume EM data set sizes range from several
gigabytes to hundreds of terabytes, with several studies
already having reached the petabyte scale.29,41,45 This has
big implications for data storage and management. Data
formats should be clear, accessible and complete to make
sure data can be reused and revisited. Visualisation tools
should offer fast terabyte scale data inspection. We will
discuss the implications of the throughput increase and
widened scope of volume EM methods on data manage-
ment and visualisation.

6.1 Data storage

Where to store large volume EM data sets and their anno-
tations? Small data sets can be managed on individual PCs
or workstations, but with the current trend (Figure 1D) it
is likely that storage on institutional servers or in the cloud
will become the standard.

6.1.1 Repositories and metadata

Systematic archiving of data andmetadata in online repos-
itories is not yet routine practice in the field of volume
EM, though several dedicated repositories have emerged.
These include the Electron Microscopy Public Image
Archive (EMPIAR),156 Image Data Resource (IDR)157 and
the EMBL BioImage Archiveiii (BIA). EMPIAR is EM
specific, whereas IDR and BIA are more broad. Currently,
these repositories allow the download and upload of
whole data sets, but it may be easier to interact with (a
subset of) the data via application programming interfaces
(APIs) or viewers. How data should be formatted and
stored is an ongoing discussion in the EM community.
While it is generally accepted that EM data should follow
the FAIR format158 to maximise reuse, it is difficult to
standardise metadata because the needs vary greatly based
on the application or imaging modality. Nonetheless,
recently a set of guidelines for Recommended Meta-
data for Biological Images (REMBI) was published.159
This will be incorporated as a standard for submission
into IDR.

iii https://www.ebi.ac.uk/bioimage-archive/.

6.1.2 Data formats

How is volume EM data stored? Different file formats are
used depending on the application and storage location.
During acquisition, data are often saved in proprietary
microscopy data formats, which are optimised for writ-
ing. For visualisation purposes, however, the optimal
format is entirely different. Data with high lateral but
low axial resolution (i.e. ssTEM, ATUM-SEM) are made
possible by making use of pyramids of increasingly down-
sampled flat images (tiles), either remotely (CATMAID)
or locally (TrakEM2). This is convenient because these
images are usually viewed in 2D. Data with high axial res-
olution (FIB-SEM, SBF-SEM) is instead saved in a cube
format (employed by KNOSSOS) which makes browsing
or reslicing in the z direction faster and easier. In data
archiving, flexible file extensions such as TIFF and HDF5
are used, which can store multidimensional pyramidal
data with associated metadata. However, data from TIFFs
can only be read as individual 2D tiles, while HDF5 and
other ‘next-generation file formats’ such as N5iv and Zarrv

allow reading and writing of three-dimensional chunks of
images to separate, smaller files, which is much faster and
better suited for cloud storage.160

6.2 Data management

Client-server applications are becoming a popular tool
to interact with volume EM data.49,104,106,161 Plugins for
processing, visualisation and annotation can be remotely
installed, and there is no need to download data or install
software locally other than a web browser. Moreover,
research data can be more easily shared as data can be
made accessible to multiple users from different loca-
tions simultaneously. The data and metadata are stored in
remote servers, while the user retrieves the data via a client
(Figure 6).

6.2.1 ‘Local’ data management

An open, flexible and scalable data management platform
suitable for electron microscopy data is Open Microscopy
Environment Remote Objects (OMERO).162 It was cre-
ated with the idea of standardising data access. Data can
be imported using Bio-Formats, which converts propri-
etary microscopy data formats into a common data model
(currently, OME XML with OME-TIFF).163

iv https://github.com/saalfeldlab/n5.
v https://github.com/zarr-developers.

https://www.ebi.ac.uk/bioimage-archive/
https://github.com/saalfeldlab/n5
https://github.com/zarr-developers
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F IGURE 6 Example of data management structure. The image data are acquired by an electron microscope and stored within a central
database. The database is connected to a post-processing service which performs image processing and computes the transformations
between the images, which are contained in a separate database. The annotations are contained in a separate database (here, CATMAID104).
A client can send requests to the image, transformation and annotation database to view certain image data and corresponding annotations.
The image data is tiled before it is sent. The arrows indicate the flow of information.

6.2.2 Cloud data management

Apart from the costs, hosting EM data in the cloud offers
several advantages in terms of convenience and accessibil-
ity. One such example is Neurodata.io,vi 164 a community-
developed and maintained software ecosystem for neu-
roscience data deployed in the commercial cloud (AWS),
containing TrakEM2 for registration, NeuroGlancervii for
visualisation and BossDB165 for data management. Mul-
tiple data sets of different formats and imaging modali-
ties can be combined. In addition, the hosted data can
be accessed via annotation software (VAST/KNOSSOS).
Another example is OpenOrganelle, a repository for cell
biology data, created at the Janelia Research Campus and
also hosted in the cloud.166 The platform hosts 10 FIB-SEM
data sets of various cell lines and tissues for online visu-
alisation and offline data mining, while at the same time
providing the code and tutorials for all available tools. Sep-
arately, the entire EM volume of Platynereis dumerilii is
hosted in N5 format in cloud object storage at EMBL and
can be accessed using an N5 API. The data can be browsed
using a specifically designed Fiji plugin ‘PlatyBrowser’ in
MoBIE.49 These projects demonstrate the potential and
conveniences of cloud data management of volume EM
data.

vi https://neurodata.io/.
vii https://github.com/google/neuroglancer.

6.3 Developing scalable architectures

Apart from developing new tools, there is the challenge to
make scalable architectures out of existing tools. Employ-
ing these tools on high performance computing (HPC)
clusters allows large data sets to be processed in parallel.
Vescovi et al.167 developed a scalable andmodular pipeline
which integrates multiple software modalities such as
TrakEM2, NeuroGlancer and Flood-Filling networks to
perform several tasks from registration to annotation
and visualisation. These tools are made HPC deployable
and wrapped in an operational database which can be
used to create custom pipelines for image processing and
annotation.

6.4 Terabyte data viewers

Some annotation tools have been designed with large
data sets in mind. Examples are VAST107 and NeuTu.161
VAST is mainly a segmentation and annotation tool, and
is able to handle very large data sets, which can be
imported from a server or locally. Manual segmentation at
different zoom levels is also supported, although simulta-
neous editing by multiple users is not. In contrast, NeuTu
allows collective proofreading and correcting errors cre-
ated by automated segmentation by manually merging or
splitting segments. It is part of DVID,168 a distributed, ver-
sioned, image-orientated data service in which NeuTu acts
as the data client.DVIDworkswith 2Dand 3Ddata andhas

https://neurodata.io/
https://github.com/google/neuroglancer
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a version control feature to manage different annotation
states. Lastly, BigDataViewer169 andMultimodal Big Image
Data Exploration (MoBIE),49 both Fiji plugins, make use
of the convenient HDF5 format to interactively navigate
and visualise large image sequences. MoBIE is addition-
ally equipped with an object storage backend to load data
from remote sources.

6.5 Collective annotation

The last 10 years have seen the emergence of projects
in which researchers can collectively work on annotat-
ing volume EM data. Some of these endeavours actively
encourage non-scientists to participate through ‘citizen
science’ initiatives. Non-scientists can help with proof-
reading annotations produced by automated segmentation
algorithms (for example in the game Eyewire135) or they
can assist in generating training data for deep learning
applications (e.g. ‘Etch a Cell133). The fruit fly commu-
nity has developed FlyWire,136 with the goal of collectively
mapping the fruit fly connectome from whole brain data
sets.27,28 It resembles EyeWire but is currently limited to
researchers only.

7 CONCLUSION AND OUTLOOK

Almost 10 years after the review of Briggman and Bock,1
there has not yet emerged a volume EM technique that
makes others obsolete. FIB-SEM and to some extent SBF-
SEM remain the methods of choice in studies where
high isotropic resolution is favoured over throughput, for
example in cell biology. The high isotropic resolution
also provides the advantage of more precise automated
segmentation. ‘Enhanced FIB-SEM’ allows the imaging
of larger samples. The implementation of new milling
approaches will hopefully speed up FIB-SEM even further.
ssTEM has seen several innovations (TEMCA, GridTape,
AutoTEM) that greatly improve the throughput. It offers
the highest lateral resolution, but its limited axial resolu-
tion and artefacts hamper automated image analysis. For
all techniques, a considerable amount of manual proof-
reading remains necessary after automated segmentation.
This results inmany studies still heavily relying onmanual
annotation efforts. Nevertheless, the performance of auto-
mated segmentation algorithmswill likely improve further
given their recent introduction in the field and the general
interest in AI research.
Multibeam SEM should not be ignored. The possibility

to increase the throughput of a single microscope by
orders of magnitude is very cost-effective. However,

both approaches are (for the moment) incompatible
with block-face approaches, making them dependent on
serial sectioning. Nevertheless, the speed of MB-SEM
could be key in rapid diagnostics (digital pathology)170
but also in studying brain development in multiple
specimens.40,171,172 The MultiSEM has demonstrated
compatibility with ATUM. FAST-EM still has to demon-
strate compatibility with a high-throughput sectioning
approach.
Currently, the expertise in large volume EM is limited

to several research groups. Centralised imaging facilities
could take a leading role in investing in high-throughput
electron microscopes and the elaborate data infrastruc-
ture required for these machines. Will it be possible to
image and annotate a full adult zebrafish in the near
future, maybe even a mouse brain? Will the imaging and
annotation of a small animal brain follow a path similar
to, for example, the human genome project? An average
adult mouse brain has a volume of 485–530 mm3.173 It
is clear that more automation is needed. Advancements
in methodology will probably again play a key role, but
it will also require extensive collaboration and sharing of
resources.
Information from high-throughput studies, such as con-

nectomes of animals or atlases of healthy and diseased
tissue, will presumably give critical insights. It can lead
to direct discoveries or provide a starting point to test
hypotheses on the relation between structural changes
and disease onset with functional studies. Novel data
mining approaches and meta-analyses of various data
sets could give new insights in ultrastructural differences
between data sets of various tissues and animals, similar to
microarray studies.
In conclusion, methodological improvements are mak-

ing volume EM more accessible and are alleviating the
burden on throughput. Automated segmentation methods
are reducing the workload of manual annotation, but con-
siderable human effort remains necessary. In the field of
data management, there is a need for a joint approach
on how to manage large volume EM data. The adoption
of a common file format could improve collaboration and
simplify training of automated segmentation methods. We
see an opportunity for open hosting of data sets with
corresponding annotations to maximise the profit to the
community. The potential of volume EM may be greater
than ever before.

ACKNOWLEDGEMENTS
The authors further acknowledge Ben Giepmans and
Ahmad Alsahaf from the University Medical Centre
Groningen for helpful discussions and a critical reading of
the manuscript.



18 KIEVITS et al.

AUTH OR CONTRIBUT IONS
ECC initiated the project and suggested the topic. AJK
conducted the literature survey, drafted the original
manuscript and produced the figures. RL revised the
manuscript and contributed to Sections 4, 5 and 6. JPH
andECC supervised thewriting process and offered critical
remarks on the manuscript and figures.

FUNDING
AJK and JPH acknowledge support from the ECSEL Joint
Under-taking (JU) under grant agreement No. 826589. The
JU receives support from the European Union’s Horizon
2020 research and innovation programme and Nether-
lands, Belgium, Germany, France, Italy, Austria, Hun-
gary, Romania, Sweden and Israel. RL, ECC, JPH further
acknowledge support from the EU-React G4P4 ‘Kansen
voor West’ project IMDAP.

COMPET ING INTERESTS
AJK, RL and ECC declare no competing interests. JPH is
co-founder of and shareholder in Delmic BV, a company
selling integrated microscopes, including FAST-EM.

ORCID
Arent J. Kievits https://orcid.org/0000-0003-4457-9627
RyanLane https://orcid.org/0000-0002-5887-2069
ElizabethC.Carroll https://orcid.org/0000-0002-8615-
913X
JacobP.Hoogenboom https://orcid.org/0000-0003-
4539-8772

REFERENCES
1. Briggman, K. L., & Bock, D. D. (2012). Volume electron

microscopy for neuronal circuit reconstruction. Current Opin-
ion in Neurobiology, 22(1), 154–161.

2. Heinrich, L., Bennett, D., Ackerman, D., Park, W., Bogovic,
J., Eckstein, N., . . . COSEM Project Team. (2021). Whole-cell
organelle segmentation in volume electronmicroscopy.Nature,
599, 141–146.

3. Müller, A., Schmidt, D., Xu, C. S., Pang, S., D’Costa, J. V.,
Kretschmar, S., & Solimena, M. (2020). 3D FIB-SEM recon-
struction of microtubule–organelle interaction in whole
primary mouse β cells. Journal of Cell Biology, 220(2).
https://rupress.org/jcb/article/220/2/e202010039/211599/3D-
FIB-SEM-reconstruction-of-microtubule-organelle

4. Xiao, C., Chen, X., Li, W., Li, L., Wang, L., Xie, Q., & Han,
H. (2018). Automatic mitochondria segmentation for EM data
using a 3D supervised convolutional network. Frontiers in
Neuroanatomy, 12, 92.

5. Liu, J., Li, L., Yang, Y., Hong, B., Chen, X., Xie, Q., & Han, H.
(2020). Automatic reconstruction of mitochondria and endo-
plasmic reticulum in electron microscopy volumes by deep
learning. Frontiers in Neuroscience, 14. https://www.frontiersin.
org/articles/10.3389/fnins.2020.00599/full

6. Gómez-de-Mariscal, E.,Maška,M., Kotrbová, A., Pospíchalová,
V., Matula, P., & Muñoz-Barrutia, A. (2019). Deep-learning-
based segmentation of small extracellular vesicles in trans-
mission electron microscopy images. Scientific Reports, 9(1),
1–10.

7. Harris, J. R. (2015). Transmission electron microscopy in
molecular structural biology: A historical survey. Archives of
Biochemistry and Biophysics, 581, 3–18.

8. Birch-Andersen, A. (1955). Reconstruction of the nuclear sites
of Salmonella typhimurium from electronmicroǵraphs of serial
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