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Abstract
In this paper, the recently-developed floating node method is extended for damage analysis of laminated composites with
large deformations. Strong discontinuities including interfacial delamination and matrix cracks are explicitly represented by
geometrically nonlinear kinematics. Interactions between these two kinds of failure patterns are enabled through enriched
elements equipped with floating nodes. A cohesive zone model is utilized for the damage process zone. A general implicit
procedure with user-defined elements is developed for both quasi-static and dynamic analysis. The performance of this
formulation is verified with two benchmark simulations, involving buckling-induced delamination and low-velocity impact
damage. The results presented show good quantitative and qualitative agreements with results from literature.

Keywords Large deformation · Discrete crack model · Buckling · Low velocity impact

List of symbols
B Body force per unit mass
BL Linear strain–displacement matrix
d I Displacements of node I in an element
E The Green–Lagrange strain
F Deformation gradient
Fcoh Internal force vectors for cohesive elements
Fext External force vectors
Fint Internal force vectors for solid elements
M Mass matrix
N, n Normal vector of a discontinuity
P The first Piola–Kirchhoff stress
R Residual force vector
S The second Piola–Kirchhoff stress
T Traction on material boundary
X, x Coordinate of a particle
D Stiffness tensor
R

+ Set of positive real numbers
W Work
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J Determinant, det F
K Penalty stiffness of the cohesive element
L I Shape function of node I in a cohesive element
NI Shape function of node I in a solid element
nel_c Number of cohesive elements
nel_s Number of solid elements
nnd_c Number of nodes in a cohesive element
nnd_s Number of nodes in a solid element

Greek characters
σ Cauchy stress
ϕ Deformation map
Γ Discontinuous surface or interface
Ω Domain in the physical space
ω Damage variable
∂tΩ Traction boundary
∂uΩ Displacement boundary

Sub/superscripts
�e Related to a finite element
�(i) Related to Ω(i), i = 1, 2
�α Related to Γ α , α = +,−
�0 With respect to reference configuration
�n,�t Normal and tangential components, respectively
�s,�c Related to solid elements and cohesive elements,

respectively
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Operators

A � Assembly operator for finite elements
� ⊗̄ � Nonstandard dyadic product, �i jkl = �ik� jl

� ⊗ � Dyadic product
〈�〉 Macauley bracket
��� Jump of a function over a discontinuity in its

domain
Grad� Gradient with respect to reference configuration
{�} Voigt notation
L[�] Linearization of a nonlinear function

1 Introduction

With extensive application of composite laminate materi-
als in aeronautical, automotive and civil industries, under-
standing the failure mechanisms of composites becomes
critical for the virtual testing of engineering products [1,2].
While composite structures are reinforced in the fiber direc-
tion, damage and fracture usually initiates from weaker
regions including fiber/matrix interfaces [3], manufacturing
defects/statistical inhomogeneities within ply materials [4]
and interfaces between plies with different orientations [5],
which can further develop into matrix cracking and delam-
ination. As a result, residual strength can be significantly
reduced by these sub-critical damage patterns, for example
Barely Visible Impact Damage (BVID) due to low velocity
impact [6,7]. The simulation of damage evolution within the
context of computational procedures involves highly nonlin-
ear processes and remains challenging [8].

The localized failure of quasi-brittle solids is usually
attributed to dominant cracks linked up by several small
cracks and can be characterized with inelastic softening
models. In finite element modeling, the existing approaches
can be classified into two broad categories, the continu-
ous approach (smeared crack model) and the discontinuous
approach (discrete crack model) [9]. In the first approach,
typically, a stress-based constitutive relation is developed
with continuum damage mechanics and the effect of dis-
continuity is smeared out over the continuum. However,
this method, also sometimes known as material property
degradation, suffers from mesh dependence due to the
loss of well-posedness of the boundary value problem and
potentially spurious stress transfer [10]. Several techniques
such as non-local or gradient enhancement [11,12] have
been proposed to overcome these shortcomings. Recently,
an alternative class for continuum descriptions of cracks
called phase field methods has been developed based on
variation theory of fracture [13–15]. With zero-width dis-
continuities regularized into diffuse entities, complex crack
behaviour could be handled without relying on local cri-
teria. However, rather fine discretization is generally still

required to account for the small length scales at the
localization zone, unless adaptive mesh refinement is used
[16,17]. In any case, they are fundamentally unable to deal
with the strong displacement discontinuities of physical
cracks.

The second approach resolves the propagation of dis-
continuities with explicit representation of crack kinematics
in spatial discretization based on enrichment of continuous
solution space in standard finite elements. A traction-based
constitutive relation, in the context of a cohesive zone
model (CZM), is usually used to model the damage pro-
cess zone [18]. Enriched degrees of freedom, either for
elements or nodes, are termed as EFEM or XFEM, respec-
tively [19]. Another equivalent formulation to XFEM is
the phantom node method (PNM) [20]. As illustrated in
Fig. 1, the same number of total DOFs is used for XFEM
and PNM but the parametrization of displacement jump
within elements is different [21]. The displacement field
in XFEM is decomposed into continuous part with u2, u3
and discontinuous part with �u�2, �u�3 while that in PNM
for two internal domains is reproduced from two indepen-
dent overlapping paired elements with nodal displacement
u2, u∗

3 and u∗
2, u3. The advantage of PNM in treating non-

additive nodal degrees of freedommakes it popular in various
applications [22–24] including finite deformation settings
[25–28].

While the smeared crackmodel has beenwell documented
for progressive damage modeling of composites [29–31],
discrete crack models have been receiving more attention
recently. Van der Meer et al. [32] proposed a phantom node
formulation with mixed mode cohesive law for splitting
in laminates, investigated the interaction between discrete
matrix cracking and delamination [33], and integrated addi-
tionally a continuum damage model for the study of complex
failure mechanisms observed in open-hole tests and compact
tension tests [34]. A discontinuous solid-like shell element
was developed for the simulation of progressive failure in
laminated composites under transverse loading [35]. Yang et
al. presented an augmented finite element method, a variant
of PNM, for coupled transverse intra-ply cracks and delami-
nation cracks in composites [36,37], and also an augmented
cohesive element for crack bifurcation and coalescence [38],
withwhich high-fidelity simulations ofmultiple fracture pro-
cesses in a double-notched tension specimen were achieved
[39]. Tay et al. [40] proposed a XFEM-CE (extended-FEM
cohesive element) approach for modeling delamination,
matrix cracks and their interactions in progressive failure of
composite laminates and studied the phenomenon of delami-
nation migration in multi-directional laminates [41]. Chen et
al. [42] proposed the floating node method (FNM) for mod-
eling multiple discontinuities. The idea of “floating nodes”
introduces extra nodes with no pre-assigned nodal position
vectors, but which may be subsequently deployed to define
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Fig. 1 Illustrations of XFEM, PNM and FNM with three 1D elements
and discontinuity in the 2nd element (‘Standard node’ is the node as
in standard FE with 1 DOF; ‘Enriched node’ is the node with 2 DOFs;
‘Phantom node’ or ‘Floating node’ is the extra node with 1 DOF; N

is the shape function, e.g., N2(e2−3) is the shape function of node 2
within element composed of node 2 & 3; x is the coordinate; H(x) is
the Heaviside function)

boundaries of discontinuities or cracks as determined by frac-
ture or damage criteria. Instead of using overlapping domains
in PNM, the crack is tracked geometrically with floating
nodes (nodal displacement uΓ − , uΓ + ) as shown in Fig. 1.
An advantage of FNM is that it eliminates errors associated
with the mapping of straight cracks in PNM from physical to
natural coordinates, making it more suitable for representing
complex crack networks [42]. The complete tensile failure
process of laminated composites and delaminationmigration
in angle-ply laminates were successfully modeled with FNM
[43,44]. The coupled failure mechanisms including matrix
cracking (transverse matrix cracks or longitudinal splittings)
and delamination have also been studied with other similar
methods, refined XFEM [45–47], extended cohesive damage
method [48], extended layerwisemethod [49], among others.

Current developments indiscrete crackmodels for damage
and fracture of composites are mostly limited to linear prob-
lems [34,39,42]. However, many important problems involve
large displacements and rotations, such as those involving
buckling or post-buckling failure and impact or ballistic
damage. A combination of buckling and delamination was
simulated by Qiu et al. [50] with geometric non-linearity
formulated in a co-rotational framework. Reinoso et al.
[51] developed a nonlinear finite thickness cohesive element
based on solid shell concept for delamination in composite
laminates. Comparisons between linear and nonlinear for-
mulations were discussed and the necessity of incorporation
of geometrically nonlinear effects was verified in a recent
work by Škec and Jelenić [52]. However, these methods are

not readily applicable to a general problem with both matrix
cracking and delamination process [38,45]. Thus, this paper
aims at further extending the formulation of FNM for geo-
metrically nonlinear analyses.

The structure of this paper is organized as follows. In
Sect. 2, the kinematics of matrix cracking and delamina-
tion are firstly derived. The contributions of bulk materials
and damage process zone in principle of virtual work and
corresponding material models are given. The discretiza-
tion formulations are shown in Sect. 3, where enriched solid
elements and enriched interface elements with FNM are pre-
sented. Section 4 addresses the numerical implementation
issues. Two numerical examples are shown in Sect. 5 and
conclusions are drawn in Sect. 6.

2 Finite deformation analysis of strong
discontinuities in matrix cracking and
delamination

We present in this section the kinematic equations for incor-
porating strong discontinuities for both matrix cracks and
delamination, the derivation of which follows the work
by Mergheim and Steinmann [27]. Governing equations,
including equilibrium equations and constitutive laws, are
elaborated for a two-dimensional boundary value problem
containing cohesive cracks.
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Fig. 2 Kinematics of strong discontinuity (matrix cracking)

2.1 Kinematics

In finite deformation problems, the motion and deforma-
tion of a continuum body are usually defined in a reference
configuration X ∈ Ω0 and a current configuration x ∈ Ω

. A one-to-one mapping is defined as x = ϕ(X, t), ϕ :
Ω0 × R

+ → Ω . To describe the deformation locally, a tan-
gent map dx = F dX is introduced where F = Grad ϕ is
deformation gradient and its determinant is denoted by J .

Suppose a matrix crack divides the body Ω into two dis-
joint parts Ω(1) and Ω(2) and a virtual crack exists in the
reference configuration, as shown inFig. 2.To incorporate the
discontinuity in the deformationmap, theHeaviside function
can be introduced [25,53]. But a simpler definition following
Mergheim and Steinmann [27] is given here

ϕ =
{

ϕ(1)(X) : Ω
(1)
0 → Ω(1)

ϕ(2)(X) : Ω
(2)
0 → Ω(2)

(1)

which means deformation gradient and other kinematics can
be defined independently for Ω

(1)
0 and Ω

(2)
0 :

F =
{
F(1) = Grad ϕ(1) in Ω

(1)
0

F(2) = Grad ϕ(2) in Ω
(2)
0

(2)

with corresponding determinants J (1) and J (2).
For the generated discontinuity or interface between lay-

ers, the surface Γ0 can be mapped to different parts Γ + and
Γ − under two independent deformation maps ϕ+ and ϕ−. A
jump of the deformation map between two surfaces is given
by

�ϕ� = ϕ+ − ϕ− (3)

which also implies the displacement jump �u� = �ϕ�. For the
convenience of defining discontinuous behavior, a fictitious
surface Γ̄ (Fig. 3) is introduced with the average map

ϕ̄ = 1

2
[ϕ+ + ϕ−] : Γ0 → Γ̄ . (4)

Deformation gradient is then defined as F̄ = Grad ϕ̄ and J̄ =
det(F̄). The normal vector n of this fictitious surface relates

Fig. 3 Kinematics of interface (delamination)

to referential normal vector N through Nanson’s formula

n = F̄
−T · N

|F̄−T · N|
. (5)

An important feature of damage in laminates is the interac-
tion betweenmatrix cracking and delamination, as illustrated
in Fig. 2, which shows the coalescence of intra- and inter-
layer cracks. Suppose the interface is broken at point Q and
this point separates the fictitious surface Γ̄ into Γ̄ (1) and Γ̄ (2)

(Fig. 3). Similar deformation map as Eq. (1) is given as

ϕ̄ =
{

ϕ̄(1)(X) : Γ
(1)
0 → Γ̄ (1)

ϕ̄(2)(X) : Γ
(2)
0 → Γ̄ (2)

(6)

with deformation gradient

F̄ =
{
F̄

(1) = Grad ϕ̄(1) in Γ
(1)
0

F̄
(2) = Grad ϕ̄(2) in Γ

(2)
0

. (7)

Γ
(1)
0 and Γ

(2)
0 denote two disjoint parts of the interface in the

initial configuration, which is cut by a virtual matrix crack.
The relationship between n(i) (i = 1, 2) and N are defined

by Eq. (5) with F̄
(i)

(i = 1, 2), where the superscript “(i)”
refers to different parts of the interface.

2.2 Equilibrium equation

Considering a typical boundaryvalueproblem, a solidΩ with
displacement boundary ∂uΩ , traction boundary ∂tΩ and
cohesive cracks Γ , the local balance equations and boundary
conditions with respect to the reference configuration are
expressed as

DIV P + ρ0B = ρ0ü in Ω0\Γ0

u = û on ∂uΩ0

P · N = T̂ on ∂tΩ0

P · N− = −P · N+ = T c on Γ0

(8)

where P is the first Piola–Kirchhoff stress, B is the
body force per unit mass and T c is the cohesive traction.
For the sake of simplicity, we treat interface layer and
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solution-dependent discontinuity surface uniformly as cohe-
sive cracks.

The first of Eq. (8) is satisfied in a weak sense by weighted
integration over the domain with a test function δu, which
vanishes at the Dirichlet boundary. The weak formulation
with discontinuity surface [54] is given as

∫
Ω0\Γ0

P : Grad δu dV +
∫

Γ0

T c · �δu� d A =
∫

Ω0\Γ0

ρ0(B − ü) · δu dV +
∫

∂tΩ0

T̂ · δu d A

. (9)

Replacing P by the second Piola–Kirchhoff stress S through
P = F · S, we obtain P : Grad δu = S : δE, where E is
Green–Lagrange strain. Eq. (9) can then be interpreted as
the principle of virtual work, which is written in the total
Lagrangian formulation

δW = δWkin + δWint + δWcoh − δWext = 0 (10)

where

δWkin =
∫

Ω0\Γ0

ρ0ü · δu dV

δWint =
∫

Ω0\Γ0

S : δE dV

δWcoh =
∫

Γ0

T c · �δu� d A

δWext =
∫

Ω0\Γ0

ρ0B · δu dV +
∫

∂tΩ0

T̂ · δu d A .

(11)

The cohesive term can be rewritten in the current configura-
tion through T c d A = tc da if Cauchy traction is used in the
constitutive law.

2.3 Material models

The constitutive equations are defined to describe the mate-
rial response of composites with elastic behavior for bulk
layers and cohesive behavior for matrix cracks or interfaces
between layers. For applicationswith large displacements but
small strains, linear constitutive equations [55,56] are given
as

S = D : E (12)

and the matrix form of compliance C = D
−1 is

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E1

− ν21
E2

− ν31
E3

0 0 0

− ν12
E1

1
E2

− ν32
E3

0 0 0

− ν13
E1

− ν23
E2

1
E3

0 0 0

0 0 0 1
G12

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

where the Poisson’s ratios satisfy

νi j

Ei
= ν j i

E j
. (14)

Thus, a total of nine engineering constants are required for
Eq. (13).

To evaluate the fracture of quasi-brittle materials under
tension (e.g., matrix cracking in 90◦ plies), the Rankine cri-
terion based on principal stress is adopted [21]. The spectral
decomposition of a 2D Cauchy stress gives

σ = λ1n1 ⊗ n1 + λ2n2 ⊗ n2. (15)

Whenmax(λ1, λ2) = λi > fn ( fn is the tensile strength), the
corresponding eigenvector ni determines the crack direction.
According to Nanson’s formula, the virtual crack direction
in the reference configuration can be determined by

N i = FT · ni
|FT · ni |

. (16)

The constitutive behavior of the discontinuity surface in
a typical cohesive formulation is generally defined between
traction t and separation �u�. We assume in this work that
the displacement discontinuities are small in the non-fully
opened surfaces, following the work by Allix and Corigliano
[57]. Therefore, amixed-mode cohesive lawbasedon adefor-
mation driven damagemodel, whichwas developed byTuron
et al. [58] and later implemented in applications [59] with
geometrically nonlinear effects, is adopted here.

In this model, a bi-linear relation between normal compo-
nent and tangential component of traction and separation is
used. The normal and tangential separations are given by

�u�n = (�u� · n)n

�u�t = �u� − (�u� · n)n
(17)

where n is the normal vector of the fictitious surface. Trac-
tions can be defined independently as

tn = (1 − ω)K �u�n − ωK 〈−�u� · n〉n
t t = (1 − ω)K �u�t

(18)
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where ω is a scalar damage variable (0 ≤ ω ≤ 1), K is a
penalty stiffness and 〈�〉 = (� + |�|)/2 is the Macauley
bracket. A damage loading function is defined as

f (λ, r) = λ − r (19)

where λ = √〈�u� · n〉2 + |�u�s |2 is an equivalent separation
and r is the current damage threshold (ro denotes the initial
value), the update of which is generally formalized in the
Kuhn-Tucker loading-unloading condition

f ≤ 0, ṙ ≥ 0, f ṙ = 0. (20)

The damage formulation is completed by an evolution law

ω = Δ f (r − Δo)

r(Δ f − Δo)
(21)

where the onset separation Δo = ro and the final separation
Δ f can be obtained from damage initial criterion and the
B–K fracture criterion [58].

3 FE formulation of the floating node
method

The weak formulation shown in the previous section is dis-
cretized with the standard finite element method for the
boundary value problem with cohesive cracks. The FE for-
mulations of enriched ply elements and enriched interface
elements are developed with FNM for matrix cracking and
delamination, respectively.

3.1 Standard FE formulation

The discrete formulation starts with the approximation of
the original domain Ω0 (bulk part Ω0\Γ0 and interface part
Γ0) as the union of nel_s solid elements and nel_c cohesive
elements

Ω0\Γ0 ≈ ∪nel_s
e=1 Ωe

0 ,

Γ0 ≈ ∪nel_c
e=1 Γ e

0

(22)

where the discretization of Γ0 here only includes interface
layer since the location of discontinuity surface is only known
on the fly during the simulation. Similarly, the boundary is
discretized as ∂uΩ

e
0 and ∂tΩ

e
0 .

In a solid element Ωe, the geometric (X and x) and kine-
matic variables are interpolated with isoparametric shape
functions and nodal values. The displacement and deforma-
tion gradient within this element are written as

ue =
nnd_s∑
I=1

Ne
I d

e
I ,

Fe =
nnd_s∑
I=1

xeI ⊗ ∇XN
e
I

(23)

where deI , x
e
I denote the I -th nodal displacement, coordi-

nate in the e-th element, respectively. Ne
I is corresponding

shape function and nnd_s is the number of nodes in the solid
element.

Similar definitions of interpolation are given for cohesive
element Γ e, where two paired surfaces (Γ e)+ and (Γ e)− are
identified similarly in Fig. 3. With the formula in Eq. (23)
known for the bulk solid, the displacement of these twopaired
surfaces can also be derived. Therefore, the displacement
jump between two surfaces is given as

�u�e =
nnd_c∑
I=1

Le
I d

e
I (24)

where nnd_c is the number of nodes in the cohesive element
and Le

I is the shape function of the cohesive element

Le
I =

{
N̄ e
I , node I ∈ (Γ e)+

−N̄ e
I , node I ∈ (Γ e)−

. (25)

where N̄ e
I is the shape function degenerated by Ne

I on the
surface. For example, if N is the shape function of a four-
node plane element, N̄ is the shape function of a two-node
line element. Then the deformation gradient associated with
the average map (Eq. 4) in cohesive element is given by

F̄
e = 1

2

nnd_c∑
I=1

xeI ⊗ ∇X N̄
e
I . (26)

The variation of Green–Lagrange strain is given by

δEe= 1

2

nnd_s∑
I=1

[FeT · (δxeI ⊗ ∇XN
e
I )+(∇XN

e
I ⊗ δxeI ) · Fe]

(27)

the Voigt notation of which is

{δEe} =
nnd_s∑
I=1

(Be
L)I δxeI . (28)

For a detailed formulation of Be
L , refer to [60].

Substituting Eqs. (23), (24), (26) and (27) into Eq. (10) ,
we obtain

δdT R = 0 �⇒ R =A(Rs, Rc) = 0 (29)
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whereA is an assembly operator and Rs and Rc are residual
vectors contributed from solid elements and cohesive ele-
ments given by (neglecting body force)

Rs =
nel_s

A
e=1

⎛
⎜⎜⎜⎜⎝

∫
Ωe

0

ρ0NeT Ne dV

︸ ︷︷ ︸
Me

d̈
e +

∫
Ωe

0

Be
L
T {S} dV

︸ ︷︷ ︸
Fe
int

−
∫

∂tΩ
e
0

NeT T̂ d A

︸ ︷︷ ︸
Fe
ext

⎞
⎟⎟⎟⎟⎠

(30)

and

Rc =
nel_c

A
e=1

⎛
⎜⎜⎜⎜⎝

∫
Γ e

LeT tc da︸ ︷︷ ︸
Fe
coh

⎞
⎟⎟⎟⎟⎠ (31)

where (Ne)I = Ne
I I2 (I = 1, 2, · · · , nnd_s) and (Le)I =

Le
I I2 (I = 1, 2, · · · , nnd_c), I2 is the identity matrix.

Although a consistent form is presented here for the mass
matrixMe, the lumpedmassmatrix is usually used in practice
for efficiency. For 2D problems, quadrilateral-type elements
are used for both solid and cohesive elementswith node num-
ber nnd_s = nnd_c = 4.

3.2 Enriched solid elements

When crack initiates in or propagates through the solid ele-
ment, the quadrilateral element is split into two parts, either
two quadrilateral elements or one triangular element and pen-
tagonal element. Take the first scenario as an example, the
original domain Ωe is then divided into two solid parts and
one cohesive part Ωe = Ωe(1) ∪ Ωe(2) ∪ Γ e, as shown in
Fig. 4. Similar with Eq. (1), the deformation map can be
defined independently for these three parts

ϕe =

⎧⎪⎨
⎪⎩

ϕe(1)(X) : Ωe
0
(1) → Ωe(1)

ϕe(2)(X) : Ωe
0
(2) → Ωe(2)

ϕ̄e(X) : Γ e
0 → Γ e

(32)

which means that the corresponding deformation gradients,
strains and stresses may be defined separately within Ωe(1),
Ωe(2) and Γ e. Note that a virtual crack can be defined in the
reference configuration for the definition ofΩe

0
(1),Ωe

0
(2) and

Γ e
0 .
Based on the concept of floating node [42], extraDOFs are

introduced into the original element. Two nodes per cracked
edge are placed directly where crack and edges intersect.

Fig. 4 The enriched solid element with independent deformation maps

An advantage over the PNM, which also introduces new
DOFs at existing nodes, is that standard element formula-
tion including shape function and integration scheme can
be adopted. In another words, the enriched solid element
is actually equivalent to two solid elements and one cohe-
sive element. Therefore, the discrete residual statement of
the enriched solid element is given by

Re
ers =A(Re

s |Ωe
0
(1) , Re

s |Ωe
0
(2) , Re

c|Γ e ) (33)

where Re
s and Re

c are discrete residuals of standard solid ele-
ment and cohesive element as given by Eqs. (30) and (31),
�|∗ denotes the integral domain. Note that the formulation
for the other scenario is similar except that one triangular
element and one pentagonal element (consists of three trian-
gular elements) are used as the equivalent.

3.3 Enriched interface elements

With the crack reaching the edge of interface, interaction
between matrix cracking and delamination can be consid-
ered with an enriched interface element, as shown in Fig. 5.
Suppose the crack cut the bottom of the interface element
and the domain is divided as Γ̄ e = Γ̄ e(1) ∪ Γ̄ e(2). The defor-
mation map can be defined as

ϕ̄e =
{

ϕ̄e(1)(X) : Γ
e(1)
0 → Γ̄ e(1)

ϕ̄e(2)(X) : Γ
e(2)
0 → Γ̄ e(2)

. (34)

Two floating nodes are introduced at the cracked edge while
only one is placed at the other intact edge. The enriched
interface element can then be formulated as an assembly of
two cohesive elements

Re
erc =A(Re

c|Γ̄ e(1) , Re
c|Γ̄ e(2) ). (35)
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Fig. 5 The enriched cohesive element with independent deformation
maps

4 Numerical implementation

The numerical implementation of the aforementioned for-
mulation is outlined in this section.

4.1 Solution of the boundary value problem

Recalling the discrete residual statements given by Eqs. (30),
(31), (33) and (35), we can write them in a compact form

Md̈ + Fint(d) + Fcoh(d) − Fext = 0. (36)

whereM is the globalmassmatrix and F are global force vec-
tor (Fint and Fext are the internal force and the external force
contributed from solid elements, respectively; Fcoh is the
internal force fromcohesive elements). To solve this dynamic
problem, implicit time integration is implemented with the
Hilber– Hughes–Taylor (HHT) operator [61], a general-
ization of Newmark operator with controllable numerical
damping. Instead of Eq. (36), the equation to be solved at a
solution time step tn+1 may be given as

R(dn+1) = Md̈n+1 + (1 + α)[Fint(dn+1) + Fcoh(dn+1)

−Fext,n+1] − α[Fint(dn) + Fcoh(dn) − Fext,n] = 0

(37)

The displacements and velocities at tn+1 are computed by
the Newmark formula

dn+1 = dn + Δt ḋn + Δt2
[
(
1

2
− β)d̈n + β d̈n+1

]
, (38)

ḋn+1 = ḋn + Δt
[
(1 − γ )d̈n + γ d̈n+1

]
. (39)

Rearranging Eq. (38), we obtain the expression for d̈n+1

d̈n+1 = 1

βΔt2
(dn+1 − dn) − 1

βΔt
ḋn −

(
1

2β
− 1

)
d̈n .

(40)

Fig. 6 Standard nodes and floating nodeswithin three types of elements

where β = 0.25(1−α)2, γ = 0.5−α and −0.5 ≤ α ≤ 0. α
is a parameter controlling the amount of numerical damping
[62].

Substituting d̈n+1 back into Eq. (37), we have dn+1 as
the only unknown variable. Generally, R(dn+1) is a non-
linear function which requires solution by Newton-Raphson
iterations. The linearization of R may be computed as

R(d(k)
n+1) + ∂R

∂d

∣∣∣∣
d(k)
n+1

Δd(k+1)
n+1 = 0 (41)

where (k) denotes iteration number and the tangent stiffness
matrix is given by

∂R
∂d

= M
βΔt2

+ (1 + α)

(
∂Fint

∂d
+ ∂Fcoh

∂d

)
(42)

where the sum of second and third terms on the right-hand
side is the tangent matrix due to the linearization of inter-
nal and cohesive forces, respectively. Details at the element
level are presented in “Appendix”. After the solution of
Eq. (41), the displacements can be updated as d(k+1)

n+1 =
d(k)
n+1 + Δd(k+1)

n+1 . The velocity and acceleration are obtained
with Eqs. (39) and (40), respectively. This process is iter-
ated until convergence before the start of the next time step.
Note that the inertial term can be ignored and standard New-
ton-Raphson method is adopted for solving a quasi-static
problem.

4.2 Specific implementation details

Details on the implementation of the FNM formodeling lam-
inates with interfaces have been addressed in previous work
[42,43]. In this paper, we formulate the implementation for
2D problems, such as unidirectional laminates and cross-ply
laminates. Three types of enriched elements are developed
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Fig. 7 Scenarios of crack
propagation in a mesh a two 90◦
ply elements; b one interface
element and one 0◦ ply element

Fig. 8 Compressed composite
beam with initial cracks and
symmetrical perturbations a
Case-1; b Case-2

for 90◦, 0◦ plies and interface layers, respectively. As illus-
trated in Fig. 6, besides standard FE nodes, floating nodes in
solid elements and cohesive elements are associated with
edges which may potentially break or require remeshing.
Note that although the floating nodes are predefined in the
elements, they are only activated when the element is cut by
a crack.

In the current model, each continuous crack consists of
cohesive segments within several solid elements and the sim-
ulation of crack propagation is achieved with edge status
variable approach [43], which tracks whether a particular
edge is cracked or not. During fracture, it is assumed that the
crack tip propagates from one edge to another in an element.
Therefore, only the local status information of each edge is

Table 1 Parameters (Geometric dimensions andmaterial properties) of
the beam [57]

Parameters Value

Length: L(mm) 20

Thickness: 2h(mm) 0.4

Width: w(mm) 1

Initial crack length: a0(mm) 10

Young’s modulus: E1(GPa) 135

Shear modulus: G13(GPa) 5.7

Interfacial normal strength: t0n (MPa) 50

Mode I interfacial fracture toughness: GI c(N/mm) 0.4

Penalty stiffness of cohesive elements: K (N/mm3) 106 [43]
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required to track the crack loci. As regards problems studied
here, possible scenarios of crack propagation and the simu-
lation in a mesh are shown in Fig. 7. As plotted in Fig. 7a,
the crack is propagating in the matrix material and may inter-
sect the lower element in a slantwise manner. According to
the edge status variable approach [43], the status of edge
#2 changes from intact to broken while the status of edge
#3 to transitional. At the broken edge, two floating nodes
are activated and taken into account in global calculation of
stiffness and mass matrices. But for the floating node at the
transitional edge, its displacements are interpolated by two
real nodes at the ends of the edge and condensed out of the
global stiffness assembly. Figure 7b illustrates the change to
be made on adjacent cohesive element and 0◦ solid element
when the crack approaches the interface. Two floating nodes
are activated on the broken edge #1 while one is activated on
the edge #2 (labeled as refined) of two cohesive elements. To
preserve compatibility, the adjacent 0◦ ply element is refined
as three triangular elements. In this way, the crack can be

monitored with the local tracking method based on edge sta-
tus variable.

Once the crack location is determined, the solid ele-
ment or interface element is partitioned into two or more
sub-elements by virtue of enriched elements formulated in
Sects. 3.2 and 3.3.

5 Representative numerical simulations

In this section, the performance of the proposed method is
illustratedwith twonumerical simulation examples involving
large displacements. Firstly, the problem of buckling-driven
delamination is addressed with a beam under axial compres-
sion. Secondly, damage propagation in composites subjected
to low-velocity impact is modeled with matrix cracking and
delamination growth.

Fig. 9 Numerical results of compressive load versus transversal deflection (datum of markers refer to [57]): Case-1 (a), Case-2 (b); deformation
(GI c = 0.4 N/mm): Case-1 (c), Case-2 (d)
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Fig. 10 a Illustration of experimental setup [63]; b numerical model

5.1 Buckling-induced delamination

The problem posed by Allix and Corigliano [57] is chosen
herein to verify the method on geometrically nonlinear anal-
ysis of delamination in composites. As shown in Fig. 8, two
composite beams with predefined initial crack (a. crack on
the left for Case-1; b. centrally positioned crack for Case-
2) are loaded by a horizontal rightward displacement u.
Buckling is triggered by a small perturbation displacement
u0, which aims at introducing an initial imperfection for
post-buckling analysis. Subsequently, mode-I delamination
propagates along the interface with the opening of the two

arms of the buckled beam. The geometric dimensions and
material properties of the beam are listed in Table 1 [57].

The beam is modeled with solid elements and cohesive
elements proposed in the previous section for 0◦ ply and
interface, respectively. A uniform mesh of square elements
with side length of 0.05 mm is adopted. In the simulation,
the specimens are loaded under displacement control for sta-
ble crack propagation. At the first step, an initial symmetric
perturbation (small vertical displacement of 6 × 10−4 mm)
is applied. A horizontal displacement is imposed continu-
ously in the second step, during which the reaction force P
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and the transverse deflection u at point ‘A’ (Fig. 8) could be
evaluated.

The influence of fracture energy is studied by simula-
tions of Case-1 with four values of GI c = {0.2, 0.4, 0.8, 1.6}
(N/mm) and a constant value of normal strength t0n . For the
example with GI c = 1.6 (N/mm), the computational time
taken is approximately 0.3 CPU-hour on a workstation with
processors of Intel� Xeon� X5690 @ 3.47GHz. The four
load-displacement (P − u) curves are plotted in Fig. 9a
and compared with results given in [57]; they show good
agreement. The theoretical buckling load of the beam with
thickness h is 2.22 N [57]. As shown in Fig. 9a, before the
force reaches 2.1 N, the load P increases dramatically while
the deflection at point ‘A’ remains small. With the onset
of buckling, deflection increases drastically but the force
remains the same and then decreases due to delamination
propagation. It can be seen from Fig. 9a that a tougher inter-
face postpones the occurrence of delamination. For Case-2
(Fig. 9b), as with Case-1, buckling first occurs, followed by
delamination propagation. However, the peak load is larger
and the deflection is smaller for Case-2 as shown by the
deformed configurations in Fig. 9c, d.

5.2 Low-velocity impact damage

The second chosen example is a dynamic problem of a
carbon fiber reinforced composite beam impacted by a
cylindrical head [63], originally proposed for the study of
failure sequences subjected to low-velocity impact. Unlike
the more common semispherical-head impactor, this uni-
form line-loading approach [64] facilitates monitoring of
failure patterns from the side of the composite beam. The
impact analysis is simplified as a two-dimensional case,
which makes it suitable to benchmark the current compu-
tational method. The experimental setup is given in Fig. 10a,
where the size of the beam is 100 mm × 17 mm × 4.8 mm
and the diameter of the impactor is 40 mm. The beam is
made from Hexcel 913C-HTS carbon-epoxy unidirectional
prepregs with a cross-ply lay-up sequence [05/903]s and the
material properties are listed in Table 2 [63].

Taking into account symmetric boundary conditions, the
FE model as shown in Fig. 10b is adopted. The impactor
is discretized with 2D rigid elements R2D2 in ABAQUS�

[62] and the mass of this half model of the impactor is 392.5
g. The specimen is modeled with three types of elements
(ABAQUS� UEL) developed for 0◦ plies, 90◦ plies and
interfaces, as shown in Fig. 6. A uniform mesh size of 0.25
mm along the length of the beam is used while each ply is
modeled with a single element of 0.3 mm through thickness.
Contact interactions are defined between the outer surface
of the impactor and the top surface of the beam. The bot-
tom and top surfaces of the left half of the beam model are
constrained. An initial downward velocity v0 = 4.43 m/s is

Table 2 Material properties of Hexcel 913C-HTS carbon-epoxy com-
posites [63]

Property Value

Longitudinal Young’s modulus: E1(GPa) 135

Transverse Young’s modulus: E2, E3(GPa) 9.2

Shear modulus: G12,G13(GPa) 5.5

Shear modulus: G23(GPa) 4.5

Poisson’s ratio: ν12, ν13 0.30

Poisson’s ratio: ν23 0.45

Density: ρ(kg/m3) 1780

Transverse tensile strength: fn(MPa) 60

Interfacial normal strength: t0n (MPa) 105

Interfacial shear strength: t0t (MPa) 105

Mode I interfacial fracture toughness: GI c(N/mm) 0.26

Mode II interfacial fracture toughness: GI I c(N/mm) 0.84

Penalty stiffness of cohesive elements: K (N/mm3) 106 [43]

imposed on the the impactor. Implicit dynamic analysis is
used [62] and the time step is taken as 0.003 s. The total
CPU time consumed is about 1.8 h.

The computed force-displacement curve (contact force
between the impactor and the beam versus the downward
distance of the impactor) is given in Fig. 11a. No experi-
mental force-displacement data from Ref. [63] is available
for comparison. During the initial elastic loading, periodic
oscillations are observed in the curve due to wave reflec-
tions. When the curve reaches point ‘A’, several diagonal
matrix cracks initiate in the 90◦ plies as shownby results from
experiment and simulation in Fig. 11b. These are caused by
transverse shear stress and usually denoted as “shear cracks”
in the literature [65]. According to the Rankine criterion, the
maximum principal stress determines the crack onset and
direction. In simulation, it is observed that the two initial
cracks traverse the 90◦ plies through the thickness, resulting
in smooth and straight crack loci. The location of thesematrix
cracks from the center of impact varies between 18.75–21.25
mm and is close to experimental observations (average dis-
tance 18.1 mm). The average angles between the crack and
the horizontal line measured in experiment and simulation
are 49◦ and 45◦, respectively, indicating a shear dominated
failure. At the same time, the force reaches the peak value
11.4 KN, which coincides with the results (11.7 KN) from
the simulation with continuum damage model [63]. Shortly
after crack initiation, the load suddenly drops to almost zero
at point ‘B’. The lower interface crack propagates away from
the center while the upper one propagates toward to the
impact point and significant crack openings can be observed.
After point ‘B’ in Fig. 11a, the contact force increases again,
during which larger fluctuations can be observed as a result
of the delamination and matrix cracks. When the residual
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Fig. 11 Comparisons between
results from simulation and
experiment [63]: a Load
displacement curves; b typical
failure patterns (at point A & B)

kinetic energy of the impactor is consumed completely, the
impactor starts rebounding and contact force decreases grad-
ually.

5.3 Discussions

The simulation in Sect. 5.1 has illustrated the phenomenon
of geometrical instability and accompanying delamination
propagation, which are captured by a geometrically nonlin-
ear formulation of FNM. A comparative study of nonlinear
effects on the second example is conducted by comparing
the nonlinear results with the results given by a geomet-
rically linear analysis. During the impact process, the two
load-displacement curves are plotted in Fig. 12a, where only
the loading part is shown. It can be seen that two curves for the

elastic loading stage is the same and the peak load predicted
by the linear analysis is slightly higher. This is unsurpris-
ing due to the relatively small deformations, for which the
effect of geometric non-linearity is not important. However,
the difference between the two curves increases with further
deformation. As seen from Fig. 12a and the results at max-
imum deformation point listed in Table 3, the contact force
predicted by the nonlinear analysis is larger and the maxi-
mum displacement is smaller compared with the result by
the linear formulation.

Furthermore, a subsequent virtual test for CAI (compres-
sion after impact)modeling, inwhich a compressive loadwas
applied at the left end of the laminate (the case in Fig. 8b)
with the impact damage already embedded in the model, was
conducted in a quasi-static analysis. Since the damage in 0◦
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Fig. 12 Comparisons between results given by geometrically nonlinear and linear formulations: a Load-displacement curves during impact; b
transversal deflection versus applied in-plane displacement during compression after impact

Table 3 Comparisons of results at maximum deformation point from
the nonlinear and linear analyses

Nonlinear analysis Linear analysis

Contact force (KN) 10.84 5.95

Displacement (mm) 2.02 2.38

plies is not considered in the current formulation, the perma-
nent indentation after impact is not captured here. Therefore,
only a downward perturbation (0.2 mm) in Fig. 8b is applied.
The results of transverse deflection versus applied displace-
ment of the laminate are plotted in Fig. 12b. It can be seen
in the nonlinear analysis results that buckling starts when the
applied displacement reaches 0.4 mm, after which the gen-
erated matrix cracks and delaminations due to low-velocity
impact continue propagating and the final failure pattern is
shown in Fig. 12b. However, the linear analysis fails to cap-
ture the damage growth in laminates subjected to CAI. The
out-of-plane deformation decreases to zero gradually and
only axial compressive deformation can be observed finally.

6 Conclusion

In this work, the floating nodemethod for modeling of strong
discontinuities in laminated composites and their interactions
in the large deformation range was developed. The jump in
the deformation map and corresponding deformation gradi-
ent were captured with formulated enriched solid elements
and enriched cohesive elements, which are used for the anal-
ysis of matrix cracking and delamination, respectively. A
mixed-mode cohesive model was adopted for the simulation
of the behavior of these cracks. Two representative numer-

ical examples were presented to verify the performance of
the proposed methods. Good agreement with referenced
results from literature were obtained in terms of both load-
displacement curves and crack propagation patterns. The
first example shows a verification of the formulation in
modeling buckling problems with geometric non-linearity.
Buckling initiates, followed by delamination propagation
due to transverse deformation. The second example exam-
ines the capability of this method in modeling coupled
dynamic failure mechanisms in composites subjected to low-
velocity impact. Matrix cracking is firstly observed during
the early stage and diagonal matrix cracks are captured with
the Rankine criterion. With these cracks approaching inter-
faces between plies, delaminations along the upper and lower
interfaces are then induced and propagate in opposite direc-
tions.

Comparisons between results by linear and nonlinear anal-
yses have shown that the geometric non-linearity is not
significant at the damage initiation of a coupon-level speci-
men since the deformation is usually small. But it is important
for modeling accurately further deformation and compres-
sive failure with buckling. Therefore, considering geometric
non-linearity is necessary for a general damage model-
ing of composites. Although the current work only shows
2D examples, the proposed method can be extended for
three dimensional analysis. One significant potential appli-
cation is discrete crack analysis of 3D failure patterns in
low- and medium-velocity impact of laminated composites
[6,7].
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Appendix: Linearization of internal force and
cohesive force

Nonlinear problem is usually formulated as linear algebraic
equations for Newton-Raphson iterative solution. The lin-
earizaiton of force terms contributed by solid element and
cohesive element is presented in this section and stiffness
matrices are derived. Note that the linearization procedure
can be either conducted directly on weak formulation (Eqs.
10, 11) or FE formulation (Eqs. 30, 31). The first approach is
more commonly seen in the literature [60,66] and introduced
herein.

The linear part of δWint is given by

L[δWint]u=u = δWint(u, δu) + Δ(δWint(u, δu)) (43)

where

Δ(δWint(u, δu)) =
∫

Ω0\Γ0

[δE : D : ΔE

+ Grad Δu · S : Grad δu] dV .

(44)

� denotes variables at an equilibriumdeformation state.With
similar discretization given in Eq. (23), the linearization of
the internal force at element level is given by

Δ(Fe
int) = (K e

mat + K e
geo)Δde (45)

where the material and geometric contribution to tangent
stiffness matrix are given by

(K e
mat)I J =

∫
Ωe

0

(Be
L
T
)I {D}(Be

L)J dV (46)

(K e
geo)I J =

∫
Ωe

0

(∇XN
e
I · S · ∇XN

e
J )I2 dV (47)

where I and J are indices of nodes.
The linear part of δWcoh is given by

L[δWcoh]�u�=�u� = δWcoh(�u�, �δu�)

+Δ(δWcoh(�u�, �δu�)) (48)

where the second term consists of three parts

∫
Γ

{�δu� · tc,�u� · �Δu� + �δu� · tc,n · Δn} da

+
∫

Γ

�δu� · tc Δda (49)

where tc,�u� and tc,n are tangent moduli with respect to �u�

and n. Similarly, the tangent stiffnessmatrix can also be given

as

(K e
mat)I J =

∫
Γ e

Le
I tc,�u�L

e
J da (50)

(K e
geo)I J =

∫
Γ e

[Le
I tc,n · G · 1

2
∇X N̄

e
J

+Le
I t ⊗ A · 1

2
∇X N̄

e
J ] da (51)

whereG = −n · I⊗̄F−T + n⊗ n⊗ n · F−T , A = (I − n⊗
n) · F−T , I is the second order unit tensor.

The stiffness matrices of enriched elements can be
obtained as an assembly of the tangent matrices by sub-
elements. Note that consistent linearization is conducted here
to achieve quadratic convergence. However, the tangent stiff-
ness matrix can lose its symmetry due to the geometric
contribution, e.g., Eq. (51). To utilize the symmetric solvers,
those terms can be ignored without affecting the accuracy
[67].
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