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INTRODUCTION

1.1. THE SENSOR MANAGEMENT PROBLEM IN THE RADAR DO-
MAIN

Since their conception, radars have gained increased popularity as sensing devices due
to their unique sensing capabilities. Radars can be used for detecting and classifying
objects of interest, also called targets, at very long distances, during day or night and
without being severely limited by weather conditions. Moreover, radars can measure
(directly or indirectly) several attributes of targets, such as their Radar Cross-Section
(RCS) and Doppler spectrum of the reflected (scattered) signal. The specific problem
of using (radar) measurements sequentially for estimating the state of a moving target
is called target tracking, see [Bar-Shalom and Li, 1995, Ch. 1]. Typical examples where
radars are used can be found in several domains, both civilian and military. Air-traffic-
control radars are used for preventing collisions between aircrafts, weather-radars for
observing clouds and tornadoes, and fire-control radars for guiding missiles.

Advances in technology have led to incredible improvements in the measurement
performance of radars. It is now possible not only to have better detection statistics and
measurement accuracy but also to choose the sensing parameters of a radar in order to
further improve its performance. For instance, the parameters of the transmitted wave-
form can be optimized online. Such controllable parameters are the waveforms’ band-
width, Pulse Repetition Frequency (PRF) and carrier frequency among others. Espe-
cially in the class of radars that employ active phased array technology, the radar-beam
direction can also be controlled, see Skolnik [2002]. The beam was controlled almost
always in the early days mechanically but now this can be done electrically.

Active phased array technology is most commonly employed in Multi-Function Radars
(MFRs) along with digital waveform generators. These two key components give MFRs
significant advantages over conventional, rotating radars with horn-fed reflector anten-
nas. Most notably, MFRs can be used for performing several tasks, such as a) searching
for targets that have not yet been detected; b) tracking the detected ones; c) guiding mis-
siles or fire control; and d) various communication functions, instead of using a dedi-
cated sensor per task. These tasks are integral to the operation of most radar systems

1
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Figure 1.1: The radar beam pointing problem. Which target should be observed and when should it be ob-
served? Where and when should the radar search for targets that have not been detected yet? Image courtesy
of Christian Wolff, http://www.radartutorial.eu/.

and are all competing for the limited resources of an MFR, i.e. time and energy. This
problem is illustrated in Figure 1.1.

The capabilities of MFRs can be exploited via the development of adaptive strategies
for finding the best task to be performed and the best task-related parameters at each
time instance. The challenge of choosing the best task and its corresponding param-
eters at each time instance is commonly known as the sensor management or resource
allocation problem.

In sensor management, sensor parameters are controlled adaptively such that the
performance of a system is improved in some sense, as compared to using fixed param-
eters or naive (non-adaptive) methods. Lower power consumption and better estima-
tion performance are the two most common goals of sensor management in literature.
Sensor management is present in several domains, as diverse as radars, wireless sensor
networks, medical applications and robotics. An overview can be found in Hero and
Cochran [2011] for example.

The control of sensing tasks, such as searching for and tracking of targets, and the
estimation of target quantities, such as position and velocity, via the received measure-
ments are independent problems but closely coupled in a radar system. In this case,
sensor management can be seen as the component that closes the control loop in the
estimation process, see the discussion in Hero and Cochran [2011]. This can also be
seen in Fig. 1.2, where a block diagram of a generic estimation process is shown. In prac-
tice, a user can also intervene in the sensor management process by selecting different
options or parameters depending on the operational context for instance. Intelligent
sensor control can lead to improved estimation results whereas bad sensor control can
exacerbate the estimation performance. As a result, sensor management algorithms are
of paramount importance in processes such as target detection, tracking and classifica-
tion.

Even though several approaches to sensor management have been proposed, for ex-
ample in Blackman and Popoli [1999]; Yang et al. [2012]; Kalandros [2002]; Manyika and
Durrant-Whyte [1995]; Mahler [2003]; Kreucher et al. [2005a]; Boers et al. [2010]; Kat-
silieris et al. [2012a]; Charlish et al. [2011]; Bolderheij et al. [2005]; Papageorgiou and
Raykin [2007], many challenges have not been addressed yet, see Castañón et al. [2006].

http://www.radartutorial.eu/
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Real scenario Sensors

Sensor management Estimator

True state Observations

Random errorsDynamics

Statistics

Sensor selection/parameters

Quantity of interestUser input

Figure 1.2: Block diagram of an estimation process. Sensors observe a real scenario and a signal processing al-
gorithm uses the received measurements for estimating the quantities of interest. Sensor management can be
used for controlling the sensor(s) parameters and improving the estimation results. Original image courtesy
of Dr. Edson Hiroshi Aoki with the addition of "User input".

Some prominent questions that are still open are a) The management of sensors with
multiple operational modes/functions. Which function/mode of such a sensor should
be used at each time instance for accomplishing its task(s)? A prominent example of
such sensor are the MFRs. b) The management of multiple sensors. How can sensors
with overlapping field of view be optimally managed? Is it better to observe each tar-
get by one or multiple sensors? Can the management algorithms be implemented in a
decentralized fashion while still attaining good performance? What is the best way to
combine/fuse measurements from several sensors? c) Optimizing myopically or over
long horizons? For how long horizons does it make sense to optimize the sensing ac-
tions? Can the computational complexity of non-myopic optimization be reduced with-
out significant performance loss? d) The definition of objective functions. How can we
describe mathematically what a user really wants to achieve? How can we take into ac-
count several non-commensurate performance metrics; e) Taking into account the op-
erational context. How can a sensor be controlled such that a mission is accomplished
successfully? This is closely related to the previous point and implies that, for succeed-
ing in a mission, optimizing the probability of detection (for instance) might not be the
best strategy. Furthermore, different objective functions might be better suited to dif-
ferent missions or operational contexts.

Especially in the radar domain, when considering MFRs - as in this thesis, the context-
adaptive trade-off among different tasks to be performed is of special importance, see
Castañón et al. [2006]. Among all these tasks, two sensing tasks receive most attention,
i.e. a) searching for targets that have not yet been detected; and b) tracking the detected
ones. Accordingly, an important open question is the definition of objective functions
that take into account non-commensurate performance metrics and that address ex-
plicitly the operational goal of a radar system. For example, how can the probability of
detecting a target be aggregated with a measure of tracking accuracy? And how do these
relate to the situation awareness of a radar operator in different operational contexts?
Thus the aim of this dissertation is to investigate how the limited radar resources can be
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distributed among the different radar sensing tasks in a Bayes-optimal way, taking into
account the operational goal of the radar system.

1.2. OVERVIEW OF EXISTING SENSOR MANAGEMENT APPROACHES

1.2.1. HEURISTICS
The early approaches to balancing search and tracking were rule-based, also called heuris-
tics. Heuristics refer to a set of rules (or ad-hoc adjustments to an otherwise optimal re-
sult) that dictate the behavior of a sensor/resource manager. For several years, heuristics
have been the workhorse of sensor management, also in radar systems, as discussed in
Blackman and Popoli [1999].

A set of rules is created and tuned such that a sensor demonstrates the desired per-
formance. These rules are usually dictated by the operational context and the opera-
tional needs of the sensor itself. For example, when using an MFR, a maximum revisit
interval per target can be defined such that the track uncertainty does not exceed a spec-
ified threshold. This serves two purposes, the track uncertainty stays bounded such that
a) a user can rely on it; and b) the radar beam can be pointed to a target without need-
ing to re-acquire it. An example from the radar domain where different sensing tasks are
scheduled using rules can be found in Butler [1998].

Rules can also be defined after observing the behavior of an objective function. These
rules try to imitate the behavior of an objective function and they select the sensing ac-
tion to be performed at a much lower computational cost than optimizing an objective
function. Examples of such rule definitions can be found in Charlish et al. [2012] and
also in this thesis.

Finally, heuristics also refer to manually adjusting an otherwise Bayes-optimal result
by allowing a user to interfere with it. Such examples can be found in Romero and Good-
man [2013] and White et al. [2008], where the end-result of the optimization process can
be adjusted by means of a scaling factor. Moreover, if such an approach is followed, the
system might end up offering several scaling factors that an end-user can set, e.g. a
different scaling factor per search area or target.

1.2.2. TASK-BASED SENSOR MANAGEMENT
In order to produce Bayes-optimal sensor management results, it has been suggested
to optimize quantities that are relevant to the sensing tasks and to the operational goal
of a system, hence the name task-based sensor management. For example, when area
surveillance is performed using radar measurements, one could a) maximize the ex-
pected probability of detecting a target; b) maximize the expected Signal-to-Noise Ratio
(SNR) of a measurement; and/or c) minimize the expected uncertainty in the position
estimate of a target.

One of the most common approaches when tracking a target is to select the sens-
ing action such that a covariance-based measure is optimized, see Yang et al. [2012];
Kalandros [2002]. The trace of the covariance matrix is usually considered when track-
ing a target using a Kalman Filter and a sensing action is selected such that its expected
value is minimized. The trace is preferred because it is simple to evaluate and intuitive
to explain what it practically represents, see the discussion in Yang et al. [2012]. In this
way, the uncertainty in the estimated Probability Density Function (PDF) is managed,
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assuming that it can be described sufficiently well by a covariance matrix.
Under this class, one can also obtain non-myopic solutions given certain assump-

tions that allow the problem to be formulated as a Partially Observed Markov Decision
Processes (POMDP). Examples of POMDP problem formulations for multitarget track-
ing can be found in Krishnamurthy and Evans [2001]; Wintenby and Krishnamurthy IEEE
Fellow [2006].

In multitarget tracking, when the true number of targets is not known, the trace of
the covariance matrix (or any of the other commonly used covariance-based schemes)
cannot be used as measure of uncertainty because the state space is not Euclidean, see
[Mahler, 2007, pp.65]. This is due to the existence variable of each track taking values
in [0,1] instead of R. To overcome this problem and to take into account the limited
field of view of a sensor, the Posterior Expected Number of Targets (PENT) criterion was
proposed in Mahler and Zajic [2004] as an objective function for sensor management.

More applications of task-based sensor management can be found in van Keuk and
Blackman [1993]; Charlish et al. [2012]; Zwaga et al. [2003].

1.2.3. INFORMATION-DRIVEN SENSOR MANAGEMENT
More recently, a novel approach suggested using information theoretic measures of un-
certainty, hence the name information-driven sensor management. This approach is
characterized by a measure of the information-theoretic notion of uncertainty, i.e. the
Shannon entropy and its generalization the Rényi (also called α-) entropy. In this way,
the uncertainty in the estimated PDF is managed via its information-theoretic descrip-
tion. Accordingly, a sensor manager selects the sensing action that minimizes the con-
ditional or the Rényi entropy of the estimated PDF p(xk |Z1:k ) at time k given by Eq. (1.1)
and (1.2) respectively.

H(Xk |Z1:k ) =−
∫

p(zk )
∫

p(xk |Z1:k ) log
(
p(xk |Z1:k )

)
dxk dzk (1.1)

Hα(Xk |Z1:k ) =− 1

α−1

∫
p(zk ) log

(∫
pα(xk |Z1:k )dxk

)
dzk (1.2)

where Xk is a random variable denoting the state at time k, (xk , zk ) are the state and
measurement realizations at time k, Z1:k is the measurement history until and including
time k, and α ∈ (0,1). For α→ 1 the Rényi entropy becomes equivalent to the Shannon
entropy, see Bialynicki-Birula [2007]; van Erven and Harremos [2014].

Another popular information-theoretic utility function is the Kullback-Leibler Di-
vergence (KLD), presented in Manyika and Durrant-Whyte [1995]; Mahler [2003] and
given by Eq. (1.3).

KLD
[
p(Xk |Zk )||p(Xk )

]= ∫
p(xk |zk ) log

(
p(xk |zk )

p(xk )

)
dxk (1.3)

where p(Xk ) denotes the predicted PDF before the measurement update step. KLD rep-
resents the information gain from updating p(Xk ) with a measurement zk whose distri-
bution is p(Zk ), see the discussion in Aoki et al. [2011]. Similarly, the Rényi (also called
α-) divergence can be used:
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Dα

[
p(Xk |Zk )||p(Xk )

]= 1

α−1
log

(∫
pα(xk |zk )p1−α(xk )dxk

)
(1.4)

and for α→ 1 Rényi divergence becomes equal to KLD, see van Erven and Harremos
[2014].

For sensor management purposes, the sensing action that maximizes the expected
KLD or α-divergence is used, the expectation taken with respect to the measurement
PDF. It has been shown that for sensor management purposes, using the conditional
entropy or the expected KLD leads to the same myopic sensor selection, see Aoki et al.
[2011], but KLD induces a lower computational cost, see the particle approximations in
Doucet et al. [2002] and Boers et al. [2010]. A similar result has not been obtained yet for
the Rényi entropy and divergence.

Rényi entropy and divergence are of interest because the choice of α gives an extra
degree of freedom during the design process of a sensor management algorithm, see
Kreucher et al. [2005b]. Different values of α can give emphasis to different parts of a
distribution but that might or might not be desirable, see Aughenbaugh and La Cour
[2008]; Aoki [2013].

Applications of information-driven sensor management can be found in Boers et al.
[2010]; Cole [2009]; Katsilieris et al. [2012a,b]; Romero and Goodman [2013]; Kreucher
et al. [2005a]; Aughenbaugh and LaCour [2011]; Mahler [2007]; Ristic and Vo [2010].

1.2.4. RISK-BASED SENSOR MANAGEMENT

Risk-based methods aim to taking into account explicitly the operational goals of a radar
system by allocating the radar resources according to the risk that is posed to mission
success. In this approach, the notion of operational risk is used for performing sen-
sor management, hence the name risk-based sensor management1. The risk-based ap-
proach to sensor management appeared as a result of attempts to a) consider quantities
that are directly of interest to the operational goal of the system; and b) obtain better
situational awareness within a given operational context. Risk-based sensor manage-
ment is motivated by the threat assessment process that is an integral part of defence
applications.

For example, in an asset-defence mission, a radar operator might not be directly
interested in knowing the exact position of an aircraft but instead in having a clear idea
of whether this aircraft is a threat to a specific asset and then take actions accordingly.

Risk-based sensor management can also be categorized under the heuristics/rules-
based approaches, as in Bolderheij et al. [2005], or it can be Bayes-optimal, as in Papa-
georgiou and Raykin [2007]. In Bolderheij et al. [2005]; Papageorgiou and Raykin [2007]
more sensor resources are allocated to targets that are considered to be more threaten-
ing to executing a mission or to an asset. Nevertheless, risk-based sensor management
is considered as a separate class due to the novelty in considering higher-level quantities
that are defined according to the operational context.

In-between the task-based and the risk-based approaches lies an extension of PENT,
namely the Posterior Expected Number of Targets of Interest (PENTI), presented in Mahler

1Unfortunately, this already coined name can be misleading due to the conflict between operational risk and
Bayes risk.
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[2004], that also considers the tactical significance of any targets present in the consid-
ered scenario.

More applications of risk-based sensor management can be found in Bush et al.
[2012]; Flint et al. [2003]; Vanheeghe et al. [2001]; Barbaresco [2007].

1.3. PROPOSED APPROACH
From the state of the art overview above, one can conclude that the existing resource
management approaches are not simultaneously a) Bayes-optimal; b) directly related
to the operational goals of a radar system; and c) easy for an operator to adjust the pa-
rameters of an MFR to a particular mission and operational scenario.

To overcome the aforementioned shortcomings of the existing schemes, this thesis
proposes managing the uncertainty in higher-level quantities that are directly of interest
to the operator and directly related to the operational goal of the radar system. In this
way an operator can make better decisions with lower operational risk [Roux and van
Vuuren, 2007, Ch. 3,5,8] and eventually complete the assigned mission successfully. The
novelty of this approach is that it can be adapted to the operational context at hand, be
that military or civilian, by redefining these higher-level quantities based on the given
operational context or the assigned mission.

The proposed approach is motivated by the threat assessment process and it can be
explained with the use of the Joint Directors of Laboratories (JDL) data fusion model,
explained in Steinberg and Bowman [2004] and shown in Fig. 1.3. As discussed in Stein-
berg and Bowman [2004], the JDL model has five levels of data fusion: Level 0 - Signal
assessment: estimation of states of sub-object entities (e.g. SNR); Level 1 - Object as-
sessment: estimation of states of discrete physical objects (e.g. position of vehicles);
Level 2 - Situation assessment: estimation of relationships among entities (e.g. aggre-
gates, cuing, intent, acting on); Level 3 - Impact assessment: estimation of impacts (e.g.
consequences of threat activities on one’s own assets and goals); and Level 4- Perfor-
mance Assessment: estimation and prediction of a system’s performance as compared
to given desired states and measures of effectiveness. The Level 4 Process Refinement
function has been substituted by Performance Assessment because Process Refinement
falls within the Resource Management model levels, see Steinberg and Bowman [2004].

For sensor management purposes, formal dual Resource Management process lev-
els have been defined, see Steinberg and Bowman [2004]. These are: Level 0 - Resource
Signal Management: control of specific resource response actions (e.g., signals, pulses,
waveforms, etc.); Level 1 - Resource Response Management: control of continuous and
discrete resource responses (e.g., radar modes, countermeasures, maneuvering, com-
munications); Level 2 - Resource Relationship Management: control of relationships
(e.g., aggregation, coordination, conflict) among resource responses; Level 3 - Mission
Objective Management: establish/modify the objective of level 0, 1, 2 action, response,
or relationship states; and Level 4 - Design Management: task/control the system engi-
neering (e.g. problem-to-solution space algorithm/model design mapping, model dis-
covery and generalization).

It must be noted that processing at these Levels is not necessarily performed se-
quentially, and any one Level can be processed on their own given their corresponding
inputs, see Llinas et al. [2004] and Steinberg and Bowman [2004].
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Figure 1.3: The JDL data fusion model. Reproduction of Fig. 2 from Steinberg and Bowman [2004].

While moving from Level 0 to Level 4 more complex attributes are encountered and
the higher the Level the closer these attributes are to the operational goal or the mission
of a system. This leads to the idea that if context-adaptive management of sensors is
required then it is necessary to move to higher levels of the JDL model. In other words,
instead of optimizing waveform parameters such that the expected SNR is optimized,
it might be more beneficial to optimize waveform parameters such that better threat
estimation is achieved.

Considering the JDL model, the task-based and information driven schemes con-
stitute Level 0/1 based sensor management. The risk-based approach to sensor man-
agement represents a shift from Level 0/1 based sensor management to Level 2/3 based
sensor management. This shift brings the sensor management objective closer to what
a user is interested in, see the discussion in Blasch et al. [2008]. This also motivates the
term “higher-level" quantities. In the JDL model, quantities such as SNR, probability
of detection and track uncertainty are considered Level 0 (Signal assessment) or Level
1 (Object assessment) quantities whereas threat-level and risk are considered Level 2/3
(Situation Assessment / Impact Assessment or Threat Refinement) quantities.

An example of a commonly used higher-level quantity is the threat-level of a target.
The process of estimating the threat-level of a target is an integral part of missions per-
formed in the defence domain and it is known as threat assessment. Threat assessment
is performed by radar operators based on their experience and the operational context.
Using these tools, an operator can estimate the threat-level of a target, or in other words,
if a target is friendly or hostile. Similarly, in a civilian context, air traffic controllers de-
cide, based on their experience and the current set of aviation rules, whether there is
high collision probability and instruct the pilots accordingly. This process can be seen
as the counterpart of threat assessment in civilian scenarios. Threat-assessment will
play a key role in this thesis as a sensor management algorithm will be proposed such
that threat assessment is performed with minimum uncertainty.
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The key challenges in implementing a scheme that allocates the radar resources
such that the uncertainty in the threat-level is managed are a) the mathematical defi-
nition of threat with respect to the mission goals of a system; and b) the calculation of
the corresponding threat probability density function. In other words, an implementa-
tion of the proposed approach requires a solution to the following problems:

1. how can the threat be mathematically modeled;

2. how can the threat probability density function of a target be calculated; and

3. how can a sensing action be chosen based on the uncertainty in the threat proba-
bility density function?

Up to now, the attempts to mathematically quantify the threat-level of a target have
led to an estimate of the threat-level of a target, according to which the sensing resources
are allocated, see for example Bolderheij et al. [2005]; Papageorgiou and Raykin [2007],
instead of producing an estimate of the threat probability density function of a target.
This happens because of the complexity of the rules and the difficulty to translate them
in mathematical functions using a meaningful and systematic approach.

In order to attain the aim specified above, first some key questions must be ad-
dressed:

1. What are the advantages and disadvantages of the existing approaches to sensor
management in light of the considered problem formulation?

2. How the problem of sensor management for area surveillance (including search
and multitarget tracking) has to be formulated in order to avoid the limitations of
the existing approaches?

3. How can the beam of an MFR be controlled for tracking multiple targets while
taking into account the operational context?

4. How can the beam of an MFR be controlled for area surveillance, i.e. integrated
search and multitarget tracking, while taking into account the operational con-
text?

1.4. OUTLINE AND CONTRIBUTIONS
In order to aid the reader, this section discusses the outline of the dissertation and high-
lights the corresponding peer-reviewed publications. Finally, two more publications on
work that is appended to this dissertation are mentioned.

Chapter 2 presents two case-studies where the behavior of existing sensor manage-
ment schemes is explored and compared. The goal of this chapter is to demonstrate
that controlling an MFR based on JDL Level 0/1 quantities is extremely difficult, if not
impossible, when the operational context must also be taken into account. Accordingly,
Chapter 2 serves as a motivation for the idea proposed in Chapter 3. The discussion is
based on a literature review and on results reported in
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Katsilieris et al. [2012b] Fotios Katsilieris, Yvo Boers, and Hans Driessen. Sensor man-
agement for PRF selection in the track-before-detect context. In Proceedings of
the IEEE Radar Conference, pages 360–365, 2012.

Katsilieris et al. [2012a] Fotios Katsilieris, Yvo Boers, and Hans Driessen. Optimal search:
a practical interpretation of information-driven sensor management. In Proceed-
ings of the 15th International Conference on Information Fusion, pages 439–446,
2012.

Chapter 3 discusses in detail the novel idea for overcoming the shortcomings of the
existing sensor management schemes. The proposed sensor management approach,
i.e. the threat-based approach is presented. It is explained how threat can be mathe-
matically modeled and how the threat probability density function can be calculated.
Additionally, it is discussed how the uncertainty in the threat probability density func-
tion can be quantified. Finally, simple examples are given where the feasibility and the
versatility of the proposed approach are demonstrated. This chapter is based on re-
search reported in

Katsilieris et al. [2014] Fotios Katsilieris, Hans Driessen, and Alexander Yarovoy. Radar
resource management for improved situation awareness. Accepted for publica-
tion to the International Radar Conference, Lille, France, 2014.

Katsilieris et al. [2015a] Fotios Katsilieris, Hans Driessen, and Alexander Yarovoy. Threat-
based sensor management for target tracking. Under review for IEEE Transactions
on Aerospace and Electronic Systems.

Chapter 4 presents an application of the threat-based approach to multiple target
tracking with an MFR. The proposed approach is used in combination with a state-
of-the-art signal processing algorithm (i.e. a Cardinality-Balanced Multi-target Multi-
Bernoulli (CB-MeMBer) filter, see Vo et al. [2009a]) in order to take into account an im-
perfect detection process. This chapter is based on

Katsilieris et al. [2015a] Fotios Katsilieris, Hans Driessen, and Alexander Yarovoy. Threat-
based sensor management for target tracking. Submitted to the IEEE Transactions
on Aerospace and Electronic Systems.

Chapter 5 discusses how the threat-based approach to sensor management can be
used for area surveillance, i.e. for integrated search and multitarget tracking. The chap-
ter starts by discussing how the search for undetected targets can be performed in an
optimal way. Subsequently, it is shown how the two tasks can be tackled simultaneously
without using heuristics. Simulated examples are shown where the threat PDF is eval-
uated based on quantities of state-of-the-art signal processing algorithms (i.e. a Prob-
ability Hypothesis Density (PHD) filter, presented in Mahler [2007], and a CB-MeMBer
filter). This chapter is based on

Katsilieris et al. [2015b] Fotios Katsilieris, Hans Driessen, and Alexander Yarovoy. Adap-
tive radar beam-pointing for area surveillance. To be submitted to the IEEE Trans-
actions on Aerospace and Electronic Systems.)

Chapter 6 concludes this dissertation by summarizing the research results and sug-
gesting possible topics for future research.
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ADDITIONAL RESULTS

While being a Marie Curie fellow in the MC Impulse project2, I visited two research in-
stitutes.

First, during a research visit at Fraunhofer-Institut fur Kommunikation, Informa-
tionsverarbeitung und Ergonomie (Fraunhofer FKIE), I worked on merging the research
presented in Chapter 2 and in Katsilieris et al. [2012a] with the research of Dr. Alexander
Charlish on optimization and scheduling for MFRs. The results of this collaboration are
discussed in Appendix A and were reported in

Katsilieris et al. [2012c] Fotios Katsilieris, Alexander Charlish, and Yvo Boers. Towards
an online, adaptive algorithm for radar surveillance control. In Future Security -
Security Research Conference 2012: Sensor Data Fusion Workshop, Bonn, Germany,
2012.

Secondly, during a research visit at the NATO-STO Centre for Maritime Research and
Experimentation (NATO-STO CMRE), I collaborated with Dr. Paolo Braca on using radar
measurements for detecting the malicious spoofing of the Automatic Identification Sys-
tem (AIS) reports. The results of this collaboration are discussed in Appendix B and were
presented in

Katsilieris et al. [2013] Fotios Katsilieris, Paolo Braca, and Stefano Coraluppi. Detection
of malicious AIS position spoofing by exploiting radar information. In Proceedings
of the 16th International Conference on Information Fusion, pages 1–7, 2013.

2More information about the MC Impulse project can be found at http://mcimpulse.isy.liu.se

http://mcimpulse.isy.liu.se




2
CASE-STUDY-BASED ANALYSIS OF

EXISTING SENSOR MANAGEMENT

CRITERIA

In the previous chapter, the problem of sensor management was introduced in the con-
text of multitarget tracking using an MFR. Furthermore, the existing approaches to sen-
sor management were presented. This chapter presents two case studies where existing
approaches are compared for a) waveform selection for tracking a single-target; and
b) for radar-beam control for searching for a target. The goal is to understand the be-
havior of existing criteria and obtain insight into their advantages and disadvantages.

Section 2.1 presents a case-study of the behavior of task-based and information driven
criteria when the PRF of a radar must be controlled for tracking a target. Section 2.2
presents a case-study of the behavior of task-based and information driven criteria when
searching for a target. Section 2.3 compares the existing approaches to sensor manage-
ment with respect to their behavior, optimality and flexibility to account for the user
needs. Finally, Section 2.4 concludes the chapter.

2.1. CASE-STUDY A: PRF SELECTION FOR TARGET TRACKING
The first case-study considers an application where the estimated PDF can be multi-
modal. The goal is to explore the behavior of task-based and information-driven criteria
in such a case. This case-study was also published in Katsilieris et al. [2012b].

2.1.1. THE PRF SELECTION PROBLEM
Consider a scenario where a target is tracked by a radar and the radar can utilize several
PRFs, of which only one can be used at each time of transmission.

The fact that the radar transmits pulses with a given frequency causes the following
problems, also discussed in Skolnik [2002]:

13
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• blind (range) zones exist where the target cannot be detected. This happens be-
cause the radar antenna cannot receive any echoes while transmitting a pulse.

• range ambiguities exist due to a PRF. Assume for example that there have been
transmitted n pulses and then the radar starts receiving an echo. How can it be
sure from which pulse the echo was received and therefore, where exactly is the
target?

• velocity ambiguities exist because it is not possible to directly measure the pulse
duration difference due to the Doppler effect. For this reason, the phase difference
between the transmitted and the received pulses is measured. The phase shift is
subject to a modulo 2π operation and therefore aliasing can happen.

• conflicting PRF requirements for resolving range and velocity ambiguities. In or-
der to avoid range ambiguities low PRFs must be used whereas, in order to avoid
velocity ambiguities high PRFs must be used.

2.1.2. SYSTEM SETUP
The system under consideration can be mathematically described by the following (dis-
crete time) state and measurement equations:

xk = f (xk−1,wk) (2.1)

zk = h(xk ,PRFk ,vk) (2.2)

x0 ∼ p(x0) (2.3)

where k = 1,2, . . . is the time index, xk = [x vx y vy ρ]ᵀ ∈R5 is the 5 dimensional state of
the system describing the position and velocity of a target in Cartesian coordinates and
the amplitude of its echo, wk is the 5 dimensional process noise with probability density
pw (wk), PRFk is the chosen PRF at time k, zk ∈ Z = RNr ·Nd ·Nb is the received radar
measurement, meaning the reflected power level of the target in the Nr ×Nd ×Nb sensor
cells, Nr , Nd , Nb are the number of range, Doppler, and bearing cells respectively, vk is
the 3 dimensional measurement noise with probability density pv (vk), x0 is the initial
state of the system with probability density p(x0). The vector and possibly non-linear
function f (·) :R5 7→R5 describes the dynamics of the system. Similarly, the vector and
possibly non-linear function h(·) :R5 7→RNr ·Nd ·Nb describes how the measurement zk

is related to the system state xk and the chosen PRF PRFk .
The considered problem amounts to finding the optimal, in the sense of the pro-

posed criteria, sequence of PRFk of the pulses to be transmitted.
The chosen sequence of PRFs will then be used for solving the attached filtering

problem of determining the posterior probability density function p(xk |Z1:k ,U1:k ) that
describes the kinematic properties and the amplitude of the target. The measurement
history is denoted by Z1:k = {z1, ...,zk } and the chosen PRF history by U1:k = {PRF1, ...,PRFk }.

DYNAMICAL MODEL

A target with simple dynamics is considered and therefore a linear Gaussian nearly con-
stant velocity motion model, as presented in Li and Jilkov [2003], is employed:
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xk = f (xk−1, wk ) = F xk−1 +wk (2.4)

where:

wk ∼N (µ,Σ)

F =


1 T 0 0 0
0 1 0 0 0
0 0 1 T 0
0 0 0 1 0
0 0 0 0 1

 , Σ=


bx T 3/3 bx T 2/2 0 0 0
bx T 2/2 bx T 0 0 0

0 0 by T 3/3 by T 2/2 0
0 0 by T 2/2 by T 0
0 0 0 0 bρ


and bx = by are the power spectral densities of the acceleration noise in the x − y direc-
tion, T is the sampling time, µ= [0 0 0 0 0]ᵀ is the mean of the Gaussian noise and bρ is
the variance of the increment in the echo’s amplitude.

THE ROLE OF PRF IN THE RADAR MEASUREMENT MODEL

Firstly, the choice of PRF affects the maximum unambiguous range (r f ol d ) and velocity
(d f old ), see Eq. (2.5). If the range (or velocity) of the target is higher than r f ol d (or d f old )
then a radar cannot be sure what is the correct range (velocity) of the target because any
target echo from r +n c

2·PRF would give the same measurement, where r ∈ (0, c
2·PRF ), c is

the speed of light and n = 0,1,2 . . .. A similar relationship holds for the velocity domain.
In other words, the target PDF has multiple modes both in range and in velocity.

Secondly, the range and velocity resolution (∆r, ∆d) depend on the chosen PRF,
Pulse Compression Ratio [%] (PCR) and number of transmitted pulses nP , see Eq. (2.6).

Thirdly, the length of the blind zones (rbl i nd ) depends on the pulse width PW and the
location of the blind velocities (dbl i nd ) depends on the chosen PRF and the wavelength
of the waveform carrier λ, see Eq. (2.7) where n = 0,1,2, . . ..

r f old = c

2 ·PRF
, d f old = λ ·PRF

2
(2.5)

∆r = PCR
c ·PW

2
, ∆d = λ ·PRF

2 ·nP
(2.6)

rbli nd = PW · c , dbl i nd = n
λ ·PRF

2
(2.7)

By using the equations for r f ol d and rbli nd , it is possible to derive an expression for
the blind zones where the target cannot be detected:

rk ∈
[

n
c

2PRFk
, n

c

2PRFk
+ (cPW)

]
,n = 0,1,2 . . . (2.8)

where rk is the distance between the radar and the target at time k.
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MEASUREMENT MODEL

The considered application deals with tracking a target in the track-before-detect con-
text. This means that the received measurements are not thresholded in order to obtain
plot measurements. On the contrary, all the Nr ×Nd ×Nb sensor cells are considered.
The approach presented in Boers and Driessen [2004] is followed, with the difference
that in the considered scenario there is only one target and no target birth or death.

In each cell, the measurement is:

zi j l
k (xk ,PRFk ) = |zi j l

A,k (xk ,PRFk )|2

= |Ak hi j l
A (xk ,PRFk )+vk|2 (2.9)

where zi j l
A,k (xk ,PRFk ) is the complex amplitude data of the target in the cell i j l , Ak =

ρk e iϕk is the complex amplitude of the target, ϕ ∈ (0,2π), hA(i j l xk ,PRFk ) is the reflec-
tion form and vk is complex Gaussian noise with zero mean and covariance σ2.

The reflection form hi j l
A (xk ,PRFk ) is given by:

hi j l
A (xk ,PRFk ) = e−

(ri −rk )2

2R − (d j −dk )2

2D − (bl −bk )2

2B (2.10)

where i = 1, . . . , Nr , j = 1, . . . , Nd , l = 1, . . . , Nb , R = (∆rk )2,D = (∆dk )2,B = (∆bk )2 are con-
stants related to the size of a range, a Doppler and a bearing cell respectively. ∆rk ,∆dk ,∆bk

are the range, Doppler and bearing resolutions of the radar and

rk =
√

x2
k + y2

k

(
mod

c

2 ·PRFk

)
(2.11)

dk = ṙk = xk vx + yk vy√
x2

k + y2
k

(
mod

λ ·PRFk

2

)
(2.12)

bk = arctan(yk /xk ) (2.13)

are the apparent target range, velocity and bearing respectively.
These measurements, conditioned on the states xk of the target, are assumed to be

exponentially distributed and therefore the likelihood function p(zi j l
k |xk ,PRFk ) is:

p(zi j l
k |xk ,PRFk ) = 1

µi j l
·e

− 1
µi j l zi j l

k (xk ,PRFk )
(2.14)

where

µi j l = E[zi j l
k (xk ,PRFk )] = ρ2

k hi j l
P (xk ,PRFk )+2σ2 (2.15)

hi j l
P (xk ,PRFk ) =

[
hi j l

A (xk ,PRFk )
]2 = e−

(ri −rk )2

R − (d j −dk )2

D − (bl −bk )2

B (2.16)

As it can be noticed from Eq. (2.15,2.16) and (2.11,2.12,2.13) the received measure-
ment depends both on the target states (position, velocity, amplitude) and on the PRF
that is chosen.
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Therefore,

zi j l
k =


vk, if no target in cell i j l

or Eq. (2.8) is true (2.17a)

hi j l (xk ,PRFk ,vk), if target in cell i j l

and Eq. (2.8) is false (2.17b)

where hi j l (xk ,PRFk ,vk) is given by Eq. (2.9).
This means that if the choice of PRF is poor, the target can be placed in a blind zone

and therefore, it can be made undetectable. This is especially important in the track-
before-detect context, where targets usually have low SNR and no measurements should
be wasted.

2.1.3. PROPOSED SOLUTION
The described target tracking problem is solved by employing sensor management cri-
teria for choosing the best PRF and the recursive Bayesian estimation theory for recur-
sively estimating the posterior density p(xk |Z1:k ,U1:k ).

RECURSIVE BAYESIAN ESTIMATION

Given a probability density function p(xk−1|Z1:k−1,U1:k−1), in the recursive Bayesian
estimation context the prediction step is performed using the Chapman-Kolmogorov
equation:

p(xk |Z1:k−1,U1:k−1) =
∫

p(xk |xk−1) p(xk−1|Z1:k−1,U1:k−1)dxk−1 (2.18)

where p(xk |xk−1) is usually determined by the kinematics model of the target.
Then the predictive density p(xk |Z1:k−1,U1:k−1) is updated with the received mea-

surement zk using Bayes’ rule

p(xk |Z1:k ,U1:k ) = p(zk |xk ,PRFk ) p(xk |Z1:k−1,U1:k−1)

p(zk |Z1:k−1,U1:k )
(2.19)

where p(zk |xk ,PRFk ) is the likelihood function and

p(zk |Z1:k−1,U1:k ) =
∫

p(zk |xk ,PRFk ) p(xk |Z1:k−1,U1:k−1)dxk (2.20)

is a normalizing constant which in practice does not have to be calculated if a particle
filter is employed. Therefore, it holds that

p(xk |Z1:k ,U1:k ) ∝ p(zk |xk ,PRFk ) p(xk |Z1:k−1,U1:k−1) (2.21)

and Eq. (2.18,2.19) can be easily approximated using a standard Sampling Importance
Resampling (SIR) particle filter, see Ristic et al. [2004], with N particles xi

k and corre-

sponding weights q i
k such that the approximation converges to the true posterior distri-

bution p(xk |Z1:k ,U1:k ) as N →∞, see Hu et al. [2008].
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SENSOR MANAGEMENT CRITERIA

As it is discussed in the introduction of this case-study, criteria from two classes are
used. From the information-driven class, the expected KLD is used. From the task-
based class, the trace of the expected covariance matrix of the posterior density is used.

MAXIMUM EXPECTED KULLBACK-LEIBLER DIVERGENCE

When using the expected KLD, the best PRF at each time instance is given by:

�PRFk = argmax
PRF

EZ

{
KLD

[
p(Xk |zk ,Z1:k−1,PRF,U1:k−1)||p(Xk |Z1:k−1,U1:k−1)

]}
(2.22)

where Xk is the random variable that denotes the state of the target at time k.
A particle approximation of the expected KLD is used, given by Eq. 2.23, similar to

the equation presented in Doucet et al. [2002]. In the following formulas, (xk ,zk ) are the
state and measurement realizations at time k, zp

k denotes the simulated measurement

at time k, using particle xp
k with weight q p

k−1 and PRFk .

EZ

{
KLD

[
p(Xk |zk ,Z1:k−1,PRFk ,U1:k−1)||p(Xk |Z1:k−1,U1:k−1)

]}
=

∫
p(zk |xk ,PRFk )

∫
p(xk |Z1:k−1,U1:k−1) log

(
p(zk |xk ,PRFk )

p(zk |Z1:k−1,U1:k−1,PRFk )

)
dxk dzk

≈
P∑

p=1
q p

k−1

{
log

(
p(zp

k |x
p
k ,PRFk )

p̂M (zp
k |Z1:k−1,U1:k−1,PRFk )

)}
(2.23)

where

p̂M (zp
k |Z1:k−1,U1:k−1,PRFk ) =

M∑
m=1

{
qm

k−1 p(zp
k |xm

k ,PRFk )
}

(2.24)

In Eq. (2.23), P is the number of simulated measurements. In Eq. (2.24), M denotes
the number of particles used within the criterion.

This evaluation is repeated K times (1 time per PRF) and then the PRF for which
Eq. (2.23) attains its highest value is chosen. Accordingly, the computational complex-
ity of this criterion is O (MPK ) and the corresponding computational complexity of the
equivalent conditional entropy would be O (M 2PK ).

MINIMUM TRACE OF THE EXPECTED COVARIANCE MATRIX

Under the assumption that the uncertainty about the target’s attributes (position, ve-
locity and amplitude) is sufficiently represented by the mean and the covariance of the
corresponding probability density function, it is intuitive to choose a criterion that se-
lects the PRF that leads to the minimum trace of the expected covariance matrix of the
posterior density.

In this case, the corresponding sensor management criterion is:

�PRFk = argmin
PRF

tr
[
EZ

{
Cov

[
p(xk |zk ,Z1:k−1,PRF,U1:k−1)

]}]
(2.25)
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Eq. (2.25) is approximated as follows:

EZ {Cov[ p(xk |zk ,Z1:k−1,PRFk ,U1:k−1)
]}

=
∫

p(zk |Z1:k−1,PRFk ,U1:k−1)
∫

(xk −µxk )(xk −µxk )ᵀ

×p(xk |zk ,Z1:k−1,PRFk ,U1:k−1)dxk dzk

≈
P∑

p=1
q p

k−1

{
M∑

m=1
qm

k−1(xm
k −µp

xk
)(xm

k −µp
xk

)ᵀ
}

(2.26)

where µ
p
xk

=
∫

xk p(xk |zp
k ,Z1:k−1,PRFk ,U1:k−1)dxk ≈

M∑
n=1

(
qm

k xm
k

)
xm

k ∼ p(xk |zp
k ,Z1:k−1,PRF,U1:k−1) (2.27)

which is evaluated using zp
k in Eq. (2.18) and (2.19). The reader is reminded that zp

k
denotes the simulated measurement at time k, using particle xp

k with weight q p
k−1 and

PRFk . The updated weight qm
k is evaluated using the simulated measurement zp

k in Eq.
(2.14) followed by a normalization step. In Eq. (2.26), M denotes the number of particles
used within the criterion and P is the number of simulated measurements.

Again, this evaluation is repeated K times (1 time per PRF) and then the PRF for
which Eq. (2.26) attains its highest value is selected. The computational complexity of
the covariance based criterion is O [(M+1)PK ], which is between O (MPK ) and O (M 2PK ).

2.1.4. SIMULATIONS

Figure 2.1 depicts the scenario under consideration. In Fig. 2.1 the position of the radar,
the trajectory of the target and the blind zones caused by each PRF can be seen. The
radar is assumed to be at the origin of the axes. The target to be tracked starts at k = 0
from [x tr ue

0 , y tr ue
0 ] = [74.2,74.2] km and moves with constant velocities v tr ue

x = v tr ue
y =

−300 m/s for 60 sec towards the radar. Its SNR is assumed to be 11 dB.
The chosen PRFs along with the corresponding pulse widths (PW), PCRs and num-

ber of transmitted pulses (nP ) are given by Eq. (2.28) through (2.31). They were chosen
such that the range and velocity resolutions and the duty cycle (given by PRF · PW) are
constant. These conditions make sure that no PRF is favored due to better resolution or
more covered area.

PRF = [1.4, 4, 5, 5.5, 23.5] kHz (2.28)

PW = [53, 18.9, 15.1, 13.7, 3.2] µsec (2.29)

PCR = [0.013, 0.036, 0.045, 0.05, 0.21] (2.30)

nP = [3, 8, 10, 11, 47] (2.31)

The N = 104 particles are initially distributed uniformly such that: r0 ∈ [0,115] km,
b0 ∈ [0.75,0.85] rad, d0 ∈ [−500,0] m/s; SN R0 ∈ [4,16] dB;ρ0 =

p
2σ2 ·10SN R/10 ∈ [1.58,6.31]

Watts; ϕ0:k is considered random and does not affect the results.
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Figure 2.1: The scenario considered in our simulations. The blind zones for each PRF are the areas between
the two closest lines of same color, as denoted by the arrows of same color in the corresponding examples.

It is assumed that a highly maneuverable target is tracked, such as a fighter or a
missile, and therefore high process noise is used. The dynamical model parameters are:
bx = by = 400 m2/s4 and bρ = 10−3 Watts2; T = 1 sec and k = 1, . . . ,60 sec.

The parameters for the measurement model are: λ = 0.03 m, c = 3 · 108 m/s and
σ2 = 1/2; beam width ∆b = 0.1 rad ' 5.7o ; ∆r,∆d according to Eq. (2.11, 2.12) and (2.28)
through (2.31).

Due to high computational load involved in the experiments, only 100 out of N = 104

particles are selected and 1 measurement per chosen particle is simulated for the eval-
uation of the criteria, meaning 100 measurements in total. The choice of 100 particles
is performed by a multinomial resampling step. This procedure is repeated 5 times be-
cause 5 different PRFs are employed. According to the notation in Doucet et al. [2002],
M = 100 particles, P = 100 simulated measurements (1 from each particle) and K = 5
(due to 5 PRFs) are used for evaluating the criteria.

Figures 2.2 and 2.3 show a characteristic example of the obtained sensor manage-
ment results for the two criteria. In Fig. 2.2, higher KLD represents better PRF choice.
Therefore, PRFs that would put the target in a blind zone are avoided because they lead
to lower KLD. On the contrary, in Fig. 2.3, lower trace of the covariance matrix repre-
sents better PRF choice. Therefore, PRFs that would put the target in a blind zone are
avoided because they lead to higher trace of the covariance matrix.

Figures 2.4a and 2.4b show the sequence of chosen PRFs produced by the two crite-
ria. It can be noticed that the highest PRF is preferred. This can be explained by the fact
that a high process noise is used for tracking a highly maneuverable target. This leads to
ambiguities being created at every time instance in the velocity domain and therefore
the highest PRF must be chosen for resolving them. The aforementioned explanation
was verified by a new set of experiments with lower process noise where the medium
PRFs were also chosen, provided that they would not place the target in a blind zone.
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Figure 2.2: The expected KLD between the predictive and the posterior density for each PRF. PRFs that put the
target in a blind zone result in a lower KL divergence and therefore they are not chosen.
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target in a blind zone result in a higher covariance and therefore they are not chosen.
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Figure 2.4: The sequence of chosen PRFs by each criterion. Notice that the highest PRF is preferred by both
criteria.

2.1.5. CONCLUSIONS

The proposed criteria were found to produce similar results in the sense that a) both cri-
teria resolve the ambiguities; and b) avoid choosing a PRF that would place the target in
a blind zone. In other words, both criteria eliminate the multiple modes in the posterior
PDF, given that there is such a sensing option.

Furthermore, both criteria produced an unexpected but interesting result, namely
the highest PRF would be preferred by both criteria unless its selection would place the
target in a blind zone. The selection of the highest available PRF depends on the ma-
neuverability of the target to be tracked, as verified by a second series of experiments
(not shown here) where tracking targets with lower maneuverability did not lead to high
PRF preference.

The fact that both criteria managed to detect that the motion model creates prob-
lems in the tracking process by constantly introducing velocity ambiguities and they
managed to tackle this problem automatically is an extra advantage over the classical
solutions. In the considered scenario, PRF staggering would have addressed this prob-
lem every 5 sec, when the lowest PRF would be used, and PRF jittering would have ad-
dressed it at random time instances.

The obtained results are also applicable when plot measurements, resulting from a
detection process, are used instead of the unthresholded.

An interesting and partially open question is to explore how the results obtained by
the KLD-based criterion perform in the context of the covariance based criterion and
vice versa. According to the discussion in Boers et al. [2010] about the representation of
uncertainty in unimodal distributions, it is expected that the aforementioned compari-
son would indicate that the criteria would produce very similar results. A more practical
explanation is that the criteria have similar behaviors because both resolve the ambigu-
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ities and try to avoid the blind zones.

2.2. CASE-STUDY B: SEARCH FOR UNDETECTED TARGETS
The second case-study considers an application where search for undetected targets is
performed. The goal is to compare the behavior of a task-based and an information-
driven criterion in such a case. This case-study was also published in Katsilieris et al.
[2012a] and, as a memorandum, in Katsilieris and Boers [2012].

2.2.1. THE TARGET SEARCH PROBLEM

The problem of performing search emerges when the available sensor resources have to
be utilized in an efficient way such that the search for an object or a feature is successful.

The challenges are to find the object as soon as possible while spending as few re-
sources as possible. Towards this goal, sensor management criteria can be utilized. The
main advantage of using such criteria over the simple approaches of periodic or ran-
dom search is that they can take into account any available external information and
as a result demonstrate adaptive behavior. For instance, if the object is expected to be
with higher probability in a specific region, the periodic or random search approaches
would not take this information into account. On the other hand, a carefully chosen or
designed criterion would produce search patterns that leverage this information in or-
der to find the object faster and/or by using less resources. If the external information
is updated at each iteration, like in this case, then the problem amounts to performing
one-step ahead (or myopic) optimal search.

Some examples where these challenges appear are: target detection, discussed in
Danskin [1968]; Koopman [1957] and search for wreckages or survivors, discussed in
Kratzke and Frost [2010]; Stone et al. [2011]. In the robotics community the search prob-
lem is usually referred to as the ‘pursuit-evasion problem’ and has been studied under
different assumptions and solved using different approaches, see for example Suzuki
and Yamashita [1992]; Gerkey et al. [2004].

This case-study considers the scheduling of an agile sensor for efficiently searching
for a target. A characteristic example of such a sensor is a MFR. MFRs have received a
lot of attention from the research community as an attempt to schedule efficiently their
tasks, one of which is to perform search for undetected targets.

In Bolderheij and Van Genderen [2004] the track and search functions of an MFR
were scheduled according to a threat-based criterion. For scheduling search functions,
the authors used ghost targets that dictate volume or horizon search instead of tracking
a target.

In Koch [1999] the revisit intervals, radar beam positions, and energy per dwell were
controlled for improving track quality and energy efficiency. Especially in the case of
searching, the use of negative information has been suggested for updating the predic-
tive densities of the targets and obtaining a search pattern by searching the region where
the maximum of the predictive density was located. An updated version is Koch [2007].

In White et al. [2008] the authors used a user-defined search-to-track ratio. The sen-
sor manager scheduled the corresponding tasks of the radar according to this ratio.
When the search task was considered, an estimate of the spatial density of previously
undetected targets was utilized. The sensing action that maximized the expected num-
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ber of newly detected targets was chosen whenever a search function was scheduled. A
disadvantage of this approach is that the search-to-track ratio is user-defined and not
automatically determined by the scheduling algorithm according to the optimization of
a criterion. A similar scheduling approach was presented in Boers et al. [2008] where the
scheduling criterion suggested selecting recursively those sensors that cover the most
probability mass of the predictive density.

In Matthiesen [2010] an approach similar to the one proposed in this case-study was
presented. An a priori probability distribution of the target to be detected was specified
by a set of discrete target position probabilities corresponding to each search beam.
Immediately after the increment of search effort was applied, the target position proba-
bility density was updated using Bayes’ rule. The presented solution suggested making
the next look in the search cell that provided the maximum value of the incremental
search energy and S/N payoff ratios (target cumulative probability of detection increase
divided by search effort expenditure increase) for all cells and maximizing the duty fac-
tor of each cell.

In Charlish et al. [2011] the authors introduced the Continuous Double Auction Pa-
rameter Selection (CDAPS) which managed the MFR resources by utilizing an auction
mechanism to select parameters for individual radar tasks. The authors showed that
their algorithm performed better than periodic search.

The approach presented in this case-study builds on the approaches described in
the literature and the specific novelties are:

• The construction of a probability density function of the undetected target and its
implementation using a particle filter.

• The use of two sensor management criteria based on the aforementioned den-
sity: a criterion based on KLD and a criterion based on the expected probability
of detection.

• It is proven that the two aforementioned criteria are equivalent, in the sense that
they lead to the same sensor selection sequence, under certain conditions.

The importance of the latter result lies in the connection that is established between
an information-driven criterion (whose practical meaning is difficult to explain) and a
criterion that has straightforward practical meaning, i.e. choosing the action that will
yield the maximum probability of detecting a target.

2.2.2. SYSTEM SETUP AND PROBLEM FORMULATION
Consider a scenario where an agile sensor searches for one target. This system can be
described mathematically by the following (discrete time) state and measurement equa-
tions:

xk = f (xk−1,wk) (2.32)

x0 ∼ p(x0) (2.33)

zk =
{

{;} if no target is present

h(xk ,uk ,vk) if one target is present
(2.34)
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where

• k = 1,2, . . . is the time index;

• xk ∈RNs is the state of the system at time k and x0 is the initial state of the system
with probability density p(x0);

• wk ∈RNs is the process noise with probability density pw (wk);

• uk ∈U is the chosen sensing action, with U being the set of the available sensing
actions. Sensing actions can correspond for example to areas (as in this section)
or targets to be observed;

• zk ∈RNz is the received measurement with dimensionality Nz . If there is no tar-
get, then there will be no measurement and therefore zk = {;}, see Eq. (2.34);

• vk is the Nz -dimensional measurement noise with probability density pv (vk);

• the vector and possibly non-linear function f (·) : RNs 7→ RNs describes the dy-
namics of the system;

• similarly, the vector and possibly non-linear function h(·) :RNs 7→RNz relates the
measurement zk to the system state xk and the sensing action uk .

The considered problem amounts to finding the best sensing action uk by optimiz-
ing a user-defined criterion. Subsequently, the chosen sensing action is used for solving
the attached filtering problem of determining the posterior probability density function
p(xk |Z1:k ,U1:k ) that describes where the target might be. The measurement history is
denoted by Z1:k = {z1, ...,zk } and the sensing action history by U1:k = {u1, ...,uk }.

2.2.3. PROPOSED SOLUTION
The described problem is solved by employing the recursive Bayesian estimation ap-
proach implemented by a particle filter and using quantities of the running particle filter
for evaluating the criterion to be optimized.

RECURSIVE BAYESIAN ESTIMATION

Given a probability density function p(xk−1|Z1:k−1,U1:k−1), in the recursive Bayesian
estimation context the prediction step is performed using the Chapman-Kolmogorov
equation:

p(xk |Z1:k−1,U1:k−1) =
∫

p(xk |xk−1)p(xk−1|Z1:k−1,U1:k−1)dxk−1 (2.35)

where p(xk |xk−1) is determined by the kinematic model of the target.
Then the predictive density p(xk |Z1:k−1,U1:k−1) is updated with the received mea-

surement zk using Bayes’ rule

p(xk |Z1:k ,U1:k ) = p(zk |xk ,uk ) ·p(xk |Z1:k−1,U1:k−1)

p(zk |Z1:k−1,U1:k )
(2.36)

∝ p(zk |xk ,uk ) ·p(xk |Z1:k−1,U1:k ) (2.37)



2

26 2. CASE-STUDY-BASED ANALYSIS

where p(zk |xk ,uk ) is the likelihood function and

p(zk |Z1:k−1,U1:k ) =
∫

p(zk |xk ,u) ·p(xk |Z1:k−1,U1:k−1)dxk (2.38)

is a normalizing constant which in practice does not have to be calculated if a particle
filter is used.

A standard SIR particle filter, see Ristic et al. [2004], is used for approximating Equa-
tions (2.35) and (2.36) with N particles xi

k and corresponding weights q i
k such that the

approximation converges to the true posterior distribution p(xk |Z1:k ,U1:k ) as N → ∞,
see Hu et al. [2008].

DYNAMICAL MODEL

The state of the system is assumed to be 4-dimensional, describing the position and
velocity of the target in Cartesian coordinates

x = [x vx y vy ]ᵀ ∈R4 (2.39)

The following target dynamics are also assumed:

xk = f (xk−1,wk) = F xk−1 +wk (2.40)

where:
wk ∼N (µ,Σ)

F =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 , Σ=


bx T 3/3 bx T 2/2 0 0
bx T 2/2 bx T 0 0

0 0 by T 3/3 by T 2/2
0 0 by T 2/2 by T


and bx = by are the power spectral densities of the acceleration noise in the x − y direc-
tion, T is the sampling time and µ= [0 0 0 0]ᵀ is the mean of the Gaussian noise.

MEASUREMENT MODEL AND ITS USE IN THE UPDATE STEP

This case-study considers the search for an undetected target. This implies that no tar-
gets have been detected or equivalently that the measurement (i.e. detections) vector zk

is always an empty set (see Eq. 2.34) and the measurement history is a vector of empty
sets. Furthermore, it is assumed that no false alarms are present:

Z1:k−1 = {;,;, . . .} (2.41)

Therefore, if the probability of detecting the target when performing sensing action
uk is defined as PD (xk ,uk ) ∈ (0,1) then the likelihood function becomes

p(zk |xk ,uk ) = p(zk =;|xk ,uk ) = 1−PD (xk ,uk ) (2.42)

This form of likelihood function is referred to in the literature as Negative Informa-
tion, see Koch [2007].

From now on zk = ; and Z1:k−1 = {;,;, . . .} will be skipped in the notation for sim-
plicity reasons and p(xk |U1:k ) will be used.
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Given the aforementioned simplification, the prediction step in Eq. (2.35) becomes:

p(xk |U1:k−1) =
∫

p(xk |xk−1) p(xk−1|U1:k−1)dxk−1 (2.43)

and the update step in Eq. (2.36) becomes:

p(xk |U1:k ) = [1−PD (xk ,uk )] p(xk |U1:k−1)

C
(2.44)

∝ [1−PD (xk ,uk )] p(xk |U1:k−1) (2.45)

where C = ∫
[1−PD (xk ,uk )] p(xk |U1:k−1)dxk is a normalizing constant that does not

need to be calculated because a particle filter is used.

SENSOR MANAGEMENT CRITERIA

Any knowledge about the location of the undetected target is represented by a proba-
bility density function and consequently, the uncertainty about this knowledge (or the
information gain by means of performing search) can be conveniently described in the
information theory context.

The expected KLD is used in order to contribute to the ongoing discussion on whether
task-based or information-driven criteria should be used in sensor management and
what the practical interpretation of the latter is (a more elaborate discussion on this
subject can be found in Aoki et al. [2011]). The maximum expected KLD is compared to
a practical (task-based) criterion that selects the search action that yields the maximum
expected probability of detecting the target.

In all the following formulas for the particle approximations it holds that the weights
of all particles xi

k are q i
k = 1/N , where N is the number of particles, because resampling

is performed at every time step and that particles xi
k ,x j

k are distributed according to

p(xk |U1:k−1), i.e. xi
k ,x j

k ∼ p(xk |U1:k−1).

MAXIMUM EXPECTED KULLBACK-LEIBLER DIVERGENCE

In this case-study, the maximum expected KLD is chosen instead of the conditional en-
tropy because its computation is less expensive, see discussion in Subsec. 1.2.3. The
sensor management criterion is:

uk = argmax
u

EZ

{
KLD

[
p(Xk |u,U1:k−1)||p(Xk |U1:k−1)

]}
= argmax

u

{
KLD

[
p(Xk |u,U1:k−1)||p(Xk |U1:k−1)

]}
(2.46)

where Xk is the random variable that denotes the state of the target at time k.
The expectation over the measurement space Z is trivial and not shown in Eq. (2.46)

because of the assumption that the measurement is always an empty set, see Eq. (2.34).
With some manipulations, the expression for the KLD in this case-study becomes:

KLD
[
p(Xk |u, U1:k−1)||p(Xk |U1:k−1)

]
=

∫
1−PD (xk ,u)

C
log

(
1−PD (xk ,u)

C

)
p(xk |U1:k−1)dxk (2.47)
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where xk is the state realization at time k. The particle approximation of Eq. (2.47) is
given by:

KLD
[
p(Xk |u,U1:k−1) ||p(Xk |U1:k−1)

]
≈ 1

N

N∑
i=1

{
1−PD (xi

k ,u)

Ĉ
log

(
1−PD (xi

k ,u)

Ĉ

)}
(2.48)

where C =
∫

[1−PD (xk ,u)] ·p(xk |U1:k−1)dxk

≈ 1

N

N∑
j=1

{
1−PD (x j

k ,u)
}
= Ĉ (2.49)

and xi
k ,x j

k ∼ p(xk |U1:k−1).

MAXIMUM EXPECTED PROBABILITY OF DETECTION

Even though the use of a criterion based on the KLD is motivated by its equivalence
to the conditional entropy (for sensor management purposes), it is not easy to explain
its practical meaning, see the discussion in Subsec. 1.2.3. For this reason, the usage
of criteria that have practical operational meaning is explored. The criterion chosen
from this set of criteria suggests performing the sensing action that yields the maximum
expected probability of detecting the target. The choice of this specific criterion has
been motivated by the works presented in White et al. [2008]; Boers et al. [2008].

Given a probability density function q(x) that describes where the target might be
and the probability of detection function PD (x,u) that depends on the states x of the
target and the sensing action u, the probability of detecting the target when action u is
performed is given by:

P̂D =
∫

PD (x,u) q(x)dx (2.50)

In the considered scenario, the predictive density p(xk |U1:k−1) is used in order to
define a criterion that selects the sensing action uk that yields the maximum probability
of detecting the target:

uk = argmax
u

[∫
PD (xk ,u) p(xk |U1:k−1)dxk

]
(2.51)

and its particle approximation is:

uk ≈ argmax
u

[
1

N

N∑
i=1

PD (xi
k ,u)

]
, xi

k ∼ p(xk |U1:k−1) (2.52)

2.2.4. PROOF OF EQUIVALENCE OF THE TWO CRITERIA
In the simplest scenario, where the probability of detecting the target is constant, it
can be proven that the two criteria produce the same sensor management results. The
sensor management results depend on the probability of detection and the probabil-
ity mass in each sector but not on the number of the sensing actions or the size of the
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search area. The mathematical proof can be found in Katsilieris and Boers [2012] and
only a graphical explanation of the proof is provided here.

In a scenario where the probability of detection is constant, the sensor would only
have to choose the direction towards where to perform search. Because a particle filter
is used, each direction (or sector) u ∈U contains a certain number of particles nu such
that

∑NU
u=1 nu = N . Another interpretation of nu is that it represents the percentage of

probability mass that is located in each sector u, assuming that all particles have equal
weights.

The particle approximations of the two criteria can then be simplified by splitting
the sums in two parts: a part where the probability of detection is PD (i.e. in the chosen
sector) and a part where it is zero (i.e. in all the other sectors).

The KLD is then given by:

KLD
[
p(Xk |u,U1:k−1) ||p(Xk |U1:k−1)

]
≈ 1

N

N∑
j=1

1−PD (x j
k ,uk )

Ĉ
log

(
1−PD (xi

k ,uk )

Ĉ

)

= 1

N

{
nU∑
j=1

1−PD

Ĉ
log

(
1−PD

Ĉ

)
+

N−nU∑
j=1

1

Ĉ
log

(
1

Ĉ

)}
. . .

= nu(1−PD ) log(1−PD )

N −nuPD
+ log(N )− log(N −nuPD ) (2.53)

and the sector that maximizes Eq. (2.53) is chosen.
Accordingly, the second criterion can be simplified as

uk ≈ argmax
u

[
1

N

N∑
i=1

PD (xi
k ,u)

]
= argmax

u

[
1

N

nu∑
i=1

PD + 1

N

N−nu∑
i=1

0

]
= argmax

u

[nu

N
PD

]
(2.54)

Figure 2.5a shows the behavior of the maximum probability of detection based crite-
rion as a function of nu for various values of the probability of detection. It can be easily
noticed that the criterion is a monotonically increasing function of nu for any value of
PD . This means that the sector that contains the most particles, or equivalently the most
probability mass, is always chosen. This can also be inferred by Eq. (2.54) because N ,PD

are constants (known in advance) and therefore they do not affect the sensor manage-
ment results.

Figure 2.5b shows the behavior of the KLD-based sensor management criterion as
a function of nu for various values of the probability of detection. It is easy to see that
it is a monotonically increasing function of nu for any value of PD up to a maximum
point maxKLD that actually depends on PD . To be more precise, maxKLD is assumed
for nmax

u ∈ (N /2, N ) and the exact value of nmax
u depends on PD .

Therefore, if nu is lower than nmax
u for every u ∈ U then the two criteria are equiv-

alent because they are both monotonically increasing functions of nu for any value of
PD . This can be noticed at Fig. 2.5a and Fig. 2.5b.
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On the other hand, if nu is greater than nmax
u then the value of KLD(nu ,PD ) must be

compared to the worst case scenario value of KLD(N −nu ,PD ) and it actually holds that

KLD(nu ,PD ) > KLD(N −nu ,PD ) , nu ∈ (nmax
u (PD ), N ) (2.55)

Therefore, the two criteria are still equivalent.
The claim that Eq. (2.55) refers to the worst case scenario can be explained by the

fact that N −nu ∈ (0, N /2) holds. Therefore, it also holds that

KLD(N −nu ,PD ) > KLD(n,PD ) (2.56)

for any number of particles n that satisfies N −nu > n because KLD is a monotonically
increasing function for any n ∈ (0, N /2) and for any PD .

The conclusion that can be drawn is that both criteria choose the sector that con-
tains the highest probability mass. Equivalently, if a particle filter approximation is used,
they both choose to search the sector with the largest number of particles.

2.2.5. SIMULATIONS

CONSTANT PD

The theoretical results are illustrated by performing 50 Monte Carlo simulations where
the sensor searches in 8 sectors with constant PD ∈ (0,1) for k = 1, . . . ,160 sec.

An example of such a scenario, where a particle filter approximates the posterior
density, is depicted in Fig. 2.6. The sensor is located at the origin of the axes and it has to
choose one of the 8 sectors for performing search. Therefore, the set of sensing actions
is equal to set of sectors (8 sectors in this example): U = {1,2, ..,8}. The probability of
detection in the chosen sector is PD and in all the other sectors is zero. The physical
interpretation of this assumption is that the target cannot be detected in sectors that
are not searched.

The density is initialized at k = 0 by uniformly distributing particles in an disk of 100
km radius. The velocities vx and vy are chosen such that the radial speed of the targets
is uniformly distributed in [0, 400] m/s and they move towards the radar. This initializa-
tion process resembles a real life scenario of the moment when the sensor is turned on
and there is no information about the target’s location, meaning that the target might
be anywhere.

For the motion model, bx = by = 2 (m/s2)2 are chosen as the power spectral densities
of the acceleration noise in the x − y direction and T = 1 sec as the sampling time.

Furthermore, target birth is modeled at the border of the field of view of the sensor
in order to take into account the fact that the target might have not entered the area yet.

In the simulations, the number of particles is varied such that N = (5,10, . . . ,100)·103

in order to study the influence of using limited number of particles. The ranking of the
sensing actions (in this case sectors) and the percentage of same chosen sensing actions
(top ranked sensing actions) of the two criteria are compared.

Figure 2.7 shows that as the number of particles increases, the percentage of same
chosen sensing actions by both criteria approaches 100%. Figure 2.8 shows that the per-
centage of differently ranked sensing actions approaches 0% as the number of particles
increases. Therefore, the experimental results support the theoretical result that the two
sensor management criteria are equivalent.
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(a) Maximum probability of detecting the target.
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Figure 2.5: The behavior of the proposed criteria as a function of nu for different values of PD .
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Figure 2.6: An example of the density that describes where the undetected target might be. A radar searches
with constant PD < 1 an area of 100 km radius divided in 8 sectors.
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Figure 2.7: The percentage of same chosen sensing actions as a function of the number of particles used in
the simulations. The results are averaged over 50 Monte Carlo runs and over the duration of each simulated
scenario (160 sec).
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Figure 2.8: The percentage of differently ranked sensing actions as a function of the number of particles used
in the simulations. The results are averaged over 50 Monte Carlo runs and over the duration of each simulated
scenario (160 sec).
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Figure 2.9: The search pattern produced by the KLD-based criterion for a scenario with constant PD . It can be
noticed that there are several repetitive sub-patterns.
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Figure 2.10: Search time per sector when the target is expected from the north with 80% probability.

An interesting point is that both criteria produce search patterns that are somehow
repetitive and this becomes more obvious as the number of particles used in the sim-
ulations increases. Figure 2.9 shows an example of a search pattern where this phe-
nomenon can be observed. A reason for the search pattern not to be totally repetitive is
the randomness induced by the particle filter itself. There is no measurement-induced
uncertainty because of the assumption that the measurements indicate that no target
has been detected, see subsection 2.2.3.3.

TAKING INTO ACCOUNT EXTERNAL INFORMATION

Consider now a scenario where the target is expected to be in the 4 northern sectors
with 80% probability and in the 4 southern with 20%. All the other parameters in the
simulation are the same as the ones used in the previous example.

Figure 2.10 demonstrates the adaptiveness of the KLD-based criterion that focuses
on the 4 northern sectors. The task based criterion has (but is not shown) exactly the
same behavior because the probability of detection is assumed to be constant. On the
other hand, the simple approach of periodic search wastes time and resources in sec-
tors where the target is not expected to be found with high probability. This is an im-
provement because the target would be detected faster if the presented criteria are used
instead of periodic search since they spend more search effort on sectors with higher
probability of target existence.
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NONCONSTANT PD

In the case of nonconstant PD , it can be assumed that the sensor models the behavior
of an MFR. Consequently, PD depends on the RCS of the target and on its distance from
the radar.

The rest of the parameters of the scenario are the same, meaning that the radar per-
forms search in 8 sectors and that a particle filter is employed with the same dynamical
model for the target.

For each particle in the sector to be searched, first the radar equation is used for
evaluating the SN Ri :

SN Ri (dB) = 10log(Ppeak )+10log(Tpul se )+20log(λ)+10log(RC Si )+Gt x +Gr x

−10log(kBol t zman)−10log(Temp)−F ·L−10log[r 4
i (4π)3] (2.57)

and then the Swerling I case is used for evaluating the corresponding PD (i ), as given in
Skolnik [2002]:

PD (i ) = P 1/(1+SN Ri )
F A (2.58)

where: ri =
√

x2
i + y2

i , λ= 0.03 m, Ppeak = 100 kWatts, Tpul se = 162 µsec, Gt x =Gr x = 35

dB, kBol t zman = 1.37 ·10−23, Temp = 300 Kelvin, F ·L = 1.1 dB losses, probability of false
alarms PF A = 1.4 ·10−9 and i = 1,2, . . . , N .

Then Eq. (2.46), (2.48) and (2.49) are used for the KLD-based criterion and Eq. (2.52)
for the maximum probability of detection criterion.

In the experiment, the number of particles is varied such that N = (5,10, . . . ,100)·103

and the target’s RCS is varied such that RC S = [1 10 102 103 104 105] m2. The ranking of
sensing actions (again: sectors) and the percentage of same chosen sensing actions (top
ranked sectors) of the two criteria are compared.

In Fig. 2.11a through 2.12c it can be noticed that as the number of particles and the
RCS increase, the percentage of different rankings approaches 0% and the percentage of
same chosen sensing actions approaches 100%. These results indicate that the two cri-
teria are equivalent for high RCS targets and as the number of particles increases in this
more involved scenario. Furthermore, the existence of repetitive search sub-patterns
was noticed again.

Figure 2.13 shows how the computation time difference between the two criteria
scales as a function of the number of particles that are used for approximating the den-
sity that describes where the undetected target can be. It can be observed that the KLD-
based criterion requires linearly more computation time than the task-based criterion,
which seeks to maximize the probability of detecting the target.

2.2.6. CONCLUSIONS
Two fundamentally different sensor management criteria for performing search for a
target have been compared and actually shown to be equivalent, under certain condi-
tions. This result has two interesting and important implications:

1. a practical interpretation of an information-driven criterion, i.e. maximizing the
expected KLD between the predictive and the posterior density, can be given in



2.2. CASE-STUDY B: SEARCH FOR UNDETECTED TARGETS

2

35

1     

10    

100   

1000  

10000 

100000

5  

10 

15 

20 

25 

0

5

10

RCS (m2)
num. of particles ×103

%
o
f
d
iff
.
ra
n
k
in
g
s

(a) 3D view

1     10    100   1000  10000 100000
0

2

4

6

8

10

RCS (m2)

%
o
f
d
iff
.
ra
n
k
in
g
s

(b) X -view

5  10 15 20 25 5  10 15 20 25 5  
0

2

4

6

8

10

num. of particles ×103

%
o
f
d
iff
.
ra
n
k
in
g
s

(c) Y -view

Figure 2.11: The percentage of differently ranked sensing actions as a function of the number of particles used
for simulation and of the RCS. The results are averaged over 20 Monte Carlo runs and over the duration of each
simulated scenario (160 sec).
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Figure 2.12: The percentage of same chosen sensing actions as a function of the number of particles used for
simulation and of the RCS. The results are averaged over 20 Monte Carlo runs and over the duration of each
simulated scenario (160 sec).
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Figure 2.13: The computation time difference between the two compared criteria plotted as a function of the
number of particles used.

the search context. Performing the search action that maximizes the KLD is the
same as performing the search action that yields the maximum expected proba-
bility of detecting the target, when the probability of detection is constant.

2. the criterion which is based on the highest probability of detection not only has
practical meaning but it is also computationally less expensive to implement, see
Eq. (2.48) and (2.52). Eq. (2.54) means that the implementation of the criterion
boils down to just performing a particle count for determining nu , since N ,PD are
constant and known in advance.

From this case-study it can be concluded that even when it is possible to explain
what it means practically to maximize the expected KLD, its use is not always justified.
For instance, in the presented examples the KLD has higher computational complexity
than the intuitive task-based criterion.

Nevertheless, the compared criteria appear to give different results for low RCS tar-
gets. This implies that the criteria are not in general equivalent when the probability of
detection varies and this phenomenon worths further attention.

2.3. COMPARISON OF EXISTING SENSOR MANAGEMENT SCHEMES
When selecting a sensor management scheme, several aspects must be considered. Within
the context considered in this thesis, a sensor management scheme should provide
Bayes-optimal selections, take into account explicitly the user-needs within different
operational contexts and have reasonable computational complexity.

Bayes-optimality is a very important aspect of sensor management algorithms. It
guarantees that the best solution is obtained given a user-defined loss or reward func-
tion that models the operational needs of an operator, also see the discussion in Berger
[1980]. Therefore, this thesis focuses on Bayes-optimal approaches.

Similarly, taking into account the user needs is of paramount importance. Ideally,
a sensor management algorithm should be adaptive not only with respect to the envi-
ronment but also with respect to changes in the operational requirements. Consider
for example the use of an MFR in an asset-defence context and in an air-traffic-control
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context. Does a user have the same operational goals in these two contexts? If not, why
would the sensor management algorithm not take that into account?

The requirement on computational complexity arises from practical, implementa-
tion considerations. In this thesis, computational complexity is not considered as the
driving requirement for selecting a specific scheme but nevertheless, it is taken into ac-
count.

Given the requirements discussed above, one can conclude the following for the ex-
isting approaches:

HEURISTICS

Heuristics have low computational complexity and take into account both practical and
operational aspects. Their main disadvantages are that they do not produce Bayes-
optimal solutions and that their behavior can become unpredictable in situations that
were not taken into account during design.

TASK-BASED SENSOR MANAGEMENT

Task-based schemes result in Bayes-optimal solutions. Their main disadvantage is that
most commonly they optimize quantities that are relevant to the operational goal but
not explicitly what the user really needs. Consider for example an air-traffic-control
scenario. Minimizing the uncertainty in position and velocity of all aircrafts is beneficial
but what an operator is really interested in is whether two aircrafts are going to collide.

Furthermore, it is not straightforward how to aggregate several objectives in a mean-
ingful and mathematically rigorous manner. Consider for example area surveillance. In
area surveillance, search for and tracking of multiple targets are performed simultane-
ously. In this case, how can objectives that are related to either/both search and tracking
be aggregated? For instance, how can tracking accuracy (task-based objective function
in subsec. 2.1), be aggregated with the probability of detecting new targets in a given
region (task-based objective function in Subsec. 2.2)? If a multiobjective optimization
problem is formed, then several solutions are obtained that are all equivalent and op-
timal. Therefore, one still has to solve a decision problem of which sensing action to
perform. If, on the other hand, one tries to form a weighted sum, then how can the
weights of tracking accuracy and probability of detection be defined in a meaningful
manner? This problem arises because probability of detection and track accuracy are
non-commensurate.

INFORMATION-DRIVEN SENSOR MANAGEMENT

Information-driven schemes are Bayes-optimal. Nevertheless, they suffer from similar
disadvantages as the task-based approaches. That is, how can different objectives func-
tions be aggregated in this context?

Moreover, if information-driven objective functions are used based on the probabil-
ity density function of the states of a system, e.g. of an aircraft, it is not clear on which
aspect of the probability density function the emphasis is placed, see the discussion in
Aughenbaugh and La Cour [2008]. And even if an explanation can be found, as in Sub-
sec. 2.2, the computational complexity of the considered information-driven criterion
can be higher than the equivalent task-based criterion.



2.4. SUMMARY

2

39

An additional challenge arises when considering objective functions for different
operational contexts. For instance, why would the conditional entropy be the best ob-
jective function both for air-traffic-control and asset protection1?

RISK-BASED SENSOR MANAGEMENT
Risk-based approaches can be either Bayes-optimal, as in Papageorgiou and Raykin
[2007], or not, as in Bolderheij [2007]. Their main advantage is that they take into ac-
count explicitly the operational goal of a system. Their disadvantage is that they do
not focus on managing the uncertainty in the quantities of interest such that an oper-
ator can make decisions under lower uncertainty. In Bolderheij [2007], priorities are
assigned to tasks and in Papageorgiou and Raykin [2007], the reduction of operational
risk is considered. Risk cannot be reduced by the sensor itself but rather with the use of
an actuator.

CONCLUSIONS
It can be seen from the comparison above that there is not a single approach that has
all the desired properties described in the beginning of Sec. 2.3. This creates a research
opportunity for devising a scheme that a) is Bayes-optimal; b) takes into account ex-
plicitly the user requirements in different operational contexts; and c) has reasonable
computational complexity.

2.4. SUMMARY
This chapter aimed at providing a better insight to the existing sensor management cri-
teria. Special attention was paid to gaining better understanding of the behavior of
task-based and information-driven criteria and identifying any differences and simi-
larities that they have. This was of special interest because of the ongoing discussion on
whether information-driven criteria can be used as objective functions that can incor-
porate in a meaningful manner several aspects of interest to the user.

For this reason, objective functions motivated from these two classes were com-
pared in two case-studies. The first case-study focused on PRF selection when tracking
a target. The important aspect of this case-study was that the estimated PDF can be
multimodal, depending on the motion of the target and the sequence of PRF selections.
The second case-study considered the search for an undetected target. The important
aspect of this case-study was the update with negative information and the use of the
estimated PDF for performing optimal search for targets.

From these case-studies it was concluded that criteria from the task-based and information-
driven classes can have very similar behavior and in some cases they can lead to iden-
tical sensor selections. The latter result, presented in the second case-study, provided a
practical explanation of an information theoretic criterion, albeit in the specific experi-
mental setting. Furthermore, in both case-studies it was verified that using sensor man-
agement can lead to improved estimation results as compared to using non-adaptive
methods.

The results obtained from the two case-studies were also used in order to compare
the task-based and information-driven approaches to other existing approaches to sen-

1This question was originally posed to the author by Dr. Hans Driessen and Dr. Yvo Boers.
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sor management. The aspects of interest were Bayes-optimality, adaptiveness to dif-
ferent operational contexts and computational complexity of the existing approaches.
From the comparison it was concluded that the existing sensor management criteria
lack the combination of three desirable properties, i.e. the Bayes-optimal allocation of
resources among diverse tasks while taking into account explicitly the user-needs within
a given operational context.

The latter conclusions practically means that the existing approaches do not allow
for a systematic and mathematically rigorous method to form objective functions that
take into account several quantities of interest. Motivated by this conclusion, I devel-
oped a novel approach to sensor management that is presented in the following chap-
ter.



3
THREAT-BASED

SENSOR MANAGEMENT

The previous chapter presented in detail the existing approaches to sensor management
along with two case-studies. These approaches were shown to have certain disadvan-
tages, with the most prominent being that it is not straightforward how to take into ac-
count user-needs in different operational contexts. This chapter presents a novel idea
for constructing objective functions that directly take into account user-needs accord-
ing to the operational context at hand and in a Bayes-optimal way.

Section 3.1 presents the threat assessment process and how it is connected to sensor
management. Section 3.2 explains how threat can be mathematically modeled depend-
ing on the operational context, how the uncertainty in a threat probability density func-
tion can be measured and and how it can be used for allocating sensor resources. Sec-
tion 3.3 presents simulated examples for demonstrating the feasibility and flexibility of
the proposed approach. Finally, Section 3.4 concludes this chapter.

3.1. THE THREAT ASSESSMENT PROCESS AND ITS CONNECTION

TO SENSOR MANAGEMENT
It is very common in a defense context to assign labels to all present targets according
to the threat that they pose to own assets or to mission success1. For instance, this set of
labels can be defined as L = {`1, . . . ,`nD }, where `i can be “friendly", “neutral" or “hos-
tile". An operator estimates the threat label of each target by observing the overall target
behavior and considering the operational context and mission goals. This process is
called threat assessment and is an integral part of missions in the defense domain. Fig-
ures 3.1a and 3.1b demonstrate a threat assessment example. In the presented example,

1In order to avoid the confusion between threat and risk, the terminology used in Romberg [2000] is followed.
In Romberg [2000] Romberg describes an approach where objects are sought that threaten valuable assets.
Romberg denominates such an object as threat and defines risk as the expected loss of value due to a possible
event caused by a threat. Also see the discussion in [Bolderheij, 2007, Ch. 4.7]
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Figure 3.1: Demonstration of the threat assessment process for two targets, one incoming and one receding.

an operator observes the position and velocity of two targets, estimates their threat-level
and assigns a threat label to each target according to the operational context and goals.

In practice, threat assessment is performed based not only on kinematic informa-
tion but also on additional contextual information. Such contextual information can be,
for instance, intelligence about expected threat types and their capability and intent, see
for example the discussion and models in Roux and van Vuuren [2007]; Bolderheij et al.
[2005]. Here threat is modeled based only on observable kinematic properties of targets.
This simplification is motivated by the limitations in modeling all aspects of interest but
nevertheless gives a proof of concept of performing sensor management based on the
threat-level of targets. In other words, the method proposed in this thesis can be seen
as a first step towards JDL level 2/3 sensor management.

In terms of mathematics, the threat that a target poses can be seen as an added state,
estimated along with the standard state vector that usually includes target’s position
and velocity. A threat function f : X 7→ T is defined as a map from the conventional
elements of the single target state space (typically 2D/3D position and velocity) X =
Rn to the elements of single target threat space T = [0,1] according to an operational
context. Minimum threat is denoted by 0 and maximum threat by 1. In multitarget
scenarios, each individual target state space is mapped to its individual threat space.

A threat function is the mathematical translation of what an operator classifies as
threat. Because threat is a function of random variables, such as the position and veloc-
ity of a target, threat θ is also a random variable, whose PDF p(θ) is found by utilizing
the user-defined threat function(s). The threat PDF is important because it can be used
for assigning a threat label to a target and for suggesting a course of action to a system
operator. In an asset-defense scenario an operator can use the threat PDF in order to
decide whether to engage a target or not. In a civilian, air-traffic-control scenario, an
operator can use the threat PDF in order to instruct the pilot of an aircraft to change its
trajectory such that a collision is avoided. Threat functions for these specific scenarios
are presented in the following subsection.

Motivated by the threat assessment process, I propose selecting the best sensing ac-
tion such that the uncertainty in the threat-level of targets is managed instead of allocat-
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Figure 3.2: An example of why lower uncertainty leads to better decisions.

ing the resources proportionally to the threat-level of each target or managing the un-
certainty in the target states. The novelties of the proposed approach are that it can a) be
adapted to different operational contexts by proper definition of the threat function f (·);
and b) lead to an operator taking decisions with less uncertainty and consequently with
lower operational and Bayesian risk.

In order to demonstrate the importance of managing the uncertainty in threat-level,
let us consider a simple example. Two possible threat distributions for a target are shown
in Fig. 3.2 and one of the following three labels can be assigned to the target: {friendly
(F), neutral (N), hostile (H)}. Each label also implies that a certain course of action will
be followed according to the operational context. The label probabilities are pi (F ) =∫ 1/3

0 pi (θ)dθ, pi (N ) = ∫ 2/3
1/3 pi (θ)dθ, pi (H) = ∫ 1

2/3 pi (θ)dθ where i = 1,2. In both cases
the label (N) would be chosen because pi (N ) > {pi (F ), pi (H)}. Nevertheless, it is obvious
that an operator would prefer to assign a threat-label or take an action based on the first
threat distribution due to its lower intrinsic uncertainty.

The importance of managing the uncertainty in the threat PDF, as per the proposed
approach, is also evident when the Object, Orient, Decide and Act (OODA) loop is con-
sidered in a defense context. As discussed in the review paper [Roux and van Vuuren,
2007, Ch. 3,5,8] and the references therein, reduced uncertainty in threat leads to a bet-
ter OODA loop, which in turn gives a significant advantage over an adversary.

At this point, it is important to point out that the uncertainty in threat can also be
scaled in light of its expected value. In many practical applications a slightly uncertain
high threat might require more sensor resources than a more uncertain but less threat-
ening target. In this thesis, this effect is acknowledged but for practical purposes it will
not be considered.

3.2. MATHEMATICAL MODELING OF THREAT

3.2.1. THREAT DEFINITIONS AND HOW TO AGGREGATE THEM

The mathematical formulation of threat must in principle take into account what an
operator classifies as threat in a given operational context and by definition it must hold
that θ ∈ [0,1].

In order to motivate the proposed approach, three threat functions are given for two
examples: one drawn from the defense domain and one from the civilian domain. In
both examples, the notions of range to the Closest Point of Approach (CPA) and time
to the CPA, see Bolderheij et al. [2005], are utilized. Time and range to CPA are two
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quantities that can be used for modeling several aspects of threat, as threat is described
in the bibliography. In Bolderheij [2007]; Nilsson et al. [2008] for example, it is stated
that when a target approaches another target or an asset of interest then the operator
must be notified because this is an event of interest, or in other words, one of the targets
is a potential threat. In Roy et al. [2002], time and range to CPA are parts of the situation
geometry, situation projection and timing analysis.

The specific examples are intentionally simple but sufficient for demonstrating the
versatility of the proposed threat-based approach. Ideally, the system operator can se-
lect the modeled aspects of threat, possibly from a library, to be taken into account ac-
cording to the operational needs. Finally, it is demonstrated how different threat func-
tions can be aggregated in a meaningful manner.

The time and range to CPA for two targets i and j with corresponding state vectors

x(i ) = [x(i ) v (i )
x y (i ) v (i )

y ]ᵀ and x( j ) = [x( j ) v ( j )
x y ( j ) v ( j )

y ]ᵀ are given by:

t i j
C PA =−

∆
i j
x ∆

i j
vx

+∆i j
y ∆

i j
vy√(

∆
i j
vx

)2 +
(
∆

i j
vy

)2
(3.1)

d i j
C PA =

√(
∆

i j
x + tC PA∆

i j
vx

)2 +
(
∆

i j
y + tC PA∆

i j
vy

)2
(3.2)

where

∆
i j
pos = [∆i j

x ∆
i j
y ]ᵀ = [x(i ) y (i )]ᵀ− [x( j ) y ( j )]ᵀ (3.3)

∆
i j

vel
= [∆i j

vx
∆

i j
vy

]ᵀ = [v (i )
x v (i )

y ]ᵀ− [v ( j )
x v ( j )

y ]ᵀ (3.4)

Consider an example from the defense domain first, where an operator wants to
protect asset j . It is assumed that the threat that is posed by target i to asset j depends
on how close and how fast target i can come to asset j . In order to move from the time
and range domain to the threat domain, a sigmoid function can be utilized for example2:

θ
i j
t

(
x(i );x( j )

)
=



1 if |t i j
C PA | ≤ t1

1−2

(
|t i j

C PA |−t1

t0−t1

)2

if t1 < |t i j
C PA | ≤ t0.5

2

(
|t i j

C PA |−t0

t0−t1

)2

if t0.5 < |t i j
C PA | ≤ t0

0 if t0 < |t i j
C PA |

(3.5)

2The specific choice of sigmoid functions is only for demonstration purposes. Any other convenient function
could be used by the system designer and the operator.
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θ
i j
d

(
x(i );x( j )

)
=



1 if d i j
C PA ≤ d1

1−2

(
d

i j
C PA−d1

d0−d1

)2

if d1 < d i j
C PA ≤ d0.5

2

(
d

i j
C PA−d0

d0−d1

)2

if d0.5 < d i j
C PA ≤ d0

0 if d0 < d i j
C PA

(3.6)

where t1 < t0.5 < t0 and d1 < d0.5 < d0 are the points where threat is equal to 1, 0.5 and 0.
Consider now an example from the civilian domain, e.g. an air traffic control appli-

cation. The operator monitors the behavior of the targets and is interested in whether
any two targets will collide with each other. The time and range to CPA can be utilized
again in this example since they model conveniently whether and when two targets
might collide, also see the discussion in Gore and Corker [2000]; Kastelein [2012] about
measures of effectiveness when performing air traffic management. The time and range
to CPA among all pairs of targets (i , j ), where i , j = 1, . . . , N and i 6= j , are considered
rather than between each target and an asset. From the N −1 different threat values for
a target i , the threat value j∗ can be selected such that:

θ∗
(
x(i )

)
:= θ

(
x(i );x( j∗(i ))

)
(3.7)

where j∗(i ) = argmax
j (...)

θ̂
(
x(i );x( j )

)
∀i , j ∈ [1, . . . , N ], i 6= j (3.8)

with θ̂(x(i );x( j (i )) =
∫
θ(x(i );x( j (i ))p

(
θ(x(i );x( j (i ))

)
dθ(x(i );x( j (i )) (3.9)

N is the number of targets in the scenario and p
(
θ(x(i );x( j∗(i )))

)
is obtained by using Eq.

(3.5), (3.6) and the states’ PDF. Eq. (3.7) can be evaluated in a Monte Carlo fashion by
using samples from the corresponding states’ PDFs p

(
x(i )

)
and p

(
x( j )

)
.

When anomaly detection is of interest, deviation from trajectories or shipping lanes
is an important quantity to be taken into account, as discussed in Ristic et al. [2008];
Riveiro and Falkman [2010]. If one would like to model the deviation of a target i from
a given trajectory C , then a similar mathematical approach can be followed. A sigmoid
function can be used and the three distances dC

0 < dC
0.5 < dC

1 from the axis of a trajectory
C must be defined where threat is equal to 0, 0.5 and 1 respectively. Then

θi
dC

(
x(i );C

)
=



1 if dC
1 < d iC

mi n

1−2

(
d iC

mi n−dC
1

dC
0 −dC

1

)2

if dC
0.5 < d iC

mi n ≤ dC
1

2

(
d iC

mi n−dC
0

dC
0 −dC

1

)2

if dC
0 < d iC

mi n ≤ dC
0.5

0 if d iC
mi n ≤ dC

0

(3.10)

where d iC
mi n is the minimum distance between target i and trajectory C .
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Figure 3.3: Plots of the defined threat functions, for gaining intuition about their shape.

Figure 3.3 demonstrates the plots of the defined threat functions for [t1 t0.5 t0] =
[d1 d0.5 d0] = [dC

0 dC
0.5 dC

1 ] = [0,1,2].
Following the procedure described above, all quantities of interest (time and range

to CPA, deviation from a given trajectory) have been mapped to the same domain, i.e.
threat. In other words, it has been demonstrated how to model mathematically the as-
pects of threat that are of interest. Moreover, it is meaningful to aggregate them using a
weighted sum in order to evaluate the threat-level of a target i :

θi ·
(
x(i ); ·

)
=

M∑
l=1

mlθ
i j
l

(
x(i ); ·

)
(3.11)

where ml is the weight assigned by the operator to θi j
l

(
x(i ); ·) such that

∑M
l=1 ml = 1. In

this way, what would have been a multiobjective optimization problem has been sim-
plified to a simpler but still meaningful single objective problem. The single objective
function is the weighted sum of the different aspects of threat. In other words, instead
of managing the uncertainty in non-commensurate quantities, such as the time/range
to CPA and deviation from a given trajectory, the uncertainty in the threat-level is man-
aged.

Equation (3.11) means that, in principle, a database of different aspects of threat

can be created. The operator can then select the necessary aspects of threat θi j
l

(
x(i ); ·)

and their corresponding weights ml such that different needs in different operational
contexts are satisfied. The threat definitions that are given here can be combined such
that asset protection, air traffic control and maritime surveillance can be performed, to
name a few different operational contexts. Furthermore, this is an improvement over
the conventional weighted sum approaches because now commensurate quantities, i.e.
aspects of threat, are summed.

When multiple targets are present in a scenario, each target has its own threat PDF.
In the Random Finite Set (RFS) context, the multitarget threat RFS variable Θ can have
the same cardinality distribution p(|X|), |X| ∈ [0, . . . , N ] as the RFS multitarget state vari-
able X, depending on the mathematical definition of threat.

3.2.2. EVALUATING THE UNCERTAINTY IN A THREAT PROBABILITY DENSITY

FUNCTION
As discussed in the previous sections, threat can be seen as an added state of each target
and has a PDF that can depend, among others, on a target state’s PDF and the consid-
ered operational context. Therefore, the uncertainty in a threat PDF can be evaluated
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using any of the popular approaches: for example, via its covariance or via its entropy
(or equivalently for myopic sensor management purposes, the KLD). The best choice
remains an open question, as explained in the introduction.

The key difference is that the commonly used measures of uncertainty in a PDF are
not applied to the estimated target states’ PDF but rather in the estimated threat PDF
that takes into account the operational needs of an operator.

As a reminder, a) when a task-based approach is used, the best sensing action can be
given, for example, by the trace of the target states’ PDF covariance matrix; and b) when
an information-driven approach is used, the best sensing action can be given by the
conditional entropy of the target states’ PDF or by the expected KLD between the pos-
terior and the predicted target states’ PDFs. The term “sensing action" can refer to the
target to be observed (as in this chapter), the area to be observed and/or specific sensing
parameters, such as PRF.

On the other hand, when the proposed threat-based approach is used, the best sens-
ing action can be given by Eq. (3.12), (3.13) or (3.14) for example. In these equations,
choosing sensing action i corresponds to observing target i .

ik = argmin
i

{
EZ

[
N∑

n=1

(
σ(n)

k|k (i )
)2

]}
(3.12)

ik = argmax
i

EZ

{
KLD

[
p (Θk (i )|zk )

∣∣ ∣∣p (Θk )
]}

(3.13)

ik = argmin
i

EZ

{
H

[
p (Θk (i )|zk )

]}
(3.14)

where
(
σ(n)

k|k (i )
)2

is the variance of single target threat θ(n)
k (i ) of target n,Θk (i ) is the mul-

titarget threat, H
[
p (Θk (i ))

]
is the entropy of p (Θk (i )) and σ(n)

k|k (i ), p (Θk (i )|zk ) depend
on the target i that is observed.

If an analytical expression cannot be found for Eq. (3.12), (3.13) and (3.14), they can
be implemented in a Monte Carlo fashion by sampling from the PDF of the correspond-
ing target. In this case, Eq. (3.13) can be evaluated using the kth Nearest Neighbour
(k-NN) method presented in Chou et al. [2011] and Eq. (3.14) can be evaluated using
the k-NN method presented in Ajgl and Šimandl [2011].

3.3. SIMULATED EXAMPLES
In the following subsections, it is demonstrated that the proposed approach is easy to
adapt to operational requirements and that it gives meaningful sensor selections. This
is done by taking into account different aspects of threat in different contexts and dis-
cussing the corresponding sensor management results in a single- and in a multi-target
scenario.

The threat-based approach is also compared to a task-based approach to sensor
management. For both approaches, the trace of the covariance matrix is used as mea-
sure of uncertainty because it is intuitively easier to understand than KLD or entropy.
The chosen task-based approach selects the sensing action that minimizes the expected
trace of the (multi)target states’ covariance matrix whereas, the threat-based approach
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selects the sensing action that minimizes the expected trace of the (multi)target threat
covariance matrix.

3.3.1. ASSUMPTIONS
The threat-based sensor management approach is presented in a target tracking con-
text. In order to focus on the sensor management instead of the filtering problem, the
following assumptions are made:

• the targets are well separated and for simplicity, their PDFs are treated as decou-
pled such that one filter per target can be used;

• the multitarget state vector X is the concatenation of single target state vectors x
and the multitarget covariance matrix is a block-diagonal matrix whose elements
are single-target covariance matrices P ;

• the targets move in the 2-dimensional (x − y) space;

• there is one sensor that provides range and bearing measurements of the selected
target and/or of the selected accuracy;

• there are no false alarms and there is no detection uncertainty, i.e. the probability
of detection is one.

These assumptions are rather limiting but necessary for providing a proof of concept
of the proposed approach. In the following chapters, these assumptions are relaxed
and the proposed approach is applied in more challenging multitarget scenarios with
detection uncertainty and presence of spurious measurements.

3.3.2. FILTERING PARAMETERS AND SENSOR SELECTION

The motion of each target3 in the Cartesian coordinates is modeled using a nearly con-
stant velocity model, as presented in Li and Jilkov [2003]:

xk = F xk−1 +wk (3.15)

where xk−1 =


x

vx

y
vy

 , F =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 , (3.16)

wk ∼N (µw ,Σw ) , µw =


0
0
0
0

 , Σw =


σ2

x T 3/3 σ2
x T 2/2 0 0

σ2
x T 2/2 σ2

x T 0 0
0 0 σ2

y T 3/3 σ2
y T 2/2

0 0 σ2
y T 2/2 σ2

y T

 ,

(3.17)

σ2
x ,σ2

y are the power spectral densities of the acceleration noise and T is the sampling
time.

3For simplicity, the target index is omitted in this section.
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A sensor provides range and bearing measurements of a target with states xk accord-
ing to:

zk =
[ √

x2 + y2

atan2(y, x)

]
+vk (3.18)

where vk ∼N (µv ,Σv ) , µv =
[

0
0

]
, Σv =

[
σ2

r 0
0 σ2

b

]
, (3.19)

atan2 is the four-quadrant inverse tangent function and σ2
r ,σ2

b are the variances of the
range and bearing measurements respectively.

Each target is tracked using an Extended Kalman filter, see Bar-Shalom et al. [2011].
First, the time prediction step is performed:

x̂k|k−1 = F x̂k−1 (3.20)

Pk|k−1 = F Pk−1F ᵀ+Σw (3.21)

where Pk−1 is the covariance matrix of the system states estimate x̂k−1 at time k −1 and
Pk|k−1 is the predicted covariance matrix of the predicted system states estimate x̂k|k−1

at time k.
Then, the measurement update step is performed:

x̂k|k = x̂k|k−1 +K (zk − ẑk ) (3.22)

Pk|k = (I4×4 −K H)Pk|k−1 (3.23)

where

ẑk =
[

r̂
α̂

]
=

[ √
x̂2

k|k−1 + ŷ2
k|k−1

atan2(ŷk|k−1, x̂k|k−1)

]
(3.24)

H =
[

cos(α̂) 0 sin(α̂) 0
−sin(α̂)/r̂ 0 cos(α̂)/r̂ 0

]
(3.25)

K = Pk|k−1Hᵀ(HPk|k−1Hᵀ+Σv )−1 (3.26)

Due to the assumption that the targets’ PDFs are decoupled and well-separated,
each sensing action only affects the PDF of the corresponding target. In other words,
during the measurement update only the corresponding estimate x̂k|k−1 and covariance
matrix Pk|k−1 are updated. This also holds when sensor management is performed.

In the following examples, the trace of the covariance matrix is used as measure of
uncertainty because it is intuitive to understand what it represents.

Accordingly, when a task-based approach is used the sensing action (i.e. target to be
observed) is given by

ik = argmin
i

EZ

[
trace

(
P (i )

k|k
)]

+
N∑

n=1
n 6=i

trace
(
P (n)

k|k−1

)
= argmin

i

trace
(
P (i )

k|k
)
+

N∑
n=1
n 6=i

trace
(
P (n)

k|k−1

) (3.27)
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and P (i )
k|k depends on target i to be observed. The expectation over the measurement

space Z is trivial because P (i )
k|k does not depend on the measurement realization. Eq.

(3.27) seeks to minimize the uncertainty in the (multi)target pdf, measured by the trace
of its covariance matrix.

When the proposed threat-based approach is used, Eq. (3.12) is simplified to

ik = argmin
i

EZ

[(
σ(i )

k|k
)2

]
+

N∑
n=1
n 6=i

(
σ(n)

k|k−1

)2

 (3.28)

where
(
σ(i )

k|k
)2

is the variance of θ(i )
k|k and depends on target i to be observed.

3.3.3. SINGLE TARGET EXAMPLE: AGGREGATION OF SEVERAL THREAT FUNC-
TIONS

In the first example, a single target is considered that is supposed to stay within a given
corridor of 1 km total width along a predefined trajectory. This scenario is typically
found in maritime-/air- traffic management where ships or aircrafts are expected to
move within shipping lanes or follow specific trajectories.

The target is observed by a radar that can use two different sensing modes: Σ1 =
diag

(
302 m2,12 deg2) and Σ2 = diag

(
102 m2,32 deg2). The first mode has much better

angular accuracy, whereas the second mode has much better range accuracy in order to
strongly emphasize the differences between the two sensor management approaches.
Depending on the relative position and velocity of a target to the radar, one of these two
modes might be more favorable for tracking the target.

Figure 3.4 demonstrates the geometry of the considered example for three different
target trajectories. In all cases the target starts at [−4.5,6] km.

Trajectory 1: Incoming target, leaving the corridor. The target has constant x− y veloc-
ity of [20,−20] m/s.

Trajectory 2: Target moving in the corridor. The target has constant x − y velocity of
[20,0] m/s.

Trajectory 3: Receding target, leaving the corridor. The target has constant x − y veloc-
ity of [20,20] m/s.

The target is tracked using an Extended Kalman filter with a nearly constant velocity
motion model where T = 1 sec and σ2

x = σ2
y = 5 m/s. The filter is initialized with the

correct target position/velocity and with covariance matrix defined as

P = diag(202 m2, 22 (m/s)2 202 m2, 22 (m/s)2)

The duration of the considered scenario is 500 seconds.
It is assumed that an operator wants to take into account three aspects of threat:

time to CPA, range to CPA (both with respect to the radar location - representing the
mission of defending the location of the radar) and target distance from the center of
the corridor around a predefined trajectory. The mathematical form of these threat
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Figure 3.4: The geometry of the example, along with the three different target trajectories that are considered.

definitions and their aggregation are the same as in Subsec. 3.2.1, with equal weights
m1 = m2 = m3 = 1/3 and [t1 t0.5 t0] = [0 5 10] min, [d1 d0.5 d0] = [0 5 10] km,
[dC

0 dC
0.5 dC

1 ] = [500 750 1000] m.
Firstly, it is verified that the aforementioned threat functions are reasonable. Figures

3.5a through 3.5c demonstrate how the mean value of the threat evolves for each target
trajectory. As expected, threat attains its highest value for the incoming target. The
target that remains in the corridor has the lowest threat values. The threat values of the
receding target are somewhere in-between. It can also be noticed that the threat-level
increases when the target approaches the radar or leaves the corridor.

Secondly, the differences in sensor selection between the threat-based approach
and the task-based approach are highlighted. Figures 3.6a through 3.6c demonstrate
how the trace of the covariance matrix of the target x − y position estimate evolves over
time when using each of the two different sensor management approaches. Table 3.1
shows the sensor selections for the two different approaches along with the expected
logarithm of the squared error in threat estimation, the expectation taken with respect
to the scenario time. In other words, it is examined how the threat-based approach per-
forms in the context of the task-based approach and vice versa.

By comparing Fig. 3.6a through 3.6c to Table 3.1, the first advantage of the threat-
based approach can be seen. The two approaches provide comparable threat estimation
errors but the threat-based approach uses much less sensor resources, see Table 3.1. A
consequence of the lower resource consumption is that the target is tracked with less ac-
curacy, especially when the target is close to the radar and the uncertainty in the threat is
minimal. Here it must be pointed out that good tracking accuracy was not the objective
of the threat-based approach as opposed to the task-based approach. The threat-based
approach assumes that the uncertainty in the threat-level of the target is important and
that once the uncertainty is low enough the operator will take a proper action. If tracking
accuracy is also of interest, then a corresponding threat function must be (re)defined.

The preference of each sensor management approach for a given sensing mode de-
pends on the geometry of the scenario at hand and the specific choice of the measure-
ment noise covariance matrices. For different geometries, different sensing mode pref-
erences have been observed but the threat-based approach always used less resources
than the task-based approach.

The second advantage of the threat-based approach, which is its flexibility to be
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(a) Incoming target, leaving the corridor (trajectory 1 in Fig. 3.4).
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(b) Target moving in the corridor (trajectory 2 in Fig. 3.4).
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(c) Receding target, leaving the corridor (trajectory 3 in Fig. 3.4).

Figure 3.5: The threat evolution for the three different trajectories.
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Table 3.1: Sensor mode selection results and threat estimation squared error (T.S.E.)

(a) Incoming target, leaving the corridor

Threat-based Task-based
no meas. [selections / Total time] 110/500 0/500
mode 1 [selections / Total time] 138/500 439/500
mode 2 [selections / Total time] 252/500 61/500

Et [log(T.S.E.)] -12.01 -11.768

(b) Target moving in the corridor

Threat-based Task-based
no meas. [selections / Total time] 161/500 0/500
mode 1 [selections / Total time] 33/500 494/500
mode 2 [selections / Total time] 306/500 6/500

Et [log(T.S.E.)] -9.509 -10.263

(c) Receding target, leaving the corridor

Threat-based Task-based
no meas. [selections / Total time] 331/500 0/500
mode 1 [selections / Total time] 67/500 493/500
mode 2 [selections / Total time] 102/500 7/500

Et [log(T.S.E.)] -7.898 -8.064

adapted to different operational contexts, is demonstrated in the following subsection.

3.3.4. MULTITARGET EXAMPLE: ADAPTING THE THREAT DEFINITION TO

THE OPERATIONAL CONTEXT
In the second example, three targets are considered that are observed by a radar with
a single sensing mode. The radar can observe only one target per time instance and
the problem is to decide which target must be observed at each time instance. This is
a simplified version of the beam-pointing problem for multiple target tracking that is
considered later on in this thesis.

EXPERIMENTAL SETUP

Figures 3.7a and 3.7b show the two different scenarios that are considered:

Scenario 1: One receding and two incoming targets, with initial x−y positions [5,0] km,
[10,0] km, [15,0] km and constant x− y velocities [30,0] m/s, [−30,0] m/s, [−30,0]
m/s respectively.

Scenario 2: Three incoming targets, with initial x − y positions [5,0] km, [10,0] km,
[15,0] km and constant x − y velocities [−30,0] m/s, [−30,0] m/s, [−30,0] m/s re-
spectively.

The duration of each scenario is 75 seconds.
The targets are tracked using three Extended Kalman filters with nearly constant ve-

locity motion models where T = 1 sec, σ2
x = 2 m/s and σ2

y = 0.1 m/s. The measurement

noise covariance matrix is Σ = diag
(
102 m2,12 deg2). The filters are initialized with the
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(a) Incoming target, leaving the corridor (trajectory 1 in Fig. 3.4).
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(b) Target moving in the corridor (trajectory 2 in Fig. 3.4).
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(c) Receding target, leaving the corridor (trajectory 3 in Fig. 3.4).

Figure 3.6: The evolution of the trace of the X-Y covariance matrix for the three different trajectories. Notice
that logarithmic scale is used for the Y -axis.
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(a) Scenario 1: One receding and two incoming targets.
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(b) Scenario 2: Three incoming targets.

Figure 3.7: The target trajectories for the two considered scenarios.

correct target positions/velocities and with covariance matrices

P (1) = diag(202 m2, 22 (m/s)2, 202 m2, 22 (m/s)2)

P (2) = 1.2P (1)

P (3) = 1.5P (1) (3.29)

Two different contexts are considered:

Defense: An operator wants to protect the asset where the radar is located. Accordingly,
the operator takes into account two aspects of threat: the time and range to CPA
with respect to the radar location.

Civilian: An operator performs traffic control and is interested in avoiding collisions
between targets. Accordingly, the operator takes into account two aspects of threat:
the time and range to CPA among all pairs of targets.

The mathematical form of these threat definitions and their aggregation are the same
as in Subsec. 3.2.1, with equal weights m1 = m2 = 0.5 and [t1 t0.5 t0] = [0 3 6] min,
[d1 d0.5 d0] = [0 6 12] km.

The sensor selections at each time instance are evaluated using three control schemes:

• myopic control, i.e., optimization with horizon of one time instance;

• Open Loop Feedback Control (OLFC) with optimization horizon of two time in-
stances (OLFC-2), i.e. optimize for two time instances but only apply the sensing
action for the first time instance; and

• OLFC with optimization horizon of five time instances (OLFC-5), i.e. optimize for
five time instances but only apply the sensing action for the first time instance.

The OLFC-2 and OLFC-5 schemes are used as better approximations to the optimal,
closed-loop sensor management [Huber, 2009, Subsec. 2.4.2] and are presented for rea-
sons that become evident in the following subsections.
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Table 3.2: Sensor selection results

(a) Myopic control

Scenario 1 Scenario 2

mean number mean number
of selections of selections

Method Targ. 1 Targ. 2 Targ. 3 Targ. 1 Targ. 2 Targ. 3
Task-based 21 25 29 20 25 30

Threat-based, defense 29.78 24.85 20.37 35.39 22.24 17.37
Threat-based, civilian 34.27 26.1 14.63 20.21 20.77 34.02

(b) OLFC-2

Scenario 1 Scenario 2

mean number mean number
of selections of selections

Method Targ. 1 Targ. 2 Targ. 3 Targ. 1 Targ. 2 Targ. 3
Task-based 26.35 26.1 22.55 20.1 29.54 24.48

Threat-based, defense 27.26 24.58 23.16 14 35.85 25.15
Threat-based, civilian 4.85 65.15 5 6.95 47.48 20.57

(c) OLFC-5

Scenario 1 Scenario 2

mean number mean number
of selections of selections

Method Targ. 1 Targ. 2 Targ. 3 Targ. 1 Targ. 2 Targ. 3
Task-based 32.27 17.98 24.78 24.26 21.64 29.1

Threat-based, defense 17.16 23 34.84 7.81 30.11 37.08
Threat-based, civilian 4.74 65.54 4.72 8.24 35.91 30.85

SIMULATION RESULTS AND DISCUSSION ON THE SENSOR SELECTIONS

The results obtained using myopic control in both contexts are summarized in Table 3.2a.
The results were evaluated over 100 Monte Carlo runs using 500 simulated measure-
ments for sensor management purposes and 1000 samples for approximating the threat
PDFs.

The results for OLFC-2 and OLFC-5 schemes are summarized in Tables 3.2b and 3.2c
respectively. These were evaluated over 100 Monte Carlo runs using 25 simulated mea-
surements for sensor management purposes and 500 samples for approximating the
threat PDFs due to the high computational load caused by the combinatorial complex-
ity of the OLFC implementation.

When using myopic control, see Table 3.2, it can be concluded that:

• the qualitative behavior of the task-based criterion (sum of the traces of the co-
variance matrices of the three targets) is the same for the two scenarios and does
not depend on the operational context;

• the task-based criterion assigns most sensor resources to the target that is located
furthest away from the sensor, irrespective of the operational context and the target
trajectories;
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(a) Myopic control.
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(b) OLFC-2.
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Figure 3.8: Civilian context: Threat uncertainty evolution for scenario 1. The uncertainty in threat is measured
by the trace of the multitarget threat covariance matrix.
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Figure 3.9: Defense context: Threat uncertainty evolution for scenario 1. The uncertainty in threat is measured
by the trace of the multitarget threat covariance matrix.
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Figure 3.10: Civilian context: Threat uncertainty evolution for scenario 2. The uncertainty in threat is mea-
sured by the trace of the multitarget threat covariance matrix.
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Figure 3.11: Defense context: Threat uncertainty evolution for scenario2. The uncertainty in threat is mea-
sured by the trace of the multitarget threat covariance matrix.
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• the threat-based approach offers qualitatively different results that depend on the
operational context and on the behavior of the targets. Especially, when myopic
optimization is used:

– in the considered defense context, the threat-based approach focuses on the
target that is closest to the radar, especially if it is incoming;

– in the considered civilian context and in Scenario 1, the threat-based ap-
proach spends more resources to the targets that are about to collide;

– in the considered civilian context and in Scenario 2, the threat-based ap-
proach focuses on the target at the longest range because the range effect is
isolated and that target has the highest uncertainty in its threat-level. This
happens because all the targets are equally spaced and move towards the
radar with the same speed, which severely limits the collision probability.

When applying OLFC, the sensor selections become less intuitive, see for example
Table 3.2c where the closest target is selected by the defense threat-based criterion only
8 times. Nevertheless, OLFC is of interest in this example. As it can be seen in Fig. 3.9a
and 3.11a, even though the sensing action that minimizes the uncertainty in the threat
is chosen by the threat-based approach, in the long run this might not lead to lower
uncertainty in the threat-level than using the task-based approach. This phenomenon
happens due to the suboptimal nature of myopic optimization, i.e. because the sensing
action is selected by taking into account only the subsequent time instance.

If OLFC is used, it can be seen that the proposed threat-based method results in
lower uncertainty in the threat-level than the task-based method also in the long run.
Figures 3.8a through 3.11c verify this claim for the considered scenarios and contexts
when using OLFC. As seen in Tables 3.2b and 3.2c, the conclusions drawn for the myopic
sensor management selections are no longer valid when OLFC is used.

3.4. SUMMARY
This chapter aimed at addressing the disadvantages of the existing sensor management
schemes that were documented in the previous chapter. For this reason, a novel threat-
based approach to resource allocation was presented. The proposed approach was in-
spired by the threat assessment process, which is an integral part of missions executed
in the defense domain. The key idea behind the proposed approach is to manage the
uncertainty in higher-level quantities that describe in a better way what are the user-
needs in a specific operational context. Accordingly, the proposed approach manages
the uncertainty in the threat-level of all targets present in a scenario.

The proposed approach has the three desirable properties that were identified in the
previous chapter and that the existing approaches do not have, i.e. the Bayes-optimal
allocation of resources among diverse tasks while taking into account explicitly the user-
needs within a given operational context. In other words, the objective function to be
optimized is a measure of uncertainty of the threat-level of each target. The threat-level
is a higher-level quantity that can be defined according to the operational context and
the user needs. Moreover, it was shown how to model mathematically the threat-level
in different contexts, both defense and civilian.
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Via simulated examples, it was shown that using the proposed approach results in
improved situation awareness in contexts as diverse as asset-defense and air-traffic-
control. The improvement in situation awareness was measured by the reduction in
the uncertainty in the threat-level of all targets. As a consequence, by using this method
an operator can make decisions with lower uncertainty and lower operational risk.

In the presented examples, the proposed approach did not result in improved track-
ing accuracy but it is important to understand that this was not explicitly taken into
account when modeling threat. Nevertheless, the proposed method has the potential to
also address this problem by considering tracking accuracy as an aspect of threat.



4
THREAT-BASED MULTIPLE TARGET

TRACKING USING AN MFR

The previous chapter presented the proposed approach to sensor management and
demonstrated its feasibility and flexibility by means of examples. The presented ex-
amples were intentionally simple for demonstration purposes, which means that im-
portant aspects of multitarget tracking were ignored. The most prominent of these is
the imperfect radar detection process. This chapter applies the proposed approach in
complicated multitarget tracking scenarios where there is detection uncertainty, false
alarms can arise and the true number of targets is unknown.

Section 4.1 presents the multitarget tracking problem and explains the difficulties that
an imperfect detection process poses to resource management and signal processing
algorithms. Section 4.2 presents the considered system setup and formulates the radar-
beam pointing problem. Section 4.3 discusses the existing resource allocation approaches
to radar beam-pointing. Section 4.4 explains how the proposed, threat-based approach
can be applied to the radar beam-pointing problem. Section 4.5 shows simulated exam-
ples where the proposed approach is compared to existing approaches and is found to
be superior. Finally, Section 4.6 concludes the chapter.

4.1. THE MULTITARGET TRACKING PROBLEM AND WHY IT IS

DIFFICULT TO SOLVE
Multi-Function Radars (MFRs) receive an increasing amount of attention due to their
unique capability to execute several diverse tasks such as area surveillance, communi-
cations and weapon control. Most commonly, they employ active phased array technol-
ogy and digital waveform generators, which give them significant advantages over con-
ventional, rotating radars with horn-fed reflector antennas. One of the key advantages
of MFRs is their capability to steer their (narrow) antenna beam almost instantaneously
to the desired direction. This capability offers an opportunity to use adaptive beam-
pointing via a resource management algorithm in order to improve the performance of
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MFRs.
An important application, where this capability is of interest, is the tracking of mul-

tiple targets, such as aircrafts, ships and missiles. In multitarget tracking, it is desired to
estimate the number and kinematic states of all targets present in a scenario given a se-
ries of observations. The challenging nature of this problem is due to a) the presence of
false alarms; b) detection uncertainty; and c) because targets can enter and leave the ob-
servation space. The aforementioned challenges not only hinder the localization of any
observed targets, as discussed in the previous chapter, but also introduce uncertainty in
the estimated number of targets that are present. In other words, both the number of
targets and their kinematic properties must be estimated.

The control of beam-direction and the performance of the algorithm that uses any
received measurements for estimating target quantities, such as their number, position
and velocity, are closely coupled. In this case, radar resource management can be seen
as the component that closes the control loop in the estimation process, see the discus-
sion in Chapter 1. Good beam-direction control can lead to improved estimation results
whereas bad beam-direction control can exacerbate the estimation results. Therefore,
radar resource management algorithms are of paramount importance when tracking
(multiple) targets using an MFR.

In this chapter, the aforementioned resource management problem for tracking mul-
tiple targets is considered. To be more specific, the focus is on the radar-beam pointing
problem, that is, to determine at each time step the best direction for a narrow radar-
beam such that multiple targets can be tracked. The problem must be considered under
these two aspects: a) the selection of a suitable signal processing algorithm for estimat-
ing the number and states of all targets; and b) the selection of a resource management
algorithm for using the best beam-direction at each time instance. Ideally, both selec-
tions produce Bayes-optimal results and do not make use of any heuristics.

For several years, the Multiple Hypothesis Tracking (MHT) and the Joint Probabilis-
tic Data Association (JPDA) algorithms have been the workhorse of multitarget tracking,
see Blackman and Popoli [1999]; Bar-Shalom et al. [2011]. A common characteristic of
these approaches is the divide-and-conquer strategy employed for solving the data as-
sociation problem, see [Mahler, 2007, Ch. 10]. In other words, several hypotheses for
the measurement-to-track associations are formed and retained until a dominating hy-
pothesis is found. Given a certain association hypothesis, a variant of the Kalman fil-
ter is applied for solving each of the multiple single-target filtering problems. Unfortu-
nately, the approximations employed in these approaches result in a non-Bayes-optimal
estimation process for the multitarget probability density function, see [Mahler, 2007,
Ch. 10.7.2].

A new approach that has emerged in the last years is to use the Random Finite Set
(RFS) theory in order to solve the multitarget tracking problem in a fully Bayesian man-
ner. This means that approximations are not employed from the beginning but only
when the filtering problem becomes intractable. Among the pioneers of this approach
are Mahler [2007]; Vo et al. [2003, 2007, 2009a].

The most popular approximations to the optimal Bayesian multitarget filter that
have been proposed are: a) the Probability Hypothesis Density (PHD) filter, where the
number of targets is assumed to be distributed according to a Poisson distribution and
therefore it is sufficient to propagate and update only its first moment, see Mahler [2007];
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Vo et al. [2003]; b) the Cardinalized Probability Hypothesis Density (CPHD) filter that
relaxes the Poisson assumption on the number of objects and additionally propagates
the full distribution of the number of targets, see Mahler [2007]; Vo et al. [2007]; and
c) the Cardinality-Balanced Multi-target Multi-Bernoulli (CB-MeMBer) filter that ap-
proximates the multitarget PDF as a multi-object multi-Bernoulli PDF, see Vo et al.
[2009a].

The choice of a PHD or Cardinalized Probability Hypothesis Density (CPHD) filter
appears to be unsuitable for addressing the beam-pointing problem. The reason is that,
for beam-pointing, a reliable target position estimate is required but a (C)PHD filter
suffers from unreliable state estimate extraction from the estimated multitarget density
due to the error-prone clustering step, required in the case of moment approximations,
as discussed in [Vo and Ma, 2006, Sec. III.C]. In particular, an inadequate matching be-
tween the expected number of targets and the number of natural clusters appearing in
the running (C)PHD filter results in extraction of bad target position estimates. Obvi-
ously, using bad target position estimates leads to bad selection of beam direction and
eventually bad tracking performance. Therefore, to tackle the aforementioned problem,
a CB-MeMBer filter is used because the multi-Bernoulli representation of the posterior
density allows direct and accurate state estimates extraction, see the discussion in Vo
et al. [2009a].

The main criteria that have been proposed up to now for performing resource man-
agement in the RFS context are due to Mahler and have been implemented (most com-
monly) using quantities of a running PHD filter. The first scheme selects the sensing
action that maximizes the expected number of targets, assuming that there are no false
alarms and no measurement noise, and it is called Posterior Expected Number of Tar-
gets (PENT), see Mahler and Zajic [2004]. The second scheme is an extension of the first
one such that the tactical importance of each target is taken into account and it is called
Posterior Expected Number of Targets of Interest (PENTI), see Mahler [2004]. Another
scheme that was proposed in the robotics context for path planning, but can also be
of interest, is selecting the measurement that maximizes the Rényi or alpha divergence
between the multi-object prior and the multi-object posterior densities, see Ristic and
Vo [2010].

Lately, a new sensor management criterion has been proposed that is most suitable
when the multitarget PDF is estimated using a CB-MeMBer filter. This criterion sug-
gests minimizing the expected variance of the multi-Bernoulli cardinality, the expecta-
tion taken with respect to the measurement PDF. This criterion was proposed in Gostar
et al. [2013a] and also used in different problem formulations in Gostar et al. [2013c,b,
2014]. A similar criterion, i.e. minimizing the expected variance of the Maximum A Pos-
teriori (MAP) estimate of the multi-Bernoulli cardinality, was proposed in Hoang [2012];
Hoang and Vo [2014]. Both these criteria select sensing actions based only on the un-
certainty in the cardinality of the estimated PDF but ignore the uncertainty in the kine-
matic states (e.g. position/velocity). Furthermore, they do not take into account the
operational context.

In order to tackle the beam pointing problem, the threat-based approach presented
in the previous chapter is used. In other words, the uncertainty in higher-level quantities
that are directly relevant to the operational goal of a radar system is managed rather than
the uncertainty in the estimated multitarget PDF.
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4.2. SYSTEM SETUP AND PROBLEM FORMULATION
Consider a scenario where an MFR is tasked with tracking multiple targets. An MFR can
have a narrow beam that can be steered almost instantaneously to the desired direc-
tion. The considered problem is: towards which direction u ∈ [0,π/2] should the narrow
radar-beam be pointed at each time instance? In other words, which target should be
observed by the radar at each time instance?

For solving the multitarget filtering problem, a CB-MeMBer filter is used and the
standard assumptions that pertain to it are made, see Vo et al. [2009a]. The assumptions
behind the CB-MeMBer filter and its Sequential Monte Carlo (SMC) implementation are
also summarized in Appendix C. A state estimate is extracted from the estimated mul-
titarget PDF using the Marginal Multi-target (MaM) estimator, introduced in [Mahler,
2007, pp.497]. The MaM estimator first finds the MAP estimate N̂ of the number of tar-
gets using the estimated cardinality distribution. Subsequently, a MAP state estimate is
extracted from the N̂ densities with the highest probability of existence.

For solving the beam-pointing problem, the sensing action that minimizes the un-
certainty in higher level quantities that are directly related to the operational goal of the
radar system is selected. Accordingly, a function that maps the states of the targets to
the threat domain is considered, obtaining in this way the PDF of the threat that each
target poses to an asset of interest. Then, the sensing action that minimizes the intrinsic
uncertainty in the multitarget threat PDF is chosen. Moreover, an example drawn from
the civilian domain is also presented.

Several approaches, both adaptive and naive, are compared to the proposed ap-
proach. The naive approaches amount to selecting the beam direction such that all
the targets are observed sequentially or at random order. The adaptive approaches take
into account the uncertainty in the estimated multitarget PDF and try to minimize it
in some sense. The adaptive approaches, against which the proposed method is com-
pared, are: a) selecting the action that maximizes PENT; b) selecting the action that
minimizes the expected variance of the multi-Bernoulli cardinality; and c) selecting the
action that minimizes the expected intrinsic uncertainty in the multitarget states PDF.

The conditional entropy is used as a means of quantifying the intrinsic uncertainty
in the multitarget (states or threat) PDFs. The trace of the covariance is not defined in
this context because the state space is not Euclidean, see [Mahler, 2007, pp.65].

4.3. EXISTING APPROACHES TO RADAR BEAM-POINTING FOR

MULTITARGET TRACKING
As discussed in Section 4.1, the existing adaptive sensor management schemes are based
on the Rényi or alpha divergence (between the multi-object prior and the multi-object
posterior densities), the predicted expected number of targets (of interest) and also
based on the variance of the multi-Bernoulli cardinality. These schemes are presented
in the following subsections.

4.3.1. INFORMATION-DRIVEN SENSOR MANAGEMENT

In information theory, a measure of the intrinsic uncertainty in a PDF is its Shannon
entropy (or its generalization, the Rényi or alpha entropy). In the case of myopic sen-
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sor management, minimizing the conditional entropy gives the same sensor selection
as maximizing the KLD between the posterior and the predicted PDFs, see Aoki et al.
[2011]. Unfortunately, a similar result has not been proven for the generalizations of
the conditional entropy and the KLD, i.e., for the Rényi or alpha entropy/divergence or
within the RFS context. For this reason, the conditional entropy is used as a measure of
uncertainty of a PDF in the RFS context. Accordingly, the radar-beam is pointed towards
direction uk , given by:

uk = argmin
u

[∫
H(Xk |Z)g (Z|Xk ,u)δZ

]
(4.1)

u =
{

atan2(ŷ j , x̂ j )
}

, ∀ j ∈ [1, . . . , N ]

where Z is the set of measurements collected due to pointing the radar-beam at direc-

tion u given by the MAP estimate x̂( j ) = [x̂ j , v̂ j
x , ŷ j , v̂ j

y ]ᵀ of the distribution of component

( j ), Xk = {x(1), . . . ,x(N )} is the predicted multitarget state at time k, N is the cardinality of
Xk , g (Z|Xk ,u) is the measurement likelihood and H(Xk |Z) is the entropy of p(Xk |Z).

The entropy of some basic RFS PDFs has been calculated in an unpublished paper,
see Rezaeian and Vo [2000]. Eq. (17) in Rezaeian and Vo [2000] can be used for calculat-
ing the entropy H(X) of a multi-Bernoulli RFS X ∈X :

H(X) = H(|X|)+E[H(pn(x))]−E[log(|X|!)]−E[|X|] log(K̄ ) (4.2)

where:

• H(|X|) is the entropy of the cardinality distribution B(N ). The cardinality distribu-
tion of a multi-Bernoulli RFS is given in [Mahler, 2007, pp.369] and the evaluation
of its entropy is trivial. This term represents the uncertainty in the number of tar-
gets present in a considered scenario.

• E[H(pn(x))] is the expected entropy of the distribution of the Bernoulli compo-
nents, the expectation taken w.r.t. the cardinality distribution. This term can be
calculated by first reconstructing pn(x) for every possible cardinality n = 1, . . . , N ,
then calculating each corresponding entropy and finally, calculating E[H(pn(x))].
The PDFs pn(x) can be approximated by properly combining samples drawn from
the PDF of each independent Bernoulli component (i ). The entropies H(pn(x))
can be calculated using the sample approximations of the corresponding PDFs
and the k-NN method proposed in Ajgl and Šimandl [2011]. This term represents
the uncertainty in the states of targets present in a considered scenario. It also
includes information about the ordering of targets, which is deducted using the
following term.

• E[log(|X|!)] is the expected value of the factorial of the cardinality, the expectation
taken w.r.t. the cardinality distribution. Its evaluation is also trivial. This term
represents the uncertainty in the ordering of targets present in a scenario.

• E[|X|] log(K̄ ) is a term that compensates for the units in the pn(x). K̄ = K /α is a
unitless quantity, where K represents the unit that the space is measured and α is
the unit of the volume measure of X.
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4.3.2. PENT-BASED SENSOR MANAGEMENT
The Posterior Expected Number of Targets (PENT) scheme, presented in Mahler and
Zajic [2004], has been devised in order to take into account the non-ideal field of view
of a sensor. PENT selects the sensing action that maximizes the number of objects to
be seen by the sensor. This scheme has also been extended such that it can take into
account the tactical significance of a target, resulting in the Posterior Expected Number
of Targets of Interest (PENTI), see Mahler [2004] scheme.

In order to reduce the computational complexity, it is assumed that an ideal set of
measurements can be collected, i.e. no measurement noise and no false alarms but the
probability of detection can be less than one, see the discussion in Mahler and Zajic
[2004]. Given this ideal set of predicted measurements, the sensing action that maxi-
mizes the posterior expected number of targets is performed.

When a CB-MeMBer filter is used, the radar-beam direction, based on PENT, is given
by

uk = argmax
u

[∫ (
N (k)∑
i=1

r (i )
k|k (Z)

)
g (Z|Xk ,u)δZ

]
(4.3)

where u =
{

atan2(ŷ j , x̂ j )
}

, ∀ j ∈ [1, . . . , N ]

where r (i )
k|k (Z) is the updated probability of existence of component (i ) using the (mul-

titarget) measurement Z that is simulated from p(Z|Z1:k−1) without adding measure-
ment noise and false alarms but only taking into account the detection uncertainty, as
proposed in Mahler and Zajic [2004].

4.3.3. CARDINALITY-BASED SENSOR MANAGEMENT
This scheme, suggested in Gostar et al. [2013a], seeks to minimize the variance of the
cardinality estimate. Accordingly, the radar beam position is given by:

uk = argmin
u

{∫ [
N (k)∑
i=1

r (i )
k|k (Z)

(
1− r (i )

k|k (Z)
)]

g (Z|Xk ,u)δZ

}
(4.4)

where u =
{

atan2(ŷ j , x̂ j )
}

, ∀ j ∈ [1, . . . , N ]

In order to reduce the computational complexity, in this thesis it is assumed that an
ideal set of measurements can be collected Mahler and Zajic [2004], i.e. no measure-
ment noise and no false alarms but the probability of detection can be less than one.
The authors in Gostar et al. [2013a] do not make this assumption but it is reasonable,
much like when PENT is used.

4.4. THREAT-BASED RADAR BEAM-POINTING FOR MULTITAR-
GET TRACKING

As an alternative to the sensor management approaches presented in the previous sec-
tion, the approach presented in Chapter 3 is used. In this chapter, two examples are
given. One from the defense and one from the civilian domain.
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From the defense domain, asset protection is considered. Accordingly, the threat
that is posed by a target i to asset j depends on how close and how fast target i can
come to asset j . These are measured by the time and range to Closest Point of Approach
(CPA), as explained in Chapter 3.

In order to move from the time and range domain to the single-target threat domain
T = [0,1], a sigmoid function can be utilized for example1:

θt

(
x(i );x( j )

)
=



1 , if |t i j
C PA | ≤ t1

1−2

(
|t i j

C PA |−t1

t0−t1

)2

, if t1 < |t i j
C PA | ≤ t0.5

2

(
|t i j

C PA |−t0

t0−t1

)2

, if t0.5 < |t i j
C PA | ≤ t0

0 , if t0 < |t i j
C PA |

(4.5)

θd

(
x(i );x( j )

)
=



1 , if dC PA ≤ d1

1−2

(
d

i j
C PA−d1

d0−d1

)2

, if d1 < d i j
C PA ≤ d0.5

2

(
d

i j
C PA−d0

d0−d1

)2

, if d0.5 < d i j
C PA ≤ d0

0 , if d0 < d i j
C PA

(4.6)

where t1 < t0.5 < t0 and d1 < d0.5 < d0 are the points where the threat is equal to 1, 0.5
and 0.

Since both time and range to CPA have been mapped to the same domain, i.e. threat,
it is meaningful to aggregate them using a weighted sum in order to evaluate the total
threat level of a target i with respect to asset j :

θ
(
x(i );x( j )

)
= mtθt

(
x(i );x( j )

)
+mdθd

(
x(i );x( j )

)
(4.7)

where mi is the weight assigned by the operator to θi
(
x(i );x( j )

)
such that mt +md = 1. In

this way, a two-objective optimization problem is simplified to a still meaningful single
objective problem that consists of the weighted sum of the two aspects of threat.

From the civilian domain, air traffic control is considered. Accordingly, threat is now
defined by how close and how fast two aircrafts i , j can come to each other. In this case,
the notions of time and range to CPA can be utilized again. The difference is that time
and range to CPA are now evaluated among all pairs of targets (i , j ), where i , j = 1, . . . , N
and i 6= j instead of between each target and an asset. From the N −1 different threat
values for a target i , the threat value θ∗

(
x(i )

)
is selected such that:

θ∗
(
x(i )

)
:= θ

(
x(i );x( j∗(i ))

)
(4.8)

where j∗(i ) = argmax
j (...)

θ̂
(
x(i );x( j )

)
, ∀i , j ∈ [1, . . . , N ], i 6= j (4.9)

with θ̂
(
x(i );x( j (i ))

)
=

∫
θ

(
x(i );x( j (i ))

)
p

(
θ

(
x(i );x( j (i ))

))
dθ

(
x(i );x( j (i ))

)
(4.10)

1The specific choice of sigmoid functions is only for demonstration purposes. Any other convenient function
could be used by the system designer and the operator.
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and N is the number of targets in the scenario. The mean threat θ̂
(
x(i );x( j )

)
can be eval-

uated in a Monte Carlo fashion using samples from the estimated single targets PDFs
p(i )(x(i )), p( j )(x( j )).

In the multitarget tracking context, each target has its own threat PDF. Especially
when a CB-MeMBer filter is used, the multitarget threat RFS variable Θ is a union of N
independent Bernoulli RFSs Θ(c) with corresponding existence probabilities r (c) ∈ [0,1]
and probability density p

(
θ(c)

)
defined on T for c = 1, . . . , Nc . Accordingly, Θ is fully de-

scribed by the corresponding multi-Bernoulli parameter set {r (c), p
(
θ(c)

)
}c=1,...,Nc , where

p
(
θ(c)

)
:= p

(
θ(c)(x)

)
: x ∼ p(c)(x). The multitarget threat Θ has the same cardinality dis-

tribution as the multitarget state RFS X.
Therefore, the radar-beam direction is given by

uk = argmin
u

[∫
H(Θ|Z)g (Z|Xk ,u)δZ

]
(4.11)

where u =
{

atan2(ŷ j , x̂ j )
}

, ∀ j ∈ [1, . . . , N ]

where atan2(ŷ j , x̂ j ) is the four-quadrant inverse tangent function.
It holds that the single-target threat space T has volume 1 and that K̄ = 1 and

log(K̄ ) = 0. Accordingly, the term E[|X|] log(K̄ n) in Eq. (4.2) is equal to zero and can
be ignored.

The main difference between the proposed threat-based sensor management and
the PENTI scheme is that the uncertainty in the multitarget threat PDF is explicitly min-
imized, whereas in PENTI the threat level (or tactical significance) of each target is taken
into account for modifying the PENT, which is the quantity to be maximized. Unfortu-
nately, the authors were not able up to this point to implement the PENTI scheme using
quantities from a running CB-MeMBer filter.

4.5. SIMULATED EXAMPLES
In this section, simulated examples are presented based on the definitions of threat ex-
plained in Section 4.4. Both asset protection and air-traffic-control are considered.

4.5.1. EXPERIMENTAL SETUP
Consider a scenario, shown in Figure (4.1), where an MFR is tasked with tracking an un-
known number of targets. The radar can track targets in the sector defined by [0,10] km
in range and [0,π/2] rad in bearing using its “pencil" beam. Three targets are present
during the full duration of the scenario, which is 90 time instances. Their initial posi-
tions in x− y are [1,5] km, [5,5] km and [8,2.5] km respectively. Their initial velocities in
x − y are [6,0] m/s, [−5,−5] m/s and [0,7] m/s respectively.

The motion of the targets follows a nearly constant velocity model with noise covari-
ance matrix:

Σw =


σ2

x T 3/3 σ2
x T 2/2 0 0

σ2
x T 2/2 σ2

x T 0 0
0 0 σ2

y T 3/3 σ2
y T 2/2

0 0 σ2
y T 2/2 σ2

y T

 (4.12)

where T = 1 sec and σ2
x =σ2

y = 1 (m/s)2. All the targets have RCS = 10 m2.
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Figure 4.1: The trajectories of the true targets. The radar is at the origin of the axes.

The targets are observed via a radar that provides range and bearing measurements.
The measurement noise covariance matrix is Σv = diag[(10 m)2, (0.5 degrees)2].

The radar beam has width of 2 degrees without loss due to the target not being on the
boresight of the beam. The probability of detecting a target is calculated using the radar
equation and the Swerling I model. Depending on the distance between a target and the
radar, the probability of detection is in the range of [0.8,0.9] for the specific trajectories
of the targets. Furthermore, false alarms can arise with rate κ = 3.18 ·10−5 (rad · m)−1,
i.e. a clutter measurement is received with probability 0.01 at each time instance.

In order to examine the behavior of the sensor management schemes, it is assumed
that the CB-MeMBer filter is initialized with all the correct tracks and one false track.
Ideally, the true tracks must be maintained with as good accuracy as possible and the
false track should be eliminated. Furthermore, good situation awareness must be achieved,
measured by the intrinsic uncertainty in the multitarget threat PDF.

The correct tracks are initialized with r (i ) = 0.8, with standard deviation of 100 m
around the true x − y position and standard deviation of 1 m/s around the true x − y
velocities. The false track is initialized with r (i ) = 0.5, with mean position uniformly
random in the sector defined by [1,9] km and [0.01,0.9π/2] rad, standard deviation of
100 m in x − y axes and x − y velocity uniformly random in [−5,5] m/s at each Monte
Carlo run.

New tracks are initiated from the measurements of the previous time instance that
were not assigned to any existing tracks. The newly created tracks are initialized with
r (i ) = 0.5, standard deviation of 100 m round the measured x − y position and with x − y
velocity uniformly random in [−5,5] m/s. The probability of survival of each target is
pS,k = 0.99 and tracks with r (i ) < 0.005 are pruned.

Each Bernoulli component (track) is approximated using 2000 particles and the en-
tropy is evaluated using the 50 nearest neighbors of each particle. The integrals in Eq.
(4.1), (4.3) and (4.11) are evaluated in a Monte Carlo fashion using particles from the cor-
responding PDFs. For the random, periodic and PENT sensor management schemes,
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100 Monte Carlo simulations were performed. For the entropy-based schemes, 50 Monte
Carlo simulations were performed due to computational complexity reasons. For the
entropy of the multitarget states PDF it is not clear what is the value of K̄ . Therefore,
two values have been used: K̄ = 1 and K̄ = E[N ].

For evaluating the threat, mt = md = 0.5, [t1, t0.5, t0] = [0,50,10] min and [d1,d0.5,d0] =
[0,7.5,15] km were used for both the asset protection and air traffic control contexts. In
asset protection, the range between each target and the radar is considered, whereas in
air traffic control the range between each pair of targets is considered.

The sensor management results of the various approaches are compared both with
respect to the resulting uncertainty in the posterior multitarget threat and with respect
to their tracking performance using the Optimal Sub-Pattern Assignment (OSPA) metric,
presented in Schuhmacher et al. [2008] and given by:

dc,p (A,B) =
[

1

n

(
min
π∈Πn

m∑
i=1

dc (ai ,bπ(i ))
p + cp (n −m)

)] 1
p

(4.13)

where p ≥ 1, c > 0, a,b ∈ X, dc (a,b) = min(c,‖a−b‖),Πn denotes the set of permutations
on {1, . . . ,n}, A = {a1, . . . , am}, B = {b1, . . . ,bn}. If m = n = 0 then dc,p (A,B) = dc,p (B , A) = 0.
Eq. (4.13) assumes that m ≤ n. If m ≥ n, then dc,p (A,B) = dc,p (B , A). Parameter c rep-
resents the cut-off distance and parameter p is the order of the metric and determines
its sensitivity to outliers. For intuition purposes, it is common to present separately the
cardinality and localization errors:

ecar d
c,p =

(
cp (n −m)

n

)1/p

(4.14)

e loc
c,p =

(
1

n
min
π∈Πn

m∑
i=1

dc (ai ,bπ(i ))
p

)1/p

. (4.15)

The OSPA metric is evaluated using the true states of the three targets and the MaM
estimator.

4.5.2. THREAT UNCERTAINTY AND TRACKING RESULTS

ASSET PROTECTION

Figure (4.2) shows the entropy of the posterior threat PDF, averaged over 100 Monte
Carlo simulations. It can be seen that the proposed threat-based scheme outperforms
all the other approaches. Interestingly, in this case, the PENT scheme performs worse
than the periodic and random schemes in the long run (keeping in mind though that a
myopic optimization scheme is used). The scheme that minimizes the expected cardi-
nality variance has the second best performance.

The OSPA metric, averaged over 100 Monte Carlo simulations, and its correspond-
ing components are shown in Fig. (4.3). It can be seen that the proposed threat-based
scheme and the scheme that minimizes the expected cardinality variance outperform
all the other approaches. Interestingly, the scheme based on the entropy of the mul-
titarget states with K̄ = 1 has the worst performance. The PENT scheme has slightly
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Figure 4.2: Asset protection: The posterior threat entropy, averaged over 100 Monte Carlo runs. The threat-
based scheme and the scheme that minimizes the expected cardinality variance have the best performance,
the states-based threat scheme has the worst performance and PENT has worse performance than the random
and periodic schemes in the long run.

better performance than the random and periodic schemes, contrary to the results in
Ristic and Vo [2010] where it performed worse than choosing a random sensing action
(albeit in a different experimental setting). One reason for PENT not performing as well
as the threat-based approach can be the use of a narrow beam and a myopic optimiza-
tion scheme that do not allow for observing multiple targets simultaneously or during
multiple time steps.

Figure (4.4) shows the MAP estimate of the number of targets, averaged over 100
Monte Carlo simulations. It can be seen that an important reason why the proposed
threat-based scheme and the scheme that minimizes the expected cardinality variance
outperform the other schemes is their superior performance in estimating the correct
number of targets.

AIR TRAFFIC CONTROL

Figure (4.5a) shows the entropy of the posterior threat PDF, averaged over 100 Monte
Carlo simulations. It can be seen that the proposed threat-based scheme outperforms
all the other approaches. The PENT scheme and the scheme that minimizes the ex-
pected cardinality variance have the second best performance.

The OSPA metric, averaged over 100 Monte Carlo simulations is shown in Fig. (4.5b).
The scheme that minimizes the expected cardinality variance has the best performance,
followed by the threat-based scheme.

Figure (4.5c) shows the MAP estimate of the number of targets, averaged over 100
Monte Carlo simulations. It can be seen again that an important reason why the scheme
that minimizes the expected cardinality variance outperforms all other schemes is its
superior performance in estimating the correct number of targets. The threat-based
scheme has the second best performance, closely followed by PENT.

4.5.3. EXTRACTING RULES BASED ON THE BEHAVIOR OF THE ADAPTIVE AP-
PROACHES

By observing the sensor selections of the adaptive schemes, it was noticed that the state-
based entropy scheme observed frequently the track with the highest probability of ex-
istence. On the other hand, the PENT, the scheme that minimizes the expected car-
dinality variance and the threat-based scheme observed frequently the track with the
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(a) OSPA metric.
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(b) Localization error.
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Figure 4.3: Asset protection: The OSPA metric and its components, averaged over 100 Monte Carlo runs. The
threat-based scheme and the scheme that minimizes the expected cardinality variance have the best perfor-
mance, the states-based threat scheme has the worst performance and PENT has slightly better performance
than the random and periodic schemes.
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Figure 4.4: Asset protection: The MAP estimate of the number of targets, averaged over 100 Monte Carlo
runs. The threat-based scheme and the scheme that minimizes the expected cardinality variance have the
best performance, the states-based threat scheme has the worst performance and PENT has slightly better
performance than the random and periodic schemes.

lowest probability of existence. In order to gain more intuition, more simulations were
performed with two rule-based approaches motivated by the previous observations:

• always observe the track with the highest probability of existence, abbreviated as
MaxProb; and

• always observe the track with the lowest probability of existence, abbreviated as
MinProb.

ASSET PROTECTION

Figure 4.6a shows the OSPA metric for the two rule-based methods, PENT, the scheme
that minimizes the expected cardinality variance and the threat-based method. Figure
4.6b shows the MAP estimate of the number of targets and Fig. 4.6c shows the entropy
of the posterior threat PDF. All results are averaged over 100 Monte Carlo runs.

From these figures, it can be concluded that MinProb approach can give results
of almost equivalent quality to the results of the best performing approaches. On the
other hand, the MaxProb approach gives the worst results both in tracking and situa-
tion awareness sense. These results serve as an explanation of how the adaptive sensor
management schemes work, in the myopic optimization context, and indicate that the
MinProb approach could be a potential cheap alternative to our proposed method.

AIR TRAFFIC CONTROL

Figure 4.7a shows the OSPA metric for the two rule-based methods, PENT and the threat-
based method. Figure 4.7b shows the MAP estimate of the number of targets and Fig. 4.7c
shows the entropy of the posterior threat PDF. All results are averaged over 100 Monte
Carlo simulations.

From these figures, it can be concluded that MinProb approach can give results of
better or equivalent quality to the results of the best performing approaches. On the
other hand, the MaxProb approach gives the worst results both in tracking and situa-
tion awareness sense. These results must be treated with caution though since they are
based on myopic optimization and on the specific use of filter and threat definition.
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Figure 4.5: Air traffic control: Performance of the various approaches, averaged over 100 Monte Carlo runs.
The threat-based scheme has the best performance in threat entropy whereas the scheme that minimizes the
expected cardinality variance has the best tracking performance.
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(b) MAP estimate of the number of targets.
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Figure 4.6: Asset protection: Performance comparison of the considered criteria averaged over 100 Monte
Carlo runs. The MinProb approach is almost equivalent to the best performing approaches. On the other
hand, the MaxProb approach has the worst performance.
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(b) MAP estimate of the number of targets.
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Figure 4.7: Air traffic control: Performance comparison of the considered criteria averaged over 100 Monte
Carlo runs. The MinProb approach is better or equivalent to the threat-based approach and to the scheme
that minimizes the expected cardinality variance. On the other hand, the MaxProb approach has the worst
performance.
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4.5.4. VIDEOS
Videos that demonstrate the behavior of various approaches can be found at YouTube,
see http://www.youtube.com/playlist?list=PLE5W2H3_7ZUIXALFQgs19NxA7x0EPYvBn.
Please notice that this playlist is unlisted. It will not appear in search, but anyone with
the link can view it.

In all videos:

• blue circles denote the current target positions;

• blue lines denote the target trajectories up to the current time instance;

• red crosses denote the MAP position estimate extracted from each Bernoulli com-
ponent (track) of the estimated multitarget PDF;

• black diamonds denote the received measurements;

• r ’s denote the probability of existence of each Bernoulli component (track); and

• green lines denote the radar tracking beam of 2 degrees beamwidth.

The videos show a posteriori estimates and therefore, it might appear that the esti-
mates are outside the radar beam, especially if a missed detection has happened, but
this is not the case. The radar beam is always pointed such that it is centered around the
predicted MAP position estimate of a target/track.

4.6. SUMMARY
In this chapter, an application of the proposed threat-based approach to radar beam-
pointing was presented. The goal was to demonstrate that the proposed, threat-based
approach can be used in connection with an advanced signal processing algorithm and
with more realistic experimental settings. For this reason, an imperfect detection pro-
cess was simulated, where the number of targets was unknown, detection uncertainty
existed and false alarms could arise.

In the presented application, the beam of an MFR was controlled such that multi-
ple targets could be tracked using measurements resulting from an imperfect detection
process. The multitarget filtering problem was solved using a state-of-the-art signal pro-
cessing algorithm, i.e. a CB-MeMBer filter.

The proposed approach was compared to several resource allocation schemes, both
adaptive and naive. By means of simulated examples it was shown that the proposed ap-
proach outperformed all other resource allocation schemes in achieving better situation
awareness by minimizing the uncertainty in the threat level of the targets. Regarding
tracking performance, i.e. a) estimating the correct number of targets; and b) localizing
them; better performance can be potentially achieved by using either the scheme that
minimizes the expected cardinality variance or the MinProb approach. These two ap-
proaches also induce a much lower computational cost than the threat-based approach.

The superior performance of the proposed, threat-based scheme for achieving im-
proved situational awareness was demonstrated in two operationally diverse scenarios:
asset protection and air-traffic-control. In this way, it was shown that the proposed ap-
proach can be applied in challenging scenarios where state-of-the-art signal processing
algorithms must be used.
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By observing the behavior of all the compared approaches, two rule-based schemes
were extracted. These rule-based schemes provided insight in how the different re-
source allocation schemes operate and what is the key to achieving good tracking per-
formance in the specific experimental setting. One of the extracted rule-based schemes
was shown to perform almost as well as the best performing Bayes-optimal approaches.
The key advantage of this rule-based scheme is that it has very low computational com-
plexity, especially when compared to the proposed, threat-based approach.

The specific behavior of the criteria discussed in this chapter is heavily dependent
on the behavior of the CB-MeMBer filter. In particular, the CB-MeMBer filter has been
reported to produce unstable track existence probabilities even for moderate probabil-
ity of detection and clutter rate, see the discussion in [Bocquel, 2013, Sec. 5.3]. This
might be an explanation of why better tracking performance is achieved by the criteria
that favor tracks with lower probability of existence.



5
THREAT-BASED AREA

SURVEILLANCE USING AN MFR

The previous chapter presented an application of the proposed, threat-based approach
to radar beam-pointing for multitarget tracking. It was assumed that the tracking filter
was already initialized with the correct tracks and therefore, it only had to maintain the
correct tracks and delete any false ones. In practice, a radar must first search for targets
before actually tracking them. Accordingly, this chapter discusses how the proposed
approach to resource allocation can be applied to area surveillance, i.e. to adaptively
pointing the radar beam such that search for and tracking of multiple targets can be
achieved optimally.

Section 5.1 presents the area surveillance problem and explains the search versus track-
ing trade-off that a resource algorithm must address. Section 5.2 presents the system
setup for area surveillance. Section 5.3 explains how the proposed, threat-based ap-
proach can be applied to the area surveillance problem. Section 5.4 shows simulated
examples where a radar beam is controlled for finding and tracking multiple targets.
Finally, Section 5.5 concludes the chapter.

5.1. THE AREA SURVEILLANCE PROBLEM
Wide area surveillance is most commonly performed using radars due to their unique
sensing capabilities. Radars can observe objects of interest, also called targets, at very
long distances, during day or night and without being severely hindered by unfavorable
weather conditions. Area surveillance involves searching for targets and when target
detections happen, tracks are initialized and maintained while search is continued.

Multi-Function Radars (MFRs) are a promising alternative to conventional, rotating
radars with horn-fed reflector antennas for performing area surveillance. MFRs most
commonly employ active phased array technology and digital waveform generators,
which allow for adaptive radar-beam pointing strategies. These components offer the
ability to steer the beam of an MFR almost instantaneously to a desired direction. In
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other words, at each time instance the best radar-beam direction can be selected by
a radar resource management algorithm. Adaptive beam-pointing is beneficial when
external information about the environment or targets is available and when different
operational goals must be taken into account.

The capabilities of MFRs pose significant challenges to radar resource management
algorithms. A resource manager must decide at each time instance whether the radar
should search for new targets or track an existing one. If the algorithm does not allo-
cate enough resources to searching for targets, several targets might remain undetected
and this can result in severe problems both in defence and civilian scenarios. If, on the
other hand, the algorithm does not allocate enough resources to maintaining the exist-
ing tracks, unreliable track estimates can be produced or, even worse, track loss might
happen. Both these problems can result in the radar operator taking decisions with
higher operational risk.

The first solution to the aforementioned resource allocation problem was to use
rule-based approaches, as also discussed in Blackman and Popoli [1999]. In rule-based
approaches, a set of rules is created and tuned according to the operational needs and
the radar system characteristics. Such solutions can be very time-efficient and take into
account explicitly the operational goals of the radar system but are not optimal in the
Bayesian sense and might have unpredictable behavior. For example, a radar operator
might set manually a track update rate per target and a track-to-search ratio but the op-
timality of such parameters is not guaranteed. Instead, their quality is only based on the
experience of the operator.

Another approach is to assign priorities to each sensing task (be it search or tracking)
and then allocate the radar resources according to these priorities, see Miranda et al.
[2006]. In Bolderheij et al. [2005] the priorities (and the radar resources) are assigned
according to the risk that is posed to the success of the mission. These approaches, even
though they take into account any mission aspects, also suffer from not being Bayes-
optimal.

In order to obtain Bayes-optimal solutions that take into account various quantities
of interest, one could formulate a weighted sum of these quantities and seek to optimize
it. Examples of such quantities are the probability of detecting a target, track accuracy
and expected measurement SNR. The disadvantages of this approach are the selection
of weights and the mathematically non-meaningful aggregation of non-commensurate
quantities.

The latest suggestion in balancing the tasks of search and tracking is based on using
information theoretic measures. Accordingly, the information gain when performing
search is compared to the information gain when performing a tracking task and the
task that provides higher information gain is selected. This approach was suggested
in Romero and Goodman [2013] and White et al. [2008]. A disadvantage in both these
papers is that a scaling factor is used for trading radar time among search and tracking,
thus allowing the user to intervene in resource allocation and make the results non-
Bayes-optimal. Nevertheless, even if a scaling factor would not have been used, it is not
clear how to take into account different operational requirements when the conditional
entropy or the expected KLD are used.

A problem similar to the search versus tracking trade-off is also present in robotics. It
corresponds to robot-path-planning such that an area is searched for objects or intrud-
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ers and such that the detected objects/intruders are tracked, see Cole [2009] for exam-
ple. In the specific example, the information gain is also used as a means of achieving
an optimal trade-off.

In order to address the disadvantages of the aforementioned approaches, the threat-
based method presented in Chapter 3 is used. Accordingly, the radar resources are allo-
cated based on the uncertainty in higher-level quantities that depend both on the search
and tracking performance of a radar system. In the defense domain, a prominent such
quantity is the threat-level of a target. The uncertainty in the threat-level of a target is
indicative of the quality of the achieved situation awareness and therefore, if the uncer-
tainty in the threat level of all targets present in a scenario is managed, better situation
awareness can be achieved. Moreover, threat can also incorporate the need for perform-
ing search for undetected targets. If it can be estimated where undetected targets can
be, it can also be estimated what threat they might pose to the mission success. From
the discussion above, it follows that multitarget threat can serve as a proxy for balancing
the tasks of search and tracking.

5.2. SYSTEM SETUP AND PROBLEM FORMULATION
Consider a scenario where an MFR is tasked with the surveillance of its surrounding
area. An MFR can have a narrow beam that can be steered almost instantaneously to a
desired direction. The problem that must be tackled is: which sensing mode uk should
the radar use at time instance k? In other words:

• should the radar search for new targets and if yes, towards which direction? or

• should it observe an already detected target and if yes, which one?

The choice of sensing mode also implies that different measurement accuracy is used,
i.e. different beamwidth, probability of detection, false alarm rate, range accuracy and
bearing accuracy. Other measurements parameters, such as wavelength, beam-width
and PRF can also be controlled but are not considered in this case for simplicity reasons.

In this chapter, the search and the multitarget tracking problems are solved by esti-
mating two densities:

a) the “Detected Targets" Density (DTD) that is used for estimating the kinematic
properties of detected targets; and

b) the “undetected Targets" Density (unDTD) that is used for estimating where any
undetected targets can be. The estimation of this density is beneficial for deter-
mining when and where the radar should search for targets.

These two densities can be estimated recursively based on prior knowledge about and
models of the motion of targets, their RCS, the location from which they might enter
the surveillance area, the radar sensing parameters etc. Here these two densities are
assumed to be decoupled.

For estimating the DTD recursively, a Cardinality-Balanced Multi-target Multi-Bernoulli
(CB-MeMBer) filter is selected and the standard assumptions that pertain to it are made,
see Vo et al. [2009a]. The reasons behind this selection have been explained in Section
4.1. For updating the DTD recursively, the presence of false alarms and the fact that the
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probability of detection can be less tan one are taken into account. For extracting a state
estimate from the running CB-MeMBer filter the Marginal Multi-target (MaM) estima-
tor is used, see [Mahler, 2007, pp.497]. The MaM estimator first finds the MAP estimate
N̂DT D of the number of tracks and then extracts MAP estimates from the PDFs for the
N̂DT D tracks with the highest probability of existence.

For estimating the unDTD recursively, a Probability Hypothesis Density (PHD) fil-
ter is used and the standard assumptions that pertain to it are made, see Mahler [2007].
The unDTD is used for estimating where any undetected targets might be, taking into
account their motion model, information about where they might appear etc. In this
way, adaptive search can be performed, leading to faster detection of targets when ex-
ternal information is available as opposed to using a periodic or random search pattern.
The reasoning behind the unDTD is also explained in Section 2.2 and in Katsilieris et al.
[2012a]. The use of a PHD filter is a natural extension to multitarget scenarios of the
aforementioned work.

In the current chapter, for estimating the unDTD it is assumed that there are a) no
targets spawned from other targets; b) no false alarms; and c) no detections. The afore-
mentioned assumptions imply that any received measurements are always used by the
running CB-MeMBer filter that estimates the DTD. The PHD filter only estimates where
any undetected targets might be.

Due to these assumptions, the prediction step for estimating the unDTD reduces to:

Dk|k−1(x) = bk|k−1(x)+
∫

ps (x′) fk|k−1(x|x′)Dk−1|k−1(x′)δx′ (5.1)

where Dk|k−1(x) is the predicted probability hypothesis density1 of unDTD, bk|k−1(x) is
the likelihood that a group of new targets with state x will enter the scene at time k,
ps (x′) is the probability that a target with state x′ at time k −1 will survive in time k and
fk|k−1(x|x′) is the single-target Markov transition density (usually given by the motion
model of the targets).

Similarly, the update step for estimating the unDTD reduces to

Dk|k (x) = [1−PD (x)]Dk|k−1(x) (5.2)

where PD (x) is the probability of detecting a target with state x. When the likelihood
function is equal to [1−PD (x)], it is referred to in the literature as Negative Information,
see Koch [2007]. The SMC implementation of the PHD recursion given by Eq. (5.1) and
(5.2) is straightforward and can be found in [Mahler, 2007, Ch. 16.5.2].

A key point is that when using a sensing mode dictated by the resource allocation
algorithm both densities are updated. The DTD is updated using the received measure-
ments (if there are any) and the unDTD is always updated assuming that no target has
been detected.

For finding the best sensing action, the proposed- threat-based approach to sen-
sor management is used. The proposed approach and its application to search for and
tracking of multiple targets is presented in the following Section.

1To be precise, Dk|k−1(x) is called a first moment density or intensity density. In other words, a PHD is not a
probability density since it does not integrate to one but rather to the expected number of targets in X . Also
see the discussion in [Mahler, 2007, Ch. 16.1.2.1].
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The proposed approach is compared against the standard periodic search-and-track
approach and against minimizing the sum of conditional entropies of the DTD and
unDTD. The periodic approach amounts to periodically repeating a) searching all sec-
tors sequentially; and then b) observing all targets sequentially. The sum of conditional
entropies of the DTD and unDTD is given by

uk = argmin
u

{∫
Htrack(Xk |Z)gu(Z|Xk ,u)δZ+

∫
Hsearch(x|Z)gu(Z|x,u)δZ

}
= argmin

u

{∫
Htrack(Xk |Z)gu(Z|Xk ,u)δZ+Hsearch(x|Z =;,u)

}
(5.3)

where
u =

{
atan2(ŷ j , x̂ j )

}⋃{
b`

}
, (5.4)

atan2(ŷ j , x̂ j ) is the four-quadrant inverse tangent function, Z is the set of measurements
collected due to pointing the radar-beam at direction u given by the MAP estimate x̂( j ) =
[x̂ j , v̂ j

x , ŷ j , v̂ j
y ]ᵀ of the distribution of component j ∈ [1, . . . , NDT D ] or the axis b` of sector

` ∈ [1, . . . , NS ] of the surveillance area, Xk = {x(1), . . . ,x(NDT D )} is the multitarget state at
time k, NDT D is the cardinality of Xk and gu(Z|Xk ,u) is the measurement likelihood,
which depends on the sensing mode u.

The expectation in the second term in Eq. (5.3) is trivial and skipped because unDTD
is always updated using 1−PD (x) and therefore, does not depend on the measurement
realization. If no tracks have been established, it holds that Htrack(Xk |Z) = 0 and the
corresponding term in Eq. (5.3) can be skipped.

The entropy of the DTD has been discussed in Chapter 4. The entropy unDTD is
given in Rezaeian and Vo [2000]:

Hsearch(X) = E[|X|](1+H(p(x))) (5.5)

where E[|X|] = ∫
Dk|k (x|Z1:k ) δx is the expected number of targets and p(x) is the density

that results from dividing the PHD Dk|k (x|Z1:k ) by the expected number of targets E[|X|].
If the evaluation of the RFS entropies in Eq. (5.3) cannot be done analytically, the

entropies can be evaluated numerically by sampling from the corresponding multitarget
states PDF/PHD (or using the samples from an SMC implementation) and then using
the k-NN method proposed in Ajgl and Šimandl [2011].

The comparison is with respect to the uncertainty in the entropy of the resulting
multitarget threat PDF and with respect to their tracking performance. The tracking
performance is evaluated using the Optimal Sub-Pattern Assignment (OSPA) metric, see
Schuhmacher et al. [2008] and Section 4.5. The OSPA metric is evaluated using the true
states of the targets and the MaM estimator.

5.3. THREAT-BASED RADAR BEAM-POINTING FOR AREA SURVEIL-
LANCE

5.3.1. EVALUATION OF THE THREAT LEVEL OF A TARGET
The motivation behind this approach, a longer discussion on how threat can be mod-
eled and several simple examples can be found in Chapter 3.
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In this chapter, an asset protection context is considered, i.e. it is assumed that an
asset must be protected from hostile targets. The threat that is posed by a target i to
asset j depends on how close and how fast the target i can come to asset j . These are
measured by the time and range to Closest Point of Approach (CPA), as explained in
Chapters 3 and 4.

In order to move from tC PA and rC PA to the threat domain, a simple linear function is
utilized2 f : X −→T that maps them to the threat domain T . For convenience, threat
θs is defined to take values in θs ∈ [0,1], with 0 indicating minimum and 1 indicating
maximum threat. Accordingly, it is only necessary to define the points s0, s1 where threat
becomes equal to 0 and 1 respectively. Then θs is given by

θs (x) =


1 if s−s0

s1−s0
≥ 1

s−s0
s1−s0

if s0 < s < s1

0 if s−s0
s1−s0

≤ 0

(5.6)

where s represents tC PA , rC PA and s0, s1 represent the values of tC PA , rC PA where threat
is minimum and maximum respectively.

The two aspects of threat are aggregated using a weighted sum, much like in Chap-
ters 3 and 4.

In the examples considered here, it is assumed that each target has its own threat
PDF. Therefore, the cardinality distribution of the multitarget threat variable Θ is the
same as the cardinality distribution of the multitarget states variable X. The distribution
of each individual threat depends on the distribution of the states of each target (or
targets) present in the scenario.

5.3.2. EVALUATION OF THE UNCERTAINTY IN THREAT

UNCERTAINTY IN THE “DETECTED TARGETS" THREAT

When a CB-MeMBer filter is used, the multitarget threat RFS variable Θ is a union of
NDT D independent Bernoulli RFSsΘ(c) with corresponding existence probabilities r (c) ∈
[0,1] and probability density p

(
θ(c)

)
defined on T = [0,1] for c = 1, . . . , NDT D . Accord-

ingly, the multitarget threat Θ is fully described by the corresponding multi-Bernoulli
parameter set {r (c), p

(
θ(c)

)
}c=1,...,NDT D , where p

(
θ(c)

)
:= p

(
θ(c)(x)

)
: x ∼ p(c)(x). The mul-

titarget threat Θ has the same cardinality distribution as the multitarget state RFS X.

The entropy of the multitarget threat can be evaluated using Eq. (4.2), as discussed
in Chapter 4. It now has the form:

Htrack(Θ) = H(|Θ|)+E[H(pn(θ))]−E[log(|Θ|!)]−E[|Θ|] log(K̄ ) (5.7)

Due to the proposed definition of the threat space T = [0,1], it holds that K̄ = 1.
Therefore, the last term in Eq. (5.7) is equal to 0.

2More complicated functions, e.g. a sigmoid, can be used if it is deemed necessary by the radar operator.



5.4. SIMULATED EXAMPLES

5

87

UNCERTAINTY IN THE “UNDETECTED TARGETS" THREAT

Following the same reasoning, the threat posed by any undetected targets depends on
the unDTD, which is estimated using a PHD filter. The threat PHD Dθ(θ) is given by

Dθ(θ) =λpθ (θ(x)) , x ∼ px(x) = e−λ
∏

x∈X

λp(x) = e−λ
∏

x∈X

Dx(x) (5.8)

where λ= E[|Θ|] = E[|X|] = ∫
Dk|k (x|Z1:k ) δx is the expected number of targets and pθ(θ)

is the density that results from dividing the threat PHD by the expected number of tar-
gets λ. Each target has its own threat level and therefore, the “undetected targets" threat
variable Θ has the same cardinality distribution as the “undetected targets" variable X.

The entropy of the “undetected targets" threat PHD is given by Rezaeian and Vo
[2000]:

Hsearch(Θ) = E[|Θ|](1+H(p(θ(x)))) (5.9)

5.3.3. RESOURCE ALLOCATION

Due to the assumption that DTD and unDTD are decoupled, the overall threat is given
by the concatenation of the threat posed by any detected and undetected targets. As a
consequence, the entropy of the total threat-level is given by the sum of the entropies of
these two densities. Accordingly, the index uk of the sensing action to be performed at
time k is given by:

uk = argmin
u

{∫
Htrack(Θk|k |Z)gu(Z|Xk ,u)δZ+

∫
Hsearch(Θk|k |Z)gu(Z|x,u)δZ

}
= argmin

u

{∫
Htrack(Θk|k |Z)gu(Z|Xk ,u)δZ+Hsearch(Θk|k |Z =;,u)

}
(5.10)

where

u =
{

atan2(ŷ j , x̂ j )
}⋃{

b`
}

, (5.11)

The expectation in the second term in Eq. (5.10) is trivial and skipped because
unDTD is always updated using 1−PD (x) and therefore, does not depend on the mea-
surement realization. If no tracks have been established, it holds that Htrack(Θk|k |Z) = 0
and the corresponding term in Eq. (5.10) can be skipped.

If the evaluation of the RFS entropies in Eq. (5.10) cannot be done analytically, the
entropies can be evaluated numerically by sampling from the corresponding multitarget
states PDF/PHD (or using the samples from an SMC implementation) and then using
the k-NN method proposed in Ajgl and Šimandl [2011].

5.4. SIMULATED EXAMPLES
The first set of experiments considers examples where no external information is avail-
able about the arrival of targets. This is the simplest experimental setting for demon-
strating how the search versus tracking trade-off can be achieved based on tuning the
corresponding model parameters and thus avoiding the use of heuristics and scaling
factors.
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Figure 5.1: Three targets are present and must be found and tracked. The radar is located at the origin of the
axes. The surveillance area is divided in 9 sectors of 10 degrees that correspond to the search beam-width of
the radar.

Subsequently, a simulated example is shown where external information is available
about the arrival of any new targets. In this case, it is demonstrated how external infor-
mation can be taken into account in a systematic way and how this contributes to better
situation awareness and tracking performance.

5.4.1. NO EXTERNAL INFORMATION

EXPERIMENTAL SETUP

Consider a scenario where a radar is tasked with the surveillance of an area defined by
[0,90] degrees in bearing and [0,10] km in range, as shown in Fig. 5.1. There exist three
targets for the whole duration of the scenario, whose trajectories are also shown in Fig.
5.1.

The radar is set into operation at time k = 0 and starts searching for targets. When
a target is detected, it must be tracked while the search continues for other undetected
targets. The duration of the scenario is 150 time instances and 50 Monte Carlo runs are
performed.

The true target parameters are: Target 1: initial position [2,8] km and initial velocity
[1,−6] m/s; Target 2: initial position [5,5] km and initial velocity [−5,−5] m/s; and Target
3: initial position [8,2.5] km and initial velocity [−6,1] m/s.

The targets follow a nearly constant velocity model with noise covariance matrix:

Σw =


σ2

x T 3/3 σ2
x T 2/2 0 0

σ2
x T 2/2 σ2

x T 0 0
0 0 σ2

y T 3/3 σ2
y T 2/2

0 0 σ2
y T 2/2 σ2

y T

 (5.12)

where T = 1 sec and σ2
x =σ2

y = 0.3 (m/s)2. All targets have RCS = 10 m2.
For evaluating the threat mt = mr = 0.5, [t1 t0] = [0 100] min and [r1 r0] = [0 15] km

are used.
The radar provides range and bearing measurements according to uk . The index

uk of the selected sensing mode contains information about the beam direction and
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the sensing mode (search or tracking). The corresponding sensing parameters for each
mode are given in 5.4.1.1.1 and 5.4.1.1.2. The main differences between a search and
a track beam are that a track beam has smaller beamwidth but higher probability of
detection and better range accuracy.

The parameters for the implementation of CB-MeMBer and PHD filters are given
in 5.4.1.1.3. The multitarget threat entropy is evaluated using the 50 nearest neighbors
of each particle and the k-NN approach presented in Ajgl and Šimandl [2011]. Due to
computational complexity reasons, only 25 nearest neighbors of each particle are used
for evaluating the multitarget states entropy.

5.4.1.1.1 Search mode parameters A search beam has width of 10 degrees without
loss due to the target not being on the boresight of the beam. The direction of a search
beam can be one of the axes of the sectors resulting from dividing the surveillance area
by 10 degrees, i.e. one of {5,15, . . . ,85} degrees. The measurement noise covariance
matrix is Σv = diag[(20 m)2, (3 degrees)2] and it is ensured that a measurement always
falls within the beamwidth. The probability of detecting a target is calculated using the
radar equation and the Swerling I model, resulting in probability of detection in range
of [0.7777,0.7994] for the specific trajectories of the targets. The probability of detection
outside the radar beam is assumed to be zero. Furthermore, false alarms can arise with
rate κ = 5.73 · 10−7 (rad · m)−1, i.e. a clutter measurement is received with probability
0.0001 at each time instance.

5.4.1.1.2 Tracking mode parameters A track beam has width of 2 degrees without
loss due to the target not being on the boresight of the beam. The direction of a track

beam is defined by the radar location and the MAP estimate x̂( j ) = [x̂ j , v̂ j
x , ŷ j , v̂ j

y ]ᵀ of
the target to be observed. The measurement noise covariance matrix is defined as Σv =
diag[(10 m)2, (0.5 degrees)2] and it is ensured that a measurement always falls within the
beamwidth. The probability of detecting a target is calculated using the radar equation
and the Swerling I model, resulting in probability of detection in range of [0.9123,0.9161]
for the specific trajectories of the targets. The probability of detection outside the radar
beam is assumed to be zero. Furthermore, false alarms can arise with rate κ = 2.87 ·
10−7 (rad · m)−1, i.e. a clutter measurement is received with probability 0.0001 at each
time instance. The presence of false alarms and the probability of detection being less
than one imply that the probability of confirming a track is less than one. Furthermore,
the problem of deciding which measurements are false alarms and which are target-
originated is solve by the CB-MeMBer over time.

5.4.1.1.3 Filtering parameters Irrespective of the chosen sensing mode uk , any mea-
surement that is received is only used for updating the DTD. The unDTD is always up-
dated using 1−PD (x).

At time k = 0 the CB-MeMBer filter has no Bernoulli components (tracks) because
no target has been detected yet and it is assumed that there is no external knowledge
about any existing targets. New tracks are initiated from measurements of the previous
time instance that were not assigned to any existing tracks (if there are any). The newly
created tracks are initialized with r (i ) = 0.5, standard deviation of 100 m round the mea-
sured x−y position and with x−y velocity uniformly random in [−7,1] m/s. The targets’
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motion is modeled using a nearly constant velocity model with noise covariance ma-
trix Σ = 2Σw . Notice that the tracking model does not match perfectly the true motion
model of the targets in order to pose an extra challenge to the radar resource manage-
ment algorithm. The probability of survival of each target is pS,k = 0.99 and tracks with
r (i ) < 0.005 are pruned. Each Bernoulli component (track) is approximated using 2000
particles. Resampling is performed after every update step.

The PHD filter is initialized with three different expected number of targets N0|0 and
with 50 ·103 particles uniformly distributed in the surveillance area with x − y velocities
uniformly random in [−7,1] m/s. This represents the time instance when the radar is
turned on and when there is no prior information about any existing targets. The tar-
gets’ motion is modeled using a nearly constant velocity model with noise covariance
matrix Σ= 2Σw . New targets are assumed to be born at each time instance at a) the bor-
der of the surveillance area, with x − y velocities uniformly random in [−7,1] m/s and
with three different expected cardinalities using 2000 particles, modeling newly-arrived
targets; and b) uniformly in the surveillance area, with x − y velocities uniformly ran-
dom in [−7,1] m/s and with three different expected cardinalities using 2000 particles,
modeling pop-up targets. The probability of survival is ps (x′) = 0.99. Multinomial re-
sampling is performed when the number of particles is higher than 75 ·103 or when the
efficient number of particles is smaller than 10 ·103.

Three cases are considered:
Low expected number of undetected targets: the PHD filter is initialized with N0|0 =
0.5, newborn targets are modeled at the border of the surveillance area with expected
cardinality 0.05 and at the whole surveillance area with expected cardinality 0.005;
Medium expected number of undetected targets: the PHD filter is initialized with N0|0 =
2, newborn targets are modeled at the border of the surveillance area with expected car-
dinality 0.1 and at the whole surveillance area with expected cardinality 0.01; and
High expected number of undetected targets: the PHD filter is initialized with N0|0 =
5, newborn targets are modeled at the border of the surveillance area with expected
cardinality 0.5 and at the whole surveillance area with expected cardinality 0.05.

THREAT UNCERTAINTY AND TRACKING RESULTS

By averaging the sensor selections over 50 Monte Carlo runs it was noticed that:
Low expected number of undetected targets: the proposed threat-based approach uses
84.4% of the time instances a search beam and in the remaining 15.6% it uses a track-
ing beam for observing a target. The corresponding percentages for periodic search &
tracking are 72.9% and 27.1% respectively. The minimization of the entropy of the DTD
and unDTD leads to using a search beam 98.6% of time instances and in only 1.4% a
tracking beam;
Medium expected number of undetected targets: the proposed threat-based approach
uses 86.1% of the time instances a search beam and in the remaining 13.9% it uses a
tracking beam for observing a target. This means that the threat-based approach now
assigns more time to searching because more targets are expected to be found. The cor-
responding percentages for periodic search & tracking are 72.8% and 27.2% respectively.
The minimization of the entropy of the DTD and unDTD leads to using a search beam
99.6% of time instances and in only 0.4% a tracking beam;
High expected number of undetected targets: the proposed threat-based approach
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uses 91% of the time instances a search beam and in the remaining 9% it uses a track-
ing beam for observing a target. This means that the threat-based approach assigns
now even more time to searching because even more targets are expected to be found.
The corresponding percentages for periodic search & tracking are 72.81% and 27.18%
respectively. The minimization of the entropy of the DTD and unDTD leads to using a
search beam 100% of time instances;
From the aforementioned percentages it can be concluded that the proposed threat-
based approach can take into account knowledge about the expected number of un-
detected targets and adapts accordingly the resource allocation to tracking and search
functions. The periodic approach does not demonstrate any adaptive resource alloca-
tion and the minimization of the entropy of the DTD and unDTD gives minimal control
on the search-to-track time ratio. The behavior of the minimization of the entropy of
the DTD and unDTD can be explained by the fact that these two entropies are dispro-
portionate because they measure the uncertainty of two completely different densities.

The maximum number of tracks that is maintained when estimating the DTD is also
examined. By looking at all the Monte Carlo runs it can be observed that:
Low expected number of undetected targets: the proposed threat-based approach main-
tains a maximum of 6 tracks whereas the periodic approach maintains up to 8 tracks and
the states-based approach up to 6;
Medium expected number of undetected targets: the proposed threat-based approach
maintains a maximum of 7 tracks whereas the periodic approach maintains up to 8
tracks and the states-based approach up to 6; and
High expected number of undetected targets: the proposed threat-based approach
maintains a maximum of 6 tracks whereas the periodic approach maintains up to 8
tracks and the states-based approach up to 6.
It can be concluded that the adaptive approaches have better performance in rejecting
false alarms. This results in faster computation times at the update step of the DTD
and this happens because the computational complexity of the CB-MeMBer filter scales
exponentially with the number of components/tracks.

Figures 5.2a through 5.2c show the entropy of the posterior threat PDF, averaged
over 50 Monte Carlo runs. It can be seen that the proposed, threat-based approach al-
ways results in lower uncertainty in the multitarget threat PDF.

Figures 5.3a through 5.5c show the OSPA metric and its components for c = 250 and
p = 2, averaged over 50 Monte Carlo runs. The proposed approach results in lower OSPA
values, especially due to lower cardinality error. This can also be noticed in Fig. 5.6a
through 5.6c, where the estimated number of targets is shown, averaged over 50 Monte
Carlo runs.

Figures 5.7a through 5.7c show the search time instances per sector. It can be seen
that the proposed approach devotes less time in sectors where targets are located, i.e.
first in sectors 2,5,8 and then in sector 3 instead of 2. This can be explained by the be-
havior of CB-MeMBer filter that can have unstable behavior when updating the track
existence probabilities, also see the discussion in [Bocquel, 2013, Sec. 5.3].

Figures 5.8a through 5.8c show the expected number of undetected targets, aver-
aged over 50 Monte Carlo runs, for the two compared approaches. It can be noticed that
the proposed approach reaches a higher steady-state value even though more search
actions are performed. The key difference is that the search actions are not evenly dis-
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(a) Low expected number of undetected targets.
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(b) Medium expected number of undetected targets.
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(c) High expected number of undetected targets.

Figure 5.2: The posterior entropy of the estimated multitarget threat pdf, averaged over 50 Monte Carlo runs.
The proposed approach results in lower uncertainty in threat than the other approaches.
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(a) Low expected number of undetected targets.
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(b) Medium expected number of undetected targets.
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(c) High expected number of undetected targets.

Figure 5.3: The OSPA metric, averaged over 50 Monte Carlo runs. The threat-based scheme has the best per-
formance.
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(a) Low expected number of undetected targets.
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(b) Medium expected number of undetected targets.
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(c) High expected number of undetected targets.

Figure 5.4: The localization error, averaged over 50 Monte Carlo runs. The threat-based scheme has similar
performance to periodic search and tracking.
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(a) Low expected number of undetected targets.
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(b) Medium expected number of undetected targets.
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(c) High expected number of undetected targets.

Figure 5.5: The cardinality error, averaged over 50 Monte Carlo runs. The threat-based scheme has the best
performance.
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(a) Low expected number of undetected targets.
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(b) Medium expected number of undetected targets.
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(c) High expected number of undetected targets.

Figure 5.6: The MAP estimate of number of detected targets in the considered scenario, averaged over 50
Monte Carlo runs. The proposed approach results in a better estimate.
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(a) Low expected number of undetected targets.
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(b) Medium expected number of undetected targets.
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(c) High expected number of undetected targets.

Figure 5.7: The time instances of search per sector. The proposed approach spends less time in sectors where
targets are located, which can be attributed to the behavior of CB-MeMBer filter.
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tributed among all sectors.
The argument that the behavior of the proposed approach is heavily affected by the

selection of CB-MeMBer filter can also be justified by looking at the performance of
periodic search and tracking. In Fig. 5.2 through 5.8 it can be seen that as targets are de-
tected and components are added in CB-MeMBer filter, oscillations appear in the cor-
responding curves. This also implies that the main component of uncertainty is the
estimated DTD and especially its cardinality.
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(a) Low expected number of undetected targets.
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(b) Medium expected number of undetected targets.
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(c) High expected number of undetected targets

Figure 5.8: The expected number of undetected targets, averaged over 50 Monte Carlo runs. The proposed
approach may result in a higher steady-state value even though more time is dedicated to searching for tar-
gets when compared to periodic search-and-track. This happens because the search actions are not evenly
distributed among all sectors.
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Figure 5.9: The geometry of the considered scenario. Five targets in total but not simultaneously are present
and must be found and tracked. The radar is located at the origin of the axes and targets appear and disappear
during the scenario. The surveillance area is divided in 9 sectors of 10 degrees that correspond to the search
beam-width of the radar.

5.4.2. TAKING INTO ACCOUNT EXTERNAL INFORMATION
Let us assume now that it is known that more targets arrive from directions in [0,20] de-
grees, i.e., from the two first sectors using a counter-clockwise direction. The trajectories
of five targets in such a scenario are shown in Figure 5.9. The duration of the scenario is
200 time instances. Each target exists for a limited amount of time and there is detection
uncertainty:

Target 1: from t = 1 until t = 79. The resulting probability of detection is in the range of
[0.7777, 0.7818] for a search and in [0.9125, 0.9132] for a tracking beam;

Target 2: from t = 1 until t = 90. The resulting probability of detection is in the range of
[0.768, 0.7721] for a search and in [0.9111, 0.9117] for a tracking beam;

Target 3: from t = 80 until t = 150. The resulting probability of detection is in the range
of [0.7888, 0.7931] for a search and in [0.9143, 0.915] for a tracking beam;

Target 4: from t = 91 until t = 200. The resulting probability of detection is in the range
of [0.7885, 0.7969] for a search and in [0.9143, 0.9157] for a tracking beam; and

Target 5: from t = 91 until t = 200. The resulting probability of detection is in the range
of [0.8195, 0.8261] for a search and in [0.9199, 0.9212] for a tracking beam.

The only difference from the experimental settings in the previous section is that
now the external information about targets arriving more often in the specific two sec-
tors is taken into account. The PHD filter is now initialized with N0|0 = 2. New targets are
assumed to be born at each time instance at a) the border of the surveillance area, with
x − y velocities uniformly random in [−7,1] m/s and with expected cardinality 0.1 using
2000 particles, modeling newly-arrived targets; b) uniformly in the surveillance area,
with x− y velocities uniformly random in [−7,1] m/s and with expected cardinality 0.01
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Figure 5.10: The posterior entropy of the estimated multitarget threat pdf, averaged over 50 Monte Carlo runs.
The proposed approach results in the lowest uncertainty.

using 2000 particles, modeling pop-up targets; and c) uniformly in the first two sectors,
with x−y velocities uniformly random in [−7,1] m/s and with expected cardinality 0.005
using 2000 particles, modeling pop-up targets in the first two sectors.

By averaging the sensor selections over 50 Monte Carlo runs it was noticed that
the proposed threat-based approach uses 88.21% of the time instances a search beam
and in the remaining 11.73% it uses a tracking beam for observing a target. The cor-
responding percentages for periodic search & tracking are 76.39% and 23.61% respec-
tively. When using the states-based entropy, the corresponding percentages for periodic
search & tracking are 99.13% and 0.84% respectively.

The maximum number of tracks that is maintained when estimating the DTD is ex-
amined again. By looking at all Monte Carlo runs it can be observed that the adaptive
(threat- and states-based entropy) approaches maintain a maximum of 7 tracks. The
periodic approach maintains up to 9 tracks. It can be concluded that the adaptive ap-
proaches have better performance in rejecting false alarms. Furthermore, this results in
faster computation times at the update step of the DTD.

Figure 5.10 shows the entropy of the posterior threat PDF, averaged over 50 Monte
Carlo runs. It can be seen that the proposed, threat-based approach results in lower
uncertainty in the multitarget threat PDF.

Figures 5.11a through 5.11c show the OSPA metric and its components for c = 250
and p = 2, averaged over 50 Monte Carlo runs. The proposed approach results in lower
OSPA values, especially due to lower cardinality error. This can also be noticed in Fig.
5.12, where the estimated number of targets is shown, averaged over 50 Monte Carlo
runs.

Figure 5.13 shows the search time instances per sector. It can be seen that both
adaptive approaches devote more time than the periodic search in the first two sectors
where more targets are expected to be found. It can also be noticed that when using the
threat-based approach, sector two receives less attention than sector one, contrary to
the behavior of the states-based approach. This can be explained by: a) the “leakage"
of particles to sectors 1 and 3; and b) the specific behavior of the CB-MeMBer filter re-
garding the update of track existence probabilities, also discussed in the previous set of
experiments.

Figure 5.14 shows the expected number of undetected targets, averaged over 50 Monte
Carlo runs, for the two compared approaches. It can be noticed that the proposed ap-
proach reaches the highest steady-state value even though more search actions are per-
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(a) OSPA metric.
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(b) Localization component.
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(c) Cardinality component.

Figure 5.11: The OSPA metric and its component, averaged over 50 Monte Carlo runs. The threat-based
scheme has the best performance.
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Figure 5.12: The MAP estimate of number of detected targets in the considered scenario, averaged over 50
Monte Carlo runs. The proposed approach provides the most accurate estimate.
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Figure 5.13: The time instances of search per sector. The adaptive approaches spend more time in the two
sectors where more targets are expected to be found.

formed when compared to the periodic approach. The key difference is that the search
actions are not evenly distributed among all sectors. The states-based approach attains
the lowest steady-state value because it almost exclusively uses search beams.

5.5. SUMMARY
In this chapter, an application of the proposed, threat-based approach was presented
for performing area surveillance. The proposed approach controlled an agile radar-
beam such that multiple targets could be detected and tracked. The goal was to demon-
strate that the proposed, threat-based approach can be used with state-of-the-art signal
processing algorithms for producing Bayes-optimal allocation of radar resources such
that multiple target can be detected and tracked.

The multitarget filtering problem was solved using a CB-MeMBer filter. A PHD filter
was used for estimating where any undetected targets could be and therefore, where the
radar should search for any undetected targets. The proposed algorithm managed the
uncertainty in the threat that is posed both by the detected and any undetected targets
in the considered scenarios.
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Figure 5.14: The expected number of undetected targets, averaged over 50 Monte Carlo runs. The proposed
approach results in a higher steady-state value even though more time is dedicated to searching for targets
when compared to the periodic approach.

Via simulated examples it was shown that the proposed algorithm managed to de-
tect all targets, maintained the tracks for the whole duration of the scenario and sup-
pressed any false tracks. The proposed approach outperformed periodic resource allo-
cation and allocating resources based on the entropy of the DTD and unDTD in: a) achiev-
ing lower uncertainty in the threat-level of all targets; b) estimating the correct num-
ber of targets present in the considered scenario; c) localizing the detected targets; and
d) maintaining less tracks, thus lowering the computation time at the update step.

Moreover, it was demonstrated that the proposed, threat-based resource allocation
scheme can achieve a resource trade-off among search for and tracking of multiple tar-
gets only by tuning model parameters used in the filters. In the presented examples, any
information available about the number and the location of undetected targets was in-
corporated in the models used for estimating the unDTD. The incorporation of external
information lead to adaptive allocation of radar-time among the search for and tracking
of multiple targets. Such external information can be intelligence about the strategy of
incoming targets, historical traffic data and even map-data that describe the location of
airports.

The model-based incorporation of external information when performing adaptive
area surveillance is a major advantage over the existing resource allocation schemes.
Ad-hoc solutions, such as scaling factors (that control the track/search time ratio), are
completely avoided. In other words, the proposed approach results in the first model-
based and Bayes-optimal solution to balancing the tasks of searching for and tracking
of multiple targets while taking into account the operational context.



6
CONCLUSIONS

This chapter concludes this dissertation by summarizing the results achieved and pro-
viding suggestions for future research.

6.1. CONCLUDING REMARKS
Radar resource management is a necessary component of modern, efficient radar sys-
tems. It is used for allocating the limited radar resources such that the operational goal
of a radar system, e.g. asset protection or air-traffic-control, is achieved. The con-
struction of such resource management algorithms is a daunting task, also inhibited
by changes in operational goals depending on the mission at hand. In this thesis, I have
explored the existing solutions to radar resource management, compared their perfor-
mance, determined their shortcomings, and proposed a new method for addressing the
disadvantages of the existing solutions.

In Chapter 2, I analyzed and compared the performances of task-based and information-
driven sensor management approaches based on two case-studies. Using the first case-
study, I showed that task-based and information-driven objective functions can result
in similar sensor selections when the estimated PDF is multimodal and there exists a
sensing option that can eliminate the multiple modes. Using the second case-study, I
found a practical explanation of an information theoretic sensor management criterion
when performing search for an object/target. The results of these case studies were re-
ported in Katsilieris et al. [2012b,a]. This similarity (and in certain cases equivalence)
is both unexpected and important. It is unexpected because the compared criteria are
fundamentally different and important because a practical explanation is found for an
information theoretic criterion.

In a comparison presented in Chapter 2, both these and the other existing approaches
to sensor management have been found to lack the combination of three essential prop-
erties: Bayes-optimal allocation of resources among diverse tasks while taking into ac-
count explicitly the user-needs within a given operational context. This combination
is of special importance when a set of tasks must be executed in different operational
contexts. A typical example is the use of an MFR for detecting and tracking aircrafts.
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Why would the same trade-off between search and tracking be optimal when perform-
ing asset-defense and when performing air-traffic-control? Rephrasing this conclusion
using JDL terminology, it is extremely difficult (or even impossible) to formulate an op-
timization problem for controlling a multi-functional system, in this case an MFR, using
objective functions based on Level 0/1 quantities.

To deal with the shortcomings of sensor management approaches that are based
on JDL Level 0/1 quantities, I proposed in Chapter 3 a systematic method for model-
ing mathematically Level 2/3 quantities that are directly related to the operational goal
of the radar system (or the platform that carries it). The key idea behind the proposed
approach is that radar resources can be allocated such that the uncertainty in higher-
level quantities, such as the threat-level of a target, is managed. Accordingly, I explain
how objective functions can be formulated for controlling an agile sensor in operational
contexts as diverse as asset defence and traffic control. The proposed approach is mo-
tivated by the threat assessment process, which is an integral part of defense missions.
The novelty of the proposed method lies in managing the uncertainty in threat-level in-
stead of a) allocating resources according to threat-level; or b) managing the uncertainty
in the states’ PDF of a target.

The feasibility and flexibility of the proposed approach were demonstrated in Chap-
ter 3 via simple but illustrating simulated examples. The main difference in the pre-
sented examples is the way that threat is modeled. By changing the mathematical defi-
nition of threat according to the operational context, different resource allocations can
be obtained. These results were also reported in Katsilieris et al. [2014, 2015a].

In Chapter 4, I showed that the proposed approach can also be used for tracking
multiple targets in complicated experimental settings. Detection uncertainty in the
measurement process was taken into account and a state-of-the-art signal processing
algorithm, i.e. a CB-MeMBer filter, was used. I also showed that the proposed approach
outperforms several existing approaches by achieving both better situational awareness
and better tracking performance. This was demonstrated in two diverse operational
contexts: asset-protection and air-traffic-control. Furthermore, by observing the be-
havior of the compared criteria, two rule-based schemes were defined that can be used
for explaining the behavior of the compared criteria. One of these rule-based schemes
performed almost as well as the proposed approach, albeit at a much lower computa-
tional cost. These results were also published in Katsilieris et al. [2015a].

In Chapter 5, I proposed using a density that describes where any undetected tar-
gets can be (denoted as unDTD). This density is updated sequentially and allows for
model-based inclusion of information regarding target appearance and detection un-
certainty among others. As a result, I showed that the approach proposed in Chapter 3
can now be used for solving the challenging problem of area surveillance while taking
into account the operational context. In area surveillance the diverse tasks of searching
for and tracking of multiple targets must be combined. The combination of the unDTD
with the density describing the states of the detected targets is a novel idea that plays a
crucial role in allocating the resources of an MFR adaptively among its search and track-
ing functions. Furthermore, the proposed approach does not use heuristics and scaling
factors (that control the track/search time ratio). Therefore, it results in Bayes-optimal
resource allocation between search and tracking while taking into account any external
information that might be available. Moreover, I showed via simulated examples that
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the threat-based approach outperforms both the periodic search-and-track approach
and the approach that minimizes the intrinsic uncertainty in the two aforementioned
densities. The proposed approach achieved both better situational awareness and bet-
ter tracking performance. These results were also reported in Katsilieris et al. [2015b].

In summary, the advantages of the threat-based approach to sensor management,
which I have proposed in this thesis, are:

• it manages the uncertainty in higher-level quantities that describe exactly what
the user is interested in instead of managing the uncertainty in quantities that are
relevant to what the user needs;

• no heuristics are used and therefore, the resulting resource allocation is always
Bayes-optimal;

• it demonstrates adaptive behavior by taking into account any external informa-
tion about target existence and arrival by tuning the corresponding model param-
eters; and more importantly

• it can also adapt to the operational context at hand, as shown in the presented
examples where it was applied to diverse scenarios such as asset-protection and
air-traffic-control.

In practice, the proposed method can be used in applications where agile sensors or
sensor suites, such as MFRs or robots equipped with cameras, must perform complex
tasks. A typical such application involves the combination of search for and tracking of
multiple objects of interest, e.g. aircrafts or intruders. The proposed method can en-
hance the reconfigurability of such systems in two ways. First, by allowing a user to take
into account in a model-based manner any available external information. Such ex-
ternal information can be provided by historical data, maps and even from intelligence
sources. Secondly, a user can also select the aspects of threat that are of interest in a spe-
cific operational context. Therefore, the resulting resource allocations are also optimal
with respect to a considered operational context.

The proposed method has certain limitations. The main challenge when applying
the proposed, threat-based approach is the mathematical definition of threat in differ-
ent contexts. Even though I have presented several interesting aspects of threat in two
diverse contexts, it might be quite challenging to create such functions in other contexts
that are not discussed in this thesis. Another limitation of this method is that, as seen in
Chapter 3, depending on the mathematical definition of threat the proposed approach
might not result in better performance than the existing approaches. This can be at-
tributed to the myopic optimization schemes that are used, as discussed in Chapter 3. A
way to address this issue is to use non-myopic optimization, such as OLFC schemes, but
this might be infeasible due to the high computational complexity of the chosen signal
processing algorithm and the chosen measure of uncertainty. I encountered the spe-
cific problem when I conducted experiments with low probability of detection or high
false alarm rate using a CB-MeMBer filter and measuring the uncertainty in multitarget
threat via its entropy.

Except for the threat-based approach and its applications, I achieved additional results
during two research visits to the following institutes:
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(a) Fraunhofer FKIE: I merged the research that I reported in Section 2.2 with the
research of Dr. Alexander Charlish, reported in Charlish et al. [2011], in order
to create an algorithm for online radar surveillance control. The results of this
collaboration are discussed in Appendix A and were published in Katsilieris et al.
[2012c].

(b) NATO-STO CMRE: I developed an algorithm that detects the spoofing of AIS mes-
sages. The algorithm compares the received position report with the information
obtained by a radar system and determines, using a sequential probability ratio
test, whether the AIS report is trustworthy or spoofed. The significance of the AIS
spoofing detection problem and the results of this collaboration are discussed in
Appendix B and were published in Katsilieris et al. [2013].

6.2. SUGGESTIONS FOR FUTURE RESEARCH
Resource management is a problem found in many domains besides radar target track-
ing. Such domains are robotics, wireless communications and medical imaging to name
a few. Therefore, it is possible to extend the presented research both by addressing chal-
lenges within the radar domain and by exploring its application to other domains.

An outline of possible extensions to the presented approach to resource manage-
ments follows.

• More aspects of threat can be taken into account, possibly after interviewing sen-
sor operators from different domains. Threat is a context-sensitive quantity and
therefore, it is subject to a specific operational context where a sensor is used.
In this way, a library of threat definitions could be compiled and operators could
select the aspects of interests in a given operational context.

• The results presented in Chapters 4 and 5 depend heavily on the behavior of the
specific signal processing algorithms that are used (PHD and CB-MeMBer filters).
It would be of interest to test the performance of the proposed threat-based ap-
proach in connection with other signal processing algorithms, such as the one
presented in Bocquel [2013].

• As seen in Chapter 3, if the tracking accuracy is not taken into account explicitly as
an aspect of threat, practical problems might appear. It can lead, for example, to
track loss because even though the radar system has minimized the uncertainty
in the threat-level of a target, the tracking accuracy has decreased in levels that do
not allow the tracking of the said target. For this reason, it is of interest to develop
threat definitions that take into account the tracking accuracy.

• The threat definitions presented in this thesis do not take into account the target
classification problem, e.g. estimating the vessel-type of a target. The proposed
approach offers the possibility to take the classification problem into account by
defining class conditional threat definitions and it would be of interest to explore
such an extension.

• The proposed approach was not compared to the PENTI scheme proposed by
Mahler in Mahler [2004], which also tries to improve the situational awareness



6.2. SUGGESTIONS FOR FUTURE RESEARCH 109

by taking into account the tactical significance of the targets present in a given
scenario. It is of interest to implement the PENTI scheme using quantities of a
running CB-MeMBer filter in order to compare its performance with the approach
presented in this thesis.

• In Chapter 5, only an asset-protection scenario was presented. It would be of in-
terest to also consider an air-traffic-control scenario. In such scenario, the two
densities would interact when evaluating the multitarget threat PDF and there-
fore, the multitarget threat PDF would not have two decoupled components any-
more. This would pose an added challenge when evaluating the uncertainty in
the multitarget threat PDF, for instance via its entropy.

• In this thesis, the use of the estimated threat PDF was not considered in the con-
text of decision making when actions must be taken. In other words, an operator
might consider performing a series of actions based on the estimate of the threat-
level of a target and its corresponding uncertainty. An interesting question that
arises then is how the decision process can be also taken into account when se-
lecting the best sensing action.

• The proposed approach can result in a very high computational load due to the
combinatorial complexity of the entropy evaluation algorithm and of the chosen
signal processing algorithm (in this thesis a CB-MeMBer filter). Therefore, meth-
ods to reduce the computational complexity are needed if the proposed approach
is to be used in a system with real-time requirements.

• It would be of interest to apply the threat-based approach in robotics applica-
tions where autonomous robots are used for detecting dangerous objects (e.g.
mines), intruders or search for survivors. In this context, threat is still an impor-
tant higher-level quantity, relevant to the mission of the robots and interesting
results can be obtained if the proposed approach is used for planning the trajec-
tories for autonomous robots.
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A
MERGING THE ‘UNDETECTED

TARGET ’ DENSITY WITH CDAPS

This work was performed in collaboration with Dr. Alexander Charlish during my re-
search visit to Fraunhofer FKIE, Bonn, Germany. The results were also published in
Katsilieris et al. [2012c].

Section A.1 motivates the problem of online control for radar surveillance. Section A.2
formulates the parameter selection problem. Section A.3 describes the proposed solu-
tion of applying CDAPS based on the ‘undetected target’ density. Section A.4 describes
the generation of surveillance performance measures from the ‘undetected target’ den-
sity, which is critical for the interface to the CDAPS algorithm. Section A.5 analyzes the
simulated results and Section A.6 summarizes this work.

A.1. MOTIVATION
MFRs are subject to increasing appeal due to their ability to configure nearly instan-
taneously an array of radar parameters, subject to the requirements of different radar
functions. This includes the ability to control an agile beam, which enables a dynamic
time-energy resource allocation. Consequently, MFRs are able to maintain a large num-
ber of individual tasks, which support a variety of differing radar functions such as target
tracking, surveillance and weapon guidance. The automated control and management
of such sensors, given that the resources available for the numerous tasks are finite, re-
mains a significant challenge.

The majority of literature on MFR resource management is focused on the control
and scheduling of tracking tasks, and various solutions have been presented with local
optimization, see for example van Keuk and Blackman [1993]; Koch [1999]; Boers et al.
[2005], or consideration of the global optimization, as in Hansen et al. [2006]. How-
ever, much less consideration has been given towards the surveillance function, which
is often implemented using a periodic search or simple rule based approaches. Such
surveillance control schemes are unable to generate behavior that adapts to changes in
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the environment or operational requirements and so do not fully exploit the hardware
potential.

Recently, a number of works have addressed the problem of surveillance control for
multifunction radars. In Bolderheij and Van Genderen [2004] the track and search func-
tions of an MFR are scheduled according to a threat-based criterion. For scheduling
surveillance tasks, the authors use ghost targets that dictate volume or horizon search
instead of tracking tasks. In White et al. [2008] the authors use a user-defined search-
to-track ratio. Accordingly, the sensor manager schedules the corresponding tasks of
the radar. For performing surveillance, an estimate of the spatial density of previously
undetected targets is utilized. The sensing action that maximizes the expected num-
ber of newly detected targets is chosen whenever a search function is scheduled. In
Matthiesen [2010] an a priori probability distribution of the target to be detected is spec-
ified by a set of discrete target position probabilities corresponding to each search beam.
The proposed method suggests making the next look in the search cell that will provide
the maximum value of the incremental search energy and S/N payoff ratios for all cells
and that will maximize the duty factor of each cell. Despite the successes of these pre-
vious works, resource is allocated myopically in general, without direct consideration of
the finite resource constraint.

In Charlish et al. [2011] the Continuous Double Auction Parameter Selection (CDAPS)
algorithm is introduced and demonstrated on the long-range surveillance function. CDAPS
utilizes a market mechanism to find the global optimum parameter selection, in terms
of utility maximization, given the global finite resource constraint. However, in Charlish
et al. [2011], the CDAPS algorithm is applied using a simple model of the cumulative
detection range with assumed expected target parameters. In Katsilieris et al. [2012a] a
particle filter is proposed to estimate a probability density of the undetected target loca-
tion in the surveillance volume. This probability density, as it depends on the received
data, is a better basis for resource allocation than the simple model used in Charlish
et al. [2011]. The undetected target location has also been proposed for surveillance
control in Williams [2011] using a multi-target Poisson density and a (quasi) Newton
method. In contrast, this paper utilizes a single target density of the undetected tar-
get location and applies the CDAPS algorithm. Additionally, this method is compared
to the two myopic management criteria proposed in Katsilieris et al. [2012a], being the
maximum expected KLD and maximum expected probability of detecting a target.

A.2. PROBLEM FORMULATION
Consider an MFR that performs surveillance along with its other tasks (target tracking,
weapon guidance etc.). The considered problem amounts to finding the surveillance
parameters uopt

i for each sector i that maximizes a surveillance criterion Ji given a
global resource constraint rmax :

uopt = argmax
u

J(xk ,Z1:k−1,z,u) (A.1)

subject to
NS∑
i=1

ri (ui ) ≤ rmax (A.2)

where
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• k = 1,2, . . . is the time index;

• i = 1,2, . . . , NS is the sector index;

• xk ∈RNs is the state vector of the target at time k;

• u = [u1, . . . ,uNs ] ∈ U is a generic parameter selection across all sectors and U ∈
RNu is the set of all the available surveillance parameters;

• z ∈ RNz is the simulated measurement using u and Z1:k−1 = {z1, ...,zk−1} is the
measurement history up to and including time k −1;

• uopt = [uopt
1 , . . . ,uopt

Ns
] ∈U is the optimal parameter selection across all sectors;

• J = [J1, . . . , JNS ] is the vector of the criteria to be optimized;

• ri (ui ) is the resource loading per sector i due to the surveillance parameters ui

expressed as percentage throughout; and

• rmax is the global resource constraint expressed as percentage throughout

This is a challenging multiobjective, constrained optimization problem.

A.3. PROPOSED SOLUTION
The proposed solution is to allocate the finite resource available for surveillance using
the CDAPS algorithm, using information extracted from the estimated probability den-
sity of the undetected target.

A.3.1. CONTINUOUS DOUBLE AUCTION PARAMETER SELECTION (CDAPS)
The CDAPS algorithm has been developed in order to solve multi-objective constrained
optimization problems in an efficient way, see Charlish [2011]. The CDAPS algorithm is
an agent based approach to optimization where distributed agents, each representing
single tasks, produce the global optimum resource allocation under a global resource
constraint. The optimum is defined in terms of maximization of utility, where utility
functions can be defined for each task, which map from task quality to utility space.
The optimization is performed using a continuous double auction, where each agent is
able to buy or sell resource, given the performance of its represented task.

In this paper, each agent represents the task of surveillance of a given sector and the
surveillance parameters are the dwell time τc and the revisit interval t f .

A full description of the CDAPS algorithm can be found in Charlish [2011] and the
algorithm is demonstrated for radar surveillance function in Charlish et al. [2011] and
the active tracking function in Charlish et al. [2012]. The CDAPS algorithm requires that
the resource loading, task quality and utility from each potential parameter selection
can be calculated. The method of extracting these from the ‘undetected target’ PDF is
described in Sec. A.4.

CDAPS tackles the multi-objective constrained optimization problem by assuming
that each criterion Ji can be mapped to a concave utility function Vi of the resource
and requiring that the sum of the individual utility functions Vi be maximized. The
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problem described by Eq. (A.1) and (A.2) is now simplified to a concave, single objective,
constrained optimization problem:

uopt = argmax
u

[
NS∑
i=1

Vi (u)

]
(A.3)

subject to
NS∑
i=1

ri (ui ) ≤ rmax (A.4)

As a concave maximization problem can be formulated as a convex minimization
problem, convex optimization theory can be applied. In addition, as the possible pa-
rameter selections will be discrete, the solution is optimal for the given discrete param-
eter set, but only near optimal in contrast to continuous parameter selections.

A.3.2. ESTIMATING THE ‘UNDETECTED TARGET’ DENSITY
The CDAPS algorithm is able to find the global optimum resource allocation; however,
this allocation is only as good as the performance model or estimate it is based upon.
Therefore, it is desirable to incorporate as much information as possible, such as prior
information or information from previous measurements, into the performance esti-
mate. This can be achieved by the recursive estimation of a PDF that describes the loca-
tion of the undetected target. This methodology along with a particle filter implemen-
tation have been presented in Katsilieris et al. [2012a].

The input of the algorithm presented in Katsilieris et al. [2012a] is the density and
the chosen sensing action at time k−1. First, the prediction step is performed using the
Chapman-Kolmogorov equation in order to obtain the predictive density:

p(xk |uk−1) =
∫

p(xk |xk−1) ·p(xk−1|U1:k−1)dxk−1 (A.5)

where p(xk |xk−1) is determined by the kinematic model of the target (in this paper a
constant velocity model is assumed) and U1:k−1 is the parameter selection history.

Then the predictive density is updated using negative information, see Koch [2007],
and Bayes’ rule:

p(xk |U1:k ) = p(xk |U1:k−1) · [1−PD (xk ,uk )]

C
(A.6)

where C =
∫

p(xk |U1:k−1) · [1−PD (xk ,uk )]dxk

The output updated density p(xk |uk ) at time k can be used to assess the perfor-
mance of different sensing actions, as described in Sec. A.4.2.

A.4. SURVEILLANCE PERFORMANCE
The CDAPS algorithm requires that the resource loading and utility can be calculated
for each potential parameter selection. The parameters under control considered in
this paper are the revisit interval t f and the dwell length τc of each sector. Modern radar
systems allow for other parameters to be controlled, such as the waveform bandwidth
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and pulse repetition frequency, however the revisit interval and dwell length are critical
assuming maximum duty factor and waveform bandwidth operation. The proposed
method can be readily extended to include additional parameter dimensions.

This section details how the resource loading, task quality and utility can be ex-
tracted from the probability density of the undetected target.

A.4.1. RESOURCE LOADING

The resource loading of each parameter selection for any sector, expressed as percent-
age throughout, is given by:

r j ,l = τ
j
c

t l
f

(A.7)

where j = 1, . . . , Nτc is the dwell length index and l = 1, . . . , Nt f is the revisit interval index.

A.4.2. TASK QUALITY

The task quality that is achieved, for a given parameter selection, is calculated using the
output of the particle filter, which is the density p(xk |uk ). To produce this density, the

filter is propagated over period of time Nk using the parameter selection u j ,l
i ,k .

An intuitive criterion was chosen as the task quality for performing search, being the
maximum cumulative probability of detecting a target at each sector i :

Ji =
Nk∑

k=1

[∫
PD (xk ,u j ,l

i ,k ) ·p(xk |U1:k−1)dxk

]
(A.8)

where PD (xk ,u j ,l
i ,k ) is the probability of detecting a target with states xk if the parameters

u j ,l
i ,k are chosen and p(xk |U1:k−1) is the predictive probability density function of the

target states at time k.

The length of the simulation time used can affect the task quality values calculated
for each possible sensing action. As this is the input to the CDAPS algorithm, the sim-
ulation time Nk also affects the parameter selection, which is discussed further in Sec.
A.5.1.

A.4.3. UTILITY

A utility function is required which maps task quality into utility. In this case an expo-
nential utility function was chosen, which is a function of the cumulative probability of
detecting a target:

Vi = 1−exp[−α · Ji ] (A.9)

and α is a sensitivity parameter. This utility function is chosen relatively arbitrarily, ex-
cept for maintaining concavity. In practice, this utility function can be adapted to suit
the requirement of the represented task.
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Figure A.1: Each point in the graph (of the Nτc ×Nt f in total) represents how much utility is gained and how

much resource loading is exerted by all possible combinations of parameters. The optimal points, also known
as the Pareto front, are highlighted.
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Figure A.2: After extracting the Pareto front from Fig. A.1, the points that lie on a concave majorant are selected
and passed to the corresponding agent in the CDAPS algorithm.
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A.4.4. RESOURCE-UTILITY SPACE
The CDAPS algorithm uses the resource and utility values of potential parameters selec-
tions. Figure A.1 shows an example where the N j points for a sector are plotted in the
utility vs resource loading space. As it can be seen, there are some points that have a
larger utility value for the same resource as other points. These better points are known
as the Pareto front in the literature and they can be extracted easily, using for example
the Matlab code given in Cao [2008].

Because a discrete set of parameter selections is used, the Pareto front will not al-
ways be strictly concave. In order to solve this problem, the points that do not lie on a
strictly concave majorant are removed and only the remaining points will be passed to
the corresponding agent in the CDAPS algorithm, see Fig. A.2.

A.5. SIMULATIONS
In the simulations, the following dwell lengths and revisit intervals are considered:

τc = [0.2,0.4, . . . ,2] msec (A.10)

t f = [0.4,0.8, . . . ,10] sec (A.11)

for simulation times of

Nk = [1,3,5,10,15,20,25] ·max(t f )

= [10,30,50,100,150,200,250] sec (A.12)

and the sensitivity parameter is set as α= 0.1.
The density is initialized at k = 0 by uniformly distributing the particles in a disk of

300 km radius. The velocities vx and vy are chosen such that the radial speed of the
targets is uniformly distributed in [0, 400] m/s and they move towards the radar. This
initialization process resembles the real life scenario of the moment when the radar is
turned on and there is no information about the targets location, meaning that targets
might be anywhere. A constant velocity model is used with bx = by = 2 (m/s2)2 as the
power spectral densities of the acceleration noise in the x − y direction. Furthermore,
target birth is modeled at the border of the field of view of the radar by means of replac-
ing a fixed percentage of particles with new ones at the border during the resampling
process.

The aforementioned parameters are tested in a scenario where an MFR has to per-
form surveillance of 8 sectors of 10×10 degrees. Using a bw = 1.5◦ beamwidth and 0.8bw

spacing means that there are 81 beam positions per sector. Therefore, the total resource

utilization percentage for given combinations of τ ji
c and t li

f per sector will be:

r =
NS∑
i=1

τ
ji
c

t li
f

·81 ·100% (A.13)

and a global resource constraint of rmax = 10% is imposed.
The standard radar range equation can be used to calculate the SNR. Realistic radar

parameters are used according to standard texts such as Blackman and Popoli [1999];
Skolnik [2002] to give an instrumented range of 300 km for a target with RCS = 1 m2.
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Figure A.3: The procedure explained in Fig. A.2 is demonstrated for varying simulation times. It can be ob-
served that changing the length of the simulation time greatly changes the task utility.

The probability of detection can then be calculated assuming a Swerling 1 target and a
probability of false alarm PF A :

PD = P
( 1

1+SN R

)
F A (A.14)

Although the selection of parameters affects the performance of the radar, the conclu-
sions that will be drawn are relevant over a range of possible parameter choices.

A.5.1. EFFECT OF SIMULATION TIME

The first step is to assess the effect of the simulation time Nk needed to evaluate the
utility of each parameter selection. As this evaluation of the utility, extracted from the
particle filter, is passed to the CDAPS algorithm, it can greatly affect the resulting pa-
rameter selection.

Figure A.3 shows the different resource utility curves that are passed to the CDAPS
algorithm for the various simulation times. It can be seen that changing the length of the
simulation time greatly changes the task utility. The reason for this great variation is that
when the simulation time is short, it is only evaluating over the initialization stage of the
particle filter. In this stage, it is necessary to detect targets close to the radar; however,
for the longer simulation times these close-in targets have already been detected and
the algorithm focuses on detecting the distant targets.

A scenario where there is no external information, much like in [Katsilieris et al.,
2012a, Subsec.V-A], is used to produce the optimal parameter selections chosen by CDAPS
for each value of Nk , as shown in Table A.1. It can be seen that shorter simulation times
result in a short dwell length and short revisit interval, whereas longer simulation times
result in longer dwell lengths and revisit intervals. This is intuitive, as the shorter sim-
ulation time, which is evaluated over the initialization stage, is required to detect many
targets close to the radar. However, the steady selection, which is observed for longer
simulation times, needs to detect targets far away from the radar.
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Table A.1: The optimal dwell lengths and revisit times for different simulation times

method Sim. time revisit int. dwell length resource

(sec) (sec) (msec) (%)

1) 10 1.2(a) & 2(b) 0.2 9

2) 10 1.4 0.2 9.26

3) 30 3.6(a) & 4.8(b) 0.6 9

4) 50 6 0.8 8.64

5) 100 10 1.4 9.07

6) 150 10 1.2(a) & 1.6(b) 9

7) 150 10 1.4 9.07

8) 200 10 1(a) & 2(b) 9

9) 200 10 1.4 9.07

10) 250 10 1.4 9.07

A.5.2. PERFORMANCE EVALUATION
An assessment of the surveillance performance is generated in a scenario where the
MFR has to detect 300 targets that have RCS = 1 m2 and move following a constant ve-
locity model. The initial velocities of all the targets are chosen such that the radial speed
of the targets is uniformly distributed in [0, 400] m/s and they move towards the radar.
The azimuth of the targets is uniformly distributed in [0,2π) radians. Furthermore, the
targets are divided into 3 groups according to their initial distance to the radar:

• Group 1: 100 targets with initial range in [0,50] km;

• Group 2: 100 targets with initial range in (50,100] km; and

• Group 3: 100 targets with initial range in (100,300] km.

The aforementioned parameter selections are compared with performing periodic
search such that a probability of detection of 0.7 at 10 km is achieved1 for a target with
RCS = 1 m2, assuming the Swerling I model and false alarm rate of PF A = 1.4 ·10−9. This
requirement results in revisit time of 8 sec and dwell length of 1 msec.

The parameter selections are also compared to performing myopic search every 2
sec using the two criteria2 discussed in Katsilieris et al. [2012a] for choosing the sector
to be searched and the optimal dwell length. The revisit interval for each sector can then
be derived indirectly.

We performed 100 Monte Carlo runs. Each run was terminated either when all tar-
gets had been detected or when 20 minutes of radar surveillance had passed. The results
are reported in Tables A.2 and A.3.

In Tables A.2 and A.3 it can be observed that longer revisit intervals and longer dwell
times result in detecting targets at long distances faster and with higher probability. On

1This probability of detection can appear to be low for the considered distance. However, it happens due to
the selected radar parameters and does not affect qualitatively the conclusions that will be drawn.

2The criteria are the maximum expected probability of detecting a target and the maximum expected
Kullback-Leibler divergence between the posterior and the predictive “undetected target" density.
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Table A.2: Comparison results of various methods for surveillance - Part 1

Method Avg. number of Avg. percentage Variance of

detected targets of detected targets detected targets

(%) percentage

1a) 269.32 89.77 21.67

1b) 268.09 89.36 22.35

2) 268.68 89.56 22.97

3a) 281.91 93.97 14.18

3b) 281.65 93.88 14.01

4) 285.2 95.07 12.36

5) 290.59 96.86 10.22

6a) 288.54 96.18 12.90

6b) 290.87 96.96 6.36

7) 293.01 97.67 6.17

8a) 287.37 95.79 8.76

8b) 290.89 96.96 8.14

9) 295.34 98.45 4.61

10) 291.43 97.14 6.17

E[PD ] 293.72 97.91 5.52

E[KLD] 293.37 97.79 7.57

Periodic 287.9 95.97 9.44

the other hand, short revisit intervals and dwell times result in fast detection of targets
that are close to the radar.

These results can be explained by the fact that for short simulation times, detection
of targets at short ranges is favored over detection of targets at long ranges. On the other
hand, if long simulation times are used then the density reaches a steady-state condition
where targets are expected to be only at long distances from the radar and long dwell
times are needed for their detection. Consequently, long revisit intervals are also chosen
in order to satisfy the resource constraint. The aforementioned results demonstrate the
importance of the simulation time due to its connection to the ranges that targets are
expected to be found.

The myopic criteria do not offer the flexibility of adapting the resource consumption
according to where any undetected targets might be. Because they are myopic, they
always choose the longest dwell time and therefore their performance depends only on
the search period that the user sets.

The periodic search, designed such that a certain probability of detection is achieved,
produced results that lie between the results obtained for simulation times of 50 and 100
seconds. This is intuitive since the revisit interval and dwell time of the periodic search
also lie between the corresponding selections chosen by the CDAPS algorithm.

A.6. SUMMARY
A novel algorithm for selecting surveillance parameters of an MFR has been presented.
The presented algorithm extracts resource utility measures for a number of surveillance
sectors from a density of the undetected target location. These resource utility measures
are used to allocate the finite radar resource using the Continuous Double Auction Pa-
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Table A.3: Comparison results of various methods for surveillance - Part 2

Method Group 1 Group 1 Group 2 Group 2 Group 3 Group 3

avg. number of avg. time avg. number of avg. time avg. number of avg. time

detected targets until detection detected targets until detection detected targets until detection

(%) (sec) (%) (sec) (%) (sec)

1a) 100 1.59 100 3.83 69.32 216.78

1b) 100 2.45 100 6.13 68.09 235.63

2) 100 1.77 100 4.50 68.68 224.95

3a) 100 3.67 100 7.26 81.91 161.31

3b) 100 4.76 100 9.37 81.65 171.92

4) 100 5.85 100 10.64 85.2 158.84

5) 100 11.15 100 17.53 90.59 138.63

6a) 100 11.22 100 18.31 88.54 153.67

6b) 100 11.18 100 17.21 90.87 129.11

7) 100 10.75 100 17.29 93.01 130.74

8a) 100 11.38 100 18.93 87.37 164.56

8b) 100 10.94 100 17.74 90.89 126.49

9) 100 10.82 100 16.24 95.34 107.00

10) 100 10.91 100 17.59 91.43 140.32

E[PD ] 100 18.74 100 27.43 93.72 142.11

E[KLD] 100 18.30 100 26.66 93.37 141.82

Periodic 100 8.39 100 14.62 87.9 135.4

rameter Selection algorithm.
As a first step in evaluating the performance of the presented algorithm, the effect

of simulation time of the “undetected target" density on the parameter selection was
studied. The results show that for short simulation times the joint algorithm chooses
parameters that are suited for detecting quickly targets close to the radar. On the other
hand, for long simulation times the joint algorithm chooses parameters that are suited
for detecting targets that are far away from the radar.

In the future, we would like to get a better insight into the benefits of using non-
myopic, adaptive methods instead of myopic or naive methods, such as periodic scan-
ning, for performing surveillance. Towards this goal, the algorithm can be extended to
include external information, such as map information about airports, and be tested in
such scenarios.

Another aspect of the algorithm that needs to be tested is its ability to select the best
parameters online, as the operational requirements change. For this reason, it can be
tested in scenarios where the targets are expected to be found at different places as the
time passes by. In these cases, the best parameters will have to be re-evaluated every
few time instances.

The surveillance criterion Ji is an important part of the algorithm and it has to be
chosen according to the operational requirements. For this reason, selecting the most
suitable surveillance criterion is an important research topic.

It would also be of interest to include more parameters in the optimization proce-
dure (e.g., waveform bandwidth) in order to create an even more realistic model.
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AIS SPOOFING DETECTION USING

RADAR INFORMATION

This work was performed in collaboration with Dr. Paolo Braca during my research visit
to NATO-STO CMRE (formerly known as NURC), La Spezia, Italy. The results were also
published in Katsilieris et al. [2013].

Section B.1 motivates the problem of detecting whether an AIS report is spoofed or not.
The problem is formulated in Section B.2, the proposed solution is developed in Sec-
tions B.3 and B.4. Simulations and experimental results are presented in Section B.5.
Finally, the work is summarized in Section B.6.

B.1. MOTIVATION
Maritime situational awareness, which includes accurate knowledge of moving vessel
location, has increased the focus on the development of data fusion algorithms. These
algorithms can fuse data from several heterogeneous systems in order to provide a bet-
ter perception of the activity close to the shores of a nation. For example, data from
coastal radars, the AIS, video and infrared surveillance systems and SAR systems can be
fused. A goal of these systems, in addition to tracking the present vessels, is to introduce
some sort of intelligence in the surveillance systems to automatically identify possibly
suspicious (also called anomalous) behavior. Some example applications include the
deviation of vessels from known shipping lanes, the rendez-vous of vessels at sea, the
motion of fast moving vessels close to the shore, methods to automatically detect the
switching-off of an AIS transponder and others. Some examples from the relevant bib-
liography are Ristic et al. [2008]; Lane et al. [2010]; Guerriero et al. [2010]; Kowalska and
Peel [2012]; Vespe et al. [2012].

A common characteristic among the given examples is that they rely on the high
accuracy of AIS reports in order to derive training patterns or the “ground truth" for
the motion of vessels. An often hidden assumption is that AIS reports are trustworthy.
This paper is based on the assumption that AIS reports can be falsified (or spoofed) as
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(a) Example 1: A vessel reports a different trajectory
from the one that it is actually following. For instance,
a fishing boat could violate a no-fishing zone.

(b) Example 2: Two vessels meet in the sea
for an illegal transaction and report a dif-
ferent trajectory in order to conceal their
rendez-vous.

Figure B.1: Two examples where AIS spoofing can be of interest.

suggested in Teleplan Globe AS [2012]; CNS Systems [2012]. The trustworthiness of AIS
reports depends on the willingness of the crew of a ship to report their true data.

Fig. B.1a shows an example of interest for this problem. Consider an area that spe-
cific types of vessels are not supposed to enter, e.g., an area where fishing is not allowed.
In this case, a fishing boat could enter the no-fishing zone, following the trajectory de-
noted by the solid line, while reporting that it is bypassing it, reporting the trajectory
denoted by the dashed line. Fig. B.1b shows an example where two vessels meet but try
to conceal their actions by reporting false trajectories.

This paper addresses the problem of determining whether the AIS data received
from a vessel are trustworthy or not by using information from additional sensors. The
proposed methodology uses radar measurements and prior information from the cor-
responding tracking system. In the case that the AIS data are indeed trustworthy, they
can be safely used in the data fusion algorithms, e.g., for enhancing the tracking accu-
racy. If the AIS data are estimated to be spoofed, then their fusion with other data can
be avoided and an anomaly can be flagged to the operator of the surveillance system.

B.2. PROBLEM FORMULATION
As explained in the introduction, the considered problem amounts to determining whether
the AIS data transmitted by a vessel is spoofed or not by using measurements from any
available radar and the predicted vessel position according to the tracking system of the
radar.

First, some notation will be introduced. Subsequently, the fundamental assump-
tions will be stated and finally, the problem will be posed in the statistical hypothesis
testing framework.

B.2.1. NOTATION

The following notation is used:

• the two-dimensional true target position in Cartesian coordinates will be denoted
as x0, the predicted target position as x and the AIS reported position as xAI S ;
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• there is a number of K radars measuring the position of the target at each time
instance i and the measurement of each radar is denoted as z j (i ), j ∈ [1, . . . ,K ].
From now on, the time index will be suppressed. The radar measurements are
usually expressed in polar coordinates, i.e., target range r , bearing θ and possibly
target range rate ṙ . For simplicity reasons, the cartesian system will be used for
the radar measurements with corresponding transformation of the measurement
covariance matrix.

• N (x;µ,Σ) denotes the two-dimensional Gaussian PDF:

N (x;µ,Σ) = 1

(2π)
p|Σ|e−

1
2 (x−µ)TΣ−1(x−µ) (B.1)

• The symbol ∼ stands for “is distributed according to".

B.2.2. ASSUMPTIONS
For formulating and tackling the problem at hand, the following assumptions are made:

• Zero false alarm rate at the detector of the radar tracker is assumed because in
practice most radar systems operate at low false alarm rate regimes.

• The a priori information on the vessel position is a Gaussian with mean x0 and
covariance matrix Σx: x ∼ N (x0,Σx). This represents the predicted position of
the vessel according to the tracking system at the same time instance as the radar
measurements and the AIS contact are received.

• The measurement from the kth radar is zk = x0+wk , where wk is additive Gaussian
noise with zero mean and covariance matrix ΣR : zk ∼ N (x0,ΣR ). Furthermore, it
is assumed that the measurements are conditionally independent form radar to
radar.

• The trustworthy AIS data xAI S follow a Gaussian distribution with mean x0 and
covariance matrix ΣAI S . When the AIS data are spoofed, it is assumed that an
arbitrary bias d = [dx ,dy ]T is added to the true position of the vessel, i.e., the mean
is now x0 +d.

• Perfect reception of AIS reports is assumed. In other words, the transmitted AIS
reports are always received by the corresponding tracking system.

• Typically, it holds that the elements of ΣAI S are smaller than the elements of ΣR .

• Only the single-target case is considered. This approximation is valid in multitar-
get scenarios when there is a perfect data association scheme or when the targets
are sufficiently separated and the single-target case can be reconstructed. In the
maritime domain, this approximation is valid when the vessels are outside from a
port, which is the case where the AIS spoofing is of interest.

• The mathematical derivation of the joint likelihood of the radar measurements
and AIS contacts is done for the static case, i.e., in a snapshot time. When the se-
quential detection of spoofing is considered, the measurements are correlated in
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time, as discussed in Bar-Shalom et al. [2011], but they are approximated to be in-
dependent. The validity of this approximation is demonstrated by three examples
using real and simulated data.

Note that the assumptions of Gaussian prior and Gaussian measurement noise are
very common in the target tracking context, see for example Bar-Shalom et al. [2011].

B.2.3. STATISTICAL HYPOTHESIS TESTING OF AIS SPOOFING
The AIS spoofing detection problem can be formed as a statistical hypothesis testing
problem:

• H0 : (z,xAI S ) ∼ p(z,xAI S |H0) is the simple null hypothesis that the AIS data are
trustworthy, versus

• H1 : (z,xAI S ) ∼ pd(z,xAI S |H1) is the composite alternative hypothesis that the AIS
data are spoofed,

where pd(z,xAI S |H1) is the joint distribution of the radar measurements and AIS con-
tacts, parameterized by the spoofing distance d, and p(z,xAI S |H0) is the joint distribu-
tion of the radar measurements and trustworthy AIS contacts.

In testing H0 versus H1 there are two types of error that can be made: H0 can be
falsely rejected or H1 can be falsely rejected. The first type of error is called a false alarm,
meaning that trustworthy AIS data are classified as spoofed, and the false alarm prob-
ability is denoted as PF A . The second type of error is called a missed detection and it
means that the spoofing of the AIS data has not been detected. The missed detection
probability PMD is equal to 1 minus the probability of detection, or PMD = 1−PD .

During the design process of the test for H0 versus H1, one has to find a good trade-
off between the two error probabilities, since one error can become arbitrarily small at
the expense of the other error becoming unacceptably large. It is very common in the
radar community to follow the Neyman-Pearson paradigm, as described in Poor [1994].
Accordingly, a low upper bound on the false alarm probability is set and the miss detec-
tion probability is minimized, or equivalently the detection probability is maximized.
For a better discussion on the fundamentals of hypothesis testing see Poor [1994]; Kay
[1998].

B.3. SINGLE SAMPLE DETECTORS
As a first step, the expression for the clairvoyant1 Likelihood Ratio Test (LRT) is derived
for the case of one radar and K radars. Subsequently, the generalized version of the
likelihood ratio test is introduced in order to deal with the unknown spoofing distance.

B.3.1. CLAIRVOYANT LIKELIHOOD RATIO TEST
In the beginning, the PDFs of receiving a given radar measurement and a given AIS re-
port under each hypothesis need to be calculated.

The radar measurements and the AIS data are conditionally independent given x:

1The clairvoyant test is an ideal test that knows the true spoofing distance but not whether the data are
spoofed.
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p(z,xAI S |Hi ) =
∫ ∞

−∞
p(z|x) p(xAI S |Hi ,x) p(x)dx (B.2)

where i = 0,1.

The integral in Eq. (B.2) can be evaluated analytically in the case of Gaussian mea-
surements and prior because the product of two Gaussian PDFs is an unormalized Gaus-
sian, see Petersen and Pedersen [2012]:

N (x;µ1,Σ1) ·N (x;µ2,Σ2) =αN (x;µ3,Σ3) (B.3)

where

α=N (µ1;µ2,Σ1 +Σ2) =N (µ2;µ1,Σ1 +Σ2) (B.4)

Σ3 =
(
Σ−1

1 +Σ−1
2

)−1
, µ3 =Σ3

(
Σ−1

1 µ1 +Σ−1
2 µ2

)
(B.5)

Accordingly, the clairvoyant LRT is

Λ(z,xAI S ,d) = N (z;xAI S −d,ΣR +ΣAI S )

N (z;xAI S ,ΣR +ΣAI S )
× N (x0;µ1(z,xAI S )−∆d,Σ1 +Σx)

N (x0;µ1(z,xAI S ),Σ1 +Σx)
≷ τ (B.6)

where

Σ1 = (Σ−1
R +Σ−1

AI S )−1 (B.7)

µ1(z,xAI S ) =Σ1(Σ−1
R z+Σ−1

AI S xAI S ) (B.8)

∆= (ΣAI SΣ
−1
R + I2×2)−1 (B.9)

In the case of Gaussian measurements and prior, an analytic formula for Eq. (B.6)
can be found, see Section B.7.

The LRT can also be generalized to address the case where measurements from sev-
eral radars are available. The multi-radar likelihood p(z|x0) in the case of Gaussian mea-
surements is evaluated in Section B.8. It can be seen, see Section B.8, that in the case
where measurements from similar radars are available, the measurements can be easily
aggregated and the LRT has the same form as in Eq. (B.6).

Eq. (B.6) is interesting for one more reason. The expected value of the logarithm of
Eq. (B.6) under H1, i.e., E [log(Λ(z,xAI S ,d))|H1] is equal to the KLD between the nom-
inator and the denominator, see [Cover and Thomas, 2006, Theorem 11.8.1]. In other
words, it measures how much the two hypotheses are disjoint. This expression can also
be evaluated analytically, see Section B.7. In the simulations it is shown that the hy-
potheses become more disjoint as the spoofing distance increases, which is a desirable
property.
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B.3.2. GENERALIZED LIKELIHOOD RATIO TEST

In practice, the spoofing distance d is not known to the system and therefore, the gener-
alized version of the LRT (from now on called G-LRT) can be used.

The Generalized Likelihood Ratio Test (G-LRT) is one of the most powerful tools
available for solving composite hypothesis testing problems, such as the problem at
hand, where the spoofing distance is not known. For a better discussion on the G-LRT
see Kay [1998].

When using the G-LRT, one first needs to find the estimate d̂ that maximizes the
likelihood under H1

d̂ = argmax
|d|>|dmi n |

[
N (z;xAI S −d,ΣR +ΣAI S )×N (x0;µ1(z,xAI S )−∆d,Σ1 +Σx)

]
(B.10)

and then use it in Eq. (B.6) or in the corresponding analytic expression shown in Section
B.7.

During the likelihood maximization process, where d̂ is evaluated, a minimum dis-
tance dmi n is set. If the estimated spoofing distance d̂ has a smaller value than dmi n then
it is assumed that the vessel is not spoofing. The determination of dmi n is important for
the performance of the G-LRT and depends on the accuracy of the radar measurements,
the AIS data and the prior information. In other words, it depends on Σx, ΣR and ΣAI S .
For instance, if the accuracy is poor, then setting dmi n to a small value results in an in-
creased false alarm probability. On the other hand, if the accuracy is good, then setting
dmi n to a large value results in an increased miss detection probability.

B.4. SEQUENTIAL DETECTION OF AIS SPOOFING

In the previous subsections, one-sample solutions for the problem at hand were devel-
oped. As their name suggests, they make a decision about the trustworthiness of AIS
data using one radar measurement and one AIS report. This approach can also be gen-
eralized to using a larger, fixed number of samples and is suitable for applications where
the number of observations is known in advance and no new observations can be made.

In the case studied in this paper, new observations are periodically available accord-
ing to the radar scanning period and the frequency of AIS reports. Subsequently, it can
be noticed that the problem of AIS spoofing detection would ideally be dealt online, as
new observations are received and one would like to make a decision with certain error
probabilities as fast as possible.

Given the aforementioned discussion, the sequential version of the aforementioned
LRTs, from now on called Sequential Likelihood Ratio Test (SLRT), is a more appropriate
solution. An SLRT has the property that, in general, it requires a smaller expected num-
ber of observations than the fixed number of observations needed by the corresponding
fixed sample size test in order to achieve the same error probabilities, see the discussion
in Wald [1945].

The sequential version of the previously described tests has the general form:
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logB <
N∑

i=1
log

[
Λ(z(i ),xAI S (i ), d̂)

]< log A (B.11)

B Ê 1−PD

1−PF A
, A É PD

PF A
(B.12)

The test is terminated at stopping time N when
∑N

i=1 log
[
Λ(z(i ),xAI S (i ), d̂)

]
exceeds

one of the two thresholds or a maximum allowed time has elapsed. In practice, the
equalities are used in (B.12). For a better description of the SLRTs, see Wald [1945].

Wald’s approximations can be used for finding the lower and upper thresholds −α,h
for desired error probabilities PF A ,1−PD under each hypothesis, see Basseville and Niki-
forov [1993]:

−α≈ log

(
1−PD

1−PF A

)
< 0 , h ≈ log

(
PD

PF A

)
> 0 (B.13)

Wald’s approximations can also be used together with the calculated expected value
of the LRTs under the two hypotheses in order to derive the expected number of neces-
sary samples under each hypothesis, see Basseville and Nikiforov [1993]:

E [N |H0] =
(1−PF A) log

(
1−PF A
1−PD

)
−PF A log

(
PD
PF A

)
E [log(Λ)|H0]

(B.14)

E [N |H1] =
(PD ) log

(
PD
PF A

)
− (1−PD ) log

(
1−PF A
1−PD

)
E [log(Λ)|H1]

(B.15)

In the case where a fixed value d̂ is used for all sampling times i = 1, . . . , N , an analytic
expression for the expected value of the LRT E [log(Λ)|H0],E [log(Λ)|H1] under H0 and
H1 respectively can be found, see Section B.7.

It should be pointed out that formulas (B.11) through (B.15) are exact only in the
static case, where the vessel is not moving and the spoofing distance is constant and
known. The reason for the formulas to not be exact in the dynamic case is that the
predicted positions of the vessel at every time instance are correlated across time. The
correlation is introduced by the motion model used for performing the prediction step
in the tracking system. The motion model typically has the form:

x(i ) = f(x(i −1),v(i )) (B.16)

where it can be seen that the state of the target at time instance i is predicted using the
state of the vessel at the time instance (i −1) and some noise v(i ). A typical example of a
motion model is the nearly constant velocity model, presented in Li and Jilkov [2003].

In the next section it is shown that formulas (B.11) through (B.15) are good approxi-
mations in the case of a moving vessel as long as the spoofing distance is constant. If the
vessel is moving and the spoofing distance is increasing then fewer samples are needed.
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Figure B.2: The probability of detection at different distances using one measurement from a varying number
of radars and for PF A = 0.01. The C-LRT is denoted by solid blue and the G-LRT by dashed red line. The ◦
denotes the use of one, the ∇ of three, the� of five and the ? of ten radars.

B.5. EXPERIMENTAL RESULTS
In subsection B.5.1, the test statistics for one-sample LRTs are simulated in order to
demonstrate the effect of the spoofing distance and the number of radars on the per-
formance of the various tests. Similarly, the test statistics for the SLRTs are simulated
in subsection B.5.2. Finally, in subsection B.5.3, the SLRTs are applied to real and sim-
ulated data in order to verify the validity of the assumptions and approximations made
in the previous sections.

B.5.1. SINGLE SAMPLE LOG-LIKELIHOOD RATIO TESTS

As a first step, it is demonstrated that the generalized LRT has performance that gets
close to the performance of the clairvoyant LRT as the spoofing distance and the num-
ber of radars increase. This demonstrates two things: a) the benefit of using measure-
ments from more than one radars; and b) that as the spoofing distance increases, the
two hypotheses become more disjoint and therefore, it is easier to detect the spoof-
ing behavior. The latter phenomenon manifests itself faster when measurements from
more radars are used.

The settings for the following simulations are x0 = [103, 103]T m, Σx = diag(702,702)
m2, ΣR = diag(502,502) m2, ΣAI S = diag(52,52) m2. The spoofing distance is varied as
dx = [20,40, . . . ,160,175,200, . . . ,300],dy = 0 m. The minimum distance dmi n for the G-
LRT is set to 85 m and the grid points are located in increments of 20 meters in the x and
y directions. The statistics are evaluated over 104 Monte Carlo runs.

Figure B.2 shows the resulting probability of detection at each value of the spoofing
distance for the two tests for varying number of radars and for PF A = 0.01 using data
in a single time interval. Figure B.3 shows the corresponding Receiver Operating Char-
acteristic (ROC) curves for d = [40,0] m. It can be noticed that the performance of the
G-LRT becomes equivalent to the performance of the Clairvoyant Likelihood Ratio Test
(C-LRT) as the spoofing distance and the number of radars increase.

Figures B.4 and B.5 show how the expected values of the two tests vary under H1
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Figure B.3: ROC curves for the two tests for varying number of radars. The spoofing distance is 40 meters in
the x direction. The C-LRT is denoted by solid blue and the G-LRT by dashed red line. The ◦ denotes the use
of one, the ∇ of three, the� of five and the ? of ten radars.

and H0 respectively. The settings for these simulations remain the same. As expected,
the longer the spoofing distance and the larger the number of radars that are used, the
higher the expected value of the tests under H1 and therefore, the easier it is to detect
the spoofing behavior. In other words, the KLD between the two hypotheses increases
and therefore they become more disjoint. It can also be noticed that due to the specific
choice of dmi n , the G-LRT has a negative expected value under H1 for spoofing distances
shorter than 30 to 60 meters, depending on the number of radars used. Using a lower
dmi n would make the expected value positive at the expense of the expected value of the
G-LRT under H0, which would have smaller absolute value. This effect becomes impor-
tant when the sequential LRT is used because as the expected value under each hypoth-
esis becomes lower, the corresponding termination time of the test becomes longer for
reaching a conclusion with the same error probabilities.

Again, as the number of radars increases under H1, the G-LRT becomes equivalent
to the C-LRT. On the other hand, under H0 the G-LRT has constant performance that
depends on the number of radars.

B.5.2. SEQUENTIAL LOG-LIKELIHOOD RATIO TEST STATISTICS

Using the same settings and fixing the spoofing distance at d = [80,80]T m, the thresh-
olds can be varied such that the two tests have the same probability of false alarm. In
this way, one can see how long it takes to reach a conclusion with a given probability of
detection.

Figure B.6 shows the probability of detection versus the expected termination time
of each test. For these simulations, one radar is used and the probability of false alarm
is fixed at PF A = 10−5. The results are evaluated over 105 Monte Carlo runs. It can be
observed that in this case Wald’s approximations are not accurate enough because the
expected values of the LRTs are too large compared to the evaluated thresholds.
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Figure B.4: The performance of the two LRTs under H1 for varying number of radars. As the spoofing distance
and the number of radars increases, the expected value of the tests under H1 also increases and makes the
spoofing detection easier. The C-LRT is denoted by solid blue and the G-LRT by dashed red line. The ◦ denotes
the use of one, the ∇ of three, the� of five and the ? of ten radars.

Figure B.5: The performance of the two LRTs under H0 for varying number of radars. The C-LRT is denoted by
solid blue and the G-LRT by dashed red line. The ◦ denotes the use of one, the ∇ of three, the� of five and the
? of ten radars.
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Figure B.6: The probability of detection of the different tests using one radar as a function of the expected
number of necessary samples. The false alarm probability is fixed to PF A = 10−5.

Table B.1: Necessary number of samples per example such that PD = 0.95 and PF A = 10−5

Example

I II III

Test E [N ] N E [N ] N E [N ] N

C-SLRT 2 2 2 2 2 2

G-SLRT 8 22 8 21 8 24

B.5.3. EXPERIMENTS WITH REAL AND SIMULATED DATA

In this subsection, the validity of the most important approximations is checked. In
other words, it is shown that the developed SLRTs are valid approximations and can be
used in a dynamic case where the vessel is moving.

The SLRTs are applied to the real data collected from two targets, shown in Fig. B.7,
B.8 and B.9. In these scenarios, the two example vessels are sailing in open sea while be-
ing observed by a third vessel. The third vessel is recording the radar measurements and
uses these measurements for tracking them. Furthermore, it registers their trustworthy
AIS reports. The spoofed AIS data are simulated for the purposes of this work.

The thresholds for the two SLRTs are chosen such that the probability of detection
and the false alarm probability is PD = 0.95 and PF A = 10−5 respectively. Subsequently,
the termination time of each SLRT is evaluated and compared to the expected number
shown in Fig. B.6 in order to validate our assumptions and approximations.

The results are summarized in Table B.1. In all examples, the SLRTs detect the correct
behavior of the target.

In the second example, it can be observed that when the vessel tries to report a fake
trajectory by increasing the spoofing distance, it is even easier to detect the spoofing
behavior. This is a direct consequence of the fact that the two hypotheses become more
disjoint as the spoofing distance increases.
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Figure B.7: Example I: Maneuvering target. The collected AIS data are trustworthy and the spoofing is simu-
lated by adding 80 meters in both x and y directions.

Figure B.8: Example II: The maneuvering target from Example I now spoofs its transmitted AIS data such that
it appears that it is not entering a forbidden zone.

Figure B.9: Example III: A target moving in a straight line. The collected AIS data are trustworthy and the
spoofing is simulated by adding 80 meters in both x and y directions.
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B.6. SUMMARY
The problem of detecting whether a vessel is transmitting spoofed AIS data was formu-
lated in the context of hypothesis testing. For this scenario, the spoofing distance and
the number of radars were varied in order to obtain the corresponding ROC curves and
the expected number of necessary samples for making a correct decision. The proposed
solution was successfully demonstrated using real data with simulated spoofing.

There are also several other problems pertaining to the AIS data transmission, re-
ception and exploitation. Rather than spoofing, vessels could simply turn off their AIS
transmitters, possibly periodically, in order to hinder the surveillance systems and their
operators from detecting illicit activities. Furthermore, a varying AIS reception proba-
bility, for instance due to weather conditions, would further complicate the AIS spoofing
detection process, as described in Guerriero et al. [2010]. It would be of interest to study
these effects in the context of the solution proposed in the current paper.

Another interesting topic for future research would be to extend the current work
such that it can address scenarios with multiple targets. In such cases, collaborative
spoofing, for instance swapping of identities, can pose further difficulties in addition to
the obvious radar-to-AIS association problem.

B.7. DERIVATION OF THE CLAIRVOYANT LOG-LRT
The analytic expression of the clairvoyant log-LRT can be found as follows:

p(z,xAI S |H0) =
∫
R2

N (z;x,ΣR ) N (xAI S ;x,ΣAI S ) N (x;x0,Σx)dx

=
∫
R2

N (x;z,ΣR ) N (x;xAI S ,ΣAI S ) N (x;x0,Σx)dx

=N (z;xAI S ,ΣR +ΣAI S ) N (x0;µ1(z,xAI S ),Σ1 +Σx)

×
∫
R2

N (x;µ∗,Σ∗)dx

=N (z;xAI S ,ΣR +ΣAI S ) N (x0;µ1(z,xAI S ),Σ1 +Σx) (B.17)

where N (z;xAI S ,ΣR +ΣAI S ) comes from:

N (x;z,ΣR )N (x;xAI S ,ΣAI S ) =N (z;xAI S ,ΣR +ΣAI S ) N
(
x;µ1(z,xAI S ),Σ1

)
(B.18)

with

Σ1 = (Σ−1
R +Σ−1

AI S )−1 (B.19)

µ1(z,x) =Σ1(Σ−1
R z+Σ−1

AI S xAI S ) (B.20)

and N (x0;µ1(z,x),Σ1 +Σx) comes from the following multiplication:

N
(
x;µ1(z,xAI S ),Σ1

)
N (x;x0,Σx) =N (x0;µ1(z,xAI S ),Σ1 +Σx) N (x;µ∗,Σ∗) (B.21)
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and µ∗,Σ∗ do not need to be calculated.
Setting xAI S = xAI S −d, it holds that under H1:

p(z,xAI S |H1) =N (z;xAI S −d,ΣR +ΣAI S )×N (x0;µ1(z,xAI S )−∆d,Σ1 +Σx) (B.22)

where

∆= (ΣAI SΣ
−1
R + I2×2)−1 (B.23)

Then, the log-LRT is

logΛ(z,xAI S ,d) = log

(
p(z,xAI S |H1)

p(z,xAI S |H0)

)
=−(xAI S −z−d)T (ΣR +ΣAI S )−1(xAI S −z−d)

+ (xAI S −z)T (ΣR +ΣAI S )−1(xAI S −z)

− (x0 −µ1(z,xAI S )+∆d)T (Σ1 +Σx)−1(x0 −µ1(z,xAI S )+∆d)

+ (x0 −µ1(z,xAI S ))T (Σ1 +Σx)−1(x0 −µ1(z,xAI S )) (B.24)

Setting

A = (ΣR +ΣAI S )−1 , B = (Σ1 +Σx)−1 (B.25)

v = xAI S −z , w = x0 −µ1(z,xAI S ) (B.26)

the log-likelihood ratio test has the form

logΛ(z,xAI S ,d) = [axx dx (2vx −dx )−bxx (∆d)x (2wx + (∆d)x )]

+ [
ay y dy (2vy −dy )−by y (∆d)y (2wy + (∆d)y )

]
+ (ax y +ay x )

[
vy dx + vx dy −dx dy

]
− (bx y +by x )

[
wy (∆d)x +wx (∆d)y + (∆d)x (∆d)y

]
(B.27)

where: ai j are the elements of matrix A, bi j the elements of matrix B , vi the elements
of vector v, wi the elements of vector w and (∆d)i are the elements of vector ∆d.

Given the fact that

E [v|H0] = [0,0] , E [v|H1] = d (B.28)

E [w|H0] = [0,0] , E [w|H1] =∆d (B.29)

the expected value of the log-LRT under the two hypotheses can be evaluated:
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E [logΛ(z,xAI S )|H0] =−[
axx (d̂x )2 +bxx (∆d̂)2

x

]−[
ay y (d̂y )2 +by y (∆d̂)2

y

]
− (ax y +ay x )d̂x d̂y − (bx y +by x )(∆d̂)x (∆d̂)y (B.30)

E [logΛ(z,xAI S ,d)|H1] = [
axx d̂x (2dx − d̂x )−bxx (∆d̂)x (2(∆d)x + (∆d̂)x )

]
+ [

ay y d̂y (2dy − d̂y )−by y (∆d̂)y (2(∆d)y + (∆d̂)y )
]

+ (ax y +ay x )
[
dy d̂x +dx d̂y − d̂x d̂y

]
− (bx y +by x )

[
(∆d)y (∆d̂)x + (∆d)x (∆d̂)y + (∆d̂)x (∆d̂)y

]
(B.31)

where di are the elements of the true spoofing distance vector, d̂i are the elements of
the spoofing distance vector used in the log-LRT and (∆d̂)i are the elements of vector
∆d̂.

B.8. MULTI-RADAR LIKELIHOOD
When measurements from K radars are available, the multi-radar likelihood is:

p([z1, . . . ,zK ],xAI S |Hi ) =
∫ K∏

k=1
{p(zk |x)} p(xAI S |Hi ,x) p(x)dx (B.32)

where i = 0,1.
If the measurements of each radar follow a Gaussian distribution and all have the

same covariance matrix then using Eq. (B.3-B.5) it holds that:

K∏
k=1

{p(zk |x)} =
K∏

k=1
{N (zk ;x,ΣR )} = εN (z′;x,Σ′

R ) (B.33)

with

z′ = 1

K

K∑
k=1

(zk ) , Σ′
R = 1

K
ΣR , ε=

K∏
k=2

[
N

(
zk ;z′k−1,

(
k

k −1

)
ΣR

)]
(B.34)

Therefore, the LRT has the same form as in the case of one sensor (see Eq. B.27) with
the differences that a) the arithmetic mean of the measurements of all radars is used as
a single measurement; and b) the common measurement covariance matrix divided by
the number of radars K is used as new measurement covariance matrix.





C
THE CB-MEMBER FILTER

In this appendix, the Cardinality-Balanced Multi-target Multi-Bernoulli (CB-MeMBer)
filter is discussed. The discussion draws heavily from Mahler [2007] and Vo et al. [2009b].

Section C.1 presents the Bernoulli and multi-Bernoulli RFSs and describes the major as-
sumptions made by the CB-MeMBer filter. Section C.2 describes the CB-MeMBer filter
recursion and its SMC implementation. Finally, Section C.3 explains how an estimate
can be extracted from the estimated posterior multi-Bernoulli distribution.

C.1. BERNOULLI AND MULTI-BERNOULLI RFSS

The key assumption behind the CB-MeMBer filter is that the multi-target posterior den-
sity is a multi-object multi-Bernoulli process. A Bernoulli RFS X on X has probability
r of being a singleton whose PDF is p(x) defined on X and probability 1− r of being
empty. The cardinality distribution of a Bernoulli RFS is a Bernoulli distribution with
parameter r and the PDF of a Bernoulli RFS is

p(X) =
{

1− r if X =;
r ·p(x) if X = {x}.

(C.1)

Accordingly, a multi-Bernoulli RFS X on X is the union of N independent Bernoulli
RFSs X(i ) with corresponding existence probability r (i ) and PDF p(i )(x), i = 1, . . . , N . In
other words, X =⋃N

i=1 X(i ). A multi-Bernoulli RFS is completely described by the param-

eter set {(r (i ), p(i ))}N
i=1. Its cardinality distribution is given by the multi-Bernoulli distri-

bution, see [Mahler, 2007, pp.369]. The probability density of a multi-Bernoulli RFS X is
given by

141
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p(;) =
N∏

i=1

(
1− r (i )

)
(C.2)

p(X) = p(;)
∑

1≤i1 6=... 6=in≤N

n∏
j=1

r (i j )p(i j )(x j )

1− r (i j )
. (C.3)

Assume that at time k there are N (k) targets present, each taking values in X ⊆ Rnx

and M(k) measurements, each taking values in Z ⊆ Rnz . Following the RFS approach,
the finite sets of targets and measurements are treated as the multitarget state and the
multitarget measurement respectively:

Xk = {xk,1, . . . ,xk,N (k)} (C.4)

Zk = {zk,1, . . . ,zk,M(k)}. (C.5)

Given the multitarget state Xk−1 at time k−1, each element Xk−1,i ∈ Xk−1 either con-
tinues to exist at time k with probability pS,k (xk−1) and moves to a new state xk with
probability density f (xk |xk−1), or dies with probability 1− pS,k (xk−1). The probability
pS,k (xk−1) is also called survival probability and is used for modeling target disappear-
ance from the scenario. The probability density f (xk |xk−1) is usually defined according
to the motion model of the targets. Furthermore, new targets might enter the scenario.
This is modeled by the new (multi-)Bernoulli RFS Γk . The RFS modeling the predicted
multi-target state Xk is given by

Xk =
[ ⋃

xk−1∈Xk−1

Sk|k−1(xk−1)

]⋃
Γk (C.6)

assuming that the RFSs constituting the union in Eq. (C.6) are mutually independent
and that Sk|k−1(xk−1) is a Bernoulli RFS with parameters r = pS,k (xk−1) and p(·) = f (·|xk−1).
The RFS Xk is a multi-Bernoulli RFS conditional on Xk−1 and Eq. (C.6) represents the
predicted PDF of the RFS Xk at time k, taking into account the motion of existing tar-
gets, the arrival of new targets and the possible disappearance of existing ones.

Depending on the radar beam pointing, a given target xk ∈ Xk is either detected with
probability pD,k (xk ) and generates a measurement zk whose likelihood is gk (zk |xk ), or
missed with probability 1−pD,k (xk ). In other words, each measurement is a Bernoulli
RFS Θk (xk ) with parameters r = pD,k (xk ) and p(·) = gk (·|xk ). In addition to the target-
originated measurements, the sensor produces a set of false alarms (or clutter) that are
modeled as a Poisson RFS Ck with intensity function κk (·). Thus, the measurement RFS
Zk is given by

Zk =
[ ⋃

xk∈Xk

Θk (xk )

]⋃
Ck . (C.7)

Assuming that the RFSs constituting the union in Eq. (C.7) are independent of one an-
other, the target-originated measurements in (C.7) form a multi-Bernoulli RFS Zk .
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C.2. SMC IMPLEMENTATION OF THE CB-MEMBER FILTER
For the sake of brevity, only the SMC implementation of the CB-MeMBer filter is pre-
sented, also see Vo et al. [2009a]. Suppose that at time k −1 the multi-Bernoulli poste-
rior multitarget density is given and that the p(i )

k−1(x) of each Bernoulli component X(i )

is approximated by a set of K weighted particles:

p(i )
k−1(x) =

K∑
i=1

w (i , j )
k−1δx(i , j )

k−1
(x). (C.8)

Given the proposal densities q (i )
k (xk |xk−1,Z1:k ) = f (i )

k (xk |xk−1) (motion model) and

b(i )
k (·|Z1:k−1) (target birth), the predicted multitarget density

pk|k−1 =
{(

r (i )
P,k|k−1, p(i )

P,k|k−1

)}N (k−1)

i=1

⋃{(
r (i )
Γ,k , p(i )

Γ,k

)}NΓ(k)

i=1
(C.9)

can be found using:

r (i )
P,k|k−1 = r (i )

k−1

K∑
j=1

w (i , j )
k−1 pS,k

(
x(i , j )

k−1

)
(C.10)

p(i )
P,k|k−1(x) =

K∑
j=1

w̃ (i , j )
P,k|k−1δx(i , j )

P,k|k−1
(x) (C.11)

r (i )
Γ,k : given by the birth model (C.12)

p(i )
Γ,k (x) =

KΓ∑
j=1

w̃ (i , j )
Γ,k δ

Γ,x(i , j )
k

(x) (C.13)

where

x(i , j )
P,k|k−1 ∼ f (i )

k (xk |xk−1) , j = 1, . . . ,K (C.14)

w (i , j )
P,k|k−1 = w (i , j )

k−1 pS,k

(
x(i , j )

k−1

)
(C.15)

w̃ (i , j )
P,k|k−1 = w (i , j )

P,k|k−1

/(
L∑

j=1
w (i , j )

P,k|k−1

)
(C.16)

x(i , j )
Γ,k ∼ b(i )

k (·|Z1:k−1) , j = 1, . . . ,KΓ (C.17)

w (i , j )
Γ,k =

pΓ,k

(
x(i , j )
Γ,k

)
b(i )

k

(
x(i , j )
Γ,k |Z1:k−1

) (C.18)

w̃ (i , j )
Γ,k = w (i , j )

Γ,k

/(
KΓ∑
j=1

w (i , j )
Γ,k

)
(C.19)

Now assume that at time k the predicted multi-Bernoulli multitarget density is given
and that the p(i )

k|k−1(x) of each Bernoulli component (i ) is approximated by a set of K
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weighted particles:

p(i )
k|k−1(x) =

K∑
i=1

w (i , j )
k|k−1δx(i , j )

k
(x). (C.20)

Then, given a set of measurements Zk , the multi-Bernoulli approximation of the up-
dated multitarget density

pk =
{(

r (i )
L,k , p(i )

L,k

)}N (k|k−1)

i=1

⋃{(
r (i )

U ,k (z), p(i )
U ,k (·;z)

)}
z∈Zk

(C.21)

can be found using:

r (i )
L,k = r (i )

k|k−1

1−%(i )
L,k

1− r (i )
k|k−1%

(i )
L,k

(C.22)

p(i )
L,k (x) =

K∑
j=1

w̃ (i , j )
L,k δ

x(i , j )
k

(x) (C.23)

r (i )
U ,k (z) =

∑M
i=1

r (i )
k|k−1

(
1−r (i )

k|k−1

)
%(i )

U ,k (z)(
1−r (i )

k|k−1%
(i )
L,k

)2

κk (z)+∑M
i=1

r (i )
k|k−1%

(i )
U ,k (z)

1−r (i )
k|k−1%

(i )
L,k

(C.24)

p(i )
U ,k (x;z) =

M∑
i=1

K∑
j=1

w̃ (i , j )
U ,k (z)δ

x(i , j )
k

(x) (C.25)

where

%(i )
L,k =

K∑
j=1

w (i , j )
k|k−1pD,k

(
x(i , j )

k

)
(C.26)

w (i , j )
L,k = w (i , j )

k|k−1

(
1−pD,k

(
x(i , j )

k

))
(C.27)

w̃ (i , j )
L,k = w (i , j )

L,k

/(
K∑

j=1
w (i , j )

L,k

)
(C.28)

ψk,z

(
x(i , j )

k

)
= gk (z|xk )pD,k

(
x(i , j )

k

)
(C.29)

%(i )
U ,k (z) =

K∑
j=1

w (i , j )
k|k−1ψk,z

(
x(i , j )

k

)
(C.30)

w (i , j )
U ,k (z) = w (i , j )

k|k−1

r (i )
k|k−1

1− r (i )
k|k−1

ψk,z

(
x(i , j )

k

)
(C.31)

w̃ (i , j )
U ,k (z) = w (i , j )

U ,k (z)

/(
M∑

i=1

K∑
j=1

w (i , j )
U ,k (z)

)
(C.32)

Because the number of Bernoulli components grows without bound due to the birth
terms and the measurement update, track management techniques such as pruning
and merging must be applied, see Vo et al. [2009a].
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C.3. STATE ESTIMATE EXTRACTION
The main advantage of the CB-MeMBer filter over the (C)PHD filter is the intuitive way
of extracting state estimates. One can estimate first the mean or mode of the number
of targets and subsequently extract individual state estimates from the corresponding
posterior spatial densities. The evaluation of state estimates for a CB-MeMBer filter
is, therefore, more robust and (potentially) less computationally expensive than for a
(C)PHD.

The two most common options are the expected (or mean) estimate and the MAP
estimate. The expected number of targets is given by

N̄ =
N∑

i=1
r (i ). (C.33)

The MAP estimate of the number of targets is given by

N̄ = argsup
n

{
Br1,...,rN (n)

}
= argsup

n

{[
N∏

i=1

(
1− r (i )

)][ ∑
1≤i1≤...≤in≤N

(
r (i1)

1− r (i1)
. . .

r (in )

1− r (in )

)]}
(C.34)

see [Mahler, 2007, pp.369].
Given our preferred estimate N̄ of the number of targets, a state estimate can be

extracted from the spatial distributions of the N̄ Bernoulli components with the highest
probability of existence r (i ). Assuming that a weighted-sample approximation of p(i )(x)
is available in the form {x j , w j }L

j=1, the mean estimate is given by

x̄ =
L∑

j=1

(
x j ·w j

)
. (C.35)

Unfortunately, there is no analytic method for extracting a MAP estimate from an
arbitrary density, of which there is available only a weighted-sample approximation.
For this reason, first the density is estimated, using any of the kernel density estima-
tion methods that are available, and then the point for which it attains its maximum is
found. The kernel density estimation software that implement the algorithm presented
in Kristan et al. [2011] is used in this thesis.

Using the MAP estimate, first of the number of targets and subsequently of the cor-
responding spatial PDFs, corresponds to the Marginal Multi-target (MaM) estimator,
introduced in [Mahler, 2007, pp.497]. The MaM estimator is Bayes optimal but it is not
known if it is statistically consistent.

Another option is the Joint Multitarget (JoM) estimator, introduced in [Mahler, 2007,
pp.498]. First, the argmax estimate for each cardinality n = 1, . . . , N (k) is determined:

X̂n = argsup
x1,...,xn

p({x1, . . . ,xn}|Z) (C.36)

and then the JoM estimate will be

X̂ = X̂ j , j = argsup
n

[
p(X̂n |Z) · cn

n!

]
(C.37)



146 C. THE CB-MEMBER FILTER

or in more compact form

X̂ = argsup
n,x1,...,xn

[
p({x1, . . . ,xn}|Z) · cn

n!

]
(C.38)

where c is a fixed constant. The JoM estimator is Bayes optimal and statistically consis-
tent. For very small values of c, the JoM estimator is a limiting case of the MAP estimator
on a discrete multitarget space, see [Mahler, 2007, pp.499].
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SUMMARY

Radars have gained increased popularity as sensing devices due to their unique capabil-
ity to sense objects of interest at very long distances and without being severely limited
by weather conditions. Advances in technology have led to the possibility of choosing
the sensing parameters of a radar in order to further improve its performance. Especially
in the class of active phased array radars, the control of the agile beam is of paramount
importance. By controlling the radar beam improved estimation results can be achieved
leading to better situation awareness.

In the literature, several approaches to sensor (including radar) management can
be found. These can be roughly grouped into: a) rule-based or heuristics; b) task-based;
c) information-driven; and d) risk/threat-based. These approaches are compared in this
thesis and it is found that there is not a single approach that is both Bayes-optimal and
takes into account explicitly the user requirements in different operational contexts.

In order to overcome the challenges with the existing approaches, this thesis pro-
poses managing the uncertainty in higher-level quantities (as per the JDL model) that
are directly of interest to the operator and directly related to the operational goal of the
radar system. The proposed approach is motivated by the threat assessment process,
which is an integral part of defence missions. Accordingly, a prominent example of a
commonly used higher-level quantity is the threat-level of a target.

The key advantage of the proposed approach is that it results in Bayes-optimal sen-
sor control that also takes into account the operational context in a model-based man-
ner. In other words: a) a radar operator can select the aspects of threat that are relevant
to the operational context at hand; and b) external information about the arrival of tar-
gets and other scenario parameters can be included when defining the models used in
the signal processing algorithms, leading to context-adaptive sensor management.

The proposed approach is initially used in simple tracking examples in order to
demonstrate its potential and flexibility. Subsequently, it is used for controlling an agile
radar beam such that multiple targets can be tracked while taking into account detec-
tion uncertainty and presence of spurious measurements. In these examples, a state-
of-the art signal processing algorithm is used, i.e. a CB-MeMBer filter. Finally, the pro-
posed approach is used for area surveillance, i.e. for detection and tracking of multiple
targets while taking into account detection uncertainty and presence of spurious mea-
surements. In this context, a density that estimates where any undetected targets might
be (denoted as unDTD) plays a key role in balancing the search-to-track time ratio.

The presented examples have been drawn both from the civilian and the military
domain. From the civilian domain, air-traffic-control examples are shown where threat
is modeled based on how fast and how close to each other two aircrafts might come.
From the defence domain, asset protection examples are shown where threat is mod-
eled based on how fast and how close to an asset of interest a target might come. Fur-
thermore, the deviation from expected trajectories has been modeled because it can be
of interest for anomaly detection purposes.
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The proposed approach has outperformed all the other approaches in the simulated
examples presented in this thesis in achieving lower uncertainty in the threat-level of all
targets. In all examples, the proposed approach has outperformed naïve approaches,
such as periodic or random selection of sensing actions, in a) estimating the correct
number of targets present in the considered scenarios; b) localizing the detected tar-
gets; and c) maintaining less tracks, thus lowering the computation time at the update
step. When only tracking of targets is considered, the proposed approach was only out-
performed in tracking accuracy by a scheme that minimizes the expected variance of
the estimated number of targets present in the considered scenario and by a derived
rule-based scheme.

The main challenge when implementing the proposed approach is the mathemati-
cal description of threat. Several interesting aspects of threat have been modeled in this
thesis but there are even more to be modeled. Taking into account non-measurable as-
pects of threat poses an added challenge. Other challenges that might be encountered
are a) lower tracking accuracy; and b) higher computational complexity, when com-
pared to other sensor management schemes.

The presented research can be extended both within the radar domain and by ex-
ploring its application to other domains. Two prominent extensions of interest within
the radar domain are: a) taking more aspects of threat into account; and b) address-
ing the target classification problem. Robotics applications, such as autonomous robot
path-planning, offer a promising alternative domain for applying the proposed method.
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De populariteit van radars als sensoren is mede ontstaan vanwege hun unieke vermogen
om belangrijke objecten over zeer lange afstanden op te sporen zonder daarbij door
weersomstandigheden ernstig te worden beperkt. De technologische vooruitgang heeft
geleid tot een toegenomen keuzevrijheid in de parameters van een radar, hetgeen de
prestaties verder kan verbeteren. Vooral in de klasse van active phased array radars, is
de besturing van de agile beam van groot belang. Door de besturing van de radarbundel
kunnen verbeterde schattingsresultaten behaald worden die tot een beter beeld van de
actuele situatie (situational awareness) kunnen leiden.

In de literatuur zijn verschillende aanpakken van sensorbesturing (waaronder ra-
dar) gevonden. Deze kunnen grofweg worden onderverdeeld in: a) regel-gebaseerd of
heuristieken; b) taak-gericht; c) informatie-gestuurd; en d) risico/bedreiging-gebaseerd.
Deze aanpakken worden in dit proefschrift vergeleken en het blijkt dat er in de literatuur
geen enkele methode wordt beschreven, die zowel Bayes-optimaal is en tevens expliciet
rekening houdt met de behoeften van de gebruikers in de verschillende operationele
contexten.

Om de problemen met de bestaande methodes te overwinnen, stelt dit proefschrift
voor om de onzekerheid te beheersen in grootheden die gedefinieerd zijn op een hoger
niveau (volgens het JDL model), en die direct van belang zijn voor de gebruiker en di-
rect gerelateerd zijn aan het operationele doel van het radarsysteem. De voorgestelde
aanpak is ingegeven door het dreigingsbeoordelingsproces (alternatief: het proces dat
het dreigingsniveau beoordeelt) dat een integraal onderdeel van defensiemissies is. Het
dreigingsniveau van een doel is een bekend voorbeeld van een veelgebruikte hoger-
niveau grootheid.

Het belangrijkste voordeel van de voorgestelde aanpak is dat het resulteert in een
Bayes-optimale sensorbesturing die op een model-matige manier ook rekening houdt
met de operationele context. Met andere woorden: a) een radaroperator kan de as-
pecten van bedreiging selecteren die bij de huidige operationele context relevant zijn;
en b) externe informatie over de komst van de doelen en andere scenarioparameters
kunnen worden opgenomen bij het definiëren van de modellen van de signaalverwer-
kingsalgoritmen, wat leidt tot context-adaptieve sensorbesturing.

Om het potentieel en de flexibiliteit aan te tonen wordt de voorgestelde aanpak
in eerste instantie gebruikt in eenvoudige voorbeelden van het volgen van objecten.
Vervolgens wordt de aanpak voor het besturen van een agile radarbundel gebruikt zo-
dat meerdere doelen kunnen worden gevolgd, met inachtneming van de detectieon-
zekerheid en de aanwezigheid van valse metingen. In deze voorbeelden wordt een CB-
MeMBer filter gebruikt, hetgeen een state-of-the-art signaalverwerkingsalgoritme is. Ten-
slotte is de voorgestelde aanpak voor gebiedsbewaking gebruikt, dat wil zeggen voor het
detecteren en het volgen van meerdere doelen, met inachtneming van de detectieon-
zekerheid en de aanwezigheid van valse metingen. In deze context, speelt een kans-
dichtheidsschatting van onopgemerkte doelen (aangeduid als unDTD) een belangrijke
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rol bij het (automatisch) instellen van de verhouding tussen de tijd die besteed wordt
aan search en track.

De gepresenteerde voorbeelden zijn uit zowel het civiele als het militaire domein.
Uit het civiele domein zijn luchtverkeerscontrolevoorbeelden getoond waar de dreiging
is gemodelleerd op basis van hoe snel en hoe dicht twee vliegtuigen bij elkaar zouden
kunnen komen. Uit het defensiedomein zijn voorbeelden van bezits-bescherming ge-
toond waar de dreiging is gemodelleerd op basis van hoe snel en hoe dicht een doel bij
een belangrijk bezit zou kunnen komen. Bovendien is de afwijking ten opzichte van ver-
wachte trajectoriën gemodelleerd, omdat dit van belang kan zijn voor anomaliedetectie-
doeleinden.

De voorgestelde aanpak heeft beter gepresteerd dan alle andere benaderingen in
de gesimuleerde voorbeelden in dit proefschrift in het bereiken van lagere onzekerheid
in het dreigingsniveau van alle doelen. De voorgestelde aanpak heeft naïeve benade-
ringen, zoals periodieke of willekeurige selectie van sensing acties, in alle voorbeelden
overtroffen in a) het schatten van het juiste aantal doelen in de beschouwde scenario’s;
b) het lokaliseren van de gedetecteerde doelen; en c) het handhaven van minder tracks,
met als gevolg het verlagen van de rekentijd bij de update-stap. Wanneer alleen het
volgen van de doelen wordt beschouwd, is de voorgestelde aanpak alleen in volgnauw-
keurigheid overtroffen door een regeling die de verwachte variantie minimaliseert van
het geschatte aantal doelen dat aanwezig is in het beschouwde scenario en door een
afgeleide regel-gebaseerd systeem.

De belangrijkste uitdaging bij de uitvoering van de voorgestelde aanpak is de wis-
kundige beschrijving van het dreigingsniveau. Verschillende interessante aspecten van
het dreigingsniveau zijn in dit proefschrift gemodelleerd, maar nog meer zouden moe-
ten worden gemodelleerd. Rekening houden met de niet-meetbare aspecten van het
dreigingsniveau vormt een extra uitdaging. Andere uitdagingen die zouden kunnen op-
treden in vergelijking met andere sensorbesturing aanpakken, zijn: a) lagere trackings-
nauwkeurigheid; en b) hogere rekenkundigecomplexiteit.

Het gepresenteerde onderzoek kan worden voortgezet verlengd zowel binnen het
radar domein en door het verkennen van toepassing op andere domeinen. Twee pro-
minente uitbreidingen die van belang zijn binnen het radar domein zijn: a) het houden
rekening met meer aspecten van het dreigingsniveau; en b) de classificatie van doelen.
Robotica toepassingen zoals autonome robot path-planning, bieden een veelbelovend
alternatief domein voor toepassing van de voorgestelde aanpak.
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Τα ραντάρ έχουν αποκτήσει αυξημένη δημοτικότητα ως συσκευές ανίχνευσης λόγω

της μοναδικής ικανότητάς τους να ανιχνεύουν αντικείμενα ενδιαφέροντος σε πολύ με-

γάλες αποστάσεις και χωρίς να περιορίζονται σημαντικά από τις καιρικές συνθήκες. Η

τεχνολογική πρόοδος έχει δημιουργήσει την δυνατότητα να ελέγχονται οι παράμετροι

ενός ραντάρ με σκοπό την περαιτέρω βελτίωση των επιδόσεων του. Ειδικά στην κα-

τηγορία των ραντάρ ενεργής ηλεκτρονικής σάρωσης, ο έλεγχος της ευέλικτης ακτίνας

τους είναι υψίστης σημασίας. Βελτιωμένα αποτελέσματα εκτίμησης μπορούν να επιτευ-

χθούν ελέγχοντας την ακτίνας ενός ραντάρ, το οποίο οδηγεί σε καλύτερη επίγνωση

της επικρατούσας κατάστασης.

Στη βιβλιογραφία μπορούν να βρεθούν διάφορες προσεγγίσεις για την διαχείριση

αισθητήρων (συμπεριλαμβανομένων των ραντάρ). Αυτές μπορούν να ομαδοποιηθούν

χονδρικά ως εξής: αʹ) ομάδες κανόνων, βʹ) βελτιστοποίηση παραμέτρων σχετικών με το

έργο του αισθητήρα, γʹ) διαχείριση αβεβαιότητας στο πλαίσιο της θεωρίας πληροφορίας,

και δʹ) σύμφωνα με τους κίνδυνους/απειλές. Οι προσεγγίσεις αυτές συγκρίνονται σε

αυτή τη διατριβή και διαπιστώνεται ότι δεν υπάρχει μία ενιαία προσέγγιση που να είναι

τόσο Bayes-βέλτιστη όσο και να λαμβάνει ρητά υπόψη τις απαιτήσεις των χρηστών σε
διάφορα επιχειρησιακά περιβάλλοντα.

Προκειμένου να ξεπεραστούν οι προκλήσεις με τις υπάρχουσες προσεγγίσεις, σε

αυτή τη διατριβή προτείνεται η διαχείριση της αβεβαιότητας σε ποσότητες υψηλότερου

επιπέδου (κατά το μοντέλο JDL) που είναι άμεσα ενδιαφέρουσες για τον χειριστή και
σχετίζονται άμεσα με τον επιχειρησιακό στόχο του ραντάρ. Η προτεινόμενη προσέγ-

γιση είναι εμπνευσμένη από τη διαδικασία εκτίμησης-αξιολόγησης απειλών, η οποία

αποτελεί αναπόσπαστο μέρος των αποστολών άμυνας. Κατά συνέπεια, ένα προεξέχον

παράδειγμα χρησιμοποιούμενης ποσότητα υψηλότερου επιπέδου είναι το επίπεδο απει-

λής ενός στόχου.

Το βασικό πλεονέκτημα της προτεινόμενης προσέγγισης είναι ότι οδηγεί σε Bayes-
βέλτιστο έλεγχο του αισθητήρα και λαμβάνει επίσης υπόψη το επιχειρησιακό πλαίσιο

λειτουργίας με ένα πλήρως μοντελοποιημένο τρόπο. Με άλλα λόγια: αʹ) ένας χειριστής

ραντάρ μπορεί να επιλέξει τις πτυχές της απειλής που είναι σχετικές με το επιχειρησια-

κό πλαίσιο και βʹ) εξωτερικές πληροφορίες σχετικά με την άφιξη στόχων και άλλων

παραμέτρων σεναρίου μπορούν να συμπεριληφθούν κατά τον καθορισμό των μοντέλων

που χρησιμοποιούνται στους αλγορίθμους επεξεργασίας σήματος, το οποίο οδηγεί σε

διαχείριση αισθητήρα που είναι προσαρμοστική ως προς το επιχειρησιακό πλαίσιο.

Η προτεινόμενη προσέγγιση χρησιμοποιείται αρχικά σε απλά παραδείγματα εντοπι-

σμού στόχων, προκειμένου να αποδειχθούν οι δυνατότητες και η ευελιξία της. Στη

συνέχεια χρησιμοποιείται για τον έλεγχο μιας ευκίνητης ακτίνας ραντάρ, έτσι ώστε να

παρακολουθούνται πολλαπλοί στόχοι, λαμβάνοντας παράλληλα υπόψη την αβεβαιότητα

ανίχνευσης και την παρουσία παρασιτικών μετρήσεων. Σε αυτά τα παραδείγματα, χρη-

σιμοποιείται ένας αλγόριθμος επεξεργασίας σήματος τελευταίας τεχνολογίας, δηλαδή
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ένα φίλτρο CB-MeMBer. Τέλος, η προτεινόμενη προσέγγιση χρησιμοποιείται για επι-
τήρηση περιοχής, δηλαδή για την ανίχνευση και παρακολούθηση πολλαπλών στόχων,

λαμβάνοντας υπόψη την αβεβαιότητα ανίχνευσης και την παρουσία παρασιτικών με-

τρήσεων. Σε αυτό το πλαίσιο, μια συνάρτηση πυκνότητας πιθανότητας, που υπολο-

γίζει που θα μπορούσαν να βρεθούν απαρατήρητοι στόχοι (συμβολίζεται ως unDTD),
διαδραματίζει καίριο ρόλο στην εξισορρόπηση της αναλογίας του χρόνου αναζήτησης

προς χρόνου παρακολούθησης.

Παραδείγματα παρουσιάζονται τόσο από τον πολιτικό όσο και από τον στρατιω-

τικό τομέα. Από τον πολιτικό τομέα παρουσιάζονται παραδείγματα ελέγχου εναέριας

κυκλοφορίας όπου η απειλή εξαρτάται από το πόσο γρήγορα και πόσο κοντά μπορούν

να βρεθούν δύο αεροσκάφη. Από τον τομέα της άμυνας παρουσιάζονται παραδείγματα

προστασίας μονάδων όπου η απειλή διαμορφώνεται με βάση το πόσο γρήγορα και πόσο

κοντά σε μία μονάδα μπορεί να πλησιάσει ένας στόχος. Επιπλέον, η απόκλιση από μια

αναμενόμενη πορεία έχει μοντελοποιηθεί επειδή μπορεί να παρουσιάζει ενδιαφέρον για

σκοπούς ανίχνευσης ανώμαλης συμπεριφοράς.

Η προτεινόμενη προσέγγιση έχει καλύτερες επιδόσεις από όλες τις άλλες προ-

σεγγίσεις στα προσομοιωμένα παραδείγματα που παρουσιάζονται σε αυτή τη διατρι-

βή σε σχέση με την επίτευξη χαμηλότερης αβεβαιότητας στο επίπεδο απειλής όλων

των στόχων. Σε όλα τα παραδείγματα, η προτεινόμενη προσέγγιση έχει καλύτερες

επιδόσεις από απλοϊκές μεθόδους, όπως περιοδική ή τυχαία επιλογή παραμέτρων με-

τρήσεως, αʹ) στην εκτίμηση του σωστού αριθμού στόχων που υπάρχουν στα εξετα-

ζόμενα σενάρια, βʹ) στον εντοπισμό των στόχων που έχουν ανιχνευτεί και γʹ) στη

διατήρηση λιγότερων τροχιών στόχων, μειώνοντας έτσι τον χρόνο υπολογισμού του

βήματος ενημέρωσης. ΄Οσον αφορά την παρακολούθηση στόχων, οι μόνες μέθοδοι που

παρέχουν μεγαλύτερη ακρίβεια παρακολούθησης είναι μία μέθοδος που ελαχιστοποιεί

τη αναμενόμενη διακύμανση του εκτιμόμενου αριθμού στόχων οι οποίοι είναι παρώντες

σε ένα σενάριο και μία μέθοδος που βασίζεται σε κανόνες.

Η κύρια πρόκληση κατά την υλοποίηση της προτεινόμενης προσέγγισης είναι η μα-

θηματική περιγραφή της απειλής. Σε αυτή τη διατριβή έχουν μοντελοποιηθεί αρκετές

ενδιαφέρουσες πτυχές της απειλής αλλά υπάρχουν ακόμα περισσότερες προς μοντε-

λοποίηση. Το πως να ληφθούν υπόψη μη μετρήσιμα στοιχεία της απειλής αποτελεί

μια πρόσθετη πρόκληση. ΄Αλλες προκλήσεις που μπορεί να προκύψουν είναι: αʹ) η μι-

κρότερη ακρίβεια εντοπισμού, και βʹ) η υψηλότερη υπολογιστική πολυπλοκότητα, όταν

συγκρίνεται με άλλους αλγόριθμους διαχείρισης αισθητήρων.

Η παρουσιαζόμενη έρευνα μπορεί να επεκταθεί τόσο μέσα στον τομέα των ραντάρ

όσο και εξερευνώντας την εφαρμογή της σε άλλους τομείς. Δύο εξέχουσες επεκτάσεις

στον τομέα των ραντάρ είναι οι εξής: αʹ) πως να ληφθούν υπόψη περισσότερες πτυχές

της απειλής, και βʹ) η αντιμετώπιση του προβλήματος της ταξινόμησης στόχων. Ρο-

μποτικές εφαρμογές, όπως ο σχεδιασμός διαδρομών για αυτόνομα ρομπότ, προσφέρουν

έναν πολλά υποσχόμενο εναλλακτικό τομέα για την εφαρμογή της προτεινόμενης με-

θόδου.
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