
Diffusion Models Acceleration: A Quick Survey

Student report: Delft University of Technology, Computer Science.
Date of Award: 7-11-2025
Supervisor: Y. Chen

Fulvio Nardi Dei da Filicaia Dotti
EEMCS Data-Intensive Systems

Tu Delft

Basile Lewandowski
Machine Learning Optimization Laboratory

University of Neuchatel

January 2025

Abstract

This survey explores state-of-the-art advancements in accelerating diffusion models, focusing on
techniques to address their computational and memory inefficiencies. Diffusion models have achieved
remarkable success in generative AI, surpassing prior paradigms like GANs in various applications, in-
cluding image synthesis, text-to-image generation, video generation and more. However, their reliance
on a large number of sequential sampling steps significantly hinders their efficiency compared to other
generative approaches. This survey categorises and analyses 11 recent works aimed at overcoming
these challenges, including quantization techniques, knowledge distillation, and distributed parallel
sampling. Through this survey, we aim to provide an understanding, intuition, theory and tradeoffs
behind these techniques. Finally, this work offers a valuable reference for researchers and profes-
sionals seeking to enhance or utilise fast diffusion model architectures, providing a clear overview of
benchmarking parameters used for each of these works.

1 Introduction

Generative Diffusion models have made considerable progress in various domains of generative model
tasks such as image generation [38, 32], text [35, 40], audio [14, 31] and video [37, 58, 52]. Furthermore,
diffusion models have opened the door for tasks such as image inpainting [64, 42, 61], super-enhancing
[39, 48], text-to-image generation [29, 44, 46, 49], 3D model generation [57, 27, 43] and more [69].

Their performance and quality surpassed the previous state-of-the art generative adversarial network
(GAN) [23]. However, while most GAN models can generate images in under 1 second, diffusion models
are not as fast, often needing several seconds to generate samples [56]. Diffusion models require a large
number of sequential sampling steps (often hundreds or thousands) to generate high-quality outputs,
each step evaluating the model and making the process inherently time-consuming. Futhermore, the
sequential nature of the sampling steps means that each step depends on the results of the previous one,
limiting opportunities for parallelization, unlike models that can generate content in a single forward
pass.

Therefore, diffusion model sampling speed is a major hurdle, and efforts to accelerate the sampling
speed focus on 2 major fields, consisting of quantization [15, 56, 60, 63, 65, 68, 55] and knowledge
distillation [51, 59, 66]. This literature survey features state-of-the-art research related to diffusion model
acceleration in those 2 fields as well as in recent efforts in distributed and parallel diffusion models
sampling [51, 59].

1

DM Acceleration

DM
Quantization

Post-Training
Quantization

Quantization-Aware
Training

DM
Distillation

DM
Distillation

and Guidance

Distributed
DM

Other Methods

DDIM

2

2.2
[15,

56, 60,
63]

2.5
[68,
55]

3
[51]

3.1
[59,
66]

4
[70,
67]

1.2
[19]

Figure 1: Categorization of fast diffusion models research papers

1.1 Survey Structure

This survey explores the state-of-the-art advancements in accelerating diffusion models. The paper is
structured as follows. In section 1.2 we begin by introducing the foundational concepts behind denois-
ing diffusion probabilistic models (DDPMs) and their deterministic variant, denoising diffusion implicit
models (DDIMs). This section provides a comprehensive overview of the mathematical framework and
objective functions underlying these models.

In section 2 we delve into quantization as a means to reduce computational and memory overhead.
We discuss various methods, including post-training quantization and quantization-aware training, high-
lighting their trade-offs and applications in diffusion models.

In section 3 we examine the use of progressive and guided distillation techniques to compress diffusion
models, enabling faster sampling without compromising quality. We also discuss recent innovations in
student-teacher frameworks and guidance-aware distillation.

In section 4 we explore strategies for distributed and parallel sampling, including ParaDiGMS [70]
and DistriFusion[67], which aim to leverage hardware resources for efficient generation of high-resolution
samples.

Finally, we discuss the implications of these techniques, their integration into real-world applications,
and future directions for accelerating diffusion models.

The structure of fast diffusion models is further categorized in subsections as shown in the tree in
figure 1 while a general overview of the acceleration methods is shown in table 1.

1.2 Background

1.2.1 Denoising Diffusion Probabilistic Models (DDPM) [16]

Denoising Diffusion Probabilistic Models (DDPMs) are a class of probabilistic generative models that
utilize a two-step process: a forward diffusion process that incrementally adds noise to data and a reverse
generative process that removes noise to recover the original data. These models are governed by a
Markovian framework and employ Gaussian noise transitions.

2

Research
Paper

Method
Name

Acceleration
Method

Training
Required

Demonstrated
Tasks

2.3.1 [56] Q-Diffusion Quantization 2 No
Unconditional Image Generation,
Conditional Image Generation

2.3.2 [60] PTQ4DM Quantization 2 No Unconditional Image Generation

2.4 [65] PTQD Quantization 2 No
Unconditional Image Generation,
Conditional Image Generation,
Text-to-Image Generation

2.4.1 [63] - Quantization 2 No
Unconditional Image Generation,
Conditional Image Generation

2.5.1 [68] Q-DM Quantization 2 Yes Unconditional Image Generation

2.5.2 [55] EfficientDM Quantization 2 Yes
Unconditional Image Generation,
Conditional Image Generation,
Text-to-Image Generation

3.0.1 [51] -
Timestep
Distillation 3 Yes Unconditional Image Generation

3.1.1 [59] -
Timestep
Distillation 3 Yes

Conditional Image Generation,
Image Style Transfer,
Image Inpainting,
Text-to-Image Generation

3.1.2 [66] -
Timestep
Distillation 3 Yes

Conditional Image Generation,
Image Style Transfer,
Text-to-Image Generation

4.0.1 [70] Distrifusion Parallelization 4 No Text-to-Image Generation

4.0.2 [67] - Parallelization 4 No
Text-to-Image Generation,
Robotics

Table 1: Summary of Acceleration Methods in Diffusion Models: Comparison of techniques, training
requirements, and demonstrated generative tasks across recent research studies.

The forward process transforms the data distribution q(x0) into a noise distribution q(xT) ∼
N (0, I) through T time steps using a Markov chain:

q(x1, . . . ,xT |x0) =

T∏
t=1

q(xt|xt−1),

Where x1, x2, ..., xT are various stages of pertubations of the original data x. With xT representing
pure noise and q(xt|xt−1) being a transition kernel that incrementally perturbs the original data.

Typically, the most common choice for the transition kernel is

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI).

Here, βt ∈ (0, 1) are predefined noise scheduling parameters where if this value is closer to 1 the noise
added to the data at each step is significant and minimal if it is closer to 0. Marginally, this allows noise
sampling at any time step t:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I),

where ᾱt =
∏t

s=1(1− βs) accumulates the effect of all previous steps.

The reverse process on the other hand, iteratively removes the added noise from the forward pro-
cess to generate data. In this stage the generative process takes place, gradually removing noise and

3

generating realistic samples. The reverse process can also be modelled by the Markovian chain:

pθ(x0:T) = p(xT)

T∏
t=1

pθ(xt−1|xt),

where the DDPM learns the Gaussian transitions parametrized by learnabel parameters θ:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)).

Here the model conditioned on timestep t learns to predict the Gaussian mean µθ(xt, t) and covariance
matrix Σθ(xt, t).

The training of Denoising Diffusion Probabilistic Models (DDPMs) is based on optimizing a variational
lower bound (ELBO) on the negative log-likelihood of the data. The objective can be decomposed into
a series of KL divergence terms and a reconstruction term as follows:

L = Eq

[T∑
t=1

DKL

(
q(xt−1|xt,x0)∥pθ(xt−1|xt)

)
− log pθ(x0|x1)

]
.

Here, q(xt−1|xt,x0) represents the true posterior from the forward process, and pθ(xt−1|xt) is the param-
eterized reverse process distribution. During training, the model simplifies this objective by reparame-
terizing the noise prediction using the forward process variance schedule, allowing the model to directly
predict the noise added at each timestep. This results in a practical training loss:

Lsimple = Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t)∥2

]
,

where ϵ ∼ N (0, I) is the added noise and ϵθ(xt, t) is the neural network’s prediction of the noise. This
simplified loss ensures stable training while maintaining alignment with the variational objective, enabling
the reverse process to accurately denoise and generate realistic samples.

1.2.2 Denoising Diffusion Implicit Models (DDIM) [19]

Denoising Diffusion Implicit Models (DDIMs) build upon the framework of Denoising Diffusion Proba-
bilistic Models (DDPMs) to achieve deterministic sampling, faster inference, and improved sample quality.
While DDPMs rely on a stochastic reverse process, DDIMs introduce a non-Markovian deterministic sam-
pling process that retains the same training framework but modifies the sampling dynamics to accelerate
generation without compromising the data distribution.

The key innovation in DDIMs lies in defining a deterministic mapping between consecutive timesteps
in the reverse process. Instead of sampling from a Gaussian distribution at each step, DDIMs use a
reparameterization that directly computes xt−1 from xt using a deterministic update rule. This update
is derived from the same noise prediction network ϵθ trained in DDPMs. The update equation is given
by:

xt−1 =
√
ᾱt−1x0 +

√
1− ᾱt−1ϵ,

where x0 is reconstructed using:

x0 =
1√
ᾱt

(
xt −

√
1− ᾱtϵθ(xt, t)

)
.

DDIMs retain compatibility with the forward process in DDPMs, where the noisy data xt is generated
via a Markov chain. However, during inference, DDIMs deviate from the stochastic sampling of DDPMs

4

and instead employ the deterministic reverse process, resulting in a more efficient sampling procedure.
Notably, the deterministic process preserves the flexibility to trade off sample quality and generation
speed by adjusting the number of sampling steps.

2 Diffusion Model Quantization

Quantization is a compression method that attempts to reduce computational and memory resource use
by mapping the weight and activation values of a deep learning model to a lower precision. This method
has been used to deploy deep network models on mobile devices and mitigate the computational and
memory costs of complex deep learning architectures [8]. For example, Wu et al. [2] propose a unified
framework to simultaneously accelerate computation and reduce storage of convolutional neural networks
on mobile devices with minimal accuracy loss. Ali Zadeh, et al. [22] on the other hand, propose GOBO,
an NLP model (BERT) compressed down to just 3 bits reducing DRAM access [33].

Studies [6, 7, 12] show that reducing precision from fp32 (32-bit floating-point) to int8 (8-bit integer)
allows deep learning models to maintain performance comparable to full-precision models [17].

Even though there are many adopted variants for quantization one of the more common integer
quantization method can be illustrated through Equations (1) and (2) [18], with Equation 1 describing
the scaling factor s, which depends on precision b-bit and range α representing the unquantized range
[α,−α].

s =
2b−1 − 1

α
(1)

In this case, the precision b-bit determines the number of discrete values (or mappings) that can
be represented within the quantized range (possible mappings = 2b). The bit value also indicates how
many bits are used to represent the quantized value, with higher bits representing more accurate values
but with higher memory requirements as well (e.g. int8 maps to 28 = 256 distinct integer values each
represented by 8 bits).

Multiplying the scaling factor s to a floating point value x results in the quantized integer repre-
sentation xq that is bounded between the quantized integer range [−2b−1 + 1, 2b−1 − 1] as shown in the
following quantization function:

xq = quantize(x, b, s) = clip
(
round(s · x),−2b−1 + 1, 2b−1 − 1

)
(2)

Equation 3 shows the corresponding dequantize operation for scale quantization which produces the
corresponding floating point representation that approximates to the initial floating point value x.

x̂ = dequantize(xq, s) =
1

s
xq (3)

While most research papers included in this survey apply the previously mentioned quantization
method (integer quantization), other methods have been successful as well, such as FP16 (mapping to
16-bit floating-point values) used by NVIDIA and ASIC acceleration frameworks [4, 26] to represent values
with a lower precision while mantaining minimal accuracy loss. Nonetheless, naively quantizing diffusion
model parameters leads to poor performance due to 2 common challenges, consisting on ”quantization
error accumulation” and ”varying activation ranges distributed across multiple timesteps” [56, 56, 68].

5

In the following sections (2.1 and 2.2) we introduce in detail the challenges of quantizing diffusion
models. Then, we introduce works of Post Training Quantization (PTQ) and Quantization Aware Train-
ing (QAT) applied to diffusion models that mitigate and circumvent these challenges. Finally, we propose
a complete overview of the parameters used in those works as show in table 2.

2.1 Quantization Error Accumulation

Quantization error accumulation occurs as the input at each time step is derived from the output of
the previous time step, effectively multiplying the number of layers involved in the computation by the
number of denoising steps. This iterative process amplifies small errors introduced during quantization,
leading to a cascading effect where these errors compound over successive steps. As a result, the quality
of the generated outputs degrades, particularly during the later stages of the denoising process, where
finer details and high-frequency components of the image are refined. This presents a significant challenge
in preserving model performance when reducing the precision of the model to save on computation and
memory costs.

2.2 Varying Activation Ranges Across all Timesteps

Varying activation ranges across all timesteps presents another significant challenge in quantizing diffusion
models, as it directly impacts the effectiveness of fixed-point arithmetic and the fidelity of the quantized
representation. In diffusion models, the output activation ranges of the noise estimation network shift
gradually across timesteps, reflecting the evolving noise distribution as the denoising process progresses.
While neighboring timesteps exhibit similar distributions, the difference becomes more pronounced as the
distance between timesteps increases. This non-uniformity introduces a critical problem when applying
quantization techniques, as fixed minimum and maximum clipping values fail to adapt to these variations
effectively.

up.2.upsample.conv

up.1.upsample.conv

Figure 2: Visualization by [56] of varying activation ranges across timesteps, with neighbouring timesteps
having similar activation range.

2.3 Post Training Quantization of Diffusion Models (PTQ)

PTQ involves applying quantization methods to model parameters after training to reduce memory
use and accelerate inference. Contrary to Training-Aware Quantization (TAQ), PTQ is often seen as

6

Diffusion
Quantization
Method

Quantized
Model Dataset

Sampling
Steps

Sampling
Procedure

W/A
Quantization
Bits

Metrics QAT

Q-Diffusion
2.3.1 [56] Song and Ermon [20] CIFAR-10 32x32 100 DDIM

4/8, 8/8, 4/32,
8/32, 32/32*

Size (mb), GBops,
FID, IS No

Latent Diffusion
Model-4

LSUN-Bedrooms
256x256 200 DDIM

4/8, 8/8, 4/32,
8/32, 32/32*

Size (mb), TBops,
FID

Latent Diffusion
Model-8

LSUN-Churches
256x256 500 DDIM

4/8, 8/8, 4/32,
8/32, 32/32*

Size (mb), TBops,
FID

Stable Diffusion LAION-5B 512x512 50 DDIM 4/8 Qualitative
PTQ4DM
2.3.2 [60] Song and Ermon [20] ImageNet 64x64 100, 250 DDIM 8/8, 32/32* FID, sFID, IS No

Song and Ermon [20] ImageNet 64x64 4000 DDPM 8/8, 32/32* FID, sFID, IS
Song and Ermon [20] CIFAR-10 32x32 100, 250 DDIM 8/8, 32/32* FID, sFID, IS
Song and Ermon [20] CIFAR-10 32x32 4000 DDPM 8/8, 32/32* FID, sFID, IS

PTQD
2.4 [65]

Latent Diffusion
Model-4 ImageNet 256x256 20, 250 DDIM 4/8, 8/8, 32/32*

Size (mb), IS
BOPs (T),
FID, sFID

No

Latent Diffusion
Model-4

LSUN-Bedrooms
256x256 200 DDIM 4/8, 8/8, 32/32* FID, sFID

Latent Diffusion
Model-8

LSUN-Churches
256x256 200 DDIM 4/8, 8/8, 32/32* FID, sFID

Chen et Al.
2.4.1 [63] Song and Ermon [20] CIFAR-10 200 DDIM 4/8, 8/8, 32/32*

FID, sFID,
Precision, Recall No

Latent Diffusion Model
LSUN-Bedrooms
256×256 200 DDIM 4/8, 8/8, 32/32*

FID, sFID,
Precision, Recall,
Qualitative

Stable Diffusion LAION-5B 512x512 50 DDIM 4/8, 8/8, 32/32*
FID, sFID,
Precision, Recall,
Qualitative

Stable Diffusion V1.5 MS-COCO 50 DDIM 4/8, 8/8, 32/32*
FID, sFID,
Precision, Recall

Q-DM
2.5.1 [68] Song and Ermon [20] CIFAR-10 32x32 50, 100 DDIM

2/2, 3/3, 4/4,
32/32*

Size (mb), OPs (G),
FID, IS Yes

Song and Ermon [20] CIFAR-10 32x32 1000 DDPM
2/2, 3/3, 4/4,
32/32*

Size (mb), OPs (G),
FID, IS

Song and Ermon [20] ImageNet 64x64 50, 100 DDIM
2/2, 3/3, 4/4,
32/32*

Size (mb), OPs (G),
FID, IS

Song and Ermon [20] ImageNet 64x64 1000 DDPM
2/2, 3/3, 4/4,
32/32*

Size (mb), OPs (G),
FID, IS

EfficientDM
2.5.2 [55]

Latent Diffusion
Model-4 ImageNet 256x256 20 DDIM

2/8, 4/4, 4/8,
8/8, 32/32*

FID, sFID, IS,
Precision (%) Yes

Latent Diffusion
Model-4 ImageNet 256x256 20 PLMS

2/8, 4/4, 4/8,
8/8, 32/32*

FID, sFID, IS,
Precision (%)

Latent Diffusion
Model-4 ImageNet 256x256 20 DPM-Solver

2/8, 4/4, 4/8,
8/8, 32/32*

FID, sFID, IS,
Precision (%)

Song and Ermon [20] CIFAR-10 32x32 100 DDIM
4/4, 4/8, 8/8,
32/32*

GPU Time (Hours),
Size (mb), FID, IS

Latent Diffusion
Model-4 ImageNet 256x256 20 DDIM

2/8, 4/4, 8/8,
32/32*

Size (mb),
FID, sFID, IS,
Precision (%)

Latent Diffusion
Model-4

LSUN-Bedrooms
256x256 20, 100 DDIM

4/4, 6/6, 8/8,
32/32* Size (mb), FID, IS

Latent Diffusion
Model-8

LSUN-Churches
256x256 100 DDIM

4/4, 6/6, 8/8,
32/32* Size (mb), FID, IS

Table 2: Overview of quantized models, datasets, sampling steps, quantization bit-widths
(weights/activations), sampling procedures, performance metrics, and use of quantization-aware training
(QAT) parameters used in benchmarks across various approaches. *These bitwidths represent the full
precision of the model.

7

a desirable method because it avoids retraining models or handling training data. This characteristic
makes PTQ particularly useful when data or computing is limited, however, this comes at a cost of
lower accuracy compared to QAT, especially at low bit-widths [34]. To rectify error sources caused by
QAT, some works [11, 9, 10, 13] have proposed bias correction methods. For diffusion models, similar
solutions have been attempted and proposed, calibrating or correcting quantization to benefit from the
low computational overhead of QAT while minimizing its errors.

2.3.1 Q-Diffusion: Quantizing Diffusion Models [56]

This paper proposes a 4-bit quantization tool to mitigate the slow inference, high memory consumption,
and computation intensity of diffusion models. The authors attempt to quantize diffusion models through
a novel algorithm while tackling the issue of ”varying activation ranges across all timesteps”.

This paper is one of the first ones to propose the novel ”Q-Diffusion Calibration” to tackle that issue.
More specifically, the Q-Diffusion algorithm constructs a calibration dataset by randomly sampling 1000
activation value ranges within a set of timesteps drawn from a full-precision diffusion model. The ran-
domly sampled activation value ranges indicate the clipping and scaling values later adopted to quantize
the activation layers at particular timesteps during inference, solving the challenge of ”varying activation
ranges distributed across all time steps”.

Furthermore, this paper observes abnormal activation and weight distributions in shortcut layers of the
UNet architecture. Specifically, when these features are concatenated, the resulting activation distribution
becomes bimodal, and it has two peaks corresponding to the distinct value ranges of the deep and shallow
features. If a single quantization scale is applied to this concatenated tensor, it cannot effectively represent
both small and large values simultaneously. This leads to significant quantization errors, especially when
using low-bit precision (e.g., 4-bit), as the limited range and precision of quantization cannot capture the
diverse range of values accurately.

Their proposed ”shortcut splitting quantization strategy” addresses this issue by separately quantizing
the deep and shallow feature maps before they are concatenated. More specifically the deep feature
tensor (X1) and shallow feature tensor (X2) are quantized independently using separate quantization
scales (QX1 and QX2). After quantizing X1 and X2, the quantized tensors are concatenated to produce
the final activation output for the shortcut layer.

2.3.2 Post-training Quantization on Diffusion Models [60]

This paper proposes Normally Distributed Time-step Calibration (NDTC), a PTQ tool that, similarly
to Q-Diffusion [56], uses a calibration dataset to adjust the quantization clipping and scaling values to
mitigate the ”varying activation ranges distributed across multiple timesteps”.

This work provides additional insight regarding properties of the calibration set that further help
mitigate quantization error. For example, the authors empirically observe that using generated samples
instead of (training) raw images for calibration results in better image synthesis from the quantized model
(in terms of FID and IS scores). In other words, using images generated during the backward process
results in better calibration compared to using images used for the forward process.

More specifically, the authors empirically demonstrate that the best calibration set is achieved by
using (generated) denoised images xt at a timestep close to the fully denoised image x0.

These observations are taken into account for the NDTC algorithm, which generates a set of samples
for calibration using various time steps, skewing towards those closer to the generated samples at x0.

Thus, the NDTC generates a calibration set by denoisingN random Gaussian images until reaching the
timestep t randomly drawn from the normal distribution visually depicted in figure 3. These calibration

8

samples are then used to calibrate the quantized diffusion model, reducing quantization error compared
to random selection of calibration data.

Figure 3: Visualization by [60], depicting high level representation of calibration dataset selection skewed
towards x0.

2.4 PTQD: Accurate Post-Training Quantization for Diffusion Models [65]

This paper proposes a post-training quantization tool that corrects errors introduced during the quan-
tization procedure. The authors do so by proposing and empirically showing that quantization noise
is linearly correlated with the full-precision model output. More specifically, given the predicted noise
ϵθ(xt, t) of a full-precision model, the quantization error follows a linear trend with correlation coefficient
k and intercept uncorrelated residual component of the quantization noise ∆′

ϵθ
(xt, t) as shown in equation

4.

∆ϵθ (xt, t) = kϵθ(xt, t) + ∆′
ϵθ
(xt, t) . (4)

The authors derive a quantization noise correction method caused by the correlation coefficient k and
the uncorrelated residual component of the quantization noise ∆′

ϵθ
(xt, t) (produced from converting a

full-precision model to a quantization model). The derivation starts with the standard reverse diffusion
method for probabilistic models (DDIM) which finds the full precision denoised image x at timestep t−1,
as shown in equation 5.

xt−1 =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵ̂θ(xt, t)

)
+ σtz (5)

In equation 6 the authors demonstrate the equivalent denoising process for producing latent images
x(q) of quantized models at timestep t − 1. With ∆ϵθ (xt, t) denoting the quantization noise introduced
due to quantization.

x
(q)
t−1 =

1
√
αt

(
xt −

βt√
1− ᾱt

(ϵθ(xt, t) +∆ϵθ(xt, t))

)
+ σtz (6)

Therefore, the authors show that the quantization noise from latent image x
(q)
t−1 can be recti-

fied by dividing the predicted noise ϵθ(xt, t) by 1+ k as shown in equation 7 after expanding the
quantization noise with the correlation equation 4.

9

x
(q)
t−1 =

1
√
αt

(
xt −

βt√
1− ᾱt

(
(1 + k)ϵθ(xt, t) +∆′

ϵθ(xt, t)
))

+ σtz. (7)

Furthermore, the authors derive that the uncorrelated quantization error ∆′
ϵθ
(xt, t) can be corrected

as well. The derivation of the correction of the uncorrelated quantization error starts by dividing the
predicted noise by 1 + k and marginalizing ∆′

ϵθ
(xt, t) from equation 7 to get equation 8.

x
(q)
t−1 =

1
√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
+ σtz−

βt√
αt

√
1− ᾱt(1 + k)

∆′
ϵθ
(xt, t). (8)

Therefore, the uncorrelated error ∆′
ϵθ
(xt, t) is corrected by the authors by substituting the calibrated

variance schedule σ′2 into equation 8 while keeping the variance of each step unaltered. The calibrated
variance be

σ2
t ,= σ

′2
t +

β2
t

αt(1− ᾱt)(1 + k)2
σ2
q ,

σ
′2
t =

{
σ2
t −

β2
t

αt(1−ᾱt)(1+k)2σ
2
q , if σ2

t ≥ β2
t

αt(1−ᾱt)(1+k)2σ
2
q ,

0, otherwise.

In addition, the authors mention that this solution is possible if ∆′
ϵθ
(xt, t) follows a normal distribution

such that ∆′
ϵθ
(xt, t) ∼ N (µq, σq).

Finally, the step-aware mixed precision scheme is a method introduced in the research paper to main-
tain a high signal-to-noise ratio (SNR) across the denoising steps of a quantized diffusion model. This
approach adapts the bitwidth of activations dynamically during the reverse diffusion process, ensuring
computational efficiency while preserving the quality of generated outputs. More specifically, the au-
thors ensure that the minimum amount of bitwidths are used throughout quantization making sure that
SNRQ

bmin
(t) > SNRF(t) where SNRQ(t) and SNRF (t) are the followings:

SNRF (t) =
α2
t

σ2
t

SNRQ(t) =
∥ϵθ(xt, t)∥2

∥∆ϵθ(xt, t)∥2

This method is particularly useful due to the varying SNR of both full precision and quantized
models. The SNRF being higher at earlier timesteps but decaying and getting overtaken by SNRQ at
later timesteps.

2.4.1 Low-Bitwidth Floating Point Quantization for Efficient High-Quality Diffusion Mod-
els [63]

The paper ”Low-Bitwidth Floating Point Quantization for Efficient High-Quality Diffusion Models” hy-
pothesises and experiments if converting (full precision) fp32 diffusion model brings better results when
mapped to a floating point or integer value of the same bitwidth. More specifically, the full precision

10

values are mapped to fp8 and fp4 (8 and 4 bit floating point values) and their integer counterpart int8
and int4 (8 and 4 bit integer values) to benchmark the 2 methods in terms of FID and IS metrics.

A standard floating-point number is represented as follows:

f = (−1)s︸ ︷︷ ︸
sign

· 2e−bias︸ ︷︷ ︸
exponent

· (1 + d1
2

+
d2
22

+ · · ·+ dm
2m

)︸ ︷︷ ︸
mantissa

(9)

Where 1 bit is dedicated to the sign component s ∈ {0, 1}. The exponent e is an integer that
determines the magnitude or scale of the floating point number by controlling the power of 2. The bias is a
fixed value used to shift the exponent range and it is typically calculated as bias = 2number of exponent bits−
1. Finally, the mantissa bits di ∈ {0, 1} represent the fractional part of the number in binary after
normalization.

The more bits are dedicated to the exponent the larger the range of representable values, however, it
does not make the representation more precise. On the other hand, the more bits are dedicated to the
mantissa the more precise the representation can be.

Due to the limited number of bits used to represent values (especially after quantization), there is
a tradeoff between representable range and precision. The more exponent bits leave fewer bits for the
mantissa, reducing precision but increasing range and vice-versa. For example, in fp8 there are 4 possible
configurations consisting of E2M5 (2-bit exponent and 5-bit mantissa), E3M4 (3-bit exponent and 4-bit
mantissa), E4M3 (4-bit exponent and 3-bit mantissa), and E5M2 (5-bit exponent and 2-bit mantissa).
For fp4, there are 2 encodings: E1M2 (1-bit exponent and 2-bit mantissa) and E2M1 (2-bit exponent
and 1-bit mantissa) (Note that 1 bit is always dedicated to the sign bit).

The author finds the optimal bit encoding and bias by employing a greedy search. More specifically
the algorithm starts with the tensors in the first layer evaluating all combinations of encoding and biases
selecting the combination with the lowest MSE (compared to the full precision model). After the lowest
MSE combination is found, the algorithm fixes the selected encoding and bias before proceeding to the
next layer and repeating this procress for all layers in a breadth-first order.

In addition to this algorithm, the authors also incorporate a rounding learning technique (first pro-
posed by [18]) using a gradient descend technique to learn how to map more effectively from full precision
fp32 value to lower bit fp values (fp8 and fp4). This method is particularly useful where only a few man-
tissa bits are available, and naive rounding introduces significant errors. This method treats rounding as
a learnable decision for each weight instead of statically rounding values to the nearest quantized level.
More specifically a sigmoid function is used to represent the probability of rounding up or down:

wquantized = ⌊w⌋+ σ(α) (10)

Where w is the rounded weight, σ is the sigmoid function and α is the learnable parameter. According
to the authors’ benchmarks, the fp quantization proposed by the authors appears to perform better than
the uniform int quantization for the same bitwidth. Notably, rounding learning is a major contribution
to the improved fp quantization results in terms of FID and IS metrics.

2.5 Quantization-Aware Training

QAT involves training a neural network directly in its target data type, meaning that both forward and
backward passes are performed using quantized parameters. This approach often achieves more optimal
solutions compared to PTQ [28]. However, the improved accuracy of QAT comes at the cost of additional
computational overhead during training. Despite these challenges, QAT can sometimes be considered

11

more advantageous due to its ability to produce higher-performing quantized models especially when
deploying models for an extended period [34].

2.5.1 Q-DM: AnEfficient Low-bit Quantized Diffusion Model [68]

This paper proposes a QAT for Diffusion Models motivated to address and mitigate the ”Varying ac-
tivation ranges across all timesteps” and ”Quantization error accumulation” commonly occurring when
quantizing Diffusion Models.

To address the first challenge of ”Activation distribution oscillation,” the authors propose Timestep-
Aware Quantization (TAQ). TAQ adjust the activation value, given mini-batch collected during training,
with statistical values of mean γt and variance σ2

t for a given timestep t as calculated in Equations (11)
and (12).

γt =

B∑
i=1

1

bi

bi∑
j=1

a(xtj , tj), (11)

σ2
t =

B∑
i=1

1

bi

bi∑
j=1

[
a(xtj , tj)− γt

]2
, (12)

Where bi is the batch size of the i-th batch, with i ∈ {1, ..., B}. With the calculated mean γt and
variance σ2

t the authors propose Equation 13 to estimate the adjusted activation value ã(x, t) for a specific
timestep t.

ã(x, t) =
a(x, t)− γt√

σ2
t + ψ

(13)

The adjusted activation value can be used within the quantization equation for a more accurate
activation estimate w.r.t as defined by the TaQ Equations (14) and (15).

TaQ(a) = s ·Q(ã) = s ·
⌊
clip

(
ã

s
,−2b−1, 2b−1 − 1

)⌋
(14)

TaQ(a) = s ·

⌊
clip

(
a− γt

sa ·
√
σ2
t + ψ

,−2b−1, 2b−1 − 1

)⌋
(15)

To address the second challenge of ”Quantization error accumulation” the author proposes the Noise-
estimating Mimicking (NeM). NeM compares the noise estimation of the quantized model with that of
the full-precision model, this way, the quantized model learns to better approximate the noise estimation
capability of its full-precision counterpart. NeM is a loss function that minimizes the predicted noise at a
given timestep between the full precision diffusion model and the quantized diffusion model. The derived
NeM loss function is the following:

LNeM(θQ, θFP) = Et,x0,ϵ

[∥∥ϵθFP

(√
ᾱtx0 +

√
1− ᾱtϵ, t

)
− ϵθQ

(√
ᾱtx0 +

√
1− ᾱtϵ, t

)∥∥2] (16)

With ϵθFP
and ϵθQ being the predicted noise of the respective full precision and quantized models, and√

ᾱtx0 +
√
1− ᾱtϵ being the The noisy input at timestep t, formed by mixing the original data sample

x0 with the Gaussian noise ϵ, controlled by the noise schedule parameters.

12

2.5.2 EfficientDM: Efficient Quantization-Aware Fine-Tuning of Low-Bit Diffusion Models
[55]

This paper introduces EfficientDM, a framework for efficient, data-free quantization-aware fine-tuning
(QAT) to low-bit diffusion models. This paper achieves low-bit quantization through QAT by leverag-
ing their proposed Quantization-aware Low-rank Adapter (QALoRA). QALoRA is based on Low-rank
adapter (LoRA) [25], a technique designed to adapt large pre-trained models efficiently for specific tasks.
It avoids the computational and storage costs of traditional fine-tuning by freezing the pre-trained weights
and introducing trainable low-rank matrices into the model. For example, Zhang et al. [62] use LoRA to
fine-tune and adapt a pre-trained text-to-image sampler to help improve the fidelity of the generated 3D
samples. Similarly, Guo et al. [54] use LoRA to extend a pre-trained text-to-image diffusion model with
a motion module (e.g., zooming or panning) using a small number of reference videos.

In practice, LoRA can be illustrated by updating a linear model Y = XW0 with learnable low-rank
matrices B and A as shown in the following example.

Y = XW0 +XBA (17)

Where X ∈ Rb×cin , W0 ∈ Rcin×cout , B ∈ Rcin×r, A ∈ Rcin×r, with b representing the batch size, cin
and cout representing the number of input and output channels, and r ≪ min(cin, cout). The high-level
example from equation 17 demonstrates how the initial weight W0 can be adjusted thanks to LoRA to
update the model Y for new tasks.

The proposed QALoRA, similarly to LoRA, fine-tunes (pre-trained) model parameters, but it ad-
ditionally integrates these updates directly into quantized weights to align with the precision of the
quantized model.

Y = QU (X, sx)QU (W0 +BA, sw) = X̂Ŵ (18)

Where sw denotes the channel-wise quantization scale for weights and sx is the layer-wise quantization
scale for activations. The denoise step-specific learnable parameters A and B from Equation 18 are
found through knowledge distillation between a full-precision model into its quantized counterpart. More
specifically, the loss function 19 minimizes the mean squared error (MSE) between the full precision
model µθ(xt, t) and the quantized model µ̂θ(xt, t) at timestep t, to obtain the optimal A and B from 18.

Lt = ∥µθ(xt, t)− µ̂θ(xt, t)∥2 (19)

Finally, the authors propose to allocate temporal-aware quantization scales (TALSQ) for activations
and optimize them individually for each step. TALSQ is proposed to account for the high variability
between activation across different denoising steps in diffusion models.

By leveraging the proposed Quantization-aware Low-rank Adapter (QALoRA), EfficientDM achieves
both parameter efficiency and low-bit quantization without requiring the original training data.

3 Diffusion Model Distillation

Knowledge Distillation is the process of replicating or transferring knowledge from a large model (teacher)
to a smaller and more efficient model for deployment (student) [5, 1]. Chen et al. [3] for example, propose
a knowledge distillation framework to compress highly complicated object detection models (teacher) into
lighter and more efficient models (student). Chae et al. [53] on the other hand apply knowledge distillation
on blackbox LLM such as chatGPT to train smaller LLM with dialogue chain-of-thought capabilities.

13

Progressive distillation is a technique first proposed by Salimans et al. [51], which uses knowledge
distillation iteratively to teach a student model to replicate the diffusion model sampling of a teacher
model in half of the required timestep as shown in figure 3.

Figure 4: Visualization of the progressive distillation process proposed by Salimans et al. [51]. The
latent variable z is initially denoised in 4 steps by sampler f(z; η). Through the distillation process, the
algorithm halves the denoising steps until the sampler can generate samples through a single denoising
step.

3.0.1 [51] is the first research paper to propose this method on diffusion models as well as offering
some empirical findings about the optimal loss function and weighting function. 3.1.1 [59] extends this
process by adding a free guidance distillation process where the student model learns to sample based
on the guidance weight of the teacher model. Finally, 3.1.2 [66] applies both timestep reduction and free
guidance distillation on a guide model to train a fast and lightweight model with a fraction of the learning
parameters compared to the teacher model.

These 3 research paper experiments are further categorized based on the models, datasets, distilled
timesteps and guidance weight used as shown in table 3, with the guidance weight further explained in
section 3.1.

3.0.1 Progressive Distillation for Fast Sampling of Diffusion Models [51]

This paper proposes a novel approach to accelerating diffusion model sampling using knowledge distilla-
tion techniques. Their method iteratively reduces the number of sampling steps required for generating
samples using diffusion models (e.g., reducing from thousands of steps to as few as 4).

The approach begins with a pre-trained diffusion model (teacher) that uses many sampling steps. The
student model copies the teacher model learnable parameters and tunes them to replicate the teacher
model latent image prediction in 1 step instead of 2. Therefore, the student model is tasked to predict
latent images zt and zt−1/N of the teacher model in a single step where N is the total student timesteps.

14

Diffusion
Distillation
Method

Teacher
Model for
Step Reduction

Teacher
Timesteps

Student
Timesteps

Dataset
Teacher
Model for
Guidance

Guidance
Weights

3.0.1 [51]
Dhariwal and
Nichol* [24]

8192
1, 2, 4, 8, 16,
32, 64, 128,
256, 512

CIFAR-10 - -

Dhariwal and
Nichol† [24]

1024
1, 2, 4, 8, 16,
32, 64, 128,
256, 512

ImageNet 64x64 - -

Dhariwal and
Nichol† [24]

1024
1, 2, 4, 8, 16,
32, 64, 128,
256, 512

LSUN Bedrooms
128x128

- -

Dhariwal and
Nichol† [24]

1024
1, 2, 4, 8, 16,
32, 64, 128,
256, 512

LSUN Church
Outdoor 128x128

- -

3.1.1 [59]
Stable
Diffusion* [47]

1024 1, 2, 4, 8, 16 Laion 512x512
Ho and
Salimans* [36]

0.0, 0.3, 1.0, 2.0, 4.0

Ho and
Salimans* [36]

1024 1, 2, 4, 8, 16 ImageNet 64x64
Ho and
Salimans* [36]

0.0, 0.3, 1.0, 2.0, 4.0

Ho and
Salimans* [36]

1024 1, 2, 4, 8, 16 CIFAR-10
Ho and
Salimans* [36]

0.0, 0.3, 1.0, 2.0, 4.0

3.1.2 [66]
Stable
Diffusion* 1.5

1000 8, 16, 50 Laion 512x512
Stable
Diffusion* 1.5

2.0, 4.0, 6.0, 8.0

Table 3: Key parameters used during experiment and evaluation of distilled diffusion models 3.0.1, 3.1.1,
and 3.1.2. *These models’ architecture are unaltered. †These models’ architecture are altered.

The halving of the timestep is encouraged by the loss function, where the target x̃ is the teacher 2
step latent progression, x̂θ(zt) is the student 1 step latent progression given the current latent image zt,
λt is the signal to noise ratio log[α2

t /σ
2
t], and ω(λt) is a pre-specified weighting function.

Lθ = w(λt) ∥x̃− x̂θ(zt)∥22 (20)

Furthermore, the authors of this paper empirically found and argue that minimizing image prediction
x loss compared to noise prediciton ϵ loss ensures greater stability and accuracy during progressive
distillation. This is particularly relevant at low signal-to-noise ratios (SNR), where predicting the clean
image x (opposed to added noise ϵ) is more informative for the student to best mimic the teacher samples.

Finally, the paper benchmarks the results of the model distillation taking into consideration 3 different
weighting functions w(λt): SNR, truncated SNR and SNR+1. SNR+1 and Truncated SNR (contrary to
SNR) are better suited for progressive distillation because they stabilize the loss during low signal-to-noise
conditions, which are frequent when sampling steps are reduced.

The distilled models achieve results close to the original teacher models. For example, on CIFAR-10,
they achieve an FID (Fréchet Inception Distance) of 3.0 with just 4 sampling steps.

15

3.1 Guided Diffusion Models

Classifier-free guided models, first proposed by Ho et al. [36], balance the trade-off between diversity and
quality in image generation. These models use a guidance weight w parameter to control the diversity
and quality of the generated samples and have been adopted by frameworks such as GLIDE [30], Stable
Diffusion [47], DALL-E 2 [45], and Imagen [50]. A higher guidance weight term w leads to outputs with
higher quality but lower diversity, conversely lower guidance results in higher diversity but lower quality.

In practice, the relationship between the guidance weight and the generation process can be expressed
mathematically as:

x̂wθ (zt) = (1 + w)x̂c,θ(zt)− wx̂θ(zt), zt ∼ q(zt|x) (21)

The formula combines the conditional model’s prediction (x̂c,θ(zt)) with the unconditional model’s
prediction (x̂(zt)) to balance between quality and diversity. Where zt is a latent image at timestep t and
the guidance weight w determines how strongly the output is biased toward the conditional prediction.
In the case of w = 0 the model functions as a conditional generation x̂c,θ(zt).

3.1.1 On Distillation of Guided Diffusion Models [59]

This paper proposes a student-teacher model distillation that produces a classifier-free guidance model
with as low as 4 denoising steps without loss of performance compared to the teacher model. The
paper highlights 2 distillation stages. The first stage describes the process of training a student model
classifier-free guidance properties, the second stage describes the process of reducing the timestep for
image generation inference.

In the first stage of distillation, the student model is trained to replicate the outputs of the teacher
model across various guidance weight parameters w ∈ [wmin, wmax]. This stage allows the student
model to approximate the teacher’s behaviour for any w, reducing the need to evaluate conditional and
unconditional models separately during inference. The student-teacher model uses the following loss
function 22.

Ew∼pw, t∼U [0,1],x∼pdata(x)

[
ω(λt) ∥x̂η1(zt, w)− x̂wθ (zt)∥

2
2

]
(22)

Where p(w) = [wmin, wmax], λt is the signal to noise ratio log[α2
t /σ

2
t], and ω(λt) is a pre-specified

weighting function.
In the second stage, the authors describe the process of reducing (halving) the required timesteps to

generate a sample of comparable quality. This process is done through knowledge distillation, similarly
to 3.0.1 this paper minimizes the loss function between the teacher’s 2 steps denoised latent variable with
the corresponding student’s 1 step denoised latent variable

The paper demonstrates that their two-stage distillation approach reduces sampling steps for classifier-
free guided diffusion models by up to 256× for pixel-space models and 16× for latent-space models, while
achieving comparable FID and IS scores to the teacher models, enabling efficient high-quality image
generation, editing, and inpainting with as few as 1-4 denoising steps.

3.1.2 Plug-and-Play Diffusion Distillation [66]

This paper proposes training a lightweight, predefined guide model with a fixed architecture using knowl-
edge distillation from the teacher model. Unlike traditional approaches that use the same complex

16

architecture as the teacher and student, their method leverages the predefined student guide model to
replicate the teacher’s output with significantly fewer parameters and reduced computational cost.

Their method is divided into 2 stages. The first stage involves using knowledge distillation to train
the predefined guide lightweight model to replicate the teacher model samples. The second stage involves
using knowledge distillation to reduce (halve) the timestep required to generate a sample of the newly
trained guide model.

During the first stage, similarly to paper 3.1.1 the authors train the guide model under a teacher
model across a uniform sample of guidance weights. Thus, allowing the student model to be capable of
producing samples of various diversity and quality based on user preference without evaluating conditional
and unconditional models separately during inference.

The key difference between this approach and paper 3.1.1 is the application of knowledge distillation of
guidance weight on a lightweight predefined ControlNet architecture instead of encoding guidance on the
same model. Specifically, the tiny guide model adopted in this paper consists of an efficient ControlNet
architecture with no encoding layers. The guidance vector, text embedding and time embedding are
passed to a zero-convolution through the decoding layer.

During the second stage, similarly to the process explored previously, the sampling steps are distilled
to halve the steps of the guide mode iteratively. This process is applied to the lightweight guide model
reaching as low as 8–16 steps while maintaining competitive image fidelity compared to the teacher model.

The tiny guide model reduces inference FLOPs (floating-point operations) by nearly half compared
to classifier-free guidance (CFG) in traditional diffusion models. The tiny guide model has ∼1% of the
trainable parameters compared to Stable Diffusion v1.5.

4 Distributed Diffusion Model

So far most of the acceleration techniques for diffusion models trade-off sample quality for sample gener-
ation speed, namely using quantization and denoising step reduction. However, distribution and paral-
lelization of sample generation task trade-off computing for sample generation speed.

While naively generating samples in parallel increases throughput, 4.0.1 and 4.0.2 each propose a
method to accelerate the generation time for a single sample.

4.0.1 Parallel Sampling of Diffusion Models [70]

The authors present ParaDiGMS, a novel method to accelerate the sampling of pre trained diffusion
models by denoising multiple steps in parallel. Their method leverages Picard Iterations to predict
the future denoised sample xf based on the current latent variable xc. Each device applies the Picard
Iteration to predict denoising timesteps between starting and ending points c and f . The Picard Iteration
approximates the denoising process from timestep c to f , improving its estimation the more k repetitions
are applied as shown in Equation 23.

xk+1
f = xkc +

∫ f

c

s(xku, u) du, (23)

Here, s(xku, u) is the drift term, which is derived from the Stochastic Differential Equation (SDE)
Equation 24 formulation of the denoising process. The SDE is expressed as:

dxt =
(
f(t)xt − g2(t)∇x log qt(x)

)︸ ︷︷ ︸
drift s

dt+ g(t)︸︷︷︸
σt

dw̄t, xT ∼ q(xT), (24)

17

This SDE-based denoising process is adopted in many works [41, 21] as an alternative to the more
traditional reverse-time Ordinary Differential Equation (ODE).

In practice, ParaDiGMS divides the denoising time series into windows of size p (a batch of timesteps).
Each device computes updates for all timesteps within its batch window in parallel during a single
iteration. Then, for each timestep t in the window [t, t+p) (or [c, f)), the drift term s(xxu, u) is computed
in parallel for all timesteps within the window. Finally, after computing the drift terms, the updates
for all timesteps in the window are applied using a cumulative (prefix) sum of the drift terms. This
step refines the values across the window simultaneously. Once the updates for the current window have
converged, the window slides forward to the next portion of timesteps.

By combining Picard Iterations with parallel computation, ParaDiGMS achieves a significant reduc-
tion in sampling time without compromising sample quality. The method is orthogonal to existing fast
sampling techniques like DDIM and DPM-Solver, meaning it can be combined with these approaches
to achieve even further acceleration. For example, ParaDiGMS can compute fewer timesteps (as done
in DDIM) while performing multiple steps in parallel, providing an optimal tradeoff between speed and
accuracy.

4.0.2 DistriFusion: Distributed Parallel Inference for High-Resolution Diffusion Models
[67]

This paper proposes “Distrifusion”, a distributed hardware solution as a method to improve image sam-
pling generation speed.

Their method is motivated by the lack of a solution for distributing the workload to devices for the
generation of a diffusion model sample which can be attributed to the sequential nature of denoising
images. Naive approaches may attempt to patch multiple separate generated images, each in a distinct
device (Naive Patch) however, at the cost of clear visual artifacts separating the image into multiple
sections.

Distrifusion, on the other hand, proposes a method that accelerates image sampling comparable to
the speed of the Naive Patch, while maintaining a similar quality of image generation to that of a single
device.

Their method involves using the previous denoising timestep to provide cohesion context (to avoid
separation artifacts) for generating a patch for the current timestep for each device. This method allows
each device to focus its hardware resources on generating a single patch of image while maintaining
cohesion between these patches.

More specifically, cohesion context is given through the input activation of the previous denoise
timestep (stale activation) using the Scatter operation. The Scatter operation distributes the stale ac-
tivation Al

t+1 to each device i ∈ {1, 2, ..., N} where l is a specific layer. Here, Al
t+1 is the full spatial

context, and each device can individually produce its respective next timestep activation patch A
l,(i)
t

which is only 1/N of the original image. This way, for each device only a patch of the stale activation is
updated, cohering with the rest of the unmodified stale activation image.

Next, the AllGather operation gathers all the freshly updated activation patches A
l,(i)
t , combining

them to Al
t in order to repeat the previously mentioned Scatter operation.

Distrifusion overlaps the AllGather communication with computation. By asynchronously communi-
cating the activation patches while continuing to perform computations, it effectively hides the commu-
nication overhead. This optimization is critical for achieving high performance without compromising
latency.

To improve initial performance, Distrifusion uses synchronous patch operations for a few steps at the

18

start before switching to displaced patch parallelism. This ensures accurate patch cohesion at the start
of the denoising process.

5 Conclusion and Future Work

In this survey, we explored state-of-the-art techniques aimed at accelerating diffusion models, focusing
on quantization, knowledge distillation, and distributed parallel sampling. While these approaches have
achieved significant progress in reducing the inference time of diffusion models, there remain opportunities
for further enhancement.

As a future direction, the survey could be expanded to include a comprehensive benchmarking of the
discussed techniques under common experimental settings. By standardizing key parameters such as the
model architecture, dataset, and evaluation metrics, we can better understand the relative strengths and
trade-offs of each approach. Furthermore, assessing the acceleration techniques not only quantitatively,
in terms of inference speed and resource utilization, but also qualitatively by comparing the fidelity and
diversity of generated samples, would provide a more holistic evaluation of these methods. These steps
would serve to deepen the understanding of diffusion model acceleration and guide the development of
more robust and efficient solutions.

References

[1] Geoffrey Hinton. “Distilling the Knowledge in a Neural Network”. In: arXiv preprint arXiv:1503.02531
(2015).

[2] Jiaxiang Wu et al. “Quantized convolutional neural networks for mobile devices”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2016, pp. 4820–4828.

[3] Guobin Chen et al. “Learning efficient object detection models with knowledge distillation”. In:
Advances in neural information processing systems 30 (2017).

[4] Dipankar Das et al. “Mixed precision training of convolutional neural networks using integer oper-
ations”. In: arXiv preprint arXiv:1802.00930 (2018).

[5] Saihui Hou et al. “Lifelong learning via progressive distillation and retrospection”. In: Proceedings
of the European Conference on Computer Vision (ECCV). 2018, pp. 437–452.

[6] Raghuraman Krishnamoorthi. “Quantizing deep convolutional networks for efficient inference: A
whitepaper”. In: arXiv preprint arXiv:1806.08342 (2018).

[7] Jun Haeng Lee et al. “Quantization for rapid deployment of deep neural networks”. In: arXiv
preprint arXiv:1810.05488 (2018).

[8] Yiren Zhou et al. “Adaptive quantization for deep neural network”. In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 32. 1. 2018.

[9] Ron Banner, Yury Nahshan, and Daniel Soudry. “Post training 4-bit quantization of convolutional
networks for rapid-deployment”. In: Advances in Neural Information Processing Systems 32 (2019).

[10] Ron Banner, Yury Nahshan, and Daniel Soudry. “Post training 4-bit quantization of convolutional
networks for rapid-deployment”. In: Advances in Neural Information Processing Systems 32 (2019).

[11] Alexander Finkelstein, Uri Almog, and Mark Grobman. “Fighting quantization bias with bias”. In:
arXiv preprint arXiv:1906.03193 (2019).

19

[12] Markus Nagel et al. “Data-free quantization through weight equalization and bias correction”. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019, pp. 1325–1334.

[13] Markus Nagel et al. “Data-free quantization through weight equalization and bias correction”. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019, pp. 1325–1334.

[14] Nanxin Chen et al. “Wavegrad: Estimating gradients for waveform generation”. In: arXiv preprint
arXiv:2009.00713 (2020).

[15] Jun Fang et al. “Post-training piecewise linear quantization for deep neural networks”. In: Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part II 16. Springer. 2020, pp. 69–86.

[16] Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising diffusion probabilistic models”. In: Advances
in neural information processing systems 33 (2020), pp. 6840–6851.

[17] Animesh Jain et al. “Efficient execution of quantized deep learning models: A compiler approach”.
In: arXiv preprint arXiv:2006.10226 (2020).

[18] Markus Nagel et al. “Up or down? adaptive rounding for post-training quantization”. In: Interna-
tional Conference on Machine Learning. PMLR. 2020, pp. 7197–7206.

[19] Jiaming Song, Chenlin Meng, and Stefano Ermon. “Denoising diffusion implicit models”. In: arXiv
preprint arXiv:2010.02502 (2020).

[20] Yang Song and Stefano Ermon. “Improved techniques for training score-based generative models”.
In: Advances in neural information processing systems 33 (2020), pp. 12438–12448.

[21] Yang Song et al. “Score-based generative modeling through stochastic differential equations”. In:
arXiv preprint arXiv:2011.13456 (2020).

[22] Ali Hadi Zadeh et al. “Gobo: Quantizing attention-based nlp models for low latency and energy effi-
cient inference”. In: 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE. 2020, pp. 811–824.

[23] Prafulla Dhariwal and Alexander Nichol. “Diffusion models beat gans on image synthesis”. In:
Advances in neural information processing systems 34 (2021), pp. 8780–8794.

[24] Prafulla Dhariwal and Alexander Nichol. “Diffusion models beat gans on image synthesis”. In:
Advances in neural information processing systems 34 (2021), pp. 8780–8794.

[25] Edward J Hu et al. “Lora: Low-rank adaptation of large language models”. In: arXiv preprint
arXiv:2106.09685 (2021).

[26] Tailin Liang et al. “Pruning and quantization for deep neural network acceleration: A survey”. In:
Neurocomputing 461 (2021), pp. 370–403.

[27] Shitong Luo and Wei Hu. “Diffusion probabilistic models for 3d point cloud generation”. In: Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021, pp. 2837–
2845.

[28] Markus Nagel et al. “A white paper on neural network quantization”. In: arXiv preprint arXiv:2106.08295
(2021).

[29] Alex Nichol et al. “Glide: Towards photorealistic image generation and editing with text-guided
diffusion models”. In: arXiv preprint arXiv:2112.10741 (2021).

[30] Alex Nichol et al. “Glide: Towards photorealistic image generation and editing with text-guided
diffusion models”. In: arXiv preprint arXiv:2112.10741 (2021).

20

[31] Vadim Popov et al. “Grad-tts: A diffusion probabilistic model for text-to-speech”. In: International
Conference on Machine Learning. PMLR. 2021, pp. 8599–8608.

[32] Arash Vahdat, Karsten Kreis, and Jan Kautz. “Score-based generative modeling in latent space”.
In: Advances in neural information processing systems 34 (2021), pp. 11287–11302.

[33] Han Cai et al. “Enable deep learning on mobile devices: Methods, systems, and applications”. In:
ACM Transactions on Design Automation of Electronic Systems (TODAES) 27.3 (2022), pp. 1–50.

[34] Amir Gholami et al. “A survey of quantization methods for efficient neural network inference”. In:
Low-Power Computer Vision. Chapman and Hall/CRC, 2022, pp. 291–326.

[35] Shansan Gong et al. “Diffuseq: Sequence to sequence text generation with diffusion models”. In:
arXiv preprint arXiv:2210.08933 (2022).

[36] Jonathan Ho and Tim Salimans. “Classifier-free diffusion guidance”. In: arXiv preprint arXiv:2207.12598
(2022).

[37] Jonathan Ho et al. “Imagen video: High definition video generation with diffusion models”. In:
arXiv preprint arXiv:2210.02303 (2022).

[38] Bahjat Kawar et al. “Denoising diffusion restoration models”. In: Advances in Neural Information
Processing Systems 35 (2022), pp. 23593–23606.

[39] Haoying Li et al. “Srdiff: Single image super-resolution with diffusion probabilistic models”. In:
Neurocomputing 479 (2022), pp. 47–59.

[40] Xiang Li et al. “Diffusion-lm improves controllable text generation”. In: Advances in Neural Infor-
mation Processing Systems 35 (2022), pp. 4328–4343.

[41] C Lu et al. “A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps”.
In: Proc. Adv. Neural Inf. Process. Syst., New Orleans, United States (2022), pp. 1–31.

[42] Andreas Lugmayr et al. “Repaint: Inpainting using denoising diffusion probabilistic models”. In:
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022, pp. 11461–
11471.

[43] Ben Poole et al. “Dreamfusion: Text-to-3d using 2d diffusion”. In: arXiv preprint arXiv:2209.14988
(2022).

[44] Aditya Ramesh et al. “Hierarchical text-conditional image generation with clip latents”. In: arXiv
preprint arXiv:2204.06125 1.2 (2022), p. 3.

[45] Aditya Ramesh et al. “Hierarchical text-conditional image generation with clip latents”. In: arXiv
preprint arXiv:2204.06125 1.2 (2022), p. 3.

[46] Robin Rombach et al. “High-resolution image synthesis with latent diffusion models”. In: Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition. 2022, pp. 10684–
10695.

[47] Robin Rombach et al. “High-resolution image synthesis with latent diffusion models”. In: Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition. 2022, pp. 10684–
10695.

[48] Chitwan Saharia et al. “Image super-resolution via iterative refinement”. In: IEEE transactions on
pattern analysis and machine intelligence 45.4 (2022), pp. 4713–4726.

[49] Chitwan Saharia et al. “Photorealistic text-to-image diffusion models with deep language under-
standing”. In: Advances in neural information processing systems 35 (2022), pp. 36479–36494.

21

[50] Chitwan Saharia et al. “Photorealistic text-to-image diffusion models with deep language under-
standing”. In: Advances in neural information processing systems 35 (2022), pp. 36479–36494.

[51] Tim Salimans and Jonathan Ho. “Progressive distillation for fast sampling of diffusion models”. In:
arXiv preprint arXiv:2202.00512 (2022).

[52] Uriel Singer et al. “Make-a-video: Text-to-video generation without text-video data”. In: arXiv
preprint arXiv:2209.14792 (2022).

[53] Hyungjoo Chae et al. “Dialogue chain-of-thought distillation for commonsense-aware conversational
agents”. In: arXiv preprint arXiv:2310.09343 (2023).

[54] Yuwei Guo et al. “Animatediff: Animate your personalized text-to-image diffusion models without
specific tuning”. In: arXiv preprint arXiv:2307.04725 (2023).

[55] Yefei He et al. “Efficientdm: Efficient quantization-aware fine-tuning of low-bit diffusion models”.
In: arXiv preprint arXiv:2310.03270 (2023).

[56] Xiuyu Li et al. “Q-diffusion: Quantizing diffusion models”. In: Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision. 2023, pp. 17535–17545.

[57] Chen-Hsuan Lin et al. “Magic3d: High-resolution text-to-3d content creation”. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023, pp. 300–309.

[58] Zhengxiong Luo et al. “Videofusion: Decomposed diffusion models for high-quality video genera-
tion”. In: arXiv preprint arXiv:2303.08320 (2023).

[59] Chenlin Meng et al. “On distillation of guided diffusion models”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2023, pp. 14297–14306.

[60] Yuzhang Shang et al. “Post-training quantization on diffusion models”. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 2023, pp. 1972–1981.

[61] Shaoan Xie et al. “Smartbrush: Text and shape guided object inpainting with diffusion model”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023,
pp. 22428–22437.

[62] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. “Adding conditional control to text-to-image
diffusion models”. In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
2023, pp. 3836–3847.

[63] Cheng Chen, Christina Giannoula, and Andreas Moshovos. “Low-Bitwidth Floating Point Quanti-
zation for Efficient High-Quality Diffusion Models”. In: arXiv preprint arXiv:2408.06995 (2024).

[64] Ciprian Corneanu, Raghudeep Gadde, and Aleix M Martinez. “Latentpaint: Image inpainting in
latent space with diffusion models”. In: Proceedings of the IEEE/CVF Winter Conference on Ap-
plications of Computer Vision. 2024, pp. 4334–4343.

[65] Yefei He et al. “Ptqd: Accurate post-training quantization for diffusion models”. In: Advances in
Neural Information Processing Systems 36 (2024).

[66] Yi-Ting Hsiao et al. “Plug-and-Play Diffusion Distillation”. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. 2024, pp. 13743–13752.

[67] Muyang Li et al. “Distrifusion: Distributed parallel inference for high-resolution diffusion models”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024,
pp. 7183–7193.

22

[68] Yanjing Li et al. “Q-dm: An efficient low-bit quantized diffusion model”. In: Advances in Neural
Information Processing Systems 36 (2024).

[69] Xinyin Ma, Gongfan Fang, and Xinchao Wang. “Deepcache: Accelerating diffusion models for free”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024,
pp. 15762–15772.

[70] Andy Shih et al. “Parallel sampling of diffusion models”. In: Advances in Neural Information
Processing Systems 36 (2024).

23

	Introduction
	Survey Structure
	Background
	Denoising Diffusion Probabilistic Models (DDPM) I12
	Denoising Diffusion Implicit Models (DDIM) I13

	Diffusion Model Quantization
	Quantization Error Accumulation
	Varying Activation Ranges Across all Timesteps
	Post Training Quantization of Diffusion Models (PTQ)
	Q-Diffusion: Quantizing Diffusion Models PTQ2
	Post-training Quantization on Diffusion Models PTQ3

	PTQD: Accurate Post-Training Quantization for Diffusion Models PTQ5
	Low-Bitwidth Floating Point Quantization for Efficient High-Quality Diffusion Models PTQ4

	Quantization-Aware Training
	Q-DM: AnEfficient Low-bit Quantized Diffusion Model QAT1
	EfficientDM: Efficient Quantization-Aware Fine-Tuning of Low-Bit Diffusion Models QAT2

	Diffusion Model Distillation
	Progressive Distillation for Fast Sampling of Diffusion Models D1
	Guided Diffusion Models
	On Distillation of Guided Diffusion Models D2
	Plug-and-Play Diffusion Distillation D3

	Distributed Diffusion Model
	Parallel Sampling of Diffusion Models P1
	DistriFusion: Distributed Parallel Inference for High-Resolution Diffusion Models P2

	Conclusion and Future Work

