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A B S T R A C T

This paper deals with the train scheduling problem for metro networks taking into account
time-dependent passenger origin–destination demands and train speed profiles. The aim is
to adjust train schedules online according to time-dependent passenger demands so that
passenger satisfaction and operational costs are jointly optimized. An extended passenger
absorption model that explicitly includes time-dependent passenger origin–destination demands
is developed, where the term ‘‘absorption’’ refers to passengers boarding trains. Then, the
passenger absorption model is extended to a bi-level framework, where passenger demands
and rolling stock availability are considered at the higher level, and detailed timetables and
train speed profiles are included at the lower level. A bi-level model predictive control (MPC)
approach is developed for the integrated problem. The optimization problems of both levels
of the bi-level MPC approach can be converted into mixed-integer linear programming (MILP)
problems, which enables us to solve them with existing MILP solvers. We then show that the
recursive feasibility of both the higher-level and the lower-level optimization problems can
be guaranteed. In this way, we can achieve real-time train scheduling for the metro system.
Numerical experiments, based on real-life data from the Beijing metro network, illustrate
the effectiveness of the extended passenger absorption model and the proposed bi-level MPC
approach.

. Introduction

As a safe, efficient, and eco-friendly transportation mode, the metro system plays a prominent role in public transportation.
eal-time train scheduling is recognized as a valuable method for improving passenger satisfaction and energy efficiency under

nfrastructure limitations. As metro systems continue to expand to large-scale and networked systems, it becomes increasingly
hallenging to achieve real-time train scheduling while taking time-varying passenger flows and operational costs into account (Wang
t al., 2015b; Hou et al., 2019).

Generally speaking, there are three key elements for train operation in metro networks, i.e., passenger flows, timetables, and train
peeds. Some data-driven approaches can be applied to predict the near future passenger flow information in real time, which can be
epresented by time-dependent origin–destination (OD) matrices, thereby facilitating timetable scheduling (Noursalehi et al., 2022).
n efficient passenger-oriented timetable should properly address time-dependent passenger OD demands (Wang et al., 2015b).
rain speeds are closely related to operation time and energy consumption (Yin et al., 2017; Luan et al., 2018). As train speed
ontrol between two stations is usually conducted under the guidance of a recommended train speed profile, a well-designed speed
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profile is crucial for effective train speed control (Hou et al., 2019). The integration of timetables, passenger flows, and train speed
profiles is desired to generate efficient timetables that can jointly consider passenger satisfaction and operational costs in metro
networks.

Real-time train scheduling considering passenger flows and train speed profiles is challenging due to its complexity and scale.
any studies include passenger flows in train scheduling problems while also considering stopping patterns of trains (Cacchiani

t al., 2020), short-turning (Zhu and Goverde, 2019), and rolling stock circulation (Haahr et al., 2016; Zhao et al., 2023), but
ithout time-dependent passenger origin–destination demands. Furthermore, train speed profiles are not included in these studies,
nd thus train speed-related objectives, e.g., the energy consumption of trains, cannot be directly included in the passenger-oriented
rain scheduling problem. Several papers consider the integration of timetables, passenger flows, and train speeds (Wang et al.,
015a,b; Mo et al., 2020; Yin et al., 2017). However, most existing studies that consider both passenger OD demands and train
peed profiles, are limited to a single line because of the computational complexity issues arising from the integrated problem. This
aper therefore focuses on the integration of timetables, passenger flows, and train speed problems for metro networks.

In order to reduce the computational burden of including many microscopic details of the network, some studies develop
acroscopic models to handle passenger OD demands by optimizing departure frequencies (Higgins and Kozan, 1998; Canca et al.,
016; Li et al., 2018). The train departure frequency (i.e., the number of trains departing from a platform per time unit) is crucial
or passenger satisfaction since it determines the maximum transport capacity of each line. The departure frequency should be
djusted properly to match time-varying passenger flows, e.g., compared with off-peak hours, higher departure frequencies are
equired during peak hours to address the large passenger demands. Furthermore, the departure frequency should be linked with
pecific departure and arrival times for a practically implementable timetable. Therefore, effective model formulations and control
pproaches are required to integrate train departure frequencies and train timetables in metro networks.

This paper contributes to the state of the art as follows.

1. An extended passenger absorption model (Liu et al., 2022) is developed, by including rolling stock circulation and the case
that different lines share the same platform. The model allows determining train departure frequencies in metro networks
considering time-dependent passenger OD demands.

2. A bi-level model predictive control (MPC) approach is proposed for real-time train scheduling considering passenger flows,
rolling stock circulations, and train speed profiles. Passenger flows are included at the higher level based on the novel
extended passenger absorption model, and detailed timetables and train speed profiles are incorporated at the lower level
taking into account the detailed rolling stock circulation. The MPC optimization problems of both levels are exactly converted
to mixed-integer linear programming problems, and we show that the recursive feasibility of both levels can be guaranteed.

The remaining part of the paper is arranged as follows: Section 2 reviews the related works. Section 4 introduces the developed
assenger absorption model and the corresponding bi-level modeling framework. Section 5 introduces the developed bi-level MPC
pproach. Section 6 shows the effectiveness of the developed approach through numerical experiments, and conclusions are provided
n Section 7.

. Literature review

.1. Passenger-oriented real-time timetable scheduling

There exists a considerable body of research on passenger-oriented timetable scheduling problems. Cury et al. (1980) presented an
nalytical model to describe the movement of trains and passengers; then, the optimal schedule is generated considering operational
osts and the average delay of passengers. Wang et al. (2015a) developed an iterative algorithm to reduce the total passenger travel
ime on a metro line while considering the energy efficiency of trains, where train speeds in each segment were simplified via three
tages, i.e., acceleration stage, cruising stage, and deceleration stage. Wang et al. (2018) realized real-time train scheduling for a
etro line by integrating passenger demands and rolling stock circulation, and the aim is to ensure service quality while reducing

perational costs. Hou et al. (2019) considered unexpected disturbances in a metro system and solved an MILP problem to reduce
rain delays, energy consumption, and the number of stranded passengers, where train speeds were also limited to a finite set of
ifferent speed levels. Considering train loading capacity constraints, Mo et al. (2020) formulated an MILP problem to maximize the
tilization of regenerative energy, where rolling stock circulation was also incorporated into the resulting train scheduling problem.
owever, these studies do not include passenger origin–destination (OD) demands, indicating the possibility of further improving
assenger satisfaction.

Real-time train scheduling with detailed passenger OD demands has received much attention in recent years. Niu et al. (2015)
ormulated a mixed-integer nonlinear programming (MINLP) problem for train scheduling in a rail corridor to reduce passenger
aiting time taking into account time-dependent passenger demands. A space–time network was used by Yin et al. (2017) to describe

he movement of trains on a metro line, where the train operation in a segment is considered for different speed levels; a Lagrangian
elaxation-based method was then presented to optimize the total passenger waiting time and operational costs. Bešinović et al.
2022) integrated passenger flow control and train rescheduling under disruptions, and applied an iterative matheuristic approach
o reduce the passenger waiting time and the time of recovering from disruptions. Nevertheless, these papers only include passenger
D demands on a single railway line, and further research is still required for the railway network.

Considering passenger OD demands in railway networks, Wang et al. (2015b) presented an event-based model that explicitly
ncludes time-dependent passenger OD demands. Train arrival, train departure, and passenger arrival rate changes were formulated
2
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as three different classes of events to describe the movement of passengers and trains. Yin et al. (2021) formulated a graph-based
model to describe feasible passenger travel paths in a metro network; then, a decomposition-based adaptive large-neighborhood
search approach is presented to minimize station crowdedness. Zhu and Goverde (2019) developed a timetable rescheduling
approach for disruptions in a railway network, where passenger OD demands and passenger paths are included and used to
determine weights of different objectives. Corman (2020) investigated the interactions between train schedules and passenger
route choices, and presented a game theory-based approach to investigate the equilibrium point between them. Luan and Corman
(2022) formulated the train schedules and passenger routing process in an integrated model, and the resulting MINLP formulation
is reformulated as an MILP formulation to minimize passenger disutility (i.e., the number of stranded passengers, the passenger
delays, and the passenger travel time) and the total train delay. However, these studies typically encounter computational issues
because more details about passenger demands and railway networks should be included. Therefore, efficient model and solution
approaches are required for passenger-oriented train scheduling.

2.2. Passenger-oriented train departure frequency optimization

The studies introduced in Section 2.1 aim to build elaborate models for detailed passenger dynamics and infrastructure
nformation. These studies can generate directly implementable arrival and departure times of trains; however, the computational
urden increases as many details related to passenger dynamics are included using such detailed microscopic models. In order to
btain a balanced trade-off between model accuracy and computational efficiency, another research direction develops macroscopic
odels to handle passenger OD demands by optimizing departure frequencies (Canca et al., 2016; Li et al., 2018; Liu et al., 2022),

onsidering the periodic characteristic of train departures.
Optimizing the departure frequency determines the maximum transport capacity and is essential for handling passenger demands

n urban public transport systems, e.g., city bus systems (Leurent et al., 2014) and metro systems (Higgins and Kozan, 1998). In
eneral, higher departure frequencies typically result in higher operational costs while providing a better chance of boarding trains
or passengers. The metro system, however, is quite different from other urban public transport systems, e.g., the braking distance of
rains is relatively long, and the signaling system imposes an upper bound on the line frequency. Thus, effective departure frequency
ontrol approaches are required for metro networks to address time-dependent passenger OD demands considering operational costs
nd infrastructure constraints. Canca et al. (2016) solved an MINLP problem to optimize train capacities and line frequencies for each
ine of metro networks, where train capacities were considered as soft constraints. Li et al. (2018) developed a bi-level strategy to
ptimize the train departure frequencies at the upper level while a passenger assignment problem was considered at the lower level
o balance operational cost and service quality. These studies aim to generate static and published train departure frequencies and
chedules at the tactical planning stage based on periodic passenger flows, leaving an open gap in optimizing departure frequencies
nline based on real-time observed passenger demand.

Adjusting departure frequency online is also regarded as an effective way to accommodate time-dependent passenger de-
and Gkiotsalitis and Cats (2022). Pu and Zhan (2021) developed a two-stage method for railway line planning problems where the

irst stage generates a line plan with deterministic passenger demands and the second stage adjusts the line plan to accommodate
eal-life passenger demands. Liu et al. (2022) presented a passenger flow model to determine departure frequencies of metro systems
n real time. However, that paper does not lead to a directly implementable timetable, i.e., specific arrival and departure times are
ot considered, and the case when different lines use the same physical track and/or physical platforms is also not involved. In
ummary, the above-mentioned studies only optimize the departure frequency of trains, which does not directly lead to practically
xecutable timetables. Moreover, more detailed passenger flows, rolling stock circulation plans, and operational costs can be included
o further improve operational performance.

.3. MPC for real-time railway train scheduling

The studies introduced in Sections 2.1 and 2.2 are summarized in Table 1 based on the railway network details, passenger
emands, and objectives. The train scheduling problem is a typical control problem with input and state constraints. From
ections 2.1 and 2.2, we can conclude that efficient modeling frameworks and control approaches for the integration of timetables,
assenger flows, and train speeds in metro networks are urgently needed to achieve passenger-oriented train scheduling.

Model predictive control (MPC) is regarded as an efficient control methodology for real-time control of constrained sys-
ems (Mayne et al., 2000). MPC has also been implemented in real-time train scheduling problems. van den Boom and De Schutter
2006) applied MPC to minimize the delay of trains and the costs of changing train orders and braking connections based on a
witching max-plus-linear model. Caimi et al. (2012) applied the MPC framework and proposed a scheduling assistant method for
omplex station areas considering infrastructure constraints and passenger satisfaction. Li et al. (2017) proposed a state space model
o represent the dynamics of the train capacity and departure times on a metro line and an MPC approach was then developed to
inimize the headway and timetable deviations by adjusting timetables and train capacity. Cavone et al. (2022) applied MPC to

ddress disruptions and disturbances in railway networks, where an MILP problem is formulated under a bi-level structure using
acroscopic and mesoscopic models. Wang et al. (2022) introduced a hierarchical MPC framework to integrate railway delay
anagement and train control, which can realize real-time control and reduce delays effectively. Liu et al. (2023) applied MPC

o passenger-oriented urban metro networks to adjust a given timetable according to real-time passenger demands. The successful
pplications of the aforementioned methods have motivated us to design an efficient MPC approach to realize real-time train
3

cheduling.
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Table 1
Summary of the relevant studies on passenger-oriented timetable scheduling.

Publications Infrastructure Passenger
demands

Train
capacity

Rolling stock
circulation

Train
order

Train speed Objective (s)

Cury et al. (1980) bi-directional line OD-independent no no no no minimize passenger delays and
total number of trains

Niu et al. (2015) uni-directional line OD-dependent hard
constraint

no no no minimize the total passenger
waiting time at stations

Wang et al. (2015a) uni-directional line OD-independent hard
constraint

no no continuous
speed

minimize train energy consumption
and total passenger travel time

Wang et al. (2015b) network OD-dependent hard
constraint

no no continuous
speed

minimize total passenger travel
time and train energy consumption

Canca et al. (2016) network OD-dependent soft
constraint

yes no no minimize total passenger travel
time and operational costs

Yin et al. (2017) bi-directional line OD-dependent hard
constraint

no no speed levels minimize total passenger waiting
time and train energy consumption

Li et al. (2018) uni-directional line OD-dependent hard
constraint

no no no optimizing departure frequency to
balance operational cost and
service quality

Wang et al. (2018) bi-directional line OD-independent soft
constraint

yes no no minimize load factor variation,
headway variation, and entering
depot operations

Hou et al. (2019) uni-directional line OD-independent hard
constraint

no no speed levels minimize train delays, energy
consumption, and number of
stranded passengers

Zhu and Goverde (2019) network OD-dependent no yes yes no minimize passenger delays and
impacts of cancelling trains and
skipping stops

Mo et al. (2020) bi-directional line OD-independent hard
constraint

yes no no maximize utilization of regenerative
energy

Corman (2020) network OD-dependent no no yes no analyze equilibrium point between
train schedules and passenger route
choices

Pu and Zhan (2021) uni-directional line OD-dependent hard
constraint

no no no minimize operational costs and
total passenger travel time

Yin et al. (2021) network OD-dependent hard
constraint

no no no minimize station crowdedness

Bešinović et al. (2022) bi-directional line OD-dependent hard
constraint

yes no no minimize passenger waiting time
and deviation from original
timetable

Luan and Corman (2022) network OD-dependent hard
constraint

no yes no minimize passenger disutility and
total train delay

Liu et al. (2022) network OD-dependent hard
constraint

no no no minimize total passenger travel
time

Current paper network OD-dependent hard
constraint

yes yes speed levels minimize total passenger travel
time and train energy consumption

We therefore develop a bi-level MPC approach for real-time train scheduling while considering time-dependent passenger OD
emands and train speed profiles in metro networks. A bi-level model is developed to reduce the computational complexity of the
ntegrated problem, and then the corresponding bi-level MPC approach is proposed. The higher-level controller is conducted with
elatively slow dynamics to optimize departure frequencies (i.e., the number of trains departing from a platform per time unit),
hile the lower-level controller calculates detailed timetables with fast dynamics considering train scheduling constraints. The MPC
ptimization problems of both levels are transformed exactly into MILP problems, which enables us to solve them with existing
ILP solvers.

. Problem statement and assumptions

.1. Problem statement

In metro systems, train schedules should be adjusted throughout the day to accommodate time-varying passenger flows while
aking operational costs into account. A pre-determined timetable cannot include time-dependent passenger demands information
nd, in general, may be far from optimal. This paper focuses on adjusting train schedules online based on time-dependent passenger
rigin–destination demands while taking into account train capacity, rolling stock circulation, train speed profiles, and train orders.
s discussed in Section 2, the time-dependent passenger-oriented train scheduling problem typically has computational issues. We

herefore handle the problem in a bi-level framework to achieve a balanced trade-off between model accuracy and computational
urden.

The general idea of the bi-level framework is illustrated in Fig. 1. The train departure frequency determines the upper bound
f the transport capacity and is included at the higher level to address the time-dependent passenger OD demands based on the
eveloped passenger absorption model. As the departure frequency is restricted by the availability of rolling stock, the rolling stock
irculation is also considered at the higher level. The lower level focuses on generating a practically implementable timetable to
4

ulfill the departure frequency while considering detailed rolling stock circulation, train speed profiles, and train orders.
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Fig. 1. Illustration of the bi-level framework.

3.2. Explanations and assumptions

Some general explanations and assumptions about the problem are listed as follows.
(1) A line in the metro network is typically defined as the route of one certain class of train services; these train services thus

visit identical stations in each run. The assigned platforms for trains of each line are fixed.
(2) Passenger OD demands (i.e., the number of passengers choosing the metro for their travel, their origins, and their destinations)

are not influenced by the departure frequencies. Time-dependent passenger OD demands are approximated as piece-wise constant
functions.

(3) As passenger route choices observed from metro data collection systems typically exhibit consistent patterns (Noursalehi
et al., 2022), we assume that the fractions of passengers choosing each route are given a priori, and that passengers do not change
their route once they have entered the metro network.

(4) As we assume that passengers do not change their routes once they have entered the metro network, we define a lower
bound for the departure frequency, so that the time interval between the departures of two consecutive trains is always shorter than
a given threshold. In this way, the maximum waiting time for passengers should still be acceptable in case the departure frequency
and/or departure times change with respect to the original timetable.

4. Mathematical model

Based on the bi-level framework, a bi-level model is presented for the passenger-oriented train scheduling problem, where (1)
a macroscopic model, i.e., passenger absorption model, is included at the higher level considering time-independent passenger
OD demands, rolling stock circulation, and train departure frequencies, and (2) a train scheduling model is included at the lower
level considering the detailed timetable, detailed rolling stock circulation, train speed profiles, and train orders. In this section, we
first provide the notations for the mathematical models. Then, the passenger absorption model and the train scheduling model are
introduced respectively.

4.1. Notations

Tables 2, 3, and 4 respectively list the indices and input parameters, decision variables, and output variables for the model
formulations. Noting that in Table 3 the decision variables for the higher level are the departure frequency 𝑢𝓁(𝑘) for all lines while
the arrival time 𝑎𝑖,𝑝, departure times 𝑑𝑖,𝑝, 𝑑

depot
𝑖,𝓁 , and speed profile option 𝑥𝑖,𝑝,𝑏 for all trains at all line platforms are the decision

variables for the lower level.
5
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Table 2
Indices and input parameters.
Notations Definition

𝑖, 𝑗 Index of trains
𝑝, 𝑞 Index of line platforms, 𝑝 ∈ P, 𝑞 ∈ P, P is the set of line platforms
𝓁 Index of lines, 𝓁 ∈ L , L is the set of lines
𝑠, 𝑒 Index of stations, 𝑠, 𝑒 ∈ S , S denotes the set of stations, 𝑠𝑝 is the station corresponding to line platform 𝑝
𝑧 Index of depots, 𝑧 ∈ Z , Z denotes the set of depots
𝑘 Index of phases
𝑇 Length of a phase
ptra𝓁 (𝑖) Preceding train of train 𝑖 at line 𝓁
ppla (𝑝) Preceding line platform of line platform 𝑝
𝜌station𝑠,𝑒 (𝑘) Passenger arrival rate at station 𝑠 with destination 𝑒 during phase 𝑘
𝜌𝑝,𝑒 (𝑘) Passenger arrival rate at line platform 𝑝 with destination 𝑒 during phase 𝑘
𝜆𝑠,𝑝,𝑒 (𝑘) Proportion of passengers at station 𝑠 that are assigned to line platform 𝑝 for their travel to destination 𝑒

during phase 𝑘
𝛼𝑝,𝑒(𝑘) Fraction of passengers absorbed by trains at line platform 𝑝 with destination 𝑒 during phase 𝑘
𝐶train Maximum capacity of a train
𝜒𝑝,𝑞,𝑒 Proportion of passengers transferring from line platform 𝑝 to 𝑞 with destination 𝑒
cop(𝑝) The set of line platforms located at the identical station as line platform 𝑝
in(𝑧) The set of platforms related to the entering link of depot 𝑧
out(𝑧) The set of lines corresponding to the output link of depot 𝑧
𝑁 train

𝑧 The number of available trains at depot 𝑧
𝑡transfer𝑝,𝑞 Average time for passengers transferring from line platform 𝑝 to line platform 𝑞
ℎmin
𝑝 Minimum departure–arrival headway at line platform 𝑝

𝜏min
𝑝 Minimum dwell time of train at line platform 𝑝
𝜏max
𝑝 Maximum dwell time of train at line platform 𝑝
𝑟min
𝑝 Minimum running time of train from line platform 𝑝 to its succeeding line platform
𝑟max
𝑝 Maximum running time of train from line platform 𝑝 to its succeeding line platform

B𝑖,𝑝 Set of speed profile options for train 𝑖 from line platform 𝑝 to its succeeding line platform
𝑟𝑖,𝑝,𝑏 Running time of train 𝑖 from line platform 𝑝 to its succeeding line platform with speed profile 𝑏, 𝑏 ∈ B𝑖,𝑝
𝜎𝑝,𝑝′ Binary parameter; if line platforms 𝑝 and 𝑝′ correspond to the same physical platform, 𝜎𝑝,𝑝′ = 1;

otherwise, 𝜎𝑝,𝑝′ = 0

Table 3
Decision variables.
Notations Definition

𝑢𝓁 (𝑘) The departure frequency from the depot corresponding to line 𝓁 during period 𝑘
𝑎𝑖,𝑝 Arrival time of train 𝑖 at line platform 𝑝
𝑑𝑖,𝑝 Departure time of train 𝑖 at line platform 𝑝
𝑑depot
𝑖,𝓁 Departure time of train 𝑖 from the depot corresponding to line 𝓁

𝑥𝑖,𝑝,𝑏 Binary variable indicating whether train 𝑖 from line platform 𝑝 selects speed profile 𝑏

4.2. Passenger absorption model

This section presents a macroscopic model to determine train departure frequencies based on the time-dependent passenger
D demands. In the passenger absorption model, the planning time window is divided into several phases, and in each phase,

he time-dependent passenger demands at each platform are considered to be constant. The train departure frequency during each
hase can be optimized while taking into account passenger OD demands. The variables and parameters related to the number of
assengers for the passenger absorption model are listed in Table 4. To illustrate the above variables, a general overview of these
ariables is presented in Fig. 2, which features a station with two line platforms, i.e., line platform 𝑝 and line platform 𝑞. More

details about the variables are introduced below.
A matrix is typically used to describe time-dependent passenger OD demands. Each entry of the matrix is represented by

𝜌station𝑠,𝑒 (𝑡) where 𝑠 and 𝑒 are the origin and destination stations, respectively, and 𝑡 represents time. Generally, 𝜌station𝑠,𝑒 (𝑡) is a nonlinear
time-varying function, and it would significantly increase the computational complexity of including passenger flows in train
scheduling problems. Considering the periodic characteristic of passenger flows in metro systems, the planning time window is
divided into a sequence of phases with length 𝑇 , and each phase has constant passenger demands. The illustration for approximating
time-dependent passenger arrival rates in the passenger absorption model is given in Fig. 3.

In metro networks (especially in large cities, such as London, Barcelona), different lines may use the same physical track and/or
the same physical platforms to maximize the utilization of the infrastructure. To distinguish platforms for different lines and different
directions, we introduce the definition of ‘‘(virtual) line platform’’, where each line platform is exclusively linked with one direction
of one line. For example, in Fig. 4, Line 1 and Line 2 share the same physical platform B, and we regard platform B as two different
line platforms. The safe operation at the line platforms is ensured by constraints (17), (28)–(31) below.

The arrival rate 𝜌𝑝,𝑒 (𝑘) for passengers at line platform 𝑝 ∈ P with destination station 𝑒 ∈ S in phase 𝑘 is computed by

𝜌 (𝑘) = 𝜆 (𝑘) 𝜌station (𝑘) , (1)
6
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Table 4
Output variables.
Notations Definition

𝜏𝑖,𝑝 Dwell time of train 𝑖 at line platform 𝑝

𝑟𝑖,𝑝 Running time of train 𝑖 from line platform 𝑝 to its succeeding line platform

�̄�𝑝 Average running time of trains from line platform 𝑝 to its succeeding line platform

𝛾𝑝(𝑘) Average time for a train from the first line platform to line platform 𝑝 at phase 𝑘

𝛽𝑝(𝑘) The largest integer less than or equal to 𝛾𝑝 (𝑘)
𝑇

𝜙𝑝(𝑘) The remainder of 𝛾𝑝 (𝑘)
𝑇

𝑛𝑝,𝑒 (𝑘) Number of passengers at line platform 𝑝 with destination station 𝑒 at the start of phase 𝑘

𝑛absorb𝑝,𝑒 (𝑘) Number of passengers absorbed by trains at line platform 𝑝 with destination station 𝑒 during phase 𝑘

𝐶𝑝 (𝑘) Total remaining capacity of trains visiting line platform 𝑝 during phase 𝑘

𝑛want𝑝 (𝑘) Total number of passengers who want to board trains at line platform 𝑝 during phase 𝑘

𝑛on−board𝑝,𝑒 (𝑘) Number of passengers on board when trains arrive at line platform 𝑝 with destination 𝑒 during phase 𝑘

𝑛alight𝑝,𝑒 (𝑘) Number of passengers alighting from trains at line platform 𝑝 with destination station 𝑒 during phase 𝑘

𝑛transfer𝑝,𝑞,𝑒 (𝑘) Number of passengers transferring from line platform 𝑝 to line platform 𝑞 with destination 𝑒 during phase 𝑘

𝑛trans,arrive𝑝,𝑒 (𝑘) Number of transfer passengers arriving at line platform 𝑝 with destination station 𝑒 during phase 𝑘

𝑛depart𝑝,𝑒 (𝑘) Number of passengers departing from line platform 𝑝 with destination station 𝑒 during phase 𝑘

𝑓𝑝(𝑘) Number of trains departing from line platform 𝑝 during phase 𝑘

𝜃𝑧(𝑘) The total number of trains available at depot 𝑧 at the end of phase 𝑘

𝑦𝑖,𝑗,𝓁,𝑝 Binary variable; if train 𝑗 departs from line platform 𝑝 before train 𝑖 departs from the depot related to line 𝓁,
𝑦𝑖,𝑗,𝓁,𝑝 = 1; otherwise, 𝑦𝑖,𝑗,𝓁,𝑝 = 0

𝜉𝑖,𝑖′ ,𝑝,𝑝′ Binary variable; if train 𝑖 arrives at line platform 𝑝 earlier than train 𝑖′ at line platform 𝑝′, 𝜉𝑖,𝑖′ ,𝑝,𝑝′ = 1;
otherwise, 𝜉𝑖,𝑖′ ,𝑝,𝑝′ = 0

Fig. 2. Variables for the model during phase 𝑘.

where 𝑠𝑝 represents the station corresponding to line platform 𝑝; note that each line platform 𝑝 is corresponding to only one station

𝑠𝑝; 𝜆𝑠𝑝 ,𝑝,𝑒 (𝑘) denotes the splitting rate of passengers at station 𝑠𝑝 who choose line platform 𝑝 for their travel to destination 𝑒;
𝜌station𝑠𝑝 ,𝑒

(𝑘) denotes passenger origin–destination demand at phase 𝑘 with 𝑠𝑝 and 𝑒 as the origin and destination stations, respectively;
P represents the set collecting all line platforms; S is the set collecting all stations in the network.

At each line platform, the number of passengers evolves as:

𝑛 𝑘 + 1 = 𝑛 𝑘 + 𝜌 𝑘 𝑇 + 𝑛trans,arrive 𝑘 − 𝑛absorb 𝑘 , (2)
7
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Fig. 3. Illustration for approximating time-dependent passenger arrival rates.

Fig. 4. Illustration for the line platform concept.

where 𝑛𝑝,𝑒 (𝑘) denotes the number of passengers stranded at line platform 𝑝 with destination 𝑒 at the start of phase 𝑘; 𝑛trans,arrive𝑝,𝑒 (𝑘)
is the number of transfer passengers arriving at line platform 𝑝 with destination 𝑒 during phase 𝑘; 𝑛absorb𝑝,𝑒 (𝑘) denotes the number of
passengers absorbed by trains at line platform 𝑝 with destination 𝑒 during phase 𝑘.

The variable 𝑛absorb𝑝,𝑒 (𝑘) is estimated by

𝑛absorb𝑝,𝑒 (𝑘) = 𝛼𝑝,𝑒(𝑘)𝑛absorb𝑝 (𝑘) , (3)

where 𝛼𝑝,𝑒(𝑘) is the relative fraction of passengers boarding trains at line platform 𝑝 during phase 𝑘 in order to reach their destination
station 𝑒, and 𝛼𝑝,𝑒(𝑘) can be estimated through the historical data; 𝑛absorb𝑝 (𝑘) denotes the total number of passengers boarding trains
at line platform 𝑝 during phase 𝑘, and we have

𝑛absorb𝑝 (𝑘) = min
(

𝐶𝑝 (𝑘) , 𝑛want𝑝 (𝑘)
)

, (4)

where 𝐶𝑝(𝑘) denotes the total remaining capacity provided by trains that visit line platform 𝑝 during phase 𝑘, 𝑛want𝑝 (𝑘) is the total
number of passengers that want to board trains at line platform 𝑝 during phase 𝑘. Thus, we have

𝑛want𝑝 (𝑘) = 𝑛𝑝 (𝑘) + 𝜌𝑝 (𝑘) 𝑇 + 𝑛trans,arrive𝑝 (𝑘) , (5)

with
𝑛𝑝(𝑘) =

∑

𝑒∈S
𝑛𝑝,𝑒(𝑘), 𝜌𝑝(𝑘) =

∑

𝑒∈S
𝜌𝑝,𝑒(𝑘), 𝑛trans,arrive𝑝 (𝑘) =

∑

𝑒∈S
𝑛trans,arrive𝑝,𝑒 (𝑘). (6)

The total remaining capacity of trains 𝐶𝑝 (𝑘) at line platform 𝑝 during phase 𝑘 is determined by the maximum capacity of the
trains, the number of passengers already on board the train, and the number of passengers alighting from the trains:

𝐶𝑝 (𝑘) = 𝑓𝑝(𝑘) ⋅ 𝐶train −
∑

𝑒∈S

𝑛on−board𝑝,𝑒 (𝑘) +
∑

𝑒∈S

𝑛alight𝑝,𝑒 (𝑘), (7)

where 𝑓𝑝(𝑘) denotes the number of trains departing from line platform 𝑝 during phase 𝑘, and 𝑓𝑝(𝑘) is the decision variable of the
absorption model; 𝐶train represents the maximum capacity of a train; 𝑛on−board𝑝,𝑒 (𝑘) denotes the number of passengers with destination
station 𝑒 already on board the train when trains arrive at line platform 𝑝 during phase 𝑘; 𝑛alight𝑝,𝑒 (𝑘) represents the number of passengers
with destination station 𝑒 alighting from trains at line platform 𝑝 during phase 𝑘.

We define ppla(𝑝) as the preceding line platform of line platform 𝑝, and �̄�ppla(𝑝) as the mean running time for trains from line
pla on−board
8

platform p (𝑝) to 𝑝. Then, the variable 𝑛𝑝,𝑒 (𝑘) in (7) is the number of passengers transported by trains from line platform
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ppla(𝑝) to 𝑝 during phase 𝑘 with destination station 𝑒. As the length of the time step for the absorption model is 𝑇 , and passengers
departing from line platform ppla(𝑝) require time �̄�ppla(𝑝) to reach line platform 𝑝, we have

𝑛on−board𝑝,𝑒 (𝑘) =
𝑇 − �̄�ppla(𝑝)

𝑇
𝑛depart
ppla(𝑝),𝑒

(𝑘) +
�̄�ppla(𝑝)
𝑇

𝑛depart
ppla(𝑝),𝑒

(𝑘 − 1) , (8)

where 𝑛depart
ppla(𝑝),𝑒

(𝑘) represents the number of passengers departing from line platform ppla(𝑝) with destination 𝑒 during phase 𝑘, and 𝑇
nd �̄�ppla(𝑝) are parameters of the model. As the developed model aims to address passenger demands within a relatively long time,
e typically set 𝑇 ≫ �̄�ppla(𝑝). Note that if 𝑝 is the first line platform of the line, we set 𝑛on−board𝑝,𝑒 (𝑘) = 0, which means the train is

mpty when arriving at the first line platform of a line.
The number of passengers 𝑛transfer𝑝,𝑞,𝑒 (𝑘) transferring from line platform 𝑝 to line platform 𝑞 with destination 𝑒 during phase 𝑘, is

alculated by

𝑛transfer𝑝,𝑞,𝑒 (𝑘) = 𝜒𝑝,𝑞,𝑒 𝑛
on−board
𝑝,𝑒 (𝑘),∀𝑞 ∈ cop(𝑝)∖{𝑝}, (9)

here cop(𝑝) defines a set collecting all line platforms located at the identical station as line platform 𝑝, 𝜒𝑝,𝑞,𝑒 refers to the proportion
f passengers1 transferring from line platform 𝑝 to line platform 𝑞 with destination 𝑒, which can be estimated according to the
istorical data, and ∑

𝑞∈cop(𝑝) 𝜒𝑝,𝑞,𝑒 = 1.
At each line platform, passengers that either have transfer connections or have reached their destinations will alight from trains.

hus, the number of alighting passengers 𝑛alight𝑝,𝑒 (𝑘) is computed by

𝑛alight𝑝,𝑒 (𝑘) =

⎧

⎪

⎨

⎪

⎩

∑

𝑞∈cop(𝑝)
𝑛transfer𝑝,𝑞,𝑒 (𝑘) , if 𝑒 ∈ S ∖{sta(𝑝)},

𝑛on−board𝑝,𝑒 (𝑘) , if 𝑒 = sta(𝑝),
(10)

here sta(𝑝) refers to the station corresponding to line platform 𝑝.
The number of departing passengers 𝑛depart𝑝,𝑒 (𝑘) is computed by

𝑛depart𝑝,𝑒 (𝑘) = 𝑛on−board𝑝,𝑒 (𝑘) − 𝑛alight𝑝,𝑒 (𝑘) + 𝑛absorb𝑝,𝑒 (𝑘) , (11)

which means that, at each line platform, some passengers will alight from trains while passengers waiting at the platform will board
the trains before the trains depart from the platform.

As the basic time unit of the model is 𝑇 , and the transfer passengers require time 𝑡transfer𝑞,𝑝 to reach line platform 𝑝, the number
of transfer passengers arriving at line platform 𝑝. Then, 𝑛trans,arrive𝑝,𝑒 (𝑘) can be computed by

𝑛trans,arrive𝑝,𝑒 (𝑘) =
∑

𝑞∈cop(𝑝)∖{𝑝}

(𝑇 − 𝑡transfer𝑞,𝑝

𝑇
𝑛transfer𝑞,𝑝,𝑒 (𝑘) +

𝑡transfer𝑞,𝑝

𝑇
𝑛transfer𝑞,𝑝,𝑒 (𝑘 − 1)

)

, (12)

where 𝑡transfer𝑞,𝑝 denotes the mean time of transferring from line platform 𝑞 to line platform 𝑝.
In this paper, we address the train scheduling problem without disruptions. Thus, for each line, all trains will visit every pre-

determined station along the line with the same stopping pattern. Let us define 𝛾𝑝(𝑘) as the mean time of trains from a depot to line
platform 𝑝. Define ⌊𝑥⌋ as the greatest integer less than or equal to 𝑥; then, we define

𝛽𝑝(𝑘) =
⌊ 𝛾𝑝(𝑘)

𝑇

⌋

, (13)

𝜙𝑝(𝑘) = 𝛾𝑝(𝑘) − 𝛽𝑝(𝑘)𝑇 , (14)

here 𝜙𝑝(𝑘) denotes the remainder of 𝛾𝑝(𝑘)
𝑇 with 0 ≤ 𝜙𝑝(𝑘) < 𝑇 . In this context, 𝛽𝑝(𝑘) ≥ 0 determines the number of phases required

for trains from the depot to line platform 𝑝.
The departure frequency 𝑓𝑝(𝑘) of line platform 𝑝 is determined by the departure frequency from the output link of the depot. As

trains typically depart from depot and require 𝛾𝑝(𝑘) to reach line platform 𝑝, 𝑓𝑝 (𝑘) is determined by

𝑓𝑝 (𝑘) =
𝑇 − 𝜙𝑝(𝑘)

𝑇
𝑢𝓁

(

𝑘 − 𝛽𝑝(𝑘)
)

+
𝜙𝑝(𝑘)
𝑇

𝑢𝓁
(

𝑘 − 𝛽𝑝(𝑘) − 1
)

, 𝑝 ∈ P𝓁 , (15)

where 𝑢𝓁(𝑘) defines the departure frequency from the depot corresponding to line 𝓁 during period 𝑘; P𝓁 denotes set of line platforms
of line 𝓁.

The departure frequency determines the time interval between the departure times of two consecutive trains, thereby influencing
the maximum waiting time of passengers. We define a lower bound for the departure frequency:

𝑓𝑝(𝑘) ≥ 𝑓min, (16)

where 𝑓min represents the minimum departure frequency. In this way, the time interval between the departures of two consecutive
trains is always shorter than a given threshold. Thus, the maximum waiting time for passengers should still be acceptable in case
the departure frequency and/or departure time change.

1 𝜒 represents the proportion of passengers remaining on trains at platform 𝑝.
9

𝑝,𝑝,𝑒
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Remark 4.1. We assume that rolling stock resource is such that the minimum departure frequency constraint can always be satisfied.
However, in case this assumption is dropped and the rolling stock resource is so limited that the minimum departure frequency
constraint can be violated, then we can turn the minimum departure frequency constraint into a soft constraint.

To ensure safe operation, the number of trains departing from line platform 𝑝 during phase 𝑘 is constrained by
∑

𝑝′∈phy(𝑝)
𝑓𝑝′ (𝑘)

(

ℎmin
𝑝 + 𝜏min

𝑝
)

≤ 𝑇 , (17)

here phy (𝑝) represents the set of line platforms using the same physical platform as line platform 𝑝; ℎmin
𝑝 and 𝜏min

𝑝 are the minimum
eparture–arrival headway and the minimum dwell time at line platform 𝑝, respectively.

The rolling stock circulation determines the availability of trains for each line, which should be included in the optimization
f train departure frequencies. In this paper, we only consider the case that the depot is located at the end of each line, and the
onstraints for rolling stock circulation are

𝜃𝑧(𝑘) = 𝜃𝑧(𝑘 − 1) +
∑

𝑝∈in(𝑧)
𝑓𝑝(𝑘) −

∑

𝓁∈out(𝑧)
𝑢𝓁(𝑘),∀𝑧 ∈ Z (18)

𝜃𝑧(𝑘) ≥ 0,∀𝑧 ∈ Z , (19)

here 𝑧 is the depot index, Z is the set of depots, 𝜃𝑧(𝑘) represents the total number of trains available at depot 𝑧 at the end of
hase 𝑘, ∑𝑝∈in(𝑧) 𝑓𝑝(𝑘) calculates the total number of trains entering depot 𝑧 during phase 𝑘, in(𝑧) defines the set of line platforms
orresponding to the entering link of depot 𝑧, ∑𝓁∈out(𝑧) 𝑢𝓁(𝑘) calculates the total number of trains leaving depot 𝑘 during phase 𝑘,

and out(𝑧) defines the set of lines corresponding to the output link of depot 𝑧, 𝜃𝑧(0) = 𝑁 train
𝑧 is a parameter representing the number

f trains available at depot 𝑧.

emark 4.2. Note that if 𝜃𝑧(𝑘) = 0, depot 𝑧 may need to wait for new arrivals. This effect is not included in the higher-level
roblem and may thus result in suboptimality for the final solution produced by the lower-level optimization problem.

.3. Train scheduling model

As indicated before, the upper level of the proposed bi-level framework determines the number of trains departing from the lines
n the metro network. However, the exact departure and arrival times should be determined to obtain a practically implementable
imetable. Therefore, a train scheduling model is introduced for the detailed timetable (including departure/arrival time and train
rders), detailed rolling stock circulation, and train speed profiles.

There are typically three groups of constraints corresponding to the train operation, i.e., departure/arrival constraints, rolling
tock circulation constraints, running time constraints, and headway constraints.

.3.1. Departure/arrival constraints
The departure time 𝑑𝑖,𝑝 of train 𝑖 at line platform 𝑝 is determined by:

𝑑𝑖,𝑝 = 𝑎𝑖,𝑝 + 𝜏𝑖,𝑝, (20)

where 𝑎𝑖,𝑝 and 𝜏𝑖,𝑝 respectively denote arrival time and dwell time of train 𝑖 at line platform 𝑝, and 𝜏𝑖,𝑝 should satisfy

𝜏min
𝑝 ≤ 𝜏𝑖,𝑝 ≤ 𝜏max

𝑝 , (21)

where 𝜏min
𝑝 and 𝜏max

𝑝 denote the minimum and the maximum dwell times for trains at line platform 𝑝, respectively.
Define ppla(𝑝) as the preceding line platform of line platform 𝑝, the arrival time 𝑎𝑖,𝑝 of train 𝑖 at line platform 𝑝 is determined by:

𝑎𝑖,𝑝 = 𝑑𝑖,ppla(𝑝) + 𝑟𝑖,ppla(𝑝), (22)

where 𝑑𝑖,ppla(𝑝) denotes the departure time of train 𝑖 at line platform ppla(𝑝), 𝑟𝑖,ppla(𝑝) is the running time of train 𝑖 from line platform
ppla(𝑝) to line platform 𝑝.

Remark 4.3. If 𝑝 is the first line platform of the line, for completeness, we set 𝑑𝑖,ppla(𝑝) = 𝑑depot𝑖,𝓁 , where 𝑑depot𝑖,𝓁 represents the departure
time of train 𝑖 from the depot corresponding to line 𝓁, and 𝑟depot𝑖,𝓁 is the running time of train 𝑖 from the depot to the first line platform
of the line, 𝑝 ∈ P𝓁 .

4.3.2. Rolling stock circulation constraints
Before sending a train from a depot, the availability of trains in the depot should be taken into account. Let us define a binary

variable 𝑦𝑖,𝑗,𝓁,𝑝 based on the departure time 𝑑depot𝑖,𝓁 of train 𝑖 from the depot corresponding to line 𝓁:

𝑦𝑖,𝑗,𝓁,𝑝 =

{

1, if 𝑑𝑗,𝑝 ≤ 𝑑depot𝑖,𝓁 ; (23)
10

0, otherwise.
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Fig. 5. Illustration of different train speed profile options in a segment.

Then, the rolling stock circulation constraint at the lower level is
∑

𝓁∈out(𝑧)

∑

𝑗∈J𝓁

𝑦𝑖,𝑗,𝓁,𝑝 −
∑

𝑝∈in(𝑧)

∑

𝑗∈I𝑝

𝑦𝑖,𝑗,𝓁,𝑝 ≤ 𝑁 train
𝑧 , (24)

where J𝓁 defines the set of trains departing from the output link of the depot corresponding to line 𝓁, and I𝑝 defines the set of
trains that depart from line platform 𝑝. In (24), the first term represents the total number of trains that have left depot 𝑧 before
train 𝑖 departs, while the second term accounts for the total number of trains that have entered depot 𝑧 prior to the departure of
train 𝑖 from the same depot.

4.3.3. Running time constraints
Considering the operational requirement and speed limits, the running time constraint is

𝑟min
𝑝 ≤ 𝑟𝑖,𝑝 ≤ 𝑟max

𝑝 , (25)

where 𝑟min
𝑝 and 𝑟max

𝑝 are the minimum and maximum running times from line platform 𝑝 to its succeeding line platform, respectively.
In general, 𝑟𝑖,𝑝 is determined by train running speeds. In real life, train speeds and train running time between two stations are

usually adjusted through an on-board train operation system, where different operation levels are defined, and each level corresponds
to one speed profile option (Yin et al., 2017). Therefore, we consider different train speed profile options for trains between two
stations, and each option is related to a specific running time and a value of energy cost. In this context, the running time 𝑟𝑖,𝑝 for
train 𝑖 is determined by

𝑟𝑖,𝑝 =
∑

𝑏∈B𝑖,𝑝

𝑥𝑖,𝑝,𝑏 𝑟𝑖,𝑝,𝑏, (26)

where 𝑏 denotes the train speed profile option index, B𝑖,𝑝 represents the set of speed profile options for train 𝑖 at line platform 𝑝
(for example, speed profile options in Fig. 5); 𝑟𝑖,𝑝,𝑏 denotes the running time corresponding to speed profile option 𝑏; 𝑥𝑖,𝑝,𝑏 represents
a binary variable indicating whether a speed profile is selected, i.e., 𝑥𝑖,𝑝,𝑏 = 1 if speed profile option 𝑏 is selected for train 𝑖 at line
platform 𝑝, otherwise, 𝑥𝑖,𝑝,𝑏 = 0.

In order to ensure only one option can be selected, 𝑥𝑖,𝑝,𝑏 should satisfy
∑

𝑏∈B𝑖,𝑝

𝑥𝑖,𝑝,𝑏 = 1. (27)

In this paper, different speed profiles can be calculated offline, and we only need to select one speed profile among different
speed profile options in real time.

4.3.4. Headway constraints
Headway is crucial for the safety of two consecutive trains, and for trains in the same line (see Fig. 6(a)) we have:

𝑎𝑖,𝑝 ≥ 𝑑ptra
𝓁

(𝑖),𝑝 + ℎmin
𝑝 , (28)

where ptra𝓁 (𝑖) represents the preceding train of train 𝑖 at line 𝓁, and ℎmin
𝑝 represents the minimum departure–arrival headway at line

platform 𝑝.
In metro networks (especially in large cities, such as London, Barcelona), different lines may use the same physical track and/or

physical platforms to maximize the utilization of infrastructure (see Fig. 6(b)). In this context, headway constraints for trains on
different lines are required. We use a binary variable 𝜉𝑖,𝑖′ ,𝑝,𝑝′ to represent the order of trains from different lines:

𝜉𝑖,𝑖′ ,𝑝,𝑝′ =
{

1, if 𝑎𝑖,𝑝 ≤ 𝑎𝑖′ ,𝑝′ ; (29)
11

0, otherwise.
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Fig. 6. Different lines may use the same physical platform.

Fig. 7. Bi-level control structure for the integrated problem.

Then, the headway constraint for train 𝑖 and train 𝑖′ can be represented as

𝑎𝑖,𝑝 − 𝑑𝑖′ ,𝑝′ ≥ ℎmin
𝑝 −𝑀a(1 − 𝜎𝑝,𝑝′ + 𝜉𝑖,𝑖′ ,𝑝,𝑝′ ), (30)

where 𝑀a represents a sufficiently large positive value. Eq. (30) represents the headway constraint of trains 𝑖 and 𝑖′ when line
platforms 𝑝 and 𝑝′ are associated with the same physical platform, i.e., 𝜎𝑝,𝑝′ = 1; otherwise, 𝜎𝑝,𝑝′ = 0, then (30) holds automatically.

Furthermore, the order of trains should also satisfy

𝜉𝑖,𝑖′ ,𝑝,𝑝′ + 𝜉𝑖′ ,𝑖,𝑝′ ,𝑝 = 1, (31)

which is employed to keep train order variables consistent, i.e., either 𝜉𝑖,𝑖′ ,𝑝,𝑝′ = 1 or 𝜉𝑖′ ,𝑖,𝑝′ ,𝑝 = 1.

5. Bi-level MPC for train scheduling

MPC is an efficient real-time model-based control approach where finite-horizon optimization procedures are conducted
repeatedly in a receding horizon scheme (Mayne, 2014). By dividing the long planning time window into several short time windows,
MPC solves the problem with a short time window in a receding horizon manner to reduce the computational burden, while
taking into account the real-time information of the metro network. A bi-level MPC approach is proposed to achieve real-time
timetable scheduling in this section. The general introduction and the bi-level structure are introduced in Section 5.1. Then, the
MPC approaches for both levels are presented in Section 5.2 and Section 5.3, respectively.

5.1. Bi-level MPC for the integrated problem

The bi-level control scheme is illustrated in Fig. 7 where passenger flow control and train scheduling are addressed at two
different levels.

As shown in Fig. 7, the higher level aims to address time-dependent passenger origin–destination (OD) demands by determining
the number of trains departing from each line platform during each phase. The higher-level controller uses the passenger absorption
model of Section 4.2. As we approximate time-dependent passenger OD demands as piecewise constants, the higher-level controller
can be handled at every phase. Therefore, the higher-level controller can be conducted in relatively slow dynamics. Once the higher-
level MPC optimization problem is solved, the optimized decision variables 𝑓 ∗

𝑝 (𝑘) are sent to the lower level. At the lower level, the
train scheduling problem is solved to obtain the optimized arrival time 𝑎∗ and departure time 𝑑∗ for each train taking train speed
12

𝑖,𝑝 𝑖,𝑝
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profiles into account. The lower-level controller should be addressed with fast dynamics for real-time train scheduling so that the
obtained arrival times, departure times, and train speed profiles can be implemented into the practical metro network.

In the bi-level MPC scheme, at the end of the control interval of the lower-level controller, the planning time window at the
ower level will be moved for one step, and the train scheduling problem is resolved for the next step according to the collected
eal-life arrival and departure times (𝑎𝑖,𝑝 and 𝑑𝑖,𝑝). At the end of the control interval of the higher-level controller (i.e., one phase),

the planning time span for the higher level will be shifted for one phase, and the control problem will be solved again for the next
phase based on the realized �̄�𝑝 and 𝑛𝑝,𝑒(𝑘).

5.2. Higher-level MPC: departure frequency optimization

The time-dependent passenger OD demands can be addressed by a centralized MPC approach based on the model presented in
Section 4.2. As passenger flows usually change periodically, the control time interval of the higher-level controller is equal to the
length of a phase. The decision variable at the higher level will be the number of trains departing from each line platform during
each phase.

The total travel time for passengers during phase 𝑘 is represented by

𝐽 pass(𝑘) =
∑

𝑝∈P

(

𝑛𝑝(𝑘)𝑇 + 𝑛depart𝑝 (𝑘)�̄�𝑝 + 𝑛trans,arrive𝑝 (𝑘)𝑡transfer𝑝

)

, (32)

where 𝑝 defines a set collecting all line platforms in the network; 𝑛𝑝(𝑘)𝑇 represents the passenger waiting time at line platform
𝑝 during phase 𝑘; 𝑛depart𝑝 (𝑘)�̄�𝑝 denotes the total running time for passengers departing from line platform 𝑝 during phase 𝑘;
𝑛trans,arrive𝑝 (𝑘)𝑡transfer𝑝 is the total transfer time for passengers at line platform 𝑝 during phase 𝑘, and 𝑡transfer𝑝 denotes the average time
for passengers transferring to line platform 𝑝.

Although scheduling more trains, running with the minimum headway, can help to minimize 𝐽 pass(𝑘), it is typically not acceptable
to use too many trains in real life, as it would significantly increase the total energy consumption. Thus, a penalty term corresponding
to train energy consumption is included in the cost function. Then, the MPC optimization problem for passenger flow control at
phase 𝑘0 can be represented by

min
𝒖(𝑘)

𝐽 high =
𝑘0+𝑁−1
∑

𝑘=𝑘0

(

𝐽 pass(𝑘) + 𝜂
∑

𝑝∈P
𝑓𝑝(𝑘)�̄�𝑝

)

+ 𝐿𝑁 (𝑘0)

s.t. (1) – (12), (15) – (19) ,
(33)

where 𝑁 denotes the number of phases in the prediction time span; 𝜂 represents a weight; �̄�𝑝 denotes the average energy
consumption for a train running from the line platform 𝑝 to its succeeding line platform, since the higher level does not know
which speed profile will be selected at the lower level when solving the high-level optimization problem, we use the average value
among all speed profile options in the high-level optimization problem; and 𝒖(𝑘) collects the independent decision variables, i.e., the
departure frequency at the depot corresponding to each line 𝑢𝓁(𝑘); 𝐿𝑁 (𝑘0) is a penalty term for the passengers that can not board
trains at the end of the prediction window, and in this paper we set 𝐿𝑁 (𝑘0) =

∑

𝑝∈𝑃
𝑛𝑝(𝑘0+𝑁)𝑇 . As stated in (15), the departure

frequencies of other line platforms are determined by 𝑢𝓁(𝑘).
In each MPC step, problem (33) is a nonlinear nonconvex optimization problem. By using the following properties in Williams

(2013), we can convert the nonconvex term (4) into linear constraints.
Transformation property 5.1: If we introduce a binary variable 𝛿absorb𝑘,𝑝 and an auxiliary real variable 𝑓 absorb

𝑘,𝑝 with 𝑓 absorb
𝑘,𝑝 =

𝑛want𝑝 (𝑘) − 𝐶𝑝 (𝑘). Then, if we define 𝑚p and 𝑀p as the minimum and the maximum values of 𝑓 absorb
𝑘,𝑝 , respectively, the expression

𝛿absorb𝑘,𝑝 = 1 ⇔ 𝑓 absorb
𝑘,𝑝 ≤ 0 is equivalent to

{

𝑓 absorb
𝑘,𝑝 ≤ 𝑀p

(

1 − 𝛿absorb𝑘,𝑝

)

,
𝑓 absorb
𝑘,𝑝 ≥ 𝜀 +

(

𝑚p − 𝜀
)

𝛿absorb𝑘,𝑝 ,
(34)

where 𝜀 represents a sufficiently small number. Then, (4) can be replaced by

𝑛absorb𝑝 (𝑘) = 𝛿absorb𝑘,𝑝 𝑛want𝑝 (𝑘) +
(

1 − 𝛿absorb𝑘,𝑝

)

𝐶𝑝 (𝑘) . (35)

Transformation property 5.2: The multiplication of real variable �̃� and logical variable 𝛿 can be replaced by an auxiliary real
variable �̃� = �̃� ⋅ 𝛿. Then, �̃� = �̃� ⋅ 𝛿 can be exactly transformed into

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�̃� ≤ 𝑀�̃� 𝛿,
�̃� ≥ 𝑚�̃� 𝛿,
�̃� ≤ �̃� − 𝑚�̃�(1 − 𝛿),
�̃� ≥ �̃� −𝑀�̃�(1 − 𝛿),

(36)
13

where 𝑀�̃� and 𝑚�̃� respectively represent the maximum and minimum values of �̃�.
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Table 5
Numbers of variables and constraints in problem (37).

Variables or constraints Maximal possible total number

Continuous variables (7 ⋅ |S | + 6) ⋅𝑁 ⋅ |P|

Binary variables 𝑁 ⋅ |P|

Auxiliary continuous variables 3 ⋅𝑁 ⋅ |P|

Constraints (8 ⋅ |S | + 16) ⋅𝑁 ⋅ |P|

By using the above transformations, problem (33) can be exactly converted to an MILP problem with the following form:

min
𝒙(𝑘),𝒖(𝑘)
𝜹(𝑘),𝒛(𝑘)

𝐽 high =
𝑘0+𝑁−1
∑

𝑘=𝑘0

(

𝐽 pass(𝑘) + 𝜂
∑

𝑝∈P
𝑓𝑝(𝑘)�̄�𝑝

)

+ 𝐿𝑁 (𝑘0)

s.t. 𝒙(𝑘 + 1) = 𝐴𝑘𝒙(𝑘) + 𝐵1,𝑘𝒖(𝑘) + 𝐵2,𝑘𝜹(𝑘) + 𝐵3,𝑘𝒛(𝑘),
𝐷2,𝑘𝜹(𝑘) +𝐷3,𝑘𝒛(𝑘) ≤ 𝐷1,𝑘𝒖(𝑘) +𝐷4,𝑘𝒙(𝑘) +𝐷5,𝑘,
𝑘 = 𝑘0,… , 𝑘0 +𝑁 − 1,

(37)

where 𝒙(𝑘) collects the output variables in phase 𝑘; 𝜹(𝑘) and 𝒛(𝑘) collect the auxiliary binary and auxiliary continuous variables in
phase 𝑘, respectively; 𝒙(𝑘 + 1) = 𝐴𝑘𝒙(𝑘) + 𝐵1,𝑘𝒖(𝑘) + 𝐵2,𝑘𝜹(𝑘) + 𝐵3,𝑘𝒛(𝑘) includes all equality constraints in (1)–(12), (15), and (18);
𝐷2,𝑘𝜹(𝑘) +𝐷3,𝑘𝒛(𝑘) ≤ 𝐷1,𝑘𝒖(𝑘) +𝐷4,𝑘𝒙(𝑘) +𝐷5,𝑘 includes all inequality constraints.

Remark 5.1. (Complexity Analysis) There are three categories of variables in (37), i.e., continuous variables, binary variables,
and auxiliary continuous variables. The constraints include linear and nonlinear constraints. The total numbers of variables and
constraints are listed in Table 5, where S , P, and L are the set of stations, line platforms, and lines, respectively, and | ⋅ | denotes
the cardinality of a set.

It can be observed from Table 5 that the number of variables depends on the scale of the considered metro network and the
prediction horizon 𝑁 . The MILP problem is an NP-hard problem, and the computation time for solving the problem typically
increases rapidly when the number of integer variables increases (Garey and Johnson, 1979). In this problem, the number of binary
variables is determined by the number of lines |L |, the number of line platforms |P|, and the prediction horizon 𝑁 . A large
prediction horizon 𝑁 can include more information in the train departure frequency optimization, while the computational burden
increases. Therefore, for a given metro network, choosing a proper prediction horizon is important to balance the computation time
versus the performance.

Solving problem (37) results in a series of decision variables from phase 𝑘0 to 𝑘0+𝑁−1, and according to the MPC paradigm, only
the variables for phase 𝑘0 are applied. In the next phase, the prediction time span is shifted for one phase, and a new optimization
problem can be obtained.

Lemma 5.1. (Recursive Feasibility) If problem (37) is feasible at phase 𝑘0 with initial state 𝒙(𝑘0), then the feasibility of problem (37) at
phase 𝑘0 + 1 can also be ensured.

Proof. The proof is based on finding a feasible solution for phase 𝑘0 + 1. At phase 𝑘0 with initial state 𝒙(𝑘0), problem (37) can be
solved and the optimized decision variables are collected in 𝑼 (𝑘0) with

𝑼 (𝑘0) = [
(

𝒖∗(𝑘0)
)T ,

(

𝒖∗(𝑘0 + 1)
)T ,… ,

(

𝒖∗(𝑘0 +𝑁 − 1)
)T]T, (38)

here 𝒖∗(𝑘0) is the optimized value of 𝒖(𝑘0) for solving problem (37). By implementing the first decision variable 𝒖∗(𝑘0), we get

𝒙∗(𝑘0 + 1) = 𝐴𝑘0𝒙(𝑘0) + 𝐵1,𝑘0𝒖
∗(𝑘0) + 𝐵2,𝑘0𝜹

∗(𝑘0) + 𝐵3,𝑘0𝒛
∗(𝑘0). (39)

s we only have input constraint (17) at the higher level, and the inequalities constraints introduced in Transformation property 5.1
nd Transformation property 5.2 are equivalent transformations for the mixed logical dynamical (MLD) model, a feasible solution
or phase 𝑘0 + 1 can always be found as

𝑼 (𝑘0 + 1) = [
(

𝒖∗
(

𝑘0 + 1
))T ,… ,

(

𝒖∗(𝑘0 +𝑁 − 1)
)T ,

(

𝒖(𝑘0 +𝑁)
)T]T, (40)

here 𝒖∗(𝑘0+1),… , 𝒖∗(𝑘0+𝑁 −1) are from solution 𝑼 (𝑘0) at phase 𝑘0, and 𝒖(𝑘0+𝑁) can be any solution that satisfies (17), e.g., the
corresponding value of the regular timetable. Hence, the recursive feasibility of the higher-level MPC problem is guaranteed. □

5.3. Lower-level MPC: train scheduling

Based on the number of trains departing from each line platform obtained from the higher-level controller, the detailed timetable
considering the energy consumption can be generated at the lower level. The lower level uses the train scheduling model introduced
in Section 4.3, and the decision variables are departure/arrival times and train speed profile options of trains. As the lower-level
controller aims to generate a practically implementable timetable considering real-time information of the network, the lower-level
14

controller should be addressed with relatively fast dynamics.
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According to Section 4.3, the energy consumption 𝐸𝑖(𝑝) for train 𝑖 from line platform 𝑝 to its succeeding line platform is
determined by

𝐸𝑖(𝑝) =
∑

𝑏∈B𝑖,𝑝

𝑥𝑖,𝑝,𝑏𝐸𝑖,𝑏(𝑝), (41)

where 𝐸𝑖,𝑏(𝑝) denotes the energy consumption of speed profile option 𝑏 for train 𝑖 from line platform 𝑝 to its succeeding line platform.
Generally, the energy consumption of a train in a segment is highly related to the running time, i.e., a longer running time

(and thus a lower speed) typically leads to lower energy consumption. Furthermore, a penalty term has been to ensure consistency
between the desired departure frequency and the departure times of trains, promoting an even spread of departures as much as
possible. We define 𝜗 as the index for the control step of the lower level, where the time interval of each step is 𝑅. Then, the
objective function for the lower-level controller is defined as

𝐽 low =
∑

𝑖∈I (𝑘,𝜗)

∑

𝑝∈V𝑖

(

𝐸𝑖(𝑝) + 𝜁
|

|

|

|

𝑇
𝑢𝓁(𝑘)

− (𝑑𝑖,𝑝 − 𝑑𝑖−1,𝑝)
|

|

|

|

)

, (42)

where I (𝑘, 𝜗) denotes the set of indices for trains leaving their first line platforms before the end of phase 𝑘 but have not yet reached
their destination at time step 𝜗, V𝑖 denotes the set of line platforms that train 𝑖 will visit, and 𝜁 is a weighting factor.

The optimization problem for train scheduling at the lower level is

min
𝐠(𝑘,𝜗)

𝐽 low =
∑

𝑖∈I (𝑘,𝜗)

∑

𝑝∈V𝑖

(

𝐸𝑖(𝑝) + 𝜁
|

|

|

|

𝑇
𝑢𝓁(𝑘)

− (𝑑𝑖,𝑝 − 𝑑𝑖−1,𝑝)
|

|

|

|

)

,

s.t. (20) – (31),(41), (43)

here 𝐠 (𝑘, 𝜗) collects the decision variables for trains in set I (𝑘, 𝜗), i.e., 𝑎𝑖,𝑝, 𝑑𝑖,𝑝, and 𝑥𝑖,𝑝,𝑏, ∀𝑖 ∈ I (𝑘, 𝜗), 𝑝 ∈ V𝑖, 𝑏 ∈ B𝑖,𝑝.
roblem (43) contains piecewise constant (‘‘if-then’’) constraints in (29), which can be reformulated by using the property developed
n Bemporad and Morari (1999) (see Transformation property 5.3 below). Therefore, Problem (43) can also be transformed into an
ILP problem.
Transformation property 5.3: If we define 𝑚a and 𝑀a as the minimum and maximum values of 𝑎𝑖,𝑝, respectively, then (29) is

quivalent to the following inequalities
{

𝑎𝑖,𝑝 − 𝑎𝑖′ ,𝑝′ ≤
(

1 − 𝜉𝑖,𝑖′ ,𝑝,𝑝′
) (

𝑀a − 𝑎𝑖′ ,𝑝′
)

,
𝑎𝑖,𝑝 − 𝑎𝑖′ ,𝑝′ ≥ 𝜀 + 𝜉𝑖,𝑖′ ,𝑝,𝑝′

(

𝑚a − 𝑎𝑖′ ,𝑝′ − 𝜀
)

.
(44)

In the MPC scheme, we solve the optimization problem (43) in a receding horizon way, which enables the decision-making
rocess to include real-time information from the metro network. Solving problem (43) leads to a series of decision variables for
ll trains 𝑖 ∈ I (𝑘, 𝜗) from their current line platforms to their terminal line platforms. Only the decision variables pertaining to
he first interval are executed, following which the prediction window is shortened by one step, and a new problem is formulated
onsidering the newly collected information. The procedure is repeated until the last train in set I (𝑘, 𝜗) arrives at its terminal line
latform.

In this paper, the lower-level controller optimizes the timetable of trains that have not yet reached their destination at phase 𝑘.
s each train operates from its starting line platform to its terminal line platform, the MPC optimization is terminated until the last
lanned train arrives at its terminal platform. Therefore, the lower-level controller can be solved in a shrinking horizon manner,
.e., the end of the prediction horizon is fixed and equal to the arrival time of the last train in set I (𝑘, 𝜗) at its terminal line platform.

emma 5.2. (Recursive Feasibility) Given a feasible solution of problem (43) at time step 𝜗 for trains in the set I (𝑘, 𝜗) and line platforms
n the set V𝑖, a feasible solution for time step 𝜗 + 1 can always be found.

roof. For trains that have not departed from their depot at the current phase, a feasible solution of problem (43) can always be
ound by keeping trains at the depot. For trains that have already departed from their first line platform, a feasible solution for
ime step 𝜗+ 1 can be found by keeping the solutions (i.e., 𝑎𝑖,𝑝, 𝑑𝑖,𝑝, 𝑟𝑖,𝑝, ∀𝑖 ∈ I (𝑘, 𝜗),∀𝑝 ∈ V𝑖) of the time step 𝜗 unchanged. In this
ontext, the recursive feasibility of lower-level MPC can be guaranteed. □

In the proposed method, both the higher level and the lower level use centralized MPC. We define the first step of the lower-level
ontroller is indexed by 𝜗0(𝑘) and the procedure of bi-level MPC for the integration of passenger flows, timetables, and train speed
rofiles is shown in Algorithm 1.

In the developed bi-level MPC approach, the MPC optimization problems of both levels can be transformed into MILP problems
y using the methods introduced in Bemporad and Morari (1999) and Williams (2013). Therefore, we can derive an MILP problem at
ach level that is an exact equivalence of the original optimization problem. Furthermore, with existing MILP solvers, the resulting
ptimization problems can be solved.

. Case study

This section involves conducting simulations to demonstrate the efficacy of the proposed passenger absorption model and bi-level
ontrol approach. Firstly, we introduce the metro network and the basic setup utilized in the case study. Subsequently, we evaluate
he passenger absorption model based on real-life data from the Beijing metro network. Finally, simulations are conducted to assess
he performance of the developed bi-level framework and bi-level MPC approach.
15
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Algorithm 1 Bi-level MPC for the integrated problem
Input: 𝑘max, 𝜗max(𝑘); initial estimate for the variables 𝛾𝑝, �̄�𝑝;
Output: optimized values 𝑎𝑖,𝑝, 𝑑𝑖,𝑝
1: 𝑘 ← 𝑘0
2: repeat
3: 𝜗 ← 𝜗0(𝑘)
4: solve the higher-level problem (37), get 𝑢𝓁(𝑘) and 𝑓𝑝(𝑘)
5: repeat
6: solve problem (43), get 𝑎𝑖,𝑝 and 𝑑𝑖,𝑝
7: implement 𝑎𝑖,𝑝 and 𝑑𝑖,𝑝 to real-life network
8: 𝜗 ← 𝜗 + 1
9: collect real-life value of 𝑎𝑖,𝑝, 𝑑𝑖,𝑝, and 𝑛𝑝,𝑒(𝑘)

10: until 𝜗 = 𝜗max(𝑘)
11: 𝑘 ← 𝑘 + 1
12: calculate real-life values of 𝛾𝑝, �̄�𝑝
13: until 𝑘 = 𝑘max

Fig. 8. Layout of the considered metro network.

6.1. Basic setup

In this paper, we carry out the case study based on the real-life passenger flow data from the Beijing metro network. The network
is displayed in Fig. 8, which is generated according to the northern part of the Beijing metro network. The network includes six
bidirectional lines and 54 stations. Moreover, the network contains seven transfer stations, i.e., Station ZXZ, Station XEQ, Station
HY, Station OP, Station WJX, Station LSQ, and Station DD, where passengers can transfer from one line to another to reach their
destinations. Transfer passengers are defined as passengers whose route consists of more than one line. Depots are located at both
ends of each line.

The across-line operation is one important way to maximize the utilization of infrastructure and to improve passenger satisfaction
by reducing the number of transfer activities in the network (especially in big cities like London, Barcelona, and Beijing2). Therefore,
we add an ‘‘Across Line’’ for the case study to meet the case when different lines use the same physical track and/or platforms.3
Some passengers at the Across Line (e.g. from CPD to PXF) can use the Across Line to reach their destination and transfer actions

2 Beijing Subway plans to achieve the across-line operation among several lines in recent years, including the across-line operation of Changping Line and
ine 8 in Fig. 8; see also http://bj.people.com.cn/n2/2022/0126/c233088-35113072.html

3 In this paper, provide the general version of the model and conduct a case study on the network, which cannot be handled by Liu et al. (2022)
16
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Table 6
Parameters for the simulations.

Parameters Line 8 Line 13 Line 15
Changping line
across line

Minimum departure–arrival headway 120 s 120 s 120 s
Regular departure–arrival headway 480 s 180 s 240 s
Maximum dwell time 𝜏max

𝑝 360 s 360 s 360 s
Minimum dwell time 𝜏min

𝑝 30 s 30 s 30 s
Regular dwell time 𝜏𝑖,𝑝 60 s 60 s 60 s
Maximum capacity of a train 𝐶train 2400 persons 2400 persons 2400 persons
Average transfer time 𝑡transfer𝑝 60 s 60 s 60 s
Phase time 𝑇 1800 s 1800 s 1800 s
Number of speed profile options 8 options 8 options 8 options

are not required anymore, so they are not considered to be transfer passengers. There are five lines in Fig. 8, where Changping
Line, Line 8, Line 13, and Line 15 are the real-life lines, and the Across Line is added in this paper to simulate the case of cross-line
operation. The Across Line uses the same physical platforms as Changping Line from Station CPX to Station GHC, and the same
physical platforms as Line 8 from Station ZXZ to Station OP.

The passenger OD data are generated according to the real-life passenger flow data, i.e., the entering and exiting flow data of
he Beijing metro network. This information is updated every 30 min. The data we use is for the morning peak hours from 7:00AM.
he prediction time window is 1 h. In the case study, we include the case when different lines use the same physical platforms,
nd the order of trains from different lines at the same physical platform can be adjusted. Table 6 presents the main parameters
or the simulation. The parameters are generated based on the real-life timetable of the Beijing metro network. As the Across Line
s not yet included in the historical data, in the basic timetable, trains of the Across Line and trains of Changping Line (or Line 8)
epart alternately, which means part of the transport capacity that was originally performed by Changping Line (or Line 8) is taken
ver by the Across Line to reduce the number of transfer actions of passengers, and that change does not affect the total transport
apacity or the number of trains needed for the basic timetable. Thus, the original OD demand is divided equally over two lines,
o for the basic timetable, half of the departures of the original timetable is then arranged to Changping Line (or Line 8), while the
ther half is arranged to Across Line. This also means that the total number of trains in the network and the depot does not have to
e changed compared with the original timetable. The simulation is coded using MATLAB (R2019b) on an Intel Xeon W2223 CPU
3.60 GHz) with 8 GB RAM. In this paper, we assume passengers’ route choices are given a priori, and we consider passengers will
hoose the route with the shortest travel time for their travel.

As far as we know, there is no well-recognized micro-simulator currently available that includes timetables, passenger OD
emands, and train speeds. The model developed by Wang et al. (2015b) is the most elaborate model we noticed in the literature;
hus, we use the model of Wang et al. (2015b) as the ‘‘accurate model’’ of the practical passenger dynamics in the railway network.
he passenger absorption model combined with the train scheduling model presented in Section 4 are used as prediction models
or the train scheduling problem. The basic timetable is generated by using the regular headway and the regular dwell time given
n Table 6.

.2. Assessment of the absorption model

As mentioned in Section 6.1, we select the ‘‘accurate model’’ developed by Wang et al. (2015b) as the benchmark to assess the
assenger absorption model. Instead of focusing on the specific times of train arrivals and departures, the passenger absorption
odel deals with the train departure frequencies in each phase. Thus, we regard the number of passengers as a function of the
hase index rather than as a function of time.

The accumulated number of waiting passengers (AWP) and the accumulated number of boarding passengers (ABP) in each line
re two main variables in passenger-oriented metro networks. In particular, AWP reflects whether passengers can board trains in
ime, since if passengers are unable to board trains in the current phase, they should wait for trains in the next phase. ABP reflects
he transport capacity of trains.

The simulations are conducted on the network in Fig. 8 based on both the developed model and the ‘‘accurate model’’ of Wang
t al. (2015b). We perform the simulation from 7:00 to 15:00 which includes both peak and off-peak hours. We collect the AWP
nd ABP values in each phase. The required simulation time for the developed model and the accurate model are 2.10 s and 84.24
, respectively. The relative differences between the absorption model and the ‘‘accurate model’’ for AWP and ABP of each line are
isplayed in Table 7. The simulation contains 16 phases, and we select the minimum, maximum, and final values of the relative
ifference among the phases at each line.

It can be observed from Table 7 that Line 8 has the largest average relative difference for AWP, while the largest average relative
ifference for the ABP value occurs in Line 15. We select Line 8 and Line 15 for visualization, and the corresponding values for
WP and ABP at each time step are respectively depicted in Figs. 9 and 10.

Compared with the accurate model, the passenger flows can be modeled by the absorption model with the largest final error
17
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Table 7
Relative differences of variables for each line.

Min Max Average

AWP ABP AWP ABP AWP ABP

Changping Line 1.91% 5.12% 7.74% 19.38% 4.76% 7.69%
Line 13 0.50% 0.13% 22.15% 25.79% 7.81% 3.78%
Line 8 1.24% 4.28% 20.48% 33.55% 8.73% 8.66%
Across Line 0.09% 6.32% 17.82% 17.54% 3.53% 9.14%
Line 15 0.61% 0.16% 27.71% 32.19% 5.61% 5.12%
Line 5 0.07% 6.01% 17.12% 19.76% 2.99% 8.96%

Fig. 9. Accumulated number of passengers waiting at the platforms in each phase (AWP).

Fig. 10. Accumulated number of boarding passengers in each phase (ABP).

accuracy loss, the absorption model can simulate passenger flows much more efficiently with time-dependent passenger OD demands,
which allows more efficient methods for passenger-oriented train scheduling problems. The major loss is that the developed model
does not include detailed arrival and departure times of trains, and thus a train scheduling model in the lower level is required to
determine the specific departure and arrival times of trains.

6.3. Bi-level optimization based on the absorption model

We first perform simulations of sequentially solving optimization problems at both levels based on the developed model. We
also use the single-level optimization approach to solve the integrated problem in a centralized manner. Then, we compare the
single-level approach with the proposed bi-level approach based on solution quality and solution time. The single-level optimization
18
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Table 8
Simulation results of different approaches in two cases.

Case Method Objective function CPU time (s)

Unsaturated case

Basic timetable 8.3925 ⋅ 103 –
Single-level-1-brk 7.5520 ⋅ 103 3106.1
Single-level-4-brk 7.5339 ⋅ 103 7200.0
Bi-level approach 7.5903 ⋅ 103 40.5

Over-saturated case

Basic timetable 9.5186 ⋅ 103 –
Single-level-1-brk 9.1386 ⋅ 103 5250.7
Single-level-4-brk 9.1027 ⋅ 103 7200.0
Bi-level approach 9.1119 ⋅ 103 87.0

Table 9
Comparison of different approaches for real-time train scheduling.

Method Objective function CPU time (s)

𝑡avrg 𝑡max

Basic timetable 1.4859 ⋅ 105 – –
Single-level MPC 1.2451 ⋅ 105 3181.5 7200.0
Bi-level MPC 1.1815 ⋅ 105 42.4 95.9

problem is a nonlinear nonconvex problem containing integer variables. Compared with the bi-level optimization problem, the
single-level counterpart introduces an additional nonlinear term, namely 𝑇

𝑢𝓁 (𝑘)
, in (42). The single-level optimization problem can

also be converted to an MILP problem by approximating the nonlinear term with linear inequalities using the method of in Williams
(2013) (see Appendix C). We use the gurobi to solve all MILP problems. In Appendix C, the nonlinear function is approximated
s a piecewise linear function by setting several breakpoints. However, setting more breakpoints can lead to a more accurate
pproximation of the nonlinear term, while more computation time is required for solving the resulting MILP problem. Therefore,
n the case study, we use both one breakpoint and four breakpoints for the approximation of the nonlinear term in the single-
evel optimization problem, and for simplicity, the corresponding approaches are called single-level-1-brk and single-level-4-brk,
espectively.

We evaluate the developed approach in both the over-saturated (i.e., peak hours) and the unsaturated (i.e., off-peak hours) cases.
or comparison, both single-level-1-brk and single-level-4-brk are also applied to solve the optimization problem. As our aim is to
enerate a timetable online, it is required to check whether an approach is real-time implementable. In the case study, the time
imit for each method is set to be 7200 s, which is larger than the length of a step (1800 s) because we want each method to have
ufficient time to find its solution, and we can compare the relative time of different methods. By using the regular dwell time and
eparture–arrival headway in Table 6, we can obtain a basic timetable.

The simulation results and CPU times of solving the problem for one step are presented in Table 8. The objective for comparison
s the weighted sum of the total passenger travel time and the total energy consumption based on the simulation model. In both
he unsaturated case and the over-saturated case, the simulation results indicate that single-level-4-brk performs slightly better than
ingle-level-1-brk with regard to the objective function value. However, the CPU time of single-level-4-brk increases significantly
s more integer variables are introduced when adding more breakpoints. As real-time feasibility is important for real-time train
cheduling, single-level-1-brk is more suitable for real-life applications than single-level-4-brk.

Compared to the basic timetable, the single-level-1-brk approach, single-level-4-brk approach, and bi-level approach exhibit a
erformance improvement of 10.01%, 10.23%, and 9.56%, respectively, in the unsaturated case, while the improvement for the
ver-saturated case is 3.99%, 4.37%, and 4.27%, respectively. The bi-level approach can find its optimal solution very quickly. The
PU times of single-level-1-brk and single-level-4-brk are much larger than the bi-level approach, which implies that single-level
ptimization may not be a suitable option for real-time train scheduling of large-scale metro networks. The results thus show that
he bi-level optimization approach can achieve a balanced trade-off between the solution quality and the computation time.

.4. Bi-level MPC for real-time train scheduling

In this section, we conduct the case study under the MPC scheme to illustrate the closed-loop performance and the real-time
easibility of the developed approach. The prediction time window of MPC is one hour.

As shown in Section 6.3, the single-level-1-brk approach requires less computation time than single-level-4-brk with an acceptable
acrifice of performance. Considering the real-time feasibility of approaches, we select the single-level-1-brk approach to solve the
ptimization problems of single-level MPC. The maximum solution time for the MPC optimization problem in each step is set to
e 7200 s. The simulation results of single-level MPC and bi-level MPC are displayed in Table 9 and Fig. 11, where the objective
unction value means the accumulated objective function value for all included simulation times. The performance of the basic
imetable is also given for comparison.

The simulation results indicate that, compared with the basic timetable, bi-level MPC can improve the overall performance,
.e., the objective function value, by 20.49%, while the improvement of single-level MPC is 16.21%. The average computation time
19
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Fig. 11. Comparison of different approaches for real-time train scheduling.

Fig. 12. Number of trains departing from the first line platform of Line 5 (down direction) at each time step.

for single-level MPC is 3181.5 s. Due to the time limit, single-level MPC cannot always obtain its optimal solution within the given
maximum solution time in every MPC step, which influences the solution quality of single-level MPC. The average and maximum
solution times of bi-level MPC are 42.4 s and 95.9 s, respectively. Simulation results indicate that bi-level MPC can compute its
optimal solution within an acceptable time. However, single-level MPC is not efficient in terms of computation time, and as a
result, single-level MPC may not be suitable for real-time implementation in large-scale metro networks.

For further illustration, the number of trains departing from the first line platform of Line 5 (down direction) is shown in Fig. 12 as
an example. As time steps 1–6 correspond to the morning peak hours from 7:00AM to 10:00AM, compared with the basic timetable,
more trains are scheduled with the single-level and the bi-level MPC approaches to address the large passenger demand, which
indicates that bi-level MPC is able to optimize the number of trains departing from each line according to the time-dependent
passenger demands.

We select Line 5 (down direction) as a representative line to show the timetables generated by different approaches. The
basic timetable of the morning peak hour from 8:00AM to 9:00AM is shown in Fig. 13. The timetables generated by single-level
MPC and bi-level MPC from 8:00AM to 9:00AM are respectively exhibited in Fig. 14 and Fig. 15. The time window 8:00AM to
9:00AM corresponds to time steps 3 and 4 in Fig. 13. The above simulation results indicate that the bi-level MPC approach based
on the absorption model can generate practically implementable timetables online, which means the bi-level MPC approach can
be implemented for real-time train scheduling of metro networks. Furthermore, the line thickness now indicates the number of
passengers on board the current train. Then, it can be observed from Figs. 13, 14, and 15 that compared with the basic timetable
20

the optimized timetables allow more trains to transport more passengers so that passenger satisfaction can be improved.
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a
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Fig. 13. Basic timetable from station TYB to HX (the line thickness represents the number of passengers on board the train).

Fig. 14. Timetable obtained by single-level MPC from station TYB to HX (the line thickness represents the number of passengers on board the train).

Fig. 15. Timetable obtained by bi-level MPC from station TYB to HX (the line thickness represents the number of passengers on board the train).

7. Conclusions

In this paper, we have investigated the real-time train scheduling problem considering time-dependent passenger OD demands
nd train speed profiles in metro networks. We have proposed an extended passenger absorption model to handle time-dependent
assenger OD demands and rolling stock circulation in metro networks. The planning time window is divided into several phases,
21
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where the train departure frequency of each platform during each phase is considered. The passenger absorption model has been
extended to a bi-level model where detailed timetables, detailed rolling stock circulation, train speed profiles, and train orders are
also included. A bi-level MPC approach has been developed for real-time train scheduling of metro networks. The MPC optimization
problems in both levels have been transformed into small-scale MILP problems, which enables us to solve them with existing MILP
solvers. Numerical experiments show that the developed bi-level MPC approach yields a balanced trade-off between computation
time and solution quality, which indicates that the developed model and the proposed bi-level MPC approach can be implemented
for real-time train scheduling of metro networks.

The future work includes extending the bi-level framework to include more details of the metro system, e.g., flexible coupling of
rains, regenerative braking, etc. Furthermore, uncertain passenger origin–destination demands and stochastic control approaches
o deal with these uncertainties will also be a topic of future research. As the current paper only considers time-varying passenger
emands, the dynamic interactions between departure frequencies and passenger route choices still ask for further research.
oreover, some learning-based approaches, that integrate learning-based strategies to learn integer variables, can also be studied

o solve the resulting optimization problem efficiently while ensuring constraint satisfaction.
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ppendix A. Complete mathematical formulation of problem (33)

min
𝒖(𝑘)

𝐽 high =
𝑘0+𝑁−1
∑

𝑘=𝑘0

(

𝐽 pass(𝑘) + 𝜂
∑

𝑝∈P

𝑓𝑝(𝑘)�̄�𝑝

)

+ 𝐿𝑁 (𝑘0), (45a)

subject to

𝜌𝑝,𝑒 (𝑘) = 𝜆𝑠,𝑝,𝑒 (𝑘) 𝜌station𝑠,𝑒 (𝑘) , (45b)

𝑛𝑝,𝑒 (𝑘 + 1) = 𝑛𝑝,𝑒 (𝑘) + 𝜌𝑝,𝑒 (𝑘) 𝑇 + 𝑛trans,arrive𝑝,𝑒 (𝑘) − 𝑛absorb𝑝,𝑒 (𝑘) , (45c)

𝑛absorb𝑝,𝑒 (𝑘) = 𝛼𝑝,𝑒(𝑘)𝑛absorb𝑝 (𝑘) , (45d)

𝑛absorb𝑝 (𝑘) = min
(

𝐶𝑝 (𝑘) , 𝑛want𝑝 (𝑘)
)

, (45e)

𝑛want𝑝 (𝑘) = 𝑛𝑝 (𝑘) + 𝜌𝑝 (𝑘) 𝑇 + 𝑛trans,arrive𝑝 (𝑘) , (45f)

𝑛𝑝(𝑘) =
∑

𝑒∈S
𝑛𝑝,𝑒(𝑘), 𝜌𝑝(𝑘) =

∑

𝑒∈S
𝜌𝑝,𝑒(𝑘), 𝑛trans,arrive𝑝 (𝑘) =

∑

𝑒∈S
𝑛trans,arrive𝑝,𝑒 (𝑘), (45g)

𝐶𝑝 (𝑘) = 𝑓𝑝(𝑘) ⋅ 𝐶train −
∑

𝑒∈S

𝑛on−board𝑝,𝑒 (𝑘) +
∑

𝑒∈S

𝑛alight𝑝,𝑒 (𝑘), (45h)

𝑛on−board𝑝,𝑒 (𝑘) =
𝑇 − �̄�ppla(𝑝)

𝑇
𝑛depart
ppla(𝑝),𝑒

(𝑘) +
�̄�ppla(𝑝)
𝑇

𝑛depart
ppla(𝑝),𝑒

(𝑘 − 1) , (45i)

𝑛transfer𝑝,𝑞,𝑒 (𝑘) = 𝜒𝑝,𝑞,𝑒 𝑛
on−board
𝑝,𝑒 (𝑘),∀𝑞 ∈ cop(𝑝)∖{𝑝}, (45j)

𝑛alight𝑝,𝑒 (𝑘) =

⎧

⎪

⎨

⎪

⎩

∑

𝑞∈cop(𝑝)
𝑛transfer𝑝,𝑞,𝑒 (𝑘) , if 𝑒 ∈ S ∖{sta(𝑝)},

𝑛on−board𝑝,𝑒 (𝑘) , if 𝑒 = sta(𝑝),
(45k)

𝑛depart𝑝,𝑒 (𝑘) = 𝑛on−board𝑝,𝑒 (𝑘) − 𝑛alight𝑝,𝑒 (𝑘) + 𝑛absorb𝑝,𝑒 (𝑘) , (45l)

𝑛trans,arrive𝑝,𝑒 (𝑘) =
∑

𝑞∈cop(𝑝)∖{𝑝}

(𝑇 − 𝑡transfer𝑞,𝑝

𝑇
𝑛transfer𝑞,𝑝,𝑒 (𝑘) +

𝑡transfer𝑞,𝑝

𝑇
𝑛transfer𝑞,𝑝,𝑒 (𝑘 − 1)

)

, (45m)

𝑓𝑝 (𝑘) =
𝑇 − 𝜙𝑝(𝑘)

𝑇
𝑢𝓁

(

𝑘 − 𝛽𝑝(𝑘)
)

+
𝜙𝑝(𝑘)
𝑇

𝑢𝓁
(

𝑘 − 𝛽𝑝(𝑘) − 1
)

, (45n)
∑

𝑓𝑝′ (𝑘)
(

ℎmin
𝑝 + 𝜏min

𝑝
)

≤ 𝑇 , (45o)
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𝜃𝑧(𝑘) = 𝜃𝑧(𝑘 − 1) +
∑

𝑝∈in(𝑧)
𝑓𝑝(𝑘) −

∑

𝓁∈out(𝑧)
𝑢𝓁(𝑘),∀𝑧 ∈ Z , (45p)

𝜃𝑧(𝑘) ≥ 0,∀𝑧 ∈ Z , (45q)

𝑤𝑝(𝑘) = 𝑛want𝑝 (𝑘) − 𝑛absorb𝑝 (𝑘) , (45r)

𝑘 = 𝑘0, 𝑘0 + 1,… , 𝑘0 +𝑁 − 1,

Appendix B. Complete mathematical formulation of problem (43)

min
𝐠(𝑘,𝜗)

𝐽 low =
∑

𝑖∈I (𝑘,𝜗)

∑

𝑝∈V𝑖

(

𝐸𝑖(𝑝) + 𝜁
|

|

|

|

|

𝑇
𝑓fst(𝑝)(𝑘)

− (𝑑𝑖,𝑝 − 𝑑𝑖−1,𝑝)
|

|

|

|

|

)

, (46a)

subject to

𝑑𝑖,𝑝 = 𝑎𝑖,𝑝 + 𝜏𝑖,𝑝, (46b)

𝜏min
𝑝 ≤ 𝜏𝑖,𝑝 ≤ 𝜏max

𝑝 , (46c)

𝑎𝑖,𝑝 = 𝑑𝑖,ppla(𝑝) + 𝑟𝑖,ppla(𝑝), (46d)

𝑦𝑖,𝑗,𝓁,𝑝 =
{

1, if 𝑑𝑗,𝑝 ≤ 𝑑𝑖,𝓁 ;
0, otherwise.

(46e)
∑

𝓁∈out(𝑧)

∑

𝑗∈J𝓁

𝑦𝑖,𝑗,𝓁,𝑝 −
∑

𝑝∈in(𝑧)

∑

𝑗∈I𝑝

𝑦𝑖,𝑗,𝓁,𝑝 ≤ 𝑁 train
𝑧 , (46f)

𝑟min
𝑝 ≤ 𝑟𝑖,𝑝 ≤ 𝑟max

𝑝 , (46g)

𝑟𝑖,𝑝 =
∑

𝑏∈B𝑖,𝑝

𝑥𝑖,𝑝,𝑏 𝑟𝑖,𝑝,𝑏, (46h)

∑

𝑏∈B𝑖,𝑝

𝑥𝑖,𝑝,𝑏 = 1, (46i)

𝑎𝑖,𝑝 ≥ 𝑑ptra(𝑖),𝑝 + ℎmin
𝑝 , (46j)

𝜉𝑖,𝑖′ ,𝑝,𝑝′ =
{

1, if 𝑎𝑖,𝑝 ≤ 𝑎𝑖′ ,𝑝′ ;
0, otherwise.

(46k)

𝑎𝑖,𝑝 − 𝑑𝑖′ ,𝑝′ ≥ ℎmin
𝑝 −𝑀a(1 − 𝜎𝑝,𝑝′ + 𝜉𝑖,𝑖′ ,𝑝,𝑝′ ), (46l)

𝜉𝑖,𝑖′ ,𝑝,𝑝′ + 𝜉𝑖′ ,𝑖,𝑝′ ,𝑝 = 1, (46m)

𝐸𝑖(𝑝) =
∑

𝑏∈B𝑖,𝑝

𝑥𝑖,𝑝,𝑏𝐸𝑖,𝑏(𝑝). (46n)

Appendix C. Transformation of inverse proportionality functions of real variables
A piecewise affine function can be used to approximate the inverse proportionality function of the real variable ℎ(𝑦) = 1∕𝑦:

ℎPWA(𝑦) =
{

𝛼1𝑦 + 𝛽1 if 𝑦 ≤ 𝑌1,
𝛼2𝑦 + 𝛽2 if 𝑦 > 𝑌1,

(47)

where 𝛼1, 𝛼2, 𝛽1, and 𝛽2 are parameters that can be computed by the least squares approach; 𝑌1 is the breakpoint of the subdomain.
It is worth noting that the approximation can be conducted by only concentrating on the effective section of the domain where the
value of 𝑦 can be taken in real life so that we can reduce the approximation error. Moreover, we can also reduce the approximation
error by adding more breakpoints in (47).

Appendix D. Sensitivity analysis

To show the influence of the train departure frequency and the train speed profile, we have performed a sensitivity analysis for
the following four cases: (1) both the departure frequency and the train speed profile are changed, (2) only the departure frequency
is changed, (3) only the train speed profile is changed, and (4) both the departure frequency and the train speed profile are fixed.
The simulation results are shown in Table 10.

It can be observed from Table 10 that compared with case 1 only changing the speed profile (i.e., case 2) can reduce the
total energy consumption by 9.07% while sacrificing the total passenger travel time of 0.84%. Thus, including the train speed
profiles in the train scheduling problem can help to reduce energy consumption with a limited sacrifice of the passenger travel
time. Furthermore, only changing the departure frequency (i.e., case 3) can reduce the total energy consumption by 19.94% while
also reducing the total passenger travel time by 19.46%. By optimizing the train departure frequency, more trains are scheduled in
peak hours to transport more passengers while fewer trains are used in off-peak hours to reduce energy consumption; hence, both
the total energy consumption and the total passenger travel time can be reduced. Optimizing both the departure frequency and the
train speed profile (i.e., case 4) can reduce the total energy consumption by 25.32% while also reducing the total passenger travel
23

time by 18.71%, which yields the best overall performance and still has an acceptable online computation time.
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Table 10
Sensitivity analysis for real-time train scheduling.

Departure frequency Speed profile Total energy consumption (kWh) Total travel time (h) CPU time (s)

𝑡avrg 𝑡max

Case 1 Fixed Fixed 1.0778 ⋅ 105 6.0943 ⋅ 105 – –
Case 2 Fixed Changeable 9.8008 ⋅ 104 6.1456 ⋅ 105 4.6 5.7
Case 3 Changeable Fixed 8.6288 ⋅ 104 4.9081 ⋅ 105 34.8 68.4
Case 4 Changeable Changeable 8.0492 ⋅ 104 4.9540 ⋅ 105 42.4 95.9
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