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Routes of trucks are highly affected by night and weekend bans in the Alps. Such routes
give opportunities for planning breaks optimally during waiting time, as well as incorporating
preferences by possibly avoiding toll roads and steep road grades.
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Abstract

Freight transporters use software kits to plan the routes for their trucks. Breaks required
by the European drivers legislation are nowadays planned as late as possible. However,
in some cases it is beneficial to plan these mandatory breaks during waiting time, such
as truck driving bans. In this thesis this problem is addressed by computing earliest
arrival routes with optimal break planning. The problem is formulated and optimally
solved as a variation of Dijkstra’s algorithm. The slow Dijkstra computation times of
several seconds per route are improved using time-dependent contraction hierachies,
which enable a query time of several milliseconds per route while the solution quality
remains good. For two days of driving with a night rest in between, 17% of the analysed
routes improves with optimal break scheduling, resulting in an average improvement of
5 hours of driving time.
If the taking of breaks is additionally restricted to parking lots, the influence on the
arrival time is on average increased with only 3 minutes. However, 5% of the considered
routes are not feasible any more due to absence of truck parking lots along the planned
route. Another 15 % of the routes face large changes in roads that should be taken.
The planned routes are all optimized for having the earliest arrival time. However, the
freight company’s objective also concerns fuel optimized driving or providing reliable
arrival times to the customer. This thesis analyses such preferences and combines them
into a route planner that incorporates results of stated and revealed choice experiments.
It is shown that generally toll avoidance and congestion avoidance have most influence
on the route choice and arrival time. On average differences are small, but for some
routes this leads to changes of up to 15 % in travel time.
This thesis analyses the problem of route planning from two perspectives: algorithmic
and behavioural. Several observations are made: algorithms are not suitable for ob-
taining the best route instead of the fastest, and the output of behavioural research
cannot be used directly in practice to compute preferred routes. Effort could be made
in future to integrate both research communities such that algorithms are able to reflect
what a freight transporter actually wants.
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Chapter 1

Introduction

Freight transporters use software tools to plan the routes for their trucks. Breaks
required by the European drivers legislation are nowadays not incorporated in the
planning process, but inserted later to reduce computation time. However, in some
cases travel time can be reduced by planning these mandatory breaks optimally. This
thesis addresses this problem by introducing optimal break planning algorithms. Not
only an optimal break location is computed, these are also restricted to parking lots,
disallowing breaks at the shoulder.
Besides the suboptimal planning of breaks, routes are currently planned to arrive at the
destination as fast as possible. However, truck companies and truck drivers are generally
not only interested in travel time, but also in other factors such as toll road avoidance,
fuel-efficient driving and the level of congestion. These preferences are analysed and
incorporated in route planning algorithms.

1-1 Context

In Europe, lots of goods are transported using trucks. The routes of these trucks
are planned using sophisticated software tools. However, a logistic company is not
just interested in planning precise routes between a start and destination location.
They have a large set of pick-up and delivery tasks to fulfil with a fleet of trucks. A
good planning is essential to reduce costs. Creating such a planning is called a Vehicle
Routing Problem (VRP). A visualisation of the VRP is shown in Figure 1-1. Computing
travel times is one of the components of solving this problem.
To solve a VRP, first a many-to-many query is performed, such that all travel times
between all pick-up and delivery locations are known. This is used as an input to
determine the best assignment of trucks to orders and the best delivery sequence.
Due to computing routes from and to each of the locations, large running times are
not acceptable: with only 1000 locations this results in a million start-destination

1



1-1 Context Introduction

Figure 1-1: Example of a vehicle routing problem instance (left) and solution (right) with
5 available trucks at the depot

queries. With a running time of 1 second per start-destination query, this gives a total
computation time of more than 10 days. In the competitive world of freight deliveries
and last-minute orders one would only accept solutions being computable within a few
hours.
Therefore, lots of effort is made by the algorithmic community to optimize such shortest
path queries and create special many-to-many algorithms. The fastest recent algorithms
are able to compute an optimal route in a continental size network in significantly less
than a microsecond, in contrary to the several seconds that early algorithms (like the
well-known Dijkstra’s algorithm [19]) need for performing such queries [1].
To speed-up computation times, the problem of computing shortest-paths is simplified
by currently used VRP-solving software. Breaks as required by the European Drivers
legislation [22] to avoid fatigueness are often not included in route planning: only 22
% of the current research on VRP solvers included drivers legislation in some way [34].
Most of them set constraints, such that breaks are only possible at the location of a
customer when already performing a pick-up or delivery task.
Taking breaks at a customer is not possible if long-haul routes are assumed, where a
route from one customer to the next takes more than one day of driving. In these cases,
a break is automatically inserted as late as possible.
The insertion of a breaks might cause influences in the travel time, mainly due to road
bans: specific time periods at which it is not possible to drive with a truck through
some countries in Europe. Research on three specific case studies showed that the
presence of road bans only cause a 4% increase in total costs, due to the availability of
alternative routes and the planning of breaks during such road bans [53]. However, this
research assumes that the route planner is able to select the best route out of multiple
viable options. If the planner just uses the results of the currently used software, this
is not the case. In one of the case studies of the report [53], a suboptimal route choice
leads to an increase in costs of 15%! This can be even larger if looking at specifically
worse examples. For example, in Germany the roads are blocked for trucks on Sunday
between 0:00 and 22:00. If due to the insertion of a mandatory night rest in Germany

2



Introduction 1-2 Objective and research questions

the country is not left before Sunday 0:00, this implies an additional waiting time – and
thus delay – of 22 hours before the truck can drive further on toward the destination.
Besides neglecting breaks, the currently used shortest path algorithms just assume that
the earliest arriving route is the best route. However, this is not always the case. A
logistics company typically wants to make as much profit as possible. Routing decisions
made can reflect such policies of reducing costs. In some cases, it is possible to skip a
toll road for the cost of only limited additional travel time. Furthermore, by choosing
for less congested routes, it is possible to predict reliable arrival times, which is seen
as favourable by the customer. Such route preferences are sometimes incorporated in
navigation software, but not in a sophisticated manner. For example, in most navigation
systems it is possible to avoid toll roads. However, it is questionable whether one would
like to take a detour of 1 hour just to save 1 euro of toll costs.
Preferences of logistics companies and their truck drivers are analysed in multiple ex-
periments. The results of these experiments are currently not used to compute routes
that are not just the fastest, but the best. It is also unknown what the influence on
the arrival time is of incorporating such preferences.

1-2 Objective and research questions

The previous section showed that the influence of road blocks on total costs are minimal
due to the possibilities of choosing alternative routes and efficient planning of breaks.
However, it is assumed that a planner is able to select the best route himself. The
goal of this thesis is to automate this process, by incorporating optimal break planning
in shortest path algorithms. To show the urgency of including break planning in the
currently used software, the influences in arrival times are important. Since there is
a need for fast computation of solutions for the Vehicle Routing Problem (VRP), it is
advisable if the optimal planning of breaks can be computed efficiently.
Furthermore, algorithms computing shortest paths do not only neglect breaks, but also
do not consider the objective of the logistics company or truck driver. The route with
the earliest arrival time is computed – independent of whether this is what the company
actually wants. Preferences of avoiding toll roads, fuel-efficient driving or congestion
avoidance are not taken into account when planning routes, whereas these might have
their effect on the arrival time – and thus on the optimal delivery sequence resulting
from the solution of the VRP.
Therefore, the objective of this thesis is to gain insight in the influence on arrival times
if incorporating optimal planning of breaks and preferences, and to compute such routes
efficiently. This leads to four research questions which are presented below, followed by
the method how each of the questions is answered.
1. What is the influence on arrival time if breaks are planned optimally?
To answer this research question, first the problem is defined mathematically. This
leads to several problem variations. This thesis addresses two of them: RoadBlock-
OneBreak and Parking. Both assume that the only time-dependent information in a
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road network are the truck driving bans, and that only one break is allowed during the
trip. The second variation extends this with the notion of parking lots: taking a break
is restricted to parking lots only. Arrival times are compared to results of shortest path
algorithms currently used by industry.
2. How can these routes be computed efficiently?
The context of route planning (that is, VRPs) gives importance to fast computation
times. Therefore, heuristic algorithms are applied on contraction hierarchies to provide
fast computation times, such that the algorithms become usable if it is needed to
compute many routes.
3. What aspects identify a preferred route of a freight company?
As stated before, currently all routes are optimized such that they provide the earliest
arrival time. This thesis analyses the actual objective of logistics companies and truck
drivers relevant for route planning, for example avoidance of toll roads.
4. What is the influence on the arrival time if these aspects are used to
compute routes?
To incorporate such preferences on route planning, first a methodology is given to use
the results of a choice experiment to compute preferred routes. Next, the obtained
preferences are used to plan routes and compared to the fastest routes.

1-2-1 Scope

This research is limited to route planning for trucks only. Shortest path computation
is considered, which only looks into planning a route from start to destination. The
focus is on routes having long distances which typically require breaks or rests during
the drive. It is assumed that truck drivers follow the advised route strictly.
The routes are planned in Europe, using detailed map data of HERE [29]. The data
is extended with information on road blocks, taken from governmental websites. Only
road blocks are considered that are valid the entire year and on all highways, i.e. no
blocks of a particular road or only valid during summer season are considered. Fur-
thermore, it is assumed that all travel times are deterministic: no stochastic elements
are taken into account. Also no real-time traffic information is used.
Since the routes are planned in Europe, the European Drivers Legislation is used, to be
specific, Regulation No 561/2006 [22]. Besides that, there is a Directive 2002/15/EC
that restricts the drivers’ working hours which is implemented in national laws by most
of the countries within the European Union. The Regulation specifies the driving itself,
whether the Directive also takes other work hours into account such as administration
and (un)loading. In this thesis only the Regulation is used. It should be noted that
thresholds of maximum consecutive driving time and minimum break time can easily
be adjusted, such that the presented algorithms can also be used for other regulations
such as the Hours-of-Service regulation in the United States [24].
Concerning preferences, only stated and revealed choice data obtained from earlier
experiments is used and no new experiments or surveys are conducted.
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1-3 Related literature

The optimal break planning problem is a variation of a shortest path problem. A
shortest path problem finds the path from start to destination for a given departure
time, in such a way that the travel time is minimized. The shortest path problem can
be solved using several algorithms. In this section, an overview is given of such shortest
path algorithms. First the non time-dependent algorithms are discussed: algorithms
that assume constant travel times along the edges. Section 1-3-2 explains the relevant
time-dependent shortest path algorithms. Furthermore, algorithms are discussed that
especially focus on implementing drivers legislation and incorporating preferences (see
Sections 1-3-3 and 1-3-4). This leads to a conclusion which motivates the choice for the
algorithms that are used in this thesis.

1-3-1 Shortest path algorithms

Computing an optimal route in a transportation network between a start and a desti-
nation node is a well-researched topic. Computing such a path is called a query. One
can speed-up the querying by first applying a preprocessing operation independent of
start and destination nodes, that is, shrinking the road network in such a way that op-
timal paths are maintained. In this section an overview is given of the most important
algorithms with and without a preprocessing step, based on a review of Sommer [45].
The algorithm of Dijkstra [19] is one of the earliest querying algorithms. For general
graphs with constant travel times, no faster algorithm has been developed since. How-
ever, there are some techniques that provide speed-ups on specific kind of graphs. One
of such speed-up techniques is bidirectional Dijkstra search. In this algorithm, two
queries are performed at the same time: one starting at the start node, one at the
destination node. When they meet, the shortest path is found.
Other speed-up techniques use preprocessing and are classified in two groups: goal-
directed and hierarchical approaches. An example of a goal-directed speed-up technique
is A∗. This technique is based on the fact that it is possible to calculate estimates on
the travel time in a road network, without knowing the exact structure of the network,
by using geodesic distances. The A∗ algorithm uses these estimations to direct the
search toward the destination. Another goal-directed technique is SHARC [8]. This
method partitions the network into regions and computes a backward Dijkstra search
on the nodes at the borders of the regions. For such paths, shortcuts are added. During
querying only edges are explored that lead toward the region of the destination.
Hierarchical speed-up techniques make use of the hierarchical nature of the road net-
work: a typical route starts at a local road, travels via some B-road to the highway,
probably switches to some other highway, and then gets back via the off-ramp to some
local road. One of these hierarchical algorithms is Highway Hierarchies [43]. This tech-
nique uses a bidirectional Dijkstra search, which is only allowed to go to a higher level
in the hierarchy of roads. Shortcuts are used to bypass several nodes, which gives an
additional speed-up. Contraction hierarchies [27] also work with such a bidirectional
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Dijkstra algorithm, but assigns a unique level to each node in the network. During pre-
processing, each node is virtually removed and shortcut edges are added to maintain
shortest paths that run through this node.
Another observation that is made in a road network is that drivers usually leave their
current location via one of only a few access routes to a small set of landmarks called
transit nodes. These landmarks are interconnected by a network relevant for long-
distance travelling. The Transit Node Routing algorithm [5] [6] uses this observation
and computes all shortest paths to landmarks nearby, and the shortest paths between
all landmarks. Although the preprocessing requires lots of time, the querying only
entails a few look-ups in the precomputed travel time tables.

1-3-2 Time-dependent shortest path algorithms

This thesis considers shortest paths in a time-dependent network, implying that travel
times can vary for different departure times, requiring time-dependent shortest path
algorithms. These algorithms are a not so well-researched topic compared to their
non-time-dependent variants. This section gives an overview of the most important of
them, based on a review of Delling [18].
A time-dependent shortest path query is generally hard to solve. One of the conditions
that still make the problem polynomially solvable is the FIFO (First In, First Out)
property of the network [16]. This means that departing later never results in an
earlier arrival time. This is generally the case in road networks. Therefore, nearly
all time-dependent shortest path algorithms assume the FIFO property. Using this
property, also Dijkstra’s algorithm can be used to solve the time-dependent shortest
path problem by only replacing constant travel times with variable ones.
The computation of the time-dependent shortest paths be speed-up using preprocessing.
One of such techniques is the time-dependent contraction hierarchies algorithm [7].
Like the non time-dependent variant, nodes are removed from the road network and
shortest paths are remained by adding shortcuts. However, there might be different
shortest paths for different departure times, which should all be maintained. This is
done using special merging and linking procedures. This preprocessing method results
in the currently fastest querying time among other time-dependent earliest arrival route
techniques.

1-3-3 Time-dependent shortest path algorithms with drivers legislation

In the previous sections algorithms to solve the (time-dependent) shortest path problem
are discussed in detail. However, none of these algorithms deal with drivers legislation.
Only one study is found that deals with the optimal planning of breaks in a shortest path
problem: the bachelor thesis of Bräuer [10] (written in German). He uses contraction
hierarchies in such a way that parking lots on which a break can be taken are never
contracted. This results in a preprocessed graph in which every query results in a path
via a parking lot. Only paths adhering to the drivers legislation rule are considered
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to be valid. However, to select viable parking lots approximation algorithms are used,
and the inclusion of road bans or congestion is not taken into account.
A related problem which is analysed for time-dependent road networks with drivers
legislation is the Vehicle Routing Problem (VRP). Kok [33] assumes that all travel times
between customer locations are known beforehand for every departure time. Breaks are
only allowed at the customer, before or after unloading. If the travel times are too long
to be able to drive the segment without breaks, additional fake customers are added
to model a parking lot. It is assumed that the information on potential parking places
is known beforehand. Using a dynamic programming heuristic, Kok gives a solution to
the VRP on a time-dependent network with drivers legislation.
Although this is a solution method for the VRP for a time-dependent network with
drivers legislation, it does not use the time-dependency in the network to optimally
plan breaks. Parking lots are added as fake customers if it is not possible to reach the
destination within the shift threshold, but it is not determined whether the concerned
parking lots have an optimal location. It is not possible to add multiple parking lots
and let the algorithm decide which one is the best, since all customers – and thus also
all parking lots – need to be served.

1-3-4 Shortest path algorithms with preferences

Incorporating preferences in route planning can be seen as a multicriteria shortest path
problem: an optimal path provides a balance between multiple objectives. An overview
of such algorithms is given by Tarapata [48]. When only looking into algorithms that
are suitable for deterministic graphs, there are two methods: using modified edge costs
and using a Pareto optimal search.
Modified edge costs implies representing the preferences as a cost for travelling a road
segment. For example, Eiger [21] uses such modified costs where preferences are rep-
resented with a linear-additive formula. The problem is then solved by running a
Dijkstra algorithm on the graph with these modified edge weights. Another algorithm
using modified edge costs is implemented in the TRIP route planner [35]. They assume
that drivers prefer routes that they have taken before. Using the historical GPS data,
driver specific travel time discounts are assigned to each previously traversed road seg-
ment. These modified travel costs are then used in a shortest path algorithm such as
Dijkstra.
The other method of computing shortest paths while incorporating preferences uses a
Pareto optimal search, a variation of Dijkstra’s algorithm. This algorithm maintains
multiple paths, where each of the paths does not dominate the other on all used criteria.
This leads to a lot of paths, thus long running times if multiple criteria are considered
for computing the paths.

1-3-5 Choice of algorithm for this thesis

In the previous sections, a review is given on shortest path algorithms, both with
constant travel costs and time-dependent edge weights, as well as with drivers legisla-
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tion and preferences. Dijkstra’s algorithm can be used to solve nearly all mentioned
variations. The algorithm is easy to adapt and is furthermore easily understandable.
Therefore, it seems a good idea to include Dijkstra’s algorithms as one of the algorithms
in this thesis. However, a disadvantage of Dijkstra’s algorithm is its long running times.
Since one of the goals of this thesis is to provide efficiently computable solutions, a
second, faster algorithm needs to be considered as well. Contraction hierarchies seem
to be best suitable. Not only is the algorithm suitable to use in a time-dependent case,
it also provides the fastest query times currently known. Furthermore, the author of
the time-dependent contraction hierarchies, Veit Batz, currently works at ORTEC, the
company supporting the research for this thesis.
Therefore, this thesis uses the Dijkstra algorithm and time-dependent contraction hi-
erarchies as a basis for the developed algorithms.

1-4 Main contributions

This thesis presents a method to incorporate truck drivers legislation considering road
blocks, that is, optimal planning of breaks. An optimal Dijkstra-like algorithm is pre-
sented, as well as a heuristic method (Section 4-2). Using time-dependent contraction
hierarchies a speed-up is achieved, while still remaining a very good solution quality
(Section 4-3). After that, it is shown what the influence on the arrival time is, if such
optimal break planning is considered. Next a method is presented to restrict taking
breaks at parking lots, using an optimal Dijkstra algorithm (Section 5-2) and a heuristic
method using contraction hierarchies (Section 5-3). The influence on arrival time and
on route choices is given using simulations.
This thesis gives an overview on preferences of a truck company on route choice (Chap-
ter 6). A methodology is presented to convert the results of a choice study to compute
preferred routes (Section 7-1), followed by the simulations and sensitivity analysis on
such routes. Finally observations are made and research suggestions are given to in-
tegrate the behavioural and algorithmic points of view of computing routes (Chapter
8).

1-5 Outline of thesis

In this chapter, the problem and thesis contributions are described. Below is an
overview given of the contents of the remaining chapters of this thesis.
Chapter 2 gives the formal problem definition. The notation used throughout the
thesis is introduced, as well as the specification of the several problem variations used
in this thesis.
Chapter 3 provides algorithmic ingredients which are used throughout this thesis.
These algorithms are Dijkstra’s algorithm and contraction hierarchies. In the remainder

8



Introduction 1-5 Outline of thesis

of this thesis it is assumed that details as discussed in this chapter are known to the
reader.
Chapter 4 analyses the influence on arrival time of optimal break planning by intro-
ducing optimal Dijkstra-like algorithms. Furthermore, the algorithms are optimized
using time-dependent contraction hierarchies such that they become usable in practical
applications.
Chapter 5 incorporates parking lots in the optimal planning of breaks. Optimal
Dijkstra-like algorithms are presented and used to analyse the influence on the arrival
time. To efficiently compute these routes, a heuristic method using time-dependent
contraction hierarchies is used and its solution quality is obtained.
Chapter 6 gives insights in the objective of a logistic company and how this can be
reflected in choices made when planning routes. This results in a list of attributes and
corresponding parameters which can be used to compute the best route.
Chapter 7 gives a method to use the results of a choice study to compute preferred
routes. These routes are compared to the fastest routes to obtain the influence on the
arrival time.
Chapter 8 integrates the algorithmic and behavioural point of view of route planning
as addressed in this thesis and gives an advice toward the research communities.
Chapter 9 are the conclusions of this thesis, summarizing the results on the research
questions.
Chapter 10 reflects the consequences of the assumptions made in the scope (Section
1-2-1), and gives ideas for solving problem variations not discussed in this thesis.

9



1-5 Outline of thesis Introduction

10



Chapter 2

Problem Definition

One of the goals of this thesis is to find the fastest route in a time-dependent road
network while adhering to the drivers legislation rules. Before proposing algorithms to
solve the problem, it is mathematically defined in this chapter. Besides that, several
variations of the problem are introduced. These are used to form several sub-problems
that are simplifications of the problem. In the remainder of this thesis two of these
sub-problems are addressed, giving insight in the influence on arrival time.

2-1 Problem

Given is a directed graphG = (V,E) consisting of vertices (nodes) and edges. Each edge
e ∈ E is described as a pair of nodes (u, v). A travel time function (TTF) fe : R→ R≥0,
represents the travel time of an edge e for a given start time, see aslo Section 2-1-1.

A time-dependent earliest arrival route can be obtained by performing an earliest arrival
(EA) query. An EA query results in the earliest arrival time τt ∈ R, given a start node
s ∈ V , a destination node t ∈ V and a departure time τ0 ∈ R. The corresponding route
in the road network G is represented by a path of nodes P = 〈s, v0, v1, . . . , vk, t〉.

The time-dependent earliest arrival route with drivers legislation is an extended version
of the time-dependent earliest arrival route problem. The route should adhere to a set
of driver legislation rules. Therefore, for each route a counter ∆d ∈ R≥0 is maintained,
representing the consecutive driving time. This counter ∆d may not exceed a certain
threshold ∆T , along with other restrictions that are explained in detail in Section 2-1-2.
A break of duration ∆b can be taken to reset ∆d to 0.

A route from node s to node t is considered feasible if it can be driven without violating
the drivers legislation rules. The optimal route is a feasible route with the earliest
possible arrival time.
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2-1-1 Travel time function

In this thesis the approach of Ichoua et al. [31] is followed for the definition of a travel
time function (TTF). A TTF represents the travel time of a specific edge at a certain
time and can be described by a piecewise linear function composed of straight-line
sections.
A TTF fe for an edge e ∈ E can be composed by converting the speed limits of the
edge e to resulting travel times, given the length of the edge. An example is shown in
Figure 2-1. The speed limits shown in the left graph are used to compute the TTF
which is shown in the right graph.
The TTFs used in this thesis fulfil the FIFO property (First In, First Out). This
property ensures that it is not possible to arrive earlier if departing later, thus it holds
that if τ ≤ τ ′, then f(τ) + τ ≤ f(τ ′) + τ ′. To fulfil the property, all line segments of
the TTF have a slope of −1 or greater.
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Figure 2-1: Example speed limits (left) and resulting travel time function (right) for a
certain link

2-1-2 Drivers legislation

The general drivers legislation is defined as a certain consecutive driving time ∆d may
not exceed a threshold ∆T . The driving time can be reset to 0 by taking a break of
duration ∆b. The EU regulation [22] defines several of these rules, mainly:

• Non-stop driving time: The non-stop driving period may not exceed the thresh-
old of 4.5 hours. After 4.5 hours of driving, the driver must take a break period
of at least 45 minutes. The break may also be split into a break of 15 minutes
and a break of 30 minutes.

• Daily driving time: The daily driving time shall not exceed 9 hours. This may
be extended to 10 hours twice a week. After each daily driving period, a daily
rest of 11 hours should be held.
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• Weekly driving time: The weekly driving time may not exceed 56 hours. This
equals 2 days of driving 10 hours and 4 days of driving 9 hours. After each weekly
driving period, a rest period should be taken of at least 45 hours. The driving
time in two consecutive weeks may not exceed 90 hours.

2-2 Problem variations

Several variations are possible within the problem definition of the time-dependent ear-
liest arrival route with drivers legislation. The time-dependency of the network, drivers
legislation and parking lots can be simplified to create an easier solvable problem. Us-
ing these variations simplified sub-problems can be created. Solving the sub-problems
gives insight in the best way to solve the complete version of the problem.

2-2-1 Time-dependency in the road network

Time-dependency of the edges is reflected by the travel time function fe for each edge
e ∈ E as explained in Section 2-1-1. The travel time can be affected by two types of
delay: road blocks and congestion. Only considering road blocks results in a special
case of the general travel time function. Both road blocks and congestion are discussed
in detail in the following sections.

Road block

A road block is a measure which can be taken by the government to reduce pollution
or noise. At some countries in Europe, it is prohibited to drive during the night with a
truck. Other countries introduced a driving ban during the weekends. Generally road
blocks have a long duration: in Europe the minimum road ban duration is 7 hours.
Therefore, the road blocks have a great effect on planning routes and should be taken
into account.
The travel time function of a road block is a special case of a general travel time function
as explained in Section 2-1-1. The road block can be described by its start and end
time, where the end time is always later than the start time. The formal definition of
a road block is as follows:

Definition 2.1 (Road Block). A Road Block (RB) is an interval [τbs, τbe], where τbs ∈
R≥0 is the start time of the road block and τbe ∈ R≥0 is the end time of the road block.
Furthermore, τbs < τbe.

An example TTF of a road block on edge e is given in Figure 2-2. The edge has a free
flow travel time of 1 hour. Between 12:00 and 14:00 the road is closed. Due to the
road closure, the travel time increases instantly at 11:00 to 3 hours. For example, when
starting to drive the edge at 11:30, one can drive for half an hour until 12:00, followed
by 2 hours of waiting for the road block, followed by another half an hour of driving.
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For arrival times between 12:00 till 14:00 the travel time decreases gradually: for every
minute of arriving later, one has to wait one minute less. The slope of the segment
between 12:00 and 14:00 in the graph therefore equals −1.
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Figure 2-2: Example travel time function of a road segment having a free flow travel time
of 1 hour and a road block between 12:00 and 14:00

Every edge can have multiple road blocks. For example in Switzerland: the highways
are blocked for trucks every night and additionally on Sundays. The road blocks may
not overlap: then they will be merged into one road block.

The travel time of an edge having one or more road blocks can be obtained by the road
block information and the free flow travel time of the edge. Therefore, a Road Block
Edge is introduced that contains all information to compute the travel time:

Definition 2.2 (Road Block Edge). A Road Block Edge (RBE) is a tuple 〈e,RBS,∆FF〉,
which describes an edge e ∈ E having a sequence of road blocks RBS = 〈RB0,RB1, . . . ,RBn〉.
∆FF is the travel time of edge e when no road block is active. Furthermore, the road
blocks in RBS are ordered and do not overlap, thus τbei

< τbsj
−∆FF for any i < j with

RBi : [τbsi
, τbei

] and RBj : [τbsj
, τbej

].

In order to calculate the exact travel time, it needs to be computed first which road
block is active (i.e. which block start and end times are relevant). Remember from the
example in Figure 2-2 that the time between τbs −∆FF (i.e. 11:00) and τbe (i.e. 14:00)
is different from the free flow travel time. The decision on the active road block can
therefore be computed as follows:
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fe(τ) =


fRBE(τ, [τbs, τbe],∆FF) if τ ∈ [τbs −∆FF, τbe]

∀RBi ∈ RBS with RBi = [τbs, τbe]
∆FF otherwise

(2-1)

Using the information on the active road block, the actual travel time over an edge can
be computed. The travel time function around a road block can have three different
states: free flow, full waiting and partly waiting. Free flow travel time occurs if it is
possible to drive the complete segment before the road block starts (i.e. τ < τbs−∆FF),
or after the block ends (i.e. τ ≥ τbe). If it is not possible to drive the complete road
segment before the road block starts, one can stop driving halfway the road segment.
Full waiting is then experienced followed by driving the remaining part. With full
waiting for a block, it is meant that a traveller needs to wait from τbs till τbe. Waiting
partly for a road block occurs if the arrival time is later than the block start τbs (but
before the block ends). The waiting is then experienced before actually driving. The
resulting travel time function for a given road block is as follows:

fRBE(τ, [τbs, τbe],∆FF) =



∆FF if τ < τbs −∆FF
or τ ≥ τbe

∆FF + τbe − τbs if τ ≥ τbs −∆FF
and τ < τbs

∆FF + τbe − τ if τ ≥ τbs

and τ < τbe

(2-2)

Using Equation 2-1, the default travel time function fe for an edge e can be redefined
for edges with a road block. It is assumed that the set of road blocks RBS and a free
flow travel time ∆FF is given for every edge. This travel time function is a special
case of the default travel time function, only allowing road blocks. This is not valid if
looking into congestion, as explained in the next section.

Congestion

The other type of time-dependency is congestion. Traffic congestion is the result of a
too high demand, reaching the capacity of the road. As a result, vehicles are driving
at slower speeds and may even stand still for short periods of time. Congestion leads
to a fluctuating travel time function, which does not allow modelling the travel time
function as a special case such as road blocks.
Another difference between congestion and road blocks is the predictability of the travel
time. Whereas road blocks are fully known beforehand, congestion can only partly be
predicted (such as a daily rush hour in the afternoon), or not predicted at all (such as
an accident).

2-2-2 Drivers legislation

There are three main types of drivers legislation rules, as explained in Section 2-1-2:
non-stop, daily and weekly driving time. These are referred to as the time horizon of
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the problem. Varying the time horizon results in problems having different complex-
ity to solve. Furthermore, there is some flexibility possible in the rules: freedom in
splitting breaks or extending driving times. This is considered as another dimension of
incorporating drivers legislation rules in route planning.
For time horizon, it is useless to only consider non-stop driving time. This would imply
that it is not allowed to take a break and therefore does not give any insight in the
problem of optimal break planning. Two rules remain: daily and weekly driving time.
Daily driving time implies a time horizon of 9 hours of driving: two shifts of 4.5 hours,
with a break of 45 minutes in between. Weekly driving time considers a time horizon
of one week, including all night rests. Weekly driving time rules should always be
considered in combination with daily driving time rules, leaving two relevant variations
of the time horizon dimension.
With flexibility in the drivers legislation it is meant that there is some freedom within
the drivers legislation rules. A truck driver might split a break of 45 minutes in two
breaks of 15 and 30 minutes, under some special conditions. The daily driving time
of 9 hours might be extended to 10 hours twice a week. This might give interesting
opportunities in planning routes, but also creates a more complex problem to solve.

2-2-3 Locations for taking a break

The problem does not define the locations at which taking a break or rest is possible. In
the current problem definition a break can be scheduled if needed and when favourable
concerning possible congestion or road blocks, independent of the current location of
the vehicle. Even parking at the shoulder is allowed.
A more realistic variation is to restrict these locations to parking lots only.

2-3 Overview of variations

The dimensions of the problem introduced in the previous section lead to several pos-
sible problem variations. Time-dependency can only include road blocks or also con-
gestion. The time horizon can be one day or a week. The drivers legislation flexibility
options can be excluded or included. Finally, the locations which are allowed to take a
break can be restricted to only parking lots or not.
Considering all four dimensions and their two alternatives, 16 different problem varia-
tions can be created. These are not all useful to solve. Remember that the goal of the
creation of the problem variations is to gain insight in how to solve the problem with
all its facets. Therefore, it is useful to first solve the simplest problem possible, and
after that solve problems that focus on each of the four dimensions.
The first identified sub-problem is variation RoadBlock-OneBreak, which deals only with
road blocks, having a time horizon of one day, no drivers legislation flexibility options
and no restriction on only taking breaks on parking lots. The following sub-problems
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focus on each of the identified dimensions: drivers legislation (DriversLegislation), park-
ing lots (Parking) and time-dependency (Congestion). The full version of the problem
(Realistic) includes all possibilities.
All sub-problems are shown in Table 2-1. Each of the rows indicate a problem variation,
whereas the checked cells indicate what alternative within the problem dimension is
active.

Table 2-1: Several possible problem variations

Time-
dependency

Drivers
legislation
horizon

Drivers
legislation
flexibility

Restrictions
for break
locations

Block Full Day Week None All No Yes
RoadBlock-OneBreak X X X X
DriversLegislation X X X X
Parking X X X X
Congestion X X X X
Realistic X X X X

This thesis first solves problem variation RoadBlock-OneBreak, and afterwards problem
variation Parking. The discussion at the end of the thesis in Chapter 10 gives ideas
and implications of dealing with the other problem variations.

2-4 Summary

The time-dependent earliest arrival problem with drivers legislation deals with finding
the optimal route from start to destination at a certain start time. The roads in
the network each have a certain travel time function, which give the resulting travel
time given a certain departure time. Besides the general problem definition, several
variations are defined in Section 2-3
The next chapter gives an overview of existing solutions to the earliest arrival problem
which are used as a basis in the solutions of the problems later on. Chapter 4 gives
additional insight and solution methods for the first problem variation: RoadBlock-
OneBreak. The problem variation Parking is discussed in Chapter 5. The other problem
variations are discussed briefly in Chapter 10.
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Chapter 3

Algorithmic Ingredients

Algorithms to solve the optimal break planning problem as presented later on in this
thesis are extensions of known algorithms. Therefore, this chapter discusses these
earliest arrival route algorithms, that is, Dijkstra’s algorithm and contraction hierar-
chies. For both algorithms variations with constant travel costs (Section 3-1) and time-
dependent edge weights (Section 3-2) are discussed. In the remainder of the thesis it is
assumed that knowledge on these algorithms is known to the reader.

3-1 Earliest arrival route algorithms with constant travel costs

For this thesis, algorithms are used that are based on time-dependent Dijkstra and
time-dependent contraction hierarchies. These algorithms are extensions of their non-
time-dependent versions. Therefore, the Dijkstra algorithm and contraction hierarchies
for networks having constant edge weights are explained in this section. In Section 3-2
their time-dependent variants are discussed.

3-1-1 Dijkstra’s algorithm

One of the classical algorithms for route planning was introduced by Dijkstra [19]. The
algorithm computes all costs (travel times) for travelling from start node s to every
node u ∈ V , including their corresponding shortest paths. For every node u a label
with tentative travel time du ∈ R≥0 and a label with the tentative predecessor pu ∈ V
is maintained. Initially, du is set to ∞ and pu to ⊥ for all nodes u ∈ V . The symbol
⊥ means that the node does not have a predecessor yet. For the start node s, the
travel time ds is set to 0. Furthermore, every node has two possible states: settled or
unsettled. At the start of the execution every node is unsettled.
During execution of the algorithm, nodes are settled one after another. Therefore, an
unsettled node u is selected, which has minimal tentative costs d[u] among all unsettled
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nodes. Next all outgoing edges (u, v) ∈ E are relaxed, where c(u,v) are the travel costs
of the edge between nodes u and v. Relaxing means that for each edge it is checked
whether du + c(u,v) is smaller than dv. If this is the case, tentative costs and predecessor
information is updated, thus dv := du +c(u,v) and pv := u. When all outgoing edges of u
are relaxed, the node is marked as settled and the next unsettled nodehaving minimal
tentative costs is selected.
If node u is settled, the shortest path to u has been found by the algorithm, because
u can only be settled if this node has the lowest tentative costs of all unsettled nodes.
Since all edge weights are non-negative, this implies that no shorter route can be found
toward u. Therefore, the execution of the algorithm can stop if destination node t has
been settled. The complete path can then be retrieved using the predecessor informa-
tion in p.
In an implementation of Dijkstra, the list of unsettled nodes u is usually maintained
using a priority queue. In a priority queue nodes are kept in an increasing order
according to their tentative costs. The unsettled node that is selected from the priority
queue is the one having the minimum tentative costs du. The full pseudo code of
Dijkstra’s algorithm is shown in Algorithm 1.

Algorithm 1: Dijkstra
Result: Lowest travel time from s to t

1 function dijkstra(s, t)
2 du :=∞, pu :=⊥ for all u ∈ V
3 ds := 0
4 Q := ∅ : PriorityQueue
5 Q.insert(s, 0)
6 while Q 6= ∅ do
7 u := Q.deleteMin()
8 if u = t then
9 return dt

10 foreach (u, v) ∈ E do
11 if du + c(u,v) < dv then
12 dv := du + c(u,v)
13 pv := u
14 Q.insertOrUpdate(v, dv)

15 return ∞

The relaxing procedure requires O(|E|) running time: each edge is relaxed at most
once, since each node is settled at most once. Finding the next unsettled node with
the minimum tentative costs requires O(|V |) if using a simple array. This should be
performed at most |V | times to settle all nodes. Therefore, the running time of the
algorithm is O(|E| + |V |2). Using a heap-based priority queue, this can be reduced
to O(|E| + |V | log |V |). Since the average number of outgoing edges of a node in a
road network is usually very small, the required running time for relaxing edges can be
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discarded, leaving a running time of O(|V | log(|V |)).
Dijkstra’s algorithm can be speed-up using various methods. First of all, it is possible to
perform a bidirectional search [15]. In this speed-up technique, two instances of Dijkstra
are run at the same time: a forward search starting from s and a backward search
starting from t. When the searches meet each other, that is, a node has been settled by
both forward and backward search, the search can be stopped and the complete path
retrieved.
Another speed-up technique of Dijkstra’s algorithm is goal-directed search, also known
as A∗. This technique was introduced by Hart et al. [28] and tries to bias the search
direction in such a way that it spreads out towards the destination node rather than
toward all surrounding nodes. This can be achieved by using a potential function πt.
This function gives an optimistic estimation of the driving time toward the destination.
The measure may never overestimate the actual driving time toward the destination.
This can for example be achieved by taking the geodesic distance (the aerial distance)
as the potential function. The travel time du with the added potential costs πt(u) is
used to order the list of unsettled nodes in the priority queue. The quality of the A∗
algorithm is fully dependent on the quality of the used potential function. In road
networks, speed-ups might be obtained due to the 2D representation of the graph,
which is not the case for fully random graphs.

Figure 3-1: Illustration of settled nodes in the network by Dijkstra, bidirectional search
and A∗

The search space of nodes for the different Dijkstra versions are shown in Figure 3-
1. On the left it shows Dijkstra’s algorithm which settles nodes from the start node
based on the distance from the start node. The middle figure is an illustration of the
bidirectional search where two searches are started: from s and t. The right figure
shows the settling of nodes of the A∗ algorithm.

3-1-2 Contraction Hierarchies

A completely different method of route planning makes use of the hierarchical structure
of a road network. Some parts of the road network (e.g. highways) are more important
than others (i.e. local roads) in the sense that optimal routes rather mainly lead through
these special edges. Geisberger [27] used this idea to provide a speed-up technique for
obtaining earliest arrival routes called contraction hierarchies.
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This algorithm consists of two phases: preprocessing and querying. The preprocessing
phase constructs a hierarchy of the network, independent of start and destination lo-
cations. The querying algorithm can be used to compute then earliest arrival path in
a preprocessed graph for a given start and destination node.

Preprocessing

The preprocessing phase creates a hierarchical representation of the network. The
hierarchy is constructed by successively removing one node after ordered from the
least important to the most important node. Therefore, a node ordering is required
beforehand. For example, a node ordering can be based on the number of outgoing
edges. Different node orderings result in good and bad hierarchies. A good hierarchy
is a flat and sparse graph, meaning that not much steps are required to reach the top
of the graph from any node, and the number of outgoing edges per node is small.
The removal of a node x including its edges is called contraction. With the contraction
of x from G = (V,E), an overlay graph G′ = (V ′, E ′) is constructed, with V ′ := V \{x}.
The hierarchy is constructed in such a way that the minimum travel costs between the
remaining nodes in V ′ is preserved. Therefore, it is checked whether the removal of a
path 〈u, x, v〉 increases the travel time from u to v. If so, a shortcut edge (u, v) is added
to E ′, in order to maintain the otherwise removed shortest path. If there is already an
edge present between u and v in E ′, this edge is replaced.
An example contraction is shown in Figure 3-2. Node v4 of graph G (top left) is
contracted. Via node v4 four witness paths are possible between the other nodes as
shown in the top right graph. The path via edges (v2, v4) and (v4, v3) (red) has a cost
of 2. In the remaining graph, no path exists between v2 and v3, thus the shortcut edge
is added to the graph G′ (bottom). Using the same argumentation, the blue shortcut
edge is added. The green shortcut edge representing path via edges (v3, v4) and (v4, v5)
has a travel cost of 4. There still exists a path in the remaining graph G′ having the
same length: via node V2. Therefore, the green shortcut edge is not added to graph G′.
Also the purple shortcut edge does not provide a better shortest path and is therefore
not added to G′. After the shortcut operation is finished, G′ contains 6 nodes (instead
of 7 in G) and 10 edges (instead of 13).
The preprocessing continues with subsequently contracting nodes until all nodes have
been contracted. This results in |V | overlay graphs in total, each having one node less.
The edges between the overlay graphs are directed upward or downward. An upward
edge is directed toward a more important node, whereas a downward edge is directed
toward a less important node. This structure is used to form an up-down path in the
querying phase of the algorithm.

Querying

In the querying phase an actual path from start s to destination t is computed. There-
fore, a bidirectional Dijkstra search is performed on the hierarchy resulting from the
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Figure 3-2: Example of contraction operation of node v4. Left graph shows the original
graph, with nodes v1, . . . , v7 and edge weights indicated besides the edges. The right graph
shows the graph including the witness paths that result from the removal of v4.The bottom
graph shows the remaining graph including shortcut edges.

preprocessing phase. The forward search starting at s only relaxes upward edges, that
is, edges going toward more important nodes in the hierarchy. The backward search
only relaxes downward edges, but in a reverse direction. Both searches meet each other
at some node x higher up in the hierarchy. If they meet, an up-down-path with top node
x can be retrieved. Multiple up-down-paths can be found. When the minimum value
of both forward and backward priority queues exceed the travel time of the shortest
up-down-path so far, the shortest path has been found, as proven by Geisberger [27].
Although the preprocessing time of contraction hierarchies is substantial (25 minutes
for a network of Western Europe with about 18 million nodes on a Opteron 2.6GhZ
processor), it enables fast querying of 0.2 ms per query. To compare: a query with
Dijkstra’s algorithm takes on average more than 5 seconds [7].

3-2 Time-dependent earliest arrival route algorithms

A time-dependent road network brings additional complexity for computing the earliest
arrival route. Instead of a constant travel cost, a travel time function is defined for each
edge, giving different travel times for different departure times as explained in Section
2-1-1. If the FIFO-property does not hold, it might be the case that it is beneficial
to wait at some point during the route in order to get an earlier arrival travel time.
Without the allowance of such arbitrary waiting, the problem becomes NP-hard [38]
However, in this thesis only road networks having the FIFO-property are analysed.
On these networks, the earliest arrival route can be computed in polynomial time as
noticed by Dean et al. [16]. This property is assumed in the road network analysed in
this thesis. If the FIFO-property does not hold, the problem becomes mostly NP-hard
since the arrival time might be earlier by departing later or introducing waits [38].
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In this section the (polynomial) Dijkstra and contraction hierarchies algorithm are
discussed that solve the FIFO time-dependent earliest arrival route problem.

3-2-1 Time-dependent Dijktra

Dijkstra’s algorithm can also be used in a time-dependent manner. Instead of storing
the tentative travel costs in du for every u ∈ V , the tentative arrival time is stored.
Therefore, the travel time function is used to compute the travel time, taking the
tentative arrival time as an input. Mainly, an edge (u, v) is relaxed by comparing
du + f(u,v)(du) with dv.
If the travel time function f(τ) can be evaluated in constant time, the running time
of the time-dependent Dijkstra algorithm is O(|V | log |V |), analogous to the non-time-
dependent version.
The time-dependent version of Dijkstra can also be speed-up using A∗ and bidirectional
search techniques. A∗ can be used directly: instead of maintaining the tentative arrival
time at every node, now a tentative arrival time including the potential travel costs
to the destination can be added. The potential function does not include any time-
dependency and should be an optimistic estimation, such that the travel time is always
underestimated.
Bidirectional Dijkstra cannot be implemented as easily as A∗ in a time-dependent net-
work. However, time-dependent bidirectional Dijkstra does provide the basis for the
querying algorithm in time-dependent contraction hierarchies. Therefore, this algo-
rithm is discussed in the next section.

3-2-2 Time-dependent bidirectional Dijkstra

The time-dependent bidirectional search is used as a basis for the time-dependent con-
traction hierarchy querying operations. However, it is not straight forward to imple-
ment a bidirectional search in a time-dependent network. In order to work correctly,
the backward search should start at the node t with a certain arrival time. However,
the arrival time at node t is not known yet: this should be computed by the algorithm!
Both Nannicini et al. [37] and Batz [7] showed that it is still possible to implement the
time-dependent bidirectional search. This modified version consists of four steps:

1. Bidirectional search consisting of forward search and backward interval search,
stopped when both searches meet each other

2. Computation of a valid path by continuing forward search along nodes settled by
the backward interval search.

3. Continuation of bidirectional search until the minimum value in the priority
queues of both searches is larger than the travel time of the path computed in the
previous step.
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4. Computation of the optimal path by continuing the forward search along nodes
settled by the backward interval search.

Each of the steps is discussed in detail in the following sections.

Step 1: Bidirectional search

The first step of the time-dependent bidirectional search consists of a normal forward
search and a backward interval search. The forward search is identical to a time-
dependent Dijkstra search starting from node s. The backward search is a little different
due to the unknown arrival time. Nannicini et al. [37] used a backward lower bound
search as backward search, whereas Batz [7] extended this to an interval search. This
interval search computes a set of paths to t that may result in an earliest arrival time
path, for any given departure time. Instead of a tentative cost label du, an interval of
travel times [qu, ru] is maintained for every node u ∈ V . This represents the minimum
and maximum travel time from s to u, for any departure time. Each node u does
not have one predecessor, but a set of them due to the multiple possible paths. For
each relaxed edge (u, v) the minimum and maximum values of the travel time function
f(u,v) are calculated and added to the current minimum and maximum values qu and
ru. These new values are compared to the existing interval of v, that is, [qv, rv]. If
the new minimum travel time is larger than the maximum value qv, this edge is not
of interest. If not, it might provide a good alternative route and therefore u is added
to the list of predecessors. If the new maximum travel time is lower than the current
minimum value rv, all other predecessors for this edge can be discarded; these do not
provide routes resulting in an earliest arrival time path for any departure time. Next
the interval [qv, rv] interval is updated with potentially found better new values. The
complete backward interval search algorithm is shown in Algorithm 2.
If the forward and the backward interval searches meet each other at a node (that is,
a node has been settled by both searches), both executions are stopped. The nodes
settled by the backward interval search until that moment are added in a special set
M and used in the next step in the time-dependent bidirectional search.

Step 2: Computation of a valid path

Step 2 starts if the forward and backward interval search have met each other at a
certain node x. This implies that the algorithm of the previous step found a path from
the start node s to the destination node t via some node x. The travel time of this
path – not necessarily the optimal path – is retrieved by the continuation of the forward
search along the nodes in set M . This set M contains the nodes that were settled by
the backward interval search in step 1. If the destination node is reached, the arrival
time of a path can be retrieved. The travel time of this path (i.e., arrival time at t
minus the starting time at s) is called B. This travel time is used to bound the searches
in the next step, such that it can be proven that the optimal path is found for sure.
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Algorithm 2: Backward Interval Search
Data: G = (V,E), destination node t ∈ V , travel time function f for each edge u→f v ∈ E
Result:

1 function backwardIntervalSearch(t)
2 [qu, ru] := [∞,∞] for all u ∈ V
3 [qt, rt] := [0, 0]
4 pu := ∅ for all u ∈ V
5 Q := ∅ : PriorityQueue // Sorted on increasing lower bounds
6 Q.insert(t, 0)
7 while Q 6= ∅ do
8 u := Q.deleteMin()
9 foreach (u, v) ∈ E do

10 [qnew, rnew] := [qu + min(f(u,v)), ru + max(f(u,v))]
11 if qnew > rv then continue
12 if rnew < qv then pv := ∅
13 pv := {u} ∪ pv

14 if qnew ≥ qvand rnew ≥ rv then continue
15 [qv, rv] := [min(qv, qnew),min(rv, rnew)]
16 Q.insertOrUpdate(v, qv)

Step 3: Continuation of the bidirectional search

In the third step the forward and backward interval search which were stopped after
step 1 are allowed to continue. This might result in additional nodes where forward and
backward interval searches meet each other. If the travel time of the forward search and
the minimum travel time of the backward interval search exceed the earlier computed
bound B, it is known for sure that the shortest path has been found. At that moment,
the searches can be stopped and the settled nodes of the backward interval search are
put in the set M .

Step 4: Computation of optimal path

The actual optimal path is retrieved by the continuation of the forward search, while
only allowing to settle nodes from set M . If it is finished, the earliest arrival time and
corresponding path are found as proven by Nannicini et al. [37].
The time-dependent bidirectional Dijkstra algorithm as extended by Batz [7] with the
backward interval search is used in the querying phase of the time-dependent contrac-
tion hierarchies.

3-2-3 Time-dependent Contraction Hierarchies

Batz [7] extended the contraction hierarchies (see Section 3-1-2) to use them with a
road network including time-dependency. The problem with the original preprocessing
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operation is that the shortest paths might be different for different arrival times, and
thus all such paths should be maintained. Therefore, two additional operations are
defined that allow creation of shortcut edges: linking and merging. The used querying
algorithm is a modified version of the earlier presented time-dependent bidirectional
Dijkstra (see Section 3-2-2).

Preprocessing

Identical to the non-time-dependent contraction hierarchies, nodes are subsequently
contracted following a certain node order. If a node x is contracted, all its combinations
of incident edges are transformed into potential shortcut paths. For example, assume
there exists edges (u, x) and (x, v) with travel time functions f(u,x) and f(x,v). The travel
time of first travelling edge (u, x) and then (x, v) is defined using the linking ? operator
as:

f(x,v) ? f(u,x)(τ) = f(x,v)(f(u,x)(τ) + τ) (3-1)

The linking operation gives correct results for every combination of travel time func-
tions, as proven by Batz [7]. The exact details of the linking operation do not have to
be explained to understand the idea behind it.
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Figure 3-3: Example graph and accompanying travel time functions where node x is con-
tracted and a shortcut path between u and v is formed by the linking operation
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An example of a node x to be contracted is shown in Figure 3-3a. The edges (u, x)
(blue) and (x, v) (red) both have a road block, at different moments of the day. They
are linked to each other to form a shortcut path (green). The travel time functions of
the original edges and the shortcut path are shown in Figure 3-3b. It can for example
be seen that a departure time of 10:30 results in a travel time of 2 hours and 45 minutes.
If looking into the graph itself, this is correct: a departure time of 10:30 from node u
results in an arrival time of 11:30 at node x. Next, 30 minutes can be driven on the
red edge before the block starts, which requires waiting till 13:00. After that the last
15 minutes should be travelled, resulting in an arrival time of 13:15 and thus indeed a
travel time of 2 hours and 45 minutes.

After forming the combined paths using the linking operation, these paths are added
as new shortcut edges or merged with an existing edge between nodes u and v. The
merge operation is defined as the minimum of the travel time functions of the edges to
be merged.
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Figure 3-4: Example graph and accompanying travel time functions where a shortcut path
between u and v is merged with an existing path

Assume there existed already an edge between u and v of the previous example, having
a constant travel time of 2 hours as shown in Figure 3-4a. The travel time functions
are merged into the purple edge by taking the minimum of the travel time functions
of the yellow and green edge. The result is shown in Figure 3-4b. It can be seen that
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the advice is to take the yellow route between 10:15 and 11:45 and between 12:15 and
14:45.
The complete preprocessing operation consists of contracting nodes one after each other,
using a predefined node order. Travel time profiles queries between each of the neigh-
bours of the contracted nodes are run to identify potential shortcuts. These shortcuts
are created using the linking operation, followed by a merging operation if there already
existed an edge between these nodes.

Querying

In the querying phase an actual path from start s to destination t for a given start time
τ is computed using a modified version of the time-dependent bidirectional Dijkstra as
explained in Section 3-2-2.
First of all, the forward search only runs in the upward graph, thus only considering
edges that lead to higher important nodes – equal to the non time-dependent con-
traction hierarchies querying algorithm. Equivalently, the backward search runs in the
reversed downward graph. The continuation of the forward search (step 4 in Section
3-2-2) is called downward search by Batz [7] and runs on the downward graph.
Besides these small modifications, some additional improvements have been applied.
First of all, B (the travel time of the first found complete path, step 2 in Section 3-2-2)
is not computed directly but is implicitly calculated by adding τu (the arrival time at
node u in the forward search) to ru (the upper bound of node u in the backward interval
search). During the execution, the minimum value of B is maintained, by updating the
value if a new node is settled by both searches. The forward and backward search are
stopped once the minimum value of the priority queues of both forward and backward
searches exceed B.

Figure 3-5: Visualisation of backward (left) and downward search (right) [7]

Furthermore, a set of candidate nodes X is maintained. A candidate node is a node
which is settled by both forward and backward searches. Only nodes for which holds
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that τu + qu ≤ B are added to the set, which means that they are only added if the
lower bound of the travel time from start to destination should not exceed the travel
time of the shortest path found until now.
After the forward and backward interval searches are stopped, the downward search is
run starting from the candidate nodes in set X. The downward search is identical to
the forward search, except that it can only route through nodes that are reached by
the backward search and runs in the downward graph.
A visualisation of the backward and downward searches is shown in Figure 3-5. The
more important nodes are higher up in the graph. Set X (green) contains the settled
nodes from the forward search (yellow) and backward interval search (blue). The
downward search is run, which finds the optimal path from start s to destination t via
a node in the candidate set X.

3-3 Summary

Dijkstra’s algorithm and contraction hierarchies form the basis of the algorithms used
later on in this thesis. Whereas Dijkstra is one of the first earliest arrival route algo-
rithms and quite slow, its algorithm is easy to understand, prove and modify. Con-
traction hierarchies use a preprocessing step before querying the graph. Although
preprocessing takes some time (25 minutes for a map of Western Europe), this opera-
tion only has to be performed once. After that fast querying on the preprocessed graph
is possible (0.2 ms per query, or 1.5 ms per querying the time-dependent version). To
compare: a run of Dijkstra’s algorithm on this graph takes more than 5 seconds on
average. Moreover, contraction hierarchies are proven to give optimal results and is
thus not a heuristic method. In the next chapters, modified versions of the Dijkstra
algorithm are used as a so called ground truth algorithm: slow but optimal. Varia-
tions on contraction hierarchies algorithms are used to obtain faster results that are
not necessarily optimal.
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Chapter 4

Time-dependent earliest arrival
routes with drivers legislation:

RoadBlock-OneBreak

The RoadBlock-OneBreak variation is the easiest solvable version of the optimal break
planning problem. It includes time-dependent information on road blocks and computes
routes having one break at maximum. The combination of drivers legislation and road
blocks give an interesting opportunity: waiting for a road block does not count as
driving time, but may count as break time.
The first two research questions are answered in this chapter, analysing the influence
on the arrival time on optimal break planning and computing this result efficiently.
First a recap of the problem variation is given in Section 4-1, as was previously defined
in Chapter 2. After that a model of the problem is created in the form of a Stacked
Break Graph, which is optimally solved and proven using Dijkstra-like algorithms. It is
assumed that information on Dijkstra algorithms as presented in Chapter 3 is known to
the reader. In Section 4-3 an algorithm is introduced to compute the solution efficiently
using time-dependent contraction hierarchies. The currently used algorithm for break
planning is given in Section 4-4. The results of this algorithm are compared with the
optimal break planning algorithms in Section 4-5.

4-1 RoadBlock-OneBreak variation

The RoadBlock-OneBreak variation of the time-dependent earliest arrival route problem
with drivers legislation considers road blocks as the only time-dependent information
in a network. A road is closed or open: if it is closed, no one can drive the segment. If
it is open the segment can be driven in free flow travel time. A road block is defined
as an interval RB = [τbs, τbe], where τbs and τbe represent the start and end times of
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the block. Each edge can have multiple road blocks. Such an edge is described as
RBE = 〈e, RBS,∆FF〉 with e ∈ E, RBS a set of consecutive road blocks, and ∆FF the
(constant) free flow travel time . The definition of a road block is explained in detail
in Section 2-2-1.
The RoadBlock-OneBreak variation only deals with the drivers legislation valid on a
single day. This entails that the maximum non-stop driving period ∆d may not exceed
the threshold ∆T of 4.5 hours. After 4.5 hours of driving, a break must be taken of 45
minutes (∆b). For this problem variation only one break is allowed during the route,
maximizing the total driving time to 9 hours.
Waiting for a road block does not count as driving time, but may count as break time.
Furthermore, breaks may be planned everywhere in the RoadBlock-OneBreak problem
variation. They are not restricted to a certain location (i.e. a parking lot). One may
literally stand still at the middle of a highway to take a break.
The input of the problem consists of the start node s, destination node t and the
departure time τ0. Furthermore, the current driving time ∆d0 is required, indicating
the status of truck driver, i.e. the time driven before starting with this route.
The goal of the RoadBlock-OneBreak problem is to find an Optimal break planning
path which is defined as follows:

Definition 4.1 (Optimal break planning path). An optimal break planning path is a
path from the start node s to the destination node t starting at departure time τ0, having
the earliest arrival time possible. The path adheres to the drivers legislation rules, such
that the non-stop driving period ∆d does not exceed the threshold ∆T anywhere on the
path.

4-2 Stacked break graph

The RoadBlock-OneBreak variation is modelled using a modified graph. In order to
represent the breaks, a copy of the graph is added to the original graph. Edges between
these two graphs represent taking a break, as visualized in Figure 4-1.
For each edge (u1, v1) in the original graph, an edge (u1, v2) is added, with v2 is the
copy of the node v1. The edge (u1, v2) represents travelling through the edge and taking
a break somewhere on that edge. This graph is called a Stacked Break Graph (SBG)
and is defined as follows:

Definition 4.2 (Stacked Break Graph). A Stacked Break Graph (SBG) is a graph G =
(V,E) where V = V1∪V2 and E = E1∪E2∪EB. G1 = (V1, E1) represents the original
graph, G2 = (V2, E2) is an exact copy of this graph. EB consists of edges representing a
break, which are possible at each edge in the graph. Thus EB = {(u1, v2)|∀(u1, v1) ∈ E1
with v2 ∈ V2}.

The resulting SBG graph has |V1| · 2 nodes and |E1| · 3 edges: a copy of the graph G1
with an extra break edge for each edge in the graph.
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Figure 4-1: Visualisation of a stacked graph for implementing the RoadBlock-OneBreak
variation. In yellow the original graph is shown. In blue the copy of the graph. Both graphs
are linked with dashed edges

The travel time functions of the edges in E1 and E2 are equal to the functions with road
blocks, as defined in Equations 2-1 and 2-2. The edges in set EB have different travel
time functions: these edges should include the break time ∆b of 45 minutes. For the
planning of this break, there are three possible situations: the break is planned fully
during a road block, partly during a road block, or not at all during a road block. The
break is planned fully during a road block if the arrival time at the edge is later than
the block start minus the free flow travel time. If the break cannot be finished before
the block ends, the travel time can be calculated by determining the wait time during
the block which can be used as break time (τbe − τ), and subtracting this value from
the total break time. This leads to the travel time function fRBE(τ, [τbs, τbe],∆FF,∆b)
for every edge in EB:

fRBE(τ, [τbs, τbe],∆FF,∆b) =



∆FF + τbe − τbs if τ ≥ τbs −∆FF
and τ < τbe −∆b

∆FF + ∆b − (τbe − τ) if τ ≥ τbe −∆b

and τ < τbe

∆FF + ∆b else

(4-1)

Together with Equation 2-1 on page 15 defining the travel time function of an edge with
a road block without considering breaks, this results in the following general travel time
function fe for any edge in the Stacked Break Graph:
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fe(τ) =



fRBE(τ, RBi = [τbs, τbe],∆FF) if e ∈ E1 ∪ E2
and ∃RBi ∈ RBS
with τ ∈ [τbs −∆FF, τbe]

fRBE(τ, RBi = [τbs, τbe],∆FF,∆b) if e ∈ EB
and ∃RBi ∈ RBS
with τ ∈ [τbs −∆FF, τbe]

∆FF else

(4-2)

Besides the travel time, it should also be computed what the current non-stop driving
time (shift duration) is after driving the edge. Therefore, a function sRBE is introduced
which gives the additional shift duration after driving an edge. Since waiting for a
block does not count for the shift duration counter, the increase in shift duration is
equal to the free flow travel time.
However, this only holds for edges in E1 and E2. For edges in EB the shift duration is
reset after taking the break. Thus, the shift duration is equal to the driving time after
the break has been taken. This leads to the function sRBE(τ, [τbs, τbe],∆FF,∆b) giving
the current non-stop driving time after driving an edge in set EB and taking a break
on this edge:

sRBE(τ, [τbs, τbe],∆FF,∆b) =



∆FF −max(τbs − τ, 0) if τ ≥ τbs −∆FF
and τ < τbe −∆b

∆FF if τ ≥ τbe −∆b

and τ < τbe

0 else

(4-3)

Using this formula the general shift duration function se for any edge e in the Stacked
Break Graph can be defined, analogously to Equation 4-2:

se(τ) =


sRBE(τ, RBi = [τbs, τbe],∆FF,∆b) if e ∈ EB

and ∃RBi ∈ RBS
with τ ∈ [τbs −∆FF, τbe]

∆FF otherwise
(4-4)

Using the functions fe and se, one can compute resulting values for, respectively, arrival
time τ and shift duration ∆d, by taking the sum of values of all edges on the path.
The formulas for fe and se are used in the algorithm for computing the earliest arrival
route, as is explained in the next section.

4-2-1 Pareto search algorithm for the stacked break graph

Running a Dijkstra shortest path algorithm on the Stacked Break Graph does not
necessarily lead to an optimal route, since the earliest arriving route might exceed the
shift duration threshold whereas another route might not. Consider the example in
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u

Figure 4-2: Assume node u is the start node, and the departure time is 10:00. If the
destination is w, the only possible route is travelling the red route between nodes u and v
given the maximum allowed driving time of 4.5 hour. If the destination is x, both routes via
the red and blue routes are feasible. However, the blue route provides the earliest arrival
time. Therefore, in the computation of routes from u to some destination, both red and blue
routes need to be maintained at node v since either of them might provide the best solution.

Figure 4-2 where such a situation is shown. In this example, breaks are neglected such
that the allowed driving time is just 4.5 hour.
Therefore, running a Dijkstra algorithm on the stacked break graph does not necessarily
lead toward the optimal solution. This is due to the existence of two variables of
importance: besides arrival time also shift duration determines the earliest arrival
route. The optimal route can therefore be computed by keeping track of all possible
non-dominating paths at each node, instead of just one path. Such an algorithm is
referred to as a Pareto or multi-label search.
As mentioned before, instead of settling nodes, multiple possible paths toward a node
are maintained in the Pareto Search algorithm. Therefore, paths are settled in the
algorithm instead of nodes. These paths, containing the node, arrival time and shift
duration, are defined as labels. Additionally, an edge of a node is only relaxed if the shift
duration of the resulting label is less than the threshold ∆T . Therefore, the resulting
paths also do not violate the drivers legislation rules.

Property 4.3. All paths resulting from the Pareto Search algorithm on the stacked
break graph are valid according to the applicable drivers legislation rules, that is, the
shift duration counter ∆d never exceeds threshold ∆T .

Besides adhering to the drivers legislation rules, only non-dominating paths are added
to nodes. Therefore, two types of domination are defined: weak and strict domination.

Definition 4.4 (Weak domination). A path i is weakly dominated by a path j, if paths
i and j have the same start and destination location and the same departure time, and
additionally τj ≤ τi and ∆dj ≤ ∆di.

Definition 4.5 (Strict domination). A path i is strictly dominated by a path j if it is
weakly dominated, and additionally τj < τi or ∆dj < ∆di.
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If some path i is not weakly dominated by another path j, this path is added to the
list of paths at a node. Next, all paths x can be removed that are strictly dominated
by i. This also implies that a path x having identical τ and ∆d values are not removed.
The algorithm is stopped once no paths are present in the priority queue any more,
that is, all possible paths exceeded the drivers legislation threshold. These resulting
paths are called Pareto optimal:

Definition 4.6 (Pareto optimal path). A path i is Pareto optimal if it is not weakly
dominated by any other path j that does not violate the drivers legislation rules

From the resulting set of Pareto optimal paths at the destination node t, the path
having the earliest arrival time is returned as the best path.
To prove the optimality of the algorithm, it is first shown that a Pareto optimal path
is prefix optimal, followed by a proof that a Pareto optimal path is always found if
it exists. Finally, it is shown that an optimal break planning path is always a Pareto
optimal path. In these proofs, it is assumed that function f(Pst) represents the travel
time of path Pst for some departure time τ0, thus τt = τ0 + f(Pst). Function s(Pst)
represents the shift duration at node t of this path for the same departure time τ0 and
current driving time ∆d0, thus ∆dt = ∆d0 + s(Pst).
The proofs are based on work of Batz [7] and Ehrgott [20].

Lemma 4.7. Let G = (V,E) be a stacked break graph such that the travel time func-
tions f and shift duration functions s are non-negative. Consider s, t ∈ V , where t
is reachable from s in G, even if considering drivers legislation rules. Then there al-
ways exist a Pareto optimal path Pst = 〈s = u1, u2, . . . , uk = t〉, such that for every
i = 1, . . . , k, the prefix path Psi = 〈s = u1, . . . , ui〉 is a Pareto optimal path too.

Proof. Assume Psi is not a Pareto optimal path. Then there is a path P ′si 6= Psi that
dominates Psi, thus f(P ′si) ≤ f(Psi) and s(P ′si) ≤ s(Psi) with at least one strict equality,
thus f(P ′si) < f(Psi) or s(P ′si) < s(Psi).
Therefore, a newly constructed path P ′st consisting of P ′si followed by Pit (the subpath
of P from i to t), is an s − t path which contradicts the Pareto optimality of Pst due
to the following three reasons: First of all, f(P ′st) ≤ f(Pst), since it is not possible to
arrive later at t by departing earlier at node i due to FIFO-property of the network.
Secondly, s(P ′st) ≤ s(Pst), since s(P ′si) ≤ s(Psi) and the additional shift duration of
Pit is equal to the free flow travel time of this subpath, and thus independent of the
departure time at node i. Third, it holds that f(P ′st) < f(Pst) or s(P ′st) < s(Pst), since
the subpath toward node i also has at least one strict equality. Thus, path Pst is strictly
dominated by path P ′st, violating the assumption of the Pareto optimality of Pst.
To conclude, there always exists a prefix path Psi that is a Pareto optimal path.

The prefix optimality of the Pareto optimal path is used to proof that all Pareto optimal
paths are always found, as shown in the next proof:
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Lemma 4.8. A Pareto prefix optimal path Pst is always found by the Pareto search
algorithm.

Proof. Assume there exists some Pareto optimal path Psi from node s to i, that is
not found by the Pareto search algorithm. Then there are two options: the label
corresponding to this path is deleted during the algorithm or it was never found. If it
was deleted, then Psi is fully dominated by some other path P ′si and is thus not Pareto
optimal, contradicting the assumption. So, it can be concluded that the label was never
found.

Let i − 1 represent the node just before i in path Psi. According to Lemma 4.7, the
path from s to this node is a Pareto optimal path. Since the Pareto optimal path to i
was not found, the path to i− 1 was also deleted or not found.

One can repeat this argument backwards, until the first node j in the path (unequal
to s) is not found. However, it is impossible that this Pareto optimal path was not
found, because the edge (s, j) is relaxed in the first step of the algorithm. If this label is
removed by another dominating path, then the path from s to j is not a prefix optimal
path, contradicting the assumption. Therefore, any Pareto optimal path Psi is found if
the execution of the algorithm is stopped.

Thus, all Pareto optimal paths toward the destination are found by the Pareto search
algorithm. To complete the proof of optimality of the break planning algorithm, we
now only need to prove that the algorithm indeed returns an optimal break planning
path (see Definition 4.1), implying that the optimal break planning path is indeed a
Pareto optimal path.

Theorem 4.9. The Pareto search algorithm returns an optimal break planning path

Proof. Let Pst be the path returned by the Pareto search algorithm, meaning that this
path has the earliest arrival time of the set of paths to destination node t found by the
algorithm. Now assume that this path Pst is not an optimal break planning path. This
implies that there exists some path P ′st with f(P ′st) < f(Pst). But this implies that
P ′st is a Pareto optimal path, since it is not dominated by all other paths. However,
the Pareto search algorithm finds all Pareto optimal paths (See Lemma 4.8). So, it is
not possible that such a path P ′st exists, and the path returned by the Pareto search
algorithm is an optimal break planning path.

Although an optimal break planning path is the result of the Pareto search algorithm,
its running time is bad. At the worst case, the number of paths found grows exponen-
tially with the number of nodes in the network. Therefore, a single label heuristic is
introduced in the next section which does not require to maintain multiple paths at
each node and runs in polynomial time.
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4-2-2 Single label algorithm for the stacked break graph

Although the proposed Pareto search in the previous section gives optimal results, lots
of paths need to be maintained which yield a long running time. Therefore the idea is
to introduce a Dijkstra-like heuristic, which maintains only one path (also referred to
as label) at each node. First it is identified what the underlying problem is, followed
by a proposed algorithm and a review on the quality of this heuristic.

Problems for running a Dijkstra algorithm

The reason why running a Dijkstra algorithm on the Stacked Break Graph (as illus-
trated in Figure 4-2) does not work has its cause in differences in travel time and shift
duration. Waiting for a block does not count for the shift duration counter, but does
count for travel time. Due to this, the route with the earliest arrival time might have
a shift duration higher than allowed according to the regulations, whereas there might
exist another feasible route with a lower shift duration but later arrival time.
This is mainly due to the planning of breaks: for some routes the break should be
planned as late as possible to maximize the driving time instead of being planned
efficiently (i.e. during a block). Therefore, the idea is to split the search into two steps,
which are mentioned briefly and later explained in detail:

1. Settle nodes of V1 until t1 is settled or all discovered paths have a length of ∆T ,
the maximum driving time without a break. During execution, also relax edges
of set EB, but store the resulting paths in a different priority queue QB. If t1 is
settled, the optimal path is found and step 2 can be discarded.

2. If t1 is not settled yet, settle nodes of V2, starting from the nodes in QB touched
in the previous step. The earliest arrival time – if there exists a feasible path – is
now represented by the path to t2.

Step 1: settling nodes in V1

The nodes in V1 represent the nodes that are reached without taking a break. Both
edges in E1 (all edges (u, v) with u, v ∈ V1) and EB (all edges (u, v) with u ∈ V1
and v ∈ V2) are relaxed. However, we are only interested in settling nodes in set V1.
Therefore, if an edge from EB is relaxed, the node corresponding to a path to v2 is
added to a different priority queue QB. This queue is used in the next step of the
algorithm.
If t1 is settled, the algorithm stops and the path to t1 returned. This means that there
is a path from start to destination which takes less travel time than threshold ∆T of
4.5 hours. Since waiting is never beneficial in a FIFO road network [38], the path to t1
is optimal and can be returned.
If t1 is not reachable, the algorithm stops once all paths have exceeded the threshold
∆T of 4.5 hours, i.e. the minimum value in the priority queue is larger than ∆T .
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Step 2: settling nodes in V2

In the second step the nodes in V2 are settled: the paths with a break on the route.
As a starting point of the algorithm, priority queue QB is used. This queue is filled
in the previous step. It is not sorted on earliest arrival time, but on increasing shift
duration. If shift durations are equal, the one having the highest arrival time is ordered
first, since this is probably the route being most close to the destination.

Example

Assume the example network in Figure 4-3. The goal is to find the earliest arrival route
from s to t, with a given departure time τ0 of 8:30 and shift start of 0. In step 1 of
the heuristic algorithm, nodes s1, u1, u2 and v2 are settled. For node u2 this means
that the truck drives for 3.5 hour until 12:00, followed by a break of 45 minutes taken
during the block. Next another half an hour needs to be travelled, leading to a shift
duration of 30 minutes and an arrival time of 13:30 (identical to the arrival time at
u1). Nodes v1 and t1 are not reachable in step 1 due to the exceedance of threshold
∆T . The resulting arrival times are shown in Table 4-1. If priority queue QB is sorted
on earliest arrival time, the first node to settle in step 2 would be u2, leading to an
updated arrival time at v2 of 14:30. But the destination can never be reached via this
path due to the exceedance of the threshold of 4.5 hour. The destination can only be
reached if the proposed ordering on shift duration is followed: leading to an arrival
time of 19:15 at t2.

u
4h

blocked 12-13 1h 4h

u2 v2s2

u1 v1s1

t2

t1

Figure 4-3: Example graph to show difference between order methods. Nodes s1 to t1
represents nodes where no break has been taken, the blue edges represent taking a break of
45 minutes

The example showed the justification of the ordering of the priority queue. The re-
mainder of the settling procedure of the nodes in V2 is identical to the time-dependent
Dijkstra algorithm, with the notion that it is possible that a settled node is added to
the priority queue for a second time. This occurs due to the multiple starting points of
the search, whereas the queue is not sorted on the earliest arrival time.
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Table 4-1: Settling of nodes of example graph in Figure 4-3. The shift duration threshold
is 4.5 hours, the duration of a break is 45 minutes

After step 1 (ordered on τ) s1 u1 v1 t1 s2 u2 v2 t2
arrival time τ 8:30 13:30 ∞ ∞ ∞ 13:30 15:15 ∞
shift duration ∆d 0:00 4:00 ∞ ∞ ∞ 0:30 0:30 ∞

After step 2 (ordered on τ) s1 u1 v1 t1 s2 u2 v2 t2
arrival time τ 8:30 13:30 ∞ ∞ ∞ 13:30 14:30 ∞
shift duration ∆d 0:00 4:00 ∞ ∞ ∞ 0:30 1:30 ∞

After step 2 (ordered on ∆d) s1 u1 v1 t1 s2 u2 v2 t2
arrival time τ 8:30 13:30 ∞ ∞ ∞ 13:30 15:15 19:15
shift duration ∆d 0:00 4:00 ∞ ∞ ∞ 0:30 0:30 4:30

The search can be stopped if t2 has been settled and τu2 > τt2 for all unsettled nodes
u2 ∈ V2 The arrival time at t2 is the best value.

Quality of heuristic

The proposed algorithm assures that the break is scheduled correctly: that is, as late
as possible if needed according to drivers legislation rule, and as optimal as possible
otherwise. However, there are still situations in which the algorithm does not result in
an optimal result. An example of non-optimal behaviour can be seen in the earlier used
example in Figure 4-2. Using the proposed heuristic still does not keep both routes
from u to v whereas these are needed. However, it is noted that this situation does not
occur often in the road network of Europe. This is due to the fact that a road block
is active for a complete country. This example situation therefore only occurs if there
are two countries close to each other where different road blocks are active in each of
the countries resulting in different shift durations for identical travel times. This is for
example the case at the Belgium/Luxembourg/France borders, as shown in Figure 4-4.

This situation can be detected: if a path is thrown away having a earlier shift duration
but a later arrival time than the other path, this is a potential non-optimal solution.
In these cases a Pareto search can be run to assure optimality.
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Luxembourg:
Blocked Sat 21:30-Sun 21:45

France:
Blocked Sat 22:00-Sun 22:00

Start: 19:00

Destination:
Sun 22:15
Sun 22:30

3:15 hour
3 hour

Figure 4-4: Example route where the result of the heuristic method is not optimal. The
blue route through Luxembourg is a bit longer (3:15 hours) compared to the purple route
through France (3:00 hours). However, the driving time through France is shorter and the
block in Luxembourg ends earlier then the one in France. This causes that the blue route
arrives earliest, at 22:15 compared to 22:30. However, the shift duration of the purple route is
shorter: 3 hours compared to 3:15. If the path lingers further on which requires another 6:01
to 6:15h of driving time, the purple path should be used to not exceed the 9 hour threshold.
But this route will not be maintained in the heuristic algorithm.

4-3 Time-dependent Contraction Hierarchies

Contraction hierarchies reduce the number of nodes and edges in a graph during a pre-
processing step, while maintaining all shortest paths. The actual shortest path from
start to destination is computed during the querying phase – which can generally be
performed rapidly compared to traditional Dijkstra-like algorithms. In this section
methods are given that enable optimal break planning while using contraction hierar-
chies. It is assumed that knowledge on contraction hierarchies as given in Section 3-2-3
is known.

4-3-1 Preprocessing a stacked graph

The first idea to implement the breaks in time-dependent contraction hierarchies (TCH)
would be to reuse the Stacked Break Graph implementation introduced in the previous
section: doubling the graph and connecting the nodes in the base layer with the copied
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layer by an artificial edge which represents taking a break. However, this would not
result in correct answers during querying. Although the preprocessing makes sure that
all shortest paths are maintained, it does not care about the shift duration. In the
example network in Figure 4-5 the maintained shortest path between x1 and z2 at
10:00 travels through y2: taking the break at the start results in a lower waiting time
for the block between nodes x1 and z2. However, this results in a consecutive driving
time of 6 hours between x1 and z2, which is not allowed concerning the threshold of 4.5
hours. The only feasible path would be via y1.

u

y2 z2x2

y1 z1x1

4h
blocked 10-11 2h

2h

Figure 4-5: Example of a double-layered graph which gives wrong results if a query is ran
on the preprocessed version of the graph. The solid arrows indicate the maintained shortest
path between nodes x1 and z2 at time 10:00

It can be observed that the optimal location of a break depends on the start and desti-
nation locations. This information is not known at the preprocessing stage. Therefore,
all possible locations for a break should be maintained as an option. This would lead
to enormous amounts of parallel shortcut edges, each representing a path which takes
a break at a different location on different edges. It is questionable whether the pre-
processed graph then provides any advantage over working with the non-preprocessed
graph. Therefore, using the stacked graph approach is not assumed as a viable option
for implementing breaks in time-dependent contraction hierarchies.

4-3-2 Adjusting the querying algorithm

The previous paragraph showed that the optimal location to break can only be deter-
mined if the start and end locations are known. Therefore, it seems more promising
to come up with a solution during the querying phase of the algorithm. The querying
algorithm is a bi-directional Dijkstra algorithm that runs on the preprocessed graph as
explained in Section 3-2-3. The idea is to apply the same Pareto search algorithm and
heuristic introduced for the Stacked Break Graph, with a few modifications such that
it works correctly on the preprocessed graph.

Independent of the precise implementations of the querying algorithms, we should be
able to calculate shift durations of driven routes. Therefore, we need the information
on the next blockstart and blockend, as well as the actual driving time (i.e. travel
time minus waiting time). This information is maintained in a modified version of the
preprocessing procedure.
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Pareto search

The same Pareto search algorithm explained in Section 4-2-1 can be run on the prepro-
cessed graph with a few modifications. It should be noted that the default preprocessed
graph only consists of one layer of nodes, in contrast to the Stacked Break Graph. In-
stead of doubling the graph, we keep track of two lists of paths at each node: one for
paths with a break, one for paths without a break.

The backward interval search can be kept identical - independent of breaks, shift dura-
tion or whatsoever. This is possible since the backward interval search already explores
all possible paths to the top of the preprocessed tree.

The forward and downward search should deal with planning of breaks. For each to be
settled label it should be checked whether a break already has been taken on this path.
If no break is taken yet, two paths for each edge should be explored: one without a
break (using the default travel time functions), one with a break (using the travel time
functions fRBE in Equation 2-1). Furthermore, also shift duration should be tracked.
Paths exceeding the shift duration should be discarded. Furthermore, all upward paths
in the preprocessed graph should be explored during the forward search, not just the
paths providing shortest paths for the current departure time. Likewise, the downward
search should explore all downward edges that are a result of the backward interval
search.

It should be noted that the Pareto search algorithm does not necessarily provide optimal
results in the preprocessed graph. A counter example is shown in Figure 4-6. If node v
is contracted, the preprocessed graph does not contain the red coloured edges any more,
since these never provide an earliest arrival path between u and t. However, in some
special case, the optimal break planning path runs through these edges. Therefore, the
Pareto search algorithm is not always capable of giving the optimal solution if run on
a preprocessed graph.

u
1h

blocked 10:15-11:00h
U

2:15h

T
1h

blocked 12:00-10:45h
VS

3:30h

Start: 5:45

Figure 4-6: This example shows that the Pareto search algorithm does not always yield
optimal results in a preprocessed graph. The red coloured edges between u and t never
provide a shortest path, since always a block is experienced of at least 30 minutes waiting
time. Please note that the edge between v and t can only be driven between 10:45 and 12:00
every day. Thus, if node v is contracted, only the blue edge remains in the preprocessed
graph. However, if considering breaks, the red route might provide the shortest path. If
starting at 5:45, one arrives at node u at 9:15. Node v is reached at 10:15, after which a
break of 45 minutes is taken. At 11:00 the edge between v and t is driven, resulting in an
arrival time of 12:00. The direct route between u and t results in an arrival time of 12:15,
thus not the shortest path if considering breaks.
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It is not likely that this situation occurs often, since in Europe there are no adjacent
roads that are blocked throughout the day. More specifically, if all routes can be driven
at free flow travel time, this situation does not occur, as is shown using the following
proof:

Lemma 4.10. The Pareto search on time-dependent contraction hierarchies provides
optimal results, if any route can be driven at free flow travel time at some moment.

Proof. Let fT (P ) be the travel time function of path P , without considering taking
breaks. Travel time function fB(P ) is used to refer to the travel time function including
taking a break if required, as defined in Equation 4-2. Function fT is used to obtain
the preprocessed graph.
Assume that there exists an optimal break planning path Pst from node s to t, that is
not found by the Pareto search algorithm in the preprocessed graph. Since all Pareto
optimal paths existing in the preprocessed graph are found by the algorithm (see Lemma
4.8), this means that the path does not exist in the preprocessed graph, since the Pareto
search algorithm explores all edges – not just the one that provides the earliest arrival
time for a specific departure time.
It is only possible if some optimal break planning path is not included in the prepro-
cessed graph if, for any departure time τ , there exists some path P ′st for which it holds
that fT (P ′st) < fT (Pst). This means that path Pst never provides a shortest path at any
departure time (see example in Figure 4-6 for such a case), and is thus not included in
the preprocessed graph.
Assume that P ′st is the earliest arrival path for the departure time τ0 as returned
by a non-modified querying algorithm, thus not assuming any breaks. This path P ′st

is not equal to an optimal break planning path, since this path is removed during
preprocessing. Then, it holds that fT (P ′st) < fT (Pst) and fB(P ′st) > fB(Pst).
So, path P ′st is faster than Pst if no break is planned, but slower if the drivers legislation
rules are followed and a break is planned. This is only possible if the time required for
taking a break results in a lower travel time for Pst than for P ′st, due to road blocks on
the path. Thus, the free flow travel time ∆FF of P ′st is larger than the free flow travel
time of Pst. However, it is assumed that all routes can be driven at free flow travel
time at some moment. Therefore, Pst should dominate P ′st at this specific moment, and
thus provides a shortest path without considering breaks. But then, path Pst would
not be removed during preprocessing, and is found during the execution of the Pareto
search algorithm on the preprocessed graph, forming a valid up-down path. Therefore,
the optimal break planning path is always found by the Pareto search algorithm on
time-dependent contraction hierarchies, if any route can be driven at free flow travel
time.

Although it might seem obvious that each route can be driven at some time in free
flow travel time (that is, not facing any road blocks), this is not guaranteed due to the
possible creation of very long shortcut edges in the preprocessed graph. The quality of
the Pareto algorithm is verified using simulations in Section 4-5-5.
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As with non-preprocessed Pareto search version, lots of labels are generated. Therefore,
also for the TCH a single label heuristic method is introduced.

Single label method

The single label heuristic approach introduced for the Stacked Break Graph does not
work at the preprocessed graph since no double layers of nodes are available. Therefore
another heuristic method is introduced. This single label heuristic approach is based
on the idea that there are two options for scheduling breaks: as late as possible or as
optimal as possible.
In a non-time-dependent network, it is never unfavourable to plan a break as late
as possible. The planning of a break does not influence the experienced travel times
and therefore the shortest path stays equal – if it is assumed that a break is allowed
anywhere along the route. By planning the break as late as possible the possible driving
time is maximized.
In a time-dependent network this is not the case. By taking an early break, it is possible
to save time. Note that waiting during a road block does not count as driving time,
but might be used as break time. Consider the example in Figure 4-7. Assume that
the earliest arrival route needs to be found for a path from s to t starting at 9:00. The
strategy of planning a break as late as possible (from now on called latest-strategy),
would plan the break after 4.5 hours of driving time. This would be halfway the middle
edge, at 14:30. This results in an arrival time of 18:45 at node t. A better strategy
would be planning the break during the waiting time for the block (from now on called
block-strategy). The break can be planned at 13:00, resulting in an arrival time of 18:00
at node t, and thus saving 45 minutes of time.

1h, block 13:00-14:004h 3hs t

Start: 
9:00

Block-strategy:
Break 13:00-13:45

Block-strategy:
Arrive at 18:00

Latest-strategy:
Break 14:30-15:15

Latest-strategy:
Arrive at 18:45

Figure 4-7: Example illustrating both block and latest strategy of planning breaks

Although the block-strategy results in an earlier arrival time, this does not always work
out correctly. Assume the last link in the example in Figure 4-7 now takes 4 hours
of travel time instead of 3 hours. By using the block-strategy and thus planning the
break during the block, 5 hours of driving time still needs to be driven after the break.
However, the maximum consecutive driving time is 4.5 hours. Therefore, it does not
provide a feasible route. By using the latest-strategy (at 14:30) the destination is reached
at 19:45 without violating the maximum driving time rule.
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The idea of having a latest-strategy and a block-strategy was already implicitly imple-
mented in the heuristic Stacked Break Graph Dijkstra algorithm by sorting the priority
queue of the stacked graph representing breaks on shift duration. It was made sure that
the destination could always be reached (latest-strategy) whether nodes were resettled
if a better path was found. A better path could only be found if the break was (partly)
planned during a road block (equivalent to the block-strategy).
Both strategies latest-strategy and block-strategy are discussed in detail in the following
subsections.

Latest break insertion strategy

The latest-strategy inserts a break as late as possible to maximize the non-stop driving
time d, i.e. maximize the daily driving time to 9 hours. Therefore it should be known
what the resulting travel time and shift duration is when a break is inserted on an
edge. This leads to small modifications of Equations 2-1 and 2-2, taking current shift
duration ∆d and threshold ∆T into account. This leads to the equations fLS(τ,∆d)
and sLS for travel time and shift duration:

fLS(τ, [τbs, τbe],∆FF,∆d) =


τbe + ∆FF − (τ + ∆T −∆d) if τ + ∆T −∆d + ∆b ≥ τbs

and τ + ∆T −∆d ≤ τbs

fRBE(τ, [τbs, τbe],∆FF) + ∆b else
(4-5)

sLS(τ, [τbs, τbe],∆FF,∆d) = ∆FF −∆T + ∆d (4-6)

For example, take a situation where you arrive at 11:20 (τ) at a road segment which
takes 1 hour to drive and which is closed from 12:00 (τbs) till 14:00. The current shift
duration is 4 hours (∆d), resulting in a remaining driving time of 30 minutes considering
the threshold ∆T of 4.5 hours driving time. This results in a driving scheme of driving
for 30 minutes until 11:50, followed by a 45 minute break till 12:35. Next you have to
wait until 14:00 before driving the remaining 30 minutes, resulting in an arrival time of
14:30. The travel time is then 3 hours and 10 minutes. In the formula this is calculated
as follows:

τbe + ∆FF− (τ + ∆T −∆d) = 14 : 00 + 1 : 00− (11 : 20 + 4 : 30− 4 : 00) = 3 : 10 (4-7)

4-3-3 Block break insertion strategy

The block-strategy inserts a break at a moment which is as optimal as possible in terms
of arrival time. This implies that the break is planned (partly) during a road block.
Remember: waiting for a road block does count as travel time but does not count for
driving time.
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It is therefore most optimal to drive until the block actually starts. However, this
might not be possible due to the remaining driving time. Therefore, the remaining
shift duration is depended on the start time of the road block and not on the current
shift duration. This leads to the following set of equations for calculating the travel
time and shift duration:

fBS(τ, [τbs, τbe],∆FF,∆d) =



τbe − τbs + fRBE(τ) if τ + fRBE(τ) > τbs

and τ < τbs

and τbs − τ < ∆T −∆d

fRBE(τ) + τbe − (τ + (∆T −∆d)) if τ + fRBE(τ) > τbs

and τ < τbs

and τbs − τ ≥ ∆T −∆d

fRBE(τ) + τbs − τ if τ ≥ τbs

and τ ≤ τbe

and τ + ∆b ≤ τbe

fRBE(τ) + τ + τbs − τ if τ ≥ τbs

and τ ≤ τbe

and τ + ∆b > τbe

(4-8)

sBS(τ, [τbs, τbe],∆FF,∆d) =


∆FF if f(τ) > ∆FF
∆FF − (τbs − τ) if τbs − τ < ∆T −∆d

and τbs − τ < ∆FF

(4-9)

4-4 Current situation

Before testing the presented algorithms with a test-set, first the algorithm is introduced
that is used by the current routing software of ORTEC. This algorithm is used to
compute the influence in arrival time when optimal break planning is applied.
In the software of ORTEC breaks are not taken into account when planning routes, but
inserted afterwards. This can be imitated by using a modification of Dijkstra’s algo-
rithm. First the shortest path is computed using the time-dependent Dijkstra algorithm
(see Section 3-2-1) from start s to destination t at departure time τ0. No breaks or
thresholds on driving time are assumed, but road blocks are taken into account. Next,
a break is inserted on this path at the moment that the driving time exceeds threshold
∆T . After that the arrival time of the remainder of the path is updated according to
the inserted break. Finally it is checked whether the threshold of driving time is not
exceeded after the break has been taken.
This simple algorithm replicates the behaviour of the current routing software provided
by ORTEC. However, the current software does not take road blocks into account. Only
in experimental test versions this is included. However, testing without road blocks is
useless. Therefore they are included in this algorithm.
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4-5 Simulations

Three algorithms are introduced in this chapter: Current (representing the current
situation of break planning), Dijkstra and TCH. The last two algorithms come with
a Pareto search and a single-label variant. The goal of this simulations section is
to analyse the influence on arrival time compared to the current algorithm and the
proposed algorithms and to give insight in resulting routes. Furthermore it is analysed
what the resulting running time is of each of the algorithms.

Therefore, first a test-set is created representing the trips made by trucks through
Europe. Next all routes of the test-set are computed using the different algorithms.
The results are used to analyse the average improvement in travel time between the
currently used algorithm and optimal break planning. The properties of improving
routes are identified to make a first step to prediction of possible improvement. The
performance of the heuristic algorithms are computed, as well as the running time for
each of the algorithms.

4-5-1 Test set-up

The algorithms are tested on the network of Europe provided by HERE [29]. The
network includes all highways and secondary roads and has 7 million nodes and 13
million edges. Road blocks active throughout the year are considered; no specific
holiday blocks are taken into account. The road blocks in Europe are visualized in
Figure 4-8. Yellow indicates that this country has some block active on Sunday, for
example Saturday 21:30-Sunday 21:45 (Luxembourg) or Sunday 13:00-22:00 (Czech
Republic). The blue countries Austria and Switzerland have road blocks for trucks
during every night, as well as on Sunday. The minimum block duration is 7 hours
(night blocks in Austria and Switzerland), the maximum block duration is 38 hours
(Saturday 15:00-Monday 5:00 in Austria). Appendix A lists all road blocks used in the
simulations.

The test instances (i.e. pairs of start and destination locations) are a representation of
the freight flows through Europe. Data on freight flows is taken from the ETIS-project
(European Transport policy Information Systems) [23]. This project combines data
from several trade databases to create an Origin-Destination matrix between countries
of Europe. Actual test instances are created by randomly choosing a node in the country
of origin and destination according to the Origin-Destination distribution given by ETIS
[23]. In total, 10000 queries are generated.

The start time for each of these test instances is picked randomly from an uniform
distribution between Monday 0:00 and Sunday 23:59. It is assumed that all routes
start with a shift duration of 0:00.

All tests are run on a laptop, having 16GB memory and an Intel Core i7-3740QM
2.70GHz processor with 4 cores.
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Figure 4-8: Road blocks in Europe, where yellow coloured countries indicate a driving ban
during Sunday and blue coloured countries indicate a driving ban every night and on Sundays

4-5-2 Verification of results

Writing computer programs always has a chance of producing bugs, despite creating
tests or testing with small instances. Therefore, first samples of the results are checked
for correctness. All outliers in terms of long travel time or large differences between
latest and optimal planning of breaks were checked manually. This did not lead to any
suspicious routes. Furthermore, for 10 random routes it was checked whether the travel
time and route choice corresponds with the results of a route planner like Google Maps.
Although all simulated travel times were longer, that is, about 1.5 times as long, this
is assumed correct due to slower travel speeds of trucks.
Due to these verification tests, it is assumed that the produced routes are correct.

4-5-3 Comparison of current and optimal break insertion

Not all 10000 start and destination pairs are possible to drive within the 9 hours of
driving time (i.e. 4.5 hours of driving, 45 minute break, 4.5 hours of driving): only 40%.
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This is mainly due to the long distances that trucks drive through Europe: even a ride
from the Netherlands to Germany can already exceed this limit. Therefore, all instances
are run a second time for a longer driving time, representing two days of driving instead
of one. This entails a driving threshold of 9 hours, followed by an 11 hour (night) rest
and again a maximum driving time of 9 hours. Of these instances, 79% was able to
reach the destination before the threshold was exceeded. These variations are called
OneDay and TwoDays in the remainder of this section – not necessarily meaning that
the driving time is indeed one or two days.
Of the possible OneDay instances 65% needed a break, of the TwoDays instances this
was 49%. In total 163 (6%) and 664 (17%) of the routes improved using scheduling
breaks as optimal as possible instead of the latest strategy. The improving routes had
an average 2:45 or 5:14 hour improvement in travel time, respectively, 17% (OneDay)
or 19% (TwoDays) of the total travel time. On average, the improved route had a travel
time of 84.9% or 89.9% of the original route. The results are shown in Table 4-2.

Table 4-2: Results of OneDay and TwoDay

One day Two days
Total number of routes 10000 10000
Feasibile routes 4042 7894
Routes with breaks 2645 (65%) 3908 (49%)
Routes improving 163 (6%) 664 (17%)
Average travel time of improving routes 15h 49min 27h 31min
Average absolute improvement 2h 45 min 5h 14 min
Maximum absolute improvement 37h 54 min 28h 49min
Average relative improved travel time 84.9% 89.9 %
Maximum relative improved travel time 36.2% 11.9%

Example routes

The most improving route for OneDay is visualized in Figure 4-9. The route starts near
Venice, Italy, and ends in Regensburg, Germany. Whereas the fastest route – without
assuming breaks – is travelling a large part through Austria, this is not beneficial if a
break needs to be inserted. Due to the break between 14:13 and 14:58, the truck ends up
in the long Sunday block of Austria lasting between Saturday 15:00 and Monday 5:00.
This leads to an arrival time of 37 hours and 54 minutes later than the optimal route,
which leaves Austria as fast as possible, thus skipping the Sunday block in Austria.
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Figure 4-9: Example route of OneDay: start in the North of Italy, destination is located in
Germany. A different route choice leads to a shorter travel time if considering breaks

The most improving route for the TwoDay variation is shown in Figure 4-10. Different
from the OneDay example is that both routes are identical. However, the time of taking
a break on this route is different. This route passes through two potential blocks: the
night block in Austria (22:00 till 5:00) and the Sunday block in Germany (0:00 till
22:00). If the night block in Austria is used for a night rest (11 hour break), this results
in reaching the destination before the block in Germany starts. However, if just waiting
in Austria (the latest break scheduling example), and taking a break after 9 hours of
driving in Germany – just 33 minutes of driving away from the destination – causes to
just end up in the road block in Germany causing a delay of about 29 hours!

Duration of improving routes

Besides the most improving routes, it is interesting to see the distribution of travel time
improvements. Therefore, a histogram of the OneDay and TwoDay test set is shown in
Figure 4-11. A clear peak can be identified at 45 minutes of improvement for OneDay,
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Figure 4-10: Example route of TwoDay: start in Austria, destination in Germany. Opti-
mally planning the break (during the night block of Austria) leads to a shorter travel time

also the mode of the data. This period is exactly the break time, thus meaning that
the break can fully take place during a road block instead of afterwards. TwoDays also
has a peak around the break time of 11 hours.

Properties of improving routes

In addition to the distribution of the actually improving routes, it is interesting to
see which routes are improving, to be able to predict whether a route might improve
if optimal break scheduling is applied. The distribution of the starting times of the
improving routes are shown in Figure 4-12. It can be seen that most improving routes
start on a Saturday or Sunday, which is logical due to the large amount of road blocks
active on Sunday (see Figure 4-8). During the weekdays, only night blocks are relevant.
Therefore the routes between 8:00 and 16:00 on weekdays are not improving much.

4-5-4 Optimality gap of Pareto and single-label Dijkstra

As shown in the counter example in Figure 4-2, there are possible situations in which the
Dijkstra single-label heuristic algorithm does not result in the correct answer. However,
it was also noted that due to the structure of road blocks in Europe (i.e. a road block
is active for the complete country), only errors could occur at the borders of countries.
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Figure 4-11: Distribution of number of improving routes for OneDay and TwoDays

This indeed does not happen much: the results of the Pareto search and the heuristic
are compared, and these match fully. For this specific test set, no differences in results
are found.

However – albeit without consequences – there do exists situations in which a potential
route is thrown away in the heuristic algorithm, that is, a route having a later arrival
time but an earlier shift duration than the maintained path. These potential mistakes
can be easily detected and recorded, leading to 816 of 10,000 routes where a non-
dominated route exists at a certain route but is not considered in the rest of the
algorithm. When setting the drivers legislation to a two-day threshold (i.e. threshold
of 9 hours and break time of 11 hours) there are 2537 of 10,000 routes that have a
potential mistake.

A solution would be to rerun these testcases with the Pareto Search algorithm to ensure
correctness.

4-5-5 Quality of the Time-Dependent Contraction Hierarchies algorithms

As was shown with a counter example in Figure 4-6, the Pareto search algorithm does
not necessarily give an optimal solution. However, no differences in results are found
between the Pareto Dijkstra and Pareto TCH algorithms. This means that for this
specific road network and test set, there do not exist edges that provide shortest paths
for optimal break planning but are removed during preprocessing.

Also the results of the single-label TCH heuristic were checked with the optimal results.
These also fully match, indicating that all heuristics given in this thesis are of good
quality.
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Figure 4-12: Time and day distribution of improving OneDay and TwoDays routes

4-5-6 Running time analysis

The Dijkstra and TCH algorithms provide identical results. However, the difference in
running time between them is large as can be seen in Table 4-3. The difference between
running the Pareto and improved versions is another factor 3. This yields to average
query times of 0.0067 (OneDay) or 0.012 (TwoDays) seconds.

Table 4-3: Average query running times of the different algorithms

One Day Two Days
Pareto Single-label Pareto Single-label

Dijkstra Average 12.77 sec 10.18 sec 23.91 sec 18.25 sec
Maximum 49.90 sec 31.66 sec 66.77 sec 47.41 sec

TCH Average 0.064 sec 0.0067 sec 0.154 sec 0.012 sec
Maximum 0.670 sec 0.030 sec 1.014 sec 0.034 sec

4-6 Discussion

It should be noted that both shown example routes in Figures 4-9 and 4-10 as produced
by the latest break scheduling algorithm are probably not driven in practice. A truck
driver is aware of road blocks himself and would probably ask the planner to depart
earlier or later and will drive in such a way that he will not unluckily bump into road
blocks by just being a few minutes too late. Furthermore, planners will probably take
the road blocks into account as common sense when planning routes: i.e. it is not
favourable to start a route 21:10 in Austria, while you know that the road is blocked
from 22:00 onwards.
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Furthermore no differences between results in arrival time of the Pareto and heuristic
algorithms are found in the conducted experiments. This is mainly due to the nature of
road blocks in Europe (see Figure 4-2): a road block is active for a complete country and
if road blocks are active in two neighbouring countries, these always overlap. Pareto
search approaches therefore seem useless in this application. However, when using the
same algorithms while using additional time-dependent information one would prob-
ably find much more differences due to the far more complex structure of congestion
compared to road blocks.
The implemented algorithms are not optimized fully. Lots of gain in running times
could be reached by memory-efficient programming. However, it was not the goal of
this thesis to optimize on running times as much as possible. This thesis did show
that it is possible to incorporate planning of breaks in time-dependent contraction
hierarchies and obtain reasonable speed-ups. It is up to the programmer implementing
the algorithms to optimize the memory consumption and running times as much as
possible.

4-7 Summary

In this chapter the influence of incorporating drivers legislation in optimal route plan-
ning considering a network only having road blocks is analysed. Therefore, a Pareto
search algorithm and a heuristic single-label Dijkstra based algorithm are formed and
applied on a Stacked Break Graph and on time-dependent contraction hierarchies
(TCH). The Dijkstra Pareto algorithm is proven to give optimal results, whether this
might not be the case for the TCH variant. However, all four algorithms yield identical
results, so the quality of the algorithms is considered to be good.
A test set representing the freight flows of Europe is used to identify the differences
between optimal break scheduling and the currently used break scheduling method.
This shows that 6 % of the routes improves if only considering a one-day time limit.
For a two day time limit this grows up to 17 % of the routes. The average absolute
improvement of improving routes is large: 2:45 hours (for a maximum driving time of 9
hours) or 5:14 hours (for a maximum driving time of 18 hours). It is therefore advisable
to take optimal break planning into account when planning routes facing road blocks
due to the large impact they can have on arrival times.
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Chapter 5

Time-dependent earliest arrival
routes with drivers legislation:

Parking

In the previous chapter the optimal time and location for taking a break is computed
to analyse the influence on the arrival time of optimal break planning, one of the goals
of this thesis. However, in reality it is not allowed to take a break at any location, for
example, it is not allowed to park your truck at the shoulder of a highway. Therefore,
in this chapter, taking breaks is restricted to parking lots. Analogously to the previ-
ous chapter, the goal is not only to analyse the influence on the arrival time of this
restriction, but also to come up with a method that computes the result efficiently.
In this chapter, first a recap is given of the problem variation, as was previously defined
in Chapter 2. After that the earlier introduced Stacked Break Graph is extended in
Section 5-2 in such a way that it models the parking lot problem. The Pareto search
algorithm defined in the previous chapter can be used to compute optimal routes in
this modified graph. To speed-up the computation, a heuristic is introduced that uses
time-dependent contraction hierarchies. After that, simulations are run giving insight
in the difference in arrival time as well as differences in actual routes.

5-1 Parking variation

The Parking variation of the time-dependent earliest arrival routes with drivers legisla-
tion is alike the RoadBlock-OneBreak variation discussed in Chapter 4. For each road
segment road blocks may be defined. If a road block is active, no one can drive the
segment. The definition of such a road block is given in Section 2-2-1. Furthermore the
route should adhere to the drivers legislation which is valid on a single day. Therefore,
the non-stop driving period ∆d may not exceed the threshold ∆T of 4.5 hours. After
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4.5 hours of driving a break should be taken of 45 minutes (∆b), after which again 4.5
hours can be driven. This break can only be taken on a specific link which is located at
a parking lot suited for trucks. If the parking lot does not contain links but is directly
located next to a road, this road segment of at maximum 3 km of length is considered
as the parking lot. It might therefore be possible that a shortest path runs across a
parking lot while no break is taken at this parking lot.

5-2 Stacked break graph with parking lots

The previous chapter introduced the stacked break graph that has two layers: one
representing the nodes where no break has been taken, one where a break has been
taken. In this graph all edges are doubled in such a way that on every location in the
network a break can be taken. This definition can easily be adjusted for parking lots
by only adding links between the different layers if the link is representing a parking
lot. This idea is shown in Figure 5-1.

Figure 5-1: Example of the stacked break graph with only allowing breaks at parking lots

After constructing this graph, the Pareto search algorithm introduced in Section 4-2-1
can be applied without any modifications. This again yields optimal results as was
already proven in the previous chapter.
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5-3 Heuristic using time-dependent Contraction Hierarchies

The Dijkstra-like algorithm introduced in the previous chapter can easily be adjusted
such that breaks are only allowed at parking lots. For time-dependent contraction
hierarchies, this is not the case.
During the preprocessing phase of the time-dependent contraction hierarchies only links
of shortest paths are considered in the final hierarchy. Parking lots are generally not
located on a shortest path, but are a (small) detour of this path. Brauer [10] overcomes
this problem by giving the parking lots the highest node order and makes sure that these
are not contracted during preprocessing. Using non-modified forward and backward
queries, optimal paths via parking lots are then retrieved. Disadvantage of this method
is the long query time due to the form of the preprocessed graph: it is not flat and
sparse any more which is required to obtain fast running times. Computing an optimal
route using this method takes 14 seconds on average on a network of Germany with 7
million nodes and 5449 parking lots.
To speed-up the computation compared to Brauers approach, the idea is to introduce
a heuristic method. This idea is based on the fact that it is possible in a preprocessed
graph to obtain a shortest path from start to a parking lot, and from a parking lot to
the destination. The optimal route can then be computed by planning routes from start
to every parking lot in the network, and from every parking lot toward the destination.
The route having the earliest arrival time while not violating the threshold ∆T of
maximum consecutive driving, is then the optimal route. With an average query time
of 0.2 ms [7], and about 10 000 parking lots in the network, this still leads to a total
query time of 30 seconds per start-destination pair (i.e. 2 · 10000 · 1.5ms). Instead, the
idea is to find a subset of parking lots that form viable options.

Figure 5-2: The optimal route runs from North-West to South-East in this map. The
optimal break location is indicated with the orange marker. Using the backward Dijkstra
with a time limit of 30 minutes, parking lots in the surroundings are searched. During the
next phase, routes are computed to each of these parking lots, and from these parking lots
toward the destination.
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From the computations in Chapter 4 it is known where the optimal break location is
– without concerning parking lots. Most likely, the optimal parking lot is near this
location. Since this break is scheduled as late as possible (without giving up on earliest
arrival time), a backward Dijkstra search is enough to obtain the possible options for
parking lots. Depending on the desired solution quality a maximum time limit of
reachable parking lots can be set. An example of the results of a backward Dijkstra
searching for parking lots is shown in Figure 5-2.
To conclude, the overall procedure for the heuristic approach using time-dependent
contraction hierarchies is as follows:

1. Compute the optimal break location using algorithms of Chapter 4

2. Compute a set of nearby parking lots using a backward Dijkstra search

3. For each of these parking lots:

(a) Compute the route from start to the parking lot using TCH (no breaks con-
sidered)

(b) Compute the route from the parking lot to the destination using TCH, start-
ing at ∆b minutes later than the arrival time at the parking lot

(c) Check whether both routes are feasible (i.e. do not exceed the shift duration
threshold ∆T )

4. Return the route with the earliest arrival time at the destination

5-4 Simulations

Two algorithms are introduced: the optimal SBG-Parking and the heuristic approach
TCH-Parking. Both algorithms are analysed in this section, to identify the influence
if restricting to parking lots, as well as the solution quality of the heuristic approach.
Illustrations of maps with produced routes are used to visualise the behaviour of the
algorithm and to give insight in the problem.

5-4-1 Test set-up

Both algorithms are tested on a detailed network of Europe provided by HERE [29].
This network has 31 million nodes and 66 million edges, which is about 5 times as large
as the less-detailed network used in the simulation tests of the previous chapter. This
level of detail is needed since links at parking lots are otherwise not included in the
network.
Data on parking lots is taken from the database of Truck POIs (Points of Interests)
provided by HERE. Used parking lots used are marked as restaurants, truck parkings or
truck rest areas. This leads to a list of 9306 parking lots, spread along the 48 countries
included in the dataset.
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Road blocks are identical compared to the test set-up in Section 4-5-1. The 10000 test
instances are converted such that they represent nodes in the more detailed network
used in this chapter. Furthermore, the test instances are rerun on the detailed map
with the optimal Pareto search algorithm without concerning parking lots to be able
to make good comparisons.
All tests are run on a laptop, having 16GB memory and an Intel Core i7-3740QM
2.70GHz processor with 4 cores.

5-4-2 Verification of results

The result are verified by comparing optimal routes without restrictions on parking
lots with optimal routes that do consider parking lots. It is never the case that a route
becomes faster if the break was restricted to parking lots – which is indeed expected.
There are many routes having identical arrival times. Some of these were checked by
plotting the route on the map. All of these had a parking lot along the optimal path,
close to the optimal break location. These parking lots were located directly along the
road, thus not causing any additional travel time.
Furthermore some example routes with and without parking lots were plotted on a map
to see the differences. These routes seem feasible and logical.

5-4-3 Influence on arrival time of incorporating parking lots

First the results of the Pareto Search with parking lots are compared to the results
without parking lots. Of the original test set, only routes are considered having a
break in the OneDay simulations, leading to a total of 2609 routes.
The restriction of parking lots results in 143 (5.5%) routes not possible to drive any
more due to the exceedance of the drivers legislation rules. Their average travel time
is 11 hours and 36 minutes, indicating that these are generally long routes including
waiting time somewhere in the route (recall that the maximum driving time is 2 times
4.5 hours). On average a route takes 3 minutes longer if a break should be taken on a

Table 5-1: Comparison of with and without parking lot restriction

Average difference in travel time 3 minutes
Maximum difference in travel time 382 minutes
Minimum difference in travel time 0 minutes
Standard deviation of difference in travel time 14 minutes
Number of routes with identical travel time 765 (29 %)

parking lot. This indicates that there are enough parking lots available along the routes
and that generally only small detours are required causing little delay. There are also
routes not affected by the restriction of parking lots: 29% did not change in travel time,
due to parking lots directly located along the road. The maximum difference in travel
time was 382 minutes, caused by a combination of an unfortunate road block and an
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optimal break location which was not along a highway, where most truck parking lots
are situated.

Breaks planned along such secondary roads is one reason for deviating travel times.
Another reason is the lack of parking lots in certain countries. For example in the
Baltic countries, Albania and Bosnia and Herzegovina little number of parking lots for
trucks are available. It is questionable whether there are indeed less facilities for trucks
in these countries, or whether there is just a lack of data. An example of such a route
is shown in Figure 5-3.

Figure 5-3: Example route with large difference in locations of parking lots: the route
travels from North Croatia toward Bosnia and Herzegovina. The optimal break location
(green) is located near the destination. However, no parking lot is available around there.
This causes the break to be planned at the border of Croatia (purple), leading to a higher
shift duration at the destination.

5-4-4 Influence on route choice if restricted to parking lots

Besides the influence on arrival time it is also interesting to see the influence on route
choice of the routes which are restricted to parking lots. Therefore, 50 routes with and
without parking lots were plotted in detail to see the differences between both. Results
of overlap between these routes is shown in Table 5-2. A large amount of these routes
(80%) have an overlap of 99 up to 100 %. These routes can be seen identical – except
for possibly taking the off-ramp and next on-ramp in order to travel toward the parking
lot. An example of such a small detour is shown in Figure 5-4.
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Table 5-2: Overlap between routes that do or do not restrict taking breaks at parking lots

Overlap of 99-100 % 80 % of the routes
Overlap of 90-99 % 2 % of the routes
Overlap of 50-90 % 2 % of the routes
Overlap of 0-50 % 12 % of the routes
No feasible solution found 4% of the routes

Figure 5-4: Example of a route with limited effect on route choice: the truck driver only
needs to take an off-ramp and next on-ramp to get to the parking lot, rest of the route is
identical to the optimal route

An example of a large difference in routes is shown in Figure 5-5. Due to the absence
of parking lots around the optimal break location which is situated along a secondary
road, a completely different route through Germany turns out to be the best route if
restricted to parking lots.
It can be concluded that the difference in routes is generally small, but for 16 % of the
routes parking lots cause large changes in routing decisions. Some of them are caused
by the absence of parking lot data in specific countries, but most are caused by absence
of parking lots on the specific routes chosen. Another 4 % of the routes are not feasible
any more if breaks are restricted to parking lots.
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Figure 5-5: Example of a large difference in routes due to restriction of parking lots. The
Southern route is the optimal route as computed in the previous chapter. The optimal break
location is indicated with the green sign. However, this location is situated along a secondary
road in Austria ("Autostraße" instead of "Autobahn"). No parking lots can be found in the
surroundings. The best alternative restricted to parking lots is driving through Germany
using the highways and visit a parking lot near the highway

5-4-5 Evaluation of heuristic approach

The heuristic approach first searches for parking lots nearby, followed by computing
routes from start to each of the parking lots, and from each of the parking lots toward
the destination. For this simulation experiment only feasible routes of the previous sec-
tion are considered, that is, routes having a break and that are feasible when restricted
to parking lots. This results in 2467 routes.

First parking lots nearby are computed for different ranges of search horizons around
the optimal break location. All parking lots found within 10 to 120 minutes (with steps
of 10 minutes) are obtained. This leads to an average number of parking lots per route
as shown in Figure 5-6. For 10 minutes of travel time nearly no parking lots are found,
whereas 120 minutes lead to 34 possible parking lots per route on average.

Table 5-3: Comparison of deviation between no parking lots and solution which are re-
stricted to parking lots. Only the best solution of the heuristic is taken into account when
calculating averages.

Optimal 30 minutes 60 minutes 90 minutes 120 minutes
Average 3 minutes 27 minutes 34 minutes 33 minutes 35 minutes
Maximum 382 minutes 2231 minutes 2231 minutes 2280 minutes 2280 minutes
Minimum 0 minutes 0 minutes 0 minutes 0 minutes 0 minutes
Median 1 minute 3 minutes 3 minutes 2 minutes 2 minutes
# of solutions 2467 1325 1936 2129 2221
% of solutions 100% 53.7% 78.5% 86.3% 90.0%
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Figure 5-6: Average number of parking lots per route (for each of the 2467 feasible routes)

Next the routes from start to each of the parking lots and from each of the parking
lots toward the destination are computed. The best route (with the earliest arrival
time) is checked against the optimal solution. A comparison between the route without
parking lot restriction and the results of the optimal and heuristic algorithm is shown
in Table 5-3. It can be seen that the average deviation for the heuristic is about 30
minutes and increases slightly with an increased search horizon. However, one would
expect a better solution quality (and thus a lower average) as the number of potential
parking lots increases. However, the number of feasible solutions increases as well. It
seems that some of these far away parking lots give a bad solution, which cause a worse
average deviation. This can also be seen from the median which is generally low: 2
minutes for 120 minutes of search time. This indicates that many solutions provided
by the heuristic are of good quality, but few are not.

The composition of best routes is visualised in Figure 5-7. For a search horizon of 10
minutes, most routes are not possible to compute due to a lack of parking lots found: in
nearly 95% of the cases no parking lot is found for the route. Of the remaining routes
that did find one or more parking lots, most test instances do not have a feasible route.
From 20 minutes onward optimal routes are found. For 120 minutes of search time about
80% of the routes are optimal or near optimal (arrival time less than 10% difference).
Ecen with a seearch horizon of 120 minutes, some routes remain unfeasible. This is
caused by routes travelling through countries with limited parking lot availability. For
example, in Figure 5-3, the driving time between the optimal break location and the
optimal parking lot is 3 hours: resulting in not being found by the heuristic method
within 2 hours of search time.
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Figure 5-7: Composition of best results of heuristic, for each of the search ranges of 10 to
120 minutes. 100% corresponds to the 2467 feasible routes

5-4-6 Running time analysis

The Dijkstra Pareto search algorithm with and without parking restrictions, respec-
tively, requires some running time: 41.5 seconds (no parking) and 85.9 seconds (park-
ing) on average. It should be noted that the network is detailed (having 31 million
nodes) and all considered routes are long (that is, all routes require a break and thus
last longer than 4.5 hours of driving time). Result are shown in Table 5-4.

Table 5-4: Running time

Dijkstra Pareto search Time-dependent contraction hierarchies
No parking With parking 60 minutes 120 minutes

Average 41.5 sec 85.9 sec 0.46 sec 1.61 sec
Maximum 120.4 sec 167.1 sec 3.43 sec 7.19 sec

The running time of the heuristic method can be split into two parts: finding parking
lots using the backward Dijkstra, and computing all possible routes. The running time
of both components per search horizon is shown in Figure 5-8. For the computation
of routes most time (> 95%) is spent in computing the exact route (i.e. all nodes in
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the path) and checking the feasibility by running a (slow) non time-dependent Dijkstra
over this computed path. This could be significantly improved by implementing the
tracking of shift durations within the preprocessed contraction hierarchies.
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Figure 5-8: Composition of running time for the heuristic

Overall, a significant improvement in running time can be reached if using the heuristic
method. For a search horizon of 60 minutes the running time can be improved with a
factor 160, while 75 % of the solutions have a good quality.

If compared with Brauer [10] who did all computations using contraction hierarchies,
the optimal running time is comparable if scaled for the less-detailed network size he
uses: he got 14 seconds of average running time for a network of 7 million nodes.
Scaled for the 31 million nodes, this leads to a imaginary running time of 62 seconds
using Brauer’s algorithm, only a bit less than the Dijkstra Pareto search algorithm.
However, the heuristic provides significant improvement in running time, only requiring
0.46 seconds using a search horizon of 60 minutes: a speed-up of more than 100 times
for 80% chance on a route having less than 10% difference with the optimal route.
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5-5 Discussion

The lack of data on parking lots in some countries has its influence on the computed
routes. It is questionable whether there are indeed less parking lots suitable for trucks
or whether it is allowed to park your truck anywhere at the shoulder in these countries.
The computation of parking lots nearby is based on a backward Dijkstra search. An-
other method is computing the parking lots nearby by using geodesic distances. This is
a generally much faster method than Dijkstra queries. It is interesting to see whether
the geodesic distances would lead to the same quality of final routes computed.
The average influence in arrival time of incorporating parking lots is only 3 minutes.
It is questionable whether this is enough to include the exact planning of parking lots
in the used algorithms. Probably a better heuristic method would be to check where
the optimal break location is. If this location is not at a highway or if it is in a
country known to have little parking availability, then the route can be recomputed
with incorporating optimal break planning restricted to parking lots.

5-6 Summary

In this chapter it is investigated what the influence on the arrival time is if breaks are
restricted to parking lots. On average, this influence is only 3 minutes and does not
change the actual routes driven. However, for 20% of the analysed routes the difference
is much larger, leading up to 6 hours of additional travel time (on routes having a
maximum driving time of 9 hours). Large differences are caused by lack of (data on)
parking lots in specific countries and an optimal break location around other places
than highways.
Besides an optimal algorithm also a heuristic method is presented. This heuristic
searches for parking lots near the optimal break location and plans routes via these
parking lots. For a search horizon of 1 hour, 80% of the solutions have a deviation
of less than 10%. This suggests that the optimal parking lot is generally nearby the
earlier computed optimal break location.
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Chapter 6

Preferences in route choice

The second part of this thesis focusses on incorporating preferences in route planning.
It is assumed that the fastest route is not necessarily the best route according to the
goals of the logistics company. Therefore, this chapter identifies the aspects determin-
ing a preferred route. This is done by first identifying the goal and sub-goals of the
freight company in Section 6-1. Each of these sub-goals have their influences on routing
decisions. These are identified, leading to a list of attributes which should be taken
into account to compute the best route. Since the goal of this thesis is to identify the
influence on arrival time if incorporating preferences, also a good estimation on the
influence of these attributes is needed. Therefore, several choice studies are identified,
after which one is selected as the basis for the remainder of this thesis to compute best
routes.

6-1 Goals of a freight company

The freight company wants to maximize profit by transporting goods using their trucks.
Srinivas et al. [46] identified three factors which compose the overall profit of a truck
company:

1. Minimizing costs of the entire route plan. The costs of a truck company
consists of fuel consumption, vehicles, driver wages and more.

2. Driver satisfaction. A dissatisfied driver results in losses for the firm on the
longer term. A truck driver having the same goals as the company is most bene-
ficial.

3. Customer satisfaction. Delivering the right products on time satisfies the cus-
tomers. Satisfied customers are likely to put new orders at their current transport
company.
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These three factors together form the overall logistics performance, which is considered
as the profit of the company. Each of the three factors can be influenced by route
choices made. For example, costs can be minimized by avoiding toll roads. All three
factors arediscussed in the following sections, identifying the relevant route attributes.

6-1-1 Minimizing costs

Several costs are involved in operating a truck. The break-down of costs in the USA
is shown in Figure 6-1 [50]. It can be seen that the driver wages are the largest factor
(35%), followed by the fuel costs (34%).

Figure 6-1: Break-down of Average Marginal Costs per Hour in 2014 in the USA

Driver wages are directly influenced by the number of working hours of truck drivers.
For the context of this thesis it is assumed that driver wages are only influenced by the
duration of the travel time, i.e. minimizing the travel time leads to lower wages.
Costs spend on fuel is another factor that can be influenced by different route choices.
First of all, the fuel consumption can be reduced by minimizing the driving time.
Secondly, one can compute more energy efficient paths. Best paths are then computed
using the fuel consumption per link. Scora et al. [44] noticed that shortest paths
are generally also the most fuel saving paths, if neglecting road grades and heavily
congested roadways. Third, truck drivers can be motivated to change their driving
behaviour. Van der Voort et al. [55] presents a prototype fuel-efficiency support tool,
which gives in-vehicle advice. Eco-friendly techniques such as quickly shifting up gears
and anticipating on traffic conditions to avoid unnecessary braking are implemented.
With a simulator experiment it was shown that a fuel reduction of 16% could be reached
with the use of their prototype compared to normal driving. However, it is not within
context of this thesis to directly correct or anticipate on the behaviour of the driver.
This option is therefore not considered as an option to reduce fuel consumption by
making different route choices. The last way to reduce fuel consumption is by letting
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trucks cooperate by forming platoons [32]. By letting trucks drive closely after each
other using smart technology, fuel consumption is decreased. However, since the scope
of this thesis is just routing one vehicle, this option is not taken into account.
The costs of hiring or purchasing trucks, maintenance and paying the insurance is not
assumed to be influenced by choosing different routes.
The last category of costs are toll and license costs. By skipping a toll road, costs are
reduced. In a route choice experiment [47] it was shown that truck drivers are insensitive
to the inclusion of toll roads if they do not have to pay for toll costs themselves.
However, if they own their own truck, they are very sensitive to avoiding such toll
roads. However, if the time pressure is high – such as with transporting refrigerated
goods – this effect is not seen.
To conclude, three route attributes are important in minimizing costs in the perspective
of route choices:

1. Travel time

2. Fuel-consumption

3. Toll roads

6-1-2 Driver satisfaction

The second goal of a freight company is to ensure the satisfaction of the truck driver.
A dissatisfied driver might not do its ultimate best to reach the goals of the company
and deliver orders as fast as possible to make profit. A higher satisfaction of a truck
driver can be reached by incorporating its preferences during route planning.
For truck drivers it is important to be able to drive on comfortable roads. One aspect is
the type of road: truck drivers like to stick to highways [3]. Furthermore some analysis
showed the influence of road curvatures, but only for heavy goods vehicles [42].
Facilities along the route is a factor analysed by multiple studies. Experiments showed
that long-haul truck drivers prefer routes having enough parking availability and refu-
elling possibilities [42] [47]. Arentze et al. [3] also comes to this conclusion, but considers
restaurants instead of just parking lots.
Besides facilities, truck drivers also have preferences on the planning of visiting such
facilities, that is, the planning of breaks. Some truck drivers prefer sleeping during the
night, whereas others have strong preferences of driving during the nights, when roads
are mostly empty [51]. However, the time of the day at which the route is driven is
mostly the result of the starting time of the trip, which cannot be shifted in the context
of this thesis. Furthermore, some truck drivers prefer to split their breaks to prevent
sleepiness or to be able to rest longer at a more pleasant facility. Others just like to
drive as far as they get without splitting breaks or rests [52].
Some other factors analysed in experiments with truck drivers are not found to be
significant. Fuel consumption was not a reason to change routes [47], probably because
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fuel costs are paid by the company and not by the driver himself. For the same reason
also avoiding tolls was not found to be significant in the perspective of drivers [42] [47].
To conclude, three factors are important in obtaining a good driver satisfaction in the
perspective of route choices:

1. Road type

2. Parking lots

3. Planning of breaks

6-1-3 Customer satisfaction

The third goal of a company is to keep customers satisfied, by offering good services.
Coulter [12] identified five service dimensions for freight transportation:

1. Reliability (i.e. precision of predicted transit time)

2. Risk Avoidance (i.e. accident-free transportation, insurance)

3. Customer Service (i.e. quality of personnel)

4. Personalizing (i.e. personal service, knowing needs of customer)

5. Handling (i.e. efficient and effective handling of shipment)

Since this thesis focuses on routing of trucks and not on the process of handling cus-
tomers and loads, only the dimensions Reliability (1.) and Risk avoidance (2.) are of
interest for route choices and are discussed in the remainder of this section.
Many different definitions for travel time reliability exist, including different methods
for determining the travel time reliability of a certain route. What most definitions
have in common is that they all relate to the (shape of the) travel time distribution
[54]. The wider the time distribution shape is, the more unreliable the travel time is
considered. Four main methods of calculating the travel time reliability are [36]:

1. Statistical range methods. These use standard deviation statistics to present
the range of travel times the traveller might be presented to.

2. Buffer time measures. These indicate the extra percentage travel time which
a traveler should take into account to arrive on time with a high chance.

3. Tardy trip measures. These indicate the amount of trips that result in late
arrivals or the delay that occurs during the worst trips.

4. Probabilistic measures. These calculate the probability that travel times are
larger than some threshold depending on the travel time itself (for example the
median travel time + 20%).
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All methods calculate the travel time reliability for the complete trip, using the sta-
tistical data available for the travelled road segment. In a road network, variances in
travel times are mainly due to congestion. Roads having higher chances on congestion
result in a lower reliability of travel time. For route choices it is therefore assumed that
increasing arrival time reliability can be obtained by avoiding congestion, independent
of the actual method for computing the reliability.

In terms of customer satisfaction, risk entails safe and accident-free transportation.
Although roads get safer and fatalities with passenger cars decrease, this is not the
case for truck drivers. Reasons for the constant number of injuries are given by Craft
[13]. They concluded that fatigue of drivers is responsible for 13% of the truck crashes
overall. A lot of attention has been given to reduce this sleepiness of drivers.

Chen et al. [11] showed that having two or three breaks instead of one break in a 10-
hour driving period, decreases the crash risk significantly. Although this study was
performed in the USA, having different drivers legislation rules than Europe, it is still
possible to take some of these findings into account in obtaining risk avoided routes,
since splitting of breaks is also allowed in Europe. Pylkkönen et al. [41] focussed their
research on sleepiness itself instead of actual accidents. They found out that the first
night of driving had a higher chance of sleepiness than the consecutive nights. The
morning shift was safest, directly followed by the day and evening shifts. This would
imply that the best decision concerning risk avoidance would be to avoid driving at
night.

The risk of a truck driver can also be reduced by avoiding certain countries or regions.
Recently the Calais "jungle" of migrants caused lots of problems of migrants trying to
clamp on trucks secretly to travel toward Great Britain [49]. This can be a reason
for truck companies to avoid routes along Calais if not necessary. Using another ferry
might provide an alternative. Also other countries or road sections might be less safe
and better be avoided to obtain a higher safety level.

To conclude, two factors are important in keeping customers satisfied, in the perspective
of route choices:

1. Congestion

2. Risk

6-1-4 Conclusion

The three objectives of minimizing costs, ensuring driver satisfaction and customer
satisfaction lead to a list of route attributes that are important to consider when com-
puting routes that are in line with the goals of the company. These are shown in Table
6-1 and used in the next section.
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Table 6-1: Route attributes important for maximizing profit

Costs Driver satisfaction Customer satisfaction
Travel time Road type Congestion
Fuel consumption Parking lots Risk
Toll roads Planning of breaks

6-2 Choice experiments on route choice

The goals of the truck company and corresponding attributes in route choices are given
in Table 6-1. However, the goal of this thesis is to analyse the influence on arrival time
of a generally preferred route. Therefore, it is relevant to know the relative importance
of each of these attributes. This could be obtained by running an experiment where
participants can rate the attributes. However, it is not into the scope of this thesis to
perform such experiments. Therefore, alike experiments are identified after which one is
selected that covers most attributes and is best usable in a route planning application.

6-2-1 Experiments and their attributes

Five surveys are found that analyse routing decisions: Arentze et al. [3], Rowell et al.
[42], Sun et al. [47], Hess et al. [30] and Prato et al. [40]. Their methods, participants
and attributes are described in this section.
Arentze et al. [3] performed a stated choice experiment for the Dutch Ministry of Trans-
portation among 100 drivers active in the Eindhoven region. In a stated choice experi-
ment the researcher itself constructs a set of hypothetical choice alternatives, according
to a list of attributes and their possible values. The participants choose the alternative
which they prefer most from a choice set. Using this technique a set of reliable param-
eters for each of the attributes in the experiment is obtained. These parameters are
used in a utility function that gives the score of a route giving its properties. The route
having the highest score within a set of routes is assumed to be the most preferred one.
The research included the following route attributes: travel time, congestion, road
category, road pricing, passing through urban areas and the presence of a restaurant
facility. To make the choice alternatives more realistic, context of the situation is
provided. Context variables that were included are travel time, time of day and size
of truck. Including these context variables increases the validity of the model, but the
effect should be measured to be able to generalize choice decisions made. The travel
time context variable takes values of at maximum 30 minutes, thus only short routes
are considered in this experiment. An example choice alternative including the context
is shown in Figure 6-2.
Rowell et al. [42] did not conduct a stated choice experiment, but asked their respon-
dents instead to rate items that are potentially influencing their routing decisions. They
choose this approach to be able to easily obtain a large set of responses. The goal was
not to determine how the respondent’s priorities vary, but which priorities were com-
mon and different among the respondents. The test group consists of 850 truckers in
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Figure 6-2: Example choice alternative of Arentze et al. [3]

the Washington area. Attributes taken into account concerning routing decisions were
travel distance, time, costs, avoiding congestion, avoiding tolls, road grade and cur-
vatures, refuelling locations and availability of support along the road. The data was
analysed using an Item Response Theory (IRT) and a Latent Class Analysis (LCA). IRT
results in attributes that are most differentiating in the respondent’s replies, whereas
LCA groups respondents into classes.
Sun et al. [47] uses again another survey method. They asked how often a certain
factor influences the decisions of a participant in its route decisions. Participants rated
four factors: travel time predictability, availability of parking locations, the presence of
fuel stations and the effect on fuel consumption. The test group consisted of 252 truck
drivers that were asked to fill in the survey at rest areas in the USA.
Hess et al. [30] uses GPS data to analyse route choices made by 709 heavy goods vehicles
in England. Unlike the previous three experiments, this is a revealed preference study,
meaning that no surveys are used that might bias the results. The interest of the
experiment lies mainly in the usage of different road types in England. Therefore, only
travel time and road type are included as attributes in the experiment.
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Prato et al. [40] also runs a revealed preference study. The used 13000 observations
around the Copenhagen area in Denmark and analysed travel time, congestion, costs,
left turns and right turns. Disadvantage is that the research is focussed on car drivers
instead of truck drivers. It is questionable what the effect of vehicle type is on the
resulting parameter values.
The five studies and their attributes are compared with each other in terms of suitability
for this thesis in the following section.

6-2-2 Overview of experiments

The five analysed experiments and their included attributes are shown in Table 6-2.
The goal of this section is to select one of the studies that best represents the preferences
identified in this chapter and is most usable in the next chapter where it is used for
actually planning routes.

Table 6-2: Five experiments on route choices and their included attributes. Stated prefer-
ence studies are marked as SP, revealed preference studies as RP.

Arentze Rowell Sun Hess Prato
SP SP SP RP RP

Costs Travel time X X X X X
Toll roads X X X
Fuel-consumption X

Driver Road type X X X
Parking lots X X X
Planning of breaks

Customer Congestion X X X X
Risk

A Revealed Preference (RP) study would be the best to use since no survey bias is
present. Furthermore, preferences are obtained from real routes in the road network
and therefore these represent existing options. However, the identified revealed prefer-
ence studies contain only little number of attributes. A stated preference study seems
therefore the option to go for.
Arentze et al. [3] and Rowell et al. [42] include the most attributes. Only fuel-efficient
driving, break planning and safe driving are not included. It seems plausible to select
one of the two.
Arentze et al. [3] conducted a stated choice experiment, whereas Rowell et al. [42] used
Item Response Theory to analyse their data. A stated choice experiment is more prac-
tical in usage when it comes to computing routes due to the resulting exact parameters
instead of a list of most discriminating attributes. Furthermore Rowell et al. did anal-
yse toll costs, but did not include these in their results due to a high correlation with
travel time. This reflects that in this experiment truck drivers do not have to pay toll
themselves, making them insensitive to additional pricing. Another advantage of the
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study of Arentze et al. is that the experiment was run in the Netherlands instead of
the USA, which is in line with the European scope of this research.
Therefore, the resulting parameters of Arentze et al. are used in the next chapter to
compute actual preferred routes. From now on, fuel-efficient driving, break planning
and safe driving is therefore omitted. Since Arentze et al. included urban areas in their
experiment, this attribute is included in further analysis as well. All used parameters
are shown in Table 6-3.

Table 6-3: Values of parameters taken from Arentze et al. [3]. Effect coding is used to
express the parameters, resulting in 2 parameter values for each 3-level attribute. Section
7-2-1 contains more information on effect coding.

βT ravelT ime -4.579 (log)
βroad 1.132 (Highway) -0.799 (Local roads)
βurban 0.450 (No urban area) -0.669 (Urban area with school)
βcongestion 1.512 (No congestion) -0.989 (Long delay)
βpricing 1.036 (No pricing) -1.053 (With pricing)
βrestaurant -0.127

6-3 Summary

In this chapter three goals of a truck company are identified: minimizing costs, main-
taining a good driver satisfaction and keeping customers satisfied. Each of these three
aspects has its own influence and can be affected by different routing objectives. Since
the objective of this thesis is to know the influence on the arrival time if these at-
tributes are incorporated, exact parameter values giving the relative influence of each
of these aspects should be known. Because of performing choice experiments is not
one of the goals of this thesis, five earlier performed studies are analysed as potential
candidates for providing parameter values. The stated choice experiment of Arentze
et al. [3] includes most earlier identified attributes and is best suited, and is therefore
selected to use in the next chapter. It should be noted that with the selection of this
study, the aspects of fuel-consumption, break planning and safe driving are omitted
from obtaining route choices.
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Chapter 7

Incorporating preferences in
time-dependent earliest arrival

routes

The goal of this thesis is to analyse the difference in arrival time between the best
and fastest route. Therefore, the previous chapter identified the route attributes that
should be taken into account when obtaining such a best route, from the viewpoint of
a logistics company. The stated choice experiment of Arentze et al. [3] best represents
these attributes and is therefore used as a basis in this chapter.
This chapter starts with the introduction of a method to compute a route based on the
utility function. Next, the effect coded parameters of Arentze et al. are converted to
dummy coding, weighted and calibrated such that the utility function is usable for the
computation of routes. After that, in Section 7-4 fastest routes are compared to best
routes according to the utility function. In Section 7-5 a sensitivity analysis is conducted
to test the influence on arrival time of each of the considered route attributes.

7-1 Using utility functions to compute the best route

Arentze et al. [3] conducted an experiment analysing the influence of travel time, road
type, passing through urban areas, congestion, pricing, bonus and restaurants along the
routes. This results in a utility function which expresses the utility for a given route,
as follows (with τ the number of minutes travelled):

U = βT ravelT ime · log(τ) +βroad +βurban +βcongestion +βpricing +βbonus +βrestaurant (7-1)

There are mainly two ways how this utility function can be used to compute the best
route according to the utility function:
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1. Score all routes of a precomputed set of routes, select the one having the highest
utility

2. Change edge weights in such a way that they represent (dis)utility, run a Dijkstra
algorithm on the modified graph maximizing the utility

The first method lies most in nature with the conducted stated choice experiment, where
the participant can choose between several options of routes from start to destination.
Therefore, the set of routes needs to be computed on beforehand. Previous studies
used for example the K-shortest path algorithm to compute the set [26]. Problem with
K-shortest path is that this generally does not provide enough good routes, i.e. the
second shortest path is a path where one leaves the highway via an off-ramp and enters
the highway again at the next on-ramp. It is not likely that such a path provides a
good solution, which means that lots of paths need to be computed before the best
path is found. There are solutions to overcome this problem by using algorithms such
as Google Maps is using to compute multiple routes as shown in Figure 7-1. Their
algorithm behaves like the Alternative Routes algorithm introduced by Abraham et
al. [2]. The computation of the set of routes is completely based on travel time and
overlap of the routes. This method therefore creates a biased selection of routes. A
route more or less identical to the fastest route but with a small detour to visit a truck
parking is not likely to be contained in this resulting set of routes. Also other methods
for computing a set of routes seem to give biased results. It can be concluded that
there are no suitable methods available that can create a good set of alternative route
usable for reflecting preferences of different logistics companies.

Figure 7-1: Example of alternative routes as presented by Google Maps for a trip from
Zoetermeer to Alphen aan den Rijn

The second method of computing the best route according to a utility value per link,
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therefore seems more promising. However, lots of modifications need to be made such
that the utility function can be used as an edge weight function. Currently, the utility
function expresses a value for a complete route. This function should therefore be
converted in such a way that it is possible to obtain a utility contribution per link.
It should be noted that using this method a value for each of the attributes is assumed
for each of the links. For example, a link is considered to be a highway, a main road or
a local road and an attribute value is added to the utility accordingly. This is different
than Arentze et al. assume in their experiments. They assume that a complete route
is associated with one property: that is, it either travels along the highway, main
roads, or local roads, not something in between. Interestingly, the presented choice
alternatives do consist of multiple road types. For example, route 2 in the choice
alternative shown in Figure 6-2 travels along Provincial and partly local road. The
route is coded as Provincial road. A route marked as Provincial road therefore travels
mainly along provincial roads instead of only along these roads. Although this might
result in differences between the method used in this thesis and the actual experiment,
it is assumed to better reflect the actual routes taken.
A requirement for an edge weight function is linear additivity, implying tat the value
of a path (for example, the arrival time) can be computed by summing up the values of
edges on this path (for example, the travel time). However, the utility function as used
by Arentze et al. is not completely linear additive: for travel time a logarithmic function
is used. Therefore it is not possible to assign a certain (static) utility contribution per
link, since it matters what the trip duration is before driving across this specific link.
This is easily fixed by not only maintaining the total disutility for each node, but also
the travel time until that node. If the utility function of an edge (x, y) without the
travel time component is referred to as util(x,y), the total utility u can be calculated
using a combination of the util(x,y) function and the travel time function f(x,y), as shown
in Figure 7-2. This procedure can be implemented using Dijkstra’s algorithm, where
nodes to be settled are sorted on maximum utility value.

x y
f(x,y)(τ)

util(x,y)

tt : τx
u : Ux

tt : τx + f(x,y)(τx)
u : Ux + util(x,y) - log(τx) + log(tt)

Figure 7-2: Computing the utility of node y originating from node x. First, the travel time
is updated according to the travel time function f(x,y),. After that, the utility u is updated
by adding the linear additive part of the utility edge weight function, followed by updating
the value by the new logarithmic value of the travel time.

What is left, is the conversion of the utility function valid for a complete route, to a
utility contribution per link. This is explained in detail in the next section.
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7-2 Computing the utility contribution per link

The utility function should be converted in such a way that it represents a utility
contribution per link travelled. Therefore the used coding scheme of the utility function
is explained in detail in this section. The effect coding used by Arentze et al. [3]
is converted to a dummy coding to express absolute (dis)utility instead of relative
(dis)utility. Next the attributes are weighted and scaled such that it is usable in a
routing application.

7-2-1 Dummy and effect coding

The earlier presented utility function included parameter values for each of the at-
tributes, for example βroad for the road type. However this does not represent just
one value: there are different betas, depending on the type of road. To express these
multiple options, coding schemes are used. In most stated choice experiments, this is
done using dummy variables and dummy coding. A dummy variable has the value of 0
or 1. For road type, this can be represented using the following equation:

βroad = D1 ∗ βhighway +D2 ∗ βmain +D3 ∗ βlocal (7-2)

In this example, D1 is 1 if the specific route is a highway, 0 otherwise. D2 likewise
represents whether the route consists of main road or not, D3 whether it represents a
local road or not. The sum of dummy variables D1, D2 and D3 is always one, such that
each route can only have one property.
Arentze et al. [3] uses a different coding scheme, called effect coding. In effect coding
dummy variables are used that can take 3 instead of 2 values: besides 0 and 1 also -1.
As a result, only 2 dummy variables are needed to code the same number of attribute
levels, as is shown in Table 7-1.

Table 7-1: Effect and Dummy coding

Effect coding Dummy coding
E1 E2 Parameter D1 D2 D3 Parameter

Highway 1 0 γhighway 1 0 0 βhighway

Main road 0 1 γmain 0 1 0 βmain

Local road -1 -1 -γhighway - γmain 0 0 1 βlocal

The parameter values of the three attribute levels sum up to one. However, the effect
coding now only expresses a relative effect on an average utility value. This average
utility value is the constant Croad in the effect coding formula, that is:

βroad = Croad + E1 ∗ γhighway + E2 ∗ γmain (7-3)

In case of road type, this constant is a negative value, in such a way that the resulting
βroad is always negative, that is, always results in a disutility, even if driving over the
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highway. In the context of trucks it is assumed that driving is never done for pure
pleasure and thus always results in some disutility, albeit small.
The use of this constant and the fact that the parameters do not express absolute
(dis)utility but relative (dis)utility, make the coding useless to directly use in a routing
application. By maximizing the utility, this might result in non-negative cost cycles,
as shown in Figure 7-3.

uU

w

V
0.5 minute

0.5 minute0.5 minute

Figure 7-3: Example graph containing a cycle. If we assume the roads are local roads
(parameter value −0.799) in an urban area (0.219), without congestion (1.512) or pricing
(1.548) and no restaurant (−0.127), then driving this cycle gives an increase in utility of
−4.579 · log 1.5 − 0.799 + 0.210 + 1.512 + 1.548 − 0.127 = 1.54. Driving this cycle thus
increases utility, which results in endlessly driving cycles without reaching the destination
when optimizing for a maximum utility.

If the constant values for each of the attributes are known, one could easily overcome
this problem by subtracting the constant value from the corresponding parameter val-
ues. However, these values are not given by Arentze et al. [3]. Therefore, first the effect
coded parameters are converted to dummy coded parameters, and after that the values
are weighted in such a way that the importance of each of them is reflected correctly
in the resulting utility function.

7-2-2 Effects to dummy coding

A method to convert an effect coding to a dummy coding is introduced by Daly et al.
[14]. First an additional dummy variable is added to the effect coding, such that the
number of dummy variables for effect coding corresponds with the number of dummy
variables needed. This is done without loss of generality if the newly added parameter
is set to zero, as shown in Table 7-2.

Table 7-2: Introduce additional variable for effect coding

E1 E2 E3 Parameter
Level 1 1 0 0 γ1
Level 2 0 1 0 γ2
Level 3 -1 -1 1 -γ1 - γ2 − γ3
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Next, the effect coded parameters are converted to dummy coded parameters by setting
the reference level β3 to 0, and determining β1 and β2 using the following formula:

βi = γi +
∑
l<K

γl (7-4)

With β the dummy coded parameter, γ the effect coded parameter and K the number
of attribute levels.
For road type, this gives the following parameters:

Table 7-3: Conversion from effect to dummy coded for road type

Effect coded Dummy coded
Highway γ1 = 1.132 β1 = γ1 + (γ1 + γ2) = 2.23
Main road γ2 = −0.333 β2 = γ2 + (γ1 + γ2) = 0.466
Local road −γ1 − γ2 − γ3 = −0.7999 β3 = 0

The resulting dummy coded parameters correctly reflect the differences between each of
the attribute levels. However, the parameters still do not reflect the actual disutility of
an attribute and their relative influence. Therefore the parameters need to be weighted.
After that a scaling procedure should take place to determine the utility contribution
relative to the actual travelled distance or time.

7-2-3 Weighting of attributes

The previous section explained the process from effect coded parameters to dummy
coded parameters. The parameters now correctly represent the relative differences in
utility between each of the attribute levels. However, the start level is still unknown,
that is, the actual disutility received such that it is correctly reflected that certain
attributes are more important than other attributes. Therefore, each of the attributes
needs to be weighted by subtracting a certain value.
Actually, what needs to be computed is the relative value of each of the attributes
compared to another attribute. This process is comparable to obtaining priors for a
choice study. Bliemer et al. [9] gives several options for obtaining such prior values, of
which using revealed preference data is the most common. Important to realise is that
parameter coefficients of other studies cannot be used directly due to scale differences.
Instead, ratios of such coefficients to a common attribute should be used. This common
attribute should appear in each of the studies analysed. For routing, travel time is an
attribute that is included in every study. Therefore, this attribute is selected as the
common attribute. The revealed preference studies used to identify relative differences
compared to the travel time are the studies earlier explained in Section 6-2-1.

Roadtype

Preferences for roadtypes are analysed in the revealed preference study of Hess et al.
[30]. They developed a route choice model for heavy goods vehicles using GPS data in
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the United Kingdom. They identified three main road types: motorway, A-road and
B-road. These are assumed comparable with highway, main road and local road as used
in the experiment of Arentze et al. [3]. For motorways they found a parameter value
of -0.052, with a logarithmic time parameter value of -6.195. Scaled according to the
time parameter value of Arentze et al. of -4.579, this leads to a utiliy value of -0.034
for highways. Given the highway dummy coded value of 2.23 (see Table 7-3), each of
the attribute levels need to be adjusted with a constant of -2.264, leading to attribute
level values of -0.1254 for main road and -0.1494 for local roads.

Urban

For travelling through urban areas no revealed preference data is found. However, there
exists a strong correlation between road type and urban areas in the used road networks
of HERE [29]. A highway is never considered to drive through urbanized areas, whereas
most local roads do travel through urban areas. Therefore, the prior value for road type
as given by Hess et al. [30] is used for urban areas as well.

Congestion

Prato et al. [40] analysed the route choice behaviour of car drivers given a GPS dataset.
Although this study considered car drivers instead of truck drivers it is assumed that
it still reflects the value of congestion properly – in absence of revealed preference data
of trucks. Prato et al. computed the value of congested time compared to free flow
travel time. He concluded that the value of congestion is 1.46. That is, 1.46 minutes of
congestion is rated equally as 1 minute of free flow travel time. This value can be used
to weight the long delay attribute level. This attribute level of Arentze et al. means
that there is a chance that the route takes up to twice as long. This leads to a disutility
of a long delay of -0.3066 per minute of travel time. Corrected for the average travel
time of the routes in the choice experiments, results in a parameter value of -4.8820

Pricing

Besides congestion Prato et al. also analysed the value of time. They found a value of
time of e17.31 per hour. The toll roads in Europe are priced e0.22 per kilometer on
average. This means that avoiding 1 kilometer of toll is worth 0.76 minute of additional
driving, equal to an utility contribution of -0.1596. Corrected for the average travel
time of the routes in the choice experiments, results in a parameter value of -2.5413.

Restaurant

No revealed preference studies are found on the presence of a restaurant along the route.
Arentze et al. uses one value for a restaurant: there is one along the route, or there is
none. The associated utility is very little and not found significant. It is questionable

85



7-3 Calibrating the utility function Incorporating preferences in time-dependent earliest arrival routes

whether the presence of a restaurant is indeed not important for route choice, or whether
it is not important in the choice alternatives Arentze et al. analysed. The used choice
alternatives are short: 10 to 30 minutes. It seems reasonable that in such a short trip
no stops are made by a truck driver halfway the route, thus the presence of a restaurant
does not matter. For longer routes it is assumed that a restaurant does provide some
advantage, if it is located at a spot where a break must be taken according to the
drivers legislation. Therefore a restaurant is awarded with a high utility contribution if
it is located on the route after 3 to 4.5 hours of driving time. Before or after that time
limit, generally no break is taken. In this thesis a utility contribution of 0.01 is used for
a restaurant located at a not so favourable time, 1.05 for a favourable time. A utility
of 1.05 corresponds to 10 minutes of additional driving time. During the sensitivity
analysis it is discussed whether the actual chosen values matter much.

7-2-4 Overview of parameter values after converting and weighting

The weighing of parameters according to prior values obtained from revealed preference
data leads to parameter values of each of the attribute levels as shown in Table 7-4.

Table 7-4: Parameter values of utility function, after conversion to dummy coding and
weighting accordingly

βT ravelT ime -4.579 (log)
βroad -0.0344 (Highway) -0.1254 (Main roads) -0.1494 (Local roads)
βurban -0.0344 (No urban area) -0.0464 (Urban area) -0.0924 (Urban area with school)
βcongestion -2.828 (No congestion) -4.499 (Medium delay) -4.8820 (Long delay)
βpricing -0.057 (No pricing) -2.5413 (With pricing)
βrestaurant 1.05 (Visited between 3 and 4.5 hours of driving) 0.01 (Other)

7-3 Calibrating the utility function

The weighted utility function parameters shown in Table 7-4 cannot be used directly
as edge weights. First of all, the parameter values should represent a value per link.
Therefore, the values need to be scaled using the travel time or distance of the choice ex-
periment. Secondly, the travel time is modelled as a logarithmic function in the results
of Arentze et al. [3], whereas other choice studies use a linear travel time component.
In Section 7-3-2 the difference between these two options is analysed.

7-3-1 Scaling for travel time or length

The utility contributions of road type, presence of urban area, congestion, pricing and
restaurant are given for the complete route by Arentze et al. [3]. If routes are computed
using the method as explained in Section 7-1, a utility contribution need to be given
for each link. Therefore, the utility contributions need to be scaled to represent a value
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per link. With scaling the utility function it is meant that the parameter values shown
in Table 7-4 are divided by the average travel time or distance of the choice experiment
such that a utility contribution per kilometre or minute is obtained.

Especially for longer routes a distance scaling gives strange results: the best routes
are routes having minimum distances instead of representing a combination of multiple
route aspects. An example is shown in Figure 7-4. The routes all travel along non-
priced roads and have identical results for urbanized areas and road types. Differences
are found in congestion, travel time and length of the route. Scaling for distance (orange
route) leads to a short route in terms of distance, but at the costs of about 40 minutes
of additional travel time while the chance on congestion is increased. The purple route
has 10 minutes of additional travel time compared to the fastest route, for a decreased
chance on congestion. Logically, the blue route seems to be the best one: a little bit
of additional travel time results in less congestion. The orange route does not seem to
be the best route at all: it takes additional travel time and results in more congestion
than the fastest route.

Fastest:                              
602 km 
8:43 traveltime 
5 km congestion Utility - scaled on time:    

616 km 
8:53 traveltime 
3 km congestion

Utility - scaled on length: 
591 km 
9:25 traveltime 
16 km congestion

Figure 7-4: The fastest route, the best utility route using travel time scaling and the best
utility route using distance scaling. The last part toward the destination is not shown.

Due to the varying lengths of routes used in the simulations of this thesis, it matters
a lot whether utility contributions are scaled according to distance or travel time.
Scaling for distance results in short routes that do not necessarily provide good routes.
Scaling for travel time seem to result in better options. Therefore, in the remainder of
this thesis the utility contributions are scaled according to travel time to calculate the
respective value of travelling a link. Results in differences in arrival time when scaling
for distances instead, are given in Appendix B.
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7-3-2 Logarithmic or linear travel time utility contribution

Arentze et al. [3] uses a logarithmic function to represent the travel time. The idea
of using a logarithmic function is that people care less on travel time differences if
they drive for longer periods. For example, a detour of 5 minutes is expected to have
a larger effect on the total utility of a trip if the total trip duration is 30 minutes
compared to a total trip duration of 5 hours. A logarithmic function expresses this
neatly. This method especially works well with two distinct ranges of travel times,
such as in the experiment of Arentze et al. where a short route (15 km, 10 minutes)
and a long route (30 km, 30 minutes) are compared with each other. The fit of the
logarithmic function than yields a large disutility contribution per minute for a short
trip compared to the disutility contribution of a long trip. However, this might result in
incorrect modelling if the routes become much longer than 30 minutes of driving time,
since other attributes are modelled linearly. For example, driving 1 kilometer along a
toll road compared to a non-paid road results in a disutility of −0.156. After 6 hours
of driving, this same disutility is reached with 12 minutes of additional driving time
(i.e. −0.156 = −4.579 ∗ log(x) − −4.579 ∗ log(360), yields x = 372). With a toll price
of 22 eurocent per km, this corresponds to a value of time of only e1.10 per hour! Far
too low to be a reasonable value compared to an average value of time of about e17
per hour [40].

A solution is to model the travel time as a linear function. It is assumed that the
values for utility contribution for 10 and 30 minutes (that is, the time limits used in
the experiment of Arentze) are correctly measured. Next a line is drawn between these
points to obtain a linear travel time utility contribution function.

Due to the much longer routes used in this thesis compared to the experiment of Arentze
et al. the linearized travel time utility contribution function is used. For convenience,
results for influences on arrival time with the logarithmic travel time function are added
in Appendix B.

7-3-3 Final parameter values

After the conversion from effect to dummy coding, weighting, scaling and using a linear
travel time component instead of a logarithmic one, the final parameters representing
the disutility per minute of travel time are shown in Table 7-5.

Table 7-5: Values of utility contribution per minute of travel time, as used in the simulations

βT ravelT ime -4.579 (log)
βroad -0.0138 (Highway) -0.1048 (Main roads) -0.1288 (Local roads)
βurban -0.0138 (No urban area) -0.0258 (Urban area) -0.0718 (Urban area with school)
βcongestion -0.1776 (No congestion) -0.2826 (Medium delay) -0.3066 (Long delay)
βpricing -0.0036 (No pricing) -0.1596 (With pricing)
βrestaurant 1.05 (Visited between 3 and 4.5 hours of driving) 0.01 (Other)
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7-4 Simulations

The utility function of Arentze et al. [3] representing a route preferred by a truck
company is converted in the previous sections in such a way that a Dijkstra algorithm
can be run on a road network with adjusted edge weights in order to compute the route
having maximum utility.

7-4-1 Test set-up

In order to compute the most preferred route, the road properties need to be known to
compute resulting utility contributions. The map of Europe of HERE [29] consisting
of 31 million nodes and 66 million edges is used. This map includes meta data which
is used to obtain the relevant road properties.
Each link in the map of HERE has a specific road type. Motorways and A-roads are
mapped to Highways, B-roads are mapped to Main roads and Regional and Local roads
are mapped to Local roads. For each road type it is indicated whether it is in an urban
area or not. Besides the identification of being an urban area or not, Arentze et al.
[3] also makes a distinction between urban areas with and without schools. Due to
lack of data on schools, it is assumed that a local road through a city is mapped to
Urban area with school. All other road types through urban areas are mapped to Urban
area, the rest to No Urban area. Values of average travel times provided by HERE
are used to compute whether there is a chance on a medium or long delay. A Medium
delay is considered to have a travel time which is up to 50 % longer. If the delay
lasts even longer, it is considered to be a Long delay. Whether a road is a toll road or
not is included in the dataset of HERE and used directly. Data on the availability of
restaurants is taken from the Truck POI dataset used in Chapter 5.
Road blocks are identical compared to the test set-up in Section 4-5-1. Also drivers
legislation rules are identical (i.e. at maximum 4.5 hours of consecutive driving followed
by a break of 45 minutes). A subset of 175 randomly selected feasible routes is taken
from the original subset of 10000 routes. The average travel time of these routes is 6
hours and 47 minutes. All tests are run on a laptop, having 16GB memory and an Intel
Core i7-3740QM 2.70GhZ processor with 4 cores.

7-4-2 Verification of results

First of all, it is checked whether utility best routes are never faster than the fastest
route – which should not be possible. This is indeed the case. Next some routes are
plotted on a map and compared with the fastest route. Routes are checked according
to the linear travel time function and other attributes scaled with travel time instead
of distance. This leads to a few examples which give insight in the resulting choices
due to the usage of the utility function.
A first example is shown in Figure 7-5. This shows a situation in which the best route
is 7 minutes longer than the fastest route, while avoiding toll road. The toll paid in
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Poland for this section for a normal truck is about e6.76, a bit less than the assumed
average of 22 eurocent per kilometer in Europe. Given the value of time of e17.31 [40],
a truck company would allow an additional driving time up to 23 minutes to avoid such
a toll road segment. The 9 minutes additional travel time as shown in this example is
therefore perfectly acceptable and correct.

Fastest route:
41 minutes, 58.5 km
42.4 km toll road (€6,76)

Uitility best route:
48 minutes, 57.4 km
no toll road

Figure 7-5: Example difference between the route which is fastest (purple) and best accord-
ing to the utility function, i.e. 7 minutes of additional driving time is acceptable for saving
e6.76.

A second example is shown in Figure 7-6a. This example focuses on urbanized areas.
The route having the highest utility is slightly longer (2 minutes). Avoiding an urban
area results in a increased utility of 0.012 per minute, far less than the utility con-
tribution of -0.21 per minute travel time. However, not only urban area is avoided:
these roads through Antwerp are heavily congested, giving an additional 0.129 utility
contribution per minute of travel time. This results in a total utility increase of 0.705,
thus worth 3.5 minute of additional travel time.

The third and last example (see Figure 7-6b) deals with road types along the route. The
fastest route travels partly across main roads (30 km). Furthermore it drives along 59
km of toll road, whereas the utility best route only drives 3km on such roads. Avoiding
56 km of toll road is worth 42 minutes of additional travel time, which would not be
enough to choose for this longer route of 50 minutes. However, also 30 km of main road
is avoided, worth another 13 minutes of additional driving time.

The checks and examples justify the correct working of the algorithm and conversion
of the utility function. In the next sections, the average influence on the arrival time
is shown.
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Fastest:
2:34 traveltime

Avoid 5 km urban area 
of Antwerp: 
2:36 traveltime

(a) Avoid congested urban
area through Antwerp

Utility best:
Only highway
3 km toll road
5:40 traveltime

Fastest:
Combination highway/main road
59 km toll road
4:50 traveltime

(b) Avoid main road and toll road

Figure 7-6: Two examples of differences between fastest and utility best route

7-4-3 Influence of preferences on the arrival time

For each of the 175 routes the best route is computed and compared with the travel
time of the fastest route. The results on the differences in travel time are shown in
Table 7-6. The relative influence in travel time is obtained by dividing the difference in
travel time by the total duration for each of the routes. This leads to an average relative
increase in travel time of 1.8%. In absolute numbers, this corresponds to a 9 minute
difference on average. The route having largest deviation has a relative difference in
travel time of 18 %. This route also had the largest absolute difference in travel time:
109 minutes. Such a large difference in travel time is mainly caused by avoiding long
segments of congested and toll roads. The example in Figure 7-6 already showed that
avoiding 56 km of toll road is worth 42 minutes of additional travel time. Likewise, 109
minutes of additional travel time equals skipping 145 km of toll road.

Table 7-6: Differences in travel time between fastest routes and routes with maximum utility

Relative Absolute
Average difference 1.8% 9 min
Minimum difference 0 % 0 min
Maximum difference 18 % 109 min
Standard deviation of difference 3% 18 min
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In 17 % of the 175 tested routes, no difference is found between fastest and most
preferred route as shown in Table 7-7. Another 29 % of the routes have a relative
difference of less than 0.1 %. In 11 % of the planned routes the difference between
fastest and preferred route is more than 5 %.

Table 7-7: The distribution of differences in travel time between the fastest and best routes

Percentage of total number of routes
No difference 17 %
0 to 0.1% 29%
0.1 to 1 % 22 %
1 to 5 % 21 %
More than 5 % 11 %

7-4-4 Influence of preferences on route composition

Besides the influence on the arrival time, it is interesting to see the difference in road
properties. This is shown in Figure 7-7. The fastest route consists on average of 97%
highways and 3% of other road types. The best route consists for 98% of highways,
reflecting a small difference. Larger differences in composition of the route can be found
for toll roads. The fastest routes travels on average a 9 % longer distance along toll
roads than the preferred routes.
Interestingly, the utility best route travels more through urban areas than the fastest
route: 3%. It is assumed that this is caused by avoiding toll roads or congested roads.
A toll road can for example sometimes be avoided by taking a route through the city
centre. This is also reflected by the used parameter values (see Table 7-5): travelling a
toll road results in far more disutility than travelling through an urban area.
More restaurants are found along congested and toll roads. The influence of the restau-
rant parameter is considered too little to affect the choice of route. For example, one
rather skips 8 km of toll road than driving along a restaurant at this toll road. There-
fore, best routes have a 40 % lower chance of facing a restaurant along the route.

7-5 Sensitivity analysis

The process of converting and scaling the parameters might not result in realistic param-
eters. Especially the selection of prior values for weighting is a critical element having
much influence on the resulting parameters. Furthermore, the used choice study of
Arentze et al. [3] might not be applicable for long journeys as used in the simulations
of this thesis. Whereas Arentze et al. uses routes of 10 or 30 minutes in length, the
considered test set contains routes with an average travel time of more than 6 hours.
Truck companies might have stronger or less stronger influences of such longer trips
compared to the shorter trips.
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Figure 7-7: Difference in composition of routes of utility and fastest routes. Shown is the
average percentage of a route, i.e., the fastest route consists of 18% of toll roads whereas the
utility best route consists of 9 % of toll roads.

Therefore, this section tests several tastes of the used preference parameter values. For
each attribute, the parameter value is set to -100% (no influence), -50%, -25%, -10%,
+10%, +25%, +50% and +100% (twice as much influence). The other attribute values
are kept equal. This allows to see the difference in travel time if a truck company
has a (less) stronger preference for each of the attributes. If an attribute has multiple
levels (i.e. for road type: highway, main road, local road) with according parameters,
then all parameters are increased or decreased with the same percentage. The relative
importance and direction of attribute levels is kept identical: for example, it is not
tested what a route would look like if some one dislikes highways and prefers to drive
along local roads only.
For the sensitivity test, 25 randomly selected routes are computed for each of the 48
parameter sets. Next, the travel time is compared to the travel time of the original
preferred route. The average percentual difference between these two travel times is
shown in Table 7-8. Table 7-9 show the average percentual overlap between the newly
computed and original best route.
First of all, the direction can be concluded: being more sensitive (+100%) for travel
time results in a shorter route. Being more sensitive for pricing results in longer routes
(i.e. one is willing to take additional detours to avoid toll roads). Also being more
sensitive to avoiding urban areas results in longer routes. Avoiding congestion costs
travel time. It should be noted that with congestion, the chance on congestion is
meant. The resulting longer travel times due to congestion are not taken into account
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Table 7-8: Percentual differences in travel time compared to utility function. For example,
if the pricing utility contribution is decreased by 100 % (i.e. avoiding tolls is less important),
the travel time

-100% -50% -25% -10% +10% +25% +50% +100%
Travel time 2.62%

[11 min]
1.34% 0.44 % 0.29 % -0.13 % -0.15 % -0.23 % -0.40 %

[2 min]
Pricing -1.67 %

[7 min]
-1.37 % -0.48 % -0.44% 0.00 % 0.51% 0.51% 0.77%

[3 min]
Urban -0.09%

[0 min]
-0.09% -0.08% 0.00 % 0.00 % 0.36 % 0.36% 0.42%

[1 min]
Road type 0.28 %

[1 min]
0.27 % 0.27 % 0.00 % -0.07% -0.07% -0.07% -0.09%

[0 min]
Congestion -1.60 %

[7 min]
-0.77% -0.50 % 0.00 % 0.37% 0.38% 0.41% 0.86%

[4 min]
Restaurant 0.00 %

[0 min]
0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %

[0 min]

Table 7-9: Percentual overlap of routes compared to the routes produced by the utility
function

-100% -50% -25% -10% +10% +25% +50% +100%
Travel time 90% 96% 96% 97% 99% 98% 97% 93%
Pricing 83% 88% 98% 98% 99% 98% 98% 97%
Urban 97% 98% 99% 100% 100% 98% 98% 95%

Road type 94% 97% 97% 100% 99% 99% 99% 99%
Congestion 78% 92% 98% 100% 98% 97% 96% 91%
Restaurant 100% 100% 100% 100% 100% 100% 100% 100%

when computing routes. In reality, this could mean that a preferences for avoiding
congestion leads toward a faster travel time instead of a slower one. For restaurants,
the direction is unknown.
The table also gives insight in which parameter values most matter. The travel time
does not change much for the adjusted urban area, road type and restaurant parameter
values. This is also reflected in the average overlap of routes, which does not differ
much for these attributes. Most likely, these attributes do not influence the travel time
that much. One can imagine that in some cases long detours are required to avoid
an urban area, while its additional gained (relative) utility does not compensate the
additional travel time. Recall the example around Antwerp in Figure 7-6a: avoiding 5
km of urban area is not even worth 2 minutes of additional travel time.
Travel time is most sensitive, followed by pricing and congestion. These three aspects
also have large effects on actual routes taken, as can be concluded from the average
percentual overlap of routes.
An example route showing the sensitiveness of toll roads is shown in Figure 7-8. It can
be seen that being not sensitive to toll roads compared to avoiding toll roads completely,
gives a difference in travel time of more than 1.5 hour. If we look at the sensitivity
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on average, the differences are much smaller: 1.67% less or 0.77% additional travel
time. This is mainly caused by routes through countries that do not have toll systems:
difference in toll sensitivity does not matter for route choice because the fastest route
does not run along toll roads anyway.

Minimum
toll avoidance:
5:48 traveltime

Maximum
toll avoidance:
7:29 traveltime

Figure 7-8: Maximum toll avoidance (i.e. pricing parameter +100% ) results in a travel
time of 7:29. No influence of the toll attribute (i.e. pricing parameter -100%) results in a
travel time of 5:48.

Congestion is another attribute that is highly sensitive in terms of travel time. An
example route is shown in Figure 7-9. If congestion avoidance is not taken into account,
this results in the fastest route from start to destination with a travel time of 7:15 hours.
If the congestion avoidance parameter is set to having twice as much influence, the travel
time increases with more than 1.5 hour, avoiding busy areas around Vienna. Again,
the average influence on the travel time for these sensitivity levels is much lower: 1.6%
shorter travel time or 0.86% longer travel time. However, multiple routes do not face
any congestion due to a lack of detailed data on congestion, especially on routes that
are not motorways.
From the sensitivity analysis it can be concluded that the parameters of travel time,
pricing and congestion have most influence on the arrival time and route choice.

7-6 Discussion

This chapter gives a methodology for using a stated choice experiment to compute
preferred routes. The proposed method uses stated preference (SP) data of Arentze et
al. [3] as a base, and uses revealed preference (RP) data for prior selection to weight the
parameters. A better method would be to use the RP data as a basis, and add missing
parameters from SP data later on, to prevent a survey bias. However, the analysed RP
studies are not suitable for the context of this thesis. Hess et al. [30] focusses on trucks,
but only includes road types in its study, whereas Prato et al. [40] has car drivers as
participant that possibly have other preferences then truck drivers. To obtain better
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Maximum 
congestion 
avoidance:
8:48 traveltime

Minimum
congestion
avoidance:
7:15 traveltime

Figure 7-9: Maximum congestion avoidance (i.e. congestion parameter +100%) results in a
travel time of 8:48. Minimum congestion avoidance results in the fastest route between start
and destination of 7:15 hour

parameters than used in this thesis, a revealed preference experiment should be held
with truck companies, having all attributes of interest included, that is, travel time,
congestion and pricing.

The value of time of e17.31 per hour used in this thesis to determine the maximum
additional driving time for skipping a toll road, is taken from the RP study of Prato
et al. that has car drivers as its participants. It is questionable whether this is indeed
a good value for trucks: driver wages, fuel and truck availability might costs more
than e17.31 per hour for a logistics company. A higher value of time leads to less toll
avoidance, which results in a 1.67% average shorter travel time as shown in Section 7-5.

The congestion parameter is only considered as a chance on congestion, whereas the
actual resulting longer travel times are not taken into account when obtaining arrival
times. Furthermore, the simulations showed that avoiding congestion lead to a higher
travel time, but in reality this might not be true. Furthermore, the chance on congestion
was computed independent of departure time. During peak hours one would expect a
higher chance on congestion than during off-peak hours. This might result in different
preferred routes at different times of the day.

Another observation made during the simulations was the low influence of restaurants.
This is also an insignificant attribute in the experiment of Arentze et al. [3]. To correct
for the small trip durations of Arentze et al. it is assumed that the presence of a
restaurant results in a higher utility contribution if its location is near the moment in
time that a break should be taken. However, this still does not influence the routing
decisions, maybe due to an absence of data on restaurants along other roads than toll
roads.
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7-7 Summary

This chapter analyses the influence on the arrival time by taking preferences of the
logistics company into account. The stated choice experiment on route choice of truck
drivers of Arentze et al. [3] is taken as a basis. To compute the best preferred route,
link weights are changed in such a way that these represent preferences instead of
travel times. To overcome positive weight loops in the network, the utility function is
changed from effect to dummy coding and weighted with priors obtained from revealed
preference studies.
The simulations show that the difference in travel time between the fastest and preferred
route is 9 minutes on average, or 1.8% relatively. However, for 11% of the routes,
differences in travel time of more than 5% are found. These preferred routes generally
contain less toll roads and have a lower chance on congestion than the fastest route. The
sensitivity analysis showed that the parameters for travel time, toll roads and congestion
cause the largest differences in arrival time. It is advisable that these parameters are set
according to the objective of the company to obtain the best route as good as possible.
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Chapter 8

Integrating Algorithmic and
Behavioural points of view in route

planning

This thesis analyses a route planning problem from two perspectives: algorithmic and
behavioural. By combining the computation of earliest arrival routes with actual pref-
erences other than travel time, several remarks can be made on currently used de-
velopments in algorithms and on methods for gaining behavioural insights. In this
chapter three such observations are made, concerning the consequences for optimizing
for running times, obtaining relevant preference attributes and computing routes using
preferences.

8-1 Optimizing for running time

Within the algorithmic research community, most interest lies in optimizing running
times when it comes to shortest path computation. This incentive comes mostly from
industry where orders need to be scheduled as quickly as possible to minimize the time
that trucks are standing still.
There is one large disadvantage: to realise small running times, lots of assumptions
are made to speed-up the process. For example, drivers legislation rules are neglected
or later on inserted. Analysis in this thesis showed that the influence of incorporating
drivers legislation can be large: up to 37 hours in unfortunate situations where road
blocks are faced due to the insertion of breaks.
The behavioural research community asks the relevant question: why optimize running
times that much, such that the quality is reduced? It seems that the usage of many-to-
many queries is unknown to large groups of researchers. It seems plausible to compute
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a route within a few seconds from the perspective of a driver, whereas this is not the
case from the perspective of the planning process of a company.

Possibly it is a better idea to split up the work of route computation in two steps: first
decide upon the exact ordering of routes using currently fast many-to-many algorithms,
after that compute each of the routes in detail including drivers legislation, parking lots,
preferences and possibly other aspects. If the precise computation of routes leads to
a very large deviation, this can be used as an input to reconsider the delivery order
sequence.

8-2 Relevant preference attributes

The behavioural community researches the effect of lots of attributes on routing. How-
ever, not all analysed attributes provide useful insights. For example, road type is one
of the most important attributes to consider in routes as follows from the experiment of
Arentze et al. [3]. However, when planning routes on real road networks, this attribute
is strongly correlated with travel time: if a route mostly drives on highways, a lower
travel time is obtained compared to driving local roads. Simulations showed that an
average fastest route consists of more than 95% highways (see Figure7-7). It is therefore
questionable whether a preference for highways indeed reflects a preference for specific
road types, or whether this implicitly means that the participant of the experiment
wants to reach its destination as fast as possible, and knows from experience that this
objective is reached by following highways.

Furthermore, the attribute of facilities along the route is included in many choice ex-
periments. What is left out, is the specific location of such facilities along the route.
However, a restaurant near the start or destination would possibly be rated very low
compared to a restaurant at the parking lot where a break should be taken according to
the drivers legislation. This is not included in any of the analysed choice experiments.

Some included attributes deal mostly with associated costs, such as avoiding toll or fuel
efficient driving. However, most truck drivers do not pay for toll or fuel themselves. It
seems plausible that therefore these factors are not found significant in many experi-
ments [42] [47]. However, studies counting the number of trucks present on toll roads,
came to the conclusion that forecasts based on preference studies highly overestimate
the actual usage of toll roads by trucks [4]. This can be explained by the influence of
the logistics company on the route choice of truckers: whereas truckers might prefer
driving on toll roads, they are not always allowed to. Therefore, the aspect of who
pays for what costs and what routes are allowed to be taken according to the company,
should clearly be defined in any choice experiment to prevent such cost-based biases.

To conclude, best results of choice experiments are obtained if attributes are not highly
correlated with each other in real routes on a map. Additionally, restaurants and
parking lots should only be included in combination with drivers legislation, and the
context of who pays which costs should be made clear for any route choice experiment.
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8-3 Dealing with preferences in obtaining a route

In this thesis two methods are identified in Section 7-1 for actually obtaining a route
given a stated choice study: first computing a set of routes and then selecting the best,
or by changing edge weights such that these represent disutilities. For both methods
remarks could be made and improvements in research upon these topics identified.

8-3-1 Computing a set of routes

Resulting utility functions can be used to calculate the utility of a certain route. If a
set of routes is given, the best route can be selected easily by computing their utility.
However, computing such a set of routes is hard. Within the behavioural community, K-
shortest path algorithms are used to compute such sets. Experiences of the algorithmic
community shows that these methods do not work on very detailed maps: the second
best route is likely to be identical to the fastest route except for a small detour of taking
an off-ramp and the next on-ramp on a highway. In a detailed road network it is likely
that only after computing the first 1 million shortest paths, there is a chance that the
best route is contained in it.
Computing a good set of routes between two locations also gains attention of the
algorithmic community. However, there focus is purely based on travel time and being
distinguishable from each other. The Alternative Routing algorithm [2] selects routes
that are not much longer than the shortest route (advise of maximum 25% longer)
and a maximum overlap of routes (advise of maximum 80% overlap). If we consider
some analysed examples in Chapter 7 the alternative (preferred) route is nearly never
included in the resulting route set using the Alternative Routing algorithm: Figure 7-6a
(avoiding urban area of Antwerp) shows an overlap of more than 95%, whereas Figure
7-8 (maximum toll avoidance strategy) results in a 30% longer route. It is questionable
whether such criteria purely based on travel time and overlap indeed provide good
alternative routes. At least, these routes do not (always) give routes that are the best
according to the utility function.
It would be a good idea if the algorithmic community focusses on computing sets of
alternative routes based on road properties such as congestion and toll instead of only
travel time based criteria. These route sets could be used to easily identify the best
route for a specific truck driver by rating them using a utility function. Although the
set is still biased and it is unsure whether the ultimate best route is contained in the
set, chances are much higher compared to the currently available alternative routing
algorithm.

8-3-2 Computing the best route

To overcome the biases resulting from using precomputed sets of routes, this thesis
changes weights of edges such that these represent preferences and uses these to compute
best routes. However, this required lots of modifications to the reported parameters
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of the used choice experiment. There is room for improvement in stated and revealed
preference studies such that they become directly usable in route planning applications
in future, as is shown in the following paragraphs.

First of all, utility functions are valid for a complete route. Transforming them to
link-based functions can be done by scaling, that is, dividing the parameters by the
average travel time of the considered routes in the experiment’s test set. It is ques-
tionable whether this method is fully correct, especially because in route choice studies
routes are modelled quite binary: a route consists of highways or main or local roads,
not something in between. To make choice alternatives more realistic, entrance roads
toward the highway are added in the choice alternatives, for example a road marked as
"highway" actually consists of 5 % local road, 10 % main road and 85 % highway. To
better calibrate parameters it is advisable to investigate the possibilities of performing
link-based route choice studies. If real link-based values can be obtained, it’s easy
to obtain the correct best route by changing the edge weights and running a default
shortest-path algorithm.

Besides shortest-path algorithms and some Pareto search approaches, little effort is
made by the algorithmic community to compute a route that is not simply the fastest
but also adheres to other criteria. For example, the Google Maps route planner provides
options to avoid tolls: however, fully avoiding tolls is not necessarily what a logistics
company wants. Recall the example in Figure 7-6b: 3 km of toll road is still included
in the preferred route. Skipping this 3 km results in a much longer route, which is not
worth the additional travel time.

A very neat example of incorporating preferences using an edge weight function is
given by the Fietersbond Routeplanner [25], a routing application especially focussed
on cyclists in the Netherlands. At this website you can create your own preference
profile (see Figure 8-1) which is used to compute routes. Preferences ranging from
street lightning to travelling through forests and penalties for traffic lights can be set
using sliders after which an optimal route for your personal profile is computed. It is
unknown what method they are using to compute routes, but it is expected that some
linear combination of each of the attributes is used, identical to the method used in
this thesis.

Currently efforts are made in the algorithmic community for so called Customizable
Route Planning [17]. The idea is to apply a metric-independent preprocessing step,
after which a second preprocessing step lasting only a few seconds is applied with the
specific metrics. By creating such a graph, fast querying is possible. The research
of customizable route planning mostly focusses on being able to incorporate real-time
congestion updates. However, a good opportunity lies in incorporating preferences. In
combination with a user-friendly method of selecting a preference profile such as the
example of the Fietsersbond, it is then possible to compute routes for any preference
profile very fast.
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Figure 8-1: Overview of preference selection of the Fietersbond Routeplanner [25]

8-4 Conclusion

This reflection on the algorithmic and behavioural perspective on route planning results
in a few observations. First of all, the algorithmic research community should change
it focus from purely trying to compute the fastest route as fast as possible, to finding
methods of computing the best route. Research can be performed on splitting the
process of a typical Vehicle Routing problem into two steps: first obtaining an ordering
of routes using fast many-to-many algorithms, after that computing precise travel times
using slow but good algorithms. Secondly, progress can be made by finding better
methods to compute multiple alternative routes, that are not only based on travel time
or overlap of routes but also consider other properties such as toll roads or congestion.
The research on driver behaviour should keep in mind that currently, not all attributes
included in stated choice experiments are realistic in terms of route planning. Some
are highly correlated with travel time (such as road type) or are useless if too little
information is specified (it matters whether a restaurant is at the beginning or halfway
the route). Furthermore efforts could be made in link-based stated choice experiments,
such that the resulting values can be easily used to compute routes in a network by
changing edge weights.
Instead of conducting stated choice experiments, it is also possible to let the planner
tweak parameters using illustrative sliders such that results of his parameter choices are
directly visible in planned routes. Such a method could be used in combination with
the promising research on Customizable Route Planning [17], a new algorithm that is
focussed on real-time traffic updates but could also be useful for incorporating different
preference profiles.
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Chapter 9

Conclusions

The objective of this thesis is to gain insight in the influence on arrival times if incor-
porating optimal planning of breaks and preferences, and to compute such routes as
efficiently as possible. In the previous chapters all research questions to reach this goal
are answered. A recap on the results is given in these final conclusions of this thesis.
The first research question, “What is the influence on arrival time if breaks are planned
optimally?”, is answered by comparing the results of an optimal break planning algo-
rithm to the currently used algorithm of ORTEC [39], that inserts breaks after planning
the route. Of the test set – representing average freight flows through Europe – 6%
of the trips lasting up to one day improves, with an average improvement of nearly 3
hours. Differences are caused by planning breaks during road blocks – the driving bans
which are imposed to trucks in some countries on Sundays or during the night. Also
longer trips having a duration of maximum two days are analysed. For these routes
17% improves with optimal break scheduling, with an average improvement of 5 hours.
Also the influence of restricting these breaks to parking lots is analysed: this requires
an additional 3 minute travel time on average. However, 5% of the routes become
infeasible due to absence of parking lots nearby. Another 15% of the routes change
completely – although not always affecting the travel time.
The second research question, “How can these routes be computed efficiently?”, is
answered by presenting an algorithm using time-dependent contraction hierarchies. It
is shown that this algorithm may not provide optimal answers in theory, but on the
considered test set no differences are found with the optimal solutions. This algorithm
gives running times of several milliseconds, making it possible to use it to compute
large numbers of routes in short times. For the problem of incorporating parking lots in
break planning, another heuristic method using time-dependent contraction hierarchies
is presented, leading to a solution quality of 90% with running times a factor 80 less.
The third question “What is the objective of route planning of relevant stakehold-
ers?”, is answered by providing a literature study on several route choice experiments.
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This leads to a set of important preferences, including fuel-efficient driving, highway
preference, congestion avoidance and toll avoidance.
The fourth question “What is the influence on the arrival time if this objective is used
to compute routes?” is answered by using one stated choice experiment as a basis
and using their parameters to plan routes. To be able to plan routes, first the effect
coded parameters are changed to dummy coded parameters, followed by weighting them
with data from revealed preference studies and after that scaling for travel time of the
original choice study. This leads to a linear-additive formula which is used as an edge
weight function in Dijkstra’s algorithm. The results show that the average influence
of incorporating preferences is little: only 9 minutes, with trips with an average travel
time of 7 hours. However, for some test cases large differences are found. The largest
influences in travel time are caused by avoiding toll and congestion.
After answering the four research questions, an opinion is given on how the algorithmic
and behavioural research community can help each other, such that in future by default
best routes are computed instead of fastest routes. A suggestion is made on research
on Alternative Routes, as well as to adapt Customizable Route planning toward usage
with preferences. Furthermore, it is encouraged that choice studies are conducted or
reported in such a way that results are directly usable in route planning applications.
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Chapter 10

Discussion

This thesis addressed the problem of planning routes from start to destination for
trucks, in the context of long-distance trips. Prior to the research, some assumptions
were made (see Section 1-2-1). The expected influence of these assumptions is discussed
in this chapter. First, the assumption on truck drivers strictly following routes is ad-
dressed, followed by the consequences of using the dataset of HERE [29]. In Section
10-3 the omitting of working hour rules and American drivers legislation is discussed.
Finally, Section 10-4 discusses the influence of using earlier performed choice experi-
ments instead of conducting new experiments.
Besides the assumptions made in Section 1-2-1, it is decided in Section 2-3 that only the
problem variations RoadBlock-OneBreak and Parking are discussed in detail. However,
by working on these variations, also ideas arose for solving the other variations. These
ideas for DriversLegislation, Congestion and Realistic are given in Section 10-5.

10-1 Truck drivers are not dumb

This thesis assumes that trips are planned in the context of the Vehicle Routing Problem
(VRP). Planning routes from and to each of the customers is used as an input to
determine the optimal delivery sequence. The routes computed by the algorithms are
then assumed to be strictly followed by truck drivers. Furthermore, it is assumed that
no disruptions occur, such that computed arrival times correspond with actual arrival
times.
However, most truck drivers will not strictly follow silly routes as computed by the
software. Consider the earlier used example in Chapter 4, also shown in Figure 10-
1. The purple route is the route computed by the current planning algorithms. This
leads to a driving time of about two days. It is questionable whether a truck driver
would strictly drive this silly route: he knows of the active road blocks himself and
will definitely make sure he leaves Austria before the block starts. This results in an
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earlier arrival time at the destination. If it is not possible to avoid the road block, the
truck driver would generally communicate on beforehand with the planner, requesting
an earlier or later start time such that unnecessary waiting is avoided.

Figure 10-1: Example route of OneDay: start in the North of Italy, destination is located
in Germany. A different route choice leads to a shorter travel time if considering breaks

It can be concluded that such worse routes are probably never driven in reality. The
computed influences on arrival time are therefore probably overestimated. However,
including optimal break planning does provide lots of opportunities for optimizing de-
livery sequences and for automating the route planning process without needing the
knowledge of planners or truck drivers.

10-2 Inaccurate data on parking lots, congestion and road
blocks

The data on the road network is provided by HERE [29]. Although excellent informa-
tion is given on the links and nodes in the network, additional information is incomplete.
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Precise data on parking lots seem to be missing in certain countries, resulting in some
large distances between the optimal location to take a break and the nearest parking
lot. It is reasonable that part of the 5.5% of routes not feasible if considering parking
lots (Section 5-4-3), actually would be feasible if the used data on parking lots was
more detailed.
Data on congestion used for computing best routes that avoid congestion, is taken
from HERE [29] as well. The dataset provides travel time profiles that give the average
travel time for every 15 minutes of a day. These average travel times do not reflect the
chances on congestion: a 1% chance on 100 minutes delay or a 50% chance on 2 minutes
delay both lead to an average delay of 1 minute, although reflecting possibly different
disutilities. However, no detailed data was available on the reliability of travel times.
It is advisable to use more detailed or even real-time traffic data if a certain company
has a strong preference for avoiding congestion. However, for the context of this thesis,
the influence on routing decisions as computed in Chapter 7 is not considered to be too
high.
Furthermore, no data on road blocks is included in the dataset. This is added manually
by searching through all governmental web sites for rules on truck allowance. The
information on road blocks is complex: every country has its specific rules on time
restrictions, but also on truck types for which these are valid. At special days (i.e.
during Christmas) or periods (i.e. summer holiday) sometimes additional road blocks
are imposed. For this thesis only road blocks are concerned that are valid throughout
the year. Secondly, it is assumed that all road blocks are active for all trucks in the
simulations. This is not the case in reality: some road blocks are active for trucks
weighing more than 16.5 tons (i.e. in Great Britain), other for trucks weighing more
than 7.5 tons (i.e. in Italy) or even for trucks weighing just more than 3.5 tons (i.e.
in Switzerland). Furthermore, there are lots of exceptions for the bans. For example,
cooled transport is not affected by road blocks in most countries. Although the used
data on road blocks is not so precise, it still gives good insight in problems in route
planning occurring due to these bans. For a real application it is advisable to implement
the full set of rules dependent on the actual truck type of the logistics company.

10-3 Only European drivers legislation

In this thesis, only the European Drivers Legislation [22] are used in the simulations.
However, in Europe there is also a Directive on the working hour rules. These working
hour do not just consider driving, but also time used for administration and loading.
This might have its effect on computed routes, but can be easily implemented in the
algorithms. By adding a counter for consecutive working time and checking whether
the working time threshold is not exceeded, one can easily obligate taking early breaks
if needed. The influence on the arrival time is fully dependent on the amount of work to
be performed besides driving, and therefore no estimations can be made for a general
case.
Only rules valid in Europe are considered. Other countries have different regulations,
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such as the Hours-of-Service regulation in the United States [24]. However, all regula-
tions are combinations of limits on driving time and certain break durations. There-
fore, these can be easily implemented using the algorithms introduced in this thesis,
by changing the threshold and break values. The influence on routing decisions using
these different regulations is unknown, but will mostly be affected by the active road
blocks in these countries.

10-4 Using choice studies to compute the preferred route

This thesis only uses stated and revealed preference data for computing preferred routes.
No new choice experiments or surveys are conducted. The effect of using the specific
choice studies and specific conversion method of the utility function is already discussed
in Section 7-6. It is advised to conduct a new revealed preference study with only
relevant parameters (probably travel time, congestion and toll) included before using
in real applications.
However, it is also possible to not use any choice studies but let the freight company
or planner interactively decide upon its own preferences. Such a method is used by the
Fietsersbond (see Figure 8-1), which uses sliders to determine a personal profile. By
letting planners or truck drivers select their own preferences and viewing the resulting
route, they can decide for themselves which set of parameters results in their personal
best route. Probably, this method leads to better parameters than conventional choice
studies due to the direct link with actual routes in a road network.

10-5 Non-discussed problem variations

In Section 2-3 five different problem variations are defined, of which only two are
discussed in this thesis. However, by working on the RoadBlock-OneBreak and Parking
variations, ideas are formed for solving the other variations. In this section, ideas for
each of the three problem variations are discussed.

10-5-1 DriversLegislation

Problem variation DriversLegislation is one of the variations which did not gain any
attention. This variation deals with a full time horizon of driver legislation, that is, the
possibility for multiple breaks during a trip. Secondly, the flexibility in the regulations,
such as the allowed splitting of breaks or extending of driving times, is included in this
variation.
In this thesis, one break is implemented using a Stacked Break Graph, where the upper
layer represents the nodes at which a break has been taken. One could extend this idea
by not adding one copy of the graph, but multiple copies, each representing a certain
number of breaks taken during the trip. However, this still leads toward a fixed number
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of breaks during a route, directly reflecting the number of layers added to the extended
stacked break graph.

Therefore, a better idea is to keep track of the status of a driver using several counters.
Labels containing the status and arrival time are then settled in the Dijkstra Pareto
algorithm instead of nodes. The used edge weight function then takes both status and
arrival time as an input, and gives a list of new labels as an output, each reflecting a
possibility for taking different kind of breaks as allowed according to the regulations.

Although all drivers legislation rules (including flexibility rules) can be implemented in
such an edge weight function, the disadvantage is that enormous amounts of labels are
generated reflecting all options of taking breaks, resulting in long running times and
high memory usage of the Pareto algorithm. Optimization can be reached by throwing
away labels that are not likely to form a good solution, such as labels representing
paths that have low shift duration counters but arrive much later than others due to
taking many breaks. However, results are not guaranteed to be optimal any more with
such a heuristic method.

The influence of incorporating the full set of drivers legislation on the simulation results,
will mainly be reflected by not having any infeasible routes in the test-set. It is expected
that adding flexibility of splitting breaks only has marginal influence since optimally,
breaks are scheduled during road blocks, and road blocks last for longer time periods
than breaks. Splitting is therefore not beneficial.

10-5-2 Congestion

The Congestion variation adds congestion as additional time-dependent component.
Instead of computing travel times using the free flow travel time, a function representing
the variable travel times due to congestion should be used. The travel time functions
for break edges should be adjusted such that the travel time after taking a break is
adjusted to the actual traffic situation at that moment. In the stacked break graph,
these travel time functions can be implemented in the Pareto algorithm without any
further required modifications.

For the time-dependent contraction hierarchies this is different, since it cannot be di-
rectly retrieved what the travel time over a shortcut edge is, if a break is taken at
this shortcut edge. For example, the rush hour might start while taking a break along
the road, resulting in a longer travel time than at the departure time at the start of
the shortcut edge. It is unknown how this problem can be solved efficiently in time-
dependent contraction hierarchies.

The effect on the arrival time mainly depends on the predictability and duration of
the congestion. It is expected that the planning of short breaks (with a duration of 45
minutes) is mainly affected by congestion. For example, it might be beneficial to take
an early break during rush hour.
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10-5-3 Realistic

The solutions to the problem variations RoadBlock-OneBreak, Parking, DriversLegisla-
tion and Congestion can be combined into a full version of the problem, referred to as
Realistic. Since incorporating congestion and parking lots do not require much effort,
it seems the best idea to take the DriversLegislation problem solution as a basis.
To compute the possible travel times over an edge (that is, with or without taking a
break), one can use a black box approach, that takes the arrival time and driver status
as an input, and gives one or more labels as an output. Such an example flow chart
approach is shown in Figure 10-2.

Input:
arrival time + status of 

driver

Is the edge a parking lot?
Is any of the shift 

thresholds exceeded by 
driving this edge?

Yes

Return 
label with 
updated 

status and 
arrival 
time

Return 
nothing

Yes No

Return list of 
labels, reflecting 

all different 
break 

possibilities

No

Figure 10-2: Example process reflecting travelling options with break planning. The func-
tion used to obtain the travel time incorporates congestion.

However, such an approach results in enormous amounts of possible Pareto optimal
paths, especially due to the numerous break options possible for every edge as already
mentioned for the DriversLegislation variation. The number of possible paths grows
even more due to considering congestion, resulting in new possibilities for smart plan-
ning of breaks. This requires lots of running time and memory usage. Furthermore,
it is unknown how contraction hierarchies can be used to incorporate optimal break
planning with congestion, which make it hard to obtain speed-ups in running time.
However, it is assumed that congestion and flexibility in drivers legislation have less
influence on the arrival time than considering road blocks. Also the influence on the
arrival time if restricting to parking lots is small, as is shown in Chapter 5. Furthermore,
real-time data on congestion (i.e., accidents) probably have larger influence on the travel
time than the daily rush hour periods. Therefore, it is questionable whether it is worth
the hassle to compute the results of the Realistic problem variation, since most gain in
travel time is expected to be reached by planning breaks during road blocks, thus by
using the RoadBlock-OneBreak algorithms.

112



Appendix A

Road blocks in Europe

This thesis uses road blocks in the simulations. However, the data on road blocks is not
provided within the road network dataset of HERE [29]. Therefore, the information on
road blocks is found by searching governmental websites. Each country has its specific
restrictions on road blocks and has its own definition of a truck for which the restriction
is valid. In this thesis no specific weight restrictions are taken into account: all road
blocks for trucks are considered. Furthermore, some countries have road blocks that
are only valid on some specific roads, or only at special periods in the year. These are
not included as well.
Of the following European countries, no information on active road blocks is found: Al-
bania, Andorra, Armenia, Belarus, Belgium, Bosnia and Herzegovina, Estonia, Finland,
Gibraltar, Iceland, Ireland, Kosovo, Latvia, Lithuania, Macedonia, Malta, Moldova,
Monaco, Montenegro, the Netherlands, Norway, San Marino, Serbia, Sweden, Ukraine
and Vatican.
Of the remaining countries, the table on the next page shows the information found for
each of the countries, and the used road block information in this thesis.
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Road block in reality Assumed road block in sim-
ulations

Austria Blocked every night between 22:00 and
5:00, additionally on Sunday from 15:00
till Monday 5:00.

Monday 22:00-Tuesday 05:00

Bulgaria Blocks on some specific road sections. No
Croatia Some roads are blocked on Sundays from

15th of June till 15th of September.
No

Cyprus No No
Czech
Republic

Sunday 13:00-22:00 Sunday 13:00-22:00

Denmark Night driving ban around Copenhagen be-
tween 19:00 and 7:00

No

France Saturday 22:00 till Sunday 22:00. Saturday 22:00-Sunday 22:00
Germany Sunday 0:00-22:00 No
Great
Britain

Some night and weekend bans around
London

No

Greece Blocks valid on some highways for 1st of
June till 30th of September.

No

Hungary Blocked between 1st of September till 30th
of June for Saturday 22:00 till Sunday
22:00. In July and August the block is
valid between Saturday 15:00 and Sunday
22:00.

No

Italy Blocked on Sundays between 8:00 and
22:00. From June to September the start-
ing time changes to 7:00.

Sunday 8:00-22:00

Luxembourg Saturday 21:30 till Sunday 21:45, for
transport between Belgium or Germany
and France.

Saturday 21:30-Sunday 21:45

Poland Some blocks during public holidays No
Portugal Tunnels prohibited for trucks. No
Romania Different Sunday blocks for different road

segments.
No

Slovakia Sunday 00:00 - 22:00 Sunday 00:00 - 22:00
Slovenia Sunday 8:00-21:00 Sunday 8:00-21:00
Spain Sunday ban for some roads toward Madrid

and Barcelona.
No

Switzerland Blocked every night between 22:00 and
5:00, additionally on Sunday from 0:00 till
Monday 5:00.

Every night 22:00-5:00,
Sunday 0:00 - Monday 5:00
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Appendix B

Results for variations of the utility
function

In Section 7-3 it is decided that the used utility function should contain a linear instead
of logarithmic travel time component, and should be scaled according to the travel time
of the original experiment. The decision is made by reasoning and comparing routes
obtained by running simulations for each of the scaling and travel time combinations.
For the considered test instances, for each of the four combinations of travel time and
scaling method, the differences in travel time compared to the fastest route are shown
in the table below. The relative differences are computed by first dividing the travel
time of the utility best route by the fastest route for each of the routes, and then taking
the average/minimum/maximum/standard deviation of these numbers.

Distance scaling Time scaling
Logarithmic Linear Logarithmic Linear

Average difference Absolute 69 min 26 min 15 min 9 min
Relative 21.3% 7.2% 3.3% 1.8%

Minimum difference Absolute 1 min 0 min 0 min 0 min
Relative 0.36% 0% 0% 0%

Maximum difference Absolute 1431 min 1344 min 120 min 109 min
Relative 531.12% 499.01% 35.32% 18.89%

Standard deviation Absolute 178 min 111 min 25 min 18 min
Relative 54.8% 40.5% 5.4% 3.3%

It can be seen that scaling for distance leads to large deviations: on average 69 or 26
minutes, at maximum even more than 20 hours! Recall that the average trip duration
is 7 hours. These large differences are mainly caused by trying to obtain the shortest
route as possible – which lasts much longer compared to the fastest route – and then
bumping into some road block.
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Results for variations of the utility function

Differences between logarithmic and linear travel time functions are much less. Espe-
cially if scaling for time, differences are small. However, as explained in Section 7-3-2
the logarithmic travel time function results in a low Value of Time for long distance
trips, since the other attributes are linear. If all attributes are in a logarithmic form,
this would work perfectly well.
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