

Delft University of Technology

KrakenOnMem
A Memristor-Augmented HW/SW Framework for Taxonomic Profiling
Shahroodi, Taha; Zahedi, Mahdi; Singh, Abhairaj; Wong, Stephan; Hamdioui, Said

DOI
10.1145/3524059.3532367
Publication date
2022
Document Version
Final published version
Published in
Proceedings of the 36th ACM International Conference on Supercomputing, ICS 2022

Citation (APA)
Shahroodi, T., Zahedi, M., Singh, A., Wong, S., & Hamdioui, S. (2022). KrakenOnMem: A Memristor-
Augmented HW/SW Framework for Taxonomic Profiling. In Proceedings of the 36th ACM International
Conference on Supercomputing, ICS 2022 Article 29 (Proceedings of the International Conference on
Supercomputing). Association for Computing Machinery (ACM). https://doi.org/10.1145/3524059.3532367
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3524059.3532367
https://doi.org/10.1145/3524059.3532367

KrakenOnMem: A Memristor-Augmented HW/SW Framework
for Taxonomic Profiling

Taha Shahroodi
TU Delft

Delft, Netherlands
T.Shahroodi@tudelft.nl

Mahdi Zahedi
TU Delft

Delft, Netherlands
M.Z.Zahedi@tudelft.nl

Abhairaj Singh
TU Delft

Delft, Netherlands
A.Singh-5@tudelft.nl

Stephan Wong
TU Delft

Delft, Netherlands
J.S.S.M.Wong@tudelft.nl

Said Hamdioui
TU Delft

Delft, Netherlands
S.Hamdioui@tudelft.nl

ABSTRACT
State-of-the-art taxonomic profilers that comprise the first step
in larger-context metagenomic studies have proven to be compu-
tationally intensive, i.e., while accurate, they come at the cost of
high latency and energy consumption. Table Lookup operation is
a primary bottleneck of today’s profilers. In this paper, we first
propose TL-PIM, a hardware accelerator based on the processing-
in-memory (PIM) paradigm to accelerate Table Lookup. TL-PIM
leverages the in-memory compute capability of emerging memory
technologies along with intelligent data mapping. Then, we integ-
rate TL-PIM into Kraken2, a state-of-the-art metagenomic profiler,
and build an HW/SW co-designed profiler, called KrakenOnMem.
Results from a silicon-based prototype of our emerging memory
validate the design and required operations on a smaller scale. Our
large-scale calibrated simulations show that KrakenOnMem can
provide an average of 61.3% speedup compared to original Kraken2
for end-to-end profiling. Additionally, our design improves the en-
ergy consumption by orders of magnitude compared to the original
Kraken2 while incurring a negligible area overhead.

CCS CONCEPTS
• Hardware → Memory and dense storage; Bio-embedded
electronics.

KEYWORDS
Taxonomic Profiling, Emerging Memories, In Memory Processing,
(Hash) Table Lookup, Kraken2

ACM Reference Format:
Taha Shahroodi, Mahdi Zahedi, Abhairaj Singh, Stephan Wong, and Said
Hamdioui. 2022. KrakenOnMem: A Memristor-Augmented HW/SW Frame-
work for Taxonomic Profiling . In 2022 International Conference on Super-
computing (ICS ’22), June 28–30, 2022, Virtual Event, USA. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3524059.3532367

ICS ’22, June 28–30, 2022, Virtual Event, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9281-5/22/06.
https://doi.org/10.1145/3524059.3532367

1 INTRODUCTION
Taxonomic profiling determines the relative abundance of existing
species in a (biological) sample under study. It constitutes the first
and most compute-intensive step of larger-context metagenomic
studies (metagenomics for short). The goal of metagenomics is to
better understand the role of each organism in our environment to
improve our quality of life, e.g., by enhancing drugs [86]. The ability
to improve the performance of taxonomic profilers will, therefore,
have a huge impact on the overall speed of metagenomic studies
and will remain a crucial line of research for decades to come.

Many recent works have improved the speed and/or accuracy of
taxonomic profiling by various means, e.g., directly as heuristics
in pre- and post-processing steps of profiling [40, 41], indirectly
as pre-alignment filters [2] or innovative hardware designs for
alignment [4, 16, 34]. However, the memory bandwidth and the
(limited) cache capacities remain the two main bottlenecks even
in these approaches [33, 83]. This is because Table Lookup (i.e.,
key matching and label retrieval) is a critical kernel in today’s
profilers and it is performed on data structures that are hundreds of
gigabytes in size that cannot fit in caches of even high-performance
computing (HPC) servers [51, 83, 87]. Note that it is also estimated
that the working datasets that metagenomic studies should deal
with scale faster than those produced by YouTube and Twitter by
2025 [5, 20, 82, 87], exacerbating this problem. Consequently, we
need a fast, energy-efficient, scalable, and yet accurate design for
taxonomic profilers (with an emphasis on their bottlenecks) to
expedite the metagenomic studies and keep up with the fast data
generation rate.

Our goal is to build the first hardware/software co-designed
framework for taxonomic profiling that exploits real memristor
(i.e., STT-MRAM) devices and the processing in-memory (PIM)
paradigm. Using the PIM paradigm helps to prevent the high cost
of data movement between memory and different levels of caches
by performing the bottlenecked operations completely inside the
memory, where the data resides. An in-memory solution can also
scale up the active computational units without the need for ex-
pensive scale-up in the computational units of the server. To this
end, we propose KrakenOnMem, an optimized framework for ac-
celerating Kraken21 that notably improves execution time and en-
ergy consumption of taxonomic profiling with a negligible area
1Kraken2 is currently the most widely-used and one of the most promising taxonomic
profilers based on recent metagenomics challenges.

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike International 4.0 License.

https://orcid.org/0003-4576-0030
https://doi.org/10.1145/3524059.3532367
https://doi.org/10.1145/3524059.3532367
https://creativecommons.org/licenses/by-nc-sa/4.0/

ICS ’22, June 28–30, 2022, Virtual Event, USA T. Shahroodi, et al.

overhead. KrakenOnMem is based on two main observations: (1)
reference genomes rarely change, and (2) memristors are inher-
ently capable of performing Vector-Matrix Multiplication (VMM).
KrakenOnMem exploits these observations and addresses the bottle-
necks of Kraken2 (and many other profilers), Table Lookup, using a
memristor-based substrate, called TL-PIM hereafter. We perform an
extensive design exploration for (1) data mapping, (2) logical opera-
tions, (3) array sizes, and (4) peripheral supports to optimize TL-PIM
for Table Lookup and KrakenOnMem for taxonomic profiling based
on Kraken2’s algorithm. Our evaluations show that KrakenOnMem
can provide up to 61.3% end-to-end speedup compared to original
Kraken2 implementation.

Our paper makes the following contributions:

• To our knowledge, KrakenOnMem is the first HW/SW co-
designed framework to accelerate taxonomic profiling using
memristor devices and the PIM paradigm. We design Kraken-
OnMem to target the key bottleneck of SOTA taxonomic
profilers.

• We propose TL-PIM, an in-memory accelerator that executes
Table Lookup efficiently using an intelligent data duplication
and hybrid row-major and column-major data mapping. TL-
PIM is designed to harvest the maximum parallelism and
performance of the underlying hardware (Section 4).

• We rigorously compared TL-PIM and KrakenOnMem to (1)
Kraken2 (open-sourced) as a SOTA profiler and (2) Optim-
ized Sieve as the latest in-memory accelerator2. We use a
real small-scale prototype to validate our memory design.
Our large-scale evaluations show that TL-PIM achieves an
average 1386× and 111× speedup for Table Lookup operation
compared to Kraken2 and Sieve, respectively. To capture the
full potential of KrakenOnMem, we also perform a second
set of analyses for end-to-end taxonomic profiling. Kraken-
OnMem achieves 61.3% and 1.17% speedup compared to
Kraken2 and Sieve, respectively, for end-to-end taxonomic
profiling. These improvements all come with the same level
of accuracy as Kraken2 (Section 6).

• We investigate the possibility to adopt our designs in future
(or non-heuristic-based) taxonomic profilers. TL-PIM integ-
rated into Metalign, a SOTA alignment-based taxonomic
profiler, show a 23.01% improvement for end-to-end profil-
ing compared to original Metalign. This is achieved despite
the fact that the bottleneck of Metalign does not lay on Table
Lookup (Section 6).

2 PRELIMINARIES
In this section, we provide a high-level overview of metagenomics
and taxonomic profiling, Kraken2, the CIM paradigm, and mem-
ristor devices along with their computation capability. For further
details, we refer the reader to past review works on similar top-
ics [7, 18, 23, 43, 54, 59].

2Sieve is a SOTA k-mer (a substring of length k) matching accelerator that we tuned
for a similar profiling approach.

2.1 Metagenomics and Taxonomic Profiling
Recent advances in high-throughput sequencing (HTS), namely
producing sequenced data with high-throughput and low cost, initi-
ated metagenomics [24, 67, 86]. In metagenomics, researchers study
the behavior of many species altogether in a sample taken directly
from an environment. The results of such a study help research-
ers to capture the complex relationship between different species
without cultivating or isolating them individually in a very costly
or yet impossible procedure for some species.

Taxonomic profiling is the first step of anymetagenomic study [40,
83] and it determines the relative abundance of different taxonomy
ranks (e.g., species, genus, family) in a given sample. Taxonomic
profiling is divided into two main categories [63]: reference-free
and reference-based profilers.

Reference-free Profilers.MetaPhlAn [69, 75], PhymmBL [6],
and PhyloPythiaS+ [22] are a few examples of reference-free pro-
filers. These profilers are typically slow. They also require a rel-
atively long query sequence for their composition feature needed
for the classification. Therefore, although they are actively being
investigated, researchers and industry do not currently use them
for taxonomic profiling.

Reference-based Profilers. Reference-based taxonomic pro-
filers can be further divided into two main classes: alignment-based
and non-alignment-based (also known as heuristics). The alignment-
based profilers are highly accurate (especially at the species rank).
However, alignment-based profilers are very slow due to the high
computational cost of their alignment. A few examples of such
profilers are Metalign [40], MG- RASTv.4 [57], MEGAN6 [28], and
Taxator-tk [13]. Non-alignment-based profilers, or heuristics, re-
place the time-consuming alignment operation with a faster Table
Lookup operation. This way, taxonomic profilers in this group trade
the required execution time with the memory needed for their
table and lookup operation, i.e., they gain speed but require more
memory. Kraken [85], Kraken2 [83], and CLARK [60] are a few
examples of such profilers.

Kraken2+Bracken3 always stands among the top taxonomic
profilers and binners, varying just a little from dataset to dataset,
based on the most comprehensive benchmark for metagenomics,
Critical Assessment of Metagenome Interpretation (CAMI) chal-
lenge [56, 68]. It is worth noting that most of the highly ranked
profilers in the CAMI challenge are non-alignment-based profilers.

2.2 Kraken, Kraken2, and Bracken
Kraken [85] is a non-alignment-based taxonomic profiler that util-
izes exact-match database queries of small substrings from the main
read, called k-mers. Kraken, first, stores all k-mers within the se-
quence into a set. It then maps each k-mer inside the set into the
lowest common ancestor (LCA) taxon of all the genomes in the
reference database that have the special k-mer. This LCA texa and
its ancestors in the taxonomy tree form the classification tree used
to classify the input sequence. The classification path is defined as
the maximum scoring root-to-leaf (RTL) path in the classification

3Bracken [51] is an orthogonal method to Kraken2 and other profilers to re-distribute
reads in the taxonomic tree and improve the accuracy. We discuss Bracken further in
Section 2.2.

KrakenOnMem: A Memristor-Augmented HW/SW Framework for Taxonomic Profiling ICS ’22, June 28–30, 2022, Virtual Event, USA

tree, and the sequence S is assigned to the label of the correspond-
ing leaf. Kraken owns its efficiency not only to the classification
algorithm but also to its database creation, in which it uses the no-
tion of minimizers [66] and two tables for performing an efficient
search. Kraken groups similar k-mers using minimizers, defined
as the smallest M-mers among all M-mers in a k-mer when sorted
lexicographically. Since adjacent k-mers share the same minimizers
in practice, Kraken stored the k-mers with similar minimizers con-
secutively and sorted them in the lexicographical order of their
canonical representations. This enables Kraken to query a k-mer
by looking up in an index position and finding the range where
k-mer with the same minimizer as the query has been stored and
then perform a binary search within the region to find the exact
k-mer and corresponding taxonomy ID.

Kraken, while effective, uses a memory-intensive algorithm for
assigning queries to the lowest common ancestor (LCA) taxonomic
label. Kraken2 [83] improves performance and memory consump-
tion of Kraken by building a more compact reference database
using probabilistic hash functions. Kraken2 significantly reduces
the memory requirement to a third while maintaining accuracy.
Kraken2 also takes advantage of block-based and batch-based pars-
ing within the critical sections to further improve thread scaling,
similar to what has been done in Bowtie [39]. Both Kraken and
Kraken2 use extensive index (hash) tables to store a pre-built data
structure to help accelerate their assignment. Therefore, they both
perform multiple Table Lookup operations to map a DNA read to
an LCA.

To prevent underestimating the abundance of some species, we
typically use Bracken [51] (Bayesian Reestimation of Abundance
after Classification with KrakEN) along with Kraken2. Bracken pro-
poses to probabilistically re-distribute reads in the taxonomic tree
so that estimating the abundance of species will become possible.
The re-distribution in Bracken works in both directions: 1) Reads
that are originally assigned to nodes above species levels will be
re-distributed to this level, 2) Reads that are originally assigned
to nodes in the strain level will be re-distributed to their parent
species node. Bracken is orthogonal to Kraken and Kraken2.

2.3 Processing in Memory (PIM)
Processing-in-Memory (PIM)4 is an old paradigm that is reignited
as a promising solution to alleviate the data movement bottleneck
in today’s data-intensive applications being run upon processor-
centric architectures. The PIM paradigm advocates for redesigning
our systems such that they prevent unnecessary data movement
between memory units and computational units in the first place [9,
17, 42, 71].

Previous PIM-enabled proposals can be categorized based on
their underlying technology, type of operation/function they sup-
port, and the location they perform the operation/function and
produce the output. They target various memory technologies,
naming DRAM [44, 71], SRAM [1, 15, 19], and memristors [45, 91].
These proposals also vary from supporting simple logical opera-
tions (e.g., AND, OR, XOR) inside the memory arrays [71, 89] to a

4Interchangeably referred to as Computation-in-Memory (CIM).

kernel or full application considering the whole memory, its peri-
pheral and sometimes also help from an external processing unit
like CPU [11, 32, 72].

2.4 Memristor Devices
A resistive memory or memristive device is a non-volatile emer-
ging memory technology that can store the data in the form of its
resistance level. ReRAM [80], PCM [42], and STT-RAM [78] are just
a few examples of memristive devices [42, 80]. Memristive devices
have recently been shown as a suitable candidate for both storage
and computation units. In these devices, one can alter the resistance
states of the device with suitable voltage or current pulses. We use
SET to denote a transition from a low resistive state (LRS) to a high
resistive state (HRS). Term RESET presents a reverse transition.
These two states (LRS and HRS) then can present logical "1" and
"0", respectively [59].

Recent works exploit an array of memristors to perform matrix-
vector [88] and bulk bit-wise logical [10, 37, 89] operations effi-
ciently since these devices follow Kirchhoff’s law inherently. There-
fore, many works propose memristor-based PIM-enabled designs
for applications that require such operations heavily. Memristor
devices also enjoy non-volatility, high-density, and near-zero standby
power, making them suitable as future memory technologies.

3 MOTIVATION
In this section, we investigate the potential bottlenecks in Kraken2
and limitations of previous solutions for taxonomic profiling.

3.1 Kraken2’s Execution Breakdown
Methodology. We evaluate Kraken2 on a high-end server and
measure the execution time of separate functions for end-to-end
profiling of our input files. We use the default parameters of the
tool for our study. Query reads come from the CAMI challenge, and
Kraken2’s standard (default) reference genome dataset is used for
the references. We detail our evaluation methodology further in
Section 5.
Results & Analysis. Fig. 1 depicts the percentage breakdown
regarding execution time of Kraken2. We classify the various func-
tions of Kraken2’s implementation [84] into four main groups: (1)
Building Taxonomy Tree, (2) Key Extraction, (3) Table Lookup, (4)
Profiling. The building taxonomy tree function is run only once
for each reference genome database. This function does not exist
in the profiling phase and can be considered as a pre-processing
function. We included the breakdown to show the relative time
proportion to other frequently run functions. The key extraction
function is responsible for reading the query files, extracting min-
imizers, performing hash functions, and producing the keys. The
Table Lookup function tests each query key against all the keys in
the table and returns the associate value (label) if it finds a match.
The profiling function is responsible for aggregating the results of
the Table Lookup function and performs the final profiling processes
alongside writing the data to a file.

Based on Fig. 1, Kraken2 spends more than 60% of its total execu-
tion time on performing the Table Lookup function. Therefore, Table
Lookup is currently the bottleneck of Kraken2 as a SOTA taxonomic
profiler. Our evaluations show that this humongous share does not

ICS ’22, June 28–30, 2022, Virtual Event, USA T. Shahroodi, et al.

0 20 40 60 80 100

Building Taxonomy Tree

Key Extraction

(Hash) Table Lookup

Profiling

Figure 1: Kraken2’s Execution Time Breakdown.

change significantly as we increase the number of active threads in
the system and Table Lookup remains the bottleneck of Kraken2.

Moreover, it is important to note that increasing the available
memory bandwidth does not improve the performance of Kraken2
significantly [87]. This is simply because memory bandwidth is
highly underutilized in the Table Lookup function as miss status
holding registers (MSHR) in caches will be used up quickly and
prevent using the memory bandwidth fully. Using cores with more
MSHRs (e.g., Broadwell cores) is also not a suitable solution as
they come with massive energy consumption (i.e., cost) and still
waste DRAM bandwidth as Kraken2 still uses a small number of
the retrieved cache lines for each Table Lookup [87].

We conclude that Table Lookup is currently the bottleneck in
SOTA Kraken2 profiler and will likely remain the main bottleneck
of future non-alignment-based profilers for the same reasons unless
hardware support is provided or profilers experience a cost-efficient,
dramatic algorithmic change.

3.2 Limitation of Previous PIM-enabled Designs
A recent work, Sieve [87], proposes a high-throughput k-mer match-
ing mechanism that uses in-DRAM processing. Sieve presents an
Early Termination Mechanism (ETM) method that can interrupt the
matching procedure of two k-mers as soon as the first mismatch
occurs. This way Sieve can reduce the row activation required
for its matching mechanism and reduce the latency and energy
overheads compared to a naive implementation for k-mer match-
ing. Technically, one can perform a Table Lookup function using
Sieve’s matching mechanismwith a simple value retrieval approach.
Therefore, it is reasonable to consider such an approach a suitable
candidate for accelerating taxonomic profilers.

However, Sieve comes with four main limitations. First, high and
unacceptable area overhead for a DRAM chip. Sieve requires up to
10.75% for its type III design which achieves the highest perform-
ance. Since DRAM chips are optimized for die area, this makes Sieve
unlikely to be adopted in future systems. We compare Sieve’s area
with the proposal in Section 6.2. Second, Sieve requires considerable
data duplication and high #writes for vertical placement of each
query k-mer and its duplicates inside group patterns in Region 1
defined in the original manuscript. Based on the examples provided
in the original manuscript [87], this can be up to 4× higher than
the actual number of query k-mers. Since query k-mers are extrac-
ted directly from reads/queries and vary per input sample, this is
not a one-time cost and cannot be justified. Moreover, although
the chosen memory technology in Sieve, namely DRAM, does not
suffer from the endurance problem, such a decision still comes with
endurance problems and a high cost (energy consumption and time)
for each query. This limitation also prevents applying ideas presen-
ted by Sieve to emerging memory technologies that still suffer from

low endurance. Third, Sieve only builds on DRAM as its underlying
PIM infrastructure. Sieve justifies this by the technology matur-
ity, availability of simulation tools, and cost advantages compared
to SRAM. However, it left out exploring NVM-based technologies
entirely. Such memory technologies have been the focus of many
recent accelerators since they enjoy non-volatility, high-density,
near-zero standby power, and low-cost logical operations [49, 50].
Fourth, Sieve incurs a significant amount of internal data movement
associated with the multi-row activation needed for matching. This
is unavoidable because Sieve requires copying the operand rows to
designated ones.

We argue that Sieve’s limitations are more than what can be
expected for the cost of a taxonomic profiler preventing it from
being adopted in future systems. Sieve’s limitations and our ex-
perimental observations motivate us to develop an in-situ Table
Lookup accelerator integrated with a host processing unit that ac-
celerates taxonomic profiling. Our design has four key objectives:
(1) It should provide high Table Lookup performance. (2). It should
scale linearly with the required memory for Kraken2, rather than
the parameters of the (hash) table. (3) It should not impose any
significant overheads for its additional hardware, such as logic cir-
cuits in the periphery. (4) It should incur minimum #writes, data
movement, and data duplication.

4 KRAKENONMEM DESIGN
The low arithmetic intensity and high energy inefficiency of Table
Lookup, the primary bottlenecks in Kraken2, limit the maximum
attainable performance and increase the energy consumption on
server clusters typically used for profiling. This sub-optimal per-
formance and energy consumption happens for three reasons. First,
the extensive indexes used for taxonomic profiling. Second, irreg-
ular memory access and poor cache hit rate of profilers. Third,
unnecessary data movement between memory (where the indexes
initially reside) and the system’s rigid cache hierarchy. In a nutshell,
taxonomic profilers that use Table Lookup do not fully utilize the
available bandwidth of memory systems [87] for their operation.
We mitigate this problem by proposing a PIM-enabled accelerator
for Table Lookup using memristor devices. We call this design TL-
PIM hereafter. We integrate TL-PIM into a full system and propose
an HW/SW co-designed framework for taxonomic profiling based
on Kraken2’s algorithm. This framework is called KrakenOnMem
henceforth.

4.1 A High-Level Overview
Fig. 2 presents a high-level overview of our entire KrakenOnMem
framework, i.e., TL-PIM and its integration with the host CPU and
storage unit. KrakenOnMem consists of 4 main components: 1
Host CPU, 2 Main Memory, 3 Storage, and 4 TL-PIM. Current
taxonomic profilers share the first three components with Kraken-
OnMem, i.e., KrakenOnMem only adds TL-PIM.

Host CPU is responsible for the non-bottleneck steps of Kraken2.
This includes 1 building the reference (hash) table, 2 loading the
reference table into TL-PIM, 3 reading the query read sequences
from Fastq files and generating keys (e.g., extracting minimizers
and calculating the hash values), and 7 aggregating the retrieved
taxonomic labels as the profiling result. Host CPU also sends the

KrakenOnMem: A Memristor-Augmented HW/SW Framework for Taxonomic Profiling ICS ’22, June 28–30, 2022, Virtual Event, USA

Host CPUDRAMDRAMStorage Host CPUDRAMStorage
Query Files

Keys & Reference LocationsReference Table

Extract minimizers & apply spaced mask4 Extract minimizers & apply spaced mask4

Apply hash function5 Apply hash function5

Extract the key (compact hash code)6 Extract the key (compact hash code)6

...CGTAAATGGTAACTGCTGATTACGTAAATGGTAACTGCTGATTA...

TL-PIM

Table LookupTable Lookup5 Table Lookup5

TL-PIM

Table Lookup5

Controller

Memory
Controller

ACC-FSM

Controller

Memory
Controller

ACC-FSM

3 Controller

Memory
Controller

ACC-FSM

3

Key-Arrays
Gate Enabler / Driver

R
o

w
 D

e
co

d
e

r

SASA

Key-Arrays
Gate Enabler / Driver

R
o

w
 D

e
co

d
e

r

SASA

Key-Arrays
Gate Enabler / Driver

R
o

w
 D

e
co

d
e

r

SASA

1 Key-Arrays
Gate Enabler / Driver

R
o

w
 D

e
co

d
e

r

SASA

1 Value-Arrays
Gate Enabler / Driver

R
o

w
 D

e
co

d
e

r

SASA

Value-Arrays
Gate Enabler / Driver

R
o

w
 D

e
co

d
e

r

SASA

Value-Arrays
Gate Enabler / Driver

R
o

w
 D

e
co

d
e

r

SASA

2 Value-Arrays
Gate Enabler / Driver

R
o

w
 D

e
co

d
e

r

SASA

2

TL-PIM

Table Lookup5

Controller

Memory
Controller

ACC-FSM

3

Key-Arrays
Gate Enabler / Driver

R
o

w
 D

e
co

d
e

r

SASA

1 Value-Arrays
Gate Enabler / Driver

R
o

w
 D

e
co

d
e

r

SASA

2

Loading Reference Table into TL-CIM2 Loading Reference Table into TL-CIM2Building Reference Table1 Building Reference Table1 Loading Reference Table into TL-CIM2Building Reference Table1

Generating Keys3 Generating Keys3 Sending keys to TL-CIM4 Sending keys to TL-CIM4Generating Keys3 Sending keys to TL-CIM4

Receiving LCAs from TL-CIM6 Receiving LCAs from TL-CIM6 Aggregating Results and ProfilingAggregating Results and Profiling7 Aggregating Results and Profiling7Receiving LCAs from TL-CIM6 Aggregating Results and Profiling7

Loading Reference Table into TL-CIM2Building Reference Table1

Generating Keys3 Sending keys to TL-CIM4

Receiving LCAs from TL-CIM6 Aggregating Results and Profiling7

Loading Reference Table into TL-CIM2Building Reference Table1

Generating Keys3 Sending keys to TL-CIM4

Receiving LCAs from TL-CIM6 Aggregating Results and Profiling7

1

23

4

Figure 2: An Overview of KrakenOnMem.

keys to TL-PIM (4) and receives the results back from the TL-PIM
(6).

TL-PIM accelerates Table Lookup 5 (the bottleneck) and sub-
sequently helps the overall performance and energy consumption.
TL-PIM itself consists of 3 key components: (1) Key-Arrays: Memory
arrays for matching units 1 , (2) LCA-Arrays: Memory arrays for
taxonomic labels retrieval 2 , and (3) Controller 3 . Memory arrays
are memristor arrays and their periphery circuits.

When designing the matching and retrieval units of TL-PIM,
a designer faces three highly-correlated design choices and chal-
lenges, namely (1) data mapping, (2) matching mechanism, and (3)
additional required hardware resources. For data mapping, TL-PIM
should choose among possible options:
• Data layout: Row-major vs. Column-major
• Data distribution (i.e., keys or labels for queries or references):
inter arrays vs. intra arrays vs. near arrays5

For the matching mechanism and its place, TL-PIM again have
several options to choose from:
• Inside an array (e.g., using MAGIC [37] or other stateless meth-
ods)

• Outside the array but inside peripheries such as Sense Amplifi-
ers (SAs) or Analoge Analog-to-Digital Converter (ADCs) (e.g.,
Pinatubo [45] or other stateful methods)

• Outside but near the array using simple logic after SAs (e.g., XOR
and shift registers)

• A hybrid of previous options
Finally, TL-PIM should consider the required additional hardware
resources for the matching or retrieval. These resources are for:
5The inter-array distribution is defined as when data (keys or LCA labels) is stored in
a single memory array. On the other hand, the intra-array distribution is when query-
and reference-related data is stored in different/separate memory arrays. The case
for near array data distribution happens when either query keys/labels or reference
keys/labels are in a separate buffer next to the memory array that stores the other.

• The general control flow logic
• Modified peripheries (SAs or ADCs in the case of scouting or
VMM operation)

• Fine-grained and complex control logic for analog operations in
stateless mechanisms

We consider all possible (and logical) combinations of such
design choices. KrakenOnMem is built based on the most efficient
designs for each component and we discuss the reasonings in Sec-
tions 4.2 and 4.3. The controller is the brain of TL-PIM and orches-
trates all necessary operations (Section 4.4). All components are
highly efficient regarding their performance, area, and power. We
discuss these in detail in Section 6.

4.2 TL-PIM: Matching Mechanism
For matching a query and reference in memory arrays, previous
works took three main approaches:

(1) Approach 1:
(a) Store both (or at least the reference) inside the memory
(b) Read out the stored values
(c) Perform an XOR/XNOR using logical gates
(d) Perform a pop-count to determine the exact match

(2) Approach 2:
(a) Store both inside the memory
(b) Read them into a modified SAs/ADCs to perform XOR/XNOR

(e.g., Ambit [71] for DRAM, Pinatubo [45] for memristors)
(c) Perform a pop-count on the output of SAs/ADCs

(3) Approach 3:
(a) Store both inside the memory
(b) Perform XOR/XNOR inside the memory using analog com-

puting (e.g., MAGIC [37])
(c) Read out the result
(d) Perform a pop-count

Unfortunately, all these techniques have one or more shortcom-
ings in matching two short sub-strings or keys. We provide two
examples of the inefficiency of these methods. First, storing quer-
ies inside memory incurs unnecessary write operations that take
time, waste energy, and hurt endurance. Note that the query keys
will change every time one wants to profile a new metagenomic
sample exacerbating the problem. Second, the necessary logical
gates to perform the pop-count operation after having the results
of XOR/XNOR are energy and area inefficient (e.g., a tree of logical
OR gates) or time inefficient (e.g., shift registers and counters), de-
pending on the implementation. Note that, as also stated in previous
works [32, 72], the additional logic units in peripheries are already
responsible for most of the energy and area consumption of the
whole design.

We propose a 1-cycle key matching (XNOR and pop-count in
one cycle) using memristor devices in a typical memory array
structure to mitigate previous shortcomings without introducing a
customized memory layout. We exploit the inherent capability of
memristor-based memory arrays for performing VMM operations.
We also exploit the fact that the XNOR of two keys (𝑘1 ⊙ 𝑘2) is
functionally equivalent to 𝑘1.𝑘2 + 𝑘1.𝑘2. Therefore, one can use a
column-major data mapping to achieve the intended operations.
We call these memory units Key-Arrays hereafter.

ICS ’22, June 28–30, 2022, Virtual Event, USA T. Shahroodi, et al.

The VMM function takes the query key and its complement as
the input vector and a matrix of reference keys each placed with
their complements in a single column as the input matrix. Fig. 3
demonstrates the placement of input vector and one column of input
matrix. Subsequently, by performing VMM operation and reading
the results out using an SA that uses a customized reference voltage,
one can perform the pop-count of (𝑘1|𝑘1) . (𝑘2|𝑘2) of multiple
reference keys with a query key in one cycle. For this purpose, the
reference of SA is set to recognize any current higher than length
(key) as logical 1 and lower currents as logical 0. This way, a 1 in
the output of an SA shows a match between the query key and the
reference key in the same column, and a 0 shows a mismatch.

. .
 .

. .
 .

R
e

f
ke

y
R

e
f

ke
y

Q
u

er
y

K
e

y
Q

u
er

y
K

e
y

Query key ⊙ Ref key

SA

Figure 3: Matcher.

There are three points worth mentioning regarding our proposal.
First, this method doubles the required memory cells for reference
keys. However, as our evaluations in Section 6 and analysis in
Section 3 show, our approach brings even further performance
improvement than doubling (1) the whole available bandwidth and
(2) compute power in the baselines. Additionally, a quick analysis
of Kraken2 shows that reference keys are the smaller part of the
hash table.

Second, unlike previous designs that require ADCs for their
VMM operation, our method works with SAs. This simplification
is because a Key-Array does not need to perform a complete VMM
and get the exact number. We are simply interested in whether
there is a match at all positions (which produces a current equal to
the length of a key). ADCs represent a significant area overhead
compared to the memory cells [3, 72]. Therefore, the current design
overcomes a critical source of inefficiency if someone replaces this
design with those in previous works.

Third, in theory, the same results can be achieved using CAMs
(but not TCAMs). However, using CAMs instead of our design have
two main limitations TL-PIM aims to prevent: (1) The memory cells
in a CAMs are different and fixed and cannot be reconfigured for
other types of memory arrays (like those we use for taxonomic
retrieval in Section 4.3). In other words, one cannot reuse Key-
Arrays for other memory units if they use CAMs for matching.
Such a choice limits the design, for example, for a case where one
wants to support and load different reference tables; (2) CAMs

require more complex controllers due to their different cell designs.
Our design does not change the control circuits other than we
already have in typical memories.

4.3 TL-PIM: Taxonomic Retrieval
After finding a match between a query key and one of the stored
reference keys in Key-Arrays, TL-PIM needs to retrieve the corres-
ponding taxonomic label and send it back to the host CPU. LCA-
Arrays are the memory units that store taxonomic labels. A LCA-
Array uses row-major data mapping to store the labels. This way,
it can retrieve the full label by only reading one row, which is im-
possible with a column-major mapping. In addition, LCA-Array
applies a revised data mapping allowing the design to retrieve the
label in 1 cycle. This mapping is due to the limitation of shared SAs
among columns in emerging memories. Fig. 4 shows the proposed
interleaved, row-major data mapping for each LCA-Array.

. . .

1st bit of LCA(1)

1st bit of LCA(2)

Last bit of LCA(n)
Last bit of LCA(n-1)

LCA 1_1 ... LCA m_1 LCA 1_n ...

SA_1 SA_n

LCA m_n

. . .

Figure 4: Taxonomic Label Retrieval.

Since SAs are shared among columns of a LCA-Array, to ensure
TL-PIM can retrieve all the bits of one label in a single cycle, the
LCA-Array needs to distribute the bits of a label and store them
among columns that use different SAs. In other words, LCA-Arrays
interleave bits of each LCA label among different SAs. 𝐿𝐶𝐴 𝑋𝑌

in Fig. 4 presents the 𝑌 𝑡ℎ bit of 𝐿𝐶𝐴 𝑋 . For example, assume a
512×512 array where every 16 columns share one SA. Addition-
ally, assume that each taxonomic label has 17 bits. In this case, an
LCA-Array puts the 1st bit of Label#1 in column#1, the 2nd bit of La-
bel#1 in column#17 (=16+1), and 17th bit of Label#1 in column#273
(=17*16+1). It does the same for Label#2, i.e., it puts 1st bit of Label#2
in column#2, the 2nd bit of Label#2 in column#18 (=16+2), and so
on. This way, for retrieving Label#1, TL-PIM only needs to read out
the first bit of the first 17 SAs, which can be achieved in 1 cycle
simultaneously.

4.4 TL-PIM: Controller
The Controller unit is the mind behind TL-PIM. The controller first
receives the query key as a PCIe packet from the host CPU through
the PCIe (Peripheral Component Interconnect Express) [52, 61].
Subsequently, it unpacks the package and distributes the query key
to appropriate Key-Arrays. Additionally, the controller sends the
proper signals to all memory units (Key-Arrays and LCA-Arrays).

KrakenOnMem: A Memristor-Augmented HW/SW Framework for Taxonomic Profiling ICS ’22, June 28–30, 2022, Virtual Event, USA

Examples of such signals are those for the VMM operation in Key-
Arrays, select signals of MUXes in LCA-Arrays, and decoders’ sig-
nals. Once TL-PIM compared the query key against all possible
reference keys, it sets the PCIe interconnects response ready queue
(RRQ). The finished requests will be forwarded to PCIe Out Queue
(POQ). Each response can be either a taxonomic label or a NULL,
meaning that the query key did not exist in the index table. The con-
troller sends an interrupt signal to the host CPU when a packet is
ready in POQ or empty slots in PIQ. The controller is a simple FSM
machine and can be easily modified for future taxonomic profilers
if the hardware requires the same sets of supported operations by
other units.

4.5 Relation between LCA-Arrays and
Key-Arrays

The ratio between the number of LCA-Arrays and Key-Arrays is
not necessarily 1-to-1. A LCA-Array receives the results of N key-
to-key comparisons per cycle per each Key-Array, where N is #SAs
per Key-Array. Only one of all these N comparisons can be an exact
match (Section 2.2). Therefore, in the worst case, or for the highest
performance, TL-PIM needs to be able to retrieve the corresponding
taxonomic label for that 1 match out of N possible cases in 1 cycle.
This way TL-PIM can overlap retrieval operation of the previous
matching with finding the next exact match of the same Key-Array.
This scenario may require more than 1 LCA-Array per each Key-
Array. In other words, the ratio between the required number of
LCA-Arrays per each Key-Array is a design choice and tradeoff
between the number of required LCA-Arrays and performance.
This design choice also affects the utilization of each LCA-Array
as each LCA-Array may end up not using all of its SAs or some
columns in each SA (Section 6.2).

The ratio for the highest performance highly depends on the
#SAs per Key-Array (or the number of evaluated keys per cycle),
length of LCA labels, the capacity of SAs in a LCA-Array, and #SAs
per LCA-Array. In other words, it depends not only on the device
characteristics of memory arrays and their peripheries but also
on the length of values (labels) in the reference table. This is the
main reason that having the configurability between Key-Array
and LCA-Array is favorable, and we use a typical memory layout
for Key-Arrays instead of CAMs (Section 4.2). Fig. 5 presents a case
were TL-PIM uses 2 LCA-Arrays per each Key-Array for achieving
the highest performance.

Fig. 5 also demonstrates the expected utilization for Key-Arrays
and LCA-Arrays by diagonal gray patterns. For minimizing this inef-
ficiency in Key-Arrays, TL-PIM places keys and their complement in
each column, i.e., all columns are used. However, depending on the
#Rows and required bits per key, TL-PIM can only fill ⌊ #𝑅𝑜𝑤𝑠

𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑘𝑒𝑦
⌋.

This means that some rows will remain empty (underutilized). For
LCA-Arrays, memory utilization is lower, especially when opting
for the maximum achievable performance. This means each LCA-
Array may have to leave out a few SAs or columns of each SA
depending on the number of results produced by corresponding
Key-Array in each cycle, size of LCA-Array itself, and #columns
that share SAs in the LCA-Array. Each LCA-Array may also have
to not use some of its rows depending on expected #keys checked

. . .

. . .SA_1 SA_32SA_1 SA_32

Key-Array

16 bits16 bits 16 bits16 bits

1st bit of LCA 1

1st bit of LCA 1 Last bit of LCA 2

Last bit of LCA 1

SA_1 SA_32 . . .
1st bit of LCA 17

1st bit of LCA 18 Last bit of LCA 32

Last bit of LCA 31

SA_1 SA_32

LCA-Array LCA-Array

Figure 5: Relation and connection between one Key-Array and
multiple LCA-Arrays.

by corresponding Key-Array in total. We evaluate array utilizations
in Section 6.2.

4.6 Optimizations
We apply several design optimizations to further boost the perform-
ance and/or energy consumption of our framework that we discuss
here.

Optimization 1. We did not add any buffer or additional net-
work among memory arrays in TL-PIM other than those that ex-
ist in typical memories. As alluded before (Sections 4.2 and 4.3),
each Key-Array produces at most 1 bit consumed by correspond-
ing LCA-Arrays. In addition, not all LCA-Arrays will consume the
results of each Key-Array. This means that TL-PIM requires no net-
work among its arrays. This allows TL-PIM to be less constrained
regarding the area budget compared to all previous ML-related
PIM-enabled architectures using memristor devices [3, 72].

Optimization 2. KrakenOnMem prevents broadcasting each
query key to all Key-Arrays, and subsequently, it decreases the data
movement in TL-PIM significantly. To this end, KrakenOnMem
sorts the required hash table based on the keys alphanumerically
and then stores them in Key-Arrays of TL-PIM according. Similar
to Sieve [87], KrakenOnMem stores an 8-byte ID consisting of first
and last reference keys in an array. Such a table will remain under
2 MB for a 500 GB reference table, and the host CPU or controller
can easily store it. For each query key, KrakenOnMem first consults
this table to find the correct Key-Array to send the request to in
TL-PIM. This mechanism scales linearly with the size of memory
considered for KrakenOnMem (equivalently the size of the hash
table for references) rather than the length of the considered keys.

Optimization 3. We clock gate the LCA-Arrays that have no
potential match for a particular query key. This is possible since we
only get at most one output "1" from all Key-Arrays in each cycle
because every query key can match only with one reference key

ICS ’22, June 28–30, 2022, Virtual Event, USA T. Shahroodi, et al.

by definition of the key in a hash table. This optimization saves the
static energy of our system.

4.7 KrakenOnMem Profiling Walk Through
KrakenOnMem performs an accurate and high-performance taxo-
nomic profiling. In the boot up, the host CPU of KrakenOnMem
loads the reference indexes (hash table) into TL-PIM’s memory
units based their required data mapping (Sections 4.2, 4.3). This is
a one-time job, and we do not need to repeat it unless one changes
the reference database that rarely happens. Fig. 6 summarizes how
KrakenOnMem translates an existing Kraken2’s database into ap-
propriate data mapping in Key-Arrays and LCA-Arrays.

C
H

C

. . .

. . .
C

H
C

C
H

C

. . .

30
 b

it
s

30
 b

it
s

C
H

C

. . .

. . .
C

H
C

. . .

30
 b

it
s

Compact Hash Table (CHT)

. LCA
15 bits 17 bits15 bits 17 bits

CHC LCACHC LCA

Compact
Hash Code

Lowest
Common
Ancestor

Key-Array LCA-Array

Figure 6: Mapping of Kraken2’s Hash Table into TL-PIM for Kraken-
OnMem.

At the recipient of a metagenomics sample, the host CPU in
KrakenOnMem reads queries from Fastq files, extracts the k-mers,
and calculates the corresponding keys. It then transfers the res-
ults to TL-PIM as queries. TL-PIM connects to the CPU host using
PCIe [52, 61]. KrakenOnMem uses this connection to (1) send TL-
PIM the necessary signals and query keys and (2) receive taxonomic
labels from TL-PIM. KrakenOnMem hides the transfer latency of
PCIe between host CPU and TL-PIM using the double-buffering
technique [53]. TL-PIM unpacks the PCIe packets it gets from the
PCIe input queue and distributes the keys to possible target Key-
Arrays. After retrieving a taxonomic label, TL-PIM creates a re-
sponse packet and stores it in PCIe’s RRQ. A batch of these packets
will be sent to POQ and eventually to the host CPU. The host
CPU reads the response and aggregates them to achieve the final
profiling of the read a key belongs to.

5 EVALUATION METHODOLOGY
We build KrakenOnMem based on Kraken2 to perform end-to-end
taxonomic profiling. TL-PIM replaces the Kraken2’s Table Lookup
operation, which accelerates this significant bottleneck. We verify
KrakenOnMem architecture using a cycle-accurate RTL model of
the complete CMOS design with equivalent throughput based on
the architecture in previous works [91, 92]. The memory model is
validated and based on a small 4Gbit STT-MRAM chip prototype in
TSMC 28nm CMOS technology [36, 64]. We use an analytical model
based on this small prototype and extend the memory to the re-
quired size. The model is acquired from the results of the EU project
MNEMOSENE [58], led and concluded by TU Delft in 2020. In other
words, without access to large-scale production-level memristive
devices, we evaluated our design using the next best approach: We
implemented and prototyped many parts in FPGA and connected

them to existing (small) memories and a high-performance AFE
(analog -front-end) board for DACs, power supplies, and voltage
and current references, to faithfully build first a small scale (using
real size memory) and then an analytical model for our evaluation.
We run all of our software experiments on a 128-core server run-
ning on AMD EPYC 7742 processors that operate at 2.25 GHz. We
have 512 GB of 3200 MHz DDR4 DRAM available on this server.
Baselines. We compare KrakenOnMem mainly with Kraken2, the
state-of-the-art taxonomic profiler. Kraken2 accompanied by Bracken
[51] is one of the promising approaches for taxonomic profiling
on different datasets once based on the latest results of the CAMI
challenge [56]. We analyze the accuracy of KrakenOnMem by com-
paring its output results with only the profiling outputs of Kraken2.
We also compare our platform with a state-of-the-art in-memory
k-mer matcher, Sieve [87]. We consider Sieve only for the k-mer
matching and query retrieval part (Table Lookup) and assume that
the CPU takes care of the rest for a taxonomic profiling, similar to
our platform. Finally, we compare the proposal with Metalign, an
alignment-based taxonomic profiler. This study demonstrates the
potential of KrakenOnMem in general or TL-PIM in particular in
other and future taxonomic profilers that are not bottlenecked by
Table Lookup but still suffer from a similar inefficient operation.

Note that our evaluations do not include a GPU-based baseline
for three reasons. First, currently, there is no GPU-based taxonomic
profiler for metagenomics, let alone a GPU-based profiler based on
Kraken2. Second, Sieve already outperforms GPUs in simple k-mer
matching operation regarding performance and energy consump-
tion. Third, GPUs are power-hungry and require significant data
movement for reference index tables making them less likely to be
adopted by the experts in the near future.
Performance Model. Kraken2 and Metalign open-sourced imple-
mentations report performance (execution time) directly when run
on our servers. We use statistics of our synthesized design using
TSMC 28nm technology node in Synopsys Design Compiler [74] to
obtain the latency of main hardware components of KrakenOnMem,
namely TL-PIM. We obtain the execution time of other steps by run-
ning each necessary steps of the Kraken2 on the host CPU. We take
a similar approach for estimating Sieve’s performance, considering
improvements stated in the original paper for the matching.
Area and Power. Similar to performance, we also acquire the area
and power consumption of KrakenOnMem’s components from our
synthesized design and memory model. This design considers a
typical operation condition of temperature 25°and voltage 1.2V for
power consumption evaluations. We measure the power consumed
by our CPU host using Intel’s PCM power utility [30].
Datasets. We use DustMasked MiniKraken for our reference data-
base when testing our small prototype. This is a pre-built 4GB
database from dustmasked bacterial, archaeal, and viral genomes
in Refseq. For all other experiments, we used the default reference
database of Kraken2 and Metalign. For query sequences, we use 3
datasets from the CAMI challenge: CAMI-low (RL), CAMI-medium
(RM), and CAMI-high (RH).

6 EXPERIMENTAL RESULTS
KrakenOnMem produces the same list of matches, LCAs, and ul-
timately taxonomic profiling results as the original Kraken2. This

KrakenOnMem: A Memristor-Augmented HW/SW Framework for Taxonomic Profiling ICS ’22, June 28–30, 2022, Virtual Event, USA

was expected since KrakenOnMem does not change the order of
steps in Kraken2 but it accelerates the bottleneck. Note that the
order or rate at which we perform the matching and retrieval does
not affect the profiling results as long as we ensure we have all
the results before the final aggregation step. The same holds for
the accuracy results of Sieve. From the results of the latest CAMI
challenge [56], we know that Kraken2+Bracken stands among the
high accuracy taxonomy profilers. Therefore, we conclude that
KrakenOnMem also has high accuracy.

6.1 Performance Analysis
Our performance analysis consists of two separate sets of exper-
iments. In the first set, we compare the performance of TL-PIM
for Table Lookup with that in Sieve and Kraken2. Subsequently, we
evaluate the end-to-end effect of our accelerator when employed
for taxonomic profiling. In the second set, we slightly modify TL-
PIM to be used for counting the matched k-mers instead of Table
Lookup. Afterward, we compare this design with KMC3 [35] used
in Metalign. Finally, we evaluate the end-to-end effect of using such
a design in Metalign.
Table Lookup and Heuristic-based Profiling. Fig. 7 depicts the
performance of Kraken2, Sieve, and TL-PIM when performing Table
Lookup. The y-axis utilizes a logarithmic scale.

Kraken2 Sieve TL-PIM

Kraken2 Vs Sieve Vs KrakenOnMem – Table Lookup

0.01

0.1

1

10

100

1000

RL RM Avg RH Avg Avg

T
a

b
le

 L
o

o
k

u
p

T
im

e
 (

s)

Figure 7: Performance comparison for Table Lookup between
Kraken2, Sieve, and TL-PIM.

We make two observations. First, TL-PIM provides, on average,
1386× performance improvement over the original Table Lookup
in Kraken2 and 111× performance improvement over Sieve for the
same operation. Second, TL-PIM performs Table Lookup faster than
Sieve and Kraken2 regardless of the dataset, on all three CAMI data-
sets by at least 100× and 1250×, respectively. TL-PIM outperforms
original Table Lookup in Kraken2 due to its minimum data move-
ment, high parallelism, and 1 cycle operation. It also outperforms
Sieve due to the inefficiencies that Sieve introduces, such as duplic-
ates and heavy internal data movement (Section 3.2). These results
also show that ETM in Sieve, while effective, does not help Sieve
outperform TL-PIM, even for queries with different complexity,
such as those we used.

Fig. 8 presents end-to-end performance of taxonomic profiling
for original Kraken2, Sieve, and KrakenOnMem. We observe that
KrakenOnMem provides (1) 61.3% performance improvement over
Kraken2, and (2) 1.17% performance improvement over Sieve. As

expected, this is lower than improvements considering only Table
Lookup because although this operation is the bottleneck in taxo-
nomic profiling, KrakenOnMem still incurs some pre-processing
and post-processing that become the new bottlenecks, reducing the
overall benefit to some extent. In other words, we have diminish-
ing returns due to the sequential nature of other sections of our
application (i.e., Amdahl’s Law).

Kraken2 Sieve KrakenOnMem

Kraken2 Vs Sieve Vs KrakenOnMem – Profiling

0

100

200

RL RM Avg RH Avg Avg

E
n

d
 t

o
 E

n
d

P

ro
fi

li
n

g

T
im

e
 (

s)

Figure 8: Performance comparison for profiling between Kraken2,
Sieve, and KrakenOnMem.

Note that improvements of KrakenOnMem over Sieve are still
significant for four reasons. First, although the overall speedup of
KrakenOnMem compared to Sieve is small, the accelerated opera-
tion (Table Lookup) achieves a significant speedup. This opens up
the possibility of future work focusing on the next performance
bottleneck - a common (iterative) methodology in computer engin-
eering. Second, Table Lookup will likely remain in future genomics
pipelines for which the sequential part of the application can be
different. Third, as we will discuss in Section 6.2, KrakenOnMem is
also advantageous over Sieve in other aspects, e.g., area overhead
and energy consumption. Fourth, the sped-up operation can and
will potentially be used in all the upcoming metagenomics stud-
ies and profilers. Therefore, a modest 1.17% improvement can still
translate into significant time and cost gains.
k-merCounting andAlignmnet-based Profiling. Fig. 9 presents
the results for pre-filtering stage in Metalign when tweaking TL-
PIM to perform k-mer counting compared to the original KMC3
implementation in Metalign. The y-axis utilizes a logarithmic scale.

0.1

1

10

100

1000

RL RM AvgRH Avg Avg

K
-m

e
r

C
o

u
n

ti
n

g
T

im
e

 (
s)

KMC in Metalign Tweaked TL-PIM

KrakenOnMem Vs Metalign/KMC – Kmer Counting

Figure 9: Performance comparison for k-mer counting between
KMC and tweaked TL-PIM.

We observe that for all CAMI datasets, the PIM-enabled design
provides on average a 1595× improvement compared to an SW

ICS ’22, June 28–30, 2022, Virtual Event, USA T. Shahroodi, et al.

version of the same operation in Metalign. We expected such signi-
ficant improvements due to advances in data movement reduction
and high parallelism in TL-PIM.

Fig. 10 demonstrates the aftermath when we apply the new
TL-PIM for end-to-end taxonomic profiling using the Metalign ap-
proach as a SOTA alignment-based profiler. We make two observa-
tions. First, our proposal provides, on average, 23.01% improvement
in execution time for end-to-end profiling. This is expected as the
k-mer counting operation in Metalign still affects the overall per-
formance and cannot be masked or parallelized by other operations
and steps.

Metalign Proposal

KrakenOnMem Vs Metalign - Profiling

0

1000

2000

3000

4000

5000

RL RM AvgRH Avg Avg

E
n

d
 t

o
 E

n
d

P

ro
fi

li
n

g
 T

im
e

(s

)

Figure 10: Performance comparison for profiling between original
Metalign and Metalign equipped with tweaked TL-PIM.

Second, the end-to-end improvement in an alignment-based
mechanism is much less than the achieved improvement over
Kraken2 (23.01% vs. 61.3%). This happens because alignment-based
taxonomic profilers are not bottlenecked by the Table Lookup op-
eration, rather their required alignment operation. However, we
argue that this improvement is still significant and shows that the
Table Lookup procedure is costly for any type of profiler and worth
the design, even if it is not the bottleneck.

6.2 Power and Area Analysis
Energy and Power.We compare the expected energy consump-
tion of Sieve with the measured energy consumption of Kraken-
OnMem for Table Lookup operation. We consider the DRAM tech-
nology mentioned in the original manuscript for Sieve. We exploit
three synthetic datasets to cover all spectrum of possible scenarios
for Sieve, as its energy highly depends on the effect of the data-
dependent ETM component. Sc1 is when more than 95% of the
mismatch/difference between query and reference keys exists in
the first two characters of them. This scenario favors Sieve the
most as the ETM component can save Sieve a lot of row activations
and unnecessary comparisons. Sc2 is the case where the average
distance of the first mismatch among query and reference keys
from their first bit is set to 10 bits. This is the main reported number
in Sieve [87] for typical cases. The last scenario, Sc3, contains the
results for when the mismatches cannot be found until the last two
characters of query and reference keys. This is the worst-case scen-
ario for Sieve, in which ETM favors the performance and energy
the least. Fig. 11 presents the results.

0

100

200

300

Sc1 Sc2 Sc3 Avg

E
n

e
rg

y
 S

a
v

in
g

fo

r
T

a
b

le

L
o

o
k

u
p

 o
v

e
r

S
ie

v
e

Figure 11: Energy saving of KrakenOnMem over Sieve for Table
Lookup.

We make two observations. First, KrakenOnMem achieves a bet-
ter energy consumption for all three scenarios, with an average
of 11.34× energy saving over Sieve. One cycle matching and la-
bel retrieval, pipelined design, available parallelism, and analog
computing are the reasons behind this significant improvement in
energy consumption of Table Lookup in KrakenOnMem over Sieve.
Second, Sieve offers a very data-dependent energy consumption
that changes to an almost 62× depending on where the first mis-
match among keys occurs. This shows that while ETM in Sieve
might be compelling enough in average cases, it cannot be reliably
used for a fixed/calculated energy consumption. KrakenOnMem
solves this issue.

Our power evaluations show that KrakenOnMem can profile
with a rate of 4.75𝑀𝑏𝑝

𝑗 . This is while Merelli, et al. [14, 55] show
that original Kraken2 on a 8-core XeonD processor can achieve only
a maximum of 0.22𝑀𝑏𝑝

𝑗 . Note that we have not directly compared
the energy consumption of KrakenOnMem with Kraken2 for two
reasons. First, our expertise in memory accelerators allows us to
measure the expected profiling rate for KrakenOnMem, but it would
not be a fair comparison with a software-only solution. Second,
only a few works [14, 55] provide energy numbers, and we utilized
them for our rough energy comparisons with KrakenOnMem. These
results showcase that KrakenOnMem consumes much lower energy
for the same datasets than Kraken2.

Area. Although TL-PIM consists of memory arrays and control-
ler logic, we only consider the area of its controller as additional
area overhead. This is because sequencing machines are heterogen-
eous systems that already use various memory technologies (e.g.,
DRAM and SSD) and computational units (CPU, GPU, and FPGA)
since their benefits justify their cost. Therefore, having memristors
installed in those machines as well is not a far-fetched idea if we can
harvest their power efficiently. The area overhead for the required
controller in TL-PIM is 0.009𝑚𝑚2. This is a very modest overhead,
only 0.002% of Skylake-SP, a modern Intel Processor at 14 nm [29].
Although any processor can be chosen for this comparison, depend-
ing on the final product, we pick the Skylake-SP processor for the
area baseline only to be similar to works on PIM-based accelerators
and non-volatile memories [8, 62]. Note that Sieve Type III, which
we used in our performance and energy evaluations, incurs 10.9%
area overhead for the required logic of (1) k-mer matching and
(2) row-address latches over an 8-bank DRAM chip in 22nm tech-
nology mode. We use methods presented in [73] to scale the area
consumption down to 28nm technology mode and find an overhead

KrakenOnMem: A Memristor-Augmented HW/SW Framework for Taxonomic Profiling ICS ’22, June 28–30, 2022, Virtual Event, USA

of higher than 6%. On the other hand, KrakenOnMem only incurs
0.0007% extra die area for its controller (as LCA- and Key-arrays
exist regardless) over the same memory size using our STT-MRAM
devices.

Memory utilization. Fig. 12 and Fig. 13 depict the memory util-
ization for Key-Arrays and LCA-Arrays, respectively, considering
different array configurations, i.e., varying size and #SAs.

0
0.2
0.4
0.6
0.8
1

U
ti
li
za
ti
o
n

Ideal utilization

Array utilizations

0

0.2

0.4

0.6

0.8

1

512x512 256x256 128x128

U
ti
li
za
ti
o
n

Ideal utilization

(a) Key-Arrays utilization

(b) LCA-Arrays utilization

Figure 12: The memory utilization of Key-Arrays.

0
0.2
0.4
0.6
0.8
1

U
ti
li
za
ti
o
n

Ideal utilization

Array utilizations

0

0.2

0.4

0.6

0.8

1

512x512 256x256 128x128

U
ti
li
za
ti
o
n

Ideal utilization

(a) Key-Arrays utilization

(b) LCA-Arrays utilizationFigure 13: The memory utilization of LCA-Array.

We make three observations. First, TL-PIM utilizes Key-Arrays
close to the ideal case. For three standard evaluated array sizes
of 512×512, 256×256, and 128×128, TL-PIM achieves a utilization
higher than 93%. Second, utilization of LCA-Arrays is lower than
that in Key-Arrays. However, they are still on average higher than
50%. This is expected in any accelerator, including TL-PIM, that
does not change the memory structure or data representation yet
aims for the highest achievable performance. Third, utilization of
Key-Arrays only depends on the array size, while LCA-Arrays’
utilization is also affected by #columns that share one SA. The
reason behind this is that the new parameters affect the number of
LCA-Arrays per one Key-Array, as discussed in Section 4.5.

7 DISCUSSIONS AND FUTUREWORKS
Higher Memory Utilization. KrakenOnMem sacrifices memory
utilization for performance, especially in LCA-Arrays. To ensure
that KrakenOnMem can perform the Table Lookup operation in 1
cycle for the worst-case scenario, it has to leave some cells of the

LCA-Arrays unused. However, it is possible to reach a higher utiliz-
ation without a considerable performance loss. Currently, Kraken-
OnMem opts for this solution to provide the maximum performance
one can expect. Different data layouts for LCA-Arrays can be invest-
igated as future works for applying the same idea to other profilers
or applications.

OptimizationPossibilities forRank-Level Profiling.Kraken-
OnMem can potentially improve profiling performance at different
taxonomic ranks as well. An example of such optimizations can be
the placement of keys related to a particular species on the columns
of a Key-Array that do not share their SAs. This way, one can invest-
igate the match of the query key to that species in 1 cycle. However,
we leave the investigation of such optimizations for future work.

More Application Support. KrakenOnMem focuses on taxo-
nomic profiling due to its importance and promise of being adopted
with the newest technologies rather than the importance of general
Table Lookup itself. However, TL-PIM from KrakenOnMem can
also be used in any other application bottlenecked by similar large
(hash) tables. We leave the exploration of such applications and
benefits TL-PIM and a similar HW/SW co-design to KrakenOnMem
can provide to these applications for future work. The effectiveness,
however, depends on how much of the issue this operation is in the
original problem.

Support for TL-PIM Data Mapping. Currently, KrakenOn-
Mem does not have API support for the required data mapping of
flexible datasets and tables. We avoid virtual memory translation
by mapping the KrakenOnMem’s memory space directly to the
CPU host. Therefore, currently, KrakenOnMem loads the required
hash table to the TL-PIM memory arrays based on prior knowledge
about the (hash) table in Kraken2. We leave building an API to
support all data mapping required for an efficient Table Lookup for
future work. Note that loading the hash table is a one-time (rare)
task before starting the query operation. Since these hash tables
rarely change and we usually reuse genomics databases, the cost of
our approach is still acceptable for the intended long usage period.

Building Reference Table. Currently, KrakenOnMem does not
build the required (hash) table or the taxonomy tree. Therefore,
the current design always requires the (hash) table construction to
be done first on another platform, which can be the primary host
(CPU) used also in KrakenOnMem. However, this task is a one-time
job and does not diminish the benefits of KrakenOnMem.

8 RELATEDWORKS
To our knowledge KrakenOnMem is the first work to present an
HW/SW co-designed framework for taxonomy profiling of gen-
omics samples exploiting the PIM paradigm. KrakenOnMem ac-
celerates the bottleneck of a SOTA profiler, Table Lookup, using
TL-PIM, a PIM-enabled accelerator. We have compared Kraken-
OnMem extensively to previous SOTA taxonomic profilers, both
heuristic-based and alignment-based and, in Section 6. This sec-
tion briefly discusses previous works on taxonomy profilers and
(PIM-enabled) genomics accelerators.
Metagenomic Profilers. SOTA taxonomic profilers take one or a
combination of three following directions to improve the accuracy
and/or execution time of profiling: (1) Reference database’s size

ICS ’22, June 28–30, 2022, Virtual Event, USA T. Shahroodi, et al.

reduction with pre-alignment filters [2, 90] or heuristics for taxo-
nomic classification [34, 40, 46, 70, 85]. (2) Post species-level classi-
fication presence and abundance estimation heuristics [40, 41, 51].
(3) Hardware acceleration for an algorithm or function that can
later be used for metagenomic studies (e.g., alignment step in an
alignment-based profiler) [4, 12, 16, 21, 25, 47, 48, 65, 77, 81].

KrakenOnMem is orthogonal to the works in the first two groups.
KrakenOnMem is loosely an example of works discussed in the
last group. However, previous works focused on alignment and not
Table Lookup due to the importance of alignment in other genomics
pipelines. They also do not scale well with the current and rapidly
growing datasets metagenomics deals with. Therefore, we believe
KrakenOnMem is more suitable for future taxonomic profilers, as
it is compared to existing designs.
(PIM-based) Genomics Accelerators. Many recent works ex-
plored different architectures for genomics-related kernels or full
application. GenASM [8] proposes a framework for approximate
string matching (ASM) and employs it in multiple genome-related
analyses. DARWIN [76] is a co-processor hardware accelerator for
sequence alignment. DARWIN uses a filtering algorithm (D-SOFT)
and a new algorithm to perform the long sequence alignment using
constant memory. RADAR [79] exploits 3D ReRAM and accelerates
multiple computational units of BLASTN by eliminating unneces-
sary data movement and performing seed-and-extend algorithm
and mapping more efficiently. AligneR [93] and RASSA [31] are
two other two PIM-enabled accelerators for short and long-read
alignment, respectively. Helix [49] and BRAWL [50] accelerate base-
calling on aNVM-based PIM-enabled architecture. Laguna et al. [38]
propose an in-memory architecture using TCAMs for seed-and-vote
read mapping. MEDAL [26] proposes a PIM-enabled accelerator for
seeding on DIMM between DRAM modules. MEDAL utilizes the
memory bandwidth very efficiently and has fine-grained memory
accessibility. NEST [27] is a DIMM-based PIM-enabled architecture
for k-mer counting.

KrakenOnMem differs from all these works as it uses hardware
acceleration for Table Lookup, a critical function in all SOTA taxo-
nomic profilers. KrakenOnMem is, to the best of our knowledge, the
only end-to-end hardware-accelerated framework for taxonomy
profiling. Moreover, TL-PIM in KrakenOnMem also prevents un-
necessary data movement using a PIM-enabled design, which was
not the main focus of many previous works.

9 CONCLUSION
This paper introduces KrakenOnMem, the first HW/SWco-designed
framework for taxonomic profiling via in-memory hardware accel-
eration using emerging memory technologies. KrakenOnMem ac-
celerates the bottleneck of Kraken2, a SOTA taxonomic profiler, by
a memristor-based PIM-enabled hardware called TL-PIM. TL-PIM
enables Table Lookup operation while it simultaneously aims for (1)
being data-independent, (2) maximizing the achievable performance
for the worst-case scenarios, (3) having linear scalability, (4) main-
taining its design optimization advantages for future designs, and
(5) incurring minimal hardware and area overhead. The evaluation
results show that TL-PIM alleviates the existing bottleneck to the
extent that the end-to-end performance and energy consumption of
Kraken2 significantly surpasses that of original Kraken2. We expect

that ideas presented for TL-PIM and the HW/SW co-designed of
Kraken2 enable the designs of future accelerators in other genomic
applications. We also expect that the overall improvement in end-
to-end taxonomic profiling introduced by KrakenOnMem further
helps the upcoming metagenomic studies and opens new doors for
improving our lives.

ACKNOWLEDGMENTS
We thank the anonymous reviewers of ICS 2022 for feedback. We
thank the CE group members at the QCE department in TU Delft
for feedback and the stimulating intellectual environment.

REFERENCES
[1] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and R. Das,

“Compute Caches,” in HPCA, 2017.
[2] M. Alser, T. Shahroodi, J. Gomez-Luna, C. Alkan, and O. Mutlu, “SneakySnake: A

Fast and Accurate Universal Genome Pre-Alignment Filter for CPUs, GPUs, and
FPGAs,” Bioinformatics, 2020.

[3] A. Ankit, I. E. Hajj, S. R. Chalamalasetti, G. Ndu, M. Foltin, R. S. Williams, P. Fara-
boschi, W.-m. W. Hwu, J. P. Strachan, K. Roy et al., “PUMA: A programmable
ultra-efficient memristor-based accelerator for machine learning inference,” in
ASPLOS, 2019.

[4] S. S. Banerjee, M. El-Hadedy, J. B. Lim, Z. T. Kalbarczyk, D. Chen, S. S. Lumetta, and
R. K. Iyer, “Asap: Accelerated short-read alignment on programmable hardware,”
IEEE Transactions on Computers, 2018.

[5] Barba, M, Czosnek, H and Hadidi, A, “Cost in US Dollars per Raw Megabase of
DNA Sequence,” https://www.genome.gov/about-genomics/fact-sheets/DNA-
Sequencing-Costs-Data.

[6] A. Brady and S. Salzberg, “PhymmBL expanded: confidence scores, custom data-
bases, parallelization and more,” Nature methods, 2011.

[7] F. P. Breitwieser, J. Lu, and S. L. Salzberg, “A Review of Methods and Databases
for Metagenomic Classification and Assembly,” Briefings in bioinformatics, 2019.

[8] D. S. Cali, G. S. Kalsi, Z. Bingöl, C. Firtina, L. Subramanian, J. S. Kim, R. Ausav-
arungnirun, M. Alser, J. Gomez-Luna, A. Boroumand et al., “GenASM: A high-
performance, low-power approximate string matching acceleration framework
for genome sequence analysis,” in MICRO, 2020.

[9] E. Chen, D. Apalkov, Z. Diao, A. Driskill-Smith, D. Druist, D. Lottis, V. Nikitin,
X. Tang, S. Watts, S. Wang et al., “Advances and future prospects of spin-transfer
torque random access memory,” IEEE Transactions on Magnetics, 2010.

[10] L. Cheng, Y. Li, K.-S. Yin, S.-Y. Hu, Y.-T. Su, M.-M. Jin, Z.-R. Wang, T.-C. Chang,
and X.-S. Miao, “Functional demonstration of a memristive arithmetic logic unit
(memalu) for in-memory computing,” Advanced Functional Materials, 2019.

[11] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, “PRIME: A
novel processing-in-memory architecture for neural network computation in
reram-based main memory,” ISCA, 2016.

[12] J. Daily, “Parasail: SIMD C Library for Global, Semi-global, and Local Pairwise
Sequence Alignments,” BMC bioinformatics, 2016.

[13] J. Dröge, I. Gregor, and A. C. McHardy, “Taxator-tk: precise taxonomic assign-
ment of metagenomes by fast approximation of evolutionary neighborhoods,”
Bioinformatics, 2015.

[14] D. D’Agostino, L. Morganti, E. Corni, D. Cesini, and I. Merelli, “Combining edge
and cloud computing for low-power, cost-effectivemetagenomics analysis,” Future
Generation Computer Systems, 2019.

[15] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester, D. Blaaauw,
and R. Das, “Neural cache: Bit-serial in-cache acceleration of deep neural net-
works,” in ISCA, 2018.

[16] X. Fei, Z. Dan, L. Lina, M. Xin, and Z. Chunlei, “Fpgasw: Accelerating large-scale
smith–waterman sequence alignment application with backtracking on fpga
linear systolic array,” Interdisciplinary Sciences: Computational Life Sciences, 2018.

[17] J. D. Ferreira, G. Falcao, J. Gómez-Luna, M. Alser, L. Orosa, M. Sadrosadati, J. S.
Kim, G. F. Oliveira, T. Shahroodi, A. Nori et al., “pLUTo: In-DRAM Lookup Tables
to Enable Massively Parallel General-Purpose Computation,” arXiv preprint, 2021.

[18] B. Fjukstad and L. A. Bongo, “A review of scalable bioinformatics pipelines,” Data
Science and Engineering, 2017.

[19] D. Fujiki, S. Mahlke, and R. Das, “Duality cache for data parallel acceleration,” in
ISCA, 2019.

[20] G. V. RESEARCH, “Metagenomics market size, share and trends analysis report
by product (sequencing and data analytics), by technology (sequencing, function),
by application (environmental), and segment forecasts, 2018 - 2025.” 2017.

[21] E. Georganas, A. Buluç, J. Chapman, L. Oliker, D. Rokhsar, and K. Yelick, “mer-
aligner: A fully parallel sequence aligner,” in IPDPS, 2015.

[22] I. Gregor, J. Dröge, M. Schirmer, C. Quince, and A. C. McHardy, “PhyloPythiaS+:
a self-training method for the rapid reconstruction of low-ranking taxonomic

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data

KrakenOnMem: A Memristor-Augmented HW/SW Framework for Taxonomic Profiling ICS ’22, June 28–30, 2022, Virtual Event, USA

bins from metagenomes,” PeerJ, 2016.
[23] S. Hamdioui, L. Xie, H. A. Du Nguyen, M. Taouil, K. Bertels, H. Corporaal, H. Jiao,

F. Catthoor, D. Wouters, L. Eike et al., “Memristor based computation-in-memory
architecture for data-intensive applications,” in DATE, 2015.

[24] J. Handelsman, M. R. Rondon, S. F. Brady, J. Clardy, and R. M. Goodman, “Molecu-
lar biological access to the chemistry of unknown soil microbes: a new frontier
for natural products,” Chemistry & biology, 1998.

[25] E. J. Houtgast, V.-M. Sima, K. Bertels, and Z. Al-Ars, “An FPGA-based systolic
array to accelerate the BWA-MEM genomic mapping algorithm,” in SAMOS, 2015.

[26] W. Huangfu, X. Li, S. Li, X. Hu, P. Gu, and Y. Xie, “Medal: Scalable dimm based
near data processing accelerator for dna seeding algorithm,” in MICRO, 2019.

[27] W. Huangfu, K. T. Malladi, S. Li, P. Gu, and Y. Xie, “NEST: DIMM based near-
data-processing accelerator for K-mer counting,” in ICCAD, 2020.

[28] D. H. Huson, S. Beier, I. Flade, A. Górska, M. El-Hadidi, S. Mitra, H.-J. Ruscheweyh,
and R. Tappu, “MEGAN community edition-interactive exploration and analysis
of large-scale microbiome sequencing data,” PLoS computational biology, 2016.

[29] Ian Curtis., “The Intel Skylake-X Review: Core i9 7900X, i7 7820X
and i7 7800X Tested: Die Size Estimates and Arrangements.” https:
//www.anandtech.com/show/11550/the-intel-skylakex-review-core-i9-
7900x-i7-7820x-and-i7-7800x-tested/6, 2017.

[30] Intel Corp., “Intel® Performance Counter Monitor.” https://www.intel.com/
software/pcm, 2017.

[31] R. Kaplan, L. Yavits, and R. Ginosar, “RASSA: resistive prealignment accelerator
for approximate DNA long read mapping,” IEEE Micro, 2018.

[32] G. Karunaratne, M. Le Gallo, G. Cherubini, L. Benini, A. Rahimi, and A. Sebastian,
“In-memory hyperdimensional computing,” Nature Electronics, 2020.

[33] R. Kobus, J. M. Abuín, A. Müller, S. L. Hellmann, J. C. Pichel, T. F. Pena,
A. Hildebrandt, T. Hankeln, and B. Schmidt, “A big data approach to metagenom-
ics for all-food-sequencing,” BMC bioinformatics, 2020.

[34] R. Kobus, C. Hundt, A. Müller, and B. Schmidt, “Accelerating metagenomic read
classification on CUDA-enabled GPUs,” BMC bioinformatics, 2017.

[35] M. Kokot, M. Długosz, and S. Deorowicz, “KMC 3: counting and manipulating
k-mer statistics,” Bioinformatics, 2017.

[36] M. Komalan, S. Sakhare, T. H. Bao, S. Rao, W. Kim, C. Tenllado, J. I. Gómez, G. S.
Kar, A. Furnemont, and F. Catthoor, “Cross-layer design and analysis of a low
power, high density STT-MRAM for embedded systems,” in ISCAS, 2017.

[37] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman, A. Kolodny,
and U. C. Weiser, “MAGIC—Memristor-aided logic,” TCAS II, 2014.

[38] A. F. Laguna, H. Gamaarachchi, X. Yin, M. Niemier, S. Parameswaran, and X. S. Hu,
“Seed-and-vote based in-memory accelerator for dna read mapping,” in ICCAD,
2020.

[39] B. Langmead, C. Wilks, V. Antonescu, and R. Charles, “Scaling read aligners to
hundreds of threads on general-purpose processors,” Bioinformatics, 2019.

[40] N. LaPierre, M. Alser, E. Eskin, D. Koslicki, and S. Mangul, “Metalign: Efficient
Alignment-Based Metagenomic Profiling via Containment Min Hash,” BioRxiv,
2020.

[41] N. LaPierre, S. Mangul, M. Alser, I. Mandric, N. C. Wu, D. Koslicki, and E. Eskin,
“MiCoP: Microbial Community Profiling Method for Detecting Viral and Fungal
Organisms in Metagenomic Samples,” BMC genomics, 2019.

[42] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Phase change memory architecture
and the quest for scalability,” Communications of the ACM, 2010.

[43] J. Leipzig, “A review of bioinformatic pipeline frameworks,” Briefings in bioin-
formatics, 2017.

[44] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “Drisa: A dram-based
reconfigurable in-situ accelerator,” in MICRO, 2017.

[45] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A processing-in-memory
architecture for bulk bitwise operations in emerging non-volatile memories,” in
DAC, 2016.

[46] B. Liu, T. Gibbons, M. Ghodsi, T. Treangen, and M. Pop, “Accurate and fast
estimation of taxonomic profiles from metagenomic shotgun sequences,” Genome
biology, 2011.

[47] Y. Liu and B. Schmidt, “GSWABE: faster GPU-accelerated sequence alignment
with optimal alignment retrieval for short DNA sequences,” Concurrency and
Computation: Practice and Experience, 2015.

[48] Y. Liu, A. Wirawan, and B. Schmidt, “CUDASW++ 3.0: Accelerating Smith-
Waterman ProteinDatabase Search byCoupling CPU andGPU SIMD Instructions,”
BMC bioinformatics, 2013.

[49] Q. Lou, S. C. Janga, and L. Jiang, “Helix: Algorithm/Architecture Co-design for
Accelerating Nanopore Genome Base-calling,” in PCAT, 2020.

[50] Q. Lou and L. Jiang, “BRAWL: A Spintronics-Based Portable Basecalling-in-
Memory Architecture for Nanopore Genome Sequencing,” IEEE Computer Archi-
tecture Letters, 2018.

[51] J. Lu, F. P. Breitwieser, P. Thielen, and S. L. Salzberg, “Bracken: Estimating Species
Abundance in Metagenomics Data,” PeerJ Computer Science, 2017.

[52] D. Mayhew and V. Krishnan, “PCI Express and Advanced Switching: Evolutionary
path to building next generation interconnects,” in 11th Symposium on High
Performance Interconnects, 2003.

[53] D. Mayhew and V. Krishnan, “Pci express and advanced switching: Evolutionary
path to building next generation interconnects,” in HOTI, 2003.

[54] A. B. McIntyre, R. Ounit, E. Afshinnekoo, R. J. Prill, E. Hénaff, N. Alexander, S. S.
Minot, D. Danko, J. Foox, S. Ahsanuddin et al., “Comprehensive benchmarking
and ensemble approaches for metagenomic classifiers,” Genome biology, 2017.

[55] I. Merelli, L. Morganti, E. Corni, C. Pellegrino, D. Cesini, L. Roverelli, G. Zereik,
and D. D’Agostino, “Low-power portable devices for metagenomics analysis:
Fog computing makes bioinformatics ready for the Internet of Things,” Future
Generation Computer Systems, 2018.

[56] F. Meyer, A. Fritz, Z.-L. Deng, D. Koslicki, A. Gurevich, G. Robertson, M. Alser,
D. Antipov, F. Beghini, D. Bertrand et al., “Critical Assessment of Metagenome
Interpretation-the second round of challenges,” bioRxiv, 2021.

[57] F. Meyer, S. Bagchi, S. Chaterji, W. Gerlach, A. Grama, T. Harrison, T. Paczian,
W. L. Trimble, and A. Wilke, “MG-RAST version 4—lessons learned from a dec-
ade of low-budget ultra-high-throughput metagenome analysis,” Briefings in
bioinformatics, 2019.

[58] MNEMOSENE partners, “The MNEMOSENE project.” http://www.mnemosene.
eu/, 2020.

[59] H. A. D. Nguyen, J. Yu, M. A. Lebdeh, M. Taouil, S. Hamdioui, and F. Catthoor,
“A classification of memory-centric computing,” JETC, 2020.

[60] R. Ounit, S. Wanamaker, T. J. Close, and S. Lonardi, “CLARK: fast and accurate
classification of metagenomic and genomic sequences using discriminative k-
mers,” BMC genomics, 2015.

[61] PCI-SIG, “PCI-E Specification.” https://pcisig.com/specifications.
[62] L. Pentecost, A. Hankin, M. Donato, M. Hempstead, G.-Y. Wei, and D. Brooks,

“NVMExplorer: A Framework for Cross-Stack Comparisons of Embedded Non-
Volatile Memories,” HPCA, 2021.

[63] A. E. Pérez-Cobas, L. Gomez-Valero, and C. Buchrieser, “Metagenomic approaches
in microbial ecology: an update on whole-genome and marker gene sequencing
analyses,” Microbial Genomics, 2020.

[64] S. Rao, W. Kim, S. van Beek, S. Kundu, M. Perumkunnil, S. Cosemans, F. Yasin,
S. Couet, R. Carpenter, B. O’Sullivan et al., “STT-MRAM array performance
improvement through optimization of Ion Beam Etch and MTJ for Last-Level
Cache application,” in IMW, 2021.

[65] G. Rizk and D. Lavenier, “GASSST: global alignment short sequence search tool,”
Bioinformatics, 2010.

[66] M. Roberts, W. Hayes, B. R. Hunt, S. M. Mount, and J. A. Yorke, “Reducing storage
requirements for biological sequence comparison,” Bioinformatics, 2004.

[67] M. R. Rondon, P. R. August, A. D. Bettermann, S. F. Brady, T. H. Grossman, M. R.
Liles, K. A. Loiacono, B. A. Lynch, I. A. MacNeil, C. Minor et al., “Cloning the
soil metagenome: a strategy for accessing the genetic and functional diversity of
uncultured microorganisms,” Appl. Environ. Microbiol., 2000.

[68] A. Sczyrba, P. Hofmann, P. Belmann, D. Koslicki, S. Janssen, J. Dröge, I. Gregor,
S. Majda, J. Fiedler, E. Dahms et al., “Critical assessment of metagenome inter-
pretation—a benchmark of metagenomics software,” Nature methods, 2017.

[69] N. Segata, L. Waldron, A. Ballarini, V. Narasimhan, O. Jousson, and C. Hutten-
hower, “Metagenomic microbial community profiling using unique clade-specific
marker genes,” Nature methods, 2012.

[70] N. Segata, L. Waldron, A. Ballarini, V. Narasimhan, O. Jousson, and C. Hutten-
hower, “Metagenomic microbial community profiling using unique clade-specific
marker genes,” Nature methods, 2012.

[71] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch,
O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit: In-memory accelerator for
bulk bitwise operations using commodity DRAM technology,” in MICRO, 2017.

[72] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu,
R. S. Williams, and V. Srikumar, “ISAAC: A convolutional neural network accel-
erator with in-situ analog arithmetic in crossbars,” ISCA, 2016.

[73] A. Stillmaker and B. Baas, “Scaling equations for the accurate prediction of CMOS
device performance from 180 nm to 7 nm,” Integration, 2017.

[74] Synopsys, Inc., “Synopsys Design Compiler,” https://www.synopsys.com/support/
training/rtl-synthesis/design-compiler-rtl-synthesis.html.

[75] D. T. Truong, E. A. Franzosa, T. L. Tickle, M. Scholz, G. Weingart, E. Pasolli,
A. Tett, C. Huttenhower, and N. Segata, “MetaPhlAn2 for enhanced metagenomic
taxonomic profiling,” Nature methods, 2015.

[76] Y. Turakhia, G. Bejerano, and W. J. Dally, “Darwin: A genomics co-processor
provides up to 15,000x acceleration on long read assembly,”ACM SIGPLANNotices,
2018.

[77] H. M. Waidyasooriya, M. Hariyama, and M. Kameyama, “FPGA-accelerator for
DNA sequence alignment based on an efficient data-dependent memory access
scheme,” Highly-Efficient Accelerators and Reconfigurable Technologies, 2014.

[78] K. Wang, J. Alzate, and P. K. Amiri, “Low-power non-volatile spintronic memory:
STT-RAM and beyond,” Journal of Physics D: Applied Physics, 2013.

[79] Y. Wang, Y. Han, C. Wang, H. Li, and X. Li, “RADAR: A Case for Retention-Aware
DRAM Assembly and Repair in Future FGR DRAM Memory,” in DAC, 2015.

[80] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-based resistive switching
memories–nanoionic mechanisms, prospects, and challenges,” Advanced materi-
als, 2009.

https://www.anandtech.com/show/11550/the-intel-skylakex-review-core-i9-7900x-i7-7820x-and-i7-7800x-tested/6
https://www.anandtech.com/show/11550/the-intel-skylakex-review-core-i9-7900x-i7-7820x-and-i7-7800x-tested/6
https://www.anandtech.com/show/11550/the-intel-skylakex-review-core-i9-7900x-i7-7820x-and-i7-7800x-tested/6
https: //www.intel.com/software/pcm
https: //www.intel.com/software/pcm
http://www.mnemosene.eu/
http://www.mnemosene.eu/
https://pcisig.com/specifications
https://www.synopsys.com/support/training/rtl-synthesis/design-compiler-rtl-synthesis.html
https://www.synopsys.com/support/training/rtl-synthesis/design-compiler-rtl-synthesis.html

ICS ’22, June 28–30, 2022, Virtual Event, USA T. Shahroodi, et al.

[81] D. Weese, M. Holtgrewe, and K. Reinert, “RazerS 3: faster, fully sensitive read
mapping,” Bioinformatics, 2012.

[82] Wetterstrand KA., “DNA Sequencing Costs: Data from the NHGRI Genome
Sequencing Program (GSP),” https://www.genome.gov/sequencingcostsdata.

[83] D. E. Wood, J. Lu, and B. Langmead, “Improved Metagenomic Analysis with
Kraken 2,” Genome biology, 2019.

[84] D. E. Wood, J. Lu, and B. Langmead, “Kraken 2 Open-Sourced Implementation.”
https://github.com/DerrickWood/kraken2, 2019.

[85] D. E. Wood and S. L. Salzberg, “Kraken: Ultrafast Metagenomic Sequence Classi-
fication Using Exact Alignments,” Genome biology, 2014.

[86] J. C. Wooley, A. Godzik, and I. Friedberg, “A primer on metagenomics,” PLoS
Comput Biol, 2010.

[87] L. Wu, R. Sharifi, M. Lenjani, K. Skadron, and A. Venkat, “Sieve: Scalable in-situ
dram-based accelerator designs for massively parallel k-mer matching,” in ISCA,
2021.

[88] Q. Xia and J. J. Yang, “Memristive crossbar arrays for brain-inspired computing,”
Nature materials, 2019.

[89] L. Xie, H. A. Du Nguyen, J. Yu, A. Kaichouhi, M. Taouil, M. AlFailakawi, and
S. Hamdioui, “Scouting logic: A novel memristor-based logic design for resistive
computing,” in ISVLSI, 2017.

[90] H. Xin, D. Lee, F. Hormozdiari, S. Yedkar, O. Mutlu, and C. Alkan, “Accelerating
read mapping with FastHASH,” in BMC genomics, 2013.

[91] M. Zahedi, M. Mayahinia, M. A. Lebdeh, S. Wong, and S. Hamdioui, “Efficient
organization of digital periphery to support integer datatype for memristor-based
cim,” in ISVLSI, 2020.

[92] M. Zahedi, R. van Duijnen, S. Wong, and S. Hamdioui, “Tile Architecture and
Hardware Implementation for Computation-in-Memory,” in ISVLSI, 2021.

[93] F. Zokaee, H. R. Zarandi, and L. Jiang, “Aligner: A process-in-memory architecture
for short read alignment in rerams,” IEEE Computer Architecture Letters, 2018.

https://www.genome.gov/sequencingcostsdata
https://github.com/DerrickWood/kraken2

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Metagenomics and Taxonomic Profiling
	2.2 msKraken, Kraken2, and Bracken
	2.3 Processing in Memory (PIM)
	2.4 Memristor Devices

	3 Motivation
	3.1 Kraken2's Execution Breakdown
	3.2 Limitation of Previous PIM-enabled Designs

	4 KrakenOnMem Design
	4.1 A High-Level Overview
	4.2 TL-PIM: Matching Mechanism
	4.3 TL-PIM: Taxonomic Retrieval
	4.4 TL-PIM: Controller
	4.5 Relation between LCA-Arrays and Key-Arrays
	4.6 Optimizations
	4.7 KrakenOnMem Profiling Walk Through

	5 Evaluation Methodology
	6 Experimental Results
	6.1 Performance Analysis
	6.2 Power and Area Analysis

	7 Discussions and Future Works
	8 Related Works
	9 Conclusion
	Acknowledgments
	References

