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This study compares the propulsion performance be-
tween hard- and soft-magnetic microrobots under rotat-
ing magnetic fields. Results show that hard-magnetic
microrobots achieved step-out frequencies and maxi-
mum propulsion speeds 4.5 times higher than soft-
magnetic microrobots. Below saturation magnetization,
soft-magnetic microrobots demonstrated similar perfor-
mance irrespective of magnetic susceptibility, highlight-
ing that torque generation in these materials is purely
geometry-dependent. Employing a tapered ribbon de-
sign increased propulsion speed by a factor of 3.5 com-
pared to regular helical designs. These results provide a
quantitative basis for selecting materials and designs, en-
abling designers to weigh the propulsion benefits of hard
magnets against the biocompatibility of soft-magnetic
microrobots.

CONTENTS

I. Introduction 1

II. Theory 2
A. Magnetic Torque 2
B. Microrobot Hydrodynamics 2

III. Experimental 2
A. Rotating Magnetic Field Generation 2
B. Microrobot Design and Fabrication 3
C. Microrobot Propulsion Evaluation 3

IV. Results and Discussion 4
A. Magnetic Material Comparison 4
B. Microrobot Design Comparison 4

V. Conclusions 5

Acknowledgments 5

References 6

A. Magnetic Field Validation 7

I. INTRODUCTION

Over the past decade, microrobots have emerged
as a versatile platform for biomedical applications,
including the physical removal of blood clots and
biofilms1,2, targeted drug delivery3, and thermal ab-
lation of bacterial infections4.

Microrobots typically have a polymeric structure
created through two-photon polymerization or micro-
stereolithography5, and incorporate a magnetic com-
ponent for torque-driven actuation. This enables pre-
cise microrobot control using tri-axial Helmholtz coil
systems, and also allows for magnetic heating6,7. The
magnetic component can be made from either hard-
or soft-magnetic materials. Hard-magnetic materials
are favored for their ability to generate high magnetic
torques, with NdFeB as a typical choice8,9. How-
ever, NdFeB exhibits cytotoxic properties, necessitat-
ing careful consideration for in vivo use and subse-
quent removal10. In contrast, soft magnetic materi-
als such as superparamagnetic iron oxide nanoparti-
cles (SPIONs) are biocompatible but provide limited
torque output, which might constrain their use3,11.

Despite these trade-offs, an experimental compar-
ison between hard- and soft-magnetic microrobots
has, to our knowledge, not been conducted. Such
an analysis would contextualize the usability of mag-
netic materials already used in microrobots, such as
NdFeB and SPIONs, and validate the integration of
novel materials such as biodegradable pure Fe, which
could be incorporated as thin wires down to 25 µm.
Therefore, this study addresses the research question:

”How do hard- and soft-magnetic microrobots com-
pare in propulsion performance under rotating mag-
netic fields?”

To enable comparison, three distinct microrobot
geometries were each fabricated with three different
magnetic materials: NdFeB (hard-magnetic), ferrite
(soft-magnetic), and pure Fe (soft-magnetic). This
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resulted in nine unique microrobots, all 10mm in
length. Each was actuated in a 20mT rotating mag-
netic field. Propulsion tests were conducted in glyc-
erin, chosen for its high viscosity to achieve low
Reynolds number conditions similar to those expected
for smaller microrobots in future applications12.

II. THEORY

A. Magnetic Torque

For hard-magnetic microrobots, magnetic torque
arises from the tendency of the magnet’s fixed mag-
netization to align with an external magnetic field.
Maximum torque is reached when the magnetization
and field are perpendicular, and is given by13:

T hard
max = µ0VMH0 (Nm) , (1)

where µ0 is the vacuum permeability (N/A2), V the
volume of the magnetic element (m3), M the magne-
tization (A/m), and H0 the external magnetic field
strength (A/m).
In soft-magnetic microrobots, torque arises from

shape anisotropy. Shape anisotropy depends on ge-
ometry, favoring alignment of the material’s long axis
with the external magnetic field to minimize magnetic
energy. When an external magnetic field is applied
at an angle to this axis, torque is generated. Em-
bedding a soft-magnetic cylinder perpendicular to the
microrobot’s movement direction induces propulsive
torque. Maximum torque is reached when the exter-
nal magnetic field is angled 45◦ relative to the long
axis of the soft-magnetic material, and is defined by14:

T soft
max =

µ0V H2
0 (nr − na)

2nanr
(Nm) . (2)

Here, nr and na represent the demagnetization fac-
tors in the radial and axial (long) directions, respec-
tively, which can be approximated with ellipsoid de-
magnetization factors. This equation is valid only
when the internal magnetization remains below satu-
ration, defined as:

Hlow =
Msnanr

√
2√

n2
a + n2

r

(A/m) , (3)

whereMs is the saturation magnetization (A/m). For
H0 > Hlow, other torque equations apply, which are
provided in Supplementary Material 1 together with
the derivations of Equations 1–3.

B. Microrobot Hydrodynamics

The maximum speed of helical microrobots, pro-
pelled by magnetic torque in viscous environments

(Re ≪ 1), is given by15:

vmax = − b

a
ωmax (m/s) . (4)

Here, a represents the resistance to forward motion
(N s/m), and b denotes the coupling between rota-
tion and translation (N s), both dependent on micro-
robot geometry and fluid viscosity. ωmax (Hz) is the
highest rotational frequency at which the microrobot
can maintain synchronous rotation with the external
magnetic field. The rotational frequency at which
synchrony is lost is called the step-out frequency ωso,
and is given by:

ωso =
a

ac− b2
Tmax (Hz) , (5)

where c is the rotational resistance (N sm) and Tmax

is the maximum available magnetic torque (Nm).
To analyze how the maximum speed of a micro-

robot scales with size and viscosity, geometric simi-
larity is assumed using a scaling factor λ. Coefficients
a, b, and c scale as λη, λ2η, and λ3η, respectively.
Furthermore, magnetic torque, whether originating
from hard (Equation 1) or soft magnets (Equation 2),
scales as λ3 due to its dependence on volume. Insert-
ing these scaling relationships into Equations 4 and 5
results in:

vmax ∝ λ

η
. (6)

This demonstrates that the maximum speed scales
linearly with helix size and inversely with viscosity.
For example, scaling a 10mm robot to 100 µm and re-
ducing the fluid viscosity from 1Pa s to 5mPa s would
increase vmax by a factor of 2, assuming all other pa-
rameters remain unchanged.

III. EXPERIMENTAL

A. Rotating Magnetic Field Generation

The goal of the setup shown in Figure 1, was to
generate a uniform rotating magnetic field of 20mT
over a 120mm region to enable microrobot propul-
sion. This system serves as a cost-effective alternative
to traditional Helmholtz coil setups. The magnetic
field was generated using two identical arrays (175 ×
30mm), each consisting of 3 rows and 18 columns of
5 × 5 × 5mm N42 NdFeB magnets (supermagnete,
Gottmadingen, Germany). The distance between the
opposing magnets was optimized using the Adam al-
gorithm from the Optax library in Python16. The
resulting array was 3D printed using a Bambu Lab
X1C, and the individual magnets were secured via
press fit. A uniform field strength of 20mT was con-
firmed (Appendix A) using a Lake Shore 455 DSP
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FIG. 1. Rotating magnetic field setup for generating uni-
form magnetic torque to propel microrobots.

Gaussmeter. Additional details about the optimiza-
tion and construction of the magnetic arrays are in-
cluded in Supplementary Material 2. The magnetic
arrays were mounted on a hollow axle which held
a channel containing glycerin, with a viscosity of
1.14Pa s. The magnetic arrays were rotated using a
stepper motor and controlled through a touchscreen
connected to an Arduino Uno. To ensure safe opera-
tion, the stepper motor was restricted to a maximum
rotational frequency of 5Hz.

B. Microrobot Design and Fabrication

One hard-magnetic microrobot, NdFeB (N42;
first4magnets, Sutton-in-Ashfield, United Kingdom),
and two soft-magnetic microrobots, ferrite (78 ma-
terial; Fair-Rite, Wallkill, United States) and pure
Fe (99.5% purity; Goodfellow, Huntingdon, United
Kingdom), were tested (Figure 2). Two soft-magnetic
microrobots were tested to assess the influence of
magnetic susceptibility on torque generation. The
NdFeB magnet measured 3mm in length and 1mm
in diameter and had a remanent magnetization of
1.30T. The ferrite and pure Fe samples were 5.33mm
long and 0.75mm in diameter to match the magnetic
volume of the NdFeB magnet, with magnetic suscep-
tibilities of 3000 and 8000, respectively. The satu-
ration magnetization of 99.5% pure Fe is 1.8T and
0.48T for 78 material ferrite. Three microrobot de-
signs from literature were tested: a double helix, a
tapered double helix, and a tapered ribbon-shaped
design17. All designs were 10mm in length. The dou-
ble helix had a constant width of 6.5mm and a coil
diameter of 0.8mm. The tapered helix had the same
length and maximum width but featured a 30◦ taper
from both ends toward the center. The ribbon-shaped
design consisted of a 0.3mm thick twisted plate with
a central width of 6.5mm, tapered from both ends
toward the center, also at a 30◦ angle.

The microrobots were designed in SolidWorks, pro-
cessed using PreForm slicing software, and printed

FIG. 2. Tested hard- and soft-magnetic microrobot de-
signs, each 10mm long, with matched magnetic volumes.

on a Formlabs Form 3 stereolithography printer with
clear V4 resin. Printed structures were washed in
isopropanol (Form Wash, Formlabs; 10 min), post-
cured (Form Cure, Formlabs; 30 min), and support
marks were manually removed using 800-grit sand-
paper. Magnetic materials were secured using UHU
Magnet Glue (UHU GmbH & Co. KG, Bühl, Ger-
many). For full fabrication details, see Supplemen-
tary Material 3.

The 3D models of all microrobot designs, corre-
sponding PreForm files, the 3D model of the test
setup, wiring diagrams, bill of materials, and opti-
mization code are available on GitHub.

C. Microrobot Propulsion Evaluation

Propulsion characteristics were determined by
recording the microrobot’s motion over a 100mm
path at 0.1Hz intervals using an iPhone 14 camera
at 60 fps (see Supplementary Material 4). The cam-
era was placed at the center of the magnetic arrays
at a distance of 120mm. The entry and exit frames
were used to determine the travel time and compute
the speed. A linear fit was applied to the speed mea-
surements up to the rotation frequency at which half
the maximum speed was reached. Subsequently, the
95% confidence interval of the measurements was de-
termined by:

∆vi = 1.96 vi

√(
RMSE

v̄

)2

+
(σd

L

)2

(m/s) , (7)

where ∆vi is the half-width of the 95% confidence in-
terval for the i-th speed measurement, vi is the corre-
sponding speed, RMSE is the root-mean-square error
of the linear fit applied to the first 50% of data points
up to maximum speed, v̄ is the mean speed over that
range, σd is the distance measurement uncertainty,
and L is the nominal measurement length. The step-
out frequency was defined as the lowest rotational

https://github.com/joostwijn/Hard_Versus_Soft_Magnetic_Microrobots


4

TABLE I. Comparison of step-out frequency ωso and max-
imum speed vmax with embedded hard- or soft-magnetic
elements in three different microrobot designs.

Design Magnet
Type

Material ωso

Hz
vmax

mm/s

Helix
Hard NdFeB 4.4(2) 2.7(2)
Soft Ferrite 1.2(1) 0.6(1)
Soft Pure Fe 1.1(1) 0.6(1)

Tapered Helix
Hard NdFeB > 5.0 > 2.8
Soft Ferrite 3.2(1) 1.7(1)
Soft Pure Fe 3.1(1) 1.7(1)

Tapered Ribbon
Hard NdFeB > 5.0 > 6.2
Soft Ferrite 2.4(1) 2.1(1)
Soft Pure Fe 2.3(1) 2.0(1)

frequency at which three consecutive speed measure-
ments, including their confidence intervals, fell en-
tirely below the linear fit.

IV. RESULTS AND DISCUSSION

A. Magnetic Material Comparison

Table I summarizes the step-out frequencies and
maximum propulsion speeds for all tested materials
and designs. Notably, hard-magnetic (NdFeB) mi-
crorobots achieved higher step-out frequencies and
corresponding maximum speeds compared to soft-
magnetic (ferrite and pure Fe) variants. Table I also
shows that both soft-magnetic materials exhibited
similar propulsion performance despite having differ-
ent magnetic susceptibilities. This aligns with the
findings of Abbott et al.14, who reported that torque
generation in soft-magnetic materials is insensitive to
magnetic susceptibility. This holds true as long as
the magnetic material remains unsaturated. Since
commercially available Helmholtz coil systems typ-
ically operate below 20mT, magnetic saturation is
unlikely to occur when using such systems for micro-
robot propulsion.

B. Microrobot Design Comparison

Figure 3 shows that hard-magnetic helical micro-
robots achieved a maximum speed 4.5 times higher
than both soft-magnetic designs, which aligns with
torque predictions based on Equations 1 and 2 (see
Supplementary Material 1). The observed 4.5-fold
difference in step-out frequency and maximum speed
is expected to persist when scaling to a size more
relevant for biomedical applications due to simi-
lar low Reynolds numbers. Specifically, when scal-
ing from the current 10mm microrobot in glycerin

FIG. 3. Measured translation speed as a function of ex-
ternal magnetic field rotation frequency for one hard-
magnetic (NdFeB) and two soft-magnetic (ferrite and
pure Fe) helical microrobots. All designs exhibited sim-
ilar linear behavior up to their step-out frequency, with
the hard-magnetic helix achieving a step-out frequency
and maximum speed 4.5 times higher compared to the
soft-magnetic designs.

(η = 1.14Pa s) to a 100 µm microrobot in blood
(η = 5mPa s), the Reynolds number remains low
(Re ≪ 1). The nearly identical propulsion efficien-
cies (slope: 0.65) of the hard- and soft-magnetic he-
lical designs also indicate that the orientation of the
magnetic material, whether along the length or width
of the microrobot, has minimal effect on propul-
sion characteristics. Interestingly, the relationship
between rotational frequency of the magnetic field
and translational speed became nonlinear approach-
ing maximum speed. This behavior contrasts with
the fully linear response reported by Wang et al.15.
The observed gradual loss of linearity likely results
from subtle local variations in the magnetic field or
from local increases in drag due to occasional wall
contact. Both effects can cause the microrobot to
reach the step-out frequency earlier in specific regions
along its propulsion path. However, these deviations
remained small, indicating minimal wall contact and
underscoring the overall uniformity of the generated
magnetic field.

The tapered helix achieved the highest step-out
frequency among all soft-magnetic designs, but also
had the lowest propulsion efficiency (slope: 0.57), as
can be seen in Figure 4. This enhancement in speed
and step-out frequency is attributed to the reduced
width and increased spacing between the microrobot
and surrounding surfaces, which decreases rotational
friction. Although this design slightly compromises
propulsion efficiency, the threefold increase in max-
imum speed outweighs this reduction. It should be
noted that the step-out frequency of hard-magnetic
tapered helices exceeded the experimental limit of 5
Hz, preventing direct confirmation of the three-fold
increase in step-out frequency and maximum speed.
Lowering the magnetic field strength could bring the
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FIG. 4. Measured translation speed as a function
of external magnetic field rotation frequency for one
hard-magnetic (NdFeB) and two soft-magnetic (ferrite
and pure Fe) tapered helical microrobots. This design
achieved a threefold increase in step-out frequency and
maximum speed compared to regular helical designs.

step-out frequency within the experimental limit of
5Hz. However, this would reduce the number of
data points available for the linear fit, compromis-
ing the accuracy of the results, and was therefore
not pursued. Given the identical slopes and torque-
dependent propulsion behavior observed in the reg-
ular helical designs, however, it is likely that a sim-
ilar threefold increase applies to the hard-magnetic
tapered helical designs. Furthermore, the higher ro-
tational speeds of this design may also improve the
physical ablation of structures with shear-thinning
properties, such as biofilms18. However, further re-
search is needed to quantify this effect.

Figure 5 shows that the tapered ribbon achieved
the highest maximum speed among all tested designs,
which could shorten procedure times in biomedical
applications. Its step-out frequency was twice that
of the regular helix, while its maximum speed was
3.5 times greater. Despite having a step-out fre-
quency lower than the tapered helix, the tapered
ribbon achieved the highest maximum speed. This
underscores the intricate relationship between rota-
tional resistance and propulsion. The larger surface
area of the ribbon-shaped design may also allow for
greater drug loading and faster release. Interest-
ingly, a small but statistically significant efficiency
gap was observed between hard- and soft-magnetic
ribbon-shaped designs. This likely occurred because
the thinner ribbon walls made the transverse rods in
the soft-magnetic designs contribute more to drag.
In contrast, the thicker overall structure of the heli-
cal designs resulted in minimal additional drag from
the transverse rod. Nevertheless, the ribbon-shaped
designs achieved the highest maximum speed of all
tested microrobots.

FIG. 5. Measured translation speed as a function
of external magnetic field rotation frequency for one
hard-magnetic (NdFeB) and two soft-magnetic (ferrite
and pure Fe) ribbon-shaped microrobots. This design
achieved the highest maximum speeds among all designs.

V. CONCLUSIONS

Helical microrobots incorporating hard-magnetic
materials outperform soft-magnetic microrobots un-
der rotating magnetic fields, achieving a 4.5-fold
higher step-out frequency and corresponding maxi-
mum propulsion speed under matched magnetic vol-
ume, field strength, and viscosity at low Reynolds
numbers. Notably, for soft-magnetic materials, the
generated torque is independent of magnetic suscep-
tibility, resulting in identical propulsion character-
istics for comparable geometric designs below the
saturation field. Furthermore, employing a tapered
ribbon-shaped design was shown to improve maxi-
mum propulsion speed by a factor of 3.5 compared to
a regular helical design, underscoring the influence of
geometry on microrobot performance.

These performance differences provide a quantita-
tive basis for informed material and design selection.
This enables designers to balance the propulsion ad-
vantages of hard magnets against the biocompatibil-
ity of soft-magnetic alternatives. It also allows them
to select the most suitable geometric design for their
application. Future work should explore microrobot
functionalities beyond propulsion, with a particular
focus on heating efficiency for thermal ablation and
controlled drug release. Comparing hard- and soft-
magnetic materials in this context would offer a more
comprehensive understanding of their respective ad-
vantages and limitations, ultimately guiding the de-
sign and application of microrobots for specific clini-
cal tasks.
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Appendix A: Magnetic Field Validation

FIG. 6. Measured magnetic field strength along the cen-
tral axis of the rotating magnetic field setup (x-axis). A
20mT field was maintained across the 120mm wide actu-
ation region, with little deviation from the target field.
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I. HARD-MAGNETIC TORQUE 
 

Magnetic torque describes the rotational force that acts on a magnetized object when exposed to an 

external magnetic field. It results from the tendency of the object’s magnetization to align with the applied 

field and is given by1:  

𝑻 = 𝜇0𝑉𝑴×𝑯𝟎 ,        (1) 

where T is the torque vector, μ₀ is the permeability of free space, V is the volume of the magnetic body, M is 

the magnetization, and 𝑯𝟎 is the applied magnetic field. For a diametrically magnetized hard-magnetic 

cylinder with an external magnetic field that is aligned with the radial axis of the cylinder (Fig. 1), Equation 1 

simplifies to: 

𝑇 = 𝜇0𝑉𝑀𝐻0 sin𝜃  ,        (2) 

where T is the total torque (around the x-axis), and 𝜃 is the angle between the magnetization direction and 

the external magnetic field. This expression assumes uniform magnetization, a homogeneous external field, 

and ignores internal demagnetization effects. 

Maximum magnetic torque is obtained when the magnetic field is perpendicular to the magnetization 

direction (𝜃 = 90°). Therefore, the maximum torque that hard magnets can generate is: 

𝑇𝑚𝑎𝑥 = 𝜇0𝑉𝑀𝐻0 .        (3) 

 

 

Figure 1: Diametrically magnetized hard-magnetic cylinder exposed to an external magnetic field applied in the radial (z-axis) 
direction. 
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II. SOFT-MAGNETIC TORQUE 
 

In soft-magnetic materials, shape anisotropy causes magnetization to align along a preferred geometric 

direction, known as the easy axis, to minimize internal magnetic energy. This concept can be illustrated using 

a one-dimensional rod composed of small magnetic domains. When an external magnetic field is applied 

perpendicular to the rod’s long axis, like magnetic poles become positioned closely together (Fig. 2A), 

creating strong repulsive forces and increasing the internal magnetic energy. Conversely, aligning the rod 

parallel to the magnetic field separates the like poles (Fig. 2B), thereby reducing internal magnetic energy. 

To minimize magnetic energy, the soft-magnetic rod naturally aligns its long axis with the external magnetic 

field, generating torque. A practical demonstration is placing a sewing pin within an upward-oriented 

magnetic field (Fig. 2C), where it overcomes gravity and aligns vertically due to shape-anisotropic torque. 

Besides the volume of the magnetic material and the strength of the external magnetic field, the magnitude 

of the generated torque is determined by the demagnetization factor, which depends on the ratio between 

the rod’s length and width, with higher torques observed in longer, thinner rods. 

 

Figure 2: Working principles of shape anisotropy. (A) High internal magnetic energy when the rod is perpendicular to the field. (B) 
Low internal magnetic energy when the rod is parallel to the field. (C) Sewing pin overcoming gravity and aligning with the external 
magnetic field. 

Before deriving the formulas for magnetic torque in soft magnets, several assumptions are made. The model 

assumes uniform magnetization, a uniform external magnetic field, linear magnetic response, absence of 

hysteresis effects, and high magnetic susceptibility (χ >> 1). Additionally, the demagnetization factors are 

based on the assumption of an ellipsoidal geometry. Furthermore, a coordinate system is used where the 

axial (long) axis is fixed. In this coordinate system, the internal magnetization and external magnetic field 

form angles 𝜑 and 𝜃 with the fixed axial axis, respectively (Fig. 3A). Finally, it should be noted that there are 

two magnetization regions to consider: magnetization in the unsaturated region and magnetization in the 

saturated region2. 

A. Unsaturated Soft-Magnetic Torque 

In the unsaturated region, the material's magnetization depends on the applied magnetic field H0 and the 

demagnetization factor N. Increasing the applied field strength raises the magnetization magnitude but does 

not affect the magnetization angle 𝜑. As a result, angle 𝜑 can be fully expressed in terms of the applied field 

angle 𝜃 and the demagnetization factor (Fig. 3B).  

 

Figure 3: Magnetization under external fields. (A) Definition of the coordinate system and angles φ and 𝜃. (B) In the unsaturated 
regime, the magnitude of the magnetization increases with the external field strength H0. The magnetization angle is set by the 
external field angle and the demagnetization factor N. (C) In the saturated regime, the magnetization magnitude remains constant at 
the saturation value. The magnetization angle depends on the external field strength, direction, and the demagnetization factor. 
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The torque in the unsaturated regime is derived by assuming a linear magnetization response, that is, the 

magnetization scales proportionally with the internal magnetic field: 

𝑴 = 𝝌𝑯𝒊 .        (4) 

Here, χ denotes the magnetic susceptibility, which defines the proportionality between magnetization and 

the internal magnetic field. The internal magnetic field is obtained by combining the demagnetization field 

and the external magnetic field: 

𝑯𝒊 = 𝑯𝟎 +𝑯𝒅 = 𝑯𝟎 −𝑵 ∙ 𝑴  ,       (5) 

where 𝑵 represents the demagnetization factor. Combining Equations 4 and 5 gives: 

𝑴 = 𝝌𝒂𝑯𝟎 .        (6) 

Here, 𝝌𝒂 denotes the apparent magnetic susceptibility, which accounts for the influence of the sample 

geometry, and is defined as: 

𝝌𝒂 =

[
 
 
 
 
 

𝜒

1 + 𝜒𝑛𝑟
0 0

0
𝜒

1 + 𝜒𝑛𝑎
0

0 0
𝜒

1 + 𝜒𝑛𝑟]
 
 
 
 
 

 ,        (7) 

where 𝑛𝑎 and 𝑛𝑟 are the axial and radial demagnetization factors, respectively. Assuming high magnetic 

susceptibility, Equation 7 simplifies to: 

𝝌𝒂 =

[
 
 
 
 
 
 
1

𝑛𝑟
0 0

0
1

𝑛𝑎
0

0 0
1

𝑛𝑟]
 
 
 
 
 
 

 .         (8) 

𝑯𝟎 is given by: 

𝑯𝟎 = [
0

𝐻0 𝑐𝑜𝑠 𝜃
𝐻0 𝑠𝑖𝑛 𝜃

] ,        (9) 

Therefore, combining Equations 6, 8, and 9 results in: 

𝑴 =

[
 
 
 
 

0
𝐻0 𝑐𝑜𝑠 𝜃

𝑛𝑎
𝐻0 𝑠𝑖𝑛 𝜃

𝑛𝑟 ]
 
 
 
 

  .       (10) 

 

Inserting Equations 9 and 10 into Equation 1 yields the torque in the unsaturated region: 

𝑻 = 𝜇0𝑉

[
 
 
 
 

0
𝐻0 𝑐𝑜𝑠 𝜃

𝑛𝑎
𝐻0 𝑠𝑖𝑛 𝜃

𝑛𝑟 ]
 
 
 
 

× [
0

𝐻0 𝑐𝑜𝑠 𝜃
𝐻0 𝑠𝑖𝑛 𝜃

] = 𝜇0𝑉𝐻0
2 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 (

1

𝑛𝑎
−
1

𝑛𝑟
) =

𝜇0𝑉𝐻0
2 (𝑛𝑟 − 𝑛𝑎)

2𝑛𝑎𝑛𝑟
𝑠𝑖𝑛 2𝜃 𝒆̂⊥ .        (11) 
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The magnitude of the torque simplifies to: 

|𝑻| =
𝜇0𝑉𝐻0

2 (𝑛𝑟 − 𝑛𝑎)

2𝑛𝑎𝑛𝑟
𝑠𝑖𝑛 2𝜃 .        (12) 

The torque reaches its maximum when 𝜃 = 45°: 

|𝑻𝒎𝒂𝒙| = |𝑻(𝜃 = 45°)| =
𝜇0𝑉𝐻0

2 (𝑛𝑟 − 𝑛𝑎)

2𝑛𝑎𝑛𝑟
 .        (13) 

Demagnetization factor 𝑛𝑎 can be calculated with3: 

𝑛𝑎 =
1

𝑅2 − 1
(

𝑅

2√𝑅2 − 1
ln(

𝑅 + √𝑅2 − 1

𝑅 − √𝑅2 − 1
) − 1) ,        (14) 

where R is the ratio between the axial and radial dimensions. 𝑛𝑟 can be calculated with: 

𝑛𝑟 =
1 − 𝑛𝑎
2

 .        (15) 

In conclusion, for an axially symmetric soft-magnetic body in the unsaturated regime, torque arises from the 

competition between shape anisotropy, which confines the magnetization near the symmetry axis, and the 

transverse component of the external field, which tends to rotate the magnetization away from this axis. A 

field applied at 45˚ provides the optimal balance between magnetization and transverse field strength, 

resulting in maximum torque. 

When the applied magnetic field becomes sufficiently strong to saturate the magnetic body, additional field 

strength no longer increases internal magnetization. Instead, it rotates the magnetization vector toward the 

direction of the external field. As a result, keeping the external field at 45˚ no longer yields maximum torque 

since the transverse component diminishes as the magnetization aligns with the field. To maximize the 

torque, the external field must be applied at an angle greater than 45˚. This necessitates a different 

approach to calculate the maximum torque. Therefore, Equation 13 remains valid only if: 

𝐻0 < 𝐻𝑠𝑎𝑡(45°) .        (16) 

The saturation field 𝐻𝑠𝑎𝑡 can be determined by inserting the saturation magnetization 𝑀𝑠 and 𝐻𝑠𝑎𝑡 in 

Equation 6, yielding: 

𝑀𝑠 = √(
𝐻𝑠𝑎𝑡 cos 𝜃

𝑛𝑎
)
2

+ (
𝐻𝑠𝑎𝑡 sin𝜃

𝑛𝑟
)
2

 .        (17) 

Solving for 𝐻𝑠𝑎𝑡 results in the general expression for the saturation field: 

𝐻𝑠𝑎𝑡(𝜃) = 𝑀𝑠
𝑛𝑎𝑛𝑟

√𝑛𝑎
2 𝑠𝑖𝑛2 𝜃 + 𝑛𝑟

2 𝑐𝑜𝑠2 𝜃
 .        (18) 

For the special case where the applied field is oriented at 𝜃 = 45°, this simplifies to: 

𝐻𝑠𝑎𝑡(45°) = 𝐻𝑙𝑜𝑤 =
𝑀𝑠𝑛𝑎𝑛𝑟√2

√𝑛𝑎
2 + 𝑛𝑟

2
 .        (19) 
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B. Saturated Soft-Magnetic Torque 

 

Once a soft-magnetic rod is fully saturated, further increases in the external field do not increase the 

magnetization magnitude but instead rotate its direction toward that of the external field. The final 

orientation of the magnetization minimizes the total magnetic energy, which consists of two competing 

contributions: the demagnetization (shape anisotropy) energy, which favors alignment along the rod's long 

axis, and the Zeeman energy, which favors alignment with the external field. The balance between these 

energies determines how far the magnetization tilts toward the external field. Consequently, the 

magnetization angle now depends on the external field's direction, its strength, and the demagnetization 

factor, whereas the magnitude of the magnetization remains fixed (Fig. 3C). In powerful fields, this process 

drives the magnetization to lie almost exactly along the applied field despite the material's geometric 

preference. 

In the saturated region, the magnetization is determined solely by the saturation magnetization of the 

material and can be expressed as: 

𝑴 = [
0

𝑀𝑠 cos𝜑
𝑀𝑠 sin𝜑

] .        (20) 

Consequently, Equation 1 becomes: 

𝑻 = 𝜇0𝑉𝑀𝑠𝐻0 𝑠𝑖𝑛(𝜃 − 𝜑) 𝒆̂⊥ .        (21) 

Which simplifies to: 

|𝑻| = 𝜇0𝑉𝑀𝑠𝐻0 𝑠𝑖𝑛(𝜃 − 𝜑) .        (22) 

To evaluate the torque as a function of the applied field angle 𝜃 and field strength 𝐻0, the magnetization 

angle 𝜑 must first be determined. This angle follows from minimizing the total magnetic energy 𝐸𝑚𝑎𝑔, 

where 𝜑 depends on the balance between the demagnetization and Zeeman terms for a given external field. 

The total magnetic energy can be expressed as: 

𝐸𝑚𝑎𝑔 = 𝐸𝑑𝑒𝑚𝑎𝑔 + 𝐸𝑧𝑒𝑒𝑚𝑎𝑛 .        (23) 

With: 

𝐸𝑑𝑒𝑚𝑎𝑔 = −
1

2
𝜇0∫𝑴 ∙ 𝑯𝑑𝑉 = −

1

2
𝜇0𝑉𝑴 ∙ 𝑯𝒅𝒆𝒎𝒂𝒈 =

1

2
𝜇0𝑉𝑴

𝑇𝑵𝑴       (24) 

𝐸𝑒𝑥𝑡 = −𝜇0∫𝑴 ∙ 𝑯𝒆𝒙𝒕𝑑𝑉 = −𝜇0𝑉𝑴 ∙ 𝑯𝟎 .        (25) 

Combining Equations 22-25 yields: 

𝐸𝑚𝑎𝑔 =
1

2
𝜇0𝑉(𝑛𝑟 − 𝑛𝑎)𝑀𝑠

2 𝑠𝑖𝑛2𝜑 − 𝜇0𝑉𝑀𝑠𝐻0 𝑐𝑜𝑠( 𝜃 − 𝜑) .         (26) 

The magnetization angle is obtained by minimizing the total energy, which is done by setting its first 

derivative with respect to 𝜑 equal to zero: 

𝑑

𝑑𝜑
𝐸𝑚𝑎𝑔 = 0 → (𝑛𝑟 − 𝑛𝑎)𝑀𝑠 𝑠𝑖𝑛 2𝜑 = 2𝐻0 𝑠𝑖𝑛(𝜃 − 𝜑) .         (27) 

Substituting this equilibrium value of 𝜑 into Equation 22 yields: 

|𝑻| =
1

2
𝜇0𝑉(𝑛𝑟 − 𝑛𝑎)𝑀𝑠

2 𝑠𝑖𝑛 2𝜑 .        (28) 

 The maximum torque is obtained when 𝜑 equals 45˚: 
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|𝑻𝒎𝒂𝒙| = |𝑻(𝝋 = 45°)| =
1

2
𝜇0𝑉(𝑛𝑟 − 𝑛𝑎)𝑀𝑠

2 .        (29) 

Maximum torque can only be reached when the external magnetic field is strong enough to deflect the 

(saturated) magnetization by 45˚ from the long axis. The minimal strength of the external field that can 

rotate the saturated magnetization vector to 45˚ is denoted as 𝐻ℎ𝑖𝑔ℎ. This value can be determined by 

combining the energy equilibrium equation (Equation 27) with the condition that 𝐻ℎ𝑖𝑔ℎ corresponds to the 

minimal field strength required to achieve saturation at 𝜑 = 45°. In this condition, the system is still at the 

upper bound of the linear domain. Therefore, the relation between the applied field angle 𝜃 and the 

magnetization angle 𝜑 can be calculated with Equation 6 as: 

𝜑 = 𝑡𝑎𝑛−1
𝑀𝑟
𝑀𝑎

= 𝑡𝑎𝑛−1
𝑛𝑎
𝑛𝑟

𝐻0𝑟
𝐻0𝑎

= 𝑡𝑎𝑛−1 (
𝑛𝑎
𝑛𝑟
𝑡𝑎𝑛 𝜃) .        (30) 

Inserting 𝜃𝑜𝑝𝑡 results in: 

𝑡𝑎𝑛 𝜑 =
𝑛𝑎
𝑛𝑟
𝑡𝑎𝑛 𝜃𝑜𝑝𝑡  .        (31) 

Setting 𝜑 = 45 ° gives the corresponding optimal applied field angle: 

𝜃𝑜𝑝𝑡 = 𝑡𝑎𝑛
−1
𝑛𝑟
𝑛𝑎
 .        (32) 

Inserting 𝜃𝑜𝑝𝑡 into the equilibrium equation (Equation 27) yields: 

(𝑛𝑟 − 𝑛𝑎)𝑀𝑠 𝑠𝑖𝑛 2𝜑 = 2𝐻ℎ𝑖𝑔ℎ 𝑠𝑖𝑛(𝜃𝑜𝑝𝑡 − 𝜑) .        (33) 

Combining equations 32 and 33 and setting 𝜑 = 45° results in: 

𝐻ℎ𝑖𝑔ℎ = 𝑀𝑠√
𝑛𝑎
2 + 𝑛𝑟

2

2
 .        (34) 

For intermediate field strengths (𝐻𝑙𝑜𝑤 ≤ 𝐻 ≤ 𝐻ℎ𝑖𝑔ℎ), saturation magnetization is reached when the 

magnetic field is applied at an angle of 45˚. However, this intermediate field strength is not sufficient to 

rotate the internal (saturated) magnetization to 45˚. In this case, the highest possible torque occurs when 

the magnetization magnitude is maximized and the angle between 𝜃 and 𝜑 is as large as possible. This 

condition is met when 𝜃 is such that the saturation magnetization is just reached. Increasing the field 

strength further at the same angle would rotate the magnetization vector towards the applied magnetic 

field direction without increasing its magnitude, thereby reducing the torque. Therefore, inserting 𝜃𝑜𝑝𝑡 in 

Equation 18 results in: 

𝑡𝑎𝑛 𝜃𝑜𝑝𝑡 =
𝑛𝑟

𝑛𝑎
√
𝐻0
2 −𝑀𝑠

2𝑛𝑎
2

𝑀𝑠
2𝑛𝑟

2 −𝐻0
2  .        (35) 

Inserting Equation 35 in Equation 31 gives: 

𝑡𝑎𝑛𝜑 = √
𝐻0
2 −𝑀𝑠

2𝑛𝑎
2

𝑀𝑠
2𝑛𝑟

2 − 𝐻0
2  .        (36) 

Now, the 𝑠𝑖𝑛 2𝜑 component from the equilibrium relation (Equation 27) can be expressed as: 

sin 2𝜑 =
2 tan𝜑

1 + tan2 𝜑
=
2√(𝑀𝑠

2𝑛𝑎
2 −𝐻0

2)(𝐻0
2 −𝑀𝑠

2𝑛𝑟
2)

𝑀𝑠
2(𝑛𝑟 − 𝑛𝑎)(𝑛𝑟 + 𝑛𝑎)

 .        (37) 

Therefore, the torque from Equation 28 becomes: 
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|𝑻| =
𝜇0𝑉

𝑛𝑟 + 𝑛𝑎
√(𝑀𝑠

2𝑛𝑎
2 −𝐻0

2)(𝐻0
2 −𝑀𝑠

2𝑛𝑟
2) .        (38) 

In conclusion, there are three distinct maximum torques for three different magnetization regions: an 

unsaturated region (𝐻0 ≤ 𝐻𝑙𝑜𝑤), an intermediate saturated region where the magnetization angle cannot 

be brought to 45˚ (𝐻𝑙𝑜𝑤 ≤ 𝐻0 ≤ 𝐻ℎ𝑖𝑔ℎ), and a saturated region where the magnetization angle can reach 

45˚ (𝐻0 ≥ 𝐻ℎ𝑖𝑔ℎ): 

𝑇𝑚𝑎𝑥 =

{
 
 
 
 

 
 
 
 
𝜇0𝑉𝐻0

2 (𝑛𝑟 − 𝑛𝑎)

2𝑛𝑎𝑛𝑟
,  𝐻0 ≤ 𝐻𝑙𝑜𝑤 ,  𝜃𝑜𝑝𝑡 = 45°                                                                                                 

𝜇0𝑉

𝑛𝑟 + 𝑛𝑎
√(𝑀𝑠

2
𝑛𝑎
2 − 𝐻0

2)(𝐻0
2 −𝑀𝑠

2
𝑛𝑟
2),  𝐻𝑙𝑜𝑤 ≤ 𝐻0 ≤ 𝐻ℎ𝑖𝑔ℎ ,  𝜃𝑜𝑝𝑡 = 𝑡𝑎𝑛

−1 (
𝑛𝑟

𝑛𝑎
√
𝐻0
2 −𝑀𝑠

2
𝑛𝑎
2

𝑀𝑠
2
𝑛𝑟
2 − 𝐻0

2
)

𝜇0𝑉𝑀𝑠
2

 (𝑛𝑟 − 𝑛𝑎)

2
, 𝐻0 ≥ 𝐻ℎ𝑖𝑔ℎ  , 𝜃𝑜𝑝𝑡 = 𝑠𝑖𝑛−1 (

𝑀𝑠 (𝑛𝑟 − 𝑛𝑎)

2𝐻
) + 45° .                                              

       (39) 

Interestingly, this means that the generated torque is independent of the applied magnetic field beyond 

𝐻ℎ𝑖𝑔ℎ, and the absolute maximum torque is achieved when φ = 45˚. Increasing 𝐻0 past 𝐻ℎ𝑖𝑔ℎ will only 

decrease the optimal angle 𝜃𝑜𝑝𝑡 towards 45˚, without increasing torque.  
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III. TORQUE CALCULATIONS EXPERIMENTS 
 

A. Torque Calculations Hard-Magnetic Experiments  

 

The hard-magnetic microrobots used in the experiments contained a cylindrical NdFeB magnet (N42; 

first4magnets, Sutton-in-Ashfield, United Kingdom) with a diameter of 1 mm and a length of 3 mm. This 

results in a volume of 2.36 mm3 and a remanent magnetization 𝑀 of 1.03 MA/m (1.3 T). Together with an 

external magnetic field of 15.9 kA/m (20 mT), Equation 3 becomes: 

𝑇𝑚𝑎𝑥
𝑁𝑑𝐹𝑒𝐵 = 4𝜋 ∗ 10−7 ∗ 2.36 ∗ 10−9 ∗ 1.03 ∗ 106 ∗ 15.9 ∗ 103 =   48.6 𝜇𝑁𝑚 . 

 

B. Torque Calculations Soft-Magnetic Experiments  

 

The soft-magnetic microrobots contained either ferrite (78 material; Fair-Rite, Wallkill, United States) or 

pure Fe (99.5% purity; Goodfellow, Huntingdon, United Kingdom), both with a diameter of 0.75 mm and a 

length of 5.33 mm to match the magnetic volume of the hard-magnetic microrobots. Therefore, the ratio 

between the axial and radial direction R is 7.11. Inserting this ratio in Equation 14 yields: 

𝑛𝑎 =
1

7.112 − 1
(

7.11

2√7.112 − 1
ln(

7.11 + √7.112 − 1

7.11 − √7.112 − 1
) − 1) = 0.034 . 

Inserting 𝑛𝑎 into Equation 15 results in: 

𝑛𝑟 =
1 − 0.034

2
= 0.483 . 

Ferrite and pure Fe have saturation magnetizations of 0.38 MA/m (0.48 T) and 1.43 MA/m (1.8 T), 

respectively. The applied magnetic field at which saturation is reached is calculated by Equation 19: 

𝐻𝑙𝑜𝑤
𝑓𝑒𝑟𝑟𝑖𝑡𝑒

=
0.38 ∗ 106 ∗ 0.034 ∗ 0.483 ∗ √2

√0.0342 + 0.4832
= 18.2 𝑘𝐴/𝑚 

𝐻𝑙𝑜𝑤
𝑝𝑢𝑟𝑒 𝐹𝑒

=
1.43 ∗ 106 ∗ 0.034 ∗ 0.483 ∗ √2

√0.0342 + 0.4832
= 68.6 𝑘𝐴/𝑚 . 

This indicates that neither magnetic material will be saturated by an external magnetic field of 15.9 kA/m (20 

mT), and therefore, Equation 13 can be used to determine the maximum torque. As Equation 13 does not 

depend on magnetic susceptibility, the torque is the same for both materials: 

𝑇𝑚𝑎𝑥 =
 4𝜋 ∗ 10−7 ∗ 2.36 ∗ 10−9 ∗ (15.9 ∗ 103)2 ∗ (0.483 − 0.034)

2 ∗ 0.034 ∗ 0.483
= 10.24 𝜇𝑁𝑚 . 

This indicates the expected magnetic torque for hard-magnetic materials is approximately 4.7 times higher.  
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I. INTRODUCTION 
 

Magnetic microrobots are commonly actuated using tri-axial Helmholtz coil setups, which consist of three 

orthogonal pairs of opposing coils. By independently controlling the current through each coil, these systems 

generate highly uniform rotating magnetic fields, enabling precise control and accurate characterization of 

microrobots. However, such systems are expensive, often exceeding $20,0001. 

A lower-cost alternative involves the use of rotating permanent magnets. These setups, however, typically 

rely on a single magnet, resulting in non-uniform fields with poorly defined strengths that hinder reliable 

microrobot characterization2.  

This Supplemental Material describes the design of two opposing permanent-magnet arrays capable of 

generating uniform magnetic fields at specific field strengths by using a multivariate optimization algorithm. 

The requirements for these arrays are: 

• A 20 mT magnetic field strength, the upper bound of off-the-shelf tri-axial Helmholtz coil setups. 

• A maximum deviation of 0.5 mT from the target field, ensuring that actuation is primarily governed 

by magnetic torque rather than gradient-induced forces. 

• A 120 mm region of 20 mT field strength, allowing the 10 mm microrobot to be propelled over a 100 

mm distance, which provides a good balance between fabrication feasibility and characterization 

length. 

• A minimum spacing of 30 mm between the magnetic arrays, providing sufficient clearance for the 

microrobots to move freely between them. 

• A maximum array size of 250 mm, remaining within the fabrication limits of conventional 3D-printing 

systems. 

The design of these magnetic arrays is detailed across four sections: Theory (Chapter 2), Results & Discussion 

(Chapter 3), Conclusion (Chapter 4), and Experimental (Chapter 5). The Python code for optimization and the 

3D model of the magnetic array are available on GitHub.  

  

https://github.com/joostwijn/Hard_Versus_Soft_Magnetic_Microrobots
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II. THEORY 
 
A. Computational Acceleration 
 

All calculations were performed using Python’s JAX library. JAX is a high-performance numerical computing 

library developed by Google, especially suited for machine learning and scientific computing. A core feature 

of JAX is Just-In-Time (JIT) compilation. When a function is JIT-compiled, JAX traces the function the first time 

it is called with a set of inputs. During this tracing phase, JAX records all operations in a computational graph 

using an intermediate representation called XLA (Accelerated Linear Algebra). This graph is then compiled 

into optimized machine code tailored to the target hardware (CPU, GPU, or TPU). The compilation 

significantly reduces Python overhead and enables fused and vectorized operations, which can drastically 

speed up computation, especially for large-scale numerical workloads. After compilation, the compiled 

version of the function is cached and reused for subsequent calls with the same input shapes and types, 

providing fast execution without re-tracing. However, if the input shapes or data types change, JAX 

recompiles the function, which can introduce overhead. Therefore, JIT compilation in JAX is most effective 

when input shapes are consistent across calls. 

Another key feature of JAX is automatic differentiation. JAX uses reverse-mode automatic differentiation 

(autograd) to trace operations and compute exact gradients by reusing intermediate computations, which is 

significantly faster and more accurate than finite-difference methods3. 

 

B. Magnetic Field 

 

The theoretical model for the magnetic field was derived from the surface charge model. In the surface-

charge model, the magnetic field generated by a magnetized object is represented by an equivalent 

distribution of magnetic surface charges. For a uniformly magnetized rectangular bar, the surface charge 

density is4: 

𝝈𝒎 = 𝑴 ∗ 𝒏̂ ,        (1) 

where M is the magnetization and n̂ the outward unit normal vector at the magnet’s surface. The field at a 

specific point r due to an infinitesimal patch of surface charge σm at location r’ is: 

𝒅𝑩(𝒓) =  
𝜇0

4𝜋
𝝈𝒎

𝒓 − 𝒓´

‖𝒓 − 𝒓′‖3
𝑑𝑆 ,        (2) 

where dB(r) describes the infinitesimal contribution to the magnetic field at an observation point r due to 

surface element dS carrying a magnetic surface charge density σm. 𝜇0 accounts for the free-space 

permeability and 
𝒓−𝒓´

‖𝒓−𝒓′‖3 represents the field contribution from a surface charge located at r’, where 

‖𝒓 − 𝒓′‖ is the Euclidean distance between the source and observation point. 

The total magnetic field at a given point is obtained by evaluating the surface integral over all infinitesimal 

surface charge elements: 

𝑩(𝒓) =  
𝜇0

4𝜋
∮ 𝝈𝒎

𝒓 − 𝒓´

‖𝒓 − 𝒓′‖3
𝑑𝑆

0

𝑆

.         (3)          

For a block magnet, this leads to the evaluation of a double integral over a square surface element dS = dx dy 

for each Cartesian field component. Since the block magnet has a flat surface located at constant height z′, it 

follows that: 

𝐵𝑥 =  
𝜇0

4𝜋
𝑀𝑥 ∫ ∫

𝑥 − 𝑥′

((𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + 𝑧2)
3
2 

𝑑

𝑐

𝑏

𝑎

𝑑𝑦′𝑑𝑥′         (4) 
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𝐵𝑦 =  
𝜇0

4𝜋
𝑀𝑦 ∫ ∫

𝑦 − 𝑦′

((𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + 𝑧2)
3
2 

𝑑

𝑐

𝑏

𝑎

𝑑𝑦′𝑑𝑥′         (5) 

𝐵𝑧 =  
𝜇0

4𝜋
𝑀𝑧 ∫ ∫

𝑧

((𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + 𝑧2)
3
2 

𝑑

𝑐

𝑏

𝑎

𝑑𝑦′𝑑𝑥′ ,        (6) 

where a and b are the bounds of the magnet in the x-direction, and c and d are the bounds in the y-

direction. These integrals are subsequently solved using Gauss-Legendre quadrature5. Gauss-Legendre 

quadrature approximates the integral of the form: 

𝐼 =  ∫ 𝑓(𝑥)𝑑𝑥
1

−1

 ,        (7) 

by evaluating the function at specific points (nodes) within the interval [−1, 1] and weighting them: 

𝐼 ≈ ∑ 𝑤𝑖𝑓(𝑥𝑖)

𝑛

𝑖=1

 ,        (8) 

where xᵢ are the nodes and wᵢ are the corresponding weights. The chosen nodes and weights are not evenly 

spaced, as in Riemann sums, but are located at Gauss points. Gauss points are determined by the roots of 

the Legendre polynomials, which are defined recursively as6: 

𝑃0(𝑥) = 1         (9)  

 𝑃1(𝑥) = 𝑥         (10)  

  𝑃𝑛+1(𝑥) =
2𝑛 + 1

𝑛 + 1
𝑥𝑃𝑛(𝑥) −

𝑛

𝑛 + 1
𝑃𝑛−1(𝑥)  .       (11) 

The corresponding weights are given by:  

𝑤𝑖 =
2

(1 − 𝑥𝑖
2)[𝑃′

𝑛(𝑥𝑖)]2
 ,       (12) 

where P’ denotes the derivative of the Legendre polynomial at xi. For a block magnet, the integral is defined 

over an arbitrary interval [a, b], rather than [-1, 1]. To apply Gauss-Legendre quadrature, the integration 

domain [a, b] is mapped to [−1, 1] using the transformation: 

𝑥 =  
𝑏 − 𝑎

2
𝜉 +

𝑏 + 𝑎

2
 ,         (13) 

where ξ is the transformed integration variable running from −1 to 1 after mapping the original interval [a, b] 

to the standard domain for Gauss-Legendre quadrature. Equation 13 transforms the integral into the 

following form: 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

=
𝑏 − 𝑎

2
∫ 𝑓 (

𝑏 − 𝑎

2
𝜉 +

𝑏 + 𝑎

2
) 𝑑

1

−1

𝜉 .        (14) 

Subsequently, Equation 8 becomes: 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

≈ ∑ 𝑤𝑖𝑓 (
𝑏 − 𝑎

2
𝑥𝑖 +

𝑏 + 𝑎

2
)

𝑛

𝑖=1

 .        (15) 

For surface integrals, Equation 15 can be extended to: 

∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥

𝑑

𝑐

𝑏

𝑎

=
(𝑏 − 𝑎)(𝑐 − 𝑑)

4
∑ ∑ 𝑤𝑖𝑤𝑗𝑓 (

𝑏 − 𝑎

2
𝑥𝑖 +

𝑏 + 𝑎

2
,
𝑑 − 𝑐

2
𝑥𝑗 +

𝑑 + 𝑐

2
)

𝑛

𝑗=1

𝑛

𝑖=1

 ,        (16) 
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where xi and wi are nodes and weights corresponding to the integration along the x-axis over the interval [a, 

b], and xj and wj are the nodes and weights corresponding to the integration along the y-axis over the 

interval [c, d]. Overall, Gauss-Legendre quadrature significantly improves accuracy compared to other 

numerical integration methods. Moreover, a fixed set of nodes and weights can be used for any integration 

bounds, making the quadrature highly suitable for JIT-compilation, resulting in a substantial speedup. 

The magnetic gradient is subsequently calculated by evaluating the spatial derivatives of the magnetic field:  

∇𝑩 = (
𝜕𝐵

𝜕𝑥
,
𝜕𝐵

𝜕𝑦
,
𝜕𝐵

𝜕𝑧
) .        (17) 

The calculations of Equation 17 are performed through the automatic differentiation of JAX. 

 

C. Optimization Algorithms 

 

Five multivariate optimization algorithms were evaluated: grid search, hierarchical optimization, the Limited-

memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS), multistart L-BFGS, and the Adaptive 

Moment Estimation algorithm (Adam). Each optimization algorithm aims to determine the parameter 

combination that produces a magnetic field as close as possible to the target value across a set of 

observation points. To quantify the mismatch, the squared error between the computed and target 

magnetic field is used as the objective function: 

𝐸 = ∑(𝐵𝑘 − 𝐵𝑅𝐸𝐹)2 ,        (18)

𝑛

𝑘=1

 

where Bₖ is the computed field at observation point k and BREF is the target magnetic field. 

Grid Search 

Grid search minimizes the objective function by exhaustively evaluating all possible parameter 

combinations7. The search space is defined as the Cartesian product of the sampled parameter values: 

𝒙 ∈ 𝒢 = {𝑥1
(𝑖1)

, 𝑥2
(𝑖2)

, … , 𝑥𝑛
(𝑖𝑛)

} ,        (19) 

where in indexes the sampled value of parameter xn. The parameter set yielding the lowest error is selected 

as the optimal solution: 

𝒙∗ = arg min
𝒙∈𝒢

𝑓(𝒙) .        (20) 

Hierarchical Optimization 

Hierarchical optimization minimizes the objective function by iteratively refining the parameter space8. 

Starting with an initial coarse grid search, it zooms in on the parameter combination that yields the lowest 

error. Subsequently, a local grid search is performed. For each independent parameter, a small discrete 

interval is constructed by selecting three candidate values: the current parameter value, as well as values 

offset by ±½ of the previous step size: 

𝒙𝒋 ∈ {𝑥𝑗
∗ −

∆

2
, 𝑥𝑗

∗, 𝑥𝑗
∗ +

∆

2
} .        (21) 

The procedure repeats, halving the step size after each iteration, and therefore requires fewer evaluations 

than grid search, which evaluates the entire design space. 

Limited-Memory Broyden-Fletcher-Goldfarb-Shanno Algorithm 

The L-BFGS algorithm is a second-order gradient-based optimization method that iteratively estimates the 

curvature of the objective function at different parameter combinations9. In standard gradient descent, the 

parameters are updated by moving in the direction of steepest decrease, as indicated by a negative gradient. 
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Since the gradient describes how the function changes at a given point, following its negative direction 

locally reduces the objective function most effectively. At each iteration, k, the parameters are updated 

according to: 

𝒙𝑘+1 = 𝒙𝑘 − 𝛼∇𝑓(𝒙𝑘) ,        (22) 

where α is the step size. However, gradient descent uses only local gradient information and does not 

account for the curvature of the objective function, limiting its efficiency. Second-order methods address 

this by using curvature information contained in the Hessian matrix of the objective function to adjust the 

search direction and step size. Since computing the full Hessian is computationally intensive, L-BFGS 

approximates the Hessian by incorporating information from previous iterations. Specifically, it stores 

differences between consecutive parameter vectors and gradients: 

𝒔𝑘 = 𝒙𝑘+1 − 𝒙𝑘          (23) 

𝒚𝑘 = ∇𝑓(𝒙𝑘+1) − ∇𝑓(𝒙𝑘) .        (24) 

Here, sk represents the change in the parameter vector between two consecutive iterations, and yk the 

corresponding change in the gradient. These differences capture how the slope of the objective function 

evolves as the parameters are updated, thereby providing indirect information about the function’s local 

curvature. Liu et al. demonstrated that this information can be used to approximate the Hessian9. The 

parameters are now updated according to: 

𝒙𝑘+1 = 𝒙𝑘 − 𝛼𝑘𝑯𝑘∇𝑓(𝒙𝒌) ,      (25) 

where 𝑯𝑘 is the approximation of the inverse Hessian and 𝛼𝑘 is the new step size. Equation 25  can be 

simplified to: 

𝒙𝑘+1 =  𝒙𝒌 + 𝛼𝑘𝒑𝑘 ,       (26) 

where step size αₖ is determined by satisfying the Wolfe conditions. The Wolfe conditions impose two 

requirements. First, the sufficient decrease condition ensures that the step results in an adequate reduction 

of the objective function relative to the decrease predicted by the current gradient: 

𝑓(𝒙𝑘 + 𝛼𝑘𝒑𝑘) ≤ 𝑓(𝒙𝑘) + 𝑐1𝛼𝑘∇𝑓(𝒙𝑘)𝑇𝒑𝑘 ,       (27) 

where 𝑐1, typically set to 10-4, is the constant that determines how much decrease in the objective function 

is required for the step size to be accepted. The second requirement is the curvature condition, which 

verifies that the slope of the function along the search direction is sufficiently reduced after taking the step. 

This condition is given by: 

∇𝑓(𝒙𝑘 + 𝛼𝑘𝒑𝑘)𝑇𝒑𝑘 ≥ 𝑐2∇𝑓(𝒙𝑘)𝑇𝒑𝑘 ,        (28) 

where c₂ , typically set to 0.9, determines the acceptable change in slope. The L-BFGS algorithm performs a 

line search where the step size αₖ is decreased until both Wolfe conditions are satisfied. 

L-BFGS and other advanced optimization algorithms operate by evaluating the numerical values of 

parameters over the entire real line [-∞, ∞]. However, in certain applications, such as the placement of 

magnets, the parameters are subject to specific constraints (see Chapter 1). To enforce these bounds on the 

independent variables, the sigmoid function can be utilized. The sigmoid function is defined as: 

𝜎(𝑢) =
1

1 + 𝑒−𝑢
  ,       (29) 

where 𝑢 is the unbounded optimization variable, and 𝜎(𝑢) maps 𝑢 to the interval [0, 1]. To map this 

bounded output to the desired range [a, b], a transformation needs to be applied: 

𝑥 = 𝑎 + (𝑏 − 𝑎)𝜎(𝑢) .        (30) 
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Here, 𝑥 is the transformed variable, now bounded between 𝑎 and 𝑏. 

L-BFGS determines its search direction based on the gradient and curvature near the current parameter 

values. When the objective function contains multiple minima, the algorithm can become trapped in a local 

minimum if it starts in a region that leads to that minimum. Since L-BFGS does not explore the entire 

parameter space but follows the local slope, it may converge to a solution that reduces the error locally but 

does not reach the global minimum (Fig. 1). 

 

Figure 1: Convergence to a local minimum instead of the global minimum depending on the choice of starting point. 

This problem is addressed by multistart L-BFGS, which explores multiple starting points in parallel and can 

therefore converge to the global minimum (Fig. 2). 

 

Figure 2: Convergence to the global minimum by choosing multiple starting points. 

Adaptive Moment Estimation Algorithm 

Adam updates its step by using both the current gradient and its history. It maintains two running averages: 

one of the gradients (first moment) and one of squared gradients (second moment)10. These moments 

provide information about the descent's general direction and how large or noisy the gradients are. This 
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enables escape from local minima that trap simpler gradient descent methods. At each iteration k, the 

gradient of the objective function is first computed as: 

𝒈𝑘 = ∇𝑓(𝒙𝑘) .        (31) 

The first moment is updated as: 

𝒎𝑘 = 𝛽1𝒎𝑘−1 + (1 −  𝛽1)𝒈𝑘 ,       (32) 

which averages the gradients over time, where 𝛽1, typically set to 0.9, controls how strongly past gradients 

influence the moving average. In parallel, the second moment is updated as: 

𝒗𝑘 = 𝛽2𝒗𝑘−1 + (1 −  𝛽2)𝒈𝑘
2  ,       (33) 

where 𝛽2, typically set to 0.999, controls how strongly past squared gradients influence the moving average. 

The second moment reflects how large or unstable the gradients are across iterations. In Adam, the first and 

second moment estimates ( 𝒎𝑘  and 𝒗𝑘) are initialized at zero, causing them to underestimate the true 

average gradients during the initial iterations. Without correction, this would result in smaller updates and 

slow down convergence. To compensate, Adam applies a correction that rescales the moments based on the 

number of iterations, ensuring appropriate step sizes from the start of the algorithm: 

𝒎̂𝑘 =
𝒎𝑘

1 − 𝛽1
𝑘         (34) 

𝒗̂𝑘 =
𝒗𝑘

1 − 𝛽2
𝑘  .       (35) 

This ensures larger values of the first and second moments for early iterations. This correction will disappear 

after multiple iterations, as 𝛽1 and 𝛽2 go to zero at higher powers. 

Finally, parameters are updated by scaling the averaged gradient by the square root of the averaged squared 

gradient: 

𝒙𝑘+1 = 𝒙𝑘 − 𝛼
𝒎̂𝑘

√𝒗̂𝑘 + 𝜖
 ,        (36) 

where α is the learning rate and ϵ is a small constant that prevents division by zero, typically set to 10-8. With 

this algorithm, Adam scales each step based on gradient information, enabling optimization without line 

search, reducing memory requirements. Adam also operates over the entire real line; therefore, the sigmoid 

transformation from Equations 29 and 30 should be used to enforce bounds. 
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III. RESULTS & DISCUSSION 
 

A. Preliminary Evaluation of Magnet Configurations 

Before optimizing the magnetic array, an initial evaluation was performed to determine how the relative 

orientation and spacing of magnets affected the resulting magnetic field. This analysis served to narrow the 

design space and improve optimization efficiency. 

First, two general magnet configurations were evaluated: a lateral configuration, with magnets positioned 

alongside the microrobot’s direction of motion (Fig. 3A), and a longitudinal configuration, with magnets 

placed at the front and rear of the microrobot’s direction of motion (Fig. 3B). The lateral magnet 

configuration achieved a magnetic field of 20-21 mT over an 80 mm range, beyond which the field strength 

dropped toward 10 mT, resulting in gradients up to 957 mT/m (Fig. 3C-E). The longitudinal configuration 

exhibited larger variations in magnetic field strength and gradient, ranging from 13 mT between the magnets 

to 399 mT near the magnet surfaces, with gradients up to 33 T/m (Fig. 3F-H). This indicated that the lateral 

configuration produced a significantly more uniform field, with deviations and gradients up to 30 times 

lower than the longitudinal setup. In addition, the use of high-strength magnets in the longitudinal 

configuration posed serious safety risks.  

 

Figure 3: Magnetic field strength and gradient of lateral and longitudinal magnet configurations measured within ±60 mm, with the 
lateral configuration producing the most uniform field. (A) Conceptual overview of the lateral magnet configuration. (B) Conceptual 
overview of the longitudinal magnet configuration. (C) Schematic of the lateral setup with 30 × 175 × 1 mm N42 magnets placed 40 
mm apart. (D) Magnetic field strength of the lateral setup along the x-axis. (E) Magnetic gradient of the lateral setup along the x-axis. 
(F) Schematic of the longitudinal setup with two 40 × 40 × 20 mm N42 magnets spaced 120 mm apart. (G) Magnetic field strength of 
the longitudinal setup along the x-axis. (H) Magnetic gradient of the longitudinal setup along the x-axis.  
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Increasing the length of the lateral magnet configuration to 175 mm produced a magnetic field between 

19.8 and 20.5 mT over a 120 mm range, with the maximum field strength occurring near the edges of the 

transect, and a maximum gradient of 24 mT/m (Fig. 4A-C). This indicated that elongating the magnets led to 

an extended region where the magnetic field remained closer to the target value. However, this setup still 

exceeded the maximum allowable field strength deviation (see Chapter 1). A notable observation in this 

configuration was that the maximum field strength occurred off-center rather than along the central axis of 

the magnets. This outcome deviated from what would be expected if the magnets behaved as ideal dipoles, 

which would produce a central peak. The observed field shape can be attributed to the proximity of the 

magnets: at the midpoint between two thin magnets, the opposing flux from both sides of the magnets 

largely canceled out. Slightly off-center, the flux from the nearby poles remained nearly constant, while the 

opposing flux from the more distant pole decreased more rapidly. This resulted in off-center maxima. When 

the magnets were positioned further apart, the field resembled the expected dipole behavior, with the 

maximum magnetic field occurring at the center of the magnets (Fig. 4D-F).  

 

Figure 4: Magnetic field strength and gradient of an extended parallel magnet configuration measured within ±60 mm, showing that 
elongating the magnets improved field uniformity. (A) Schematic of two 175 × 30 × 1 mm N42 magnets placed 40 mm apart. (B) 
Magnetic field strength along the x-axis. (C) Magnetic gradient along the x-axis. (D) Schematic of two 175 × 30 × 1 mm N42 magnets 
placed 100 mm apart. (E) Magnetic field strength along the x-axis. (F) Magnetic gradient along the x-axis. 

An array-based magnet configuration consisting of cubical magnets that were all placed an equal distance 
from each other, produced a magnetic field ranging from 19.8 to 20.8 mT over a 120 mm range, with a 
maximum gradient of 35 mT/m (Fig. 5A-C), exceeding the allowable field strength deviation from Chapter 1. 
Reducing the spacing between the outermost magnets from 34 mm to 30 mm resulted in a magnetic field 
between 19.8 and 20.5 mT and a maximum gradient of 24 mT/m over the same range (Fig. 5D-F), closely 
matching the characteristics of the solid lateral magnet configuration (Fig. 4A-C). This indicated that moving 
individual groups of magnets improved the magnetic field characteristics. 
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Figure 5: Magnetic field and gradient of two magnet array configurations measured within ±60 mm, demonstrating that the 
individual placement of magnets can improve field uniformity. (A) Magnet array consisting of 18 columns and 3 rows of 5 × 5 × 5 mm 
N42 magnets placed 34 mm apart. (B) Magnetic field strength along the x-axis. (C) Magnetic gradient along the x-axis. (D) Magnet 
array with the outermost magnets placed 30 mm apart. (E) Magnetic field strength along the x-axis. (F) Magnetic gradient along the 
x-axis. 

Too large spacing between adjacent magnets introduced oscillations in the magnetic field, resulting in poor 

field characteristics (Fig. 6A-P). To prevent these oscillations, the spacing between magnets along the x-

direction was constrained to remain below one-tenth of the distance between the two arrays. With a 

minimum spacing of 30 mm (see Chapter 1), the maximum allowed x-direction spacing was 3 mm. Violating 

this constraint would result in oscillations in field strength and a sharp increase in gradients.  
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Figure 6: Magnetic field strength and magnetic gradient measured within ±60 mm for arrays of 5 × 5 × 5 mm N42 magnets placed 30 
mm apart, using different magnet spacings. The figure reveals that exceeding a lateral magnet spacing of one-tenth of the distance 
between the two arrays results in large oscillations in the magnetic field, limiting precise microrobot actuation. (A-C) Array with 1 mm 
spacing. (D-F) Array with 2.5 mm spacing. (G-I) Array with 4 mm spacing. (K-M) Array with 5 mm spacing. (N-P) Array with 6.25 mm 
spacing.  
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B. Magnet Array Optimization 

 

Based on the previous chapter, a 175 × 30 mm lateral magnet array configuration was optimized, consisting 

of 18 columns and 3 rows of 5 × 5 × 5 mm N42 magnets. Optimization aimed to minimize the objective 

function (Equation 18) by adjusting the spacing between opposing columns of the two magnet arrays, 

resulting in 9 independent parameters. The optimization included a constraint limiting the distance between 

opposing magnets to 30-44 mm. Five multivariate optimization algorithms were evaluated: grid search, 

hierarchical optimization, L-BFGS, multistart L-BFGS, and the Adam algorithm (Fig. 7). As a benchmark, the 

error from the configuration of Fig. 5A–C was used, which is referred to as the initial guess, as it represents 

the best achievable estimate within a reasonable time frame without optimization. 

 

Figure 7: Final squared error and convergence time of five multivariate optimization algorithms applied to a symmetric magnet array 
consisting of 18 columns and 3 rows of 5 × 5 × 5 mm N42 magnets. Adam and multistart L-BFGS reached the smallest error, with 
Adam converging the fastest. 

Grid Search 
Grid search exhibited the poorest performance among all optimization algorithms, providing results scarcely 
better than the initial guess for the 20 mT target field. This was primarily due to the exhaustive nature of grid 
search, which, for five options per parameter, required approximately two million evaluations. Greater 
precision quickly exceeded practical computational limits, despite the fast evaluation time of 7.25 × 10⁻⁵ 
seconds per configuration enabled by the JAX library. 

Hierarchical Optimization 

The hierarchical optimization method performed better than grid search but still yielded errors three to four 

times higher compared to the more advanced algorithms for the 20 mT target field. The higher error was 

attributed to the fact that the hierarchical optimizer became stuck in a local minimum instead of reaching 

the absolute minimum. Moreover, this method becomes infeasible for larger-scale problems, as scaling up to 

18 independent parameters requires 3.9 × 108 evaluations per step, hindering convergence. 

Limited-Memory Broyden-Fletcher-Goldfarb-Shanno Algorithm 
The standard L-BFGS also got trapped in local minima. Therefore, the performance of the algorithm relied on 
the initial guess for the optimal configuration (Fig. 8). A starting value of 34 mm, an initial guess close to the 
absolute minimum, resulted in convergence within 5 seconds and a final squared error of 3.5 × 10⁻³ mT². A 
starting value of 40 mm also converged in 5 seconds, with a higher final error of 6.5 × 10⁻³ mT². An initial 
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guess of 42 mm led to a final error of 85 mT² and required 10 seconds to converge, exceeding the error 
observed with grid search (Fig. 7). This limitation emphasized the need for optimization strategies capable of 
more broadly exploring the design space. 

 

Figure 8: Final squared error and convergence time of the L-BFGS algorithm for different initial guesses of the magnet distance to the 
x-axis. The algorithm was applied to a symmetric magnet array consisting of 18 columns and 3 rows of 5 × 5 × 5 mm N42 magnets. 
The figure illustrates that a poor initial guess can result in inadequate performance. 

This was solved with the multistart L-BFGS algorithm, which explores the design space more broadly by 

simultaneously evaluating multiple initial guesses. Multistart L-BFGS achieved lower errors with a fast 

convergence time (2.2 × 10⁻³ mT² in 10 s). Its performance was determined by increasing the number of 

initial guesses. Therefore, proper determination of the maximum number of iterations per initial guess 

required careful consideration, as it directly affected the algorithm’s speed. The smallest tested budget of 20 

iterations per initial guess yielded the fastest convergence, converging within 10 seconds (Fig. 9).  
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Figure 9: Convergence time of the multistart L-BFGS algorithm for different iteration budgets. The algorithm was applied to a 
symmetric magnet array consisting of 18 columns and 3 rows of 5 × 5 × 5 mm N42 magnets. The figure indicates that an iteration 
budget of 20 resulted in optimal performance. 

Adaptive Moment Estimation Algorithm 

The Adam optimizer attained convergence to an error of 2.2 × 10⁻³ mT² within two seconds (Fig. 7), 

representing the fastest performance among the tested optimization algorithms for the 20 mT target field. 

The sensitivity of the Adam algorithm to the initial guess was also evaluated, and all configurations 

converged to the same final squared error of 2.2 × 10⁻³ mT². This confirmed the ability of the algorithm to 

escape local minima. However, convergence time varied with the initial guess: the 34 mm condition resulted 

in convergence within 2 seconds, while the 40 mm and 42 mm initializations each required 20 seconds (Fig. 

10). 

The effect of the learning rate on the convergence behaviour of the Adam algorithm was also evaluated. 

Learning rates of 0.001 and 0.01 both converged to a final squared error of 2.2 × 10⁻³ mT², with convergence 

times of 5 seconds and 2 seconds, respectively. In contrast, a learning rate of 0.1 did not converge within the 

experimental time frame and resulted in a final error between 2.2 × 10⁻³ and 1.0 × 10⁻² mT² (Fig. 11). This 

indicated that the optimal learning rate for the optimization in this study was 0.01. 

Overall, both Adam and multistart L-BFGS were shown to be effective optimization methods, capable of 

rapidly identifying near-optimal configurations. The high fidelity of these algorithms was further confirmed 

by observing Gibbs-like phenomena when targeting a step-shaped magnetic field (Appendix A), reinforcing 

the conclusion that the optimization methods approached fundamental theoretical limits. Finally, scaling the 

optimization to 90 independent variables with bounds between 30 and 100 mm (a tenfold increase) would 

slightly favor multistart L-BFGS (Appendix B). However, such scaling is not required for the target field in this 

study, but could be beneficial for other applications. 
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Figure 10: Convergence time of the Adam algorithm for different initial guesses. The algorithm was applied to a symmetric magnet 
array consisting of 18 columns and 3 rows of 5 × 5 × 5 mm N42 magnets. The figure illustrates that an inadequate initial guess can 
negatively impact performance; however, the final error remains unchanged. 

 

Figure 11: Convergence behavior of the Adam algorithm for different learning rates. The algorithm was applied to a symmetric 
magnet array consisting of 18 columns and 3 rows of 5 × 5 × 5 mm N42 magnets. The figure shows that a learning rate of 0.01 
resulted in optimal performance. 
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C. Constructed Magnetic Array 

 

The constructed magnet array was optimized using the Adam algorithm due to its superior performance. 

This array was fabricated with a 3D printer and validated with a Gaussmeter (Fig. 12A-B). The measured 

magnetic field ranged from 19.9 to 20.2 mT, with a maximum deviation of 0.2 mT from the target field, 

which was well within the requirements (see Chapter 1). This confirmed that the Adam algorithm was 

capable of producing magnetic configurations that generated uniform magnetic fields with a specified field 

strength of 20 mT.  

 

Figure 12: Magnetic field strength and gradient of the constructed Adam-optimized magnet configuration measured within ±60 mm. 
(A) Picture of the constructed array consisting of 18 columns and 3 rows of 5 × 5 × 5 mm N42 magnets. (B) Measured magnetic field 
strength along the x-axis and its uncertainty. The figure shows that the constructed magnetic array was able to accurately produce 
the target field.  
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IV. CONCLUSIONS 
 

This Supplemental Material presents a design method for low-cost magnetic setups capable of generating 

uniform magnetic fields. Using multivariate optimization with the Adam algorithm and JAX acceleration, a 

lateral magnet array was optimized to generate a uniform 20 mT magnetic field with minimal gradient across 

a 120 mm region. Experimental measurements confirmed that both the field strength and its uncertainty 

remained fully within the specified target range, closely matching theoretical predictions and underlining the 

effectiveness of this design approach. 

Some limitations must be acknowledged. First, the setup was limited to one-dimensional optimization in the 

x-direction, neglecting magnetic fields in the y- and z-directions. Second, the used magnets were not perfect 

cubes and had rounded edges; including this type of geometry in the algorithm could improve accuracy. 

Third, the optimization algorithm is currently limited to configurations with opposing magnets magnetized 

along the z-direction, restricting its broader applicability. Future work should investigate full 3D field shaping 

and incorporate more complex magnet geometries into the optimization algorithm by leveraging JAX’s 

GPU/TPU acceleration. 
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V. EXPERIMENTAL 
 

A. Computational Setup 

 

All computations were performed with an HP ZBook Power G7 on CPU (Intel Core i7) with Python (3.12.3), 

JAX (0.4.35), and Optax (0.2.4).  

 

B. Magnet Characteristics 

 

5 x 5 x 5 mm magnets were obtained from supermagnete (Gottmadingen, Germany). The magnets had a 12 

μm nickel layer; therefore, they were modelled as 4.98 x 4.98 x 4.98 mm in the optimization algorithm. The 

magnets were rated as N42; however, it was found that the magnets were not perfectly square but had 

rounded edges. The roundness of the edges was not included in the computational model. Instead, the 

remanent magnetization was modelled as 1.15 T. This value was obtained by fine-tuning the computational 

model parameters so that the simulated field matched the measurements produced by two magnets 

positioned directly between the measuring probe of a Lake Shore 455 DSP Gaussmeter (Figure 13). 

 

Figure 13: Calibration setup for determining the remanent magnetization using two 5 × 5 × 5 mm N42 magnets measured with a 
Gaussmeter. 

 

C. Array Fabrication 

 

The magnetic arrays were fabricated using a Bambu Lab X1C 3D printer. To ensure precise spacing of the 

columns of magnets between the two arrays, which was optimized by the algorithm, this dimension was 

printed in the x–y plane (Fig. 14), which is more accurate than the z-direction. The difference in precision 

between print directions arises because accuracy in the x- and y-directions depends solely on the accuracy of 

the stepper motors, while precision in the z-direction is also influenced by variations in extrusion flow. 

Additionally, 5 × 5 mm square holes were included to secure the magnets via press fit. 
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Figure 14: Print orientation of the magnetic array, with the magnetic columns aligned in the z-direction to maximize printing 
precision. 

 

D. Magnetic Field Validation 
 

The magnetic field produced by the 3D-printed array was validated using a Lake Shore 455 DSP Gaussmeter. 

Measurements were taken every 10 mm, with the probe positioned between the magnetic arrays using a 

measuring guide (Fig. 15). 

 

Figure 15: Magnetic field validation setup showing the magnetic array and the measuring guide with slots for the probe of the 
Gaussmeter. 
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Appendix A: Step Function Optimization 
 

 

Figure 16: Gibbs-like ringing observed when optimizing for a 4 mT step-shaped magnetic field. The Gibbs phenomenon results in a 
characteristic combined overshoot of 18% of the step height. (A) Magnet array consisting of 180 columns and 30 rows of 
1 × 1 × 1 mm N42 magnets.  (B) Magnetic field strength along the x-axis measured within ±60 mm.  
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Appendix B: Scaled Optimization Performance 
 

 

Figure 17: Convergence behaviour of multistart L-BFGS and Adam applied to a symmetric magnet array consisting of 180 columns 
and 30 rows of 1 × 1 × 1 mm N42 magnets. The columns were arranged symmetrically along the y-axis, resulting in 90 independent 
parameters. The distances to the x-axis were bounded between 30 mm and 100 mm. Multistart L-BFGS demonstrated faster 
convergence than Adam, which failed to converge within the evaluated time frame. However, both optimization algorithms achieved 
low errors within 10 seconds, underscoring the scalability of both algorithms. 
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I. DESIGN 
 

Hard- and soft-magnetic microrobots, each with three distinct geometric configurations, were fabricated. 

These designs were based on the optimized geometries presented by Lin et al.1. The microrobot models 

were designed using SolidWorks (Dassault Systèmes, Vélizy-Villacoublay, France) and are accessible on 

GitHub. 

The hard-magnetic microrobot designs consisted of a double helix, a tapered double helix, and a tapered 

ribbon-shaped geometry (Fig. 1). The double helix had a total length of 10 mm, a constant width of 6.5 mm, 

and a coil diameter of 0.8 mm. A longitudinal central cylinder with an outer diameter of 1.6 mm and an inner 

diameter of 1.2 mm was incorporated to secure a cylindrical NdFeB magnet (diameter 1 mm, length 3 mm). 

The internal hole was intentionally oversized to account for shrinkage caused by residual resin during the 

curing process. Additionally, three cylindrical support structures, each with a diameter of 0.6 mm, connected 

the central cylinder to the helical coils, enhancing structural rigidity during printing, post-processing, and 

actuation. The tapered double-helix maintained a total length of 10 mm and a maximum width of 6.5 mm, 

but featured a linear 30° taper toward the center from both ends. This design required only one central 

support structure (diameter 0.6 mm), as structural integrity was partly provided by the joining of helical coils 

at both ends. The tapered ribbon-shaped design was similarly 10 mm in length, had a wall thickness of 0.3 

mm, a maximum width of 6.5 mm, and a curved 30° taper toward the center from both ends. This design did 

not require additional supporting structures. 

 

Figure 1: Overview of the three hard-magnetic microrobot designs: double helix, tapered double helix, and tapered ribbon-shaped 
geometry. 

  

https://github.com/joostwijn/Hard_Versus_Soft_Magnetic_Microrobots
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The soft-magnetic microrobots featured analogous geometric designs (Fig. 2). However, these designs 

included a transverse central cylinder with soft-magnetic material rather than the longitudinal cylinder used 

in the hard-magnetic designs. The central cylinder had an outer diameter of 1.6 mm and an inner diameter 

of 1.1 mm. The inner diameter was oversized to compensate for dimensional changes during curing. The 

soft-magnetic material had a diameter of 0.75 mm and a length of 5.33 mm, matching the volume of the 

hard magnet. Structural support structures included a single central axial support (0.6 mm diameter) and 

two transverse supporting structures (each with a 0.6 mm diameter) to maintain integrity during printing, 

post-processing, and actuation. 

 

Figure 2: Overview of the three soft-magnetic microrobot designs: double helix, tapered double helix, and tapered ribbon-shaped 
geometry. 
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II. PRE-PROCESSING & PRINTING 
 

The finalized designs were exported as STL files, imported into PreForm software (Formlabs, Somerville, 

United States), and sliced. An auto-generated mini raft support structure was used (Fig. 3), with a touchpoint 

density of 1.00 and a touchpoint size of 0.40 mm. Printing was performed using a Formlabs Form 3 printer 

with adaptive layer thickness, utilizing clear V4 resin. 

 

Figure 3: All hard- and soft-magnetic microrobot designs prepared in PreForm software, showing the generated supports and raft 
structures. 
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III. POST-PROCESSING 
 

After printing, the microrobots were washed in isopropanol for 10 minutes using the Form Wash (Formlabs, 

Somerville, United States). Following this, the supports were removed with a hobby knife, and any residual 

material inside the cylindrical hole was cleared with a needle to prevent obstruction after curing. Curing was 

done for 30 minutes in the Form Cure (Formlabs, Somerville, United States) for 30 minutes at 60˚C. After 

curing, the three magnetic materials, NdFeB, ferrite, and pure Fe were inserted into the microrobots and 

secured with UHU Magnet Glue (UHU GmbH & Co. KG, Bühl, Germany) (Fig. 4). 

 

Figure 4: Resulting hard- and soft-magnetic microrobots after post-processing and magnet insertion. 
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