
Assessing the Suitability of Panako for Music Identification in Movies

Ruben Nair
TU Delft

Abstract
Audio fingerprinting is a technique that allows for
fast identification of music. Research concerning
this technique first emerged around the 2000s and
has lead to several applications, like Shazam [1].
More recently, developments in this area have
slowed down, even though there are still new chal-
lenges emerging. This paper investigates one of
these challenges, music identification of movies, in
a systematic way using the open-source fingerprint-
ing framework called Panako. First, clips contain-
ing music were extracted from movies and queried
using the default settings for Panako. Then, movie
soundtracks were modified by layering noise over
them, or by time-stretching and pitch-shifting them,
and the performance of Panako on these modified
audio signals was evaluated using a benchmark. Fi-
nally, the best configurations from the previous step
were again queried using actual movie clips. These
tests showed that both the default configuration and
the configurations that performed best on the syn-
thesised data perform poorly in movie music iden-
tification. Less than 10% of the clips were identi-
fied correctly. The limited scope of this research,
combined with the results gathered, show that there
should be further investigation into the suitability
of Panako for movie music identification.

1 Introduction
Humans have been using fingerprints to identify humans
since the late 19th century [2]. The key assumption made
that allows for this is that all humans have a unique finger-
print. A fingerprint is a small amount of information that
does not encode any personal information about the corre-
sponding human, but can be used to uniquely trace back to
them. Around the year 2000, researchers started to investi-
gate and apply a technique called audio fingerprinting, focus-
ing on the fast identification of an audio fragment by linking
the fragment to a music piece. An audio fingerprint is similar
to a human fingerprint in the sense that it does not contain
any information that can be used to reconstruct the original
song, but it can be used to identify the original audio file. At
that time, this subject was being heavily researched (e.g. [3;

4; 5]). The results of these studies have several different ap-
plications. For example, applications like Shazam [1] use
audio fingerprinting to allow anyone to identify music that is
playing in their surrounding, using their cellphone. Another
example is broadcast monitoring, where playlists of songs
played on the radio, television or web broadcasts are auto-
matically generated, for example for purposes of royalty col-
lection [4].

However, in more recent years, research in this area has
slowed down. The problem of music identification is seen
as solved, even though there are still new challenges being
discovered. One of these new challenges is the identification
of music in movies.

There are several factors that make movie music identifica-
tion using audio fingerprinting techniques a challenge.
First of all, there is very little existing research tailored to-
wards movie music identification. In [6], three audio fin-
gerprinting algorithms were tested and compared by query-
ing 30-second excerpts of feature-length Hollywood films,
recorded with different noise degradations, and matching
them to the correct movie audio in the database. However,
that approach is different from the research proposed in this
paper. The main problem addressed in this paper is identi-
fying the song that is present in an audio fragment from a
movie, not identifying the movie to which the fragment be-
longs. There is also some literature available that investigates
the same audio fingerprinting algorithm as this paper, called
Panako. It is tested and compared to other audio fingerprint-
ing algorithms [7], but this is not done in the movie music
domain.
The second factor has to do with audio mixing and master-
ing. As is shown in [8], there are similarities and differences
between film mastering and music mastering. Most audio
fingerprinting algorithms are designed for music, so the dif-
ferences with mixing and mastering techniques in films can
prove to be an inhibiting factor of the capabilities for the al-
gorithms in the movie music domain.
In this paper, the problem of music identification in movies
using audio fingerprinting is investigated systematically, try-
ing to understand how this problem can be solved using the
open-source framework called Panako. The research ques-
tion is: How does Panako perform in music identification in
movies? In order to answer this question such that it can be
compared to other audio fingerprinting frameworks, a bench-

1

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering



mark was established. This benchmark, together with the mo-
tivation behind it, is described in [9]. The research question
is split up into two sub-questions:

1. How well does Panako perform in recognizing music in
movies, based on the benchmark?

2. What is the influence of configurable parameters on the
performance of Panako?

This paper continues in the following structure. In sec-
tion 2, background is given into the creation and functional-
ity of the Panako framework. Then, section 3 describes the
approach to the investigation of the problem. After that, sec-
tion 4 presents and discusses the results gathered from the
performed tests. This is followed by section 5, which high-
lights some potential issues regarding responsible research
and how they were circumvented. Finally, section 6 con-
cludes the paper and gives some ideas for future work.

2 Panako
The Panako framework is an open-source audio fingerprint-
ing algorithm, developed by Six and Leman [10]. It is based
on three previous works. The next three paragraphs will give
a short explanation of these works.

First of all, techniques from [11] are used. This paper is
written by Shazam [1] and details some of the techniques
used by that application in the early 2000s. In this paper
they claim that using peaks in the spectrogram representation
of an audio signal that contain the highest entropy in its
neighbourhood, also known as local maxima, is robust
against several types of noise (among others compression,
noise and quantization effects). Furthermore, using only
the local maxima condenses the amount of information
significantly.

In addition to this fingerprinting technique, this pa-
per introduces a scalable method to store and search for
fingerprints. Each local maximum in the spectrogram
representation of an audio signal, also called an event point,
is matched with another local maximum in the target zone of
the first event point. From this pairing, the two frequencies
of the points and the time difference between the points are
extracted and run through a hashing algorithm. This hash,
combined with the time at which the first point occurred
in the audio file, is an audio fingerprint. Several of these
fingerprints are created per second of audio, linked to the
metadata of the signal and stored in a database. Then, in
order to match a new audio signal, the same procedure is
applied to that signal and these generated fingerprints are
compared to the fingerprints in the database. All exact
matches between these fingerprints are counted per signal in
the database and the signal with the highest number of exact
matches (above a certain threshold, in order to circumvent
random hits) is returned as the best match found by the
algorithm.

Secondly, the work of [12] is used. This paper focuses
on classical music and introduces a technique to identify

scores (irrespective of the specific performance of such a
score). It relies on a music transcription system for piano
and thus is only applied to piano music. However, the ideas
it introduces can be applied in other genres too. Different
performances of the same score can vary slightly in terms
of performance aspects, among which a different tempo
(BPM). To accommodate for this, the fingerprints used by
this work are different than those in [11]. For the fingerprint
extraction from an audio clip, they use 3 “successive events”,
instead of only two points. This makes the fingerprint tempo
independent, since the ratio between the first and second, and
first and third event point does not change when the tempo of
the audio signal is changed uniformly.

The last paper on which Panako is based is [13]. In this
work, they create a spectral representation of the audio using
the Constant Q Transform. This technique lends itself well
for western music signals: both the frequency bins from the
Constant Q Transform and the notes in the western scale are
geometrically spaced. As a result, the output of the Constant
Q Transform has a constant number of bins per note. An
effect of this property is that a pitch shift in the signal cor-
responds to a constant difference in which bin an audio peak
ends up. If the peaks first occurred in bins b1 and b2, they
now fall into bins b1 + K and b2 + K for some constant K.
Furthermore, the difference in frequencies (i.e. bins), which
is a part of the fingerprint in [13], remains the same:

(b2 +K)− (b1 +K) = b2 − b1 (1)

Thus, this approach is robust against pitch-shifting.

The Panako framework combines these techniques and
generally works as depicted in Figure 1. The process starts
when an audio signal is given as input to the algorithm. Then,
during the Feature extraction, a spectrogram representation
of the audio signal is created, from which local maxima are
extracted. The Panako algorithm has two strategies that it can
use in order to create the spectrogram representation. One
of these strategies is described above, the Constant-Q trans-
form (later also referred to as NCTEQ). The second strategy
is called the New Fast Fourier Transform (NFFT). This strat-
egy uses the Fast Fourier Transform and then runs a streaming
minimum/maximum filter over it to find the peaks. The local
maxima that are found are then passed to the next step. The
procedure in the next phase, the Fingerprint construction
phase, also depends on the strategy. For the NCTEQ strategy,
triplets of these local maxima are combined into a fingerprint
which looks as follows:

(f1 − f2; f2 − f3; f̃1; f̃3;
t2 − t1
t3 − t1

); t1; f1; t3 − t1; id, (2)

whereas the NFFT strategy combines two local maxima into
the following fingerprint:

(f1; f2 − f1; t2 − t1); t1; f1; t2; f2; id (3)

In these fingerprints, fx stands for the frequency bin in which
the frequency of the xth event point ended up, and tx stands
for the timestamp of the xth event point. For the NCTEQ

2



Input
audio Feature

extraction
Fingerprint
construction

Matching
Features Fingerprints

Match

Fingerprints
in database

Figure 1: High-level overview of the steps in the audio fingerprinting process for Panako

fingerprints, the terms with tildes over them (f̃1 and f̃3)
are the bins in which the frequencies of the first and third
event point fall after dividing the whole spectrogram into 8
frequency bins. As a result, these terms limit the amount of
pitch-shifting that the algorithm can handle, with the benefit
that the algorithm can be more discriminative. The part
between brackets is hashed into a 32bit and 22bit integer, for
the NCTEQ and NFFT strategies respectively. On average,
around eight of these fingerprints are generated per second of
audio. This set of fingerprints is then fed into the next stage,
the Matching phase. Here, the hashes of these fingerprints
are compared to hashes stored in a database and songs with
exact matching hashes are returned. These potential matches
are first pruned: songs with four or less exact matching
hashes are considered random hits and discarded. All the
songs in the resulting list of potential matches are then
checked for alignment. The f1 (the frequency of the first
event of a fingerprint) of both fingerprints are compared to
find a potential difference. If all event points differ by this
same difference, then the audio signals align in frequency,
with a pitch-shift difference. For the NCTEQ strategy,
fingerprints are also checked for alignment in time. This is
done using the t1 and t3 − t1 parts of the fingerprints. This
information can be used to calculate the offset of the input
signal relative to the stored signal. Finally, all matches are
returned, ordered by the number of fingerprints that match in
both time and frequency.

The described behaviour of the algorithm has been veri-
fied for the NCTEQ strategy. In the Panako paper, the algo-
rithm is tested against 30,000 songs that were time-stretched
and pitch-shifted. These tests show that after signal modifica-
tions of up to 10% (i.e. modification factors between 90 and
110%), the algorithm is still able to identify the correct songs,
albeit with significantly lower accuracy.

3 Method
The effectiveness of the Panako framework for music
identification in movies was analysed in three steps. All
steps made use of a database provided by Muziekweb [14],
consisting of 49 movies and their soundtracks, accompanied
by 500 random tracks. Each step was performed on the
two strategies that Panako has to create a spectrogram, as
introduced in section 2: The Constant-Q transform strategy
(referred to as NCTEQ) and the New Fast Fourier Transform
strategy (referred to as NFFT). These strategies are then
compared on their applicability to movie music identification.

The first step was an internal preliminary study. Six of the
movies in the database were labelled; start and end times,
along with the categories of noise present were annotated.
These clips were then extracted from the movies and queried
using a certain configuration of Panako to evaluate the
performance on actual movie clips.

The second step involved synthesised data. As was
mentioned in the introduction, most audio fingerprinting
algorithms are designed for music, which is mixed and
mastered differently than films. There is very little documen-
tation on the process of film audio mixing and mastering [8],
so the synthesised data created for this test does not span
all signal manipulations that are present in movies. Instead,
the data used for this test consisted of soundtracks layered
with specific types of noise that were found to be common
in movies during the aforementioned preliminary study. For
example, an audio clip of a talking individual was layered
with a song from a movie to see the influence of speech on the
performance of Panako. This layering was done at different
signal-to-noise ratios (SNR). The benchmark consists of
soundtracks layered with noise at SNRs of -6, 0 and 6 dB.
A negative SNR signifies that the noise is louder than the
signal. These aforementioned values therefore specifically
denote that the noise is half as loud, equally as loud and twice
as loud compared to the soundtrack, respectively. For this
test, additional data was generated at an SNR of -9 dB, where
the noise is 2.8 times louder than the soundtrack. In [10], it
is claimed that Panako is resilient against a certain degree of
pitch shifting and tempo change. As a result, this second type
of test also consisted of pitch-shifted and tempo-changed
soundtracks.
This data was first used in this step on the default parameter
settings (i.e. the parameter configurations that are present
when downloading the Panako framework) of Panako,
to see the score of this configuration on the benchmark
criteria. Then, all configurable parameters were investigated
to see if this performance could be improved. Although
the functionality of Panako is described well in the paper,
the same does not hold for the configurable parameters.
There is almost no documentation on the function of these
parameters, nor on suggested value ranges they can be set
to. As a result, a strategy had to be chosen for the parameter
tweaking. The chosen strategy was to double and halve each
parameter value. This was not always possible. For example,
some minimum or maximum values of ranges could not be
doubled or halved, as that would produce an invalid range.

3



Therefore, those parameter modifications were omitted.

As a third and final step, the best configurations found
during the second step were tested, individually and all
combined, on the real movie clips that were also used for the
preliminary study. This was done to see if any improvement
in real movie music identification had been made. The
best performing configuration in that task was then used
to determine the search speed and scalability by querying
subsets of the dataset on 4 different database sizes.

During the second step, the performance of a certain con-
figuration of the Panako framework was analysed using the
benchmark mentioned in the introduction [9]. This bench-
mark uses three criteria for evaluation, which are described
in the next section.

3.1 Criteria
Robustness The Panako framework should be able to iden-
tify the music that is present in a movie, even if there are other
audio signals interfering with it. This criterion is measured
using the metric Recall.

Reliability Reliability has to do with the trust in the cor-
rectness of the algorithm. If it finds a match, how likely is
it to be correct? This criterion is measured using the metric
Precision.

Search speed and scalability This criterion revolves
around the execution time of the algorithm. On average,
how many (milli)seconds does it take the framework to find a
match per query, depending on the size of the database? It is
calculated as the average query time per database size.

4 Experimental Setup and Results
4.1 Setup
The setup for most of the benchmark runs was the same. The
database that Panako uses to match queries to was populated
with 1407 songs. This consists of all the soundtracks that
were available for this research: the 907 soundtracks of the
49 movies in the provided data set and 500 random other
soundtracks.
The test data set was generated as described in [9] and
resulted in 14,014 songs (13,230 songs combined with
some noise and 784 songs that were pitch-shifted or time-
stretched). To run a benchmark on a certain configuration
of the Panako framework, all songs in the dataset were
queried and the output was analysed1. All experiments were
performed using Panako version 1.6.

4.2 Hardware specifications
For the experiments in this research, a laptop was used with
the following specifications: a CPU with 6 cores (12 logical
processors) and 16GB RAM. The laptop is running windows
10. The Panako algorithm was run using WSL2 running the

1 https://gitlab.ewi.tudelft.nl/cse3000/2020-2021/rp-group-5/rp-
group-5-rknair

Ubuntu 20.04 distro. All the data was stored on an external
HDD.

4.3 Results
4.3.1 Preliminary study
The first test that was performed was done using movie clips.
From six movies, clips containing music were manually ex-
tracted. These clips were then queried using the default con-
figuration of Panako, for both the Constant Q and the NFFT
strategy. Both strategies performed very poorly on the movie
clips. Out of 204 clips, the Constant Q strategy was only
able to correctly identify 17 of them. The NFFT strategy per-
formed worse; it did not manage to identify any of the clips.
From this small preliminary study, it seems like the default
configuration of both strategies of Panako are not suitable for
music identification in movies.

4.3.2 Evaluation with synthesised data
First, in order to establish a baseline of the performance of
Panako on the benchmark, the synthesised dataset was tested
using the default Panako configurations for both strategies
(except that the maximum file size was increased, otherwise
most files were too large to be queried). The results of this
test can be seen in Figure 2 and Figure 3.

Contrary to the results on real movie data, Figure 2 shows
that in this controlled setting, the NFFT strategy outperforms
the NCTEQ strategy. Both strategies show high recall, even
at low SNRs. The NCTEQ strategy is slightly higher in recall
than the NFFT strategy for noises layered with soundtracks
at negative SNRs, but has significantly less precision. Even
for higher SNRs, over 40% of the matches it finds are incor-
rect. In contrast, the NFFT strategy rarely returns an incorrect
match. For pitch-shifts, NCTEQ has a significantly higher re-
call, but pays for this in the reliability criterion. Figure 3
shows that the NFFT strategy is unable to find any matches
for tempo-changed tracks. This is expected behaviour, since
it does not perform time alignment on the fingerprints during
the matching phase. As a result, the NCTEQ gives better re-
sults in this category.
The NFFT strategy performs very well on all noise categories
for high SNRs. For lower SNRs, the recall drops the fastest
for the speech categories, sounds of walking on gravel and
dining noises. Out of all the speech categories, the strategy
performs worst on talking for both male and female voices.

4



(a) Recall using the NCTEQ strategy with default settings for all
noises, at different SNRs

(b) Precision using the NCTEQ strategy with default settings for all
noises, at different SNRs

(c) Recall using the NFFT strategy with default settings for all
noises, at different SNRs

(d) Precision using the NFFT strategy with default settings for all
noises, at different SNRs

Figure 2: Recall (left) and Precision (right) against all noises, at different SNRs, for both feature extraction strategies, using default settings.
Explanations about the category codes used can be found in Appendix A, or in [9].

(a) Recall and Precision score for Pitch-shifted tracks using the
NCTEQ strategy with default settings

(b) Recall and Precision score for Tempo-changed tracks using the
NCTEQ strategy with default settings

(c) Recall and Precision for Pitch-shifted tracks using the NFFT
strategy with default settings

(d) Recall and Precision score for Tempo-changed tracks using the
NFFT strategy with default settings

Figure 3: Recall and Precision score for Pitch-shifted (left) and Tempo-changed (right) tracks, for both strategies with default settings. More
explanation about the chosen values for pitch-shifting and tempo changes can be found in [9].

5



Once this baseline was established, all configurable param-
eters were modified. Due to time constraints, a random sub-
sample consisting of 10% of the dataset was used for this test
(i.e. 10% per manipulation category, where the SNR for the
noise categories was either -9 or -6 dB). This subsample was
used for all configurations. The parameters were modified
one at a time. The result of parameter changes for the NCTEQ
strategy can be found in Figure 4. This graph shows that for
the NCTEQ setting, these single changes in parameters can
only result in slight improvements in recall or precision, com-
pared to the default settings. The result of parameter changes
for the NFFT strategy is shown in Figure 5. Here, three pa-
rameter changes result in an improvement in recall of almost
10%, without losing score in precision.

Figure 4: Result of different parameter configurations of Panako on
the benchmark score, using the NCTEQ strategy

Figure 5: Result of different parameter configurations of Panako on
the benchmark score, using the NFFT strategy

4.3.3 Best configurations
For both strategies, the parameter changes that resulted in bet-
ter performance than the default settings were used to query
the real movie clips to see if there was an improvement in

movie music identification. They were all applied individu-
ally and also all together. The results of this can be seen in
Table 1. This table shows that for the NCTEQ strategy, some
configurations that performed better on the synthesised data,
performed worse on movie clips. This suggests that for this
strategy, the noises, pitch shifts and tempo changes that were
explored in this paper are not the barrier when it comes to
movie music identification. For the NFFT strategy, there is a
configuration that can recognize 4 clips as opposed to the 0
matches with the default settings. However, the performance
for both strategies is still very poor, with the best configura-
tion finding less than 10% correct matches.

Strategy Configuration
Number
of correct
matches

NCTEQ

bins per octave=72 8
step size=3072 14
max freq delta=533 11
min freq=1850 20
all combined 11

NFFT

size=1024 0
event point min distance=300 0
max fp per event pnt=4 2
all combined 4

Table 1: Number of correct matches on 204 actual movie clips with
the configurations that showed better performance than default set-
tings, and with all these best parameter settings combined.

The best configuration for each strategy on movie data (i.e.
min freq=1850 for NCTEQ and all combined for NFFT) was
used to determine the final criterion in the benchmark, the
search speed and scalability. This was tested as described
in [9] and the results can be seen in Figure 6. This graph
shows that the NFFT strategy is almost twice as fast com-
pared to the NCTEQ strategy. There is no clear trend as to
how this search speed will change if the database size grows
to more realistic sizes of hundreds of thousands of tracks.
However, for these relatively smaller sizes, the database size
does not appear to be the bottleneck with regard to speed.

Figure 6: Search speed per query, relative to the number of tracks
stored in the database

6



5 Responsible Research
An integral part of scientific research is allowing for repro-
ducibility, so it can be peer-reviewed and checked by indepen-
dent sources to verify the correctness. However, achieving
that task can introduce some challenges. The most important
data used in this research, the soundtracks and movies, were
provided by a music library called Muziekweb and fall under
copyright protection. Thus, this research cannot link directly
to the dataset that was used for evaluation. To combat this,
a spreadsheet was created listing the names of all the movies
that were present in the dataset. This sheet also links to all the
noise files that were layered on top of songs. These noise files
were collected from the site freesound.org and all either have
a CC0 or Attribution license. Furthermore, the scripts that
were used to generate the used dataset from the songs and
noise files have been uploaded to a publicly available repos-
itory, including instructions on how to run them and recreate
the dataset, given that someone has access to the copyrighted
data.

6 Conclusions and Future Work
In this paper, the effectiveness of the Panako framework
in movie music identification has been investigated. The
algorithm was tested on movie clips containing music and
on synthesised data consisting of soundtracks layered with
different noises and soundtracks that were pitch-shifted or
tempo-changed. Using the synthesised data, the impact of
configurable parameters on the performance of the algorithm
was tested. Based on the results achieved with these tests, no
configuration of parameters was found that performed well
in movie music identification, with the best configuration
identifying less than 10% correct matches. However, the
results suggest that within the boundary of the experimental
setup, this is likely not caused by the presence of noise, nor
by a moderate amount of pitch-shifting or tempo-changing.

These results, combined with the limited scope of this re-
search, point to a variety of possible future works. For this re-
search, only a single type of noise was layered with a movie
soundtrack during the evaluation. However, it is very com-
mon in movies to have music combined with multiple differ-
ent sounds playing at once. To get a more representative re-
sult, future research in this area can combine different noises
and see how this impacts the matching capabilities of Panako.
Furthermore, due to time and storage constraints during this
research, the size of the experiments was limited. The Panako
database contained only 1407 songs during the evaluation,
whereas a real music library can have hundreds of thousands
or even millions of records stored. Future research could
study if the conclusions that are drawn in this paper can hold
up in scenarios with more realistic database sizes. Finally, the
scope of this research can be extended. There are many other
techniques that are used in the film mixing and mastering pro-
cess (e.g. equalization, compression, noise reduction) [8]. In
future research, the impact of these techniques on the effec-
tiveness of Panako (or other audio fingerprinting algorithms)
in movie music identification can be investigated.

Acknowledgements
I would like to thank Dr Cynthia Liem and Dr Jaehun Kim
for their help and supervision during this research. Further-
more, I would like to thank Casper Hildebrand, Tim Huisman,
Natália Struharová and Cas Wever, with whom I have written
the paper on the benchmark that is used in this paper [9], for
their support.

References
[1] Shazam website. [Online]. Available: https://www.

shazam.com/
[2] S. A. Cole, “History of fingerprint pattern recognition,”

in Automatic fingerprint recognition systems. Springer,
2004, pp. 1–25.

[3] P. Cano, E. Batlle, T. Kalker, and J. Haitsma, “A re-
view of audio fingerprinting,” Journal of VLSI signal
processing systems for signal, image and video technol-
ogy, vol. 41, no. 3, pp. 271–284, 2005.

[4] J. Haitsma and T. Kalker, “A highly robust audio fin-
gerprinting system,” in Ismir, vol. 2002, 2002, pp. 107–
115.

[5] P. Cano, E. Batlle, E. Gómez, L. de CT Gomes, and
M. Bonnet, “Audio fingerprinting: concepts and appli-
cations,” in Computational intelligence for modelling
and prediction. Springer, 2005, pp. 233–245.

[6] T. Pham, M. Giamou, and G. Penn, “An empirical com-
parison of three audio fingerprinting methods in music
and feature-length film,” Canadian Acoustics, vol. 40,
no. 3, pp. 92–93, 2012.

[7] M. Chikanbanjar, “Comparative analysis between audio
fingerprinting algorithms.”

[8] G. Wikhede, “A comparison of music mastering and
film final mixing: How to enhance the listener’s experi-
ence,” 2014.

[9] C. Hildebrand, T. Huisman, R. Nair, N. Struharov’a,
and C. Wever, “Benchmarking audio fingerprinting
implementations for music identification in movies,”
2021. [Online]. Available: https://bit.ly/3wYz9ZF

[10] J. Six and M. Leman, “Panako: a scalable acoustic fin-
gerprinting system handling time-scale and pitch modi-
fication,” in 15th International Society for Music Infor-
mation Retrieval Conference (ISMIR-2014), 2014.

[11] A. Wang et al., “An industrial strength audio search al-
gorithm.” in Ismir, vol. 2003. Citeseer, 2003, pp. 7–13.

[12] A. Arzt, S. Böck, and G. Widmer, “Fast identification of
piece and score position via symbolic fingerprinting.” in
ISMIR. Citeseer, 2012, pp. 433–438.

[13] S. Fenet, G. Richard, Y. Grenier et al., “A scalable audio
fingerprint method with robustness to pitch-shifting.” in
ISMIR, 2011, pp. 121–126.

[14] Muziekweb website. [Online]. Available: https://www.
muziekweb.nl

7

https://www.shazam.com/
https://www.shazam.com/
https://bit.ly/3wYz9ZF
https://www.muziekweb.nl
https://www.muziekweb.nl


A Appendix

Noise
abbre-
viation

Description

AD Ambient Dining: recording of sounds that can
be heard in a restaurant setting

AS Ambient Street: recording of sounds that can be
heard standing in a city, besides a road

NR Nature Rain
NT Nature Thunder

NWR Nature Water River: the sound of water flowing
in a river

SCH Speech Cheering: Sound of people cheering
SFS Speech, Female Shouting
SFT Speech, Female Talking
SFW Speech, Female Whispering
SMS Speech, Male Shouting
SMT Speech, Male Talking
SMW Speech, Male Whispering

TG Terrain Gravel: Sound of walking over a gravel
surface

TW Terrain Wood: Sound of wood creaking
PS Pitch-Shift, measured in semitones
TC Tempo Change: the factor of time scaling

Table 2: Description of noise abbreviations used in result graphs

8


	Introduction
	Panako
	Method
	Criteria

	Experimental Setup and Results
	Setup
	Hardware specifications
	Results
	Preliminary study
	Evaluation with synthesised data
	Best configurations


	Responsible Research
	Conclusions and Future Work
	Appendix

