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Abstract

Nowadays, we live in an era where high performance is in particular demand in
a very broad variety of fields. For fulfilling these needs there is, a large selection
of high performance computing platforms exists. These platforms vary in terms of
architecture as well as their flexibility in terms of programming and programming
models. Therefore, programmers need to be able qualify their needs and align them
to the corresponding platform and tools.

Computational finance is an area where being able to adapt to the constantly in-
creasing amount of data, as well as reducing simulation times is a primary concern.
Many computational finance applications, such as option pricing, algorithmic high
frequency trading and risk management have their own HPC requirements.

In this thesis, we investigate the computational requirements of a scenario based
ALM application, which is part of a commercial product offered by Ortec-Finance.
Also, we propose a novel OpenCL implementation, optimized for the Intel Xeon
Phi co-processor. Further, we evaluate the performance portability of the proposed
solution to other platforms such as a high-end CPU and an NVIDIA GPU.

In general, with deploying simple optimization techniques we manage to achieve
a speed-up up to 150x for Intel Xeon Phi, compared with the initial sequential im-
plementation. Also, we prove that for our application, OpenCL yields significantly
improved results in comparison with OpenMP on the Phi. In addition, we show
that by following basic optimization guidelines, a certain level of performance can
be preserved among different platforms (CPU, GPU, and Phi). Overall, our results
show that our OpenCL ALM implementation is suitable for multiple accelerators,
and it promises to yield significant performance improvements compared with cur-
rent state-of-the-art implementations.
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Chapter 1

Introduction

1.1 Context

Nowadays, multicore processors1 can be found in the majority of computing sys-
tems around us. This trend exposes users and developers to an extreme amount
of computational power. Despite all this computational power broadly available,
from smartphones to servers, harvesting its full potential is still a very challen-
ging process. Multicores may seem the next step for increasing the performance
of applications with different characteristics, but moving away from the traditional
sequential paradigm comes at a cost. This cost is associated with the increasing
amount of different parallel programming paradigms, as well as the availability
of multicore platforms with diverse architectural features. For example, there are
platforms with a few powerful processing units, but also other platforms with thou-
sands of less powerful processing units. Thus matching the right platform and
programming model with the given application becomes a very challenging task.

Until recently, a gap existed between multicore platforms and programming
models. OpenCL, a fairly new solution, promises to close this gap. OpenCL is
a parallel programming model, targeting multicore platforms. It main advantage
is functional portability. That means, applications developed and tested on one
machine, can be easily ported to another. This portability, as many other technolo-
gies under development, comes at a cost: the performance of a portable OpenCL
implementation may experience severe fluctuations from platform to platform.

The range of domains which benefit from all these HPC developments is quite
extended. Fields of research such as physics, computer science, engineering and
finance widely adopt multicores for their day to day processes. This approach
allows them to innovate and enhance the quality of applications, products, and
services they offer. Therefore, multicores are becoming essential for the fast devel-
opment of all these fields.

Computational finance is one of the fields where high performance computing
is in high demand to enable the use of the increasing amounts of data available.

1Across this thesis, we often use ”multicore” as a shorter name for ”multicore processor”.
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Also, as a very challenging area of business at the moment, computational finance
has a lot of opportunities for cutting edge research. There is a clear need for better
models that need to provide more simulations and comply with the continuously
changing rules and regulations. In fact, recent statistics hve shown that the 10%
of the of the TOP500 supercomputers are being used for computational finance
applications[17].

According to the current trends, computational finance covers three main areas
of interest: option pricing that targets organizations such as investment banks, high-
frequency algorithmic trading for hedge funds, and actuarial science aiming to
pension funds and insurance industry.

Scenario-based Asset Liability Management is related with risk and wealth man-
agement. Scenario-based ALM is a big part of a successful commercial product
offered by Ortec-Finance. Ortec-Finance is the main collaborator of this project
and is involved with financial consulting for pension funds. Ortec-Finance iden-
tifies an increased need for the ALM model to be able to perform much faster
evaluations, along with an increasing number of economy trajectories and fiscal
decisions. Therefore, they are extremely interested in using the most modern tech-
nologies and methods to improve the performance of their products in general, and
of this specific kernel in particular.

Therefore, in this thesis, we investigate the suitability of multicore platforms for
financial simulations such as the scenario-based ALM. Our research focuses on ex-
tracting a realistic test case, analyzing it, producing a novel OpenCL solution, and
eventually increasing the number of simulated scenarios while decreasing simula-
tion time. Also, we explore the performance portability of our proposed solution
among different platforms.

1.2 Research Question

This research is set in the context of high performance computational finance. It
is a complex investigation combining scenario-based ALM, multiple types of mul-
ticore processing units, different programming models, all in the search for the
right solution for Ortec’s speed requirements. Therefore, our main research ques-
tion is:

Is OpenCL a suitable programming model for high performance computational
finance on modern multicore processors?
We tackle this question by answering the following subquestions:

• What is a good example of a computational finance kernel that requires
HPC?

• Can we propose a novel OpenCL implementation of the selected kernel?

• What are the optimization strategies for the proposed OpenCL solution which
can improve the performance on the Intel Xeon Phi co-processor?
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• How portable is the proposed OpenCL solution among different platforms
of different vendors?

1.3 Contributions

The main contributions of this thesis are the following:

• We survey the current trends in terms of modern multicore platforms and
programming models.

• We extract a case study model from a commercial product for financial mod-
elling offered by Ortec-Finance.

• We explore the potential of Intel Xeon Phi co-processor for computational
finance applications.

• We propose a novel OpenCL implementation of our representative kernel
and we analyze its performance in detail.

• We investigate and asses the performance portability of the proposed OpenCL
solution on other platforms.

1.4 Thesis Organization

This thesis is organized as follows.
Chapter 1 provided the necessary information regarding the broader context, the

main research questions and contributions of this thesis.
Chapter 2 presents the basic background information required to understand our

research. We discuss the current trends for multicore systems and their distinct
characteristics in terms of programmability and architectural design. Then, the
different parallel programming models such as OpenCl, CUDA and OpenMP are
presented. Finally, a short introduction to the main field of computational finance
and its main applications such as risk management, high frequency algorithmic
trading and option pricing are presented.

In Chapter 3 we introduce the related work relevant to this thesis. We present re-
lated work on the trends of HPC for computational finance simulations - including
options pricing, actuarial science and specific accelerations of ALM simulations.
We also discuss work related to the utilization of NVDIA GPUs, as well as work
based on accelerating applications with Intel Xeon Phi and OpenCL. Finally, we
present work that studies OpenCL’s performance portability.

Chapter 4 presents our experimental setup, i.e., platforms, compilers and tools
used for this project, as well as all the performance metrics used for evaluating
performance.
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Chapter 5 contains all the analysis of ALM, the computational finance kernel
we selected for acceleration, along with its computational requirements and char-
acteristics. Also, the parallel OpenCL implementation is discussed, including the
different optimizations that were used. Finally, all performance results are ana-
lyzed.

Chapter 6 analyzes the performance portability of the solution proposed in Chapter
5. Portability is evaluated on three different platforms, and our analysis focuses on
the main application and platform characteristics that preserve a certain level of
performance portability.

Finally, Chapter 7 concludes this thesis summarizing our main findings and sug-
gestions for future work.
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Chapter 2

Background

In this chapter we briefly present the main concepts needed to understand our re-
search.

2.1 Concepts in Parallel Computing

This section presents several basic concepts in parallel computing: Amdahal’s law
Also: Flynn’s taxonomy of parallel machines, levels of parallelism and models of
parallel computation.

2.1.1 Amdahal’s Law

Parallelization of applications may lead to potential bottlenecks. Thus, in 1967,
Gene Amdahl, stated that the gain of sequential application parallelized in multiple
processors is bounded by the fraction of code which runs sequentially[3]. This
finding is widely known as Amdahl’s Law.

Amdahl’s law is captured by equation 2.1, where s is the sequential part of the
program and 1-s the part of the code which can be easily mapped in parallel. Even-
tually, S is the potential spee up in P processors.

S(P ) =
1

s+ 1−s
P

(2.1)

Today Amdahl’s law is still one of the most critical means to measure the poten-
tial performance gains. Therefore, there are several papers introducing enhance-
ments and revisions on the original law. Such a revision is introduced by J. Gusta-
fon, which added the enhancement of scalable sized model to Amdhal’s law[21].

2.1.2 Flynn’s Taxonomy of Parallel Machines

Based on Flynn’s taxonomy introduced in 1966[15], computer architectures can be
classified regarding the instruction of data streams available by the processor. This
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classification proved for be crucial on the development of multiprocessing CPUs
and parallel programming. Themain categories (also see Table 2.1) are:

• SISD A standard uniprocessor with no parallelism exploited; a single in-
struction executes on data stored on a single memory location.

• SIMD A multiprocessing architecture for which a single instruction executes
over multiple data in the same time.

• MISD An architecture in which multiple instructions operate on the same
data memory location.

• MIMD An architecture in which multiple autonomous processors execute
different instructions on different data.

Table 2.1: Flynn’s Taxonomy for Parallel Machines

Flynn’s Taxonomy
Single Instruction Multiple Instructions

Single Data SISD MISD
Multiple Data SIMD MIMD

2.1.3 Levels of Parallelism in Software

Three levels of parallelism that can be exploited in applications are presented in
this section.

Instruction-level Parallelism

Instruction-level parallelism allows more than one instruction of the same data
stream to be executed during a single clock cycle. Usually, ILP is exploited by the
hardware or the compiler, but it is often hindered by data dependencies or control
dependencies.

Task-level Parallelism

Task-level parallelism can be instructed by the compiler or the end user and is
managed through the compiler and the hardware. It allows multiple threads or
instructions from the same application to be executed in parallel, but it can be
limited by synchronization overhead among the threads[52].

Data-level Parallelism

There are lot of applications where the same operations are applied to different data
items. If there are no any dependencies between data elements, these operations
can be performed independently among different processing units in parallel. This
approach is commonly known as data parallelism.
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2.2 High Performance Computing Platforms

Nowadays, there is a very large variety on hardware platforms, targeting applica-
tions with diverse characteristics. Choosing the appropriate platform for develop-
ing an application involves a combination of different factors such as the applica-
tion characteristics and the required performance in terms of power consumption
or potential speedups. Thus, for fulfilling these requirements, a deep understanding
of the key features of each possible platform is needed.

Four platforms of diverse characteristics are presented in this section: general
purpose processors (GPPs), co-processors, general purpose graphic processor units
(GPGPUs) and field programmable arrays (FPGA). Also, for each category, a cut-
ting edge platform is discussed in-depth along with its unique features in terms of
architecture and microarchitecture.

As Intel Xeon Phi consists the main development platform for this project, we
take a look in its history, the upcoming new architecture and the main differences
with the 1st generation of co-processors that are currently available for commercial
use.

2.2.1 General Purpose Processors (GPP)

General purpose processors can be found in many different machines such as serv-
ers, laptops and desktops. Usually these processors are designed to serve most
workloads with good performance and average power consumptions. Today, the
majority of these processors contain several cores and even integrated graphics.
Other specific characteristics of GPPs are high clock frequencies, high power con-
sumption, shared memory hierarchy and multi-level caching.

An example of such a processor is the Intel Xeon CPU family which offers up
to 18 cores on a single chip, along with clock frequencies up to 4.4GHz[28].

The majority of the semiconductor vendors offering products that fall in this
group are: Intel, Apple, AMD, IBM, ARM and Imagination Technologies.

Intel Skylake Microarchitecture

Intel Skylake is the latest generation of GPPs offered by Intel [2][27], its suc-
cessor is going to be Kaby Lake coming in the end of 2016. Intel produces dif-
ferent products based on the Skylake architecture, targeting applications based on
desktop, mobile client systems and server workstation systems.

Skylake based products are built with Intels 14 nm manufacturing process. These
processors usually offer from two up to eighteen physical cores for the Xeon fam-
ily. In addition, some of these cores are enhanced with the Hyper Threading tech-
nology (HT), which allows each physical core to be recognized as two logical
cores. This enhancement increases significantly the parallel processing power
of these products as more elements are able to be processed in parallel on each
core. An overview of the Skylake microarchitecute is illustrated in Figure 2.1.
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Figure 2.1: Intel Skylake microar-
chitecute overview [24]

Skylake offers three levels of cach-
ing. These levels correspond to an
L1 of 64KB per core, L2 of 256
KB per core and 8192 KB of shared
L3 memory. Skylake fully sup-
ports instruction sets like MMX and
FMA3. In addition, it contains all the
latest instruction set extensions such
as SSE4.2, AVX, AVX-512, VT-x and
MPX. Therefore, SIMD operations be-
came more efficient and flexible with
Skylake.

Another important aspect of Skylake
is that, like its predecessor(Haswell),
contains an Integrated Graphics Accel-
erator unit. These units vary in fea-
tures depending on the product. For
example, Iris Pro Graphics 580 is
the high-end model with peak floating
point performance of 1152 GFLOPS
and 1GHz clock frequency.

A product from the Skylake family
relative to this project is the Intel Xeon
E3 V5-1230 without integrated graph-

ics available. The processor has a CPU clock frequency of 3.4 GHz, 4 physical
cores, Intel Hyper Threading technology available so 8 logical cores, and a peak
floating point performance of 130 GFLOPS. Moreover, the chip has a peak band-
width of 34.1GB/s. Also, based on the specifications provided by the chip manu-
factures, its power consumption is 80W.

2.2.2 General Purpose Graphics Processing Units (GPGPUs)

The continued demand for rendering high quality graphics made the field of Gen-
eral Purpose Graphics Processing Processing Units (GPUs) evolve at a very fast
pace. In addition, the evolution of the multi-billion gaming industry, where real
time high quality graphics are need, has lead to a lot of cutting edge research on
GPUs. As a result, GPUs are now capable of running thousands of threads over
hundreds of physical cores.

The breakthrough in this field was the extension of GPUs to be enabled as fully
programmable hardware. The support of floating operations, the ability of hand-
ling parallel computational problems and the continuous interest made GPUs HPC
target for a large group of applications.

Nowadays, several different vendors offer GPUs as either integrated graphics
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solutions or accelerators. Examples are Intels processors with integrated Iris HD
graphics and ARM’s Mali T60x architecture. The main vendors providing GPUs
are NVIDIA, AMD, Intel, ARM, Imagination Technologies and Qualcomm.

Figure 2.2: The NVIDIA GeForece Titan-X Maxwell architecture [9]

GeForce GTX TITAN X

Titan X uses the 28nm Maxwell architecture on a 551 mm chip[9]. Also, Titan
X contains 3072 CUDA cores and 24 streaming multiprocessors, organized in 192
texture units grouped into six Graphics Processing Clusters (GPCs). Its base clock
is at 1000MHz and the memory clock is at 3505MHz. In addition, Titan X can offer
a theoretical peak of 6.2 TFLOPS with 12 GB of GDDR5 RAM and a bandwidth
of 336GB/s. In terms of power consumption, the card can consume 275W through
an 8-pin and a 6-pin power connection. Moreover, Titan X has a memory width
of 384-bit and an L2 cache of 3MB. Therefore, it keeps a 32K:1 cache:ROP ratio
for the Maxwell 2 architecture, which allows the GPU to more cache before try to
keep operations of the memory bus. The card can be connected on a PCI Express
3.0 slot.

As it can be seen on Figure 2.2 in terms of architecture, there are six GPCs,
which group smaller number of streaming multiprocessors together. Each SMM
(Maxwell Streaming Multiprocessor) is a group of 128 CUDA cores, 8 TMUs (Tex-
ture Mapping Units), L1 caches, schedulers and dispatchers. Moreover, there are
96 ROPs (Raster Operations Pipeline) enabling the processing of 96 color samples.
Finally, a 64-bit wide memory controller for each cluster can be found.

9



2.2.3 Co-Processors: Intel Xeon Phi

Accelerators are used to accelerate parts of the main application. Their very basic
nature is to execute tasks in a way such that the main processor doesn’t take part
in the computation. Thus, the main outcome is that CPU can save time and power
by offloading specialized tasks to specialized processing units. For example, GPUs
started as accelerators for rendering complex graphics but, nowadays, they are used
as accelerators for many HPC applications[13].

Figure 2.3: Share of TOP500 supercomputers using accelerators/co-processors
[13]

As it can be seen on Figure 2.3, the share of systems which use accelerators on
the TOP500 list is constantly increasing with an encouraging rate. It can be noted
that in a of four years period the use of accelerators increased from 4% to 18%. In
addition, it’s worth mentioning that in June of 2015 the number one supercomputer
(Tianhe-2) on the same list, was equipped with Intel Xeon Phi co-processors.

Table 2.2: Co-processors/Accelerators used by the TOP500[13]

Co-processors/Accelerators
Vendor Model

Intel Xeon Phi
NVIDIA Tesla K20, K40, K80

AMD FirePro S9150, S9050

Table 2.2 represents the main providers of co-processors and some indications
on specific models. Each of these vendors provide their own support in terms of
SDKs, compilers and debugging environments. In addition, they have their own
programming constructs for their specific hardware. For example, NVIDIA offers
CUDA while Intel offers TBB and Cilk Plus. On the other hand, OpenCL provides
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a common ground between the different vendors. For the needs of this project,
initially we concentrate on Intel Xeon Phi. Therefore, a more in depth description
of this specific co-processor follows.

Intel Xeon Phi Co-Processor

In this section a small introduction to Intel Xeon Phi coprocessor is presented,
including information regarding the early stages of MIC architecture as well as the
current Intel trends is provided.

History

Back in 2006, Intel unveiled the Tera-scale Computing Research which aimed to
scale processors from few cores to many. A year later Larrabee was introduced, as
an early GPGPU prototype based on x86 cores, only to be discontinued in 2010.

Table 2.3: Intel Milestones on MIC development

Project Year Description
TRP 2006 Terra-Scale Research Processor
Larrabee 2007 GPGPU prototype
Knights Ferry 2010 MIC prototype
Knights Corner 2013 1st Generation Xeon Phi
Knights Landing 2015 2nd Generation Xeon Phi
Knights Hill 2017 3rd Generation Xeon Phi

In 2010 Intel introduced the Knights Ferry, which was Intel’s first attempt to
enter the high performance computing accelerators market. Knights Ferry is con-
sidered as a baseline design for the Xeon Phi era and was succeeded by the Knights
Corner in 2011. Knights Corner features more cores, more memory and a peak
performance that reached one teraflop. Since, 2014 Intel has announced the latest
addition to the Xeon Phi family which is named Knights Landing. Commercial
distribution started in summer of 2016.

Knights Corner is Intel’s 1st generation of Intel Xeon Phi co-processors [25].

With Knights Corner, Intel intended to enter the market with the 1st generation of
Xeon Phi co-processors for commercial use.

Intel Xeon Phi [25, 31] contains 57 to 61 cores, depending on the supplied
model. As it can be seen in Figure 2.5, these homogeneous cores are connected
together through a high speed bidirectional ring. Also, one of the unique charac-
teristics of the MIC design, is that these cores are based on the 1995s Intel P54C
Pentium architecture. Although, this traditional design is enhanced and upgraded
with 64-bit instructions and 512-bit vector instructions. In terms of caching, Phi has
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Figure 2.5: Microarchitecture of 1st generation Intel Xeon Phi

two levels of cache hierarchy: L1 cache has 32KB available for data and another
32KB for instructions, along with 512KB L2 cache dedicated for every core[14].
In terms, of floating point performance, the Phi can provide up to 2100GFLOPs
and 1100GFLOPs, for single and double precision operations, respectively. The
Intel Xeon Phi co-processor runs under a Linux based micro-OS.

Figure 2.4: Single core configuration for
Intel Xeon Phi

It is worth to mention two main
components of the Intel Xeon Phi co-
processors. Firstly, the fact that single
core design is based on the P54C Intel
architecture. Thus, the cores cannot be
clocked on the current higher frequen-
cies. Therefore, as a result Xeon Phis
single core performance is lacking sig-
nificantly in comparison to to any state
of the art modern CPU. On the other
hand, the support of up to four threads
per core has proved to be helpful for its
performance[13]. Although, attention
needs to be paid as instructions cannot
be issued from the same thread con-
sequently in the same FU and so, al-
ways at least two threads per core need
to be active at all times.

For flexibility on the development
of applications, Intel Xeon Phi sup-
ports two execution modes. In native
mode, compilation only occurs in the

12



co-processor and then the execution of application is completely performed on the
Phi. On the other hand, applications can run either in native or in offload mode.
This, offloading mode is supported by multiple paradigms like OpenMP, MPI and
OpenCL, while allows only the computationally intensive parts of an application
to be executed on the device rather than the compiler kernel.

Knights Landing is Intel’s 2nd generation of Intel Xeon Phi co-processors1[5][6]

Knights Landing is the successor of KNC design while uses the latest technolo-
gies to increase efficiency and performance. In more detail, KNL is manufactured
with the 14nm process technology and features up to 72 cores. In addition, for
the first time 16GB of on-chip Multi-Channel DRAM (MCDRAM) are available
which lead up to five times higher bandwidth compared to KNC. Also, with the
72 cores enabled, the processing capabilities can reach 32 FP64 FLOPs/core by
using 2 AVX-512 vector units per core. Knights Landing replaced the on-die high
speed ring interconnection with mesh. This modification allowed higher bandwidth
between cores and memory.

Figure 2.6: Intel Xeon Phi: KNL architectute
overview [38]

For the KNL, Intel decided to
introduce the concept of tiles.
Tiles as can be seen in Figure
2.6 correspond to pairs of cores
that are sharing 1MB of L1 cache.
This alteration on the design can
be beneficial as even with min-
imum data sharing between the
cores, it is more likely to have
instruction sharing. In addition,
the number of elements is reduced
(from 72 to 31 pairs) which po-
tentially leads to higher bandwidth
and lower latency. A more detailed
view of the KNL architecture is
represented in Figure 2.6, were all
relationships between tiles, DDR4
memory, MCDRAM and PCIe3
are represented.

2.3 Parallel Programming Models

Nowadays, a variety of parallel programming models and tools exist. This group of
languages and tools provide enough flexibility for the user to exploit specific hard-
ware characteristics and parallelism present in an application. For this reason, a

1Expected to launch in the third quarter of 2016

13



section containing information regarding the key features of such programming ap-
proaches follows. Open Computing Language (OpenCL), Compute Unified Device
Architecture (CUDA), Message Passing Interface (MPI) and Open Multi-Processing
(OpenMP) are discussed.

2.3.1 OpenCL

OpenCL stands for Open Computing Language, which is a programming model
targeting, emerged through the need for portable solutions in the multicore era.
OpenCL was launched in 2008, and in 2016 it has reached version 2.2. Currently,
OpenCL it’s supported on a very broad variety of devices of different vendors such
as CPUs, FPGAs, GPUs as well as co-processors like the Intel Xeon Phi and the
Cell/B.E[20].

In Figure 2.9, an overview of the OpenCL host-device architecture is illustrated.
The host device is responsible for performing the communication and manages the
different Compute Devices available. These devices can be a combination of dif-
ferent platforms such as CPUs and GPUs. Thus, OpenCL enables a certain level of
heterogeneity for the overall system. Also, these Compute Devices offer a number
of Compute Units, which usually are a number of homogeneous cores. Finally,
these Compute Units contain Processing Elements, responsible for the execution
of OpenCL kernels.

Figure 2.7: OpenCL Host-Device architecture [20]

OpenCL uses its own terminology, similar to the way CUDA does (Section
2.3.2). Thus, in extension of OpenCL functionality, Processing elements are mapped
to work-items, while Processing Units are mapped to work-groups. Therefore, an
instance of the OpenCL compute kernel is executed by every Processing Element
present in a Processing Unit.

Memory in OpenCL is divided into two disjoint regions: the host memory and
the device memory. The host memory which the memory available in the main host
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and its behavior is out of the scope of the OpenCL and the device memory which
is available by the OpenCL compute kernels. The device memory is grouped into
four main parts: These parts are the global memory, the constant memory, the local
memory and the private memory. The hierarchy of these different memory regions
is illustrated in Figure 2.8.

Figure 2.8: OpenCL device memory hierarchy[46]

In an era of heterogeneous code deployment, OpenCL offers the great advantage
of functional portability. However, even with application being able to compile
and run properly on platforms of different vendors, performance is not far from
portable. In order to guarantee performance portability, individual optimizations
need be performed for every platform[58].

2.3.2 CUDA

CUDA is a parallel computing platform and application programming interface
(API), introduced by NVDIA in order to allow its graphics processor units to per-
form general purpose computing tasks. The initial release was on the June 23rd,
2017 for version for the compute capabilities, while currently NVIDIA just intro-
duced compute capability 6.0 along with its latest architecture (Pascal).

CUDA works in the same host-device manner like OpenCL, where the CPU is
responsible for all the communication and data transfers. On the other hand, on
the device side, there can be more than one NVIDIA GPU devices available. Any
computationally intensive parts of a program are mapped to the GPU with the form
of a kernel. This so called kernel, is executed on the device side, which parallelizes
its task among thousands of active threads. CUDA partitions GPU jobs in terms
of threads. Threads usually grouped in the following way: threads forming blocks
and blocks forming the grid. The grid of threads can have up to three dimensions
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(instead of two for previous versions), 1024 maximum block dimensions for x/y
and 64 for z.

CUDA compared to other parallel programming paradigms, CUDA incorporates
several advantages. Firstly, it allows scatter reads with code, able to be to fetched
from different addresses in memory. Also, the latest compute capabilities from 4.0
and 6.0, allow unified virtual memory and unified memory respectively. Finally,
CUDA delivers fast access on shared memory among threads, which can allow bet-
ter caching and allows a certain degree of freedom for the user. On the other hand,
CUDA has some serious limitations. For example, CUDA code is only enabled on
NVIDIA GPU platforms, unlike its alternative, OpenCL.

Figure 2.9: OpenCL Host-Device architecture [20]

In conclusion, CUDA constitutes a very accessible solution for writing paral-
lel code for the average software engineer. Although, to be able to optimize and
map code to hardware in such way that going to fully exploit its capabilities, needs
understanding of the tools available and the specific architectural traits of the plat-
forms is needed. Last but not least, CUDA through its libraries provides an extens-
ive collection of optimized kernels and complementary libraries.

2.3.3 OpenMP

OpenMP which stands for Open Multi-Processing was introduced in 1997 by the
Architecture Review Board(ARB). OpenMP is an application programming inter-
face (API)[12]. Which supports different programming languages such as C, C++
and FORTRAN. OpenMP focuses on shared memory parallelism through multi-
threading. Parallelism is achieved with the use of compiler directives, library
routines or environmental variables. Threads are being spawned and run concur-
rently on different cores.
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Figure 2.10: OpenMP example representation of multithreading with master thread
forks off a number of threads [67]

OpenMP uses a fork-join model, in which a master thread forks. OpenMP is
linked to a master thread which forks a number of slave threads. Then, these
threads are assigned with specific tasks that are executed concurrently. This be-
haviour is illustrated in Figure 2.10. Threads are allocated based on usage, load or
any other factor specified.

2.3.4 MPI

Message Passing Interface (MPI) is addresses the message-passing parallel pro-
gramming paradigm, where multiple processes run concurrently and explicitly
collaborate and communicate by exchanging messages.[16]. Currently MPI syn-
tax and semantics are available for programming languages such as FORTRAN,
C\C++ and Java.

MPI widely used for programming distributed memory computers. MPI is widely
used to implement parallel applications for distributed memory machines. Due to
its huge popularity, a lot of legacy MPI code exists. With the emergence of many-
core systems with distributed (on-chip) memories, using MPI on-chip is an inter-
esting attempt to provide high performance for many-cores like Intel Xeon Phi.
Even with MPI standard introduced in 1992, currently the latest release is MPI-3.1
which was released in June of 2015[1].

MPI provides a large selection of collective communication routines. The struc-
ture of four of these routines is illustrated in Figure 2.11. These routines are scatter,
gather, broadcast and reduction.

In the early stages of development, until the 1990s, MPI targeted distributes
memory architectures. Eventually, as architecture trends shifted towards shared
memory and distributed systems , MPI adapted in order to embed for functionality
for the new designs. These adaptions lead on the current MPI state to be able to
handle equally Distributed Memory, Shared Memory and Hybrid systems.
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Figure 2.11: Types of collective communication routines [8]

2.4 Computational Finance Simulations

2.4.1 What is Computational Finance?

Computational finance is a domain which brings together computer science, math-
ematics and finance. In this domain, computationally intensive financial problems
attempt to utilize computing systems to improve models and computations. This
is achieved by practical numerical methods and techniques for analyzing econom-
ical trade-offs. This approach leads to a rather broad spectrum of applications, all
requiring HPC capabilities. Also, almost 10% of the TOP500 supercomputers, are
dedicated for computational finance purposes[17].

Core research in computational finance covers three main areas: option pricing
that targets organizations such as investment banks, high-frequency algorithmic
trading for hedge funds and actuarial science aimed towards pension funds, and
the insurance industry.

2.4.2 Option Pricing

Options are means which can be used to harvest information emerging from stock
movements. Options are formed from the underlying assets. These underlying
assets usually take the form of a stock. Thus, the main difference with traditional
investment approaches as stocks, is that stocks inherit their values.

These instruments i.e., the options, can be obtained by different means. Usu-
ally, these option contracts, provide purchasers or holders with a number of rights.
These rights give permission but not the obligation to them for buying stocks with
a given value for specific time period. The given value is called strike value while
the time period is called expiration date. In the same manner, holders can trade
their options in the pre-negotiated value up to a specific date[42].

There is a large selection of methods for option pricing. These methods are
roughly 60% based on Montecarlo approaches, 30% based on PDEs and the final
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10% is based on other semi analytic methods such as BlackScholes models.

2.4.3 High Frequency Algorithmic Trading

High Frequency Algorithmic trading is a computer based technique for performing
buy and sell operations. These operations usually work with financial instruments
such as bonds, stocks or options.

Stock market exchanges are highlighted by the tremendous demand for high
speed calculations. The introduction of data feeds almost thirty years ago, initiated
a new era of high frequency trading. Data feeds are constantly updated, while
the stock market is open. These updates are regarding information based on the
rates of ordered, canceled and executed stocks. Traders have live access to this
information and they are responsible on take action on buy or sell. Also, responses
to market events like currency exchange values, buy/sell of big companies or any
other significant event, needs to be done in microseconds in order to achieve the
best prices. TWith today’s explosion of data, sophisticated computing systems are
used to perform these actions[50][56].

2.4.4 Risk Management and Asset Lialability Management

Usually, financial decisions are accompanied by a specific strategy. These strategies
are optimized with risk-return trade-off in mind. One needs to ensure that imple-
mentation, following the strategy and all its processes can be effectively tracked.
Thus, as Ortec-Finance stated in[55], ”Risk Management is defined as the process
of tracking risks that are related to the above-mentioned process, taking control
actions at times when expected or unexpected events appear.” Thus, for individual
investors or larger organizations, effective risk management is in particular de-
mand, in order to achieve their goals and minimize the exposure to untolerated
risks.

Asset Liability Management (ALM) emerges from a combination of risk man-
agement and strategic planning, for the long term scope. ALM policies are highly
correlated with being able to draw meaningful insights for optimum asset and li-
ability assessment. While, setting potential goals, these goals may differ up to a
certain degree in order to comply with economic anomalies or different fiscal de-
cisions. Usually, there is a very broad range of financial instruments of assets and
liabilities. For example, loans, mortgages, bonds, stocks and equities, all consist
assets. An example of a Risk Management lifecycle process is illustrated in Figure
2.12. On the other hand, deposits, foreign currency and borrowings are liabilities
as they contain a certain amount of risk. Overall, ALM’s ultimate goal is to allow
for the investor to monitor the potential risk for a number of portfolios. These risks
not only need to be handled in an optimum way, but also need to yield a decent
amount on returns and earnings.

Insurance companies are main beneficiaries of ALM. Insurance companies, as
they are always in need of accurate information regarding the potential risk(s) to
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Figure 2.12: Risk Management Process [55]

make valuable decisions. Therefore, Ortec-Finance is a main application provider
for such companies with a variety of applications, using sophisticated models.
Those applications provide simulation frameworks, able to adapt and predict to
rapid financial needs and changes. Thus, these frameworks tend to answer ques-
tions such as which strategy is optimal in terms of investment and interest rate
policy or what impact should we expect for profitability and capital[47].
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Chapter 3

Related Work

This section contains relevant related work for this project. First, we present a
review on the high performance computing trends in the finance sector, including
work on option pricing, risk management, actuarial science and financial applica-
tions using NVIDIA GPUs. Further, we discuss literature related to applications
targeting the Intel Xeon Phi co-processor. Finally, we discuss related work in the
area of OpenCL performance portability.

3.1 High Performance Computing in Finance

3.1.1 Option Pricing

Option pricing is the dominant area of HPC implementations in computational fin-
ance. This area deploys the largest number of computers, research and funds for
potential research. One of the many reasons why option pricing is such a popular
candidate for accelerations is the nature of the underlying models that are used[11].
For example, typical option pricing applications are Monte-Carlo, making them
embarrassingly parallel and therefore suitable for GPU acceleration. Other ap-
proaches are PDE based, so GPUs are again a very convenient choice due to the
amount of parallelism that can be exploited.

In Analysis and Optimization of Financial Analytics Benchmark on Modern
Multi- and Many-core IA-Based Architectures[60] , Intel Xeon and Intel Xeon
Phi architectures where tested for their suitability on derivative pricing methods.
Different pricing methods such as analytical, lattice, Finite-Difference and Monte-
Carlo were used. Each of these bases offered a broad variety of pricing such as
Black-Scholes, Binomial, Crank-Nicolson and standard MCs in order to test the
potential capabilities of both platforms. Their findings show that properly optim-
ized compute bounded kernels on the Intel Xeon Phi can achieve 2.5x speedup,
while bandwidth bounded kernels can achieve 2x speedup. Moreover, it was iden-
tified that the Ninja performance gap1 between compiler optimizations and more

1Ninja performance gap is the difference in performance between naive and optimized imple-
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deep algorithmic alternations, is 1.9x and 4x for Xeon and Xeon Phi architectures
respectively.

Most research in HPC for option pricing has focused on using GPUs. The work
presented in [41], consists of a solid example in the research carried out in this
area. The constant maturity swap (CMS) derivative option algorithm was chosen.
Their main focus was on fast accurate double precision normal distribution, par-
allel grid search algorithm for calculating implied volatility and an optimised data
and instruction workflow. Findings showed that when compared to a sequential
CPU approach, the run time performance improved to a factor of 10x when using
NVIDIA GF100 architecture[41].

3.1.2 Actuarial Science and Risk Management

Actuarial science, risk and return management mostly involve products offered by
pension funds, insurance industry and consulting firms. A typical application in
this field is asset liability management (ALM),

Barrie Hibbert, which is a branch of Moodys Analytics offers scenario analysis
for ALM. Specifically, projections on different portfolios and investment strategies
are generated multiple time-steps. A variety of possible risks such as interest rates,
inflation and liabilities are captured. For accelerating the calculation of their mod-
els, clusters with thousands of cores are deployed[45]. For their simulations, Barrie
Hibbert use the Digipede Distributed Computing center which allows the deploy-
ment of thousands cores for their computation[51].

Other similar implementations in this field are offered by Towers Watson. Towers
Watson introduced the Star models that can be used for generating economic scen-
arios under either a real-world or risk-neutral measure. Star ESG can be used by
clients for setting investment strategy benchmarks, portfolio construction, ALM,
pricing, capital setting and the market consistent valuation of options and guaran-
tees.

3.1.3 Accelerating ALM simulations

As the combination of the ALM simulations, combined with scenario based ana-
lysis, OpenCL and Intel Xeon Phi, consists a novel approach, we break down the
related work. Initially, we investigate other ALM related research on parallel sys-
tems. Then the Intel Xeon Phi in-depth and finally OpenCL applications on the Phi
and potential optimizations.

As early as 2010, [10] proposed a first ALM approach adapting the Solvency II
regulations for a parallel architecture. The authors use Monte-Carlo based traject-
ories for simulating the different possible projections of the economy for a forward
risk neutral evaluation. For each projection of the economy, a certain number of
fiscal operations such as applying investment strategies, rebalancing and asset eval-
uations are performed. In [10], a single real portfolio with horizon of 40 years and

mentations
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Figure 3.1: Market share in the financial sector for NVIDIA GPUs and other
accelerators[43]

two assets (e.g. bonds and stocks) was used. Therefore, they were testing against
two different approaches of evaluation. By using a parallel approach on a multi-
node CPU cluster and proposing a Fortran 90+MPI extension, they manage to re-
duce significantly the execution times for the Monte-Carlo evaluations: for 6000
paths the simulation time reduced from 96 minutes to 8 minutes, while for 12000
paths the execution time reduced from 196 to 17 minutes. The data also suggested
linear speedup when increasing the number of processors and significant decrease
of the standard error.

Another parallel ALM approach was introduced in [19]. The authors provided a
survey of the current trends and advances in ALM simulations back in 2011. The
Stochastic Programming approach to ALM, along with risk averse modelling and
solutions based on Interior Point Methods are discussed in this paper. The Ob-
ject Oriented Parallel Solver (OOPS) combined with Structure-conveying Parallel
Modelling Language (SPML) approach is discussed while aiming for scalability
up to 1280 processors. The paper presents an evaluation of 12.8 million scenarios
on 1280 processors in 3020 seconds. Furthermore, the included scalability analysis
suggests sub-linear speedup for large numbers of processors: for up to 8 processors
the resulting speedup was almost a factor of 7x, while for up to 512 processors it
could increase to a factor of 27x.

3.1.4 NVIDIA GPUs in Computational Finance

Computational finance tends to use NVIDIA GPUs for accelerating its applica-
tions. As Figure 3.1 illustrates, according to NVIDIA, 85% of the clients that use
accelerators, prefer NVDIA GPUs. In addition, for the remaining market share, 4%
use Intel Xeon Phi co-processors and 11% prefer other methods.[43]. An increas-
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ingly large group of companies in the financial industry that chose to use NVIDIA
GPUs as accelerating platforms. Examples are JPMorgan[33], nag[40], jedox.[30]
and SUNGARD.

JPmorgan moved from the traditional approach of using GPGPUs for their risk
management calculation to deploy NVDIA GPUs for that purpose. Risk man-
agement computations include equity-derivative calculations. Thus, by moving to
Tesla GPUs, they managed to accelerate the performance of their application by a
factor of 40x, thus calculating the required risks from hours to just few minutes.
This upgrade led to additional power efficiency benefits on their data centers[32].

Another important contribution in that field is from NAG, a supplier for HPC
computational software. Usually, their products offer optimizations, paralleliza-
tion and restriction of numerical applications in order to be able to follow cutting
edge trends. Therefore, as they offer products related to algorithmic differentiation
for mathematical derivatives aiming to the financial industry, HPC techniques con-
sist their main choice for acceleration. The NAG Numerical Routines for NVDIA
GPUs resulted in a 10x improvement for Monte-Carlo based index pricing[39].

3.2 Accelerating applications with Intel Xeon Phi

As far as we know, Intel Xeon Phi has never been used before for ALM simulations.
Therefore, this section presents work related to the use of Xeon Phi in applications
relevant for computational finance. Monte-Carlo simulations consist the closer
match for option pricing. In [49], [22], [57] and [59] Monte-Carlo methods were
used on Intel Xeon Phi.

For example, in [59], Intel used as a case study a Monte-Carlo European Op-
tion pricing scheme on an Intel Xeon Phi was the main focus of that research.
Initially, before they began a stepwise optimization procedure, they introduced a
novel sequential implementation for they option pricing scheme. Then, a number
of specific optimizations have been performed. Firstly, they switched to an In-
tel compiler and used the Intel dedicated math library (MKL). Also, vectorization
techniques were used before hand, along with OpenMP parallelization. Eventually,
native mode, offloading mode and re-compiling on the Intel Xeon Phi, completed
their stepwise optimization procedure. Overall, in terms of options per second,
they manage to increased their performance results from 32.3 options per second
to 496.520 options per second for the fully optimized version running natively on
the co-processor.

3.3 OpenCL on Intel Xeon Phi

Most research focusing on Intel Xeon Phi, suggests as a programming paradigm
either OpenMP in native or offload mode, or MPI. Thus, as we decided to use
OpenCL on this project, research was carried out on a variety of applications using
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OpenCL on the Phi. The research presented in [72], [71], [22] and [65] is there-
fore relevant. All this work demonstrates that OpenCL is indeed functional and
usable on the Xeon Phi. Moreover, its functional portability enables easy-to-do
comparisons with other platforms

For example, in [71], a bioinformatics case study is discussed. Specifically, a
short read alignment algorithm implementation with OpenCL on the Intel Xeon
Phi co-processor. An alternative to the short read alignment implementation Bar-
raCUDA [34] is presented in that paper. Initially, the required modifications were
made for porting the existing CUDA code in OpenCL. The results in general
provide good scalability and linear speedup for increasing problem sizes. In ad-
dition, their OpenCL implementation outperforms the existing ones both on the
CPU and the GPU. However, authors didn’t mention if any specific optimization
techniques were used.

3.4 OpenCL Performance Portability

While performance portability of OpenCL has been investigated in the past years,
researchers are still far from producing a practical guide of ensuring good per-
formance. Most of the research on performance portability either makes use of
very simple cases such as matrix multiplications or FFTs.

For example, in [61], they investigate the potential performance portability between
GPUs and CPUs with the use of a portable matrix multiplication kernel. While
using a convention from the OpenCL community and by defining CEAN-style
transformations, they manage to enable improved SIMD support for the CPUs.
Also, they showed that for the proposed CEAN serialization method, their solution
achieves performance comparable to native OpenMP solution.

In [53], a practical investigation for performance portability was considered.
The novelty of this study was the diversity of platforms under investigation, where
a CPU, 2 GPUs from different vendors and a Cell processor were used. This se-
lection, provided enough variety between SIMD, SIMT and VLIW architectures.
Then, for a selection of three kernels of different computational loads, the effect of
the loop unrolling factor and thread block size was evaluated. Overall, the study
showed that different platforms are extremely sensitive to optimization that might
benefit other devices. Moreover, the CELL processor seems to be behave similar
to CPU and vice-versa for the optimum configuration.

A more comprehensive study regarding performance portability was carried our
by the department of microelectronics of TU Wien [54]. A selection of memory
bounded linear algebra operations (vector copy, scaled vector addition, the inner
product of two vector and matrix vector product) was implemented in OpenCL.
Also, GPUs from AMD and NVIDIA, along with HPC-dedicated CPU and co-
processor from Intel were tested. For evaluating all potential aspects of perform-
ance and its impact on the different platforms, a set of 1900 configurations was
used on each device. These configurations affected the local work group size, the
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global workgroup size and the data types (e.g. double2, double4 etc). Based on
their results, authors provide different tuning approaches for CPUs and GPUs re-
spectively. For CPUs, each work item is advised to operate on consecutive large
sets of data in either small or large work groups. On the other hand, for GPUs the
work groups should be in sizes of 128 or 256. Furthermore, in some cases, they ob-
served that bandwidth utilization can vary significantly for the same configuration.
For instance, for vector copy operation, the best kernel configuration for NVIDIA
GeForce GTX 285 (85.3%), yields a utilization of just 0.2% for Intel Xeon Phi.

3.5 Summary

In this section, we survey all the related work that is relevant to this project. We
analyze computational finance areas that broadly use HPC techniques. Such a
domain is option pricing for which we note that GPUs are the traditional way to
tackle this problem. Also, we tracked applications related to risk management
that use clusters for accelerating their computations. Furthermore, we discover
different domains that use the Intel Xeon Phi as a platform for acceleration, as
well as application for which OpenCL consists the main development model. As
OpenCLs primary concern is performance portability, we identify research that
discusses this issue and we note potential hazards. In conclusion, from the related
work, we couldn’tt discover any other project that uses OpenCL and the Intel Xeon
Phi for accelerating scenario-based ALM simulations. Therefore, our work in the
following chapters proposes a novel approach on accelerating scenario-based ALM
simulations with OpenCL.
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Chapter 4

Experimental Setup and
Performance Metrics

In this chapter we present in detail our experimental setup. Specifically, we discuss
the hardware and software details of all the platforms we are using, and introduce
our perfomrance metrics.

4.1 Hardware Platforms

In order toanalyze the performance and portability of our parallel application, we
had selected three types of hardware platforms.

Initially, we had available two different flavours of GPPs. As seen in Table 4.1,
we use an Xeon E5-2630 as a high performance GPP, and an Intel Core i7-5600U
as a regular CPU [25]. The Xeon is equipped with 8 cores and 16 threads, while
the i7-5600U has just 2 cores and 4 threads. Both processors support Advanced
Vector Extensions (AVX) and the i7-5600U supports Streaming SIMD Extensions
(SSE).

Table 4.1: Available CPUs specifications

Model/Specification Intel Xeon
E5-2630-V3

Intel Core
i7-5600U

Cores/Threads 8/16 2/4
Processor Frequency (GHz) 2.4/3.2 2.6/3.2
L3 Cache (MB) 20 4
Number of Channels 4 2
Memory Bandwidth (GB/s) 59 25.6
Thermal Design Power (W) 85 15
Instruction Set Extensions AVX 2.0 SSE4.1/4.2, AVX 2.0

In addition, as Table 4.2 presents, two different accelerators were used. Ori-
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ginally, we focused on an Intel Xeon Phi 511P co-processor, with 60 cores and
240 threads. Moreover, the co-processor offers, 8GB of high-speed memory with
peak bandwidth of 352GB/s. Phi’s theoretical peak single precision performance is
2200GFLOPS[25]. We further added, an NVIDIA GeForce GTX TITAN, a GPU is
equipped with 14 cores and 2688 threads. TITAN has a theoretical single precision
peak performance of 4500GFLOPS, 6GB of on-hip memory with peak bandwidth
of 288GB/s[44].

Table 4.2: Hardware Accelerators Specifications: Co-processor & GPU

Model/Specification Intel Xeon
E5-2630-V3

NVIDIA
GTX TITAN

Intel Xeon Phi
Coprocessor 5110P

Cores/Threads 8/16 14/2688 60/240
Processor Frequency (GHz) 2.4/3.2 0.837/0.876 1.053
On chip Memory (GB) - 6 8
Cache Levels 3 2 2
Cache Size (KB) 256 (L2) 512 512
Memory Bandwidth (GB/s) 59 288 352
Thermal Design Power (W) 85 250 245
Throughtput (GFLOPS) 130 4500 2200

Most of the development and testing was performed on DAS-4 and DAS-5[7].
DAS-4 was running CentOS 6.0, equipped with Intel Xeon E5-2620. Also, Intel
13.3 OpenCL driver (OpenCL 1.2) supported the Intel Xeon Phi was available.
On the other hands, DAS-5 was running under CentOS 7.02, with Intel Xeon E5-
2630-V3 CPUs. In addition, NVIDIA CUDA 7 toolkit with OpenCL 1.2 support
was available. Specific hardware/platform specification available in Table 4.3.

Table 4.3: Available Hardware/Software/Driver Configuration

Cluster DAS-4
DAS-5

CPU Intel Xeon CPU E5-2620
Intel Xeon E5-2630-V3

OS CentOS 7.2
CentOS 6.0

Platform
NVIDIA CUDA 7 (OpenCL 1.2 support)
Intel Runtime 13.3 (OpenCL 1.2 support)
Intel Runtime 13 (OpenCL 1.2 support)

4.2 Performance Metrics

To quantify and evaluate the performance of our implementation, we select the
following metrics:

28



• Execution Time (T) is the main point of observation for understanding the
performance of our implementation. The execution time can be obtained
from several sources depending on the precision in need and the platform un-
der investigation. We use the following techniques: wall-time measurement
on the CPU and the clGetEventProfilingInfo or vendor specific profilers such
as the Intel VTune Amplifier [26].

• Speedup (S) is the performance difference between two different imple-
mentation with execution times of T1 and T2:

S =
T 1

T 2
(4.1)

• Throughput

– Computational Thoughtput is way to quantify the computational power
of a specific system. Thus, it can be calculated as the floating point op-
erations per a given period of time.

FLOPS =
FLOPStotal

T
(4.2)

– Memory Bandwidth is the rate at which data is transferred to and/or
from the global memory. Thus, the ratio between read and write bytes
performed in the execution time in seconds:

MB =
bytesread + byteswrite

T
(4.3)

• Scenarios per second (SS) is the number of scenarios 1 that can be fully
evaluated by the computation kernel per second:

SS =
#Scenarios

T kernel execution time
(4.4)

is a second metric to evaluate hardware utilization. Thus, we calculate the
total number of scenarios under consideration divided by the total number of
threads present in the HPC platform:

ST s =
#Scenarios

#Threads
(4.5)

1The meaning and use of scenarios is explained in detail in Chapter 5
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Chapter 5

Case study: Scenario-based ALM

Chapter 5 presents our work regarding the chosen case study. In more detail, the
exact characteristics of the scenario-based ALM are presented. We further describe
the application computational requirements and our parallel algorithm. Moreover,
we discuss our OpenCL implementation and the applied optimizations for Xeon
Phi. Finally, we present and analyze the performance we have obtained.

5.1 From OPAL to Scenario-based ALM

Asset liability management is a common technique for managing pension assets.
ALM aims to cover the need for maximum risk-return trade-off with reduced risk
to solvency rations and the risk relative to liabilities more clearly defined.

Our study focuses on scenario-based ALM models. Scenario-based ALM mod-
els are preferred because they can asses much more complex interactions and com-
ponents of an ALM problem. Also, these models allow for a more in-depth ex-
amination of the effects of different investment strategies and/or financial decision.
Lastly, they can lead to visual analysis of the different scenarios, which allows to
more flexibility for the data output.

For the needs of this project, we extracted a Scenario-based ALM model from a
commercial application offered by Ortec-Finance, called OPAL. OPAL is a wealth
planner that streamlines the entire private wealth advisory process for clients, de-
termining the optimal asset allocation. OPAL selects and monitors investments
fully in line with a clients objectives and relevant regulations, and uses ALM meth-
odologies to optimize the client’s investment[48].

Figure 5.1: OPAL abstract process pipeline representation
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As it can be seen in Figure 5.1, there are three main tasks within OPAL: scenario
generation, scenario-based ALM computations and eventually a statistical inter-
pretation of the results. Scenario generation produces the input for the compute
engine, which corresponds to N different scenarios representing different fiscal
conditions. Then, the ALM compute engine is fed with the scenarios and client’s
portfolio(s) of assets, while applying all investment decisions on each scenario in
isolation. Finally, the results are interpreting statistically for calculating an overall
potential risk and return for the investment strategies.

The ALM computation part is not only consumes the largest part of the com-
putation time, but also plays a major role in its accuracy. In turn, the accuracy of
the simulation is related to the amount of data, which can be effectively handled.
For example, larger number of scenarios with more fiscal information regarding
the client (e.g. more assets) can produce more precise results and tolerate faulty
predictions. Therefore, the ALM computation part is the core focus of this study.

5.1.1 Sceanario based ALM: How it works?

The ALM scenario-based compute engine, receives as an input the pre-generated
scenarios and a number of portfolios along with their contents. Each portfolio
contains a number of assets summarized in the list below:

• Cash

• Bonds

• Stocks

• European Equities

• Japanese Equities

The selection of these assets allows an arbitrary number of ”dummy” invest-
ments to take place within the model and therefore, the model’s overall complexity
can be similar to the actual Ortec-Finance product. Also, in a group of four port-
folios, the initial capital is shared in pseudo-randomly among the portfolios. For
example, one portfolio might initially have a quarter of the total capital and this
amount might be evenly shared among its assets.

Now, for each scenario, a full simulation period corresponds to 64 years and
12 months for each year. Therefore, at each time-step (year), computation is per-
formed to simulate real economical world events:

• Portfolio re-balancing.

• Taxation.

• Cash transfers between portfolios.

• Annual, semi-annual and monthly cash-flows.
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In addition, except the above-mentioned financial operations, equations 4.1,
4,2 and 4.3 depict the main computation per iteration. Specifically, equation 4.1
represents how the values for each variable of the different assets is calculated,
meanEquityEU and sdEquityEU are values determined by the scenario, multiplied
by the randomized Gaussian values are within zero to one margin. Equation 4.2
shows how the value for each portfolio is determined: by adding all portfolio assets
multiplied by a pre-generated factor for the given scenario. Finally, in 4.3 the total
values of all portfolios is calculated, in order to perform the remaining operations.

ScenarioEquityEu = meanEquityEu+sdEquityEu∗RandomizedGaussian
(5.1)

Therefore, the total value of each portfolio at any given period, corresponds to

PortfolioXvalue =

n∑
i=1

= scenAssetfactor(i) ∗ currentAssetV alue(i)

(5.2)

totalV alue =
n∑

i=1

= portfolio(i) (5.3)

Algorithm

Algorithm 1 depicts a pseudocode representation of the given scenario-based ALM
compute engine. Most of the computation procedures (e.g., compute tax or rebal-
ancing) are make heavy use of branches. For example, compute tax uses up to 6
branches, while rebalancing uses up-to 10. In the worst case scenario, overall, 40
branches need to be evaluated for one iteration of the kernel.More details on the
computational structure and complexity of the scenario-based ALM are presented
in Section 5.3.

33



Scenario-based ALM case model:
Input: Scenarios, Years, Months, portA, portB, portC, portD
Output: totalValue, valueA, valueB, cvalueC, valueD, valueTax
for 1.....scenarios do

for 1.....years do
for 1.....months do

Sum of Portfolio A assets;
Sum of Portfolio B assets;
Sum of Portfolio C assets;
Sum of Portfolio D assets;
if month is december then

if Total value larger than 1000000 then
calculate tax;

end
else if Total value larger than 100000 then

calculate tax;
end
else

calculate tax;
end
divide tax by portfolios ;
subtract tax from portfolios ;
rebalance evenly portfolios;

end
if semester then

withdraw;
end
if quarter then

transfer amount between portfolios;
end
if every other month then

other cashflow function ;
end
store current value of each portfolio;
store tax value ;
store total value of portfolios ;

end
end

end
return totalValue, valueA, valueB, cvalueC, valueD, valueTax

Algorithm 1: Abstract representation of Scenario-based ALM
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5.2 Sequential Implementation

The OPAL application is written in JAVA. Thus, the extracted scenario-based ALM
compute engine along with the scenario generation need to be rewritten in C. As
a result, a sequential C version was implemented. This implementation served
the goal of identifying potential performance bottlenecks as well as on defining a
parallelization strategy. In addition, it provided enough information in terms of
profiling and computational complexity of the model.

Figure 5.2: Data flow diagram of the extracted C implemetation

Figure 5.2 depicts the main components of the C implementation, extracted from
the JAVA application. As it can be seen, the implementation either loads a pre-
generated database of scenarios or either generates one itself. For convenience and
to allow more degrees of freedom in sense of data types and the length of input
(e.g. number of assets, portfolios etc), a choice of generating the scenarios on the
fly was made.
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5.2.1 Profiling

In order to verify that the compute engine is the most compute intensive part of the
application, along with how much of the total execution time is consumed, we run
a profiler. For this analysis the GNU gprof [18] profilling tool was used. Also, the
tests were performed for a single core, single thread execution on an Intel i7-5600U
CPU.

Table 5.1, depicts the results obtained from gprof for various input sizes. As it
can be seen, the compute engine for the ALM calculation consumes from 61% to
66% of the total execution time. In addition, the initialization (e.g. scenario gener-
ation) takes up to 24%, while the rest of the tasks 10% to 16% of total execution.
Therefore, performanc-wise, it makes sense to accelerate the compute engine.

Table 5.1: Profiling information for single threaded CPU execution

#Scenarios Function Time (s) Percentage

1024
Compute ALM 0.28532 66%
Initialise 0.10256 24%
Remaining Tasks 0.0495 10%

10240
Compute ALM 3.1245 61%
Initialise 1.4254 23%
Remaining Tasks 0.8125 16%

40960
Compute ALM 9.8645 62%
Initialise 5.6589 27%
Remaining Tasks 1.5896 11%

5.2.2 Single vs Double precision requirements

Another aspect of finding potential bottlenecks, was to test the initial sequential
implementation for various data types and input sizes. Therefore, the implementa-
tion was tested for single and double precision numbers. Also, different numbers
of scenarios were tested. These numbers varied from 1000 to 100000.

Figure 5.3, shows the obtained results for the above-mentioned configurations.
This initial testing illustrated the following: 1) for a small size i,e to 8192 scenarios,
both single and double precision yield similar execution times 2) for more than
8192 scenarios, the double precision version implementation is slower by 3x/2.5x
factor, 3) for inputs larger than 81920 scenarios the double precision implementa-
tion can be no longer execute by the GPP configuration present 4) the single preci-
sion implementation can handle up to 102400 scenarios, due to the limited memory
5) currently the commercial application can simulate just 500 scenarios in order to
comply with specific response time requirements.

36



Number of Scenarios

1000 4000 8000 10000 40000 80000 100000

E
x
e
c
u
ti
o
n

 T
im

e
 (

S
e

c
o
n
d
s
)

0

10

20

30

40

50

60

70

80

90

100

110

Single Precision

Double Precision

Figure 5.3: Single vs Double precision for single-core/single-threaded execution

5.3 Parallel Implementation

After we extracted all the key information regarding the computational needs and
parallelization possibilities, we can we will proceed to create an initial parallel
version of our scenario-based ALM.

5.3.1 Operational Intensity Calculation

Before implementing the application we need to quantify its needs in terms of
operational intensity. This classification will help to determine the nature of the
problem (compute bound vs memory bound), along with expected hardware utiliz-
ation.

We first approximate the number of operations within the compute kernel. These
operations can be floating point additions, subtractions, multiplications, divisions,
as well as more complex operations like extracting the square root or computing an
exponential value. The total number of these operations is floating point operations
(FLOPS).

The total number of FLOPS in our ALM kernel is presented in Equation 5.4. is
represented in the following equation:

FLOPS = (26 ∗ addf) + (36 ∗ mulf) + (6 ∗ divf) + (20 ∗ subf) (5.4)

Now, according to equation 5.4 and the Table 5.2 which represents the cost of
its floating point operation for x86 architecture, we can evaluate the total estimated

37



cost. Therefore, this cost corresponds to 172 FLOPS for our compute kernel.

Table 5.2: Cost in terms of FLOPS for operations[4]

Operation Cost (FLOPS)
addf 1
subf 1
mulf 1
divf 15
sqrtf 15
expf 20

Additionally, before we are able to calculate the operational intensity of the ker-
nel, we need also to find its needs in terms of memory traffic. This memory traffic
corresponds to the amount of data that the kernel reads or writes from the memory,
in bytes. The kernel memory traffic is estimated in Equation 5.5.

memory traffic = ((20 ∗ reads) + (5 ∗ writes)) ∗ 4Bytes (5.5)

The number of floating point operations and memory traffic, correspond to Work
W and Memory Traffic Q respectively. Then, the Operational Intensity I corres-
ponds to the ratio of the Work divided by the Memory traffic. Thus, for our case
the operational intensity for the ALM kernel is as follows:

I =
W

Q
=

172

100
= 1.72FLOPS/byte. (5.6)

Roofline Model Analysis

Roofline Model [68], provides the means in order to visualize the potential per-
formance of compute kernel, running on a multi/many-core architecture such as
NVDIA GPUs or Intel Xeon Phi.

The model combines information regarding the peak attainable floating point
performance, peak bandwidth and the operational intensity of any given platform.
Then, from the resulting plot the nature of the application’s bottleneck can be
defined. The application can either be limited by the memory bandwidth (memory
bound problem) or either by the peak computational performance (compute bound
problem). The roofline plots contains the attainable floating point performance on
the vertical (Y) axis in FLOPS/s and the operation intensity in FLOPS/byte in the
horizontal (X) axis.

Before plotting the Roofline model, some key hardware specifications need to
be calculated. These specifications are the peak floating point performance and the
peak memory bandwidth. The floating point performance for any given many-core
hardware can be determined as follows:
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Peak = #chips×#cores×vector Width×FLOPs/cycle×clock frequency
(5.7)

Now, equation 5.7 and the theoretical peak bandwidth provided with the hard-
ware specifications, help on estimating the attainable GFlops/sec performance, cal-
culated as follows:

AttainableGF lops/sec = min

{
PeakF loatingPointPerformance

PeakMemoryBandwidth×OperationalIntensity

Now, having all the necessary information in place, we can proceed to plotting
the roofline model for our application. As our main interest on the initial devel-
opment is the Intel Xeon Phi, the plot uses its performance characteristics: a peak
bandwidth of 352 GB/s and peak floating point performance of 2417GFLOPS.

Figure 5.4 depicts the ALM roofline model. The figure shows that our compute
kernel is memory-bound. This means that our OpenCL implementation should fo-
cus on applying performance optimization techniques which improve the memory
bandwidth of the application.
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Figure 5.4: Roofline model of the ALM kernel on the Intel Xeon Phi

5.3.2 Initial OpenCL Implementation

The initial approach was to rewrite the sequential C implementation with OpenCL,
without taking into account any hardware specific features or dedicated tuning.
Because the calculation of each scenario is individual from each other we assign
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one work-item/thread to be responsible for the evaluation of each scenario. This
approach keeps the complexity of the parallelization low. Also, at first only 1D
dimensioning for the work-groups were used, without proper workload balancing.
This naive first approach yielded almost 20x performance improvement compared
with the original, sequential C-version. This is already a very good result.

5.3.3 OpenCL Optimization and Tuning

As we already discussed the novel OpenCL implementation of the ALM compute
kernel, initially targets the Intel Xeon Phi architecture. Therefore, any optimization
steps took into account specific architectural features and considerations for the
very co-processor. A detailed analysis of the optimization techniques used, along
with individual decision and consideration are presented in this section.

Reducing Work-item Branch Divergence

Figure 5.5: Branch divergence effect in GPU
threads

It is well-known that branch diver-
gence is one of the main issues
affecting the performance of par-
allel implementations mapped on
GPUs and co-processors. There is
a lot of relevant research exposing,
discussing and proposing solutions
on this problem.

We discuss the potential per-
formance loss and effects of
branch divergence impact because
our naive implementation con-
tains extensive branching. GPUs
can experience high performance
losses due to branch divergence
because of their warp-based exe-
cution model. Then, within a warp
the potential performance losses

are illustrated in Figure 5.5. In this figure we can see that threads within the same
warp execute different branches, leading to a potential performance loss of up to
50%.

From the Intel Xeon Phi perspective it can have an advantage for divergent work-
load. This advantage is that it performs work in much smaller groups. For example,
the Phi uses 16 elements per thread, while NVIDIA has 32 threads per warp.

From the above-mentioned information and the nature of our kernel, the follow-
ing measures were taken. First, we removed branches where possible, we further
extracted branches out of loops where it was possible, and finally we included the
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minimum number of computations within each branch. Therefore, minimimize the
number up branches up-to 10 per iteration for the worst case scenario.

Compiler Optimizaions: OpenCL Flags

One of the greatest advantages accompanied with many-core architecture, is the
presence of specialized hardware units, enhanced with the ability of executing
mathematically intensive functions. Also, these units are fully supporting floating
point operations, which makes them even more valuable feature. Therefore, the
computational cost of using such functions can be significantly reduced. For this
reason, OpenCL provides certain compiler flags, which for cases where accuracy
is not in high demand, it can be sacrificed for faster response.

At first the initial naive implementation didn’t make use of any compiler based
optimizations. For this reason a research/test process was carried out for finding the
most suitable compiler flags for the our kernel. Some math instincts optimization
have a significant trade-off between the potential speedup gain and the correctness
of the calculations. Therefore, its a major function to consider, while applying
different flags.

• -cl-fast-relaxed-math, which enables two other optimization flags together.
These flags are the -cl-finite-math-only and -cl-unsafe-math-optimizations .
Now, operations that may be against the IEEE 754 and the OpenCL numer-
ical specifications, are allowed to be executed.

• -cl-single-precision-constant which allows all the double precision floating
point constants to be treated as single precession floating point constants. We
verified that this extension does not potentially harm our single and double
precision implementations.

• -cl-denorms-are-zero is responsible for all single and double precision float-
ing point denormalized numbers. In case of single and double precision de-
nomarlized numbers can be flushed to zero if such an extension is available.
This configuration option can be beneficial in the context of performance, as
the compiler can choose whether it needs to flush denomarlized numbers.

For ALM, enabling the above-mentioned compiler flags has a negligible impact
on performance. This is not surprising, given that there are no special mathematical
functions that are needed for the computation, and therefore fast-math is not really
any faster than regular math in this context. A more detailed insight on the impact
is presented in Section 5.4.1.

Converting Arrays of Structures (AoS) to Structure of Arrays (SoA)

Coalesced memory accesses and caching, play a major role in the performance of
many-core architectures. Thus, a very important factor on fully utilize such op-
portunities, is data layout. Data layout affects can memory access patterns, and,
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Figure 5.6: Initial data layout in Array of Structures (AoS)

Figure 5.7: Converted data layout into Structure of Arrays (SoA)

consequently the performance of the application as well as the utilization of plat-
form characteristics such as the memory bandwidth. One of the clear guidelines to
improve coalescing and caching is to convert arrays of structures (AoS) to struc-
ture of arrays (SoA), this conversion yields a more cache and vectorization friendly
design [70] [60]. As we are discussing mainly about the effect on the Phi, we need
to consider how the vectorization module treats data. Therefore, the advantage
of wide SIMD lanes of the Phi, is that the vectorization module transforms scalar
operations of the work-items into vector operations. So, the overall number of
operations can be reduced significantly based on the available SIMD width.

The original ALM data structures are AoS-based. The array contains a set of
different structures of type portfolio. Each portfolio structure has inside five float
variables containing data regarding the asset values. The layout is depicted in
Figure 5.6.

On Xeon Phi, using SoA instead of AoS should improve the caching and vec-
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torization opportunities. In fact, Intel explicitly suggests AoS on the Phi, only for
random sparse accesses[29].

Figure 5.6 illustrates the initial data layout for our compute kernel. AoS was the
initial approach as it is a more convenient approach for the developer and allows
easier indexing within calculations. On the other hand, Figure 5.7 illustrates the
resulted conversion to SoA with one portfolio structure enclosing all the data in
need. Now, all aspects are grouped into arrays based on their content and these
arrays grouped into a portfolio structure. The impact of this conversion is discussed
later on.

Work-group Configuration

Common techniques for developing OpenCL kernels for CPU-like architectures
similar to the Intel Xeon Phi, suggest local work-group dimensions which map well
on the SIMD width. Thus, for the Intel Xeon Phi and single precision data types,
the suggested dimensions need to be a multiple of 16. Because of the friendly
mapping of threads to compute SIMD units, this approach allows to the OpenCL
to fully utilize the auto-vectorization module of the compiler without any manual
modifications. In case of manually vectorization of OpenCL kernels, the compiler
scalarizes them again before re-applying implicit vectorization[29]. On the other
hand, for non-multiplies of 16, the compiler handles the remaining items in a scalar
way[63].

Figure 5.8: Execution times for various work-group configurations

We used a benchmark case for 10240, where 10240 global work-items are needed
for computation. Then, we tracked the execution times for various work-group di-
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mensions. As it can be seen in Figure 5.8, the execution time is the best for 16
work-items making up a work-group. Thus, the optimum configuration for this
input size yields, 128 work-groups of 16 work-items each.

Automatic vs Manual Loop Unrolling

Loop unrolling is a traditional technique for improving the performance of parallel
loops. With unrolling loops one can minimize the number of executed instructions,
minimize the evaluation of each branch and benefit from exploiting more instruc-
tion level parallelism where it is applicable.

There are two approaches for loop unrolling: manual and pragma-based. The
performance guidelines for programming the Intel Xeon Phi, suggest that manual
loop unrolling should be avoided. The reason is that the Intel compiler is able
to effectively generate vectorized code when loops are not unrolled. Therefore,
alternatives are suggested in order to enhance the vectorization abilities of the pro-
cessors. For example, loop collapsing and/or vector alignment.

Figure 5.9: Execution time vs loop unroll factor

In Figure 5.9, the execution times for different unroll factors which use OpenCL
#pragmas are presented. It needs to be mentioned that even with the unroll factor
of 2x providing the best improvement in performance, loop unrolling gives slower
results than the regular execution. The problem is the corner cases for which de-
pendencies exit. Iteration one and twelve of the inner loop cannot be unrolled
effectively. Thus, we tried to use loop peeling on the corner cases (e.g. iteration
one and twelve) for which dependencies exit and then automatically unroll shown
only negligible improvements.

Loop Collapsing

We further investigated the potential performance gain when loop collapsing is
applied. As the whole kernel consists of three nested loops, with the out loop
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already mapped to the OpenCL work-item, the inner loop can be optimized further.
Therefore, collapsing the two inner loops to one, can give further performance
benefits as it can allow the Intel compiler to exploit further its auto-vectorization
capabilities if the loops are properly aligned.

for 1.....scenarios do
for 1.....years do

for 1.....months do. . . .
end

end
end

Algorithm 2: Before loop collapsing
Algorithm 1 and 2, depict the loop structure before and after collapsing. This,

re-structuring of the loops proved to be beneficial for the overall performance, as
it further reduced the execution time for the kernel. In addition, the intitution was
proved that the autovectorization abilities of the compiler have advantageous affect
with collapsing loops, in return to a more complex ”indexing”. The results about
the benefit in terms of speedup are presented in Section 5.4.

for 1.....scenarios do
for 1.....years * months do. . . .
end

end
Algorithm 3: After loop collapsing

Pointer Aliasing

Pointer aliasing can occur when the same memory location can be accessed by
two or more different pointers. Thus, the compiler needs to take precautions for
eliminating any potential side-effects. For this reason ensuring the compiler that a
memory location can be accessed only by a single pointer, allows the compiler to
optimize code further. Thus, by using the restrict keyword for a given set of pointer
in our kernel declarations, spares the compiler from creating unnecessary memory
dependencies between non-conflicting load and store operations.

Use of Constant Memory

Constant memory is typically a cached memory region where read-only data can be
stored and, due to caching, quickly accessed. Constant memory is typically small
in size, but it provides quick access to all compute units of the device. In general,
constant memory usage has an impact when a relatively small data structure is used
intensively and repeatedly in other computation kernels by all work items. In the
case of ALM, constant memory is useful to store a common set of parameters and
weights used for asset value computation.
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Again, we note that the use of constant memory for scenario-independent weights
has a negligible effect: a speedup of only 1.05x. This happens because constant
memory is not mapped on any specialized hardware, but simply uses a special re-
gion in the global memory. Due to the linear access pattern of the application, the
weights stored in global memory are already accessed in a cache-friendly manner,
making the use of constant memory ineffective. Furthermore, for larger number of
scenarios (more than 10240), data cannot fit in constant memory, so we abandoned
this optimization.

Upgrading the OpenCL compiler for Intel Xeon Phi

As we discussed in Chapter 3, all of our testing was carried our on the DAS4 and
DAS5 clusters. Multiple OpenCL compilers were therefore available.

For the majority of testing the Intel 3.0 MPSS (Manycore Platform Software
Stack ) was used as it was recommended when targeting the MIC architecture.
Switching to latest available MPSS on the DAS4 (e.g. 3.2.1 at that time), improved
the performance by a 16.5x factor. Unfortunately, the latest MPPS, which is 3.7.1
wasn’t available at that time in order to evaluate any further performance gains.

5.4 Performance Evaluation and Analysis

This section is dedicated to the performance analysis of our OpenCL ALM kernel.
Specifically, for our benchmark case (10240 scenarios), the individual contribution
for each optimization is presented. Also, the scalability of our OpenCL kernel for
single and double precision is also evaluated. Finally, a comparison to a native
OpenMP implementation on the Xeon Phi is also discussed in this section.

5.4.1 Optimizations Efficiency

For each applied optimization, its contribution to the overall speedup as well as the
reduction in terms of execution time for compute kernel, captured in Table 5.3.
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Table 5.3: Individual effects of each optimization applied to the ALM compute
kernel

Version Time (sec) Speedup
Sequential (Single Threaded) 3.1245 1x
Initial OpenCL 0.53228 5.8x
Default Optimizations - Enabled 0.15138 20.6x
Optimum Workgroup size 0.03770 82.8x
Compiler Flags 0.03543 88.2x
Converting to SoA 0.03019 104x
Loop Collapsing 0.02889 108.2x
Constant Memory 0.02670 117x
Restrict Pointers 0,02365 132x
Upgrading to the Latest Ocl Compiler 0.02106 148.5x

Figure 5.10 and Table 5.3 capture the effect of each optimization in terms of
reducing the execution time and overall speedup, respectively. These results ob-
tained for 10240 scenarios, which is a representative input size. The result show
that just porting a nave OpenCL implementation to the Phi, yields an improve-
ment of a factor at least 5.8x. On the other hand, when the basic features of the
compiler are exploited, the benefit rises up to 20.6x. But the greatest contribution
for speedup, comes from tuning for the optimum local-group dimensions, which
provides fine-grained data parallelism and builds-up the speedup to 82.8x. Us-
ing specific compiler flags has a negligible effect on performance, as discussed in
Section 5.3.3. Similar behavior occurs with the use of constant memory. Other
optimizations seem to contribute in a larger grade to overall performance. For ex-
ample, converting to SoA and use of restrict pointer, contribute by a factor of 16.2x
and 15x, respectively. Finally, upgrading to the latest OpenCL compiler available
for the Intel Xeon Phi, adds a final 16.5x improvement, reducing the execution time
to 0.02106sec.

5.4.2 OpenCL vs OpenMP on the Intel Xeon Phi

OpenMP is a multi-threading API for exploiting shared memory parallelism. Also,
its a more accessible approach on parallelizing and improving efficiency of sequen-
tial code. Traditionally, OpenCL is considered a second choice when programming
Intel Xeon Phi. Instead, using OpenMP is recommended, as it allegedly outper-
forms OpenCL on the Phi. Therefore, we need to evaluate our proposed OpenCL
solution against an OpenMP version on the Phi.

OpenMP Solution

From our sequential code for our ALM code, an OpenMP version was fairly straight
forward to obtain. OpenMP pragmas for ensuring the full utilization of SIMD and
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Figure 5.10: Contribution of each optimization on reducing execution times for a
benchmark case of 10240 scenarios

vectorization features of the Intel Xeon Phi, were used. In addition, as for the outer
loop no dependencies exist, output data partitioning was implemented.

Parallelizing the outer loop of the ALM compute kernel means that each thread
of the Intel Xeon Phi can take up to a number of independent scenarios for eval-
uation. The fact that the scenarios are completely independent of each other,
provides the advantage of not using any specific barrier for ensuring communica-
tion among threads. This OpenMP version yields the optimum performance. Dur-
ing the implementation procedure other versions consisted of trying to parallelize
the inner loop of the ALM compute kernels. Unfortunately, this approach intro-
duced the need of using communication barriers as different threads were trying to
write on the same data location. Thus, the results were considerably slower than
the outer loop parallelization.

Results & Comparison

Figure 5.11, illustrates a comparison of the results obtained on the Xeon Phi for
both OpenCL and OpenMP. OpenMP results show good scalability for problem
sizes up to 40000 scenarios. Although, in terms of speedup OpenMP significantly
lacks performance compared to our fully optimized solution for the Intel Xeon Phi.
For example, for 81,920 scenarios, OpenCL has improved performance by a 7.8x
factor, while for smaller input sizes up to 30x improvement compared to our initial
scalar code.

These results contradict the current trend in developing application for Intel
Xeon Phi, which treats the OpenMP approach as the most feasible solution. Al-
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Figure 5.11: OpenMP vs OpenCL execution times on the Intel Xeon Phi

though, there is some related work points that OpenCL in some case can outper-
form OpenMP. Such research findings are discussed in [62] and [66].

The performance difference most likely emerging by the fact that the OpenCL
kernel code is better vectorized by the compiler with optimum use of work-item and
ND-range configurations. Thus, OpenCL automatically benefits by the instruction
set extensions present on the Intel Xeon Phi, while for OpenMP extra tuning needs
to be done for ensuring use of AVX instructions.

Scalability

Another very important aspect of this implementation is the scalability of the pro-
duced results, Figure 5.12 captures the scalability for both single and double pre-
cision data on the Intel Xeon Phi.

As we can see in Figure 5.12, results for both single and double precision scale
in a fairly quadratic manner as it was expected. Also, there is a substantial im-
provement compared to the sequential results obtained in Section 5.2.2. Finally,
we also point out that while for the initial sequential version we were able to sim-
ulate up to 80,000 for double and 100,000 scenarios for single precision. On the
Xeon Phi we were able to evaluate up to 204,800 for both.
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Figure 5.12: Single vs Double precision results for the OpenCL implementation
on the Intel Xeon Phi

5.5 Summary

In this Chapter we showed that a representative ALM test case can be extracted
in order to produce an OpenCL solution. Also, the use of Intel Xeon Phi along
with OpenCL can yield significant improvement in terms of performance when
compared against scalar code, provided that a series of optimizations are applied.
Furthermore, we prove that our optimized OpenCL solution can also outperform
the traditional approach for the Phi, which is OpenMP. Finally, our results also
show that our OpenCL implementation is scalable when the number of scenarios
increases.
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Chapter 6

Performance Portability in
OpenCL

OpenCL allows a programmer a certain degree of freedom regarding the potential
target platform. However, although functional portability allows the platform of
development not to be the platform of deployment, performance portability is a
concern. In this chapter we discuss our findings regarding OpenCL’s performance
portability.

6.1 Motivation

OpenCL offers the great advantage of portable code, but this comes at the price of
performance loss. Code with topnotch optimizations, yielding great results in terms
of performance and utilization for one platform, may suffer significant changes in
performance for another platform. Thus, we might need to start again the optimiz-
ation process.

In Chapter 5, we presented our case study from a sequential C implementation
to an optimized OpenCL version for a given hardware platform - Intel Xeon Phi.
We selected Xeon Phi because our kernel uses branching (see Section 5.3.3). It is
now time to investigate how well our kernel performs on other platforms.

For benchmarking and analysis, we use the platforms presented in Chapter 4: an
HPC CPU for which a lot of comparisons with the Inten Xeon Phi exist [35][36][37]
and an NVIDIA GPU.

While implementing and optimizing our novel OpenCL ALM kernel, we tried
to use techniques that should preserve performance. What we expected/hoped for
was to be able to simply run our OpenCL kernel on other platforms and still obtain
(similar) performance. Specifically, given our application is memory-bound, we
expected to preserve a certain level of bandwidth utilization.

For preserving performance, we use the following basic guidelines for develop-
ing our kernel:
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• We avoid platform specific optimizations. For example, NVIDIA GPUs have
texture or shared memory available while other platforms like the Intel Xeon
Phi do not have such features. Also, we avoid to depend too much on fea-
tures such as the constant memory.

• We use a simple 1D work-group organization. While the original application
uses a suitable work-group size for the Xeon Phi, this parameter is easy to
tune.

• We mostly focused on portable optimizations such as data layout (SoA and
AoS), restrict pointers, and compiler optimizations that can have a similar
impact on performance for most OpenCL devices.

Whether the resulting OpenCL is, to some degree, performance portable, is the
focus of the remainder of this chaper.

6.2 Roofline Analysis for Multiple platforms

Before discussing further the performance on various platforms, we must revisit the
roofline model, discussed in Chapter 5. Initially, the roofline analysis was carried
out only for the Intel Xeon Phi. Now, we added two other platforms: an Intel Xeon
CPU and an NVIDIA GeForce Titan GPU. We use this analysis to see whether the
ALM kernel preserves its memory-bound behavior on all three platforms.

As we calculated in Chapter 4, the operational intensity of the ALM kernel cor-
responds to 1.72FLOPs/byte. Indeed, as we can see in Figure 6.1, the kernel’s
performance is memory bound for all these platforms. Thus, as we initially op-
timized the OpenCL kernel with bandwidth and memory utilization in mind, we
expect good performance on all three platforms.
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Figure 6.1: Comparison of the Roofline models of the compute kernel

6.3 Optimizations behavior on various platforms

Optimization effect on the NVIDIA GeForce GTX Titan

To gain performance on the Xeon Phi, our kernel uses an SoA data layout and a
work-group size of 16. Our goal is to see whether this configuration also performs
the best on the GPU. Therefore, we analyze and compare the performance of the
original code against different other feasible configurations.

In Figure 6.2, we can see that using the default data layout (SoA) improves
performance for any given work-group dimensions. AoS reduces significantly the
the performance on the Titan. This result shows that converting to SoA, was the
right choice for our kernel.

As Figure 6.3 illustrates, performance can be further improved if except convert-
ing to SoA, tune the workgroup size. Furthermore, we can further notice that for a
local workgroup configuration of 128 work-items we can achieve the best possible
performance.

Overall, the best possible performance was obtained with SoA layout and local
workgroup configuration of 128 work-items. Therefore, for performance portabil-
ity from Phi to GPUs, the data layout can be kept, but the workgrop size must be
tuned according to the application and the specific GPU model.
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Figure 6.2: SoA vs AoS on the NVIDIA GeForcen GTX Titan

Figure 6.3: SoA: Work-group performance on the NVIDIA GeForce GTX Titan
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Optimization effect on the Intel Xeon CPU

Modern high-end CPUs (see Chapter 4) are another platform of interest for compu-
tational finance. In addition, the Intel Xeon CPU has similar architectural features
with the Intel Xeon Phi. We expect this to further aid the potential results.

As authors at Intel indicated in [23], the Intel Xeon processor also benefits from
using SoA, because SoA exploits more vectorization opportunities. Therefore, as
we designed our kernel in the same manner for the Intel Xeon Phi, this modification
is proven to affect also the performance on the Xeon CPU. Therefore, AoS proved
to significantly descrease the performance on the Xeon CPU.

Figure 6.4: Local work-group configuration effect on the Intel Xeon with SoA data
layout

With deciding to keep the SoA data layout, only the workgroup configuration
was in need for further investigation. As Figure 6.4 depicts, again we tune our
kernel for different workgroup configuration. The results showed that the local
workgroup size of 16, which the best configuration for the Phi is also the best
choice for the Xeon CPU. Therefore, the performance portability for Phi to the
Xeon CPU can be achieved without any further tuning.

Performance Evaluation: Speedup

In previous sections we discussed how our kernel behaves on the various platforms.
We now compare the actual performance gain. We first investigate execution time
as an absolute performance comparison, and we further discuss hardware utiliza-
tion as a measure of performance portability.
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Figure 6.5: Comparison of the execution times for the Intel Xeon Phi, Intel Xeon
and the NVIDIA GeForce Titan

Figure 6.5 presents an execution time comparison, while Table 6.1 captures se-
lection of speedups for various input sizes. These two means, provide enough
information for a comparison between the different platforms as well as a compar-
ison with our initial scalar code.

In Figure 6.5, a number of interesting insights are illustrated. First we can see
that Intel Xeon Phi and Intel Xeon HPC CPU, show similar behaviour. In more
detail, both seem to disproportionally increase their execution times for input sizes
of more than 40,960 scenarios. On the other hand, the NVIDIA GPU not only
produces the fastest execution times, but shows close to linear speedup against the
problem sizes.

Table 6.1: A selection of recorded speedups for various problem sizes

Number of Scenarios
Intel Xeon Intel Xeon Phi NVIDIA Titan

Time (s) S Time (s) S Time (s) S
1024 0.0275 x10 0.01719 x17 0.00098 x290
10240 0.04926 x63 0.02106 x148 0.00183 x1707
40960 0.18491 x53 0.08503 x115 0.00862 x1136

Table 6.1 illustrates speedups against the initial scalar code. From these results,
we note that the Intel Xeon Phi, in terms of speedup, shows only two times better
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performance. This behaviour is unexpected, as the Phi contains thirty times more
threads than the HPC-dedicated Xeon CPU.

From the perspective of speedup, NVIDIA GPU yields a 10x improvement com-
pare to the Intel Xeon Phi. Moreover, the NVIDIA GPU provides, for the lowest
problem size (e.g 1,240), a 290x speed-up, whithe the Phi and the CPU only reach
17x and 10x, respectively. In addition, all three platforms achieve their best per-
formance can be seen for 10,240 scenarios.

Performance Evaluation: Bandwidth efficiency

As ALM is a memory-intensive application, we originally aimed at a high band-
width platform. Thus, we selected the Xeon Phi, which features a peak bandwidth
of 352GB/s. However, with 59GB/s and 288GB/s peak bandwidth, the Xeon CPU
and the GPU are also respectable choices.

In this section, we use bandwidth utilization as a measure of performance port-
ability, aiming to see whether our kernel achieves similar results on all platforms.
Our results are presented in Tables 6.2 and 6.3, for 10240 and 81920 scenarios,
respectively.

As it can be seen in both Table 6.2 and Table 6.3, even by initially based our
development tailored for the Phi, it performs the poorest in term of bandwidth
utilization. On the other hand, the NVIDIA GPU has the best performance with
65% and 85% bandwidth utilization, for 10240 and 81920 scenarios respectively.

Table 6.2: Bandwidth Utilization for 10240 scenarios

Platforms
Peak

Bandwidth
Bandwidth Utilization

Intel Xeon 59GB/s 16GB/s 27%
Intel Xeon Phi 352GB/s 29GB/s 8%
Nvidia Titan 288GB/s 186GB/s 65%

Another interesting finding is that both the Xeon and Xeon Phi, behave similarly
from the bandwidth perspective. In more detail, while the problem size increases
up to a factor of eight, the bandwidth efficiency increases on both by just 2%.For
the Intel Xeon Phi, similar results on low bandwidth utilization have been noted
before in [64] and[69]. On the other hand, on the same time the efficiency for the
NVIDIA GPU increases up to an additional 20%.
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Table 6.3: Bandwidth Utilization for 81920 scenarios

Platforms
Peak

Bandwidth
Bandwidth Utilization

Intel Xeon 59GB/s 17GB/s 29%
Intel Xeon Phi 352GB/s 35GB/s 10%
Nvidia Titan 288GB/s 245GB/s 85%

In summary, our original OpenCL kernel written for Xeon Phi achieves better
utilization for the CPU and GPU. This result brings evidence that the optimizations
we applied are, indeed, not Phi specific and therefore portable, but also demon-
strates that, for an architecture like Phi, using the provided bandwidth efficiently
does require platform specific optimizations.

6.4 Summary

In this chapter we investigated the performance portability of our OpenCL ker-
nel on the three selected platforms. Initially, we showed that generic optimization
techniques are beneficial for all three platforms. For example, using an SoA data
layout provides significant impact on all three platforms. The roofline analysis
demonstrates that our kernel is memory-bound on all three platforms, which sug-
gests bandwidth utilization as a good portability metric. Our analysis has shown
that the Phi has the poorest performance in terms of bandwidth utilization, but the
presence of 240 threads compensates this drawback. Thus, our OpenCL ALM ker-
nel optimized on the Phi, performs well in terms of bandwidth on both the NVIDIA
GPU and the high-end CPU. We also note that, performance-wise, the GPU is 10x
faster than the Xeon Phi, which means the impact of kernel branches is a lot more
limited than we originally thought.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

We live in an era where high performance is in high demand in a very broad
variety of fields. To match the demand, a large selection of parallel platforms
have emerged, using multicore processing units to achieve application accelera-
tion. These platforms vary in terms of both architecture and flexibility in terms of
programming. For applications to fully exploit such multicore computing systems,
specific techniques and approaches need to be used. Therefore, programmers (1)
either need to be able qualify their requirements and align them to the correspond-
ing platform and tools, or (2) use portable programming models and re-use the
same implementation on multiple platform. In this work, we focused on the latter
scenario.

Computational finance is an area where being able to adapt to the constantly
increasing amounts of data, as well as reducing simulation times, are primary con-
cerns. In fact, the core computational finance topics, such as option pricing, al-
gorithmic high frequency trading and risk management define their own trends in
HPC platforms and tools.

In this thesis, we focus on a specific computational finance application, and at-
tempt to determine a suitable HPC platform for it. Specifically, we investigate the
computational requirements of a scenario-based ALM application, which is part
of a commercial product offered by Ortec-Finance. Aiming to use portability to
make our search more efficient, we propose a parallel OpenCL algorithm for ALM.
Our initial ALM analysis indicated several branches, which could be problematic
for GPU processing. Therefore, we selected the Xeon Phi as our main platform
candidate. Further, we applied a series of basic optimizations such as data layout
conversions, selective use of compiler flags, workgroup configuration and loop col-
lapsing. Moreover, we tried to reduce the branch divergence effect where present.
We achieved speedups that varied from 17x for small input sizes to 150x for larger
input sizes. We further observed that Xeon Phi can provide good scalability for
both single and double precision simulations, compared to a general purpose CPU.
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As many Xeon Phi studies suggested OpenMP as the primary programming
paradigm for this platform, we developed a fully vectorized OpenMP version of
ALM in order to offer a comparative analysis for our OpenCL solution. Our em-
pirical results show that our OpenCL implementation significantly outperforms the
OpenMP one.

Furthermore, as OpenCL offers the benefit of functional portability we further
investigated the performance portability of our OpenCL implementation. Specific-
ally, we investigated ALM’s performance on the most common alternative HPC
devices - a HPC CPU and an NVIDIA GPU. The experimental results indicate that
our application preserved its good scalability among the platforms. Also, we ob-
served that for both the CPU and the GPU, we manage to achieve good bandwidth
utilization (more than 50%) which was one of our issues for the Phi. We also note
that as we used very basic optimizations, we needed very little tuning of the kernel
for the different platforms. Overall, these results showed that OpenCL can poten-
tially yield portable performance if we optimize for specific metric i.e bandwidth
utilization.

Overall, we showed that OpenCL can be used effectively for computational fin-
ance applications with characteristics similar to our ALM kernel. Also, we proved
that a well optimized OpenCL kernel can outperform OpenMP on native execution
on the Intel Xeon Phi. In addition, we illustrated that the use of generic optimiz-
ations have not significantly affected the performance levels of OpenCL on other
devices, while preserving a decent amount of performance in terms of scalability.
Yet performance portability remains a vague term, with no systematic approach for
proving/disproving it.

7.2 Future Work

Although we focused our study on a specific test case model, there are many other
kernels that need acceleration. Our approach can be extended to other applications
than ALM. Furthermore, our portability analysis is rudimentary and based on too
few devices, problems that need correcting in the near future.

A first step to extend the findings of this project, is to use OpenCL for other
financial applications. As we discussed in Chapter 2 and 3, option pricing applic-
ations are dominated by NVIDIA GPUs and CUDA. Thus, there is a very large
pool of option pricing established results with CUDA. These results can be used
as benchmarks to explore the suitability of OpenCL for option pricing. Potentially,
such a design space exploration can be expanded to other generic or custom finan-
cial applications (e.g. similar to Ortec-Finance approach).

Further research is also needed to assess the quality of our OpenCL kernel on the
latest Phi architecture (i.e. Knights Landing). Unfortunately, at the time we com-
pleted this project, KNL wasn’t available to the public. KNL promises fundamental
architectural upgrades compared to KNC (the device used in this project), and it
is the generation that could be used in production in the near future. Such ana-
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lysis is therefore necessary. Furthermore, the behavior of optimizations (presented
in Chapter 4) on the latest architecture can provide a good estimate of the overall
performance gain for the new Phi generation.

Lastly, the performance portability of OpenCL can be further investigated by
expanding the results obtained in Chapter 6. In more detail, the novel OpenCL
kernel can be ported into other platforms and its performance evaluated; similarly,
different sets of optimizations can be applied and their generality can be assessed
empirically. Then, by analyzing the results and their patterns, one can establish
which hardware specific optimizations can harm performance on other platforms
and to what extent.

7.3 Other Contributions

A part of our work (mostly, Chapter 5) was accepted and presented at the 5th In-
ternational Workshop on Multicore Software Engineering (IWMSE16), a workshop
associated with the 22nd International European Conference on Parallel and Dis-
tributed Computing (Euro-Par 2016). The title of the above-mentioned paper is:
Accelerating Computational Finance Simulations with OpenCL.
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