
Dynamic Mutation Rate Control for the Genetic Algorithm for Global Geometry
Optimization

Jacek Kulik1

Supervisors: Peter A.N. Bosman1,2, Anton Bouter 2, Vanessa Volz 2

1EEMCS, Delft University of Technology, The Netherlands
2Centrum Wiskunde Informatica, Amsterdam, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Jacek Kulik
Final project course: CSE3000 Research Project
Thesis committee: Peter A.N. Bosman, Anton Bouter, Vanessa Volz, Thomas Abeel

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Global Geometry (or Cluster) optimization is the
process of finding the most stable formations of a
cluster of some atoms. A genetic algorithm was de-
veloped to find the global minimum of a cluster us-
ing the Lennard-Jones atom interaction model effi-
ciently. Determining the optimal hyper-parameters
for the algorithm is a computationally intractable
task without proper search strategies. Furthermore,
during different stages of the algorithms it may
be beneficial to change the importance of explo-
ration vs exploitation of the search space. To solve
these problems, nine strategies of choosing the al-
gorithm’s mutation rate are presented and bench-
marked on the time to find the global optimum. Ex-
perimental results show that such strategies can re-
duce the mean time required to find a global mini-
mum for a given cluster when compared to a con-
stant low mutation rate. However, the results are
not statistically significant for all clusters tested.
The variance in the results might be caused by the
understudied factor of the local optimization the al-
gorithm utilizes. A majority of the algorithm’s run-
time is taken up by it, leading to the GA compo-
nents showing less impact on the results.

1 Introduction
Material science is a field that has grown in popularity in re-
cent decades thanks to significant advances in technology.
Discovering new materials has always been important for
creating new advanced technologies. Nowadays, the quali-
ties demanded from new materials are becoming more diffi-
cult to attain. To this end, a field of optimization has devel-
oped which aims in helping researchers find potential candi-
dates for new material technology. Global Geometry Opti-
mization (GGO), also called Structure or Cluster Optimiza-
tion, is the process of finding structures of those atoms with
the lowest energy possible. Such configurations are called
(global) minima. An example optimization of a cluster of
13 carbon atoms can be seen in Figure 1. It shows a clus-
ter of randomly positioned atoms, and their globally optimal
structure. The search space, called the Potential Energy Sur-
face (PES), is complex, with many (possibly deep) local min-
ima, hindering the process of finding a globally optimal so-
lution of a cluster[1]. Atoms exhibit several interactions in
between themselves such as electrical repulsive forces and
strong bonding forces. A useful relaxation of the problem
is the use of Lennard-Jones (LJ) potential [2]. It consists of
treating the atoms as infinitely small points, with the energy
between them being a simple function of their distance. The
most widely used potential is Lennard-Jones 12-6 and its for-
mulation is as follows [3]:

VLJ = 4ϵ([
σ

r
]12 − [

σ

r
]6) (1)

where ϵ is the depth of the attractive well, r the distance
between the atoms, and σ the distance at which the poten-
tial changes signs. While some LJ global optima have been

Figure 1: Optimization of a cluster of 13 carbon atoms. On the left is
a random arrangement of the atoms, and on the right is the optimized
version of the cluster. Such organization leads to the cluster having
the lowest energy between the atoms. This cluster shows an example
of icosahedral symmetry.

shown to not be the real-world global minima [4], most of
them hold up to scrutiny and are used by researchers in the
real world to experiment on materials. GGO has many uses
for researchers and manufacturers in the material science
field. The process of finding new materials with desired prop-
erties is difficult but has many uses. Some examples of mate-
rials discovered using GGO include: photonic coating [5] and
space radiation shields [6]. Even when there is uncertainty
as to if the found solution is a global minimum, producing
several possible candidates is crucial for researchers conduct-
ing physical experiments. Using these estimations instead of
guessing materials to test, they now have a curated list of ex-
periments to perform that are more likely to produce suitable
materials.

Much research has been done in the field of GGO. It has
been shown to be an NP-hard problem [7]. Due to this, it
is impossible to make a polynomial time algorithm that could
find optimal solutions quickly, so traditional methods of solv-
ing NP-hard problems have to be utilised, like the genetic al-
gorithm in this case. One of the most important early contri-
butions is the Cambridge Energy Landscape Database [2]. It
contains the clusters currently believed to be the global min-
ima for LJ clusters of size 3 through 150. It is important
to note that these solutions are not guaranteed to be the true
global minima, as there is no method of proving this attribute.
They are however very likely to be the global minima, as no
better solutions have been found so far.

The first algorithms for GO were brute-force algorithms.
They searched through the space of possible positions of
atoms exhaustively to find optimal solutions. This approach
did not scale well to more atoms, as the number of atom in-
teractions grows quadratically with their number, so the so-
lutions become increasingly more complex. Early sophisti-
cated solutions involved Minima Hopping [8], consisting of
employing short duration temperature-based molecular dy-
namics to shift the cluster into a new configuration, followed
by local optimization. Another approach was Basin Hopping
[2], which involves randomly perturbing the atoms in some
way and applying local optimisation on them to find the near-
est local minima. Soon thereafter, Genetic Algorithms (GA)
started to be used for GO [9]. They involve the use of pro-
cesses akin to natural selection to balance the exploration and
exploitation of candidate solutions. A more thorough expla-



nation of genetic algorithms is presented in section 3.
The tuning of parameters for a GA is a task for which no

perfect solution has been found. Different formulas and gen-
eral practices have been created by various researchers. For
example considering the mutation rate, [10] suggests a rate
between 0.001 to 0.01 depending on the problem, while [11]
suggests using a mutation rate as high as 0.05 to 0.2 (with
a low population size). These rates have a large variance,
however they are intended for different problems. This high-
lights the problem of finding good parameters for a specific
problem or a specific problem instance. Most algorithms are
currently tuned by hand, where a researcher tries several val-
ues for each parameter in isolation and selects the ones giving
the best results. In addition to it being hard to select the cor-
rect parameters for a general algorithm, the optimal parame-
ters vary between different problems. Researching the selec-
tion of these parameters dynamically is the field of dynamic
parameter control. It focuses on assigning parameters dur-
ing the runtime of the algorithm, such as mutation rate (pm),
crossover rate (pc), and population size (N ) [12][13]. Aside
from the need of assigning hyper-parameter values for a prob-
lem, there is also a need to vary the values of the parameters
during execution [14]. At the start of the runtime of the GA
it is likely favourable to increase the amount of exploration
done, and during the latter stages of the algorithm, exploita-
tion of the search space is more important. This heuristic is
the assumption underpinning of simulated annealing search,
which has shown great results in certain fields [15]. This sug-
gests that such an approach can be beneficial for many prob-
lems.

There has been little work done in dynamic parameter con-
trol literature of applying self-adaptability to solve specific
problems. Most papers focus on the theoretical basis of self-
adaptability and showcase its performance on sample prob-
lems that are meant to highlight the aspects of the algorithm
[13]. General guidelines about how to apply parameter con-
trol in practice are still missing. Thus trying to apply this
knowledge in real-world contexts, and trying to specifically
tune the self-adaptability strategy to a specific problem is an
understudied field. There has been little work done on self-
adaptability in the GGO field. This paper aims to fill that
void by examining the efficacy of methods proposed in the
literature to the GGO problem. It describes the common ap-
proaches used, benchmarks their results in comparison to a
baseline GA algorithm and discusses the results and future
recommendations.

2 Adaptation Strategies
A. Eiben, et al. [16] proposes a categorization of adaptation
strategies by the following two criteria:

1. What is changed?

2. How is the change made?

Under this classification, this paper chooses to investigate the
second question. Both questions are equally interesting, how-
ever trying to answer both at once would incorporate a lot of
complexity and possible combinations. This would make an
analysis needlessly long and difficult to interpret. A deci-

sion was made to only consider the adaptation of the muta-
tion rate. In the context of GO, mutation is important because
it allows the algorithm to escape local minima. The energy
surface of atomic clusters is filled with many local minima,
some of which may be hard to get out of[17]. Dynamically
managing the mutation rate is a topic studied in literature al-
ready [13][11], thus making any results comparable to previ-
ous findings, and allowing for the use of verified methods to
apply to the GO problem.

Again by [16], the how aspect can be further clarified into
the following methods:

• Deterministic Parameter Control. This involves creating
some heuristic or algorithm to set the parameter values
without any input from the algorithm. Examples of at-
tributes this can take as input are: execution time, gen-
eration number, random number. These methods can be
simpler to develop, as they can follow a natural human
understanding of the problem. For example, it could
make sense to have a high mutation rate at the start of
the search in order to explore more, and then decrease
the mutation rate over time in order to allow the algo-
rithm to explore the space more.

• Adaptive Parameter Control. Such algorithms can take
as input any data from the algorithm, and from external
sources. Examples of inputs may include: average fit-
ness value, convergence metric, generation number, best
fitness value so far. This control strategy allows for a
lot more complex control of the parameters, however it
also makes developing such a strategy much more dif-
ficult. The designer has to decide which inputs to take,
how to combine them, and what to output. It is plausible
to not foresee something and make some mistake that
could cripple the performance of the GA.

• Self-adaptive Parameter Control. Self-adaptation is the
process of utilising biological evolutionary processes to
iteratively improve some aspect of an individual. It can
be compared to utilising a GA to optimize the selected
parameter. In the context of GAs, self-adaptation is
achieved by appending parameter information to the end
of an individual’s genome [18]. This is a natural and
simple approach to parameter control. Since the algo-
rithm already executes evolutionary processes, why not
implement those to the control of the parameters as well?
The downside of this approach is that it extends the
length of the genome, meaning that there are more possi-
ble individuals, increasing the generation count required
to start seeing benefits from a better parameter value.
Implementation of it is however simpler than the other
methods, but it does require choosing the behaviour of
the parameter value in mutation and crossover events.

A parameter can be applied at multiple possible levels, also
called scopes. The possible scopes for mutation specifically
are:

• Population - mutation rate applies to the entire popula-
tion of individuals during a given generation.

• Individual - mutation rate applies to a single individual
during a generation.



• Mutation - mutation rate applies only to a single type of
mutation.

• Gene - mutation rate applies to a single or a set of genes.
For example in the case of GO, this could mean different
atoms being subject to different mutation rates.

The mutation rates considered for this research come from
a variety of literature and knowledge-based sources. They
were selected based on their prevalence, ease of implementa-
tion, or the potential efficiency of their results. The strategies
used are as follows:

1. Constant 0 - a constant 0% mutation rate. This was in-
cluded to test the algorithm’s performance without any
mutation

2. Constant 10 - a low constant mutation rate of 10%.
3. Constant 30 - a high constant mutation rate of 30%.
4. Time Deterministic. Extrapolates linearly between a

mutation rate of 20% down to 1% over the generations
[19].

pm(t) = 0.1 + 0.19× 1− t

T
(2)

where t is the current generation, and T is the maximum
generation number.

5. Average Fitness Heuristic (AFH) from [20]. Takes as
input the mean fitness of the current generation, and the
fitness of the considered individual. This allows for the
worse individuals to try to explore the space more to find
better solutions, while not interfering significantly with
high-fitness individuals.
If fi < f̄

pm = k4 (3)
else

pm = k2 ×
fmax − fi
fmax − f̄

(4)

where fi is the fitness of the individual, f̄ is the mean
fitness, fmax is the best fitness found so far, and k2 and
k4 are constants, set here respectively to 1 and 0.6.

6. Self-adaptive (SA), as suggested by [18]. The mutation
rate for an individual is encoded in their genome. The
range of possible rates is pm ∈ (0, 0.5). Crossover of
the mutation rate consists of taking the average of the
mutation rates of the parents. Mutation of the mutation
rate happens with a probability equal to the mutation rate
and is defined as follows [21]:

pm = pmold
+ σsa ×X ∼ N (0, 1) (5)

The value pm is then clipped between the values (0, 0.5).
σ is the self-adaptation speed parameter and is set to 0.3.

7. Fuzzy Logic Controller (FLC) from [13]. Utilises a
fuzzy logic representation of the convergence of the al-
gorithm and uses human-understandable rules to pro-
duce a sensible mutation rate. Refer to the paper for a
specification of its workings. It follows understandable
rules, however those rules may not function correctly if
the relationship between the mutation rate and the resul-
tant fitness values is complex. In such cases, the rules

made by human knowledge may fail to produce satisfac-
tory results.

8. Mutation Success Condition (MSC) [21]. This strategy
tries to set a mutation rate such that the success rate of
the mutations will be equal to some constant. A muta-
tion is defined as a success if after the mutation the fit-
ness of the individual has increased. The mutation rate
is updated every 3 generations and the update procedure
is as follows:

pm = pmold
+ σmsc(x− s) (6)

where σ is the aggressiveness factor equal to 0.5, x is the
success rate target equal to 0.2, and s is the success rate
of the mutations over the last 3 generations.

9. Distance To Estimation (DTE). This strategy utilises an
estimation of the global minimum in order to set the mu-
tation rate for a generation based on how close it got to it.
This follows the intuition that the mutation rate should
be high at the start when exploring the space and low at
the end when trying to exploit it.

pm = 0.05 + 0.25× (1− e−|qi−qe|/10) (7)

where qi is the energy of the individual, and qe is the
estimation of the global minimum. The estimations here
were created by taking the best result for a cluster of
one fewer atoms than the one currently being consid-
ered. This was done as it is generally an accurate estima-
tion and would prove satisfactory in a scenario of trying
to find the minima of progressively bigger clusters. In
other configurations, other estimations would have to be
developed.

A summary of the strategies can be found in Table 1. It
presents the strategies, a brief description, a formula (if nec-
essary), and which category they belong to. In this research,
only adaptation strategies in the population and individual
scope have been considered. The primary reason for this is
their lack of representation in literature. There aren’t many
resources talking about mutation or gene scope adaptation.
This is primarily because most genetic algorithms utilise a
single mutation operator which always works on the whole
genome. Additionally, adding in those strategies would intro-
duce additional implementation and testing challenges.

These strategies present a range of different ways of man-
aging the mutation rate, so they should produce various re-
sults, which should shed insight on how they perform in the
real world. The strategies were implemented into the Base-
line Genetic Algorithm, explained in the next section.

3 Baseline Genetic Algorithm
A Baseline Genetic Algorithm (BGA) was developed by a
team of students for a different project, which was adapted
for use in this research while keeping the same execution se-
quence. It was made with the goal in mind of creating a sim-
ple algorithm that could be later modified to identify possi-
ble improvements among its parts. It incorporates commonly
used mutation and crossover operators in the GA research
field. The BGA is based on a standard GA architecture, where



Name Summary Formula Category Scope

Constant 0 Constant zero mutation pm = 0 Constant Population
Constant 10 Constant low mutation pm = 0.1 Constant Population
Constant 30 Constant high mutation pm = 0.3 Constant Population
Time Determinis-
tic

Mutation determined by linear
function of time

pm(t) = 0.1 + 0.19× 1−t
T Deterministic Population

Average Fitness
Heuristic

Uses distance to mean and max
fitness

pm = k2 × fmax−fi
fmax−f̄

Adaptive Individual

Self-adaptive Encodes mutation in genome pm = pmold
+ σsa ×X ∼ N (0, 1) Self-

adaptive
Individual

Fuzzy Logic Con-
troller

Uses FLC using a convergence
metric

- Adaptive Population

Mutation Success
Condition

Keeps the mutation rate at 20% pm = pmold
+ σmsc(x− s) Adaptive Population

Distance to Esti-
mation

Distance from individual to es-
timation of optimum

pm = 0.05+0.25×(1−e−|qi−qe|/10) Adaptive Individual

Table 1: Summary of mutation adaptation strategies

Figure 2: Baseline Genetic Algorithm Program Flow. The algorithm
starts by creating a random population sample, then proceeds to the
generation cycle. During each generation, individuals are scored
according to a fitness function, then some of them are selected and
new offspring are created using crossover and mutation. If at the
end of the generation the convergence criterion has been met, the
algorithm terminates.

during each generation individuals are selected, crossover is
performed to produce children and some of those children get
mutated. As the last step the individuals undergo local opti-
mization. The algorithm was developed in Python 3.11 with
the use of the Atomic Simulation Environment (ASE) [22] li-
brary. It allows for easily keeping track of atoms, performing
energy calculations and local optimization. The general flow
of the algorithm is presented in Figure 2

The detailed implementation of the BGA was chosen in
accordance to standard practices found in the literature. The
selection strategy used is elitism with a configurable number
of surviving individuals, similar to that in [23]. The crossover
operator is the cut and splice [9]. It involves randomly select-
ing two parents, aligning their atoms to the centre and using
Principle Component Analysis (PCA) to align their principal
axes. Next, a plane is generated through the clusters, and a
child is created by combining the opposite sides of the cluster

from each parent. This procedure is performed until the de-
sired number of children is acquired. After any modification
made to a cluster, such as crossover or mutation, the cluster
is checked for validity. A configuration is deemed valid if it
contains the correct number of atoms and no two atoms are
closer than 0.15 angstrom (angstrom is the default distance
unit in ASE, its symbol is Å and it is equal to 10−10m). This
check is implemented because when atoms get too close to-
gether, the forces between them start to grow very rapidly,
so no stable configuration is possible with atoms this close
together. Discarding such configurations allows speeding up
the computation time.

The child clusters may then undergo mutations, with a
probability based on their mutation rate. A mutation rate of
0.1 means that there is a 10% chance that a cluster would un-
dergo a specific mutation. Only one mutation can be applied
to a certain cluster during a generation. The mutations present
in the algorithm are as follows:

• The first implemented mutation is Random Displace-
ment [24]. It involves moving some of the atoms in the
cluster by a randomized distance. This algorithm’s vari-
ation of it applies the mutation to every atom indepen-
dently and (possibly) moves them in a random direction
by a specified distance (default 0.1 angstrom). This mu-
tation may be repeated until the cluster is in a valid state.

• The second mutation operator is Twinning [24], which
consists of using a plane to divide the cluster and rotate
one side of it. This is done here by calculating the nor-
mal of the plane, and randomly determining which side
of it to consider. A random degree is drawn and the se-
lected side is rotated thusly.

• The final implemented mutation is Etching [24]. The
first variation of it introduces a new atom, performs local
optimization and then removes the atom with the new
highest potential energy. Another variation of it is the
opposite; it removes the atom with the highest potential
energy, performs local optimization and then introduces



Parameter Symbol Value
Base Population size P 8
Local Optimizer (LO) - BFGS
Maximum LO steps optsteps 1000

Maximum number of iterations max iter 100
Iterations to convergence conv iter 10

Parents selected per generation numselection P/2
SA speed σsa 0.3

AFH Default k4 0.6
AFH Aggresivenes k1 1

Length of FLC window size flc window 2
MSC window size msc window 3

MSC target x 0.2
MSC aggressiveness σmsc 0.5

Table 2: Parameters of the Baseline Genetic Algorithm and of the
mutation parameter control strategies

back a random atom.

The algorithm determines that it has converged if it has
not seen any significant (defined as 10−6eV) improvement in
the best fitness found for a number of generations (default
is maximum iteration count/10). The default local op-
timizer used in the algorithm is Broyden-Fletcher-Goldfarb-
Shann (BFGS) [25], which utilizes a quasi-Newton approach
to iteratively approximate a Hessian matrix to navigate the
search space. The maximum number of local steps was by
default 10,000, but was limited in this research to 1,000, as
BFGS can sometimes get stuck in computation loops, lead-
ing to excessive computation times.

4 Experimental Setup and Results
The methodology of this paper is a comparative benchmark-
ing approach. An experiment was designed, in which every
presented mutation rate control strategy is used to solve the
same problems. The clusters used for testing are the carbon
clusters of 19, 31, and 47 atoms. Carbon clusters specifically
were chosen, because they are well studied in literature, and
they serve as a good representative of general clusters. The
19 atom cluster was chosen for its simplicity, to show the re-
sults of the algorithm for clusters where the global minima
can be easily found. LJ31 clusters are known for their sev-
eral deep local minima, so it showcases the algorithm’s per-
formance on a complex energy surface. The last cluster was
chosen for the fact that it has a higher atom count, however
its landscape is simple. This will showcase how well the al-
gorithm can find a simple minimum in a large cluster. An
algorithm is considered to have found the minimum if it is
within 10−6 ∗num atoms2 eV of it. This threshold was cre-
ated with the consideration of floating point numbers and es-
timates. Each atom has an interaction with every other atom,
of which all are subject to floating point precision errors. Ad-
ditionally, the relaxations and energy calculations present in
ASE perform some estimations in order to speed up computa-
tion, which may have an effect on accuracy [22]. Lastly, when
examining the forests provided by Doye et al. [17], it can be
noted that for most clusters the difference between the global

minimum and the deepest local minimum is on the order of
approximately 0.5eV. Thus even if the algorithm doesn’t find
the exact global minimum, then if it is within the threshold
set it is most likely in the funnel of the global optimum. The
only step necessary to find the global minimum then would
be extensive local optimization. However for the purposes of
faster algorithm execution, the number of local steps was lim-
ited to 1000, which hinders its ability to get arbitrarily close to
the global minimum. Each test was repeated on 20 different
seeds to aid in providing statistically significant results. This
number was chosen because it was the maximum that could
be run in the allocated time on the supercomputer. All tests
were run on the DelftBlue cluster [26] using the compute-a
nodes. These nodes use the Intel XEON E5-6248R 3.0GHz
processor with 3GB of memory per core. Experiments were
run on 1 core each. All of the hyperparameters of the GA can
be found in Table 2.

The execution of a test is done as follows. The algorithm is
started with a selected adaptation strategy with the base pop-
ulation size (here 8). If it finds the global optimum early, then
it terminates early. Otherwise it continues until the conver-
gence criterion has been met. If after convergence the GA
has not found the global optimum, then it runs again with a
doubled population size. This continues until the population
size limit (here 128). At this point, if the algorithm fails, its
population is reset to 8 and its seed is incremented by 1000.
This may continue until the upper time limit for an execution
of 100 minutes, at which point the execution is reported as
a failure. The purpose of this benchmark is to determine the
algorithm’s efficacy at finding the global optimum of a given
cluster. Benchmarking this way allows to clearly demonstrate
how much time, and what population size was needed to find
a solution. Results from such tests can be used to effectively
compare the adaptation strategies in the contexts of different
cluster types.

The results are presented using boxplots for the time to find
the optimum and stacked bar charts to show the population
sizes needed to find the optimum. The green line in each
box plot shows the mean time, the upper line presents the
maximum time excluding outliers, and the lower line shows
the minimum time. For the population sizes, the stacked bar
charts can be read to see the number of times the algorithm
found the global optimum at a specified population size. If
the algorithm failed at 128 and had to restart, then regardless
of the population size it ended with, it still gets reported as
being 128.

For the LJ19 cluster times shown in Figure 3, it can be ob-
served that the algorithms successful at it managed a median
time of about 14 seconds. Cons. 1 and Time det. showed
poorer results. In Figure 4, all algorithms aside from Cons. 0
finished almost all or all of their runs with a population size
of 8. The sample size is not high enough to conclude whether
the runs at 16 for some algorithms were anomalies or if they
should be expected for all of them.

The LJ31 cluster is significantly bigger, and it also has a
very complicated global minimum to find. The time results
for it are presented in Figure 5. The median for algorithms
which did well here is in the range of 230 to 300 seconds.
Most algorithms show a big spread between the minimum



Figure 3: Boxplot graph of the time needed for the GA to find the
global optimum for an LJ19 cluster varied by adaptation strategies

Figure 4: Stacked bar chart of the population used for the GA to
find the global optimum for an LJ19 cluster varied by adaptation
strategies. Each column represents an adaptation strategy, and each
colour of the bar represents the cumulative count of how many times
a certain population size was needed to find the global optimum.

and maximum, with there being some significant outliers as
well. Population results shown in Figure 6 show a big change
over LJ19. The spread between the different population sizes
is a lot more even. Some algorithms had to especially use the
maximum population size, especially AFH.

Lastly is the LJ47 cluster. It is a cluster with a simple
global minimum. The spread in the times in Figure 7 is very
large. There are some significant outliers for Cons. 2 and
Time det. AFH shows the best results. As for the popula-
tion chart in Figure 8, it can be observed that the population
sizes needed were lower than those for LJ31. Most of the runs
finished in the 8 and 16 population size.

The performance of each strategy for each cluster was
compared against the baseline of Constant 10 and Constant
30. A one-tailed Mann–Whitney U test with α = 0.05 was

Figure 5: Boxplot graph of the time needed for the GA to find the
global optimum for an LJ31 cluster varied by adaptation strategies

Figure 6: Stacked bar chart of the population used for the GA to
find the global optimum for an LJ31 cluster varied by adaptation
strategies. Each column represents an adaptation strategy, and each
colour of the bar represents the cumulative count of how many times
a certain population size was needed to find the global optimum.

conducted to ascertain whether the difference in the results
is statistically significant. The results of these tests are pre-
sented in Table 3. From the table it can be observed that
the difference in performance for LJ19 and LJ47 is not high
enough to be considered statistically significant. The perfor-
mance for LJ31 has all algorithms except for DTE with p-
values less than 0.05 for Constant 10, making it significantly
better performing.

5 Responsible Research
Material science is a neutral field. The discoveries can be
used in any area from providing higher quality resources in
humanitarian aid, to developing new materials for the con-
struction of warships. This research attempts to advance the



Figure 7: Boxplot graph of the time needed for the GA to find the
global optimum for an LJ19 cluster varied by adaptation strategies

Figure 8: Stacked bar chart of the population used for the GA to
find the global optimum for an LJ19 cluster varied by adaptation
strategies. Each column represents an adaptation strategy, and each
colour of the bar represents the cumulative count of how many times
a certain population size was needed to find the global optimum.

field of global optimization, and any discoveries are provided,
as most science is, to everyone who may find it. Thus it can
equally benefit those seeking to use it for good or to cause
harm. There is no reasonable solution for the researcher to
undertake to diminish any possible negative outcomes of this
research. Limiting the reach of the study to only actors want-
ing to use it for ethically positive purposes is not feasible, as
it would require intensive information gathering about them,
and then still the actor could misrepresent their intentions.

In order to aid in reproducibility, all the results were ran
using the same seeds supplied to the numpy.random.seed()
function. This sets the results of all random number genera-
tions to be deterministic from the provided seeds. Doing this
ensures that the results can be replicated, by providing the
program with those seeds. The seeds used in this research

Cluster Size
LJ19 LJ31 LJ47

vs 10 vs 30 vs 10 vs 30 vs 10 vs 30
T. det. 0.825 0.237 0.005 0.495 0.955 0.559
AFH 0.729 0.162 0.005 0.271 0.280 0.014
SA 0.452 0.063 0.031 0.692 0.746 0.197

FLC 0.338 0.036 0.045 0.755 0.082 0.003
MSC 0.886 0.271 0.010 0.516 0.937 0.538
DTE 0.347 0.02 0.245 0.0896 0.940 0.347

Table 3: Mann-Whittney U test of performance of strategies vs the
performance of the Constant 10 and 30 mutation rate. These values
can be interpreted as regular p-values, with statistical significance
usually being considered at a value lower than 0.05

were integers in the range 0 to 19 (inclusive). The results
were verified to be consistent; running the same seeds again
did produce the same results. Any researchers willing to re-
produce the results may do the same. The code used can be
obtained in the author’s GitHub repository1. The dataset pro-
vided by Wales et al. [1] is free to use for other researchers,
who may also independently verify the results there.

6 Discussion
Overall, the adaptation algorithms seem to have performed
more consistently than the constant mutation rates. Constant
zero did not perform well in terms of population sizes num-
bers. This is likely due to it terminating early often, which
also leads to it having a lower mean time result. Cons. 15
and Cons. 30 perform acceptably, though their performance
varies significantly between the tested clusters. Time det. did
not perform well. This is likely due to the choice of the max-
imum number of iterations. 100 was chosen because it is a
value that works well for all of the tested clusters. LJ47 runs
never stopped because they reached the iteration limit, only
sometimes exceeding 90. This consequently meant that time
det. was able to show good results in LJ47, as it utilised its
full range. MSC also generally performed poorly. The way a
mutation was judged to be a success or not was by looking at
the cluster immediately before and immediately after a mu-
tation. Whether this would improve the fitness of a cluster is
a random and difficult process. The cluster had already un-
dergone local optimization, so it is likely that after a mutation
it will be in a lower fitness position. This issue could be re-
solved by comparing the cluster before the mutation, and after
mutation and local optimization (may still be implemented).
This was not done due to it being difficult in the framework
of how the BGA was designed. The self-adaptive strategy
increased the size of the genome and increased the number
of operations necessary to perform during each crossover and
mutation. This does increase the time it takes to perform a
generation. However, due to most of the execution time of
this genetic algorithm being taken up by local optimisation,
this does not end up being an issue.

Data was gathered about the mutation rates supplied by the
adaptation strategies and is presented in Figure 9 for LJ47,

1https://www.github.com/Senteran/go-ga-adaptative



the graphs for the other clusters can be found in Appendix A.
It can be observed that most strategies follow the trend of
higher mutation rates at the start, and lower later on. AFH
acts on individuals so its behaviour is almost opposite. As the
average individual’s fitness improves, then individuals with
lower fitness values are going to receive higher and higher
mutation rates. The self-adaptive strategy doesn’t show any
convergence towards one mutation rate over time, but rather
oscillates between different values. This might be a quirk of
the specific implementation of it that was chosen.

The different handling of the mutation rates lead to dif-
ferent generations the algorithms took to converge. Higher
mutation rates likely lead to more generations to converge.
This can be a positive, as it can prevent the algorithm from
converging prematurely but it can also needlessly cause more
computation, where a couple of generations of simple local
optimization could have found the global minimum. The
graph of convergence generations for LJ47 is shown in Fig-
ure 10, with more graphs of generations to convergence being
available in Appendix B. This graph shows that it is hard to
find a correlation between the generations of successful so-
lutions, and the quality of an control strategy. For example,
AFH has the lowest median time for this cluster, however in
terms of the median generation count, it is among the highest
of the algorithms. Further research would be needed to de-
rive any conclusions about optimal convergence generation
counts.

In matters of the local optimizer used, it was considered to
change it to the Fast Inertial Relaxation Engine (FIRE). This
algorithm uses a velocity adaptation method similar to phys-
ical inertia to dynamically update the velocities of each atom
based on the dot product of the gradient and momentum vec-
tors [27]. This change was considered because FIRE’s execu-
tion time on a cluster is much more consistent (and generally
much lower) than BFGS, leading to total results which are
less varied as well. However, after preliminary testing, FIRE
reduced the number of global minima successfully found by
about 4 times, while only decreasing the computation time by
30%. Because of this the default BFGS algorithm was kept.

In this research the adapted mutation rate was applied
equally to three mutation operators. Undoubtedly those muta-
tions would benefit from having different mutation rates. This
consideration was excluded from this research due to the in-
creased complexity that it would add. Better results can be
acquired by adding this as a consideration. For example, for
the LJ31 cluster, etching proves very useful due to its many
deep minima, while it may come in less use in LJ19.

The results presented in this paper show a large degree of
variance. The biggest reason for this is the algorithms heavy
use of local optimization. It acts in a similar way to a muta-
tion operator, where it takes an individual and moves it along
the energy surface in a probabilistic manner. It does it by
purely looking at the functions of the potential between the
atoms. That is a different approach than the mutation oper-
ators, which try to manoeuvrer the atoms in sensible ways
that might produce better clusters. Accounting for the fac-
tor of the local optimizer in the results is difficult. There has
been little research done on the impact this has on the Genetic
Algorithm so giving any results with confidence is impossi-

ble. Research using some of these strategies without the use
of local optimizers has shown good results in the past, like
in Herrera et al. [13]. They have shown that their FLC im-
plementation greatly outperformed the other solutions they
considered.

Figure 9: Graph of the average mutation rate over time for each of
the adaptation strategies. Some of the strategies work on individu-
als, while some work on the whole population so the interpretation
of their supplied mutation rates differ. The strategies take different
approaches to the mutation over time, some decrease it, and some
keep it stable.

Figure 10: Boxplot of the generations needed for each of the algo-
rithms to converge for LJ47 clusters for all population sizes.

7 Conclusions and Future Recommendations
The adaptation strategies presented in this paper show a small
improvement to the performance of the algorithm when com-
pared to the chosen constant mutation rates. The degree of
improvement depends heavily on the specific cluster chosen.
For simple or small clusters the change doesn’t appear to be



large. It becomes more prominent in clusters when the algo-
rithm runs for a larger number of generations, as then they
total differences in the number of mutations can take effect.
The choice of strategy for cluster is also important to note.
Some perform better for different types of clusters.

These results are not fully conclusive however. The heavy
use of local optimisation makes analysing the results of this
research difficult. Further research should be undertaken in
the field of analysing genetic algorithms utilising local opti-
mizers, or more broadly, more operations than just crossover
and mutation.

Additionally, this research only considered a benchmark of
the algorithm’s efficiency at finding a global minimum. This
was done to make analysing the results easier. Different eval-
uation metrics or application domains may reveal deeper in-
sights into the benefits of dynamic control.
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[21] T. Bäck, Evolutionary Algorithms in Theory and Prac-
tice: Evolution Strategies, Evolutionary Programming,
Genetic Algorithms. Oxford University Press, Feb.
1996.

[22] A. Hjorth Larsen, J. Jørgen Mortensen, J. Blomqvist,
I. E. Castelli, R. Christensen, M. Dułak, J. Friis,
M. N. Groves, B. Hammer, C. Hargus, E. D. Hermes,
P. C. Jennings, P. Bjerre Jensen, J. Kermode, J. R.
Kitchin, E. Leonhard Kolsbjerg, J. Kubal, K. Kaasb-
jerg, S. Lysgaard, J. Bergmann Maronsson, T. Max-
son, T. Olsen, L. Pastewka, A. Peterson, C. Rost-
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A Mutation Rate Graphs

Figure 11: Graph of the average mutation rate over time for each of
the adaptation strategies for LJ19.

B Convergence Generations Graphs

Figure 12: Graph of the average mutation rate over time for each of
the adaptation strategies for LJ31

Figure 13: Graph of the average mutation rate over time for each of
the adaptation strategies for LJ47.
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Figure 14: Graph of the convergence generations for each of the
adaptation strategies for LJ19.

Figure 15: Graph of the convergence generations for each of the
adaptation strategies for LJ31.

Figure 16: Graph of the convergence generations for each of the
adaptation strategies for LJ47.
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