
Enhancing the privacy and security of Hyperledger Fabric smart contracts using
different encryption methods

Rado Stefanov, Prof. Dr. Kaitai Liang
TU Delft

Abstract
Blockchain networks have gained recent popularity
among organisations that want to make use of the
security aspects that blockchain provides. Fabric
is one of the most used distributed network tech-
nologies, most commonly applied in scenarios that
require confidential data to be stored securely and
privately. Use case examples are finance, trading,
dispute resolution and healthcare record-keeping.
Multiple research has shown that Fabric has vul-
nerabilities that can allow malicious attackers to
obtain access to the data stored in the ledger or
the state database. This research presents a sym-
metric encryption methodology that can be imple-
mented in most of the Fabric smart contracts to
protect the stored information in both ledger and
state databases. Some drawbacks of the method
are increased smart contract execution time, in-
creased storage size, slightly higher code complex-
ity, and limitations when executing CouchDB range
queries. In conclusion, although this implementa-
tion enhances the security levels of Fabric, other
approaches can be used to additionally improve
data protection, such as ZKPs and MPC.

1 Introduction
Hyperledger Fabric (Fabric for short) is one of the most
used blockchain platforms among corporate organisations
and businesses. By definition, Fabric is a distributed ledger
technology (DLT) blockchain platform [1]. The blockchain
concept has recently gained a high reputation because of
cryptocurrencies like Ethereum and Bitcoin. Fabric, however,
is a blockchain platform that does not rely on a cryptocur-
rency. The reason for this is that unlike Bitcoin and Ethereum,
which are public and anonymous blockchain networks, Fabric
is private and permissioned. It uses the security properties
of blockchain to allow identified parties to create their own
blockchain networks in order to maintain a shared ledger
without the need for cryptocurrency mining, which is well
known to utilise high quantities of energy [2]. Blockchain
technology allows for data to be stored without a single
centralised party responsible for keeping the information. In-
stead, data is placed in chained immutable blocks, distributed

among all the different parties in the network. Every peer in
the network has a local copy of the ledger.

Fabric is built with the concept of smart contracts in mind
(or chaincodes as called in Fabric). Smart contracts are used
to encode the business logic of the interaction between the
parties of the blockchain network using a programming lan-
guage. Fabric allows smart contracts to be developed using
general-purpose languages like JavaScript and GoLang [3].
Transactions generated from smart contracts are stored in the
blockchain network. Therefore, the parties will be ensured
that once the data is in the ledger, other parties cannot modify
it. One major drawback of public blockchain networks is
that all of the information is public, and all members of
the network are anonymous. For most businesses, this is
unacceptable, as their contracts might be confidential, and
the identity of the participants must be known. Fabric ad-
dresses these issues by allowing companies to create private
blockchain networks where all participating organisations
need to be identifiable.

The popularity of Fabric is increasing among top-level
business companies. Examples of companies that imple-
ment Fabric are Oracle, Amazon, SP Global, and others [4].
Common use cases include dispute resolution, trading [5],
supply chain finance [6], healthcare record-keeping [7]. In
general, use cases often arise in areas where it is a must to
keep information private and with limited access to specific
members only. Because of this, the security of the platform
needs to be perfected as much as possible.

This research paper will focus on the security aspects of
smart contracts specific to Fabric. The researched issue in
this paper is that data in the ledger is stored in plain text.
In the case that an attacker gains access to the information
inside the blockchain network, the assets stored will be fully
visible to the attacker. This issue allows malicious peers
or outside attackers to read private information, which by
itself creates privacy issues regarding the data stored in the
ledger. In addition, this allows attackers to read keys or other
secret data that can be used to actively attack the network and
successfully execute malicious transactions. An example is
knowing the seed of a random number generator, thus being
able to predict what will be the generated random numbers.

Given these issues with the lack of cryptography and
privacy, this study aims to answer the following question.

How to enhance the level of protection of data

1

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

stored in the ledger of Hyperledger Fabric net-
works using strong methods of encryption?

The rest of this paper is created to answer the above-stated
question. In section 2, a background of how Fabric works
is presented. Section 3 shows current research regarding
encryption in distributed ledgers and the motivation on why
this research is necessary. In section 4, the methodology
used to analyse the security and privacy issues is described.
A detailed study of the presented methods in this paper is
described in section 5. Section 6 will comment on alternative
encryption methods involving ZKPs. Section 7 presents a
general overview of the responsible research methods used
in this paper and the possible problems from implementing
the methods presented in this study. Finally, section 8 will
conclude the paper and give future recommendations for
more research.

2 Background
This section will present an overview of the main architec-
tural components of Fabric that are relevant to the current
research. Information on existing built-in privacy tools in
Fabric can be found in appendix A.

Hyperledger Fabric main components
Fabric was created with the idea to allow enterprise organisa-
tions to make use of the possibilities that blockchain networks
give, without the need to spend additional time and resources
to teach developers new programming languages or pay fees
to validators or maintain a proof-of-work network. The
way Fabric works is that it allows organisations to create
private blockchain networks. The list of organisations that
can participate in the network is strictly defined.

Fabric is composed of the following main components.
Each one serves a specific role in the network. Figure 1 shows
a schema of a simple Fabric network.

• Organisations represent each party participating in the
network. There should be at least two organisations in
a network for it to be useful. Although organisations
are not a physical part of the network, they represent a
collection of other Fabric nodes that represent and are
controlled by the corresponding organisation.

• Peers are the main physical participants of the network.
Each peer belongs strictly to one organisation, and each
organisation can have multiple peers. The function of
the peers is to store a copy of the ledger and execute
chaincode functions when an application requests it.
Orderers are network peers that ensure deterministic
consensus of the transactions. Each peer has a private
key stored in the MSP [8] that can be used to sign
transactions generated by the smart contracts. The
respective public certificate is known to all other peers
in the network.

• Orderers receive transactions from applications, group
them into blocks, and distribute the newly created blocks
to all connected peers in the network. More on the trans-
action flow will be presented in the following subsection.

Figure 1: An architecture diagram of a simple Fabric network,
consisting of two organisations and one ordering service. One
organisation has two peers, and the other organisation has one peer

• Chaincode (or smart contract) is the program code
that defines the logic of what type of transactions will
be stored in the ledger and what are the rules for cre-
ating, editing or removing entities in the ledger. Smart
contracts can be programmed to fit any business case,
as they are written in Turing-complete general-purpose
programming languages.

• Applications belong to organisations and are the con-
nection between clients and the actual blockchain net-
work. Applications take care of executing transaction
requests. They can also make requests to the chaincode
to read existing data in the ledger and present it to the
application clients. Applications can be implemented as
a web interface, mobile application, console application,
and many other forms.

• Ledger and state database The ledger represents the
entire history of all transactions made in a blockchain
network. Assets stored in the ledger cannot be modified
once committed to the blockchain. Each peer stores a
local copy of the ledger, which is the same as for all
other peers. Given a ledger, the current state of all
assets stored can be derived. For example, if there are N
transactions in the ledger, each transaction representing
a money transfer between two companies. In that case, a
single state can be derived, showing the current amount
of money for each person. Peers, together with the
ledger, also store a state using a key-value database.
Fabric supports LevelDB and CouchDB. Smart contracts
can invoke requests on the state database to read neces-
sary information. Peers make sure that the state database

2

is always up to date.

Architecture of transactions in Fabric
Most of the permissionless blockchain technologies make
use of the order-execute transaction architecture. Unlike
those, Fabric introduces a new architecture, called execute-
order-validate. This method is more scalable and much
faster than the other methods used in the other blockchain
networks. With this architecture, Fabric allows transactions
to be validated in a deterministic way. All of the three steps
will be explained below. Figure 2 shows a sequence diagram
of the complete transaction process in a network with two
organisations and one orderer.

Figure 2: Sequence diagram demonstrating the main steps of a
transaction inside Hyperledger Fabric

Execute
When an application wants to write data to the ledger, it needs
to get approval from a specific amount of organisations. The
rules on who needs to approve a transaction are defined in the
endorsement policy [9] of the channel. To get the transaction
approved, the application sends a proposal to peers from all
organisations specified in the endorsement policy. The peers
will run the chaincode, and if everything goes well, return a
response to the application signed with the private key. For
the transaction to be valid, all peers need to return the same
result. If the results are different, the transaction is not valid
and cannot proceed further. If the transaction is valid, the
application sends it to the ordering service, together with all
signatures, where the next step of the process begins.

Order
The ordering services have the task to receive transactions
from applications, order them in a strict order, group them
into blocks, and finally distribute them to all connected peers
in the network. Multiple ordering peers can work together
using CFT or BFT algorithms like Raft or Kafka [10]. No
more details are necessary for this research.

Validate
This is the final step of the transaction. After receiving a
new block, peers do not necessarily trust it. Thus, all peers
are required to individually validate the received transactions.
The peers check if the transaction has been signed by enough
peers, as described in the endorsement policy. Only valid
transactions become part of the ledger. The others are still
kept for audit purposes. All peers execute the validation in the
exact same way, and they do not need to invoke the chaincode
to ensure validity. This means that all peers have the same
copy of the ledger, and no forks can be created in the network.

3 Related work and motivation
According to Putz and Pernul [11], Hyperledger Fabric is
one of the most researched distributed ledger frameworks.
Their analysis from 2019 shows that Fabric has three times
more academic publications than the second most popular
distributed ledger network. There are multiple studies per-
formed on the security of Fabric, and some of them showed
many present vulnerabilities in the platform. Examples are
the potential of executing a DoS attack on the endorsers, as
the identity of the endorsers is known to everyone within a
channel [12]. The researchers have also shown the possibility
of extracting all of the ledger information for all members
by compromising a single member. Dabholkar and Saraswat
[13] have researched the possible security issues of Hyper-
ledger Fabric. Their paper lists a large number of potential
security vulnerabilities involving the implications of a com-
promised MSP, a malicious Ordering Service and malicious
validators. Huang et al. [14] presented a good summary
of multiple possible vulnerabilities that can be exploited in
Fabric, including the range query risk, program concurrency,
read your write, and many others. Yamashita et al. [15] and
Brotsis et al. [16] also showed potential vulnerabilities in
Fabric chaincodes.

Both channels and private data are available in Fabric out-
of-the-box and explained in the documentation. However,
they suffer from drawbacks. Research from Benhamouda,
Halevi, and Halevi [17] stated some of the disadvantages
of using channels and private data. A still open issue with
channels is that data is stored in plain text, although part of
the organisations would not be able to access it directly. In
case one of the peers gets compromised, and an attacker gains
access to the ledger, all of the data inside will be readable.
This can be catastrophic if sensitive data is stored, which is
often the case when smart contracts are used in practice.

Given that the state database is protected by itself, the peers
will rely on the protection of CouchDB and LevelDB. Re-
search from Dabholkar and Saraswat [13] stated that the web
interface of CouchDB by default has no password protection.
Furthermore, the study shows that data can be modified using
this vulnerability and other weaknesses present in CouchDB.
Therefore, if attackers can change the data, they can also read
it, thus see all secret information stored inside. Research from
Putz and Pernul [11] supports this claim, stating that because
the databases do not offer encryption-at-rest, “anyone with
access to the database can read all historical data contained in
the ledger. Corda marks the exception: it relies on relational

3

databases, some of which offer encryption”. Private data in
Fabric suffers from the same problem. Even though only
hashes are stored in the ledger, the original data will not
be encrypted unless all peers take care of data encryption
themselves.

Multiple research papers state that encrypting data before
storing it in the ledger can protect the network [18] [19] .
The documentation of Fabric states that data encryption can
be used as a form of privacy protection, besides channels
and private data [20]. Research performed by Lv et al.
[21] finds that ”212 chaincode samples in 300 chaincode
samples had potential risks”. Fabric users can tend to neglect
the need to protect their data and write secure and audited
smart contracts, as users rely on the fact that Fabric is a
private network and that Fabric allows chaincodes to be easily
updated if a problem is found after deployment. However,
if, due to a vulnerability in the smart contract, private data
gets leaked, there is nothing that can be done after that. Even
though it would be hard to read the ledger, there are known
existing methods for breaching the security of Fabric. In
case the chaincode has a weakness that allows exposing the
data in the ledger, or in the case where the state database is
compromised. Although many sources supporting the idea
of encrypting data in Fabric before it is submitted in the
ledger, there is a lack of research on how exactly can data
be encrypted, what methods to use, and when and where
to execute the encryption and decryption. This means that
each group of organisations that want to deploy a Fabric
network needs to execute their own research on what is the
best encryption method.

4 Methodology
At the beginning of the research period, an extensive study
on the current state of Fabric security was performed. The
study primarily analysed existing research papers regarding
blockchain security, smart contract security and Fabric spe-
cific security. In addition, the documentation of Fabric [1]
was thoroughly reviewed. Although Fabric is a relatively
new platform, a number of helpful papers with extensive
security research were found. After analysing the papers and
concluding that encryption can enhance the security of Fabric
networks, the specific research questions were formulated,
and the research was now focused specifically on enhancing
encryption methods in Fabric.

Furthermore, during the research, smart contracts were
created to test and verify several encryption systems. To
achieve this, the Test Network [22] documented in the Fabric
documentation was deployed. The network consists of two
organisations, each one with one peer. In addition, the
network includes one ordering service. Because network
security is not the main focus of this research, no further
improvements were applied to the network to keep it as
simple as possible. All parties in the network were installed in
a single machine, each deployed in a separate Docker v3.5.1.7
container. The version of Hyperledger Fabric used and tested
was v2.3, which was the latest version of Fabric at the time
the research was performed.

For developing smart contracts, Fabric allows three pro-

gramming languages: Java, JavaScript and GoLang. The
smart contracts developed in this study use JavaScript. The
reason behind this decision is that JavaScript is a more simple
and well-known programming language, which will make
the code in this paper easier to read. In addition, more
libraries related to cryptography are available for JavaScript,
which makes it easier to showcase implementations regarding
encryption. However, all code shown in this research paper
can also be implemented in GoLang and Java. All of the three
are general-purpose languages. If a particular library is not
available in GoLang or Java, smart contracts can invoke OS-
level commands, which can be used to call libraries written
in other languages.

Finally, a performance evaluation was executed on the
main symmetric encryption method demonstrated in this pa-
per. To evaluate the change of speed in both encryption and
decryption operations, a docker container created by a peer
was used. The performance evaluation was performed only
on the source code, without using real Fabric transactions,
because this research was performed in a very limited time
frame. The encrypt and decrypt functions were evaluated
by calculating 100 times the average of 1000 operations.

5 Enhance protection from external attackers
This section will present an encryption method for Hyper-
ledger Fabric meant to encrypt the information stored in the
ledger and the state database. The data will be encrypted in a
way that when external attackers breach the security and gain
access to the state database or the ledger, they will not be able
to actually read the stored data. The complete implementation
can be found in GitHub1

Encryption method
The presented encryption method in this section is an exten-
sion of the transaction architecture in Hyperledger Fabric.
Figure 3 shows the flow of the encryption with all steps.
When a new transaction needs to be created, a specific
number of peers need to execute a function inside the smart
contract and produce the same result. The encryption process
adds an additional step after the chaincode has computed the
result. Before returning it to the sender, the output data will
be encrypted.

Given that the final output of the chaincode needs to
be deterministic, meaning that all endorsing peers need to
compute the same result, the peers must use the same en-
cryption mechanism and make use of the same encryption
key. Because of this, a symmetric encryption approach must
be used to ensure determinism. The secret key needs to be
shared among all members of the network. Methods on how
to store and protect the encryption key will be discussed later
in this section.

Implementation
The implementation example extends the smart contract de-
fined in the Hyperledger Fabric test network tutorial [22]. The
smart contract stores assets and has functions that can read,

1https://github.com/radostefanov/fabric-samples

4

https://github.com/radostefanov/fabric-samples

Figure 3: Schema of the required steps needed to perform a trans-
action. Step 3 is additional to the transaction architecture of Fabric,
and it ensures that the data is encrypted, before being sent back to
the Application

update and delete the assets. The original implementation
stores the information in plain text.

In Listing 1, a version of the CreateAsset function is
demonstrated. The logic of the code is preserved the same
as the original. The only difference is that before invoking
putState, the code will encrypt the JSON object using
the encrypt function. The details of this function will be
presented in the next subsection.
1 / / C r e a t e A s s e t i s s u e s a new a s s e t t o t h e wor ld s t a t e wi th g i v e n

d e t a i l s .
2 async C r e a t e A s s e t (c tx , id , c o l o r , s i z e , owner , a p p r a i s e d V a l u e) {
3 c o n s t a s s e t = {
4 ID : id ,
5 Co lo r : c o l o r ,
6 S i z e : s i z e ,
7 Owner : owner ,
8 A p p r a i s e d V a l u e : a p p r a i s e d V a l u e ,
9 } ;

10 c o n s t e n c r y p t e d A s s e t = e n c r y p t (a s s e t , a s s e t . ID) ;
11 a w a i t c t x . s t u b . p u t S t a t e (id , B u f f e r . from (JSON . s t r i n g i f y (

e n c r y p t e d A s s e t))) ;
12 r e t u r n JSON . s t r i n g i f y (e n c r y p t e d A s s e t) ;
13 }

Listing 1: Encryption example inside a Fabric smart contract

In Listing 2, an updated version of the ReadAsset method
is shown, where the data is decrypted before being sent to the
chaincode invoker.
1 / / ReadAsse t r e t u r n s t h e a s s e t s t o r e d i n t h e wor ld s t a t e wi th g i v e n

i d .
2 async ReadAsse t (c tx , i d) {
3 c o n s t asse tJSON = a w a i t c t x . s t u b . g e t S t a t e (i d) ; / / g e t t h e a s s e t

from c h a i n c o d e s t a t e
4 i f (! asse tJSON | | asse tJSON . l e n g t h === 0) {
5 throw new E r r o r (`The a s s e t ${ i d} does n o t e x i s t `) ;
6 }
7
8 c o n s t a s s e t = JSON . p a r s e (asse tJSON . t o S t r i n g ()) ;
9 c o n s t d e c r y p t e d A s s e t = d e c r y p t (a s s e t , i d) ;

10
11 r e t u r n JSON . s t r i n g i f y (d e c r y p t e d A s s e t) ;
12 }

Listing 2: Decryption example inside a Fabric smart contract

Both encryption and decryption are executed via methods
defined in the chaincode. Chaincode developers can easily

modify existing contracts by including those methods in the
smart contract and making sure to encrypt and decrypt data
in each of the functions of the ledger. Returning decrypted
information must be done carefully. Applications that execute
read operations that return decrypted data will be able to read
anything. The chaincode can use the decrypt method to read
information for validation purposes without returning it to the
invoker.

Another way to execute this implementation is to use an
Endorsement plugin [23]. With this approach, the logic for
encrypting can be extracted in a plugin, and it will take
care of encrypting the information before endorsing it. The
use of such a plugin can make the code in the chaincode
simpler. However, the organisations will need to install and
maintain an additional plugin, which might outweigh the
benefits of not including the encryption in the smart contract
itself. Besides that, all information that is retrieved from the
ledger still needs to be decrypted. For these reasons, this
implementation example uses only code defined in the smart
contract.

Figure 4 shows the state of the CouchDB database both
with and without encryption.

(a) CouchDB overview of assets without encryption

(b) CouchDB overview of assets with encryption

(c) CouchDB single asset with-
out encryption

(d) CouchDB single asset with
encryption

Figure 4: CouchDB overview of encryption vs no encryption

Encryption and decryption functions
The purpose of the encrypt and decrypt functions is to accept
a JSON object and execute respectively encryption or decryp-
tion of each field in the JSON object. The received object
represents a single asset. Listings 3 and 4 show a suggested
example of how to implement the functions. The algorithm

5

used is AES [24]. Atwal and Kumar [25] and Ebrahim, Khan,
and Khalid [26] showed that this is the most secure sym-
metric encryption algorithm, compared with other popular
symmetric encryption algorithms, such as RSA DSS, 3DES,
Blowfish, and others. The library providing the algorithm
is called crypto-js [27]. The library contains different
algorithms. This paper will not focus on the specifics of the
library.

1 c o n s t AES = r e q u i r e (” c r y p t o − j s / a e s ”) ;
2 c o n s t SHA256 = r e q u i r e (” c r y p t o − j s / sha256 ”) ;
3 c o n s t d e t e r m i n i s t i c E n c r y p t i o n = { mode : Cryp toJS . mode . ECB }
4
5 f u n c t i o n e n c r y p t (a s s e t , i d) {
6 / / S t ep 1 and 2
7 c o n s t symmetr icKey = getSymmetr icKey () ;
8 c o n s t s e c r e t k e y = Cryp toJS . enc . Ut f8 . p a r s e (
9 SHA256 (symmetr icKey + i d) . t o S t r i n g ()

10) ;
11 / / S t ep 3 and 4
12 c o n s t e n c r y p t e d R e s u l t = {};
13 O b j e c t . keys (a s s e t) . f o r E a c h ((key) => {
14 e n c r y p t e d R e s u l t [key] = AES . e n c r y p t (
15 JSON . s t r i n g i f y ({v : a s s e t [key] }) ,
16 s e c r e t k e y , d e t e r m i n i s t i c E n c r y p t i o n
17) . t o S t r i n g () ;
18 }) ;
19 r e t u r n e n c r y p t e d R e s u l t ;
20 }

Listing 3: Decryption function implementation

The encryption and decryption process consists of the
following four steps.

1. Obtain the shared symmetric key that all peers must use
to encrypt and decrypt information. This is achieved
through the getSymmetricKey() function. The imple-
mentation details of that function will be discussed in
the next subsection.

2. Compute the secret key that will be used for the AES
encryption. The key is computed by hashing a combina-
tion of a secret private key and the ID of the transaction,
using the SHA256 hashing function. This ensures that
each transaction has a different symmetric key and adds
an additional layer of protection. In the case that brute
force is applied, and one of the transactions is decrypted,
the others will require an equal amount of work, as the
key used there will be completely different from the keys
in all other transactions.

3. Both encrypt and decrypt functions must traverse the
passed JSON object.
For each field, the encryption function creates a new
JSON object that acts as a wrapper and contains a single
key with a value equal to the raw text value of the
corresponding field. After that, the JSON is converted
into a string. This is done to preserve the data type of
the raw input value. After the JSON is converted into a
string, the resulted string is encrypted using AES. The
response is assigned to a new object, which will be later
returned.
Similarly, the decryption function uses AES to decrypt
the corresponding JSON field. The original raw value is
extracted from the wrapping object and inserted into a
new object that will represent the decrypted version of
the JSON input.

4. The encrypted / decrypted object is returned as a copy.
The original input remains intact.

1 c o n s t AES = r e q u i r e (” c r y p t o − j s / a e s ”) ;
2 c o n s t SHA256 = r e q u i r e (” c r y p t o − j s / sha256 ”) ;
3 c o n s t d e t e r m i n i s t i c E n c r y p t i o n = { mode : Cryp toJS . mode . ECB }
4
5 f u n c t i o n d e c r y p t (a s s e t , i d) {
6 / / S t ep 1 and 2 same as e n c r y p t i o n method from L i s t i n g 3
7 . . .
8 / / S t ep 3 and 4
9 c o n s t d e c r y p t e d R e s u l t = {};

10 O b j e c t . keys (a s s e t) . f o r E a c h ((key) => {
11 c o n s t d e c r y p t e d S t r i n g = AES . d e c r y p t (
12 a s s e t [key] ,
13 s e c r e t k e y , d e t e r m i n i s t i c E n c r y p t i o n
14) . t o S t r i n g (Cryp toJS . enc . Ut f8) ;
15 d e c r y p t e d R e s u l t [key] = JSON . p a r s e (d e c r y p t e d S t r i n g) . v
16 }) ;
17 r e t u r n d e c r y p t e d R e s u l t ;
18 }

Listing 4: Encryption function implementation

Private key management
This symmetric encryption method requires that each organi-
sation participating in the network has access to a common
private key. The organisations must agree in advance of
what the key will be, and make sure to communicate the key
using a protected channel, for example, by using asymmetric
encryption. Keeping the key secure is of major importance,
as even if only one organisation gets compromised and the
key becomes accessible to an attacker, the state database and
ledger will become readable for the attacker if they success-
fully gain access to them. This means that organisations need
to be extra cautious on how to store the key, and how to pass
the key to the smart contracts.

Several possibilities for storing the symmetric encryption
key are the following.

• Storing the key inside the chaincode docker container.
From the Fabric documentation, ”Chaincode runs in a
secured Docker container isolated from the endorsing
peer process” Hyperledger [28]. Each peer contains
a separate docker container for each chaincode that is
installed. By default, the chaincode docker containers
come with a directory /etc/hyperledger/fabric,
where TLS-related private keys and certificates are
stored. These keys are used to maintain a secure connec-
tion when the container needs to communicate with the
peer or the orderer. The symmetric key can be placed
manually or through a script inside this folder. A big
benefit of this approach is that the chaincode can access
it directly, as it is deployed in the same container. Listing
5 demonstrates how the getSymmetricKey() function
used in the decrypt and encrypt methods can be imple-
mented, using this approach. Because of the high levels
of security that Fabric ensures for the chaincode docker
container and the easy implementation, this method of
storing the encryption key is recommended.

• Storing the key inside the peer docker container. This
method is similar to the previous option. However, by
placing the symmetric key in the peer container, the
chaincode does not have direct access to it. The peer
would need to invoke the chaincode as usual, and after
a response is returned, encrypt it using the symmetric
key before the transaction proposal is returned to the
invoking application. For this to be implemented, an

6

endorsement plugin needs to be used. An additional
level of security, also mentioned by Putz and Pernul
[11] is to encrypt the symmetric key using the private
key of the peer. This method is not part of the current
implementation shown in this study, but it is a possible
extension. [23].

• Storing the key inside the applications. This is the
third physical place where the symmetric keys can be
stored. In order to achieve encryption, the symmetric
key would need to be passed as an argument each time a
chaincode function is invoked from the application. This
option, however, has many drawbacks. Applications
are usually more close to the end-users, meaning that
they have a higher risk of being targeted by attackers.
In addition, applications are large in size, compared to
smart contracts, which are usually composed of only
a single file. The final drawback is that by allowing
applications to have access to the symmetric keys, the
ledger data can be fully read by the application, whereas
if the key is accessible only from the smart contract,
the logic inside it can restrict certain fields from being
visible to the application.

• Storing the key inside the smart contract. This is the
most straightforward way to keep the key. This method
is highly unsafe, as in case the attacker gains access
to the chaincode, they will be able to see the key and
decrypt the data. To increase the security, the key can be
passed as an argument to the chaincode.

• Other options include storing the key in a central server
that acts as an oracle. Chaincode can access the key
via an HTTP call. Although this method is easy to
implement, it creates other security vulnerabilities and
relies on the security of the webserver implementation.
This means that if the server itself gets compromised,
the symmetric key might be leaked.

1 c o n s t { r e a d F i l e S y n c } = r e q u i r e (” f s ”) ;
2
3 c o n s t getSymmetr icKey = () =>
4 r e a d F i l e S y n c (” / e t c / h y p e r l e d g e r / f a b r i c / l e d g e r e n c r y p t i o n . key ”)
5 . t o S t r i n g () ;

Listing 5: Retrieve the symmetric encryption key from the
corresponsing directory

Additional security improvements
Besides simply encrypting the ledger information, additional
methods can be used to further protect the privacy of the
data store in Fabric. There exist tools that help blockchain
developers create more secure smart contracts. Tineola [29]
is one such tool created for Hyperledger Fabric smart con-
tracts. One of the suggestions that the tool gives is to hash
private information that does not need to be accessible in raw
format after it has been stored in the ledger. An example is
passwords, as the chaincode can always verify if a password
matches a stored password by hashing it. By hashing the data,
the level of protection increases, as even if the symmetric key
is compromised, any hashed information in the ledger will
still be inaccessible by the attackers.

Another additional improvement to the methodology is
increasing the security level by making use of encryption
algorithms that are post-quantum resistant. Post-quantum
algorithms are encryption methods that assume that the at-
tackers have access to a large quantum computer. Research
from Andrushkevych et al. [30] showed that AES encryption,
together with other symmetric encryption algorithms, can
be vulnerable to quantum attacks. Bernstein and Lange
[31] showed possible post-quantum asymmetric encryption
algorithms, such as Lattice-based encryption and Code-based
encryption. They can be used to encrypt the symmetric key
and protect it from quantum attacks.

Performance analysis
This encryption mechanism adds an additional layer of com-
putation, and it will always perform worse than not having
encryption. To calculate what exactly is the impact, two
different performance analysis were performed. The first one
measures how slower is the execution of a smart contract
with encryption. The second analysis calculates what is the
impact of the encryption in terms of storage. Details on how
the experiment was performed can be seen in section 4. The
source code used for the performance analysis can be found
in GitHub2.

The performance analysis of the smart contract execution
time for both encryption and decryption can be seen in
Figure 5. Clearly, the additional layer of computation makes
the execution much slower. On average, read operations
take around 466ms with encryption. The read time without
encryption is measured to be 20ms. For writing, the average
is 623ms with encryption, and 30ms without. It can be seen
that adding encryption results in a significant performance
penalty. However, the experiment measures only the pure
smart contract execution time. As shown in the paper from
Thakkar, Nathan, and Viswanathan [32], there are multiple
operations that Fabric performs, which together add up to
the total transaction time. The smart contract execution is
only a small part of it. In addition, the performance of this
implementation can be increased by optimising the algorithm.
However, this is not the main focus of this research.

In terms of storage, Figure 5 shows the relation between the
size of the raw input and the encrypted version. As it can be
seen, there is a linear dependency between the input and the
output for AES encryptions. The encrypted variant is 1.4272
times larger than the non-encrypted version. This increase
of storage required is quite acceptable, as the increase rate is
only linear.

Both increases in speed and storage size need to be taken
into account when using this encryption approach. For
applications that need low transaction time or are executed in
limited hardware scenarios, like IoT devices, this encryption
method might be too expensive to execute. A possible
optimization is to use a faster encryption algorithm, or a
faster library. Other algorithms can also be used to reduce
the required memory. As shown by Kansal and Mittal [33],
AES requires more memory than DES and 3DES.

2https://github.com/radostefanov/fabric-samples

7

https://github.com/radostefanov/fabric-samples

Recommendation for use in practice
Developers must take into account that this method has draw-
backs and does not guarantee the overall security of the Fabric
network. It rather only provides an enhancement that can
protect the ledger information in case an attacker gains access
to the network. The encryption method does not protect the
ledger from internal attackers, as everyone in the network
must know the symmetric key that will be used to encrypt
and decrypt the data. In addition, in the case that the key is
compromised, the organisations will need to relaunch their
network, using a different symmetric key, or re-encrypt all
entities in the ledger. Both options are hard to execute and
will cost time and resources. Other limitations are present.
For example, executing range queries using CouchDB will
be more complicated, and in some cases not possible, as
CouchDB on its own cannot read the values of the encrypted
data.

However, implementing this encryption solution increases
the security in a relatively cheap way, as the modifications
required in the chaincode consist of making sure to decrypt
the information when read, and encrypt it when it is stored
back to the ledger.

(a) Performance comparison of
read and write, with and without
encryption in milliseconds

(b) A comparison between
the size of the raw input and
the size of the encrypted re-
sult

Figure 5: Performance analysis of symmetric encryption implemen-
tation

6 Protect stored information from internal
parties

This section will present an overview of possible methods that
can be used to encrypt and protect the information in a Fabric
network in such a way that members in the network cannot
read the information, but still execute smart contract logic for
verification and auditing.

Zero Knowledge Proofs in Fabric
The main problem with protecting information from internal
members is that by default, everyone has access to the same
ledger. This dilemma is stated by Benhamouda, Halevi, and
Halevi [17] ”If everyone sees the same ledger, how can we
have private data that some can see but others cannot?”.

A solution to this problem can be achieved by using Zero
Knowledge Proofs (ZKPs) [34]. The key principle is that
information is encrypted before it is sent to the chaincode.
The chaincode will not be able to read the information, but
it can derive properties of the fields. Useful ZKPs can be
range proofs, which can be used to convince a network peer
that a number is within a certain range. There are multiple
tools developed for Fabric. Examples are FabZK [35] and
zkrpChain [36].

A potential use case where ZKPs can be useful is voting
[37]. Validity of votes can be checked by using range proofs.
This research performed a possible implementation3 of a vot-
ing smart contract using Fabric and Paillier [38] encryption.
Because of the additive homomorphism property, votes can
be added together without they being decrypted. Thus, only
the peer that has the corresponding private key can see the
final result.

Limitations and comparison with symmetric
encryption
Most of the ZKP research is concentrated on public
blockchains, as encrypting them is much more important
because everyone has access to the ledgers. Although Fabric
is a private blockchain network, ZKPs can also be applied
for encrypting the data. ZKPs, however, have some draw-
backs. Implementing them takes a considerable amount of
time, as they are highly complex and require developers to
understand complicated mathematical structures. In addition,
ZKPs are relatively new and are still under research, which
means that potential vulnerabilities within them might be
present. Swihart, Winston, and Bowe [39] show a found
zero-knowledge proof vulnerability in Zcash, which is a
permissionless blockchain technology.

7 Responsible research
This chapter will present an ethical analysis of the obtained
results from this research paper. The first part is a discussion
regarding the moral and ethical implications of this research.
In the second part, an analysis of the reproducibility will be
presented.

Research Integrity
Parts of this paper reflect on potential security vulnerabilities
in Hyperledger Fabric. The report contains results and rec-
ommendations for developers and organisations using Fabric
to enhance the security of smart contracts. However, the
presented exploits can be utilised by malicious parties to
execute attacks on existing smart contracts. This risk is
considered in the paper. The list of attacks is already known,
as it is extracted from existing research papers. The conclu-
sions formed by the performed security analysis only show
additional fixes to already known security vulnerabilities.
Thus, this research gives more opportunities for developers to
enhance the security than it gives floor for malicious members
to perform attacks.

Another part of this research considers enhancing the
privacy of Fabric by introducing more effective encryption

3https://github.com/radostefanov/fabric-samples

8

https://github.com/radostefanov/fabric-samples

methods in the data stored in the ledger and state database.
The solutions presented can be applied to any smart contract.
The enhanced privacy of Fabric can allow more organisations
to make use of the tool in cases when privacy issues have
been a barrier for those organisations. By itself, enhanced
encryption does not pose immediate threats. However, as
explained by Falk [40], tools alone do not have ethical
implications, but it rather depends entirely on what is the
purpose of the products developed using this tool. In the case
of Fabric privacy, unethical smart contracts can be developed
by organisations using the encryption methods discussed in
this paper.

Several smart contracts were developed during the research
period and used for demonstration and showcasing security
and privacy vulnerabilities. All smart contracts, although
representing possible real scenarios, are not real. No personal
data was used to produce the paper, and all of the code
used in the smart contracts are open source and listed in
the references section. During the research process, the
potential conflict of interest and bias were mitigated as much
as possible. The research was not performed by members that
participate in the Hyperledger Fabric development, nor own
or maintain products using Fabric. The research is done in
the most objective way possible. The absence or presence of
vulnerabilities does not influence the researchers. Finally, the
research is not financed by anyone.

Reproducibility
To facilitate reproducibility, the following measurements are
taken in this research. All versions of the tools used are listed
in the respective sections. The general methods shown in
this paper are applicable to Hyperledger Fabric v2.3. Future
versions of Fabric might not be vulnerable to the presented
attacks, and the privacy enhancement methods might not be
applicable. Besides the code shown in the actual paper, the
full version of the code is linked in an open-source GitHub4

repository.

8 Conclusions and future work
This research was executed to analyse the current state of
security and privacy in Hyperledger Fabric and propose a
method to enhance the security. The demonstrated method of
encrypting the ledger data and state database using symmetric
encryption can increase the level of protection in the case
external malicious attackers gain access to the data stored
in a Fabric network. The presented security enhancement
is recommended for smart contracts that do not perform
complex CouchDB range queries and can afford an increase
in execution time for more security.

The main issues of this symmetric encryption approach are
worse performance for both time and space, slightly higher
code complexity, and limitations when executing CouchDB
range queries. More research can be performed to measure
the performance implications in real scenarios, improve the
performance, and study possible additional drawbacks of
this encryption method when used in production-level smart
contracts.

4https://github.com/radostefanov/fabric-samples

More research on the area of ZKPs can significantly im-
prove the encryption possibilities, also mitigate the situation
where attackers are already inside the network. The existing
tools show promising results, but the range of applications
does not cover all possible smart contract scenarios. The high
levels of complexity are also a significant drawback. Thus
more comprehensive libraries need to be developed with good
documentations.

Unfortunately, symmetric encryption methods are not
present in the documentation of Hyperledger Fabric, and
there is a general lack of research in this direction. This
paper recommends Fabric to include in the documentation an
explanation for executing symmetric encryption. Implement-
ing this encryption method as a plugin directly in the system
chaincode will also avoid having encryption and decryption
logic in the smart contracts.

References
[1] Hyperledger. Introduction. 2020. URL: https : / /

hyperledger - fabric . readthedocs . io / en / release - 2 . 3 /
whatis.html (cit. on pp. 1, 4).

[2] Jingming Li et al. “Energy consumption of cryp-
tocurrency mining: A study of electricity consumption
in mining cryptocurrencies”. In: Energy 168 (2019),
pp. 160–168. ISSN: 0360-5442. DOI: https : / / doi .
org / 10 . 1016 / j . energy . 2018 . 11 . 046. URL: https :
/ / www . sciencedirect . com / science / article / pii /
S0360544218322503 (cit. on p. 1).

[3] Hyperledger. Smart Contracts and Chaincode. 2020.
URL: https : / / hyperledger- fabric . readthedocs . io / en /
release-2.3/smartcontract/smartcontract.html (cit. on
p. 1).

[4] HG Insights. Companies Currently Using Hyperledger
Fabric. 2021. URL: https : / / discovery . hgdata . com /
product/hyperledger-fabric (cit. on p. 1).

[5] Elli Androulaki et al. “Hyperledger fabric: a
distributed operating system for permissioned
blockchains”. In: Proceedings of the thirteenth
EuroSys conference. 2018, pp. 1–15 (cit. on p. 1).

[6] Chaoqun Ma et al. “The privacy protection mechanism
of Hyperledger Fabric and its application in supply
chain finance”. In: Cybersecurity 2.1 (2019), pp. 1–9
(cit. on p. 1).

[7] Baddepaka Prasad and S Ramachandram. “Decentral-
ized Privacy-Preserving Framework for Health Care
Record-Keeping Over Hyperledger Fabric”. In: Inven-
tive Communication and Computational Technologies.
Springer, 2021, pp. 463–475 (cit. on p. 1).

[8] Hyperledger. Membership Service Provider (MSP).
2020. URL: https://hyperledger-fabric.readthedocs.io/
en/release-2.3/membership/membership.html (cit. on
p. 2).

[9] Hyperledger. Endorsement policies. 2020. URL: https:
//hyperledger- fabric.readthedocs.io/en/release- 2.3/
endorsement-policies.html (cit. on p. 3).

9

https://github.com/radostefanov/fabric-samples
https://hyperledger-fabric.readthedocs.io/en/release-2.3/whatis.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/whatis.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/whatis.html
https://doi.org/https://doi.org/10.1016/j.energy.2018.11.046
https://doi.org/https://doi.org/10.1016/j.energy.2018.11.046
https://www.sciencedirect.com/science/article/pii/S0360544218322503
https://www.sciencedirect.com/science/article/pii/S0360544218322503
https://www.sciencedirect.com/science/article/pii/S0360544218322503
https://hyperledger-fabric.readthedocs.io/en/release-2.3/smartcontract/smartcontract.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/smartcontract/smartcontract.html
https://discovery.hgdata.com/product/hyperledger-fabric
https://discovery.hgdata.com/product/hyperledger-fabric
https://hyperledger-fabric.readthedocs.io/en/release-2.3/membership/membership.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/membership/membership.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/endorsement-policies.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/endorsement-policies.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/endorsement-policies.html

[10] Hyperledger. The Ordering Service. 2020. URL: https:
//hyperledger- fabric.readthedocs.io/en/release- 2.3/
orderer/ordering service.html (cit. on p. 3).

[11] Benedikt Putz and Günther Pernul. “Trust Fac-
tors and Insider Threats in Permissioned Distributed
Ledgers”. In: Transactions on Large-Scale Data- and
Knowledge-Centered Systems XLII. Ed. by Abdelkader
Hameurlain and Roland Wagner. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2019, pp. 25–50. ISBN:
978-3-662-60531-8. DOI: 10.1007/978-3-662-60531-
8 2. URL: https://doi.org/10.1007/978-3-662-60531-
8 2 (cit. on pp. 3, 7).

[12] Nitish Andola et al. “Vulnerabilities on Hyperledger
Fabric”. In: Pervasive and Mobile Computing 59
(2019), p. 101050. ISSN: 1574-1192. DOI: https : / /
doi . org / 10 . 1016 / j . pmcj . 2019 . 101050. URL:
https : / /www.sciencedirect . com/science /article /pii /
S157411921830720X (cit. on p. 3).

[13] Ahaan Dabholkar and Vishal Saraswat. “Ripping the
Fabric: Attacks and Mitigations on Hyperledger Fab-
ric”. In: Nov. 2019, pp. 300–311. ISBN: 978-981-15-
0870-7. DOI: 10.1007/978-981-15-0871-4 24 (cit. on
p. 3).

[14] Yongfeng Huang et al. “Smart Contract Security: A
Software Lifecycle Perspective”. In: IEEE Access 7
(2019), pp. 150184–150202. DOI: 10.1109/ACCESS.
2019.2946988 (cit. on p. 3).

[15] Kazuhiro Yamashita et al. “Potential Risks of Hyper-
ledger Fabric Smart Contracts”. In: 2019 IEEE Inter-
national Workshop on Blockchain Oriented Software
Engineering (IWBOSE). 2019, pp. 1–10. DOI: 10 .
1109/IWBOSE.2019.8666486 (cit. on p. 3).

[16] Sotirios Brotsis et al. “On the Security and Privacy of
Hyperledger Fabric: Challenges and Open Issues”. In:
2020 IEEE World Congress on Services (SERVICES).
2020, pp. 197–204. DOI: 10.1109/SERVICES48979.
2020.00049 (cit. on p. 3).

[17] F. Benhamouda, S. Halevi, and T. Halevi. “Supporting
private data on Hyperledger Fabric with secure multi-
party computation”. In: IBM Journal of Research and
Development 63.2/3 (2019), 3:1–3:8. DOI: 10 . 1147 /
JRD.2019.2913621 (cit. on pp. 3, 8).

[18] Huru Hasanova et al. “A survey on blockchain cy-
bersecurity vulnerabilities and possible countermea-
sures”. In: International Journal of Network Manage-
ment 29.2 (2019). e2060 NEM-18-0162.R1, e2060.
DOI: https://doi.org/10.1002/nem.2060. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/nem.2060.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/
nem.2060 (cit. on p. 4).

[19] Benedikt Putz and Günther Pernul. “Detecting
Blockchain Security Threats”. In: 2020 IEEE Interna-
tional Conference on Blockchain (Blockchain). 2020,
pp. 313–320. DOI: 10 .1109/Blockchain50366.2020.
00046 (cit. on p. 4).

[20] Hyperledger. Fabric Frequently Asked Questions.
2020. URL: https : / / hyperledger - fabric . readthedocs .
io/en/release-2.3/Fabric-FAQ.html (cit. on p. 4).

[21] Penghui Lv et al. Potential Risk Detection System of
Hyperledger Fabric Smart Contract based on Static
Analysis. Tech. rep. EasyChair, 2021 (cit. on p. 4).

[22] Hyperledger. Using the Fabric test network. 2020.
URL: https : / / hyperledger- fabric . readthedocs . io / en /
release-2.3/test network.html (cit. on p. 4).

[23] Hyperledger. Pluggable transaction endorsement and
validation. 2020. URL: https : / / hyperledger - fabric .
readthedocs . io / en / release - 2 . 3 / pluggable
endorsement and validation.html (cit. on pp. 5, 7).

[24] Prerna Mahajan and Abhishek Sachdeva. “A study of
encryption algorithms AES, DES and RSA for secu-
rity”. In: Global Journal of Computer Science and
Technology (2013) (cit. on p. 6).

[25] Er Shikha Atwal and Umesh Kumar. “A Comparative
Analysis of Different Encryption Algorithms: RSA,
AES, DSS for Data Security”. In: (2021) (cit. on p. 6).

[26] Mansoor Ebrahim, Shujaat Khan, and Umer Bin
Khalid. “Symmetric algorithm survey: a comparative
analysis”. In: arXiv preprint arXiv:1405.0398 (2014)
(cit. on p. 6).

[27] BRIX. Crypto-JS. 2021. URL: https://github.com/brix/
crypto-js (cit. on p. 6).

[28] Hyperledger. Fabric chaincode lifecycle. 2020. URL:
https://hyperledger-fabric.readthedocs.io/en/release-
2.3/chaincode lifecycle.html (cit. on p. 6).

[29] Tineola. URL: https://github.com/tineola/tineola/blob/
master/docs/TineolaWhitepaper.pdf (cit. on p. 7).

[30] Alina Andrushkevych et al. “The block symmetric
ciphers in the post-quantum period”. In: 2016 Third In-
ternational Scientific-Practical Conference Problems
of Infocommunications Science and Technology (PIC
S&T). IEEE. 2016, pp. 43–46 (cit. on p. 7).

[31] Daniel J Bernstein and Tanja Lange. “Post-quantum
cryptography”. In: Nature 549.7671 (2017), pp. 188–
194 (cit. on p. 7).

[32] Parth Thakkar, Senthil Nathan, and Balaji
Viswanathan. “Performance Benchmarking and
Optimizing Hyperledger Fabric Blockchain Platform”.
In: 2018 IEEE 26th International Symposium on
Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS). 2018,
pp. 264–276. DOI: 10.1109/MASCOTS.2018.00034
(cit. on p. 7).

[33] Shaify Kansal and Meenakshi Mittal. “Performance
evaluation of various symmetric encryption algo-
rithms”. In: 2014 International Conference on Paral-
lel, Distributed and Grid Computing. 2014, pp. 105–
109. DOI: 10.1109/PDGC.2014.7030724 (cit. on p. 7).

[34] Oded Goldreich and Yair Oren. “Definitions and prop-
erties of zero-knowledge proof systems”. In: Journal
of Cryptology 7.1 (1994), pp. 1–32 (cit. on p. 8).

10

https://hyperledger-fabric.readthedocs.io/en/release-2.3/orderer/ordering_service.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/orderer/ordering_service.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/orderer/ordering_service.html
https://doi.org/10.1007/978-3-662-60531-8_2
https://doi.org/10.1007/978-3-662-60531-8_2
https://doi.org/10.1007/978-3-662-60531-8_2
https://doi.org/10.1007/978-3-662-60531-8_2
https://doi.org/https://doi.org/10.1016/j.pmcj.2019.101050
https://doi.org/https://doi.org/10.1016/j.pmcj.2019.101050
https://www.sciencedirect.com/science/article/pii/S157411921830720X
https://www.sciencedirect.com/science/article/pii/S157411921830720X
https://doi.org/10.1007/978-981-15-0871-4_24
https://doi.org/10.1109/ACCESS.2019.2946988
https://doi.org/10.1109/ACCESS.2019.2946988
https://doi.org/10.1109/IWBOSE.2019.8666486
https://doi.org/10.1109/IWBOSE.2019.8666486
https://doi.org/10.1109/SERVICES48979.2020.00049
https://doi.org/10.1109/SERVICES48979.2020.00049
https://doi.org/10.1147/JRD.2019.2913621
https://doi.org/10.1147/JRD.2019.2913621
https://doi.org/https://doi.org/10.1002/nem.2060
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nem.2060
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nem.2060
https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.2060
https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.2060
https://doi.org/10.1109/Blockchain50366.2020.00046
https://doi.org/10.1109/Blockchain50366.2020.00046
https://hyperledger-fabric.readthedocs.io/en/release-2.3/Fabric-FAQ.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/Fabric-FAQ.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/test_network.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/test_network.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/pluggable_endorsement_and_validation.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/pluggable_endorsement_and_validation.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/pluggable_endorsement_and_validation.html
https://github.com/brix/crypto-js
https://github.com/brix/crypto-js
https://hyperledger-fabric.readthedocs.io/en/release-2.3/chaincode_lifecycle.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/chaincode_lifecycle.html
https://github.com/tineola/tineola/blob/master/docs/TineolaWhitepaper.pdf
https://github.com/tineola/tineola/blob/master/docs/TineolaWhitepaper.pdf
https://doi.org/10.1109/MASCOTS.2018.00034
https://doi.org/10.1109/PDGC.2014.7030724

[35] Hui Kang et al. “FabZK: Supporting Privacy-
Preserving, Auditable Smart Contracts in Hyperledger
Fabric”. In: 2019 49th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Net-
works (DSN). 2019, pp. 543–555. DOI: 10.1109/DSN.
2019.00061 (cit. on p. 8).

[36] Shiwei Xu et al. “zkrpChain: Privacy-Preserving Data
Auditing for Consortium Blockchains Based on Zero-
Knowledge Range Proofs”. In: 2020 IEEE 19th In-
ternational Conference on Trust, Security and Privacy
in Computing and Communications (TrustCom). 2020,
pp. 656–663. DOI: 10 . 1109 / TrustCom50675 . 2020 .
00092 (cit. on p. 8).

[37] Mohammed Khaled Mustafa and Sajjad Waheed. “An
E-Voting Framework with Enterprise Blockchain”.
In: Advances in Distributed Computing and Machine
Learning. Springer, 2021, pp. 135–145 (cit. on p. 8).

[38] daylightingsociety. Paillier Cryptosystem. URL: https:
//paillier.daylightingsociety.org/about (cit. on p. 8).

[39] Josh Swihart, Benjamin Winston, and Sean Bowe.
“Zcash Counterfeiting Vulnerability Successfully Re-
mediated”. In: (). URL: https : / / electriccoin . co /
blog/zcash-counterfeiting-vulnerability-successfully-
remediated/ (cit. on p. 8).

[40] Courtney Falk. “The Ethics of Cryptography”. PhD
thesis. May 2005 (cit. on p. 9).

[41] Hyperledger. Channels Architecture. 2020. URL: https:
//hyperledger- fabric.readthedocs.io/en/release- 2.3/
channels.html (cit. on p. 11).

[42] Hyperledger. Private Data. 2020. URL: https : / /
hyperledger - fabric . readthedocs . io / en / release - 2 . 3 /
private-data/private-data.html (cit. on p. 11).

[43] Hyperledger. Gossip Protocol. 2020. URL: https : / /
hyperledger - fabric . readthedocs . io / en / release - 2 . 3 /
gossip.html (cit. on p. 11).

A Existing built-in data protection tools in
Fabric

Fabric offers two built-in mechanisms to protect private in-
formation in the ledger: channels and private data. The first
one, which is the most commonly used one, is the concept
of channels [41]. Channels allow part of the organisations
in a Fabric network to create a separate sub-network, with a
specified part of the members in the original network. This
concept allows organisations to protect private data from
other organisations in the network. A simple example is a
network of three organisations consisting of one manufac-
turer and two resellers. In case that the manufacturer wants to
create a special offer to one of the resellers, they can create a
sub-channel with only those two organisations being part of
it. The other reseller will not be able to see the data in the
channel. The party will not even be able to know that such a
channel exists [41].

The second tool provided by Hyperledger Fabric is private
data [42]. Using this tool, organisations from the network
can avoid saving private information in the ledger. Instead
of saving the plain data into the ledger, peers will store only
the hash of the data, while the actual data will be distributed
between all peers that should access it using a peer-to-peer
communication protocol named gossip [43]. This method
protects the data, as other organisations that just have access
to the ledger cannot compute the original data. In addition,
in case an additional party needs to be added to the list of
allowed members, they can easily verify if the data is correct
by using the stored hashes in the ledger and recomputing the
hashes of the data when the data is provided.

11

https://doi.org/10.1109/DSN.2019.00061
https://doi.org/10.1109/DSN.2019.00061
https://doi.org/10.1109/TrustCom50675.2020.00092
https://doi.org/10.1109/TrustCom50675.2020.00092
https://paillier.daylightingsociety.org/about
https://paillier.daylightingsociety.org/about
https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/
https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/
https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/
https://hyperledger-fabric.readthedocs.io/en/release-2.3/channels.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/channels.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/channels.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/private-data/private-data.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/private-data/private-data.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/private-data/private-data.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/gossip.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/gossip.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/gossip.html

	Introduction
	Background
	Related work and motivation
	Methodology
	Enhance protection from external attackers
	Protect stored information from internal parties
	Responsible research
	Conclusions and future work
	Existing built-in data protection tools in Fabric

