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Summary

Electrokinetic conversion

Electrokinetic coupling is investigated theoretically and experimentally. Elec-
trokinetic coupling describes the conversion from seismic and/or acoustic
energy to electromagnetic energy, or vice versa. The origin of this effect lies
in a very thin nanolayer which is conventionally present at all solid-fluid inter-
faces where an excess charge density with respect to the bulk charge density in
the pore fluid exists. Any hydraulic disturbances of this nanolayer cause elec-
tric currents that are opposed by ionic counterflows generating electric fields.
These effects become manifest when acoustic waves impinge upon the inter-
face between two adjacent porous layers having different electro-mechanical
properties, for example. An additional electromagnetic wave is generated
which propagates omnidirectionally with the speed of light in matter, and
can be recorded by simple wire electrodes. Here the word ”additional” is
understood with respect to the original two compressional and single shear
waves that exist in porous media saturated with non-conductive fluids. The
theoretical basis for the coupling phenomena under investigation is concep-
tually imbedded in the framework of the combined Biot-Maxwell equations.
It is found that also the original Biot waves are affected by the electrokinetic
coupling effect, but usually only up to a small extend.
An important aspect of the theory is the so-called dynamic (i.e., frequency-
dependent) electrokinetic coupling factor L̂(ω). For simple geometries such
as parallel-plate channels and cylindrical capillaries, L̂(ω) can be compu-
ted in the framework of the linearized Poisson-Boltzmann equation (LPBE).
The validity of the linearization process was checked for narrow parallel-plate
channels, were the full PBE can be solved analytically. It is shown that for
realistic porous media, where the pore size is considerably larger than the
Debye length, the LPBE can be applied indeed.
Experiments to measure both the absolute and phase values of L̂(ω) are car-
ried out in a so-called Dynamic Darcy Cell (DDC). Here, a low-frequency
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(5-200 Hz) oscillatory flow is induced in a porous sample by means of a elec-
tromechanical shaker. The sample is carefully saturated with a conductive
fluid. Both the pressure gradient and the voltage gradient are measured in-
dependently. The ratio of the both determines the electrokinetic coupling
L̂(ω). Good agreement between experiment and theory is obtained for ca-
pillary samples saturated with fluids containing different ionic species and
different concentrations. Repeatability was ensured. Only the experiments
with KCl and NaI deviated from theory, probably due to the fact that the
empirical relation for the zeta-potential does not accurately describe diffe-
rences of ionic species.
We note that all input parameters for the theoretical model were determi-
ned in independent laboratory experiments and that no fit factors were ap-
plied. Two methods for measuring the voltage gradient were tested. The first
uses porous electrode platens sandwiching the sample under consideration.
The second uses two simple wire electrodes that are installed in the liner
of the DDC, thus causing minimum flow disturbances. We found that gene-
rally the latter method performs better, because the porous electrode platens
may act as electric capacitors and thus compromise the measurements. Also
more realistic samples consisting of sintered glass particles were investigated.
Agreement between experiment and theory was found here as well.



Samenvatting

Elektrokinetische omzetting

We hebben theoretisch en experimenteel onderzoek verricht naar elektroki-
netische omzetting. Het beschrijft de omzetting van seismische en/of akoes-
tische energie naar elektromagnetische en vice versa. De oorzaak van dit effect
is gelegen in een zeer dunne grenslaag (nanolaag) die gemeenzaam aanwezig
is op het grensvlak van de korrels en de vloeistof in een poreus materiaal. In
de vloeistofgrenslaag bestaat een ladingsoverschot ten opzichte van de onge-
stoorde ladingsdichtheid buiten de grenslaag. Een drukverstoring in de nano-
laag veroorzaakt een elektrische stroom die tegengegaan wordt door conduc-
tief ionentransport in de andere richting. Hierbij worden elektrische velden
gegenereerd. Deze effecten manifesteren zich met name wanneer akoestische
golven invallen op een grensvlak tussen bijvoorbeeld twee aangrenzende po-
reuze lagen die verschillende akoestische of elektromechanische eigenschappen
hebben. Er zal dan een elektromagnetische golf worden gegenereerd die zich
in alle richtingen voortplant met de snelheid van het licht (in materie), en die
te detecteren valt met behulp van een eenvoudige elektrode. Deze elektro-
magnetische golf bestaat naast de twee compressiegolven en de schuifgolf die
ook in een vloeistofverzadigd poreus materiaal voorkomen. De theoretische
basis voor het onderzocht koppelingsverschijnsel is gelegen in de gecombi-
neerde Biot-Maxwell vergelijkingen. Wij hebben geconstateerd dat ook de
oorspronkelijke Biot golven bëınvloed worden door het elektrokinetische kop-
pelingseffect. Dit heeft echter een relatief zwak effect op de golfsnelheden en
demping.
Een belangrijk aspect van de theorie is de zogenaamde dynamische (frequentie-
afhankelijke) elektrokinetische koppelings factor L̂(ω). Voor eenvoudige spleet-
en buisvormige configuraties, is het mogelijk om L̂(ω) te berekenen in het
kader van de gelineariseerde Poisson-Boltzmann vergelijkingen. De geldig-
heid van de gelineariseerde processen is gecontroleerd voor nauwe spleet-
vormige kanaaltjes, waarbij de volledige Poisson-Boltzmann vergelijkingen
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analytisch opgelost kunnen worden. We tonen aan dat voor realistische po-
reuze media, waar de poriegrootte aanzienlijk groter is dan de Debye lengte,
de Poisson-Boltzmann vergelijking gelineariseerd kan worden zonder de uit-
komst te bëınvloeden.
Experimenten om zowel de absolute waarde als de fase van L̂(ω) te meten
zijn uitgevoerd met behulp van de Dynamische Darcy Cel (DDC). Daarin is
in het lage frequentiegebied (5-200 Hz) een oscillerende stroming gëınduceerd
in het poreuze monster door middel van een elektromechanisch trillingsap-
paraat. Het monster is zorgvuldig verzadigd met een geleidende vloeistof.
Zowel de drukgradiënt als het spanningsverschil zijn onafhankelijk van elkaar
gemeten. De verhouding van beide geeft de elektrokinetische koppelingscoef-
ficient L̂(ω). De experimenteel gemeten resultaten zijn in overeenstemming
met de theorie voor monsters bestaande uit kleine capillairtjes verzadigd met
verschillende zouten bij verschillende concentraties. Wij constateren ook dat
de experimenten goed reproduceerbaar zijn. Als de experimenten worden
uitgevoerd met KCl of NaI zoutoplossingen, vinden wij afwijkingen van de
theoretisch voorspelde waarden. Dit wordt waarschijnlijk veroorzaakt door-
dat de empirische relatie die voor de zeta-potentiaal wordt gebruikt in deze
gevallen niet geheel correct is.
Alle invoerparameters voor het theoretische model zijn bepaald in onafhanke-
lijke laboratoriummetingen en er is geen gebruik gemaakt van correctiefacto-
ren. Twee methodes zijn getest. Bij de eerste methode gebruiken we poreuze
plaatjes als elektrodes. Deze worden boven en onder het poreuze monster
aangebracht. Bij de tweede methode gebruiken we draadvormige elektroden,
die gëıntegreerd zijn in de kunststof binnenmantel van de DDC, en zo slechts
een minimale stromingsverstoring veroorzaken. In het algemeen kunnen we
constateren dat de laatste methode een beter resultaat oplevert, omdat de
poreuze plaatelektrodes als elektrische condensator kunnen functioneren en
daarmee de meting kunnen verstoren. Ook meer realistische monsters van
gesinterde glasdeeltjes zijn onderzocht. Ook hier komen de gemeten waarden
overeen met de bestaande theorie.
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Chapter 1

Introduction

1.1 Background

In their search for new exploration tools, geophysicists have studied the cou-
pling between seismic and electromagnetic waves in the shallow subsurface
of the earth since the 1930s. Electroseismic (ES) surveying and its reci-
procal process, seismic-to-electromagnetic conversion (SE), are methods for
remotely identifying the presence of hydrocarbons in the subsurface of the
earth using the conversion of electromagnetic energy to seismic energy, or
vice versa. A controlled waveform voltage is typically applied to electrodes
at the earth’s surface, causing large currents to flow in the subsurface (see
Figure 1.1).
In the pores, where the saturating electrolyte fluid is in contact with the
grains, a positively charged nano-layer at the solid-liquid interface usually
exists. This is because the silane terminals SiOH, located at the grain surface
become protonated in the presence of an aqueous solution (electrolyte). The
corresponding (negative) grain surface potential is called the zeta potential,
which is typically on the order of a few tens of millivolts. The counter ions
in the fluid reorganize in a layer that is bound to the surface by electrostatic
forces (Stern layer), and a diffuse layer that is free to flow. In the diffuse layer
the competition between electrostatic forces and thermal diffusivity excites
an exponentially decreasing voltage amplitude if one moves away from the
interface towards the bulk of the pore. The corresponding length scale is
called the Debye length, which is on the order of a few tens of nanometers,
for typical reservoir rocks. The Stern layer and the diffuse layer together
are usually called the electric double layer (EDL). The EDL nano-layer is
thus considerably thinner than any viscous or thermal boundary layers that
normally exist in pore fluid transport phenomena. Owing to the electric field
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Figure 1.1: Schematic of electroseismic field experiment [Thompson et al. (2006,
2007)].

exerted at the EDL, the counter ions are set in motion, which is purely an
electro-osmotic effect, with fluid viscosity and electrical permittivity as the
medium parameters involved. When the thin boundary layer speeds up, it
drags along the bulk of the fluid by means of viscous shear. As a result, a
plug-like velocity profile is induced in the pores, for quasi-stationary beha-
viour. For higher frequencies, inertia terms have to be taken into account,
resulting in more complex velocity distributions.
At certain discontinuities in rock or fluid properties, it is also possible that
a portion of the electric current converts into seismic energy. This is called
electrokinetic coupling. At a contrast in electrical properties, the vertical
component of the electrical field is discontinuous. The resulting field gra-
dient creates a local displacement of the EDL, local relative fluid flow with
respect to the grains, and local pressure gradients in the rock, acting as a
source for reflected seismic waves. Geophones record the resulting seismic
wave at the surface or in boreholes (see Figure 1.1). The largest ES signals
are expected when high resistance layers (hydrocarbon layers) create large
discontinuities in the vertical component of the electric field with respect to
conductive water bearing layers. The ES method could thus be an effective
tool for OWC (Oil Water Contact) detection. This is confirmed by field tests
of electroseismic hydrocarbon detection [Thompson et al. (2007)]. It was
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found that large amplitude conversions between seismic and electromagnetic
energies are favoured by (i) contrasts in acoustic impedances, (ii) permeable
pore space, and (iii) high-resistivity pore fluids.
All field data, however, consist of simultaneous contributions from the electro-
kinetic coupling converting part of the electrical energy into seismic (kinetic)
energy, and compressibility effects that define the seismic wave conveying
its energy back to the geophones. If one wants to study the electrokine-
tic coupling by itself, it is probably a better idea to decouple electrokinetic
conversion from the seismic conveying process by constructing a dedicated
experimental setup in which the wavelength is much larger than the sample
size so that the fluid can effectively be regarded incompressible. This is
exactly what we did in our Dynamic Darcy Cell (DDC), which allowed us
to independently measure electrokinetic coupling as a function of frequency,
fluid salinity, and ionic species.
A theoretical framework for electrokinetic coupling phenomena is provided by
the so-called Poisson-Boltzmann equation (PBE), relating the electric poten-
tial to the charge density. The charge density (ionic concentration) is defined
by the Boltzmann distribution. The PBE is a non-linear second-order diffe-
rential equation that can only be solved analytically for some special cases.
For more general solutions, the PBE is usually linearized. This is treated in
Chapter 2, where the linearization terms and conditions are discussed for
stationary flow.
In Chapter 3, the theory is extended to oscillatory flow fields, where inertia
terms have to be taken into account. Electrokinetic coupling and its comple-
mentary process, seismo-electric coupling should obey Onsager’s principle of
reciprocity. This is investigated as well.
In the motivation for this study we treated electromagnetic waves converting
part of their energy into seismic waves. Vice versa, incident seismic waves im-
pinging upon an interface with discontinuities in electro-acoustic properties,
may generate electromagnetic waves that can propagate outside the support
of the seismic wave. Also co-seismic electric fields generally exist, that propa-
gate with the speed of the seismic wave. A schematic description of seismoe-
lectric effects is shown in Figure 1.2. The panels (a)-(c) show a cross-section
of the underground as time proceeds. The corresponding seismoelectrogram
is shown in panel (d) (time traces versus offset). The underground consists
of layers 1 and 2. An electrode is positioned at the surface. In panel (a) a
local pressure source is initiated at t = 0. This could be an explosive charge
for example. The local charge separation caused by the pressure source will
have a strong dipole component and the associated electrical field is called
the Direct Field [Kroeger (2007)]. This disturbance is measured almost
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Figure 1.2: Schematic of a ’standard’ geometry for a seismoelectric survey [Haines
(2004), Kroeger (2007)].

immediately by the electrode, see Figure 1.2d.
The explosion also sends forth pressure waves that will encounter the inter-
face between layers 1 and 2, resulting in a local asymmetry in the charge
distribution. This will induce an oscillating electric dipole. The associated
electro-magnetic field will travel almost immediately to the receiver, see Fi-
gure 1.2d. This seismoelectric effect is known as the Interface Field.
Finally, the seismic wave will reach at the upper surface. The seismic wave
creates a fluid pressure gradient that induces pore fluid flow. Due to pore
fluid movement within the electric double layer a small amount of electric
charge relative to the fixed charge (on the pore wall) is transported. The net
flow of charge relative to the grains is the so-called streaming electric cur-
rent. The associated electric field is known as the Coseismic Field [Haines
(2004)]. The coseismic field travels along with the seismic wave, giving it the
typical parabolic shape (see Figure 1.2d).
As the electrokinetic waves eat away part of the acoustic energy, one may
investigate the electrokinetic coupling effect on the phase speeds an attenua-
tion coefficients of the conventional Biot-type waves. This is the subject of
Chapter 4.
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In Chapter 5, the Dynamic Darcy Cell is discussed in which the electroki-
netic coupling effect is measured in the frequency range 1-100 Hz. It is de-
signed to measure pressure gradients and voltage gradients over electrolyte-
saturated test samples. The sample dimensions are chosen such that the
wavelength is much larger than any sample size so that the saturating fluid
is effectively incompressible. From the pressure measurements the dynamic
permeability can be determined, and from the combined pressure and voltage
measurements, the electrokinetic coupling coefficient is deduced.

1.2 Literature survey

The first observation of electrokinetics dates back to the beginning of the
19th century. In 1809, Reuss was the first to report an experiment where
a direct current was applied to a clay-sand-water mixture. The experiment
was performed with a U-tube, filled with quartz at the bottom. Application
of an electric current caused the water to rise in the one leg containing the
negative electrode. The water was pumped upwards against gravity, without
any moving mechanical components [Sunderland (1987)].
Quincke (1859) observed electro-osmosis through glass capillaries. Their
simple geometry allowed well-controlled experimental conditions. Linearity
between the electro-osmotic volume or the created osmotic counter pressure
and the applied electric field was confirmed. Reuss (1809) and Quincke (1859)
also described electrophoretic mobility, where particles are mobilized with
electrical fields. A mathematical description of electro-osmotic and electro-
phoretic mobility was derived by Helmholtz (1879). He did not consider the
dielectric permittivity. Smoluchowski, M. von (1903) derived the Helmholtz-
Smoluchowski equation where permittivity is induced. Smoluchowski also
recognized reciprocity between electro-osmotic flow and streaming potential
as was later detailed by Onsager [Lyklema (2003)]. In later years Gouy (1910)
and Chapman (1913) derived a theory for the screening of surface charge by
the diffuse layer of counter-ions, relating the thickness of the diffuse layer to
the ionic strength of the solution [Masliyah and Bhattacharjee (2006)]. Stern
(1924) derived an even more detailed model of the EDL. Another analysis,
which describes the force between charged surfaces interacting through a li-
quid medium was derived some years later by Derjaguin and Landau (1941),
and Verwey and Overbeek (1948) in the so-called ’DLVO’ theory.
In 1936, Thompson suggested that electrical techniques could be used for
geophysical prospecting of seismic waves, making use of the coupling effect
that was patented by Blau and Statham (1936). The Russian physicist Yacov
Il’ich Frenkel (1944) developed a theory for wave propagation in saturated
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porous media, in which he predicted the slow compressional wave and the
seismoelectric effect. In 1959, Martner and Sparks were the first to report
that an electric potential difference generated in the subsurface by the pas-
sage of seismic waves, could be detected by electrode pairs. Somewhat later,
an experimental programme was undertaken to evaluate the electroseismic
effect as a possible means for detecting underground nuclear tests. The goal
was to develop long range systems for detection of nuclear blasts, see e.g.
Broding et al. (1963) and Long and Rivers (1975). Due to insensitive tech-
nical equipment, lack of computing power and the success of conventional
seismic and electromagnetic methods, electrokinetics never gained much at-
tention in geophysical exploration. Moreover, the majority of field tests up
to the 1990s were concerned with the seismoelectric effect while the recipro-
cal electroseismic effect was underexposed. Extended field tests were only
performed recently [Thompson et al. (2006)].
With respect to wave modeling, Neev and Yeats (1989) postulated a set
of equations, which attempted to model the interaction between mechani-
cal waves and electric fields due to electrokinetics. Their model did not
include the Maxwell equations and frequency-dependence of the transport
laws, which resulted in erroneous conclusions. A possible way to include all
effects is by volume averaging the continuum equations for solid grains and
electrolyte fluids. Using this approach Pride (1994) obtained the governing
equations for coupled electromagnetics and acoustics of porous media. Al-
though the individual constituents of Pride’s model (i.e., Biot’s theory and
Maxwell’s theory) have been validated experimentally, the coupling between
the constituents has not yet been thoroughly validated experimentally. Pa-
ckard (1953) and, more recently, Reppert (2000) report experimental results
but the influence of salt concentrations and ionic species was not investiga-
ted. Moreover, they performed single capillary experiments, whereas in our
setup multiple capillaries are parallelized thus increasing the signal-to-noise
ratio.



Chapter 2

Electrokinetic flow phenomena

When two phases are in contact with each other, they will generally develop
a difference in electric potential. If one of the phases is a solid, which is
in contact with an aqueous solution, the solid will develop an excess charge
(co-ions), while the aqueous solution will develop a charge distribution of
opposite sign (counter-ions). For a solid containing silanol (SiOH) groups,
for example, a chemical reaction at the surface takes place

SiOH(s) ⇋ SiO−(s) + H+(aq). (2.1)

This is a so-called deprotonation of silanol groups [Maineult et al. (2004)].
The solid surface will become negatively charged and an excess opposite
charge will occur in the fluid. In the fluid, the excess charge will redistribute
into two distinct layers constituting the so-called electric double layer (EDL)
[Chun et al. (2005), Hunter (1981), Tardu (2004)]. The first is the so-called
Stern layer consisting of charge that is bound to the surface. The second
consists of ions that are free to move. In this layer the ion distribution is
governed by opposite forces. Molecular diffusion mitigates non-uniformities
in charge distribution, whereas static electric forces favour charge separa-
tion. As a result, a diffuse layer will be formed in which the electric potential
exponentially decreases if one moves away from the interface. In the bulk,
electroneutrality is reached (see Figure 2.1). Far away from the solid surface
the sum of all charges will be zero and Brownian motion will create a homo-
geneous spatial distribution of the ions.
Several EDL models exist in literature. The first model was proposed by
Helmholtz, who introduced a bound layer of atomic dimensions, forming a
molecular capacitor. Such a model however does not include thermal diffu-
sivity and a linear potential decrease is predicted in the bound layer. The
Gouy-Chapman model does include the effects working on ions due to ran-

7
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dom thermal Brownian motion. The Gouy-Chapman model however, does
not include a bound layer and assumes that the finite ionic diameter can
be neglected. It also does not include the non-ideality of the solution and
assumes the dielectric permittivity of the medium to be constant. By combi-
ning the Gouy-Chapman model with the Helmholtz model, the Stern model
is obtained [Masliyah and Bhattacharjee (2006)]. It assumes that the boun-
ded ions in the Stern layer can be distinguished into specifically adsorbed
ions in the so-called inner Helmholtz layer and electro-statically bound ions
in the so-called outer Helmholtz layer (see Figure 2.1). Specific adsorption
refers to all interactions other then purely Coulombic, such as Van der Waals
or hydrophobic binding, electron exchange and complex formation. The in-
ner Helmholtz (IH) plane passes through the electric centers of specifically
adsorbed ions.

The outer Helmholtz plane passes through the electric centers of non-
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z

Figure 2.1: Electric double layer according to the Stern model. The inner and
outer Helmholtz planes are indicated IH and OH, respectively. The slipping plane
is denoted S and has potential ζ. The wall potential is Φs and the Stern potential
is Φd. The z-axis is pointing away from the dielectric, and has its origin at the wall.

specifically adsorbed ions. The Stern plane is defined as the location of
the outer Helmholtz plane. The corresponding potential is Φd. In the diffuse
layer, a slipping (shear) plane S is usually defined where electrostatic forces
and molecular diffusion are on the same order of magnitude. This slipping
plane is defined by its potential ζ and Debye length d. The Debye length is
the scale over which mobile charge carriers (e.g. electrons) screen out electric
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Figure 2.2: Zeta potentials for different concentrations at pH=7 and T=25◦C.

fields in electrolytes, colloids and plasmas. It is the distance over which signi-
ficant charge separation can occur and is a measure of the electric double layer
thickness (typically it is on the order of a few tens of nanometers) [Masliyah
and Bhattacharjee (2006), Rice and Whitehead (1965)]. Beyond the diffuse
layer, the liquid bulk is defined. Because this thesis deals with fluid motion
and the Stern layer is in the range of atomic dimensions, we will use the
Gouy-Chapman approach. We will identify ζ as the wall potential, which
is obtained from experimental data or empirical relationships [Masliyah and
Bhattacharjee (2006)]. A commonly used empirical relationship for the zeta
potential as function of the solute, molar concentration cq and pH value has
the following form [Pride and Morgan (1991)]:

ζ =
(

8 · 10−3 + 3 · 10−2 log cq

) pH − 2

5
, (2.2)

but other relationships are also found [see e.g. Johnson (1998)]. From our
data we obtain:

ζ =
(

4 · 10−2 + 2 · 10−2 log cq

) pH − 2

5
. (2.3)

Figure 2.2 shows the zeta potential versus concentration at pH=7 and T=25◦C.
Our data for NaCl are obtained from the measurements as described in sec-
tion 5.4.1.
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2.1 Theory of electrokinetic flow

In a homogeneous medium of permittivity ε, the electric potential Φ is related
to the charge density ρE by the Poisson equation

−ε∇2Φ = ρE . (2.4)

The charge density of an electrolyte containing L ion types can be written as

ρE = e0

L
∑

l=1

zlNl, (2.5)

where Nl is the ionic concentration and zl the valence of the l-type ion and
e0 the elementary charge. Combination of (2.4) and (2.5) gives

ε∇2Φ = −e0

L
∑

l=1

zlNl. (2.6)

We now assume that the ionic concentration of the l-type ion is given by the
Boltzmann distribution. Boltzmann’s distribution is based on the hypothesis
that the fraction of molecules within an electrolyte in a particular state, at
thermal equilibrium, exponentially depends on the energy of that state

Nl = N∞
l e

− e0zl

kBT
Φ

, (2.7)

where N∞
l is the ionic concentration of the type l-ions in the bulk where

Φ = 0, kB the Boltzmann number and T the absolute temperature. Far
away from the surface there will be electroneutrality

L
∑

l=1

zlN
∞
l = 0. (2.8)

Substituting (2.7) into (2.6), leads to the Poisson-Boltzmann equation (PBE)

ε∇2Φ = −e0

L
∑

l=1

zlN
∞
l e

− e0zl

kBT
Φ

. (2.9)

In case of a bi-ionic monovalent electrolyte, the PBE becomes

ε∇2Φ = 2N∞e0 sinh

(

e0Φ

kBT

)

, (2.10)
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where N∞
1 = N∞

2 = N∞. Such a bi-ionic monovalent symmetric electrolyte
has the property that z1 = −z2 = 1. We now introduce the reduced potential
Φ̃ = Φ/ΦB, where the Boltzmann potential ΦB is given by

ΦB =
kBT

e0
. (2.11)

The Boltzmann potential value typically is 25.3 mV at 20◦C. Using Faraday’s
constant F = e0Na and the universal gas constant R = kBNa, the Boltzmann
potential is often expressed as RT/F [Oddy (2005)]. From (2.10) we find that

∇2Φ̃ = κ2 sinh
(

Φ̃
)

, (2.12)

with

κ =

√

(

2e0N∞

ε0εrfΦB

)

, (2.13)

the screening parameter (inverse Debye length). Using N∞ = cqNa · 103 we
find that [Pride (1994)]

d =
3.04 · 10−10

√
cq

, (2.14)

where Na is the Avogadro Number (6.022 · 1023 mol−1), e0 the elementary
charge (1.602 · 10−19 C) , and ε = ε0εrf , where we have used that ε0 =
8.85 · 10−12 F / m (the electric permittivity in vacuum) and εrf = 80 as the
relative permittivity of the fluid (see abbreviations and symbols). For salinity
values of 1 · 10−4 mol / l the Debye length is on the order of 3 · 10−8 m, which
is generally less than any characteristic length in porous media.

2.1.1 Debye-Hückel approximation

We will now consider the one-dimensional situation where a single dielectric
is immersed in an electrolyte, see Figure 2.1. The z-axis points away from
the surface. A surface charge ζ will be assumed to exist at the surface. In
this case the PBE becomes

∂2Φ̃

∂z2
= κ2 sinh (Φ̃). (2.15)

The boundary conditions are

Φ̃(z = 0) =
ζ

ΦB

= Φ̃s, (2.16)

Φ̃(z → ∞) = 0. (2.17)
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The solution to (2.15) was discussed by Masliyah and Bhattacharjee (2006):

Φ̃ = 2 ln





1 + e−κz tanh Φ̃s
4

1 − e−κz tanh Φ̃s
4



. (2.18)

For small values of Φ̃, the PBE (2.15) may be linearized to become

d2Φ̃

dz2
= κ2Φ̃. (2.19)

Application of the boundary conditions (2.16) and (2.17) now yields that

Φ̃ = Φ̃se
−κz. (2.20)

This is the so-called Debye-Hückel result for a single dielectric.
Another way to derive the linearized PBE (2.19) is as follows. The electric
current density Jz perpendicular to the surface is determined by the combined
effect of charge diffusion, convection, and electric fields

Jz = −D
∂ρE

∂z
+ ρEvz + σEz, (2.21)

where D is the diffusion coefficient, vz the fluid velocity, σ the conductivity,
and Ez is an electric field perpendicular to the surface. For an isolated surface
without normal velocity components, we have that

0 = −D
∂ρE

∂z
+ σEz, (2.22)

Introducing the electric potential Φ through Ez = −∂Φ/∂z we also have that

0 = −D
∂ρE

∂z
− σ

∂Φ

∂z
, (2.23)

which becomes after integration

ρE = − σ

D
Φ, (2.24)

where the integration constant is zero (without charge density, Φ = 0). Sub-
stitution of (2.24) in the Poisson equation (2.4) yields that

ε
∂2Φ

∂z2
=

σ

D
Φ. (2.25)



2.2. Electrokinetic flow in a narrow parallel-plate channel 13

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

κz

Φ̃
/
Φ̃

s
Debye-Hückel

Φ̃s = 1
Φ̃s = 2
Φ̃s = 4

Figure 2.3: Potential distribution near a flat surface according to the Gouy-
Chapman model for different values of the ζ potential. Also the Debye-Hückel
approximation (dashed line) is plotted.

Identifying D as [Masliyah and Bhattacharjee (2006)]

D =
ΦBσ

(2N∞
l e0)

, (2.26)

and using κ2 = σ/(Dε) we find back (2.19).
In Figure 2.3 we investigate the difference between the linear solution (2.20)

and the exact solution (2.18). We note that for higher values of the ζ po-
tential, the exact Gouy-Chapman model is predicted less accurately by the
Debye-Hückel approximation.

2.2 Electrokinetic flow in a narrow parallel-plate

channel

2.2.1 Charge and potential distribution

We will now consider a narrow-parallel plate channel with channel width 2H
(see Figure 2.4). Introducing the reduced distance z̃ = κz from the center of
the slit, the PBE (2.15) becomes

∂2Φ̃

∂z̃2
= sinh (Φ̃). (2.27)
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Φ0

ζ

z

x

H

Figure 2.4: Electric potential distribution in a narrow parallel-plate channel with
width 2H. Note that z = 0 is now at the center of the channel.

To find the solution to (2.27) we proceed as follows. We seek for a function
f(Φ̃) = dΦ̃/dz̃ satisfying (2.27). So we find that

df(Φ̃)

dz̃
= sinh (Φ̃), (2.28)

which can be rewritten as

f(Φ̃)
df(Φ̃)

dΦ̃
= sinh (Φ̃). (2.29)

The boundary conditions are given by

f(Φ̃(z̃ = 0)) = 0, (2.30)

Φ̃(z̃ = 0) = Φ̃0, (2.31)

where we introduce Φ̃0 as the reduced potential in the center of the slit.
Straightforward integration yields that

f =
dΦ̃

dz̃
=

√

2 cosh(Φ̃) − 2 cosh (Φ̃0). (2.32)

Choosing new variables r and θ as

r = e−Φ̃0 , (2.33)

sin θ = r
−

1

2 e−
1

2
Φ̃ = e−

1

2
(Φ̃−Φ̃0), (2.34)

we show in the appendix C that the solution to (2.32) is given by

z̃ = 2
√
r

(

F (
1

2
π, r) − F (θ, r)

)

, (2.35)
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where F (θ, r) is the incomplete elliptic integral of the first kind, and F (1
2π, r)

is the corresponding complete integral. This solution was found by Langmuir
(1938) and also discussed by Levine et al. (1974). It implies that for given
mid potential Φ̃0, the potential distribution Φ̃(z̃) can be calculated. Usually,
however, the mid potential Φ̃0 is not a priori known and should be determined
from the surface potential Φ̃s and channel width 2H. This is done as follows.
The channel width is expressed in terms of Debye length from (2.35)

H̃ = Hκ = 2
√
r

(

F (
1

2
π, r) − F (θs, r)

)

, (2.36)

where

sin (θs) = e−
1

2
(Φ̃s−Φ̃0). (2.37)

This implies that for given Φ̃s, the position of the wall H̃ can be determined
as a function of the mid potential Φ̃0. The result is plotted in Figure 2.5.
The value 2H̃ is called electrokinetic channel width. Note that we plotted
Φ0/ζ = Φ̃0/Φ̃s on the ordinate. It becomes clear that for H̃ = 0, the mid
potential equals the wall surface potential ζ. For wider channels the mid
potential has ample space to tend to zero. The linearized solution obeying
the boundary conditions (2.30) and (2.31) is given by

Φ̃ = Φ̃0 cosh z̃, (2.38)

so that

Φ̃s = Φ̃0 cosh H̃, (2.39)

which means that Φ̃0/Φ̃s = Φ0/ζ = 1/ cosh (H̃). This curve is also plotted
in Figure 2.5. We notice that for higher zeta-potential deviations from li-
nearized theory become more pronounced. Having now determined the mid
potential Φ̃0 for a given channel width and zeta-potential, the full potential
distribution Φ̃(z̃) is computed from (2.35).
In Figure 2.6 we plot the potential distribution Φ̃/Φ̃s = Φ/ζ over the chan-
nel for different channel widths. For a relatively wide channel Φ0 = 0.02ζ
implying H̃ = 4.5844, the distribution closely follows the linearized solution
Φ̃/Φ̃s = cosh (z̃)/ cosh (H̃). For narrower channels Φ0 = 0.25ζ (H̃ = 2.0357)
and Φ0 = 0.62ζ (H̃ = 1.0169), deviations from linearized solutions become
more obvious.
In Figure 2.7, the same procedure is repeated for higher zeta-potential. We
observe that deviations from linearized theory are much stronger now. Ma-
king it necessary to use the nonlinearized PBE equation for small channels.
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Figure 2.5: Variation of the mid potential with electrokinetic channel width.

2.2.2 Electro-osmotic flow in a narrow parallel-plate channel

Having obtained the potential and charge distributions in a narrow parallel-
plate channel, we are now able to address flow phenomena. Considering the
case of a laminar flow between parallel plates under steady conditions, the
viscous forces are balanced by the pressure gradient and electric body forces
generated by an axial electric field Ex

−∂p

∂x
+ η

∂2vx

∂z2
+ ρEEx = 0. (2.40)

Substitution of the charge density (2.4) in (2.40) yields that

−∂p

∂x
+ η

∂2vx

∂z2
− ε

d2Φ

dz2
Ex = 0. (2.41)

The axial velocity vx is composed of two discrete parts. The first, v0 is
the laminar flow caused by the pressure gradient alone. The second is the
electro-osmotic velocity ve. If only pressure and viscous forces were present,
the momentum balance would be

−∂p

∂x
+ η

∂2v0

∂z2
= 0. (2.42)
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If only electric body forces and viscous forces were acting, the momentum
balance would give

η
∂2ve

∂z2
− ε

d2Φ

dz2
Ex = 0. (2.43)

The addition of (2.42) and (2.43) yields (2.41), in which

vx = v0 + ve. (2.44)

The general solution of (2.43) is given by

ve =
εEx

η
Φ + Cz + D, (2.45)

where C and D are arbitrary constants. The boundary conditions that apply
are ve = 0 and Φ = ζ at the surface of the slit. We also have that ∂ve/∂z =
∂Φ/∂z = 0 at the center, which results in

ve = −εExζ

η

(

1 − Φ

ζ

)

= −VHS

(

1 − Φ

ζ

)

. (2.46)

here

VHS =
εζ

η
Ex, (2.47)

which is the so-called Helmholtz-Smoluchowski velocity [Masliyah and Bhat-
tacharjee (2006), Pasquale et al. (1986)]. The Helmholtz-Smoluchowski equa-
tion describes electro-osmotic flow, where an electrical field creates fluid flow.
This means that the velocity profiles from (2.46) can be plotted in Figures
(2.6) and (2.7) as well, as we have done. Note that the actual Helmholtz-
Smoluchowski velocity is not attained in the channel. To do so, the potential
Φ should becomes zero, which is only the case for wider channels or far away
from single wall channels as discussed in subsection 2.1.1.
The final solution of (2.40) will therefore be of the form

vx = − 1

2η

∂p

∂x
(H2 − z2) − VHS

(

1 − Φ

ζ

)

, (2.48)

where we have adopted the Poiseuille flow profile for the pressure-driven flow.
The mean velocity of flow in a slit is given by the expression

v̄x = −H2

3η

∂p

∂x
− VHS

H

∫ H

0

(

1 − Φ

ζ

)

dz. (2.49)
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Introducing the function

Gq =

∫ 1

0

Φ

ζ
d

z

H
, (2.50)

we find that

v̄x = −H2

3η

∂p

∂x
− VHS(1 − Gq). (2.51)

The function Gq is found by straightforward numerical integration. Results
are plotted in Figure 2.8 for different ζ-potentials. We find that for wide
channel configurations the average flow velocity is given by the superposition
of the Poiseuille flow and the Helmholtz-Smoluchowski result (Gq → 0).

2.2.3 Streaming Potential in a narrow parallel-plate channel

It is now also possible to study the streaming potential. The pressure-driven
hydraulic flow induces a convection current which is opposed by an induc-
tion current. The resulting induced electric field represents the open-circuit
streaming potential (no net current in the flow direction). In general, the
electric current density is given by the combined effect of charge diffusion,
convection and electric field

Jx = −D
∂ρE

∂x
+ ρEvx + σEx, (2.52)

with D the diffusion coefficient. For fully developed flow the diffusion term
drops. Integration over the channel width yields that

Ix = 2

∫ H

0
ρEv0dz − 2

εExζ

η

∫ H

0
ρE

(

1 − Φ

ζ

)

dz + 2σExH, (2.53)

where it is assumed that σ is constant over the channel width [Burgreen and
Nakache (1964)]. As we do not allow a net current in the x-direction, we find
that

Ex =

−
∫ H

0
v0ρEdz/(σH)

1 − εζ

ησH

∫ H

0
ρE

(

1 − Φ

ζ

)

dz

, (2.54)

which represents the streaming potential. After substitution of the charge
distribution, the integral term in the numerator is rewritten as

− 1

σH

∫ H

0
v0ρEdz =

ε

σH

∫ H

0
v0

d2Φ

dz2
dz. (2.55)
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In Appendix C this term is shown to become

ε

σH

∫ H

0
v0

d2Φ

dz2
dz = −∂p

∂x

Mq

σ
(1 − Gq) , (2.56)

where Mq = εζ/η and Gq is plotted in Figure 2.8, as we have seen.
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Figure 2.8: Variation of Gq with electrokinetic channel width.

The integral in the denominator of (2.54) can be evaluated analytically. We
find that

Hq = −Mq

σH

∫ H

0
ρE

(

1 − Φ

ζ

)

dz =
Mqεκ

2ΦB

σH̃

∫ H̃

0

∂2Φ̃

∂z̃2

(

1 − Φ̃

Φ̃s

)

dz̃. (2.57)

We show in Appendix C that this integral can be evaluated in terms of elliptic
integrals of the first and second kind

Hq =
Mqεκ

2ΦB

σH̃Φ̃s

2√
r

Hqr, (2.58)

where

Hqr = ∆θs cot (θs) + (r2 − 1)
(

F (θs, r) − F (
π

2
, r)
)

+

+ 2
(

E(θs, r) − E(
π

2
, r)
)

, (2.59)



2.2. Electrokinetic flow in a narrow parallel-plate channel 21

10
−2

10
−1

10
0

10
1

10
−2

10
0

10
2

 

 

H
q

2H̃

Φ̃s = 1
Φ̃s = 4
Φ̃s = 10

Figure 2.9: Variation of Hq with electrokinetic channel width.
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with F (θs, r) and E(θs, r) the incomplete elliptic integral of the first and
second kind respectively, F (π

2 , r) and E(π
2 , r) the corresponding complete

integrals. Moreover

∆θs =

√

1 − r
2 sin2 (θs), (2.60)

is the so-called delta amplitude of the Jacobian elliptic functions. We now
write

Hq =
CqHqr

H̃
√
r

, (2.61)

where Cq = (2Mqκ
2εΦB)/(σΦ̃s) = (4N∞εkBT )/(ησ). In Figure 2.9, Hq is

plotted as a function of channel width for different values of Φ̃s, choosing Cq =
0.5. Similar results were also obtained by Burgreen and Nakache (1964), but
they used a different variable transformation. The foregoing considerations
imply that the streaming potential can now be expressed from (2.54) as

Ex = −∂p

∂x

Mq

σ

(1 − Gq)

(1 + Hq)
, (2.62)

A plot of (1 − Gq)/(1 + Hq) is given in Figure 2.10. We notice that for large
channel widths, the value tends to zero, so that the value of the coupling co-
efficient, Mq/σ, can easily be determined from an experimental set-up where
the induced electric field is measured as a function of the pressure drop, as
we will see in (3.32).

2.3 The electroviscous effect

When a fluid flows through a narrow channel, it will encounter an additional
opposing electrokinetic force that can be described by the introduction of an
apparent viscosity ηa. Substitution of (2.62) in (2.51) yields that

v̄x = −H2

3η

∂p

∂x

[

1 −
M2

q

σ

3η

H2

(1 − Gq)
2

(1 + Hq)

]

. (2.63)

We define the apparent viscosity ηa as

v̄x = −H2

3ηa

∂p

∂x
. (2.64)
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We thus easily find that

ηa

η
=

[

1 −
M2

q

σ

3η

H2

(1 − Gq)
2

(1 + Hq)

]−1

=

[

1 − 3

2
Cm

Φ̃2
s

H̃2

(1 − Gq)
2

(1 + Hq)

]−1

. (2.65)

In Figure 2.11 the apparent viscosity is shown as a function of the electroki-
netic width 2H̃. We notice that the apparent viscosity reaches a maximum
value for small channel widths. For larger widths (larger than a few tens of
nanometers), the effects become negligible so that we probably do not have
to take these effects into account in steady permeability measurements.
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Figure 2.11: Artificial viscosity ηA/η as function of the electrokinetic width.

2.4 Electrokinetic flow in a cylindrical capillary

We now consider the case of a laminar flow within a cylindrical capillary
under steady conditions. The viscous forces are balanced by the pressure
gradient and electric body forces generated by an axial electric field Ex:

−∂p

∂x
+

η

r

∂

∂r

(

r
∂vx

∂r

)

+ ρEEx = 0. (2.66)

Substitution of the charge density (2.4) in (2.66) yields that

−∂p

∂x
+

η

r

∂

∂r

(

r
∂vx

∂r

)

− εEx

r

∂

∂r

(

r
∂Φ

∂r

)

= 0. (2.67)
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Again, the axial velocity vx is composed of two discrete parts. The first, v0

is the laminar flow caused by the pressure gradient alone. The second is the
electro-osmotic velocity ve. If only pressure and viscous forces were present,
the momentum balance would be

−∂p

∂x
+

η

r

∂

∂r

(

r
∂v0

∂r

)

= 0. (2.68)

If only electric body forces and viscous forces were acting the momentum
balance would give

η

r

∂

∂r

(

r
∂ve

∂r

)

− εEx

r

∂

∂r

(

r
∂Φ

∂r

)

= 0. (2.69)

The addition of (2.68) and (2.69) yields (2.67), in which

vx = v0 + ve. (2.70)

The general solution of (2.69) is given by

ve =
εEx

η
Φ + C ln (r) + D. (2.71)

Using the same boundary conditions as for the channel (subsection 2.2.2), we
find again that

ve = −εExζ

η

(

1 − Φ

ζ

)

. (2.72)

For a cylindrical capillary, the Poisson-Boltzmann equation (2.15) becomes

1

r

∂

∂r

(

r
∂Φ̃

∂r

)

= κ2 sinh (Φ̃). (2.73)

Unfortunately, no exact solution exists for this inhomogeneous differential
equation. Following Rice and Whitehead (1965), we thus linearize this equa-
tion to

1

r

∂

∂r

(

r
∂Φ̃

∂r

)

= κ2Φ̃, (2.74)

whose solution satisfying the boundary condition Φ̃ = Φ̃s, at the wall, and
remaining finite at r = 0 is given by

Φ̃

Φ̃s

=
I0(κr)

I0(κRc)
, (2.75)
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with Rc the radius of the capillary, and I0 is the zero-order modified Bessel
function of the first kind. For the mid-potential, we find that

Φ̃0

Φ̃s

=
1

I0(κRc)
, (2.76)

In Figure 2.12, Φ0/ζ versus electrokinetic diameter 2κRc, is shown. It is
compared with our earlier result for the parallel-plate channel (2.39). We
notice that the behaviour is quite similar, although the cylinder mid-potential
is higher, for all channel widths.
The potential distribution are given in Figure 2.7 where we compare the
cylindrical and parallel-plate results, we see that the patterns are similar, but
that large discrepancies occur for narrow channels. The net charge density
is given by [Rice and Whitehead (1965)]

ρc = −κ2εζ
I0(κr)

I0(κRc)
. (2.77)

For completeness, we now also derive the correction coefficients. The volume
transport correction factor can be computed in analogy with (2.50):

Gq =
1

πR2
c

∫ Rc

0

I0(κr)

I0(κRc)
2πrdr =

2

κRc

I1(κRc)

I0(κRc)
. (2.78)

For the correction factor to Ohm’s law we write from (2.57)

Hq = −Mq

σA

∫ Rc

0
ρc

(

1 − Φ

Φs

)

dA =

=
2πMqεκ

2ζ

σπR2
c

[

∫ R̃c

0

I0(κr)

I0(κRc)
rdr −

∫ Rc

0

I2
0 (κr)

I2
0 (κRc)

rdr

]

. (2.79)

Noticing that the second integral is of the Lommel type, we find that

Hq = −Mqκ
2εζ

σ

[

1 − 2

κRc

I1(κRc)

I0(κRc)
− I2

1 (κRc)

I2
0 (κRc)

]

. (2.80)

which is in agreement with Rice and Whitehead (1965).



Chapter 3

Dynamic coupling coefficients

In this chapter oscillatory gradients are applied to analyze the frequency
dependency of the transport coefficients over a wide frequency range. The
results are compared with theoretical results by Johnson et al. (1987) and
Pride (1994). A sensitivity analysis is performed.

3.1 Newtonian viscous-flow equations

In many areas of geoscience, it is important to know how fluid flows within
porous media. The motion of a fluid in a porous medium is controlled by the
pore geometry and the fluid’s properties. The phenomenological coefficients
are essential to describe macroscopic flow through porous media (using the
Biot equations as described in Chapter 4). For two simple geometries, it is
possible to describe the fluid behaviour and also the electrokinetic properties
(at microscale). This information will be used for the transport coefficients.

3.1.1 Dynamic permeability

We consider Navier-Stokes’ equation for a cylindrical capillary with radius
Rc during incompressible laminar flow where no electric gradient is applied:

ρf
∂vx

∂t
= −dp

dx
+

η

r

∂

∂r

(

r
∂vx

∂r

)

, (3.1)

with vx the fluid velocity along the cylindrical capillary. Initial and boundary
conditions for axial symmetric flow are given by

vx(r, 0) = 0,

vx(Rc, t) = 0, (3.2)

27
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z

xH

Figure 3.1: Fluid flow through 2-D
parallel-plate channel.

r

xRc

Figure 3.2: Fluid flow through capil-
lary.

and the velocity at r = 0 has to remain finite at all times. A constant pressure
gradient is imposed at t = 0. The solution was given by El-Sahed and Salem
(2004)

vx(r, t)

vmax
= (1 − r̃2) −

∞
∑

n=1

8J0(λnr̃)

λ3
nJ1(λn)

e−λ2
nτ , (3.3)

where τ = ηt/(ρfR2
c) is the dimensionless time, r̃ = r/Rc the dimensionless

radius position, vmax = (−∂p/∂x)(R2
c/(4η)) is the maximum velocity during

fully developed flow, and λn are the roots of the Bessel function J0 [El-Sahed
and Salem (2004), White (2005)]. Steady Poiseuille flow has the form

vx(r, t) = vmax(1 − r̃2). (3.4)

The fluid profile for different times is plotted in Figure 3.3 for a water-filled
capillary with Rc = 5 · 10−4 m. We note that eventually the fully developed
Poiseuille flow profile is reached indeed.
Next we consider harmonic motion. Using the temporal Fourier transform

f̂(x, ω) =

∫

∞

−∞

f(x, t)e−iωtdt, (3.5)

we obtain from (3.1)

∂2v̂x

∂r2
+

1

r

∂v̂x

∂r
− ρf

iω

η
v̂x =

1

η

∂p̂

∂x
. (3.6)

The solution will have the form

v̂x(r, ω) = AJ0(̟r) +
1

η̟2

∂p̂

∂x
, (3.7)
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Figure 3.3: Fluid velocity profile in capillary due to pressure gradient.

where

̟2 = −ρf

iω

η
, Real(̟) ≥ 0, (3.8)

and A is an arbitrary constant. Application of the no-slip boundary condition
at the wall results in the following velocity profile within the cylindrical
capillary

v̂x(r, ω) =
1

η̟2

∂p̂

∂x

(

1 − J0(̟r)

J0(̟Rc)

)

, (3.9)

with J0 the Bessel function of order zero. The average velocity over the entire
cross-section of the tube is

ˆ̄vx(ω) =
1

πR2
c

∫ Rc

0
v̂x(r, ω)2πrdr =

1

η̟2

∂p̂

∂x

(

1 − 2

̟Rc

J1(̟Rc)

J0(̟Rc)

)

. (3.10)

with J1 the Bessel functions of order one. The friction (wall shear stress) at
the wall of the cylindrical capillary is given by

τw = −η

(

∂v̂x

∂r

)

r=Rc

. (3.11)

The total friction force excited by the fluid on the wall, per unit average
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Figure 3.4: Womersley profiles for different α̂w numbers, αw = 0.1.
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Figure 3.6: Womersley profiles for different α̂w numbers, αw = 8.
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Figure 3.7: Womersley profiles for different α̂w numbers, αw = 32.



32 3. Dynamic coupling coefficients

fluid velocity, can be computed by considering the ratio

2πRcτw

ˆ̄vx

=
−2πη(̟Rc)

2J1(̟Rc)

(̟Rc)J0(̟Rc) − 2J1(̟Rc)
. (3.12)

For the case that the frequency is zero, the total friction force equals that of
the Poiseuille flow:

lim
ω→0

2πRcτw

ˆ̄vx

= 8πη. (3.13)

We now define the so-called Womersley parameter αw so that

αw = Rc

√

ρfω

η
. (3.14)

The solution (3.9) for a harmonic pressure gradient in a capillary tube can
now be expressed as

v̂x(r, ω) =
i

ρfω

∂p̂

∂x

(

1 −
J0(αw

r
Rc

√
−i)

J0(αw

√
−i)

)

, Real(αw

√
−i) ≥ 0, (3.15)

In Figures 3.4 and 3.7 we plot several velocity profiles for different phases.
The fluid profiles have been normalized using v̂x(r, ω) at the maximum phase
angle vxmax . It can be seen that there is a significant difference between small
Womersley numbers αw < 3 and large Womersley numbers αw > 10. For low
values of the Womersley number, viscous effects dominate and the profile
becomes parabolic. For medium range Womersley numbers 3 < αw < 10 a
phase-shift occurs between the flow in the boundary layer and the flow in the
central core of the tube. In the boundary layer viscous forces dominate over
inertia forces and the flow profile will become flattened. For high Womersley
numbers, the inertia forces are dominant in the central core and flattened
profiles shifted in phase can be found [Womersley (2002)]. The experimental
measurements, as described in Chapter 5 range up to 600 Hz, with relative
small capillaries. Therefore the corresponding Womersley number will be in
the low and intermediate range as we will see.
For a parallel-plate channel, the velocity distribution is given by Biot (1956b)

v̂x =
1

ηw
2

(

1 − cosh (wz)

cosh (wH)

)

∂p̂

∂x
, (3.16)

where w =
√

ρf iω/η for Real(w) ≥ 0. The average velocity of the entire
cross-section of the tube is

ˆ̄vx =
1

H

∫ H

0
v̂xdz =

1

ηw
2

(

1 − tanh(wH)

wH

)

∂p̂

∂x
. (3.17)
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3.1.2 Dynamic permeability

The dynamic permeability k̂(ω) is an important property for macroscopic
flow through porous media subjected to an oscillatory pressure gradient. It
describes the transition from low-frequency viscosity dominated flow towards
high-frequency inertia-dominated flow. This means that the conventional
Darcy relation has to be generalized in order to incorporate both effects

Ŵ (ω) = − k̂(ω)

η
∇p, (3.18)

with Ŵ = φ(v̂f − v̂s) the average flow velocity [Sheng and Zhou (1988)]. For
a porous medium consisting of an ensemble of parallel tubes, the dynamic
(frequency-dependent or AC) permeability can be computed from (3.10) and
the definition of the static permeability k0 = (1/8)R2

c :

k̂(ω) = k0

[ −8

(̟Rc)
2

(

1 − 2

̟Rc

J1 (̟Rc)

J0 (̟Rc)

)]

. (3.19)

The dynamic permeability for a parallel-plate configuration can be computed
in a similar way from (3.17) and using the definition of static permeability
k0 = (1/3)H2

k(ω) = k0

[

3

(wH)2

(

1 − 1

wH
tanh (wH)

)]

. (3.20)

The dynamic permeability for a porous medium of arbitrary shape was later
described by Johnson et al. (1987)

k̂(ω) = k0

[

(

1 + i
m

2

ω

ωc

) 1

2

+ i
ω

ωc

]−1

, (3.21)

where ωc = (ηφ)/(ρfk0α∞) is the rollover (or critical) frequency describing
the transition from low-frequency viscosity dominated flow towards high-
frequency inertia dominated flow. The shape factor m (usually taken 1) is
a measure for the ruggedness of the pore morphology, at the microscopic
scale. The general dynamic permeability equation not only describes the
high and low frequencies but also the transition region [Johnson et al. (1987),
Sheng and Zhou (1988), Pride et al. (1993)]. The absolute and phase values
of the dynamic permeability of a cylindrical results are compared with the
expression by Johnson et al. (1987) in Figures 3.8 and 3.9. Also the electric
coupling factor is plotted, but this will be treated in the forthcoming. We
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Table 3.1: Dimensions of two randomly chosen capillary tubes.

Parameter Unit Value Dimension

Radius capillary 1 R1 2.5 · 10−4 [m]
Radius capillary 2 R2 3.5 · 10−5 [m]
Porosity 1 φ1 1.8 · 10−4 [-]
Porosity 2 φ2 3.6 · 10−6 [-]
Length capillary 1 L1 6.4 · 10−2 [m]
Length capillary 2 L2 1.64 · 10−1 [m]

really see that the dynamic permeability tends to its steady-state value k0

for low-frequencies. In this frequency regime, there is no phase lag between
applied pressure gradient and resulting fluid flux. For high-frequencies, the
fluid is no longer able to respond to the pressure oscillation resulting in
a decreasing absolute value of the dynamic permeability and an increasing
phase lag approaching 90◦ as its limiting value. We notice that, overall, the
Johnson model accurately predicts the tube flow behaviour.

3.1.3 Multi-layered media

For multi-layered media, the dynamic permeability can be expressed in terms
of weighted averaging:

1

k̂P (ω)
=

N
∑

i=1

Li

Ltot

1

k̂i(ω)
. (3.22)

where N is the number of layers, and Li and k̂i(ω) are the length and per-
meability of the i-th layer, respectively. Ltot is the total sample length. We
now consider a bimodal sample consisting of capillary tubes only. Layer 1 has
tube radius R1, length L1, and porosity φ1, and layer 2 has tube radius R2,
length L2, and porosity φ2. We assume that the sample is filled with water
using (3.19), the dynamic permeability of each layer can be computed, and
consequently also the total permeability, using (3.22). The input parameters
are summarized in table 3.1 The results are given in Figures 3.10 and 3.11.
We notice that also in this case the Johnson model gives a very accurate
description of the sample permeability.
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Dynamic coupling coefficient in a capillary

For an electrolyte flowing within a capillary, the transport of charge of the
electrolyte per unit time along the tube is given by the convection current
[Packard (1953)]

Îconv =

∫ Rc

0
2πr · v̂xρEdr, (3.23)

Evaluating (3.23) using the electric charge density (2.4) and the fluid velocity
profile (3.7) yields that

Îconv = − 2πε

η̟2

∂p̂

∂x

∫ Rc

0

[

1 − J0(̟r)

J0(̟Rc)

]

d

(

r
dΦ

dr

)

. (3.24)

Integration by parts yields that

Îconv =
2πε

η̟2

∂p̂

∂x

∫ ζ

Φ0

̟r
J1(̟r)

J0(̟Rc)
dΦ. (3.25)

Upon integration by parts again, we find that

Îconv =
2πε0εrf

η̟2

∂p̂

∂x
̟Rc

J1(̟Rc)

J0(̟Rc)
, (3.26)

where the remaining integral after this second integration by parts has been
neglected, because the diameter of the capillary is large compared to the
thickness of the double layer. This corresponds to the steady flow situation
described in the previous chapter, for Gq = 0. As we have seen, this only holds
for wide enough capillaries. Streaming potential now applies if no net electric
current is allowed. Ion transport sets up the electric convective current Iconv

that has to be balanced by a conductive current. This conduction current
induces an electric field that is associated with the streaming potential, The
expression for the electric current now becomes

Îconv + σÊxA = 0, (3.27)

where Êx is the induced electric field. This corresponds to the steady flow
situation with Hq = 0 for wide capillaries. From (3.27) we thus find that

Êx = −
(

εζ

ση

)[

2

̟Rc

J1(̟Rc)

J0(̟Rc)

]

∂p̂

∂x
. (3.28)

This is called the Packard approach [Packard (1953)]. We will see later that
the ratio Êx/(∂p̂/∂x) equals the coupling coefficient L̂(ω)/σ in porous media.
Introducing L0 = −εζ/η we obtain

L(ω)

L0
= − Êx

∂p̂/∂x

ση

εζ
=

2

̟Rc

J1(̟Rc)

J0(̟Rc)
. (3.29)
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Dynamic coupling coefficient in a parallel-plate channel

Performing a similar integration as before, we obtain for the parallel-plate
channel

Îconv = − 2ε

ηw
2

∂p

∂x





(

1 − cosh (wz)

cosh (wH)

)

∂Φ

∂z

∣

∣

∣

∣

∣

H

0

+

−
∫ H

0

∂Φ

∂z
d

(

1 − cosh (wz)

cosh (wH)

)]

. (3.30)

The first part between the square brackets is zero, so that we have that

Iconv = −2ζε

ηw

∂p̂

∂x
tanh (wH). (3.31)

The induced electric field is then given by

Êx =

(

εζ

ση

)[

1

wH
tanh (wH)

]

∂p̂

∂x
, (3.32)

so that we have

L(ω)

L0
= − 1

wH
tanh (wH), (3.33)

In 1994, Pride introduced a generalized coupling function

L(ω)

L0
=



1 + i
ω

ωc

2

m

(

1 − 2
d

Λ

)2
(

1 + d

√

iωρf

η

)2




−
1

2

, (3.34)

where Λ is a characteristic pore size parameter. The Debye length is denoted
d and L0 is the static electrokinetic coupling coefficient for a porous medium
[Pride (1994)]

L0 = − φ

α∞

εζ

η

(

1 − 2
d

Λ

)

. (3.35)

We notice that Pride (1994) uses an additional relaxation mechanism when
the complex viscous skin depth becomes smaller than the Debye length. In
most natural porous materials, relaxation never takes place, for commonly en-
countered frequencies and salinities. Therefore Pride and Garambois (2005)
proposed a simplified version of (3.34)

L̂(ω)

L0
=

[

1 + i
ω

ωc

]−
1

2

. (3.36)
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which has the limitation that the shape factor should be equal to 2. However
m usually is taken 1, see Figures 3.8 and 3.9, in that case we should use

L̂(ω) = L0

[

1 + i
ω

ωc

2

m

]−
1

2

. (3.37)

In Figures 3.8 and 3.9 absolute and phase values of the electric coupling
coefficients are plotted. It becomes evident that Pride’s simplified model
predicts the same trends as computed for the capillary tubes, but the response
is shifted in frequency.
For the phase values it is conspicuous that the high-frequency limiting phase
lag is 45◦, which is quite different from the 90◦ phase lag for the dynamic
permeability. This is simply because L(ω)/L0 displays (iω/ωc)

−
1

2 behaviour
at high frequencies, whereas k(ω)/k0 scales as (iω/ωc)

−1 for high frequencies.

3.1.4 Multi-layered media EK coupling

In a similar manner to the derivation of the dynamic permeability for multi-
layered media (subsection 3.1.3), it is possible to obtain the dynamic coupling
coefficient for a series of tubes.
Considering Ohm’s law, (4.20) for the case where the electric current density
equals zero.

L̂(ω) = −σ̂(ω)
∇Φ

∇p
. (3.38)

Summing the pressure difference and potential difference together

σ̂(ω)
N
∑

i

∆Φi = −
N
∑

i=1

∆piL̂i(ω). (3.39)

Combining the potential difference with Darcy’s law

σ̂(ω)∆Φ = −
N
∑

i=1

L̂i(ω)
ηφi

k̂i(ω)
vxiLi, (3.40)

rewritten

σ̂(ω)∆Φ = −ηφvxLtot

[

N
∑

i=1

Li

Ltot

L̂i(ω)

k̂i(ω)

]

. (3.41)
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Figure 3.10: Real value of dynamic permeability and dynamic coupling coefficient
for analytical solution and approximate solution.
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Figure 3.11: Imaginary value of dynamic permeability and dynamic coupling coef-
ficient for analytical solution and approximate solution.
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Dividing (3.41) by the total pressure difference results in the dynamic cou-
pling coefficient

L̂P (ω) = k̂P (ω)

[

N
∑

i=1

Li

Ltot

L̂i(ω)

k̂i(ω)

]

. (3.42)

In Figures 3.10 and 3.11 good agreement of the analytical solution for a
capillary tube (Poiseuille and Packard) (3.42) versus the coefficient for a
general arbitrary geometry (Johnson and Pride) (3.34) are shown.

3.1.5 Principles of electro-osmosis

In Chapter 2, we have seen that the fluid velocity in a capillary tube is given
by

vx =
εEx

η
(Φ − ζ). (3.43)

As the counter-ions in the fluid collect near the wall, the electric field po-
tential Φ rapidly decays as one moves away from the surface [Masliyah and
Bhattacharjee (2006)]. This means that in the bulk of the capillary we find
that

vx = −εζ

η
Ex, (3.44)

which is the Helmholtz-Smoluchowski plug flow velocity.
Essentially this means that the electric forces do not play a role in the bulk
of the fluid, as the counter ions collect in the screening layer near the surface.
Momentum balance for the bulk yields that

ρf iωvx =
η

r

∂

∂r

(

r
∂vx

∂r

)

, (3.45)

or

0 =

(

̟2 +
∂2

∂r2
+

1

r

∂

∂r

)

vx. (3.46)

The general solution to (3.46) is given by

vx = AJ0(̟r), (3.47)
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with A some arbitrary constant.
Substitution of the imposed wall velocity as the boundary condition at r = Rc

yields that

A = −εζ

η

Êx

J0(̟Rc)
, (3.48)

so that

vx = −εζ

η

J0(̟r)

J0(̟Rc)
Êx. (3.49)

The volume flux Qx is given by

Qx =

∫ Rc

0
vx2πrdr = −2πεζÊx

η

∫ Rc

0

J0(̟r)

J0(̟Rc)
rdr. (3.50)

Integrating (3.50) yields that

Qx = −2πεζÊx

η̟

RcJ1(̟Rc)

J0(̟Rc)
. (3.51)

As we have that Îx = σÊxπR2
c , we can derive that

Qx

Îx

= − εζ

ση

2

̟Rc

J1(̟Rc)

J0(̟Rc)
. (3.52)

Comparison of (3.52) with (3.28) shows that

Qx

Îx

=
Êx

∂p̂/∂x
, (3.53)

because it must be in accordance with the Onsager principle of reciprocity.
For a parallel-plate channel configuration a similar approach can be used.
Now 2.43 becomes

∂2vx

∂z2
=

εEx

η

∂2Φ

∂z2
, (3.54)

which results in the same velocity profile as given in (3.43). Momentum
balance for the bulk yields that

ρf iωvx = η
∂2vx

∂z2
, (3.55)
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or

0 =
∂2vx

∂z2
− w

2vx. (3.56)

The solution to (3.56), can be obtained if use is made of the imposed wall
velocity as the boundary condition at z = H

vx = A cosh (wz), (3.57)

where A is given by

A =
εζ

η

Êx

cosh (wH)
, (3.58)

so that

vx =
εζ

η

cosh (wz)

cosh (wH)
Êx, (3.59)

The volume flux Qx is given by

Qx = 2

∫ H

0
vxdz =

2εζÊx

η

∫ H

0

cosh (wz)

cosh (wH)
dz. (3.60)

Integrating (3.60) yields that the volume flux for a parallel-plate channel
configuration becomes

Qx =
2εζÊx

ηw
tanh (wH). (3.61)

Here we find that

Qx

Îx

=
εζ

ησ

1

wH
tanh (wH), (3.62)

so that also in this case

Qx

Îx

=
Êx

∂p̂/∂x
, (3.63)

(see (3.32)) in accordance with the principle of reciprocity.
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Table 3.2: Medium properties used for as input for analytical derivations. Use is
made from KCl, as given by Haartsen and Pride (1996).

Property Unit Value Dimension

Porosity φ 0.15 [-]
DC permeability k0 1.0 · 10−12 [m2]
Bulk modulus solid Ks 36.0 [GPa]
Bulk modulus fluid Kf 2.2 [GPa]
Frame bulk modulus Kfr 9.0 [GPa]
Shear modulus G 7.0 [GPa]
Fluid viscosity η 1.0 · 10−3 [Pa/s]

Solid density ρs 2.7 · 103 [kg/m3]

Fluid density ρf 1.0 · 103 [kg/m3]
Salinity cq 1 · 10−3 [mol/l]
Temperature T 298 [K]
Relative permittivity of fluid εrf 80 [-]
Relative permittivity of solid εrs 4 [-]
Relative magnetic permeability µr 1 [H/m]
Tortuosity α∞ 3 [-]

3.2 Sensitivity analysis

In Figures 3.12 to 3.16 we investigate the sensitivity of the dynamic permea-
bility and the dynamic coupling coefficient on ρf , η, and the concentration

cq. Obviously, the latter is only investigated for electric coupling Ĉ(ω), as
it will have no effect on dynamic permeability. Only absolute values of the
coupling coefficients are plotted. The input parameters are given in table 3.2
We notice that the dynamic permeability is not very sensitive as function
of the density and viscosity; there is only clear change in rollover frequency
ω/ωc. For the dynamic coupling the same effects appear. The dependence
on concentration is plotted in Figure 3.16. As expected, the salt concentra-
tion decisively affects the magnitude of the electrokinetic coupling coefficient
and not the frequency part. For high concentrations, the coupling effect
practically disappears.
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Figure 3.12: Dynamic permeability sensitivity for changes in ρf . Bulk properties
used by Haartsen and Pride (1996), Table 3.2.
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Figure 3.13: Dynamic permeability sensitivity for changes in η. Bulk properties
used by Haartsen and Pride (1996), Table 3.2.
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Figure 3.14: Dynamic EK coupling coefficient sensitivity for changes in ρf . Bulk
properties used by Haartsen and Pride (1996), Table 3.2.

10
−20

10
−10

10
0

10
10

10
−10

10
0

10
10
0

0.2

0.4

0.6

0.8

1

ω/ω
c
   [−]η   [Pa s]

|C
(ω

)|
/C

0   
[−

]

Figure 3.15: Dynamic EK coupling coefficient sensitivity for changes in η. Bulk
properties used by Haartsen and Pride (1996), Table 3.2.
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Figure 3.16: Dynamic EK coupling coefficient sensitivity for changes in cq. Bulk
properties used by Haartsen and Pride (1996), Table 3.2.

3.3 Onsager relationships

In this section the coupling coefficients will be described in a broader context.
When a saturated porous material is subjected to hydraulic, potential, che-
mical or thermal gradients, equilibrium is disturbed. Denoting Ji as the
material flow, and Xj as the actuating phenomenon, we write [Prigogine
(1961)]

Ji = −
∑

j

Lij∇Xj , (3.64)

with Lij the phenomenological (also known as Onsager or transport) coeffi-
cients. The term phenomenological coefficients signifies that these coefficients
are usually determined from experiments [Bader (2005); Masliyah and Bhat-
tacharjee (2006)]. Onsager found out that there is an underlying symmetry
for the phenomenological coefficients, also known as the Onsager reciprocal
relation [Onsager (1931a,b)]:

Lij = Lji. (3.65)

Several physical phenomena in natural and engineered systems are governed
by transport processes. The derived equations (3.64) and (3.65) are known
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as constitutive laws. Considering hydraulic, electric, chemical and thermal
flow within we write that

vf = −L11∇p − L12∇Φ − L13∇µc − L14∇T, (3.66)

J = −L21∇p − L22∇Φ − L23∇µc − L24∇T, (3.67)

Jc = −L31∇p − L32∇Φ − L33∇µc − L34∇T, (3.68)

QT = −L41∇p − L42∇Φ − L43∇µc − L44∇T. (3.69)

where µc is the chemical potential, Jc the chemical diffusive flux, and QT the
heat flux. In the current research only a small part is investigated. Consi-
der a fluid-saturated porous medium, without temperature and electrolyte
concentration gradients. The transport equations can be expressed as

vf = −L11∇p − L12∇Φ, (3.70)

J = −L12∇p − L22∇Φ. (3.71)

According to Saxen’s law [Bader (2005), Molina et al. (1999)], if J = 0 the
electric current density is zero we have

∇Φ

∇p̂
= −L12

L22
. (3.72)

Applying Onsager’s reciprocal relationship between cross-coupling coefficients
we have that

(vf

J

)

∇p=0
= −

(∇Φ

∇p̂

)

J=0

. (3.73)

This was already experimentally shown in 1892 by Saxen. Expressing the
fluid velocity in terms of the pressure gradient for the case J = 0 we find
that

vf

∇p
=

(

L2
12 − L11L22

L22

)

. (3.74)

It is also noticed that

( vf

∇Φ

)

J=0
=

(

J

∇p

)

vf=0

. (3.75)

This is a different way of formulating Saxen’s law [Brunet and Ajdari (2006)],
which is based on the Onsager relations. Any differences between the recipro-
cal phenomenological coefficients can usually be attributed to experimental
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Table 3.3: Direct and coupled flow phenomena.
H

H
H

H
HH

Ji

∇Xj Hydraulic Electric Chemical Thermal

Fluid Darcy’s Electro Chemical Thermo
law osmosis osmosis osmosis

Charge Streaming Ohm’s Dorn Seebeck
potential law potential effect

Solute Ultra Electrophoresis Fick’s Soret
filtration law effect

Heat Isothermal Peltier Dufour Fourier’s
heat effect effect law

shortcomings [Bader (2005), Reppert and Morgan (2002)].
The types of coupled flow that can occur in a porous medium are listed
in Table 3.3 [Bader (2005), Barragán et al. (2006), Heister (2005), Mitchell
(1991), Moreno and Trevisan (1999)] known as Onsager’s matrix. On the
main diagonal, direct flow phenomena are given and coupled flow phenomena
are found off-diagonally. All the fluxes on the main diagonal are induced by
its conjugated driving force, while the off-diagonal terms are driven by forces
of other types.



Chapter 4

Electrokinetic wave propagation

In this chapter the macroscopic governing equations are discussed, which des-
cribe the coupling between seismics and electromagnetics in fluid-saturated
porous media. Use is made of the linearized equations as formulated by Pride
(1994). The porous material is saturated with an electrolyte. The governing
electrokinetic equations are the combined Biot (1956a,b) equations describing
acoustics within porous media and the Maxwell equations for electromagne-
tic fields [Sommerfeld (1964)]. Biot describes wave propagation in porous
materials within a system of two interpenetrating phases: the solid phase
and the fluid phase. Both phases are described by the averaged motion of
the solid and fluid parts using conservation of mass and momentum. Ma-
terial properties are included through stress-strain relations. To obtain the
electrokinetic governing equations the following assumptions are made:
❏ The entire fluid-solid system is considered to be isothermal.
❏ The deformation is completely reversible and linear elastic.
❏ Each volume element is described by the averaged displacement of the fluid
uf and of the solid parts us.
❏ The fluid-filled elastic skeleton has a statistical distribution of intercon-
nected pores.
❏ The fluid is considered a Newtonian fluid.
❏ The fluid does not transmit nor react to a shear force in the solid.
❏ The wavelength is much larger than the grain or pore size.
We start with a general description of a poro-elastic material, which is fully
fluid-saturated, for which the governing electrokinetic relationships are deri-
ved.

49
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4.1 Electrokinetic relations

If we consider an elementary cube of porous material (porosity φ), the forces
per unit bulk area applied to the solid portion of the cube faces are denoted
τ

τ = −σ − (1 − φ)pI, (4.1)

with σ the intergranular stress and p the fluid pressure. The Kronecker
delta δij is required, because the pore fluid cannot sustain any shear forces.
The normal force exerted on the fluid portion of the elementary bulk area is
defined as

ξ = −φp. (4.2)

The stress-strain relations for isotropic materials may be written as [Biot
(1956a,b), Biot and Willis (1957), Gassmann (1951)]

τ = G(us∇T + ∇) + [A∇ · us + Q∇ · uf ]I, (4.3)

ξ = Q∇ · us + R∇ · uf , (4.4)

where us and uf are the solid and fluid displacement vectors, respectively.
The coefficients A, Q and R can be expressed as a function of the porosity
φ, the bulk modulus of the solid Ks, the bulk modulus of the fluid Kf , the
bulk modulus of the porous drained matrix Kfr and the shear modulus G

A = φ
Kfr

φeff

− (1 − φ)
Kf

φeff

(

1 − φ − Kfr

Ks

)

− 2

3
G, (4.5)

Q = φ
Kf

φeff

(

1 − φ − Kfr

Ks

)

, (4.6)

R = φ2 Kf

φeff

, (4.7)

where φeff = φ +
Kf

Ks

(

1 − φ − Kfr

Ks

)

is the effective porosity.

We will first consider the equations of motion without the electrokinetic effect.
The equations of motion result from conservation of momentum for the fluid
and the solid and are specified in their linearized form

φρf

∂2uf

∂t2
= ∇ξ − ηφ

k0
F (t) ∗ ∂w

∂t
− (α∞ − 1)ρf

∂2w

∂t2
, (4.8)

(1 − φ)ρs
∂2us

∂t2
= ∇ · τ +

ηφ

k0
F (t) ∗ ∂w

∂t
+ (α∞ − 1)ρf

∂2w

∂t2
, (4.9)
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where ρf is the fluid density, ρs the solid density, α∞ is the tortuosity, η the
fluid viscosity, k0 the (static) permeability and w = φ(uf − us) the relative
displacement. The ∗ symbol denotes convolution. The left-hand sides of
both (4.8) and (4.9) contain the inertial terms. On the right-hand sides
we recognize the surface forces (intergranular stress and pressure), the Darcy
term, and added mass effects. Adopting an eiωt time dependence, the viscous
correction factor is defined by Johnson et al. (1987) as

F̂ (ω) =

√

1 + m
iω

2ωc
, (4.10)

with m = 8α∞k0/(φΛ2) the shape factor (usually taken 1), Λ the weighted
pore volume-to-pore surface ratio [Johnson et al. (1987)], ωc = (ηφ)/(α∞ρfk0)
the characteristic (or rollover) frequency describing the transition from low-
frequency viscosity dominated flow towards high-frequency inertia dominated
flow.
Combining (4.8) and (4.9) with the stress-strain equations (4.3) and (4.4)
yields that

G∇2ûs + (A + G)∇(∇ · ûs) + Q∇(∇ · ûf ) = −ω2(ρ̂11ûs + ρ̂12ûf ), (4.11)

Q∇(∇ · ûs) + R∇(∇ · ûf ) = −ω2(ρ̂12ûs + ρ̂22ûf ), (4.12)

where ρ̂11(ω), ρ̂12(ω), and ρ̂22(ω) are the so-called generalized effective den-
sity functions

ρ̂11(ω) = (1 − φ)ρs − ρ̂12(ω), (4.13)

ρ̂12(ω) = φρf

[

1 + i
ηφ

ωρf k̂(ω)

]

, (4.14)

ρ̂22(ω) = φρf − ρ̂12(ω). (4.15)

The dynamic permeability is closely related to the viscous correction factor
(see subsection 3.1.2)

k̂(ω)

k0
=

(

F̂ (ω) +
iω

ωc

)−1

. (4.16)

Following Schakel and Smeulders (2010) the electrokinetic effect can be inclu-
ded in (4.11) and (4.12). An electric field Ê is imposed on a fluid-saturated
porous material. As discussed in the previous chapter, the electric field exerts
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an additional body force on the fluid electrolyte so that

G∇2ûs + (A + G)∇(∇ · ûs) + Q∇(∇ · ûf ) =

= −ω2(ρ̂11(ω)ûs + ρ̂12(ω)ûf ) +
ηφL̂(ω)

k̂(ω)
Ê, (4.17)

Q∇(∇ · ûs) + R∇(∇ · ûf ) =

= −ω2(ρ̂12(ω)ûs + ρ̂22(ω)ûf ) − ηφL̂(ω)

k̂(ω)
Ê, (4.18)

where L̂(ω) is the dynamic electrokinetic coupling factor. Considering the
definitions for ρ̂12(ω) and ρ̂22(ω), equation (4.18) can be written as

iωŵ =
k̂(ω)

η
(−∇p̂ + ω2ρf ûs) + L̂(ω)Ê. (4.19)

Pride expanded Ohm’s law in the sense that hydrodynamic flow also induces
electric currents

Ĵ = L̂(ω)(−∇p̂ + ω2ρf ûs) + σ̂(ω)Ê, (4.20)

where Ĵ is the electric current density and σ̂(ω) the dynamic conductivity
(see Appendix B). We recognize that the electroseismic coupling is present
both in the mechanical as well as in the electromagnetic equations (4.19) and
(4.20) [Li et al. (1995)]. Eliminating (−∇p̂+ω2ρf ûs) from (4.19) and (4.20),
we obtain

iωŵ = L̂(ω)Ê +
k̂(ω)

ηL̂(ω)
(J − σ̂(ω)Ê). (4.21)

The Maxwell relation for the magnetic field is given by Ampère’s Circuit Law

Ĵ = ∇× Ĥ − εiωÊ, (4.22)

with Ĥ the magnetic field and ε the electric permittivity. The electric per-
mittivity for a fluid-saturated porous medium consists of a solid and fluid
part

ε = εrε0 =

[

φ

α∞

(εrf − εrs) + εrs

]

ε0. (4.23)

with ε0 the electric permittivity in vacuum, εr the relative electric permitti-
vity, εrf and εrs the fluid and solid dielectric constants respectively. Faraday’s
induction law states that

µiωĤ = −∇× Ê, (4.24)
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with µ the magnetic permeability. Substitution of (4.22) in (4.21) results in

iωŵ = L̂(ω)Ê +
k̂(ω)

ηL̂(ω)
(∇× H − [iωε + σ̂(ω)]Ê). (4.25)

Taking the cross product of Faraday’s law (4.24), we obtain

∇×∇× Ê = −iωµ∇× Ĥ, (4.26)

or

∇(∇ · Ê) −∇2Ê = −iωµ∇× Ĥ. (4.27)

Substitution of (4.27) in (4.21) yields that

µε̂(ω)ω2Ê + ω2 ηµ

k̂(ω)
L̂(ω)ŵ = ∇(∇ · Ê) −∇2Ê, (4.28)

where ε̂(ω) is the effective electric permittivity of the porous continuum

ε̂(ω) = ε − i
σ̂(ω)

ω
+ i

ηL̂2(ω)

ωk̂(ω)
, (4.29)

Equations (4.17), (4.18) and (4.28) form a closed set of equations for the
fields ûs, ûf and Ê.

4.2 Wave motion

In this section the governing electrokinetic equations in fluid saturated po-
rous media are solved for a homogeneous isotropic whole space [Pride (1994),
Pride and Haartsen (1996)]. Part of the analysis is performed in the fre-
quency wavenumber domain. We use the e−ik·x space-dependence, where x

is the three-dimensional position vector and k is the three-dimensional wa-
venumber vector.
Helmholtz decomposition [Deresiewicz (1960)] allows us to write the dis-
placement and electric vector fields as a superposition of longitudinal and
transversal fields by introducing the potentials ℘ and ς:

us = ∇℘s + ∇× ςs, (4.30)

uf = ∇℘f + ∇× ςf , (4.31)

E = ∇℘E + ∇× ςE . (4.32)
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Substituting (4.30) - (4.32) in the governing electrokinetic equations (4.17),
(4.18) and (4.28), results in

∇
[

(A + 2G)∇2℘̂s + Q∇2℘̂f + ρ̂11(ω)ω2℘̂s + ρ̂12(ω)ω2℘̂f − ηφL̂(ω)

k̂(ω)
℘̂E

]

+ ∇×
[

G∇2
ς̂s + ρ̂11(ω)ω2

ς̂s + ρ̂12(ω)ω2
ς̂f − ηφL̂(ω)

k̂(ω)
ς̂E

]

= 0, (4.33)

∇
[

Q∇2℘̂s + R∇2℘̂f + ρ̂12(ω)ω2℘̂s + ρ̂22(ω)ω2℘̂f +
ηφL̂(ω)

k̂(ω)
℘̂E

]

+ ∇×
[

ρ̂12(ω)ω2
ς̂s + ρ̂22(ω)ω2

ς̂f +
ηφL̂(ω)

k̂(ω)
ς̂E

]

= 0, (4.34)

and

∇
[

−ω2
ηµφ

k̂(ω)
L̂(ω)℘̂s + ω2

ηµφ

k̂(ω)
L̂(ω)℘̂f + µε̂(ω)ω2℘̂E

]

+ ∇×
[

−ω2L̂(ω)(
ηµφ

k̂(ω)
ς̂s −

ηµφ

k̂(ω)
ς̂f ) + µε̂(ω)ω2

ς̂E + ∇2
ς̂E

]

= 0. (4.35)

These equations are satisfied if the terms between the square brackets are
equal to zero [Wisse (1999)].

4.2.1 Longitudinal waves

For the temporal Fourier transform of the potentials ℘̂, which correspond to
the compressional fields, we can now write





P Q 0
Q R 0
0 0 0









∇2℘̂s

∇2℘̂f

∇2℘̂E



 =















−ρ̂11 −ρ̂12
ηφ

ω2k̂
L̂

−ρ̂12 −ρ̂22 − ηφ

ω2k̂
L̂

ηφ

ω2k̂
L̂ − ηφ

ω2k̂
L̂ − ε̂

ω2















ω2





℘̂s

℘̂f

℘̂E



 ,

where P = A + 2G. Using the spatial Fourier transform we obtain
















ρ̂11(ω) − Ps2 ρ̂12(ω) − Qs2 − ηφ

ω2k̂(ω)
L̂(ω)

ρ̂12(ω) − Qs2 ρ̂22(ω) − Rs2 ηφ

ω2k̂(ω)
L̂(ω)

− ηφ

ω2k̂(ω)
ˆL(ω)

ηφ

ω2k̂(ω)
ˆL(ω)

ε̂(ω)

ω2





















℘̂s

℘̂f

℘̂E



 = 0, (4.36)
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with s2 = (k · k)/ω2 the complex-valued squared slowness. It is possible to
eliminate ℘̂E from the first two equations so that









ρ̂E
11(ω) − Ps2 ρ̂E

12(ω) − Qs2 0
ρ̂E
12(ω) − Qs2 ρ̂E

22(ω) − Rs2 0

− ηφ

ω2k̂(ω)
ˆL(ω)

ηφ

ω2k̂(ω)
ˆL(ω)

ε̂(ω)

ω2













℘̂s

℘̂f

℘̂E



 = 0, (4.37)

where ρ̂E
11(ω), ρ̂E

12(ω) and ρ̂E
22(ω) are the newly introduced effective electro-

viscous densities

ρ̂E
11(ω) = ρ̂11(ω) − ρ̂E(ω), (4.38)

ρ̂E
12(ω) = ρ̂12(ω) + ρ̂E(ω), (4.39)

ρ̂E
22(ω) = ρ̂22(ω) − ρ̂E(ω), (4.40)

ρ̂E(ω) =
η2φ2L̂2(ω)

k̂2(ω)ε̂(ω)ω2
. (4.41)

We note that both viscous and electrokinetic coupling effects are now ele-
gantly comprised in electroviscous densities. The first two equations (4.37)
can be solved

[

ρ̂E
11(ω) − Ps2 ρ̂E

12(ω) − Qs2

ρ̂E
12(ω) − Qs2 ρ̂E

22(ω) − Rs2

] [

℘̂s

℘̂f

]

= 0, (4.42)

in the conventional way

s2
p1, p2 =

−∆ ∓
√

∆2 − 4(PR − Q2)(ρ̂E
11(ω)ρ̂E

22(ω) − (ρ̂E
12(ω))2)

2(PR − Q2)
. (4.43)

with

∆ = −(P ρ̂E
22(ω) + Rρ̂E

11(ω) − 2Qρ̂E
12(ω)). (4.44)

This approach was discussed earlier [Smeulders (2005)]. Here we only replace
the original effective densities with the new electroviscous ones. The disper-
sion relations (4.37) not only predict the phase velocities and attenuations
[see (4.43)], but also yield the fluid-solid amplitude ratios Γ and the strength
of the electric field with respect to the solid’s motion Γ̄

Γp1, p2 =
℘̂f, p1, p2

℘̂s, p1, P2

=
ρ̂E
11(ω) − Ps2

p1, p2

Qs2
p1, p2 − ρ̂E

12(ω)
, (4.45)

Γ̄p1, p2 =
℘̂E, p1, P2

℘̂s, p1, P2

=
ηφL̂(ω)

k̂(ω)ε̂(ω)
(1 − Γp1, p2). (4.46)
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Low-frequency limit

For ω ≪ ωc, the square root in (4.43) can be replaced by the first order term
of the Taylor series expansion, and hence we obtain

lim
ω≪ωc

s2
p1,p2

=

−∆ ∓ ∆

[

1 − 2(PR − Q2)(ρ̂E
22(ω)ρ̂E

11(ω) − (ρ̂E
22(ω))2)

∆2

]

2(PR − Q2)
. (4.47)

For the slow compressional wave we find that

lim
ω≪ωc

1

s2
p2

= lim
ω≪ωc

PR − Q2

Pρ2 + Rρ1 − Hρ̂E
12(ω)

, (4.48)

where H = P + R + 2Q is the Gassmann modulus, ρ1 = (1 − φ)ρs, and
ρ2 = φρf . Evaluating ρ̂E

12(ω), we have that

lim
ω≪ωc

1

s2
p2

=
iω(PR − Q2)

b0H

(

1 − ηL2
0

(ηL2
0 − σ0k0)

) , (4.49)

with σ0 = φσf/α∞ the adjusted fluid conductivity. This solution shows
that the slow wave is described by a diffusion equation rather than a wave
equation, in the low-frequency limit, because the solution (4.49) satisfies the
diffusion equation

Dh∇2Υ = iωΥ, (4.50)

where Υ can be any relevant variable (u, p, etc) and

Dh =
PR − Q2

b0H

(

1 − ηL2
0

(ηL2
0 − σ0k0)

) . (4.51)

We note that this expression for Dh is similar to the one originally derived by
Biot (1956a) apart from the correction term 1−ηL2

0/(ηL2
0 − σ0k0) associated

with the electrokinetic coupling effect.
For the fast wave we can write

lim
ω≪ωc

1

s2
p1

=
Pρ2 + Rρ1 − Hρ̂12(ω)

ρ1ρ2 − ρρ̂12(ω)
=

H

ρ
, (4.52)

where ρ = ρ̂E
11(ω)+ ρ̂E

22(ω)+2ρ̂E
12(ω). The effective modulus H was originally

derived by Gassmann (1951) in an article that predates the Biot theory, and
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therefore this limit is often called the Biot-Gassmann result.
It can be seen that the electrokinetic coupling does not influence this limit
with respect to the purely acoustic wave. This is due to the fact that in
the low-frequency limit of the fast wave the relative motion of the fluid with
respect to that of the solid is negligible so that no electrokinetic effect is
generated.

High-frequency limit

In the high-frequency limit the dynamic effective densities ρ̂E
11(ω), ρ̂E

22(ω) and
ρ̂E
12(ω) tend to

ρ11 = (1 − φ)ρs − ρ12, (4.53)

ρ12 = −(α∞ − 1)φρf , (4.54)

ρ22 = φρf − ρ12, (4.55)

respectively, so that the dispersion equation will become real-valued. Conse-
quently both compressional waves become propagatory and no electrokinetic
effects are left. But this of course is outside of the theoretical limits.

4.2.2 Transversal waves

In a similar way the transversal fields can be studied. From (4.33) - (4.35)
the following matrix form is obtained for the transversal field potentials





G 0 0
0 0 0
0 0 1









∇2
ς̂s

∇2
ς̂f

∇2
ς̂E



 =

















−ρ̂11 −ρ̂12
ηφL̂

ω2k̂

−ρ̂12 −ρ̂22 −ηφL̂

ω2k̂
ηµφ

k̂
L̂ −ηµφ

k̂
L̂ −µε̂

















ω2





ς̂s

ς̂f

ς̂E



 .

Application of the spatial Fourier transform results in



















ρ̂11(ω) − Gs2 ρ̂12(ω) −ηφL̂(ω)

ω2k̂(ω)

ρ̂12(ω) ρ̂22(ω)
ηφL̂(ω)

ω2k̂(ω)

− ηµφ

k̂(ω)
L̂(ω)

ηµφ

k̂(ω)
L̂(ω) µε̂ − s2























ς̂s

ς̂f

ς̂E



 = 0. (4.56)
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By adding the first two equations ς̂f is simply eliminated from the first equa-
tion













ρ1 − Gs2 ρ2 0

ρ̂12(ω) ρ̂22(ω)
ηφL̂(ω)

ω2k̂(ω)

− ηµφ

k̂(ω)
L̂(ω)

ηµφ

k̂(ω)
L̂(ω) µε̂ − s2

















ς̂s

ς̂f

ς̂E



 = 0. (4.57)

From the first equation we simply derive that ς̂f = ς̂s(Gs2 − ρ1)/ρ2. Substi-
tution in the second and third equations yields that











ρ̂12(ω) + ρ̂22(ω)
Gs2 − ρ1

ρ2
−ηφL̂(ω)

ω2k̂(ω)
ηφL̂(ω)

ω2k̂(ω)

Gs2 − ρ

ρ2
µε̂ − s2











[

ς̂s

ς̂E

]

= 0. (4.58)

Setting the determinant of this set equal to zero, we obtain the following
dispersion relation

B1s
4 + B2s

2 + B3 = 0, (4.59)

where

B1 = Gρ̂22(ω), (4.60)

B2 = −Gµε̂(ω)ρ̂E
22(ω) − (ρ̂11(ω)ρ̂22(ω) − (ρ̂12(ω))2), (4.61)

B3 = µε̂(ω)[ρ̂E
11(ω)ρ̂E

22(ω) − (ρ̂E
12(ω))2]. (4.62)

These relations were also given by Schakel and Smeulders (2010). Dividing
all equations by ρ̂22(ω), we obtain alternatively

B1 = G, (4.63)

B2 = −
[

ρt + Gµε̂(ω)

(

1 +
L̂2(ω)ρ̂22(ω)

ε̂(ω)φ2

)]

, (4.64)

B3 = µε̂(ω)

[

ρt +
L̂2(ω)ρ̂22(ω)

ε̂(ω)φ2
ρ

]

, (4.65)

which are the expressions by Pride and Haartsen (1996) we remark that

ρt =
ρ̂11(ω)ρ̂22(ω) − (ρ̂12(ω))2

ρ̂22(ω)
. (4.66)
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The dispersion relation (4.59) can be solved in a straight forward way. We
find that there are two attenuated transversal fields, the conventional shear
field and an E-M field, respectively. An example will be discussed in the next
section.
Setting the electrokinetic coupling coefficient L̂ to zero will result in a shear
wave and an uncoupled E-M wave as derived by Pride and Haartsen (1996)

s2
sh =

ρ̂11(ω)ρ̂22(ω) − (ρ̂12(ω))2

Gρ̂22(ω)
, (4.67)

s2
EM

= µε̂(ω). (4.68)

The dispersion relation (4.59) also yields the fluid-solid amplitude ratios and
the strength of the electric field

Γsh, EM =
ς̂f, sh, EM

ς̂s, sh, EM

=
Gs2

sh, EM − (1 − φ)ρs

φρf

, (4.69)

Γ̄sh, EM =
ς̂E, sh, EM

ς̂f, sh, EM

=
µηφL̂(ω)

k̂(ω)
[

µε̂(ω) − s2
sh, EM

](1 − Γsh, EM ). (4.70)

Low-frequency limit

For ω ≪ ωc we note that

lim
ω≪ωc

L̂2(ω)ρ̂22(ω)

ε̂(ω)φ2
=

ηL2
0

σ0k0 − ηL2
0

, (4.71)

lim
ω≪ωc

ρt = ρ. (4.72)

We thus find that

lim
ω≪ωc

1

s2
sh

= −B2

B3
=











Gµǫ0

(

1 +
ηL2

0

σ0k0 − ηL2
0

)

ρµǫ0

(

1 +
ηL2

0

σ0k0 − ηL2
0

)











=
G

ρ
, (4.73)

which is fully identical to the original Biot solution. For the EM wave, we
find that

lim
ω≪ωc

1

s
EM

2

= −B1

B2
=

G

Gµε0

(

1 +
ηL2

0

σ0k0 − ηL2
0

) =
iω

µσ0
, (4.74)
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This shows that the EM wave is described by a diffusion equation rather
than a wave equation, in the low-frequency limit, because the solution (4.74)
satisfies the diffusion equation

Dh∇2Υ = iωΥ, (4.75)

with

Dh =
1

µσ0
. (4.76)

High-frequency limit

For ω → ∞, the dynamic effective densities ρ̂11(ω), ρ̂22(ω) and ρ̂12(ω) tend
to ρ11, ρ22 and ρ12. The parameters Bi now become

lim
ω→∞

B1 = Gρ22, (4.77)

lim
ω→∞

B2 = −[ρ11ρ22 − ρ2
12] − [Gµερ22], (4.78)

lim
ω→∞

B3 = µε[ρ11ρ22 − ρ2
12]. (4.79)

Both transversal waves become propagatory.

4.2.3 Numerical results

In this section numerical results are shown. Use is made of a data set given
by Haartsen and Pride (1996). The input parameters are listed in Table 3.2.
The phase velocity v̂(ω), the attenuation coefficient αQ(ω) and the specific
attenuation Q−1 are determined from the complex slownesses

v̂(ω) =
1

Re(sa)
, (4.80)

αQ(ω) =ω Im(sa), (4.81)

Q−1(ω) =2

∣

∣

∣

∣

Im(sa)

Re(sa)

∣

∣

∣

∣

, (4.82)

with a = p1, p2, s, EM .
The results are plotted in Figures 4.1 to 4.3. We note that apart from the
original three Biot waves (fast and slow compressional, and shear wave) a
fourth field is predicted. This is an EM field, which is diffusive at low fre-
quencies, and propagatory at high frequencies (this is however well above the
maximum frequency under which the Biot part of the theory is valid). In
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this respect, it resembles the slow compressional wave as we can see in Figure
4.1.
The fast compressional wave and the shear wave are almost frequency inde-
pendent. In the slow compressional wave a crossover can be seen between
viscosity-dominated flow and inertia-dominated flow [Charlaix et al. (1988)].
In Figures 4.4, 4.5, 4.6 and 4.7 the fluid-solid amplitude ratios, as given in
(4.45), (4.46), (4.69) and (4.70), are shown. There is hardly any difference
between presence and absence of the electrokinetic effect.
It is interesting that such crossover can also be distinguished for the EM
wave, but at significantly higher frequency (higher than ωc). This crosso-
ver frequency is defined as the ratio of the total fluid’s electric conductivity
versus the electric permittivity

ωEM =
σ0

ε
. (4.83)

Both crossover frequencies are indicated in Figures 4.1 to 4.3.
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Figure 4.1: Phase speed for the E-M wave, fast wave, shear wave and slow wave for
the data set in Table 3.2. The solid curves indicate the characteristic waves without
coupling between acoustic and E-M phenomena, and the dashed curves indicate the
coupling between them. − the slow compressional wave, − the shear wave, − the
fast compressional wave, − the EM wave.

We also computed the wave characteristics for L = 0, i.e. without electrokine-
tic coupling. On the scale of the Figures, no difference can be distinguished.
In the attenuation plots, we observe the characteristic diffusion behaviour
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Figure 4.2: The attenuation of the slow wave, shear wave, fast wave and E-M wave
for the data set in Table 3.2. The solid curves indicate the characteristic waves
without coupling between acoustic and E-M phenomena, and the dashed curves
indicate the coupling between them. − the slow compressional wave, − the shear
wave, − the fast compressional wave, − the EM wave.
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Figure 4.3: The specific attenuation for the slow wave, shear wave, fast wave and
E-M wave for data set given in Table 3.2. The solid curves indicate the characteris-
tic waves without coupling between acoustic and E-M phenomena, and the dashed
curves indicate the coupling between them. − the slow compressional wave, − the
shear wave, − the fast compressional wave, − the EM wave.
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Figure 4.4: Compressional wave fluid-to-solid amplitude ratios presence and ab-
sence of the electrokinetic coupling.
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Figure 4.5: Compressional wave fluid-to-solid amplitude ratios presence and ab-
sence of the electrokinetic coupling.
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Figure 4.6: Shear and E-M wave fluid-to-solid amplitude ratios without and with
electrokinetic coupling.

10
−4

10
−2

10
0

10
2

10
4

10
61

2

3

4

5

6

7

8

9

 

 

EM wave, L=0 
EM wave

ω/ωc [-]

Γ
E

[-
]

Figure 4.7: Shear and E-M wave fluid-to-solid amplitude ratios without and with
electrokinetic coupling.
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proportional to
√

ω for the slow compressional-wave and the EM wave, at
low frequencies. The attenuation of the fast compressional-wave and the
shear wave is described by a ω2 dependency, at low frequencies, and by an√

ω dependency, at high frequencies. Interestingly, the EM wave has limiting
attenuation, at high frequencies. The specific attenuation is a measure for the
attenuation over one wave length. It is inversely proportional to the quality
factor Q. The higher the attenuation, the poorer the quality factor. As both
the slow compressional and E-M waves have identical frequency-dependent
behaviour for phase velocity and damping factor, at low frequencies, their
specific attenuation becomes frequency independent in the low frequency do-
main.

4.3 Electrokinetic coupling effect

We have seen that at first glance, the effect of the electrokinetic coupling is
not overwhelmingly large. To analyze this in more detail, we plot the relative
attenuation of the fast and slow wave as function of the salinity for a fixed
frequency. We notice that the attenuation of the fast compressional wave
is decreased by EK effects, and that the attenuation of the slow compres-
sional wave is decreased. Moreover there is a distinct concentration where
these effects are largest. These effects can be explained as follows. For the
fast compressional wave, the fluid and skeleton motions are in-phase. The
excess counter-ions in the diffuse-double layer move tangentially to the solid
surface in the electric double layer. The displacement of counter-ions gene-
rates a convection current. In the low fluid pressure regions the counter-ions
accumulate while in the high fluid pressure area they are depleted. This
creates an electric field. This electric field drives a conduction current, which
balances the convection current. The electric field opposes the pressure gra-
dient, thus reducing the amount of relative flow. So the fast compressional
wave is slightly influenced by electrokinetic effects, creating a lower atte-
nuation [Pride and Haartsen (1996), Reppert et al. (2001)]. For the slow
compressional wave, fluid and solid motion are out-of-phase. Enhanced fluid
pressures are generated by a frame contraction while regions of decreased
fluid pressure are generated by frame expansion. High fluid pressure regions
have an accumulation of counter charge and the low fluid pressure regions
have a depletion of charge. The fluid pressure gradients creates fluid flow
which reduces the charge separations. So for the slow compressional wave
the electric field enhances the fluid flow resulting in a larger contribution
of the viscous effect. Therefore the slow compressional wave as seen in Fi-
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Table 4.1: Optimal compressional attenuation values for computed frequencies and
salt concentrations.

Parameter Unit Value Dimension

Slow wave max. attenuation αQ(L)/αQ(L = 0) 1.06 [-]
Fast wave min. attenuation αQ(L)/αQ(L = 0) 0.92 [-]
Slow wave frequency ωp2

/ωc 3 · 10−2 [-]
Fast wave frequency ωp1

/ωc 3 · 10−3 [-]
Slow wave salinity cqp2

3 · 10−8 [mol/l]
Fast wave salinity cqp1

3 · 10−8 [mol/l]

gure 4.8 has a stronger attenuation [Pride and Haartsen (1996)]. In Figure
4.9, we focus on the frequency-dependence for the concentration that causes
maximum effects (cq

∼= 3 · 10−8 mol/l). The dependence on salinity is ex-
plained as follows. The width as well as the excess charge content of the
diffuse double layer increase when the salinity decreases (also the conduc-
tivity will decrease). The amount of charge separation will increase as the
salinity decreases, which will result in an increased attenuation for the slow
compressional wave and a decreased attenuation for the fast compressional
wave. At a certain decrease in salinity, the surface conduction will become
important and the magnitude of the charge separation decreases.
For high frequencies, where inertial effects become dominant over viscous ef-
fects the above effects disappear completely. For low frequencies, the effect is
maximized, for the fast compressional wave. Note that there is an additional
damping of the fast wave (α > 1) in a small frequency band. This is probably
due to the flow distribution in the pores. At some frequencies, complicated
flow and counterflow regions exist, so that the net effect increases the amount
of relative flow, thus enhancing the viscous attenuation. For the slow com-
pressional wave maximum attenuation is attained at ω/ωc

∼= 0.03. For even
lower frequencies, the effect is mitigated somewhat. The difference between
the slow and fast compressional wave attenuation maxima (see figure 4.8) is
caused by the tortuosity. Setting the tortuosity equal to one (α∞ = 1), will
result in an equal salinity for the maximum of the slow compressional and
the fast compressional waves.
The minimum and maximum of the attenuation ratio αQ(L)/αQ(L = 0) are

shown in Table 4.1. All effects are comprised in Figure 4.10.
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Figure 4.8: The effect of the electrokinetic coupling coefficient L̂ on the compres-
sional wave attenuation coefficients as a function of the salinity of the saturated
electrolyte. The upper curve is the slow compressional wave and the lower the fast
compressional wave.
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Figure 4.9: The effect of the electrokinetic coupling coefficient L̂ on the compres-
sional wave attenuation coefficients as a function of the frequency of the saturated
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Figure 4.10: The effect of the electrokinetic coupling coefficient L̂ on the compres-
sional wave attenuation coefficients as a function of the frequency and the salinity
of the saturated electrolyte. The upper curve is the slow compressional wave and
the lower the fast compressional wave. Parameters obtained from the data set given
in Table 3.2. The surface lines, at constant frequency (ωp2/ωc = 3 · 10−2) and for
constant molarity (cq = 3 · 10−8 mol/l), are considered as cross-section.



Chapter 5

Experimental results

In this chapter the experimental set-up and the measured transport coeffi-
cients is discussed. For the experiments, use has been made of artificially
constructed porous materials. The set-up is capable of measuring dynamic
permeability and electrokinetic coupling coefficients.

5.1 Dynamic Darcy Cell

In order to measure the dynamic transport coefficients, use is made of the
experimental setup described by Smeulders (1992) and Kelder (1998). It is
called the Dynamic Darcy Cell (DDC) and is shown in Figures 5.1 and 5.2.
It consists of a stainless steel cylinder where an oscillating pressure is applied
at the bottom. The outer diameter of the cylinder is dDDC = 18.9 cm and the
height is LDDC = 36.3 cm. It is an ideal platform to obtain amplitude and
phase shift values (1-D datasets) for specific frequency values. A vibration
exciter (GW V20), controlled by a power amplifier, drives a rubber mem-
brane, which induces an oscillating pressure in a frequency range between
5 Hz to 600 Hz. As the wavelength is much larger than any characteristic
length scale of the sample, the flow may be considered as incompressible.
Two identical piezo-electric transducers (Druck PCB 116A) are used to
measure the pressure drop across the sample. The lower pressure sensor is
mounted in the steel cylinder wall, just below the sample. The other sensor
is installed in a probe that is mounted just above the sample. Above and
below the porous medium, electrodes are installed to measure the streaming
potential gradient. Two sorts of electrodes are used alternatively. One op-
tion is to mount highly porous disks (Monel Ni-Cu GKN Sinter Metals,
SIKA-R 200, 7 mm thick) at the top and bottom of the sample to record
the voltages. We also used simple wire Ag/AgCl electrodes (A-M systems)

69
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that were installed in the side wall above and below the sample. Only the
tip of the electrode was in contact with the fluid (see Figure 5.1).
The signals from the two piezoelectric transducers are modified by means
of amplifiers (Kistler 5011). Four samples are used, which can be seen in
Table 5.1. For the connections with periferential equipment, use has been
made of screened-wires [Long and Rivers (1975)]. Effective noise reduction

�����������������������������������������������������������������dDDC

LDDC

Shaker

Fluid level

Grounding

Electrodes

Core

DDC

PCB 116A

PCB 116A

Figure 5.1: Schematic of the Dynamic Darcy Cell with quartz core sample and
Ag/AgCl electrodes.

in the recorded signal is obtained by signal averaging. To avoid cross-over,
every measurement is repeated twice at each frequency, to measure either
the pressure gradient or the potential gradient. The electrodes are directly
connected to the oscilloscope. The wall of the DDC consists of different
coaxial sections (see Figure 5.1). The inner section is made out of pers-
pex, so that electric shortcut is impaired. The entire set-up is grounded by
means of earth wiring [Long and Rivers (1975)]. Use is made of a DL9140

Yokogawa digital oscilloscope. It is capable of measuring frequencies from
10 Hz up to 1 GHz with an accuracy of ±0.01 %. A National Instruments
NI PCI-GPIB IEEE 488.2 interface is used to connect the HP 33120A

Function/Arbitrary waveform generator to the data logging PC. The func-
tion generator can modulate a sine-function with a range from 100 µHz up to
15 MHz. Within National Instruments Labview Version 7.1 the measured
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data from the oscilloscope as well as the reference signal from the function
generator are accumulated.
The fluid conductivity and temperature are measured using a WTW LF

340 apparatus. The pH values are measured using a Metrohm 744 pH

meter.

Figure 5.2: 3D view of Dynamic Darcy Cell. The shaker is visible in the lower part
of the set-up (dark blue cylinder) as well as the sample in the middle of the gray
cylindrical section in the upper part of the set-up.

5.2 Sample preparation and treatment

Four samples are used, two sintered glass cores (made of borosilicate) and
two capillary cores, of which one is made of quartz and the other one of
borosilicate with Monel disks (see Figures 5.3a and 5.4a). The cylinders are
glued together using an epoxy resin. Sample QC consists of 127 cylinders
made of quartz. Sample MSC is similar to sample QC, but it is equipped
with permeable Monel disks (see Figure 5.3b and 5.4b) on top and bottom
of the cylinders. Within the MSC sample, borosilicate cylinders are used
(BSC sample). The Monel plates were also analyzed separately (sample MC
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consisting of two Monel disks 5.05 cm apart).
Sample GC1 is made from two identical disk shaped porous glass filter plates

Table 5.1: Parameter values of the samples: QC=Quartz Core 2, MC=Monel disks
without sample Core, BSC=Borosilicate Core, MSC=Borosilicate Core sandwiched
between Monel disks, GC1=Glass Core 1, GC2=Glass Core 2. d1=outer cylinder
radius, d2=capillary radius, n1=number of cylinders, n2=number of capillaries per
cylinder, φ= porosity, k0=permeability, α∞=tortuosity (∗ determined using measu-
rements), fc=critical frequency.

Parameters QC MC BSC MSC GC1 GC2

d1 [mm] 3.2 ± 0.06 − 6.34 ± 0.03 6.34 ± 0.03 − −
d2 [mm] 0.5 ± 0.05 − 0.97 ± 0.04 0.97 ± 0.04 − −
n1 [−] 127 − 37 37 − −
n2 [−] 4 − 4 4 − −
φ [%] 6.7 ± 0.5 50 ± 4 6.8 ± 0.6 9.3 ± 0.6 30 ± 4 24 ± 3
k0 [Darcy] 522 ± 40 89 ± 12 2001 ± 110 205 ± 10 40 ± 6 77 ± 7
α∞ [−] 1 2 ± 0.2∗ 1 1.8 ± 0.2∗ 2.6 ± 0.1 2.3 ± 0.1
fc [Hz] 18.3 399.5 4.8 35.8 410.3 192.8

on top of each other (see Figure 5.5a) glued in a plastic holder. Sample GC2
also consists of two different identical disk shaped porous glass filter plates,
but the holder is slightly different in the sense that an additional rubber
sleeve is used (see Figure 5.5b) between the sample and the holder.
An overview of the samples is given in Table 5.1. The sample saturation
proceeds as follows. Special attention is paid to avoid the presence of air
bubbles during this operation. From degassed demineralized water, different
salt solutions are prepared. The sample is carefully evacuated and saturated
with such a salt solution. The set-up is left for 1 day, until a relative chemical
equilibrium is reached, i.e. until the pH and the conductivity remain rela-
tively constant, over time (laboratory environment will pollute sample over
time).
Next, the dynamic pressure and voltage are measured over a wide frequency
range. After the experiment, the set-up is cleaned, disassembled and dried.
Also the sample is cleaned, dried, and inspected for integrity. Next the
assembly is reinstalled, filled with a new salt solution and new dynamic mea-
surements are performed.

5.3 Dynamic pressure measurements

The aim is to come up with an expression for the dynamic permeability
using the two recorded pressures above and below the sample. In Figure 5.6,
a schematic of the set-up is given [Smeulders (1992), Kelder (1998), Cortis
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a b

Figure 5.3: Photographs of QC (a) and MSC (b). The MSC internal core also
consists of capillaries. Note the green and red wires inside the sample wall which
are connected to the Monel disks above and below the core.

a b

Figure 5.4: Exploded views of samples QC (a) and MSC (b). Note the Monel disks
below and above the MSC sample.
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a b

Figure 5.5: (a) Glass beads core 1 (GC1). (b) Glass beads core 2 (GC2).
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p2

pl

ph
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v1

vp1

v2
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φ

Figure 5.6: Schematic of the set-up. The sample has porosity φ and length Lp.
Pressure sensors are placed at distances x1 and x2 from the sample lower and upper
ends. The upper sensor has a cross-sectional area Ad. Ls is the length of the pressure
probe in water.
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(2002)]. The momentum equation for the fluid below the sample is written
as

p1 − ph

x1
= −iωρfv1, (5.1)

and momentum conservation above the sample yields that

pl − p2

x2
= −iωρfv2. (5.2)

The fluid velocity v3 can be related to the recorded pressure p2

p2 − 0

Ls
= −iωρfv3, (5.3)

Continuity of fluid flux yields that

φvp1 = v1, (5.4)

v2 = v1, (5.5)

γv3 = v2, (5.6)

where γ = (Atot−Ad)/Atot is the area ratio that compensates for the presence
of the probe. Combination of (5.1), (5.2) and (5.5) leads to

ph = p1 +
x1

x2
(p2 − pl), (5.7)

for the pressure directly under the sample. We combine (5.2), (5.3), and (5.6)
to obtain the pressure amplitude pl

pl = p2

(

1 +
γx2

Ls

)

, (5.8)

Substitution of (5.8) in (5.7) leads to the pressure amplitude right under the
sample

ph = p1 −
γx1

Ls
p2. (5.9)

The dynamic permeability k̂(ω) is defined by

φvp1 =
k̂(ω)

η

ph − pl

Lp
. (5.10)

Combining (5.10) with (5.3) - (5.6) and (5.8) and (5.9), we find that
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Figure 5.7: (a) Absolute and (b) phase values of the dynamic permeability for the
QC sample. Johnson and Poiseuille versus measurements. Experiments 1-4 denote
repeated experiments at different times.
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k̂(ω) =
iLp

Ls

ηγ

ρfω

[

p1

p2
−
(

1 +
γ

Ls
(x1 + x2)

)]−1

, (5.11)

where Lp is the sample length.
Figures 5.7a and 5.7b show the measurements of both the absolute and phase
values of the dynamic permeability. The experimental data show good agree-
ment with the theory described in Chapter 3. Figures 5.7a and 5.7b show
some discrepancy between theory and measurement in the high frequency
range (a maximum offset of 19%, for the magnitude and a maximum offset
of 7% for the phase). Below the high frequency range as well Johnson’s as
Poiseuille’s theory are applicable. This caused by the relative small diffe-
rences between the both theories and the uncertainties in the measurements.
These are due to low signal-to-noise ratio and set-up resonances above the
ω/ωc = 4.

5.4 Dynamic coupling coefficient measurements

Introducing Ĉ(ω) as the cross coupling-coefficient [Molina et al. (1999), Nei-
shtadt et al. (2006), Reppert et al. (2001)]. The aim is to come up with an
expression for the cross coupling-coefficient using the recorded voltages and
pressures above and below the sample. The extended Ohm’s law (4.20) for
an open-circuit configuration (no short-circuit, i.e., Ĵ = 0) becomes

Ĉ(ω) =
L̂(ω)

σ̂(ω)
= −∇Φ̂

∇p̂
= −Φ1 − Φ2

ph − pl

. (5.12)

Substituting (5.8) and (5.9) and setting Φ1 = 0 (grounded connector), we
have that

Ĉ(ω) = Φ2

[

p2(1 +
γ

Ls
(x1 + x2)) − p1

]−1

. (5.13)

The potential difference measurements are performed using Ag/AgCl elec-
trodes. The experiments are performed using a 0.13 ± 0.02 mmol/l sodium
chloride solution.
Figures 5.8a and 5.8b show the dynamic coupling coefficient of the sample
QC. The experimental data show good agreement (a maximum offset of 25%,
for the magnitude and a maximum offset of 23% for the phase) with Pride’s
and Packard’s theory. Most measurements (except for the higher frequen-
cies with offset) are located between Pride’s and Packard’s theory. So both
theoretical models can be used during following analysis. As in the dynamic
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Figure 5.8: (a) Absolute and (b) phase values of the dynamic coupling for the QC
sample. Pride and Packard versus measurements. Experiments 1-4 denote repeated
experiments at different times.
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permeability experiments, set-up resonances can be noticed in the high fre-
quency region. The experiments were repeated four times (over a period of
4 to 5 days, without taking the set-up apart).

5.4.1 Concentration effects

Next, we investigate the influence of electrolyte concentrations. According to
Thompson et al. (2007), lower concentrations (higher resistivity) favor signal
strength. In Table 5.2 the specifications of the used NaCl concentrations
are given. The dependence on concentration can be explained as follows.
Both the width and the excess-charge content of the diffuse-double layers
decrease with increasing salinity while the conductivity increases. Thus as
the concentration grows the amount of charge separation decreases. So with
increasing concentration, the magnitude becomes smaller, and the phase is
unaffected [Pride and Haartsen (1996)]. These trends are clearly visible in
the experimental results indeed (Figures 5.9a and 5.9b).

Table 5.2: Electrolyte specifications.

pH [−] 4.9 ± 0.3 5.0 ± 0.4 5.3 ± 0.3 5.6 ± 0.2

T [◦C] 23.0 ± 2 23.0 ± 2 22.7 ± 2 23.4 ± 2

cq [mmol/l] 0.08 ± 0.03 0.13 ± 0.02 0.4 ± 0.02 0.8 ± 0.03

L0 [m2s−1V −1] 1.5 · 10−9 1.5 · 10−9 1.2 · 10−9 1.0 · 10−9

5.4.2 Other electrolytes

Table 5.3: Specification of the influence of several different electrolytes.

Salt NaCl KCl KI NaI

pH [−] 5.0 ± 0.4 5.2 ± 0.5 4.8 ± 0.2 5.0 ± 0.2

T [◦C] 23.0 ± 2 23.2 ± 2 22.9 ± 2 22.6 ± 3

cq [mmol/l] 0.13 ± 0.02 0.16 ± 0.02 0.15 ± 0.03 0.15 ± 0.02

L0 [m2s−1V −1] 1.5 · 10−9 1.5 · 10−9 1.3 · 10−9 1.4 · 10−9

Next, we performed measurements with different electrolytes. An over-
view of the specification is given in Table 5.3. In the figures 5.10a and 5.10b
the measured results are shown. There is good agreement between the NaCl
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Figure 5.9: (a) Absolute and (b) phase values of the dynamic coupling for different
NaCl concentrations for QC sample. Measurements for different concentrations,
versus Pride theory. The solid curves (with like colours) represent theoretical results.
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measurement and theory. For the KCl, KI, NaI there is a qualitative agree-
ment, but quantitative there are magnitude differences, probably because of
strong influences of the ζ-potentials (empirical), see figure 2.2. There are
relative large discrepancies between different measured zeta potential mea-
surements. Instead of the empirical relationship given by Pride and Morgan
(2.2), a slightly adjusted version has been used for the NaCl measurements
(2.3). So for KCl another slightly adjusted version of the zeta potential will
be required. The phase values are rather scattered, but still there is a clear
trend.

5.5 Electrode disks

Next we conducted experiments for the MSC samples using NaCl with cq =
0.11 mmol/l. The specifications of the MSC sample are given in Table 5.1. An
accurate correlation between theory (Johnson model and Pride model) and
measurements can be seen for the absolute values Figure 5.11a up to 5.12b,
the offsets in the lower frequency range are caused by limitations of the used
equipment, while in the high frequency area this difference mainly is caused
by resonance of the set-up (in comparison to the capillary system without
plates, due to the additional Monel disks, the system is more sensitive for low
eigenfrequencies). The measured phase signal of the coupling coefficient is not
in agreement with the theoretical model due to the relative low permeability
of the applied sample structure, especially the two Monel plates disturb the
flow. Another drawback of this set-up is that it has the possibility to function
as a capacitor [Reppert et al. (2001)].

5.6 Sintered glass beads

We also tested two samples made of sintered glass beads (GC1 and GC2). We
notice that our measurements are clearly in the low-frequency range (ω < ωc),
as there is no rollover behaviour visible. We also notice that there are some
anomalies visible resembling oscillatory behaviour (see Figure 5.13).
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|Ĉ
(ω

)|
[V

/
P
a
]

(a)

10
−1

10
0

10
10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

KCl
NaCL
KI
NaI

ω/ωc [-]

∠
Ĉ
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Figure 5.10: (a) Absolute and (b) phase values of dynamic coupling for the QC
sample for different types of salt. Measurements for different sorts of salts, versus
Pride theory. The solid curves (with like colours) represent theoretical results.
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Figure 5.11: (a) Absolute and (b) phase values of the dynamic permeability for the
MSC sample. Theory of Johnson, versus measurements, for shape factor m = 1.75.
Experiments 1-4 denote repeated experiments at different times.
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Figure 5.12: (a) Absolute and (b) phase values of the dynamic coupling coefficient
for the MSC sample. Theory of Pride, versus measurements, for shape factor m =
1.75. Experiments 1-4 denote repeated experiments at different times.
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Figure 5.13: (a) Absolute and (b) phase values of the dynamic permeability for the
GC1 sample. Errors are indicated by the magnitude of the data symbols.
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Figure 5.14: (a) Absolute and (b) phase values of the dynamic coupling coefficient
for the GC1 sample. Errors are indicated by the magnitude of the data symbols.

This is probably due to the fact that the permeability of the sample
is relative low, so that our assumption of rigid skeleton is no longer satis-
fied. This can seriously compromise the comparison between experiment and
theory. Similar behaviour is also visible in the phase plot. In the electric
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measurements, we notice that the oscillations have disappeared. However,
there is a clear decreasing trend of the measurement values for increasing
frequency, which is not predicted by theory. There are also differences if the
experiments are repeated. Apparently for these materials it is more difficult
to obtain a stable situation (constant pH and σ). Note that we have correc-
ted for inaccurate pl measurements [see (5.13)] during EK measurements, by
taking its theoretical value instead of the measured one that was compromi-
sed by resonances (see Figure 5.14). The measurements of GC2 are slightly
better due to the higher permeability, but suffer from the same problems as
with GC1.
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Chapter 6

Conclusions

In this chapter we will summarize the results of the experimental and theore-
tical studies of the foregoing chapters. These studies were aimed to establish
the relation between (oscillatory) hydraulic flow in porous media and electric
potential gradients. This coupling relation forms the basis of electrokinetic
wave conversion, where acoustic waves are converted into electromagnetic
waves, and vice versa.
Electrokinetic coupling in narrow channels can be evaluated analytically for
parallel-plate channel configurations by solving the Poisson-Boltzmann Equa-
tion (PBE). An hydraulic flow perturbs the electric double layer (convection
current), giving rise to a streaming potential and an electric counter flow
that exactly balances the hydraulic ion transport. The electric counterflow
induces an electro-osmotic apparent additional viscosity effect that is found
to strongly decrease for wider channels.
The same coupling phenomena can obviously be found for cylindrical ca-
pillaries. Here, no exact solution for the secular equation exist so that we
reside to the linearized Poisson-Boltzmann equations (LPBE). By comparing
PBE and LPBE for parallel-plate channels, we show that the LPBE solution
closely resembles the PBE solution for low to moderate surface potentials
(zeta-potentials).
Next we study dynamic coupling phenomena in the framework of the linea-
rized conservation laws. Theoretical descriptions by Pride and Packard for
the streaming potentials are compared. It is found that they differ only
slightly in the intermediate frequency range. A similar analysis for dynamic
electro-osmotic shows that the coupling coefficient obeys Onsager’s principle
of reciprocity. This analysis is performed for both capillary and parallel-plate
channels. The electrokinetic coupling can now be included in the existing Biot
theory for wave propagation in porous media. It was found earlier that apart
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from the original two compressional waves and one shear wave, an additional
transversal EM wave mode was found that becomes diffusive for low frequen-
cies and propagates with the speed of light (in matter), for high frequencies.
We performed a detailed analysis of the effect of electrokinetic coupling on
the velocity and attenuation of the three original Biot waves. Thereby it was
found that the original Biot waves are affected only up to a small extend.
The importance of the electrokinetic coupling therefore does not lie in the
disturbance of the waves, but in the generation of a new transversal mode
that can propagate outside the support of the Biot waves. For this new mode,
a characteristic frequency can be defined in analogy with the characteristic
frequency of the other three modes. Whereas the original characteristic fre-
quency describes the transition from low-frequency viscosity-dominated flow
towards high-frequency inertia-dominated flow, the electromagnetic charac-
teristic frequency describes the transition from low-frequency conductivity-
based behaviour towards the permittivity-based regime at high frequencies.
We performed an extensive range of measurements in the so-called Dynamic
Darcy Cell (DDC). It allows a direct measurement of the hydraulic pressure
gradient and the streaming potentials, as a function of frequency. As the
ratio of both gradients determine the coupling coefficients uniquely, we can
experimentally validate the theoretical predictions by Pride and Packard. We
use samples consisting of a bundle of capillaries lined-up in the flow direc-
tion. This significantly increases the solid-fluid contact area with respect to
earlier measurements reported in literature so that the streaming potentials
can easily be recorded by wire electrodes or porous electrode platens. The
capillaries were made out of quartz glass. The frequency range of the DDC
is chosen such that the wavelength is always larger than the sample size so
that compressibility effects can be ignored. Capillary widths were chosen
large enough to comply with the linearized Poisson-Boltzmann regime. The
setup is also able to measure the dynamic permeability, which describes the
relationship between the applied pressure gradient and the resulting fluid
velocity. Our measurements confirm existing dynamic permeability theory.
Moreover, also the electrokinetic coupling factor appeared to be in agreement
with the theoretical framework by Pride and Packard. For higher frequen-
cies resonances of the setup occurred causing the measurements to become
unreliable.

The repeatability was investigated over a 4 days period. No significant
changes were found for a concentration of 0.13 mM NaCl. We also investi-
gated concentration effects in the range 0.08-0.8 mM NaCl. For lower NaCl
concentrations the coupling increases significantly which is mainly due to in-
creased fluid resistivity. These findings were in agreement with theoretical
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predictions. It is interesting to note that the low-frequency coupling extrapo-
lated from our dynamic measurements is in good agreement with the compu-
ted value from steady-state independent laboratory measurements Also the
influence of ionic species is investigated at concentrations between 0.13-0.16
mM. Apart from NaCl, we used KCl, NaI, and KI. Significant deviations from
theory occurred for KCl and NaI. This is probably due to the fact that the
empirical relation for the zeta-potential (2.3) does not accurately describe
differences of ionic species.

We also tested the dynamic permeability and the electrokinetic coupling
for capillaries made out of borosilicate glass. While the permeability measu-
rements and the electrokinetic coupling amplitude values were in close agree-
ment with theory, the electrokinetic coupling phase values were not. This is
probably due to the fact that for this experiment we used porous platen elec-
trodes sandwiching the sample. These platens themselves act as an electric
capacitor, affecting the phase measurements.

Finally, we tested the electrokinetic coupling for more realistic porous
materials made from sintered glass. No platens were used, and wire elec-
trodes were installed in the sidewall of the liner, as was also the case for the
quartz capillaries. Also for these materials a very good agreement between
experiment and theory was obtained. We note that the dynamic permeability
could not be measured accurately, for this material. Due to the low steady-
state permeability, the material can no longer be considered completely rigid
under hydraulic loading.
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Seismoelektrik mit Finiten Elementen. Technischen Universität Berlin.
Ph.D Thesis.



96 BIBLIOGRAPHY

Langmuir, L. (1938). The role of attractive and repulsive forces in the forma-
tion of tactoids thixotropic gels, protein crystals and coacervates. Journal

of Chemical Physics, 6, 893.

Levine, S., J. Marriott, and K. Robinson (1974). Theory of electrokinetic flow
in a narrow parallel-plate channel. Journal of the chemical society, 71, 1–
11.

Li, S., D. Pengra, and P. Wong (1995). Onsager’s reciprocal relation and
the hydraulic permeability of porous media. Physical Review E, 51 (6),
5748–5751.

Long, L. and W. Rivers (1975). Field measurement of the electroseismic
response. Geophysics, 40 (2), 233–245.

Lyklema, J. (2003). Electrokinetics after Smoluchowski. Colloid and Surfaces

A, 222, 5–14.
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and surface charge density of microporous membranes with pore diameter
in the range of thickness. Journal of Membrane Science, 163, 239–255.

Moreno, R. and O. Trevisan (1999). Modelagem de fenômeneos acoplados
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Physik und Chemie, 107 (5), 1–48.

Reppert, P. (2000, June). Electrokinetics in the Earth. Ph.D Thesis, Massa-
chusetts Institute of Technology.



98 BIBLIOGRAPHY

Reppert, P. and F. Morgan (2002). Frequency-Dependent Electroosmosis.
Journal of Colloid and Interface Science, 234, 372–383.

Reppert, P., F. Morgan, D. Lesmes, and L. Jouniaux (2001). Frequency-
Dependent Streaming Potentials. Journal of Colloid and Interface

Science, 234, 194–203.

Reuss, F. (1809). Sur un nouvel effet de l’électricité glavanique. Mémoires
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Appendix A

Biot-Gassmann constants

This appendix reviews the relevant poroelastic parameters, which are re-
quired in the governing equations for sound propagation in elastic porous
media. First, a brief summary of continuum mechanics is presented. We
consider stress strain relationships in porous media, where use is made of the
so-called ‘Gedanken’ experiment [Biot and Willis (1957)]. The ‘Gedanken’
experiment relates the parameters of Biot theory to the compressibility of the
solid and fluid constituents. This appendix shows that these poroelastic (also
known as Biot-Gassmann) parameters can be obtained by application of the
continuity and constitutive laws as derived by Verruijt (1982). Finally a short
description is given of the most commonly used alternative formulations of
the Biot-Gassmann parameters as used in standard literature.

A.1 Continuum mechanics

A saturated porous medium consists of grains and pores, the grains are com-
posed of a solid material and the pores contain a fluid. It is customary to
formulate the behaviour of the particle assembly mathematically on a conti-
nuum level by averaging the intergranular contact forces and the velocity
gradients of the grains in respectively the stress tensor and the strain ten-
sor. This approach is only applicable when for the averaging of the physical
quantities a sufficient amount of grains are taken into account. Drescher and
De Josselin de Jong (1972) validated this approximation using experimental
data. The relationship between the strain tensor and the stress tensor can
be described with a constitutive model. The constitutive model combined
with the conservation laws fully describe the kinematics of the continuum.
The kinematics of this continuum is generally described in two ways. The
material or Lagrangian description is employed if the material coordinates
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at the reference state are used as independent variables. The spatial or
Eulerian description involves the spatial coordinates at the current state as
independent variables. In a two phase continuum both the fluid and the solid
(grains) are treated as a continuum. Biot used an elegant Lagrangian model
to derive the stress strain relations from a potential energy deformation.

A.1.1 Stress-strain relationships in porous media

After loading, a saturated porous medium can show delayed settlements, i.e.
the settlements will continue after application of the load. The pore fluid can-
not escape the pores as fast as the load is applied. Generally this condition is
met for fine grained soils with a low permeability, e.g. peat or clayey soils, or
in situations with relatively fast loading, earth-quakes, in higher permeable
soils like sand. This process is known as consolidation. Already in 1925,
Terzaghi was the first to notice that this process could be described using a
theoretical model using the already known stress-strain relations, for which
he considered a one dimensional problem, a column under a constant load.
Maurice Biot expanded this theory for 3-D isotropic media [Biot (1941)] and
anisotropic media [Biot (1955)].
The isotropic stress-strain relationships are derived using an extended version
of the classical theory of elasticity. In this theory the derivation of a small
cubic element is considered, consisting of a fluid or gas saturated poroelastic
medium. However, in order to satisfy the premises of continuum mechanics,
the element needs to be large compared to the grain size. It must be large
enough so it can be considered homogeneous, but small enough for the ma-
croscopic phenomena to be observed. Stresses at a point in a body are stated
in an orthogonal set of axes. The equations of equilibrium are established
by considering the stresses acting upon the six faces of an elementary cube.
Similar to an elastic solid (or a fluid), in a porous medium stresses are de-
fined as being tangential (shear) and normal (direct) forces per unit area of
material. The total stress tensor in the bulk material is





τxx + ξ τxy τxz

τyx τyy + ξ τyz

τzx τzy τzz + ξ



 , (A.1)

in which τij = τji (symmetry property), and ξ is the total normal force per
unit bulk area, applied by the fluid on the face of the cube (also known as
hydrostatic pressure of the fluid)

ξ = −φp. (A.2)
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Figure A.1: One-dimensional cross-section of stress tensor in porous material,
consisting out of intergranular stress (

∑

Fz/Ab = σzz) and hydrostatic pressure
(p).

The elastic skeleton has a statistical distribution of interconnected pores.
The porosity φ is defined by

φ =
Af

Ab

, (A.3)

where Af is the area of the fluid contained within the pores, and Ab is the
area of the bulk material. The main component τij is the total stress tensor,
which describes the tension forces per unit bulk area applied to the portion
of the cube face occupied by the solid.

τij = −σij − (1 − φ)pδij , (A.4)

here σij is the additional intergranular stress, and δij is the Kronecker sym-
bol, indicating that pore fluid cannot exert nor sustain any shear force.
We will now proceed by considering two commonly used tests, in which the
volume effects caused by pore pressure and intergranular stresses are studied
separately. The first test is the ‘unjacketed test’, in which a porous sample
is fully submerged in a water tank (pressure change dpe), the fluid pressure
is continuous over the interface. The intergranular stress is zero, just as the
porosity change. This makes us capable of determining the volume change of
the matrix grains dVs and the change of the bulk volume dVb see Table A.1.
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For the second test, the porous sample is jacketed and fully submerged in a
water tank. The inner side of the jacket can communicate with the atmos-
phere through a tube to ensure constant internal fluid pressure. The pressure
change in the water tank now equals the change of the intergranular stress.
As there are no pore pressure changes, the ‘jacketed test’ is used to study
the volumetric effects caused by intergranular stresses. Also in this case we
are capable of determining the bulk volume change and volume change of the
particles. Where Ks is the bulk modulus of the solid, which for homoge-

Table A.1: Characteristic relationships in the ‘Gedanken’ experiment for jacketed
and unjacketed porous sample.

dφ dVs dVb dp dσ

Unjacketed 0 − Vs

Ks
dpe − Vb

Ks
dpe dpe 0

Jacketed −
[

1−φ
Kfr

− 1
Ks

]

dpe − Vs

Ks(1−φ)dpe − Vb

Kfr
dpe 0 dpe

p p

p

dp = dpe dp = 0

Unjacketed test Jacketed test

Figure A.2: Unjacketed and jacketed test from the ‘Gedanken’ experiment.

neous media can also be interpreted as the bulk modulus of the single grains.
The bulk modulus can be determined by measuring the displacements of the
boundary surfaces of the sample. The other bulk modulus, Kfr, is the frame
(or matrix) bulk modulus.
The bulk volume change can be obtained by superposition of the bulk vo-
lume change of the jacketed and unjacketed test in the so called ‘Gedanken’
experiment. This is the summation of change of intergranular stress and pore
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pressure (see Table A.1).

dVb = − Vb

Kfr

dσ − Vb

Ks
dp, (A.5)

using the direct volumetric strain relationship e = dVb/Vb, (A.5) becomes

−∂σ

∂t
= Kfr

∂e

∂t
+

Kfr

Ks

∂p

∂t
. (A.6)

When the material is sheared, the total shear stress is fully dissipated by the
grain contacts, this means that the strain is governed by the intergranular
or effective stress in the material. The rock shear modulus G can be incor-
porated following Hook’s law for an isotropic solid, into (A.6) (see Verruijt
(1982),

−σij = (Kfr −
2

3
G)eδij + 2Geij +

Kfr

Ks
pδij , (A.7)

where eij is the strain component of the solid

eij =
1

2

(

∂usj

∂xi
+

∂usi

∂xj

)

, (A.8)

ǫij =
1

2

(

∂ufj

∂xi
+

∂ufi

∂xj

)

, (A.9)

and ǫij the strain component of the fluid. These are linear elastic deforma-
tions of an elementary cube, which are completely reversible.

Continuity and constitutive equations

One of the major principles in the theory of consolidation is that the mass
of the two phases, solid and fluid must be

∂(φρf )

∂t
+ ∇ · (φρfuf ) = 0, (A.10)

∂((1 − φ)ρs)

∂t
+ ∇ · ((1 − φ)ρsus) = 0, (A.11)

where ρf , ρs are the fluid and solid density and uf and us average fluid and
solid displacement.
The continuity equation needs to be completed, using the constitutive rela-
tions. They are obtained by describing the change of the particle volume as
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function of the change in pore pressure change and the change of intergranu-
lar stress. This is a summation of the jacketed and unjacketed volume change
in the ‘Gedanken’ experiment

1

ρs

∂ρs

∂t
=

1

Ks

∂p

∂t
+

1

(1 − φ)

1

Ks

∂σ

∂t
, (A.12)

1

ρf

∂ρf

∂t
=

1

Kf

∂p

∂t
, (A.13)

with Kf the fluid bulk modulus, vs = ∂us

∂t
and vf =

∂uf

∂t
are the averaged

solid and fluid velocities respectively. Substitution of the constitutive equa-
tions (A.12) and (A.13) into the conservation laws (A.10) and (A.11) results
into

(1 − φ)

Ks

∂p

∂t
+

1

Ks

∂σ

∂t
− ∂φ

∂t
+ (1 − φ)∇ · vs = 0, (A.14)

φ

Kf

∂p

∂t
+

∂φ

∂t
+ φ∇ · vf = 0. (A.15)

Combination of the solid, (A.14) with the fluid (A.15), results in the storage
equation

(

(1 − φ)

Ks
+

φ

Kf

)

∂p

∂t
+

1

Ks

∂σ

∂t
+ (1 − φ)∇ · vs + φ∇ · vf = 0. (A.16)

To obtain an expression for the pressure, from which σ is removed we need to
incorporate the stress-strain (A.6), in combination with the identity ∂e/∂t =
∇ · vs

(

(1 − φ)

Ks
+

φ

Kf

− Kfr

K2
s

)

∂p

∂t
+

(

1 − φ − Kfr

Ks

)

∇·vs +φ∇·vf = 0. (A.17)

Before proceeding we define the effective porosity,

φeff = φ +
Kf

Ks

(

1 − φ − Kfr

Ks

)

, (A.18)

combined with the storage (A.17) results in

−φ
∂p

∂t
= φ

Kf

φeff

(

1 − φ − Kfr

Ks

)

∇ · vs + φ2 Kf

φeff

∇ · vf . (A.19)

This equation is often simplified into

−φ
∂p

∂t
= Q∇ · vs + R∇ · vf , (A.20)
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where Q and R are two of the three Biot-Gassmann constants

Q = φ
Kf

φeff

(

1 − φ − Kfr

Ks

)

, (A.21)

R = φ2 Kf

φeff

. (A.22)

A similar approach to the pressure can be followed for the stress-strain rela-
tionship as derived in (A.7). Taking the time derivative of (A.7) and removing
the pressure change as function of time by substitution of (A.17), we obtain

−∂σij

∂t
= (Kfr −

2

3
G − Kfr

Ks

Kf

φeff

(

1 − φ − Kfr

Ks

)

)∇ · vsδij+

+ 2G
∂eij

∂t
− φ

Kfr

Ks

Kf

φeff

∇ · vfδij . (A.23)

Introducing the total stress tensor as defined in (A.4), we obtain by subtrac-
ting (1 − φ)∂p

∂t
δij from (A.23)

−∂σij

∂t
− (1 − φ)

∂p

∂t
δij =

[

Kfr −
Kfr

Ks

Kf

φeff

(

1 − φ − Kfr

Ks

)

− 2

3
G+

+ (1 − φ)
Kf

φeff

(

1 − φ − Kfr

Ks

)]

∇ · vsδij+

+ 2Gδij
∂eij

∂t
+

(

φ

φeff

Kf

(

1 − φ − Kfr

Ks

))

∇ · vfδij , (A.24)

or in a more compact form

∂τij

∂t
= A∇ · vsδij + 2Gδij

∂eij

∂t
+ Q∇ · vfδij , (A.25)

where A stands for

A =

(

φ
Kfr

φeff

+ (1 − φ)
Kf

φeff

(

1 − φ − Kfr

Ks

)

− 2

3
G

)

. (A.26)

The parameters A, Q and R are generalized elastic parameters also known as
the Biot-Gassmann parameters, which are related to measurable properties
of the poroelastic medium Biot (1955); Biot and Willis (1957); Smeulders
(1992).
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Appendix B

Parameter determination

B.1 Basic mechanical parameters

B.1.1 Porosity

The porosity of the applied porous samples can be measured using a variety
of techniques. A common technique is the buoyancy method. First the dry
weight of the porous sample is determined and then the weight of the sample
under fully saturated conditions is measured. The measured average porosity
and particle density is determined from Jocker (2005), Smeulders (1992)

φ =
G0 − G1 + gρfVb

gρfVb

, (B.1)

ρs =
G0ρf

G0 − G1
, (B.2)

in which Vb is the bulk volume of the sample, g the gravitational acceleration,
G0 and G1 the dry weight and the fully saturated weight of the porous sample,
respectively. The experimentally determined values can be found in Table
5.1.

B.1.2 Permeability

Stationary permeability can be determined in a variety of ways. Use can
be made of a constant or falling head test or a constant flow-rate test, both
have been used. A closer look will be taken at the constant flow-rate test,
see Figure B.1 and B.2. For low velocities Darcy’s law holds

∂p

∂x
= −φη

k0

Q0

A0
, (B.3)
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Figure B.1: Set-up constant flow-rate test.
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Figure B.2: Flow rate versus pressure, using constant flow rate (BSC core see Table

5.1). Experiments 1-5 denote repeated experiments at different times.
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where Q0 is the average flow rate, and A0 is the total cross sectional area
of the porous sample. For higher velocities, inertial forces are not negli-
gible (higher Reynolds numbers). Forchheimer derived the following empi-
rical equation for a nonlinear relationship between flow rate and pressure
gradient [Basak (1973), Fand et al. (1987), Mavko and Mukerji (2003)]

∂p

∂x
= −φη

k0

Q0

A0
+ bfρf

(

Q0

A0

)2

, (B.4)

where bf is Forchheimer’s coefficient. During the experiments use has been
made of the Dynamic Darcy Cell (see Chapter 5), in which also the static
permeability can be measured.

B.1.3 Tortuosity

The tortuosity can be determined using an electric conductivity experiment
(for non-ferro porous media). Brown (1980) was the first to demonstrate that
there is an analogy between the acceleration of an inviscid incompressible
fluid within a rigid porous medium versus the electric current density within
an electrolyte filled with a porous insulator

χ =
α∞

φ
=

σs

σf

. (B.5)

where χ the formation factor consists of the tortuosity α∞, σs the conducti-
vity of the fluid within a porous insulator and σf the intrinsic fluid conduc-
tivity. An experimental set-up is described in Jocker (2005), Kelder (1998),
Smeulders (1992).

B.2 Conductivity determination

Electric currents can propagate in rocks and minerals in three ways. The
first way is electric conduction, a current flow in materials, which contain
free electrons such as metals. The second way is dielectric conduction, where
the current flow takes place in a poor conductor, which has very few carriers
or none at all. The current produced in dielectric material is known as as
the displacement current. The third way is through an electrolyte, where the
current is carried by ions at fluid flow velocity [Telford et al. (1998)]. In this
section we will take a closer look the third method of current propagation.
The electric bulk-fluid conductivity σf is written assuming a thin, uniform,
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double layer. The bulk-fluid conductivity can then be computed according
to

σf =

L
∑

l=1

(e0zl)
2blN

∞
l , (B.6)

with bl the mobility of the fluid. The mobility can be computed using the
Stokes’ relation

bl =
1

6πηa
, (B.7)

where a is the effective ion radius. Stokes’ relation gives us a theoretical value
for the frictional coefficient of a spherical particle in a solvent. The particle
radius is not simply the physical radius of the molecule, but is rather the
effective radius of the ion in the solution. It is the effective radius solution
taking into account all the H2O molecules it carries in its hydration sphere.
The size of the ions is crucial, small ions give rise to stronger electric fields
than big ions. So ion of small radius may have a large hydrodynamic radius
because it drags many solvent molecules through the solution as it migrates.
A limitation is that the formula is strictly speaking only accurate for a single
spherical particle [Atkins and de Paula (2002)]. The bulk-ionic concentration
is a function of the number of Avogadro Na

N∞
l =

(

cq
mol

l

)(

Na
1

mol

)(

1000
l

m3

)

= cqNa · 103, (B.8)

and the concentration cq. Combination of these results gives the conductivity
at room temperature

σf298
=

L
∑

l=1

(ezl)
2cqNa · 103

6πηa
. (B.9)

Conductivity also depends on the temperature

σf = σf298
e0.02(T−298), (B.10)

with T temperature Dionex (2003).
The total electric conductance of a solution depends upon the type, tempe-
rature and concentration of all ions present [Ruffet et al. (1991)]. It is not a
specific function for any ionic species. The electric current is carried by both
anions and cations in a solution. The above described theoretical model has
been validated by laboratory measurements.
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Table B.1: Electric conductivity of water types [Masliyah and Bhattacharjee
(2006)].

µS/m

1

µS/m

10

µS/m

100

mS/m

1

mS/m

10

mS/m

100

S/m

1 3

S/m

10

S/m

100

Ultra

pure H2O

?

Good quality

distilled H2O

?

Good quality

tap water

?

0.05 %

NaCl

?

Sea water

?

30 %

H2SO4

?

The conductivity of water ranges over several orders of magnitudes (Table
B.1). We performed measurements of different solutions. The experiments
are performed using the WTW LF 340 conductivity meter. It is capable
of measuring the conductivity and temperature at the same time. Table
B.1 shows an estimate of electric conductivity of a variety of fluid solutions.
During the measurements in this work, use has been made of good quality
distilled water with conductivities just below 0.1 mS/m. The conductivity
measurements are repeated five times over for two different sorts of salt in dis-
tilled water, sodium chloride NaCl and potassium chloride KCl respectively.
Both salts dissolve in water

NaCl ⇋ Na+ + Cl−,

KCl ⇋ K+ + Cl− .

The molecular mass and molarity have the following values. For NaCl
we have that 22.990u + 35.453u = 58.443u = 58.443 g/mol and for KCl
that 39.102u + 35.453u = 74.555u = 74.555 g/mol, with u the atomic mass-
unit. The conductivity has been measured for a variety of concentrations
[1 ·10−4 mol/l - 1 ·10−1 mol/l], at different temperatures [1oC - 50oC] for both
salts. A comparison between theory and experiment for the conductance as
function of the temperature and concentration is shown in Figure B.3 to B.6
for sodium chloride and in Figure B.7 to B.10 for potassium chloride. It can
be seen that there is a good match between theory (B.10) and measurement.
For sodium chloride, from 1 · 10−1 mol/l and onwards a deviation between
measurement and theory occurs, for potassium chloride it occurs at much
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Figure B.3: Conductivity of NaCl as function the temperature, 1 · 10−4 mol/l.
Experiments 1-5 denote repeated experiments at different times.
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Figure B.4: Conductivity of NaCl as function the temperature, 1 · 10−3 mol/l.
Experiments 1-5 denote repeated experiments at different times.



B.2. Conductivity determination 115

0 10 20 30 40 50
10

−3

10
−2

10
−1

10
0

10
1

 

 

Experiment 1
Experiment 2
Experiment 3
Experiment 4
Experiment 5
Theory

T [◦C]

σ
f

[S
/
m

]

Figure B.5: Conductivity of NaCl as function the temperature, 1 · 10−2 mol/l.
Experiments 1-5 denote repeated experiments at different times.
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Figure B.6: Conductivity of NaCl as function the temperature, 1 · 10−1 mol/l.
Experiments 1-5 denote repeated experiments at different times.
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Figure B.7: Conductivity of KCl as function the temperature, 1 · 10−4 mol/l. Ex-
periments 1-5 denote repeated experiments at different times.
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Figure B.8: Conductivity of KCl as function the temperature, 1 · 10−3 mol/l. Ex-
periments 1-5 denote repeated experiments at different times.
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Figure B.9: Conductivity of KCl as function the temperature, 1 · 10−2 mol/l. Ex-
periments 1-5 denote repeated experiments at different times.
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Figure B.10: Conductivity of KCl as function the temperature, 1 · 10−1 mol/l.
Experiments 1-5 denote repeated experiments at different times.
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lower concentrations. The applied theoretical model is not applicable in this
range.

B.2.1 Dynamic conductivity coefficient

The dynamic conductivity is derived by Pride (1994) from the extended ver-
sion of Ohm’s law (4.20). Ohm’s law is composed of the conduction current
Jc and the streaming current Js

J = (Jc + Js) = L̂(ω)(−∇p̂ + ω2ρf ûs) + σ̂(ω)Ê, (B.11)

The average conduction current for isotropic media is

Jc =
φ

α∞

(

σf +
2Cem

Λ

)

Ê, (B.12)

with Cem the excess conductance associated to the electromigration of double
layer ions. An exact expression for Cem can only be obtained by a numerical
integration of the Poisson-Boltzmann equation in case of a multicomponent
electrolyte with no restriction on ζ. An accurate analytical estimate can be
obtained using Debye’s approximation (2.20)

Cem ≈ 2d
L
∑

l=1

(ezl)
2blNl

[

e

(

−
ezlζ

2kBT

)

− 1

]

. (B.13)

The other contribution stems from the streaming current, which can be se-
parated into an electric induced current (Jse) and a mechanically induced
current (Jsm); Js = Jse + Jsm. The electric induced current has the form

Jse = φ
2Ĉos(ω)

α∞Λ
Ê, (B.14)

with Ĉos the conductance due to electric induced streaming (convection) of
the excess double layer ions, also known as the electro-osmotic conductance.
Similar to the excess charge conductance an approximation can be obtained,
where we will use Debye’s approximate flow field

Ĉos(ω) =
(ǫ0ǫrf )2ζ2

2dη
P0

(

1 +
2

P0
d

√

iωρf

η

)−1

, (B.15)

with P the dimensionless parameter defined as

P0 =
8kBTd2

(ǫ0ǫrf )ζ2

L
∑

l=1

Nl

[

e

(

−
ezlζ

2kBT

)

− 1

]

. (B.16)
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The mechanically induced current has the form

Jsm = L̂(ω)(−∇p̂ + ω2ρf ûs). (B.17)

Substitution of (B.17), (B.14) and (B.12) in the extended version of Ohm’s
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Figure B.11: Dynamic conductivity of potassium chloride, for cq = 1 · 10−3 mol/l,
see table 3.2.

law (B.11) gives the dynamic conductivity for a porous medium of arbitrary
pore structure

σ̂(ω) =
φ

α∞

σf

[

1 +
2

σfΛ
(Cem + Cos(ω))

]

. (B.18)

There is only a weak dependence on the frequency. This dependence is caused
by the electro-osmotic conductance due to the electrically driven viscous-flow
to inertial-flow transition. Similar to the dynamic EK coupling coefficient
(3.37), the dynamic conductivity coefficient is simplified because for the fre-
quencies of interest, the viscous skin depth for most materials is larger than
the Debye length, which leads to negligible relaxation

σ̂(ω) ⇒ σ0 =
φ

α∞

σf , (B.19)

with σ0 the total fluid’s electric conductivity in a porous medium [Pride and
Garambois (2005)].
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Appendix C

Elliptic integral solution

C.1 Elliptic integral of the first kind

We start with the relation (2.32)

dΦ̃

dz̃
=

√

2 cosh(Φ̃) − 2 cosh (Φ̃0). (C.1)

Substitution of (2.33) and (2.34) yields that

dz̃ =
dΦ̃

√

eΦ̃ + e−Φ̃ − (eΦ̃0 + e−Φ̃0)
=

dΦ̃
√

1
r sin2 (θ)

+ r sin2 (θ) − (1
r

+ r)
. (C.2)

Using (2.34), we find that

dz̃ = −2r
1

2

dθ
√

1 − r
2 sin2 (θ)

. (C.3)

We integrate from zero to z̃

∫ z̃

0
dz̃

′

= 2
√
r

(

∫ π
2

0

dθ
′

√

1 − r
2 sin (θ′)

−
∫ θ

0

dθ
′

√

1 − r
2 sin (θ′)

)

. (C.4)

This becomes

z̃ = 2
√
r

(

F (
1

2
π, r) − F (θ, r)

)

, (C.5)

with F (1
2π, r) the complete elliptic integral of the first kind

F (
1

2
π, r) =

∫ π
2

0

dθ
′

√

1 − r
2 sin (θ′)

, (C.6)
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and F (θ, r) the incomplete elliptic integral of the first kind

F (θ, r) =

∫ θ

0

dθ
′

√

1 − r
2 sin (θ′)

. (C.7)

C.2 Elliptic integral of the second kind

We consider (2.57):

−Mq

σH

∫

ρE

(

1 − Φ

ζ

)

dz =
Mqε

σH̃

∫ H

0

∂2Φ̃

∂z̃2

(

1 − Φ

ζ

)

dz̃. (C.8)

Substituting the reduced variables z̃ = κz and Φ̃ = Φ/ΦB we find that

Mqε

σH̃

∫ H

0

∂2Φ̃

∂z̃2

(

1 − Φ

ζ

)

dz =
Mqεκ

2ΦB

σH̃

∫ H̃

0

∂2Φ̃

∂z̃2

(

1 − Φ̃

Φ̃s

)

dz̃. (C.9)

Partial integration of (2.57) yields that

∫ H̃

0

∂2Φ̃

∂z̃2

(

1 − Φ̃

Φ̃s

)

dz̃ =
1

Φ̃s

∫ Φ̃s

0

∂Φ̃

∂z̃
dΦ̃. (C.10)

From (2.33) and (C.3), we have that

∂Φ̃

∂z̃
=

1√
r

cot (θ)∆θ. (C.11)

with ∆(θ) =
√

1 − r
2 sin (θ). This means that the integral (C.10) now be-

comes

1

Φ̃s

∫ Φ̃s

0

∂Φ̃

∂z̃
dΦ̃ =

2

Φ̃s

√
r

∫ π
2

θw

cot2 (θ)∆θdθ. (C.12)

Further partial integration yields

∫ π
2

θw

cot2 (θ)∆θdθ = −
∫ π

2

θw

∆θd cot (θ) − E. (C.13)

with Em =
∫

π
2

θw
∆θdθ. Solving the first integral on the right-hand side in

(C.13) results in

−
∫ π

2

θw

∆θd cot (θ) − E = ∆θw cot (θw) − (r2 − 1)Fm − 2Em. (C.14)
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where Fm is defined by

Fm =

∫ π
2

θw

dθ

∆θ
= F (

1

2
π, r) − F (θ, r). (C.15)

In the same way we define

Em =

∫ π
2

θw

∆θdθ =

∫ π
2

0
∆θdθ −

∫ θw

0
∆θdθ = E(

π

2
, r)−E(θw, r). (C.16)

with E(θw, r) the incomplete elliptic integral of the second kind and E(π
2 , r)

the complete elliptic integral of the second kind.
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