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Diversification is the only free lunch in finance.

— Harry Markowitz



A B S T R AC T

Portfolio optimization, a fundamental area of study in financial engineering,
plays a crucial role in creating efficient portfolios. In this thesis, we consider
a robust multi-period Mean-Variance portfolio optimization framework and
apply it to real-world market data. The approach we look at incorporates a
time-consistent structure that considers the variance of each period, aiming
to minimize their sum, while ensuring that the expected return for each pe-
riod exceeds a predefined threshold. Additionally, we introduce proportional
transaction costs to simulate real-world market conditions. To account for un-
certainties and increase robustness, we employ a distribution uncertainty set
within a Wasserstein ball around the empirical distribution of historical data.
This enables us to select worst-case portfolio scenarios for deriving robust op-
timal solutions. We aim to compare this method with other existing portfolio
optimization methods, which we describe in depth in our analysis, to assess
its effectiveness.
To achieve the aforementioned research objectives, we conducted an exten-
sive review of portfolio optimization literature, exploring both Mean-Variance
and Mean-CVaR portfolio optimization problems. Our research also included
robust approaches on portfolio optimization including different distribution
and parameter uncertainty sets. We proceeded to construct a comprehensive
set of numerical experiments, evaluating portfolio optimization methods per-
formance on real market data. Moreover, we included the S&P500 index to
compare them against market performance. In these experiments, we ran-
domly selected stock sets and evaluation period to work on, in order to ensure
an unbiased assessment of the methods.
To evaluate the performance of each method, we used the Sharpe ratio of
the realized portfolio returns. Our key findings indicate that, in most cases,
at least one of the portfolio optimization models outperformed S&P500, sug-
gesting that portfolio optimization problems perform relatively well in the
real world. Furthermore, single-period models demonstrated better perfor-
mance compared to multi-period having higher Sharpe ratio most of the times.
Notably, robust optimization models exhibited superior performance com-
pared to nominal models, underlying the significance of accounting for un-
certainty. The implications of our research are twofold. Firstly, portfolio op-
timization problems, especially in the single-period context, demonstrated
promising performance and should be embraced by financial practitioners
seeking optimal risk-return investment strategies. Secondly, we recommend
the preference for robust approaches over traditional models, as they offer im-
proved flexibility to market uncertainties and potentially mitigate downside
risks.

Keywords: Portfolio Optimization, Mean-Variance, Mean-CVaR, Robust Op-
timization, Single-Period, Multi-Period, Transaction Costs, Time-Consistency
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1
I N T RO D U C T I O N

The concepts of Portfolio Optimization (PO) and diversification have played
a crucial role in the development and comprehension of financial markets
and decision making. In 1952, Markowitz published a theory on PO that was
a major breakthrough in this field (see Markowitz (1952)). His theory, which
is now known as Modern Portfolio Theory (MPT), provided a solution to the
fundamental question of how investors should distribute their funds among
investments.

To find the best assets allocation of the portfolio, Markowitz set up a quan-
titative method for measuring the return and risk of an asset with the use of
statistical tools like expected return and variance. He suggested that investors
should consider both return and risk when determining the allocation of their
funds among investment alternatives. Let r be the vector of uncertain returns
from assets and x the decision vector, then, portfolio returns are rP = x⊤ ·r.
Markowitz’s theory can be formulated by the following optimization problem
known as the Mean-Variance (MV) PO problem:

min
x

{
Var(rP) : E(rP) = µ0, x ∈ X

}
,

where µ0 is the desired expected return and X the set of all feasible decision
vectors. This MV PO problem suggests that for any given level of expected
return µ0, investors should choose the portfolio with the minimum variance.
In this way, they have the least risk for the same expected return. This idea
of quantifying financial decision-making allowed for the evaluation of port-
folio return and risk by considering asset returns, that is E(rP), and their
covariance, that is Cov(rP). As a consequence, the principle of portfolio di-
versification emerged as a crucial concept, indicating that the risk level of a
portfolio is influenced by the correlations among its components rather than
solely the average risk level of each individual holding. In addition, finan-
cial decision-making has been formulated as an ongoing optimization process
with numerous advancements made to date.

1.1 R I S K M E A S U R E S

While variance has been widely used as a risk measure in both theoretical
and practical applications, it has its shortcomings. For instance, it treats both
positive and negative deviations from expected returns equally as undesirable
risk, despite the desirability of positive deviations for investors. To address
this, downside risk measures that only consider negative deviations, such as
the semivariance by Markowitz (1959), can be used. Moreover, since vari-
ance is a nonlinear risk measure, it can lead to more complicated formula-

1



2 I N T RO D U C T I O N

tions compared to linear risk measures such as the mean absolute deviation
introduced by Konno and Yamazaki (1991). In terms of volatility risk mea-
sures, Sharpe (1966) and Bernardo and Ledoit (2000) introduced the Sharpe
ratio and Omega ratio, respectively, to evaluate portfolio performance based
on risk and return. Quantile-based risk measures such as Value-at-Risk (VaR)
and Conditional-Value-at-Risk (CVaR)1 are also known and widely used in
risk management. In particular, VaR gained significant popularity starting
from the mid-1990s, with its introduction in RiskMetrics by Morgan et al.
(1996) and its adoption even being recommended as a standard for banking
supervision by Basel Committee (1996). For some confidence level α ∈ (0,1),
VaR of a portfolio with loss L at the confidence level α is given by the small-
est number l such that the probability that the loss L exceeds l is no larger
than 1−α . Mathematically, VaR is defined as:

VaRα(L) = min{l : P(L > l) ≤ 1−α}.

While VaR is a widely used measure of risk in finance, it has several down-
sides. Firstly, VaR is not subadditive in general distribution case and thus, it
is not a coherent risk measure in the sense of Artzner et al. (1999). As a re-
sult, VaR does not conform to the principle that the risk of a portfolio should
be less than the sum of its individual components. In practice, diversification
across different assets should lead to a reduction in overall portfolio risk, but
this principle is contradicted by VaR’s limitations. Secondly, VaR informs
us about the predicted maximum loss at a specified confidence level, but it
fails to provide detailed insights into the nature of extreme losses beyond that
level. This means that it may underestimate the potential impact of rare, catas-
trophic events that can have severe consequences on a portfolio.

On the other hand, CVaR is an alternative measure that overcomes the subad-
ditivity limitation of VaR. CVaR is coherent (see Acerbi and Tasche (2002)),
aligning with the diversification principle. Unlike VaR, CVaR provides infor-
mation on the average magnitude of losses that exceed the VaR threshold.
CVaR is more sensitive to the tail of the distribution, which makes it particu-
larly well-suited to capture extreme events, such as financial crises or black
swan events. The use of CVaR can lead to more conservative risk manage-
ment strategies in portfolio optimization. For a loss L with E(|L|) < ∞, and
cumulative distribution function FL, CVaR at confidence level α ∈ (0,1) is
defined as:

CVaRα(L) =
1

1−α

∫
α

0
u ·qFL(u) du

where qFL(u) = F−1
L (u) is the quantile function of FL. For an integrable loss

L with continuous cumulative distribution function FL and for any α ∈ (0,1),
we have:

CVaRα(L) = E(L|L ≤ VaRα(L)).

Moreover, the work of Rockafellar, Uryasev, et al. (2000) and Rockafellar and
Uryasev (2002) demonstrated that minimizing CVaR can be achieved simul-

1 CVaR is also known as Expected Shortfall (ES).
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taneously with determining the corresponding VaR, making it a more flexible
and tractable optimization approach. The resulting formulation leads to a con-
vex program, which is computationally efficient, making CVaR practical for
portfolio optimization (as it will be shown in Section 2.2). Overall, CVaR
has emerged as a valuable risk measure for investors and managers seeking a
more comprehensive and robust measure of portfolio risk with Mean-CVaR
emerging as a PO problem.

1.2 M U LT I - P E R I O D P O RT F O L I O O P T I M I Z AT I O N

It is important to notice that Mean-Risk PO problems discussed consider only
a single horizon ahead and they are called single-period PO problems. While
single-period PO problems are useful for short-term decision-making, they
fail to consider the impact of decisions over multiple periods. Given a specific
exiting time, investors typically adjust their asset positions multiple times
based on market conditions, making a multi-period selection model crucial
for effective decision-making. This involves reallocating wealth at the start
of each intermediate period with the aim of minimizing risk and maximiz-
ing return when exiting the market. One of the first extensions of MV PO to
multi-period was by Li and Ng (2000), who provided the analytical solution
for multi-period MV PO problem. A geometric solution was found by Leip-
pold, Trojani, and Vanini (2004), while their solution has been successfully
generalized by Bodnar, Parolya, and Schmid (2015a). Further advancement
on the multi-period MV PO problem have been made using exponential util-
ity (see Bodnar, Parolya, and Schmid (2015b)) or power utility (see Bodnar
et al. (2023)). However, the focus remains on using the objective of simply
variance, and concentrating on the time-consistent approach showed by Chen,
Li, and Guo (2013). This approach will be later extended to the method used
by Wu and Sun, 2023. Furthermore, using a multi-period approach in portfo-
lio optimization provides a better way to account for transaction costs into the
problem, which can significantly impact portfolio performance as shown by
Arnott and Wagner (1990). In a single-period optimization, a greedy strategy
that considers only the current period may be optimal, but it does not con-
sider the impact of current holdings on future returns. However, in a multi-
period optimization, one can analyze how current trades affect future trades,
allowing for a more realistic model that incorporates the cost of moving in
and out of positions. This approach ensures that the portfolio is positioned to
trade profitably in future periods, while also taking into account the impact
of transaction costs on returns.

1.3 E S T I M AT I O N E R RO R S I N M E A N - R I S K P O RT F O L I O O P T I M I Z A -
T I O N

Portfolios produced by the Mean-Risk PO problems often have unintuitive
or extreme weights that cannot be realistically implemented in active trad-
ing. For instance, investment positions with significant negative weights. Al-
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though imposing additional constraints, such as no short positions, may re-
solve this issue, it can also result in the creation of portfolios that are very
close to the boundary of the restrictions and are thus dependent on the al-
location weight conditions as stated in Black and Litterman (1992). More
importantly, PO problems have issues due to the random nature of asset re-
turns, making it highly sensitive to inputs. Estimation errors in risk and return
estimates are an issue as assets with large estimated returns, negative correla-
tions, and small variances are over-weighted in the model, even though they
may have large estimation errors. This problem arises due to the use of sam-
ple mean and variance, the ignorance of market factors, and the assumption of
a single optimal portfolio (see Michaud (1989) and Broadie (1993)). Further-
more, Chopra and Ziemba (2013) studied the effects of estimation errors on
portfolio performance and found that errors in estimating expected returns of
assets are at least 10 times more important than errors in estimated variances
or covariances.

The concept of robust optimization also concerned Ben-Tal and Nemirovski
(1998), whose formulation allows for solving a robust formulation of the
PO problem resulting in more stable allocations while being less sensitive
to model parameter changes. This approach introduces uncertainty in the in-
put parameters related to the mean vector and covariance matrix of asset re-
turns, such as polytopic, box, and ellipsoidal uncertainty, or even uncertainty
in the distribution of returns, such as those we will discuss in Chapter 4. Pre-
vious studies have investigated the use of worst-case VaR and CVaR in robust
portfolio optimization when only partial information on the underlying prob-
ability distribution is available, like in Ghaoui, Oks, and Oustry (2003) and
Zhu and Fukushima (2009). Fabozzi et al. (2007b) review the relationship
between robust optimization and other methods for portfolio management,
however, the focus in this thesis will be on worst-case optimization derived
by distribution uncertainty set for the MV and Mean-CVaR PO problems.

1.4 T H E S I S S C O P E A N D O U T L I N E

In this thesis, we aim to address the challenges and limitations associated
with traditional PO problems, such as MV and Mean-CVaR, by introducing
a robust approach that emphasizes worst-case optimization from distribution
uncertainty set. Additionally, we extend these problems to the multi-period
setting, considering the impact of transaction costs while also incorporating a
robust framework. The thesis is structured as follows. In Chapter 2 the prob-
lem formulation of the MV and Mean-CVaR PO problems are presented in
the context of a single-period optimization. By solving these optimization
problems, the efficient portfolios with the optimal balance between risk and
expected return are found. Next, Chapter 3 is on multi-period portfolio opti-
mization, the analysis of the previous Chapter is extended to a multi-period
setting. The impact of transaction costs is also considered, which significantly
influence portfolio performance. We develop a methodology to incorporate
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these costs into the optimization process. In addition, we introduce the con-
cept of time-consistency and provide models that address this issue. Chapter
4 provides robust approaches in PO. It focuses on worst-case optimization
accounting for uncertainty in input parameters using distribution uncertainty
sets. Robust Mean-CVaR PO is presented in single-period, while robust MV
PO is shown in multi-period. In Chapter 5, we conduct a comprehensive set
of numerical experiments to evaluate the performance of the aforementioned
PO problems in real market data. To ensure a rigorous assessment, we de-
vise a method for randomly selecting a set of stocks and a specific evaluation
period. Within this framework, we execute 20 independent numerical exper-
iments, solving each PO problem for the chosen stocks set and evaluation
period. For each experiment, we assess the performance of each method by
computing the Sharpe ratio of the realized portfolio returns. The aim is to
identify the model that consistently outperforms the others across different
stocks sets and evaluation periods. Through these experiments, we gain in-
sights into the strengths and weaknesses of each approach. In Chapter 6, we
present the conclusions drawn from our research and discuss the implications
of our findings while we provide recommendations for decision-makers. By
exploring these topics, the thesis aims to contribute to the field of portfolio
optimization by offering innovative approaches to address the limitations of
traditional models and providing insights into their practical implications for
financial decision-making.
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P O RT F O L I O O P T I M I Z AT I O N I N S I N G L E - P E R I O D

Portfolio optimization is a crucial task in financial management, as it involves
selecting a combination of assets that maximizes returns while minimizing
risks. Stochastic optimization models are particularly useful for this purpose,
as they allow for uncertainty in asset returns and risk measures. This chapter
focuses on single-period portfolio optimization problems, and presents two
popular stochastic optimization models for portfolio optimization: MV and
Mean-CVaR PO problem. We will explore the advantages and disadvantages
of each model, and discuss how they can be used to construct optimal portfo-
lios.

2.1 M E A N - VA R I A N C E P O RT F O L I O O P T I M I Z AT I O N

MV PO problem was first introduced by Markowitz (1952) in his seminal
work and have since become a foundation of MPT. The basic idea behind
MV PO problem is to find the combination of assets that maximizes reward
for a given level of risk, where Markowitz suggested that reward should be
measured by the expected portfolio return and risk should be measured by
the portfolio variance. In addition, the problem has been studied for the use
of quadratic utility as in Bodnar, Parolya, and Schmid (2013), or even power
utility as in Bodnar et al. (2020). Nevertheless, in this section, we will provide
an overview of the plain MV approach from Fabozzi et al. (2007a), discuss
its assumptions and limitations, and explain how to construct a MV optimal
portfolio.

The MPT assumes that investors are rational and risk-averse, meaning that
they prefer lower levels of risk for a given level of reward. Therefore, for any
given level of expected return, they would choose the portfolio with the min-
imum variance and for any given level of variance, they would choose the
portfolio with the maximum expected return. Different allocations of wealth
in assets of the portfolio can yield different values of expected return and
variance. The set of all possible portfolios that can be constructed is called
feasible set, while the set of portfolios with minimum variance for any given
level of expected return and minimum expected return for any given level of
variance is called efficient frontier. The portfolio with the minimum variance
overall is called global minimum variance.

To construct the MV PO problem, consider a portfolio consisting of N risky
assets. Let w = (w1, . . . ,wN) be the decision N-vector, which represents the
proportion of initial wealth allocated to each asset. In other words, w is a vec-
tor of weights and so w⊤1= 1, for 1 a N-vector of ones. Let r = (r1, . . . ,rN)

6



2.1 M E A N - VA R I A N C E P O RT F O L I O O P T I M I Z AT I O N 7

be the N-vector of uncertain future returns and let µ = (µ1, . . . , µN) be the
N-vector of means of r and Σ the N ×N covariance matrix of the returns of
all assets, that is

Σ =


σ11 σ12 · · · σ1N

σ21 σ22 · · · σ2N
...

...
. . .

...

σN1 σN2 · · · σNN


where σii = σ2

i and σi j = σ ji = ρi jσiσ j for i ̸= j and ρi j the correlation be-
tween assets i and j. Every covariance matrix is positive semidefinite and
so w⊤Σw ≥ 0 for all w. We will also assume that Σ is positive definite
(w⊤Σw > 0), that is, it is impossible to construct any of the assets in the
portfolio using only the other assets in the portfolio. This assumption is in
agreement with the reality while it ensures that Σ is an invertible matrix.

According to MPT, an investor seeks for the minimum variance given a spe-
cific expected return. So, for a target expected return µ0, the MV PO problem
is the following:

min
w

w⊤Σw

s.t. w⊤µ= µ0,

w⊤1= 1.

(1)

Furthermore, an investor will also seek for the maximum expected return
given a specific variance. So, for a target variance σ2

0 , the optimization prob-
lem becomes:

min
w

w⊤µ

s.t. w⊤Σw = σ
2
0 ,

w⊤1= 1.

(2)

Or even, another formulation of the problem could be a utility function where
expected return is rewarded and variance is penalized given a risk averseness
parameter ω > 0:

min
w

w⊤µ−ω ·w⊤Σw

s.t. w⊤1= 1.
(3)

It is shown in Appendix A.1 that MV PO problems (1), (2) and (3) are equiva-
lent given a relationship between the parameters µ0, σ0 and ω . It also provides
the analytical solution of decision vectors w and the expected return and vari-
ance for each problem.

Under the problem (1) framework, the efficient frontier is defined as the set
of portfolios with minimum variance for any given level of expected return.
Therefore, it can be found by following the steps below:
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Step-by-Step Process for MV Efficient Frontier.

Step 1: Solve problem (1) without the w⊤µ = µ0 constrain to find the
global minimum variance portfolio wmin.

Step 2: Attain the lowest expected return of the efficient frontier µmin =

w⊤
minµ.1

Step 3: Solve the problem max
w

w⊤µ s.t. w⊤1= 1 to attain the high-

est expected return of the efficient frontier µmax.2

Step 4: Solve problem (1) for all µ0 ∈ [µmin, µmax].

Following these steps for problem (1), and given the analytical solution pro-
vided at Appendix A.1, we can derive the decision vector w and the variance
at the efficient frontier:

1. Global minimum variance portfolio: wmin =
Σ−11

A
.

2. Minimum expected return of the efficient frontier:

µmin =w⊤
minµ=

B
A

.

3. Maximum expected return of the efficient frontier:
µmax = max

i=1,...,N
µi.

4. Efficient frontier:

• Decisions: w∗ =
λ Σ−1µ+ γΣ−11

2
with λ = 2

µ0A−B
∆

and γ =

2
C−µ0B

∆
for µ0 ∈ [

B
A

, max
i=1,...,N

µi].

• Variance: σ2
0 =

Aµ2
0 −2Bµ0 +C

∆
for µ0 ∈ [

B
A

, max
i=1,...,N

µi].

where A = 1⊤Σ1, B = 1⊤Σµ, C = µ⊤Σµ and ∆ = AC−B2.

It is clear that the efficient frontier is a parabola on the expected return - vari-
ance space and on the expected return - standard deviation space. A plot of
the efficient frontier and an indicator of the global minimum variance is pre-
sented in Figure 1:

1 This is the start point of the efficient frontier, as it represents the minimum expected return for
any given variance. The rationale behind this choice is that expected returns below the global
minimum variance would not fulfill the criteria of obtaining the highest expected return for a
specific level of variance.

2 This is the end point of the efficient frontier. Since the problem is unbounded, an additional
constraint wi ≥ 0, i = 1, . . . ,N is applied only for µmax, and thus µmax = max

i=1,...,N
µi. This con-

straint is employed in all other models to be discussed later; however, it was excluded from
the MV case for the sake of deriving an analytical solution.
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Figure 1: Plot of the efficient frontier on an expected return - standard deviation
graph including the individual assets as points. The values A = 2.5, B =
1.77, and C = 1.31 are used in this example for the sake of making the
graph.

2.1.1 Mean-Variance Portfolio Optimization with the Addition of a Risk-
free Asset

In reality, investors also consider the amount of cash they hold in their portfo-
lio. Holding cash, they get interest R as return which is considered as a no-risk
investment. Therefore, it is essential that we include one risk-free asset (i.e.
the holding cash) in the portfolio optimization problem.

Following the same set up, consider a portfolio consisting of N risky assets
and 1 risk-free. Let w = (w1, . . . ,wN) be the decision N-vector for the risky
assets and wR the weight given at the risk-free asset and so w⊤1+wR = 1,
for 1 a N-vector of ones. The MV PO problem then is:

min
w

w⊤Σw

s.t. w⊤µ+wRR = µ0,

w⊤1+wR = 1.

(4)

Following the 4 steps to find the efficient frontier given the results from Ap-
pendix A.2:

1. Global minimum variance portfolio: wmin = 0 (wR = 1).

2. Minimum expected return of the efficient frontier: µmin = R.

3. Maximum expected return of the efficient frontier: µmax = max
i=1,...,N

µi.

4. Efficient frontier:
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• Decisions: w∗ =
(µ0 −R)Σ−1µD

µ⊤
DΣµD

for µ0 ∈ [R, max
i=1,...,N

µi].

• Variance: w∗⊤Σw∗ =
(µ0 −R)2

µ⊤
DΣµD

for µ0 ∈ [R, max
i=1,...,N

µi].

Taking a look at the optimal decisions

w∗ =
µ0 −R
µ⊤

DΣµD
Σ−1µD,

w∗ is proportional to Σ−1µD which does not depend on µ0. Therefore, the
investor allocates his wealth among the risky assets in the same relative pro-
portions, while changing µ0 only changes the amount invested in that portfo-
lio with w∗ and in the risk-free asset via the µ0−R

µ⊤
D ΣµD

proportionality constant.
This portfolio with w∗ consisting of risky assets is called the tangency port-
folio.

Making the graph of the efficient frontier in a expected return - standard devia-
tion plot (see Figure 2), it can be seen that the efficient frontier of the portfolio
with the risk-free asset is a straight line, tangent to the efficient frontier of the
risky assets. Their common point is the tangency portfolio.

Figure 2: The efficient frontier of both with and without the risk-free asset on a ex-
pected return - standard deviation plot including the individual assets as
points.The values A = 2.5, B = 1.77, C = 1.31 and R = 0.5 are used in this
example for the sake of making the graph.

To find the exact decomposition w∗
T of the tangency portfolio, one should

take the case where wR = 0 and so, solve the w∗⊤
T 1= 1:

µ0 −R
µ⊤

DΣµD
µDΣ−11= 1 ⇒ µ0 =

µ⊤
DΣµD

µDΣ−11
+R.
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(a) Comparison of MV efficient frontiers with
and without constraints.

(b) Efficient Frontier with and without Risk-
free asset under no-short constraints.

Figure 3: Incorporating the no-short constrain in the MV optimization problem.

And so, the tangency portfolio is:

w∗
T =

Σ−1µD

µDΣ−11
.

2.1.2 Mean-Variance Portfolio Optimization with the Addition of No Short-
Selling Constrain

In our previous theoretical calculations, we did not limit the portfolio weights
except for the requirement that they sum up to one. Specifically, they were
permitted to have both positive and negative values without any restriction on
short selling. However, in reality, some portfolio managers may not be able
to sell assets short due to a variety of reasons and thus, they only take long
positions. To reflect this constrain, the MV PO problem becomes:

min
w

w⊤Σw

s.t. w⊤µ+wRR = µ0,

w⊤1+wR = 1,

wR ≥ 0,

w ≥ 0.

(5)

This problem can be solved for both considering the risk-free asset or not.
We set wR = 0 in case the risk-free asset is not included. The new efficient
frontiers in both cases will be bellow the unconstrained ones since we are
restricting the range of possible choices by constraining all the weights to
be positive. In Figures (3a, 3b) below, the impact of prohibiting short selling
is observed. Figures are generated using the quadratic programming solver
from CVXOPT library in Python built by Andersen, Dahl, and Vandenberghe
(2022) which uses methods from Sra, Nowozin, and Wright (2011).

After examining Figure 3, several conclusions can be drawn. Figure 3a demon-
strates that the efficient frontier with constraints is positioned below the un-
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constrained one. The reason behind this is that even though allowing short
selling may lead to higher expected returns, it also leads to higher risks, which
most investors want to avoid. Additionally, Figure 3b displays that the effi-
cient frontier with the risk-free asset is a straight line connecting the risk-free
asset and the tangency portfolio. This occurs because the weight wR of the
risk-free asset and weight wT of the tangency portfolio are constrained to be
in [0,1] and wR +wT = 1. Therefore, the lowest expected return (and risk)
for the portfolio is for wR = 1, while the highest expected return (and risk)
for the portfolio is for wT = 1. For expected returns higher than that of the
tangency portfolio, the portfolio only includes risky assets since a combina-
tion of risk-free asset and tangency portfolio cannot achieve them. Thus, it
is identical to the efficient frontier without the risk-free asset. Finally, in the
absence of constraints (see Figure 2), higher expected returns could be at-
tained by having wR ≤ 0 (borrowing cash) and wT ≥ 1 (investing borrowed
cash) such that wR +wT = 1, thus allowing the efficient frontier straight line
to continue beyond the tangency portfolio. In the remainder of this chapter,
we will consistently incorporate the no-short constraints into every problem
formulation, aligning with common practice in real-world scenarios.

2.1.3 Mean-Variance Portfolio Optimization with the Addition of Transac-
tion Costs

If an investor wants to apply this model in real market data, then he will
have to take into account for the transaction costs. Transaction costs usually
come from the amount traded, so, an investor who reallocates his current
portfolio to the new portfolio suggested by the MV PO solution should incur
the transaction costs. Let TC be the estimated transaction costs, incorporating
them into the MV PO problem looks like this:

min
w

w⊤Σw

s.t. w⊤µ+wRR ≥ µ0,

w⊤1+wR = 1−TC,

wR ≥ 0,

w ≥ 0,

(6)

where the expected return constrain is now relaxed to an inequality and nor-
malized transaction costs are added to the weights constrain. The estimation
of transaction costs is presented in detail in Section 3.1.2.1.

2.2 M E A N - C VA R P O RT F O L I O O P T I M I Z AT I O N

When it comes to portfolio optimization, the choice of risk measure to be op-
timized is crucial. Although variance has been widely used since Markowitz
(1952) seminal work, it has some limitations. One of the main drawbacks
of variance is that it considers both positive and negative deviations around
the expected return as equally undesirable, while in reality, investors may
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find positive deviations desirable. To address this issue, downside risk mea-
sures that only consider negative deviations can be used. VaR and CVaR are
the most popular quantile-based risk measures. VaR quantifies the maximum
loss at a specific confidence level, while CVaR represents the expected value
of losses greater than VaR at a confidence level. However, VaR lacks of coher-
ence as a risk measure, and it is unable to provide information about extreme
losses beyond the specified probability level. Therefore, this section focuses
on the Mean-CVaR PO problem.

Following the same structure as before, to construct the Mean-CVaR PO prob-
lem, consider a portfolio consisting of N risky assets. Let w = (w1, . . . ,wN)

be the decision N-vector, which represents the percentage of initial wealth
allocated to each asset, that is w⊤1= 1. In addition, we will include another
constrain where no short-selling is allowed, that is, w ≥ 0 for the reasons
mentioned in 2.1. Lastly, r = (r1, . . . ,rN) is the N-vector of uncertain future
returns.
The corresponding loss function is L = −w⊤r and the probability of L not
exceeding a threshold l is given by the integral

P(L ≤ l) =
∫

L≤l
p(r)dr,

where p(r) is the probability density function of r. VaR at a confidence level
β is defined as

VaRβ (L) = min{l|P(L ≤ l) ≥ β},

while the corresponding CVaR is given by

CVaRβ (L) =
1

1−β

∫
L≥VaRβ (L)

−w⊤r · p(r)dr.

Due to the complexity of the CVaR, the Mean-CVaR PO problem cannot
be solved analytically, and the use of software is necessary, which will be
discussed in detail later in this chapter. Hence, the Mean-CVaR PO problem
can be expressed as follows:

min
w

CVaRβ (−w⊤r)

s.t. w⊤µ= µ0,

w⊤1= 1,

w ≥ 0.

(7)

Theorem 1 in Rockafellar, Uryasev, et al. (2000) states that the computation
of CVaR can be accomplished by minimizing the auxiliary function

Fβ (w,α) = α +
1

1−β

∫
r∈RN

−w⊤r · p(r)dr, (8)

with respect to the variable α ∈R. Therefore, the formula for CVaRβ (−w⊤r)

is given by

CVaRβ (−w⊤r) = min
α∈R

Fβ (w,α). (9)
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And so, as proved in Theorem 2 of Rockafellar, Uryasev, et al. (2000), prob-
lem (7) becomes:

min
w,α

Fβ (w,α)

s.t. w⊤µ= µ0,

w⊤1= 1,

w ≥ 0,

α ∈ R.

(10)

The computation of Fβ (w,α) presents a significant challenge due to the need
to calculate the integral of a multivariate and generalized function. Nonethe-
less, this challenge can be overcome using an appropriate approximation
method. Monte Carlo simulation is among the most effective methods for
computing high-dimensional integrals. In fact, Rockafellar, Uryasev, et al.
(2000) employed this method to approximate Fβ as follows:

F̃β (w,α) = α +
1

q(1−β )

q

∑
k=1

[−w⊤rk−α ]+,

where rk denotes the kth sample out of the q samples taken by the distribution
p(·) and [·]+ = max{·,0}. Since L =−w⊤r is linear to r and if the feasible
set of w is convex, then F̃β is a linear program that can be solved efficiently.
Minimizing F̃β is an approximation to minimizing Fβ , while it is also equiva-
lent to minimizing the linear expression

α +
1

q(1−β )

q

∑
k=1

uk,

subject to the linear constrains uk ≥ 0 and uk ≥−w⊤rk−α for k = 1, . . . ,q.
Consequently, the optimization problem becomes:

min
w,u,α

α +
1

q(1−β )

q

∑
k=1

uk

s.t. w⊤rk+α + uk ≥ 0 for k = 1, . . . ,q,

uk ≥ 0 for k = 1, . . . ,q,

w⊤µ= µ0,

w⊤1= 1,

w ≥ 0,

α ∈ R.

(11)

To effectively solve this convex optimization problem, we used the linear
programming solver from the CVXOPT library in Python, as developed by
Andersen, Dahl, and Vandenberghe (2022), which employs the methods de-
scribed by Sra, Nowozin, and Wright (2011). To find the efficient frontier, we
first need to solve (11) for all possible µ0, that is µ0 ∈ [ min

i=1,...,N
µi, max

i=1,...,N
µi],

given the returns rk from the input data and then follow the aforementioned
steps:
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Step-by-Step Process for Mean-CVaR Efficient Frontier.

Step 1: Global minimum CVaR portfolio: Find wmin such that
min
w

CVaRβ (L).

Step 2: Minimum expected return of efficient frontier: µmin =w⊤
minµ.

Step 3: Maximum expected return of efficient frontier: µmax = max
i=1,...,N

µi.

Step 4: Efficient frontier: Get the CVaR values for all µ0 ∈ [µmin, µmax].

Following these steps, and using the same inputs as in the MV case, the fol-
lowing graph for the efficient frontier of the Mean-CVaR portfolio optimiza-
tion problem is derived (see Figure 4).

Figure 4: The efficient frontier Mean-CVaR on a expected return - CVaR plot includ-
ing the individual assets as points. The confidence level of β = 0.95 is used
in this example.

The Mean-CVaR efficient frontier looks a lot like the MV efficient frontier,
with CVaR values similar to standard deviation in Figure 3. It is important to
note, however, that these visual similarities can vary substantially depending
on the input data.

2.2.1 Mean-CVaR Portfolio Optimization with the Addition of a Risk-free
Asset

As with the MV PO problem, we will also add a case where there is a risk-
free asset, that is, there is an asset with constant returns R. In this case, the
optimization problem formulation is the same as (11) and we are using the
same methods to solve it. Setting R = 0.5 (as the risk-free rate in MV case)
and following the same 4 steps to get the efficient frontier, we plot both effi-
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cient frontiers with and without the risk-free asset (see Figure 5).

Figure 5: The efficient frontier Mean-CVaR on a expected return - CVaR plot with
and without the risk-free asset including the individual assets as points. The
confidence level of β = 0.95 and risk-free return R = 0.435 are used in this
example.

When the risk-free asset is included, the Mean-CVaR efficient frontier takes
the form of a straight line, indicating the presence of a tangency portfolio.
Below the expected return of the tangency portfolio, the efficient frontier is
a linear combination of the risk-free asset and the tangency portfolio. Above
this expected return, the efficient frontier is equivalent to the one without the
risk-free asset. The logic behind that is the same as in 2.1.1.

2.2.2 Mean-CVaR Portfolio Optimization with the Addition of Transaction
Costs

If an investor decides to implement this model using real market data, they
will need to consider transaction costs, which typically depend on the trad-
ing volume. When an investor reallocates their current portfolio to the new
portfolio suggested by the Mean-CVaR PO solution, they will incur transac-
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tion costs represented as TC. To incorporate these costs, we use the following
problem formulation:

min
w,u,α

α +
1

q(1−β )

q

∑
k=1

uk

s.t. w⊤rk+α + uk ≥ 0 for k = 1, . . . ,q,

uk ≥ 0 for k = 1, . . . ,q,

w⊤µ+wRR ≥ µ0,

w⊤1+wR = 1−TC,

wR ≥ 0,

w ≥ 0,

α ∈ R.

(12)

where the expected return constrain is now relaxed to an inequality and nor-
malized transaction costs are added to the weights constrain. The estimation
of transaction costs is further explained in Section 3.1.2.1.
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In the previous chapter, we discussed single-period portfolio optimization
techniques that are effective for short-term decision-making. However, in-
vestors generally make decisions over multiple periods, adjusting their asset
positions based on evolving market conditions. To better capture the dynam-
ics of long-term investment strategies, it is essential to consider multi-period
portfolio optimization. The focus of this chapter will remain on discrete time.
In the multi-period context, given a time horizon, wealth is reallocated at the
start of each period with the aim of minimizing risks and maximizing returns
when exiting the market in the end of the time horizon. This chapter digs into
the multi-period extensions of MV and Mean-CVaR PO problems.

Multi-period portfolio optimization offers several advantages over its single-
period counterpart. Firstly, it provides a more realistic framework that ac-
counts for the impact of transaction costs on returns, which can significantly
affect portfolio performance. Secondly, multi-period optimization allows for
a more comprehensive analysis of how current trades influence future trades,
ensuring that the portfolio is well-positioned to profitably navigate future peri-
ods in discrete time. The insights and methodologies presented in this chapter
will enable investors to develop efficient strategies for optimizing their port-
folios in a multi-period setting.

3.1 M E A N - VA R I A N C E P O RT F O L I O O P T I M I Z AT I O N

The MV PO framework, initially developed for single-period settings, has
been successfully extended to multi-period scenarios. The multi-period MV
PO approach considers the impact of investment decisions across multiple
periods, capturing the trade-offs between expected returns and risks more ac-
curately.

In this section, the focus will be on the formulation and implementation of
multi-period MV PO. We begin by exploring the analytical solution proposed
by Li and Ng (2000), which has been further improved by Cui et al. (2012) to
ensure time consistency in the optimization process. To enhance the practical
applicability of the model, the no-short constraint, as discussed by Cui et al.
(2014), will be incorporated into the model. The analytical solution for this
enhanced model will be presented. Moreover, we integrate a time-consistent
approach within the constrained optimization problem, ensuring a consistent
and realistic portfolio allocation strategy over multiple time periods. Finally,
we address the impact of transaction costs by incorporating them into the op-

18
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timization framework, thereby considering the practicality and feasibility of
executing portfolio adjustments in real-world scenarios.

3.1.1 Mean-Variance Portfolio Optimization - Analytical Solution

Consider a portfolio consisting of N + 1 risky assets. The investor joins the
market at time 0 with an initial wealth x0, which he can allocate among
the assets, and exits the market at time period T . The wealth can be re-
allocated among the N + 1 assets at the beginning of each of the follow-
ing T − 1 consecutive time periods. Let rt = (r0

t , . . . ,rN
t ) be the (N + 1)-

vector of uncertain future rates of returns1 at time period t. It is assumed that
vectors rt, t = 0, . . . ,T − 1, are statistically independent with known mean
µt = (µ0

t , . . . , µN
t ) and covariance matrix Σt , that is

Σt =


σt,11 σt,12 · · · σt,1N

σt,21 σt,22 · · · σt,2N
...

...
. . .

...

σt,N1 σt,N2 · · · σt,NN


where σt,ii = σ2

t,i and σt,i j = σt, ji = ρt,i jσt,iσt,i for i ̸= j and ρt,i j the corre-
lation between assets i and j, all at time periods t. Let ut = (u1

t , . . . ,uN
t ) be

the wealth allocation vector at time period t, where ui
t is the wealth allocated

at asset i at time period t. We take asset 0 as a reference, and the investment
amount at time period t for this asset is given by xt −∑

N
i=1 ui

t . This formula-
tion simplifies the process of incorporating a risk-free asset, which will be
demonstrated later.

An investor seeks the optimal investment strategy, ut = (u1
t , . . . ,uN

t ), t = 0, . . . ,
T − 1, to maximize the expected value of the terminal wealth xT , subject to
the constraint that the variance of the terminal wealth does not exceed a pre-
selected risk level2. This can be represented by the following optimization
problem:

max
ut

E(xT )

s.t. Var(xT ) = σ
2
0 ,

xt+1 =
N

∑
i=1

ri
tu

i
t +

(
xt −

N

∑
i=1

ui
t

)
r0

t , t = 0, . . . ,T −1.

(13)

As indicated by Li and Ng and also showed in Appendix A.1 for single-
period, problem (13) is equivalent to minimizing Var(xT ) for E(xT ) not lower

1 Note that returns here are just pt+1
pt

(without subtracting 1).
2 The efficient frontier is constructed in such a way so that portfolios have the minimum risk

for a given expected return and the maximum expected return for a given risk. As a result, ex-
pected return and risk (variance) are positively correlated on the efficient frontier. Therefore,
maximizing the expected value subject to the constraint that the variance does not surpass a
predetermined risk level is equivalent to employing an equality constraint. The same applies
for the other way around. In this way, we are using equality in these constrains in the optimiza-
tion problems while Li and Ng are using inequalities.
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than a pre-selected minimum desired expected return, or maximizing E(xT )−
ω Var(xT ) for ω ≥ 0, which represents the risk aversion parameter.

min
ut

Var(xT )

s.t. E(xT ) = µ0,

xt+1 =
N

∑
i=1

ri
tu

i
t +

(
xt −

N

∑
i=1

ui
t

)
r0

t = r0
t xt +P⊤

t ut,

t = 0, . . . ,T −1,

(14)

where Pt =
[
P1

t , . . . ,PN
t

]⊤
=
[
(r1

t − r0
t ), (r

2
t − r0

t ), . . . , (r
N
t − r0

t )
]⊤

.
Assuming that

E(rtr⊤t ) = Cov(rt)+E(rt)E(r⊤t ) > 0 ∀t = 0, . . . ,T −1,

it follows (see equations 4-6 in Li and Ng (2000)) that

E(PtP
⊤
t ) > 0 ∀t = 0, . . . ,T −1.

For the rest of the analysis, the formulation involving the risk aversion pa-
rameter ω will be employed, as it is more suitable for investment scenarios
where an investor can determine their preferred balance between anticipated
terminal wealth and the corresponding risk:

max
π

E(xT )−ω ·Var(xT )

s.t. xt+1 = r0
t xt +P⊤

t ut, t = 0, . . . ,T −1,
(15)

where π is the multi-period portfolio policy {u0, . . . ,uT−1}. The constraint
expressed in (15) is known as the self-financing constraint. This condition is
crucial in multi-period portfolio optimization as it encapsulates the realistic
financial situation of many investors, where additional external cash inflows
into the portfolio are not typically possible. The self-financing constraint re-
quires that all transactions within the portfolio, including purchases of new as-
sets or payments of incurred costs (e.g. transaction costs, which we will later
discuss), must be financed using the portfolio’s existing assets. This means
that any increase in one asset’s holdings must be offset by a decrease in an-
other asset’s holdings or from the cash account at the case where we have a
risk-free asset.

The analytical solution of problem (15), as derived from Li and Ng (2000,
Section 4),is specified by the following analytical form:

u∗
t = −E−1(PtP

⊤
t )E(r0

t Pt)xt

+
1
2

(
bx0 +

ν

2ωα

)( T−1

∏
k=t+1

A1
k

A2
k

)
E−1(PtP

⊤
t )E(Pt)

∀t = 0, . . . ,T −2,
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u∗
T−1 = −E−1(PT−1P

⊤
T−1)E(r

0
T−1Pt)xT−1

+
1
2

(
bx0 +

ν

2ωα

)
E−1(PT−1P

⊤
T−1)E(PT−1),

(16)

where all new parameters are defined in Li and Ng (2000, Section 3). The
equivalent solutions for problems (13) and (14) can be obtained by setting:

ω =


ν

2
√

α(σ2
0−cx2

0)
for problem (13),

ν2

2α [µ0−(µ+bν)x0]
for problem (14).

The efficient frontier for all problems (13) - (15) is:

Var(xT ) =
α

ν2 [E(xT )− (µ + bν)x0]
2 + cx2

0, for E(xT ) ≥ (µ + bν)x0.

With the analytical solution (16), implementing the optimal multi-period port-
folio policy for problems (13)-(15) becomes simple. The optimal multi-period
portfolio policy is composed of two terms and displays a separation property
between the investor’s risk attitude and their present wealth. The second term
in u∗t depends on the investor’s risk attitude and is independent of their cur-
rent wealth. It can be calculated before the actual investment process starts,
without the need for real-time data. The first term in u∗t depends on the cur-
rent wealth and is not influenced by the investor’s risk attitude. It is computed
during each time period as the present wealth becomes available, requiring
real-time data.

Deriving the efficient frontier requires the following 4 steps:

Step-by-Step Process for Multi-Period Mean-Variance Efficient Frontier.

Step 1: Minimum expected return is µmin = (µ + bν)x0.

Step 2: Find the maximum risk averse parameter ωmax from µmin.

Step 3: Find the minimum ωmin from µmax = max
i=1,...,N

µT
i .

Step 4: Efficient frontier: Get the variance values for ω ∈ [ωmin,ωmax].

3.1.1.1 Mean-Variance Portfolio Optimization with the Addition of a Risk-
free Asset

Investment scenarios that include a risk-free asset can be considered a special
case within the general multi-period MV PO framework discussed earlier. Let
the 0th asset be risk-free, so we now examine a capital market consisting of N
risky assets and a risk-free asset that offers a guaranteed rate of return st . In
this situation, r0

t is equal to a constant st , and Cov(r0
t ,ri

t) = 0, for i= 0,1, . . . ,n
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and ∀t = 0,1, . . . ,T −1. The optimal portfolio policy for problem (15) when
a risk-free asset is included in the investment scenarios is given as:

u∗
t = −stE−1(PtP

⊤
t )E(Pt)xt

+
(T−1

∏
k=0

skx0 +
1

2ω
(
∏

T−1
k=0 (1−Bk)

))( T−1

∏
k=t+1

1
sk

)
E−1(PtP

⊤
t )E(Pt)

∀t = 0, . . . ,T −2,

u∗
T−1 = −sT−1E−1(PT−1P

⊤
T−1)E(Pt)xT−1

+
(T−1

∏
k=0

skx0 +
1

2ω
(
∏

T−1
k=0 (1−Bk)

))E−1(PT−1P
⊤
T−1)E(PT−1).

(17)

The equivalent solutions for problems (13) and (14) can be obtained by set-
ting:

ω =


ν

2
√

ασ2
0

for problem (13),

ν2

α [2µ0−bx0]
for problem (14).

The efficient frontier for all problems (13) - (15) is:

Var(xT ) =
α

ν2 [E(xT )−
bx0

2
]2, for E(xT ) ≥

bx0

2
.

Note that u∗
t is proportional to E−1(PtP

⊤
t )E(Pt) for t = 1,2, . . . ,T −1. This

suggests that every investor will allocate his wealth among the risky assets
while maintaining the same relative proportions. On the other hand, the pro-
portion of investment in risky assets to investment in the risk-free asset is
determined at each time period by considering the realized value of the in-
vestor’s wealth and taking into account the investor’s risk preferences. The
steps for deriving the efficient frontier in this case are the same as before.

3.1.1.2 Time Consistency in Multi-Period Mean-Variance Optimization Prob-
lem

In multi-stage portfolio optimization, time consistency of risk measures is
vital. As Boda, Filar, et al. (2006) describe time consistency, if a decision-
maker minimizes a certain risk measure in an T -stage problem, the same
policy, from any tth stage onward, should minimize the risk measure for the
remaining (T − t +1)-stage problem, for every t = 1, . . . ,T . This ensures the
decision-making process remains coherent over time, aligning present and
future decisions. Boda, Filar, et al. (2006) propose two requirements to for-
malize this concept, thus enhancing the robustness of multi-stage portfolio
optimization strategies.

In this section’s context, Cui et al. (2012) revised the optimal portfolio policy
after identifying phenomena of time inconsistency in the dynamic MV PO
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problem. They discovered that during a certain period k between 1 and T −1,
if the wealth xk at the beginning of that period exceeds a threshold x∗k (see Cui
et al. (2012, Equation 3.1)), the investor’s behavior deviates from rationality
(ω becomes negative). In this situation, the investor’s approach is falsely aim-
ing to maximize both expected return and variance, with the trade-off being
dependent on the value of xk. Therefore, they showed that when xk > x∗k , then

the investor should withdraw the amount 2(xk − x∗k)
(

1−∏
T−1
j=k (1−BJ)

)
out

of the market (adding a positive cash-flow in contrast to the self-financing
constrain). That is, at the start of the period k, the investor should use x̂k as
wealth to invest, where

x̂k =

xk, if xk ≤ x∗k ,

xk −2(xk − x∗k)
(

1−∏
T−1
j=k (1−B j)

)
, if xk > x∗k .

By choosing x̂k over xk, the investor achieves the same expected return and
variance in both cases (see Cui et al. (2012, Theorem 5.2)). However, since
xk is larger than x̂k, the investor can achieve the same amount of expected
return and variance with less invested wealth. Thus, the investment policy as-
sociated with xk is considered inefficient. Opting for x̂k enables the investor
to withdraw a specific amount, which will ultimately contribute to the total
expected return at time T . Nonetheless, an aspect not addressed by Cui et
al. is the potential for the investor to allocate the withdrawn amount to the
risk-free asset, thereby achieving an even higher expected return without any
additional risk. This approach highlights the benefits of adopting a more effi-
cient investment strategy.

3.1.1.3 Mean-Variance Portfolio Optimization with the Addition of No-Short
Constrain

Incorporating the no short-selling constraint in a multi-period setting proves
to be more challenging than in a single-period context. Several years after
deriving the analytical solution for the multi-period MV PO problem, Cui et
al. (2014) developed a semi-analytical expression for the piece-wise quadratic
value function under the no-short constraint. The problem formulation is as
follows:

min
ut

Var(xT )

s.t. E(xT ) = µ0,

xt+1 = stxt +P⊤
t ut,

ut ≥ 0, t = 0, . . . ,T −1,

(18)

where st is the rate of return of the risk-free asset, µ0 ≥ x0 ∏
T−1
t=0 st and Cov(et)>

0, which implies E(PtP
⊤
t ) > 0 and E(Pt) > 0.

Cui et al. showed that the optimal investment policy of problem (18) is ex-
pressed by (see Theorem 3.1):

u∗
t = stK

∗
t yt1(yt > 0),
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where

K∗
t = arg min

Kt≥0
EMt ,

EMt = E[Ct+1(1−P⊤
t Kt)21(P⊤

t Kt < 1) + (1−P⊤
t Kt)21(P⊤

t Kt ≥
1)],

Ct = min
Kt≥0

EMt , CT = 1,

yt =
µ0−µ∗

ρt
− xt ,

ρt = ∏
T−1
l=t sl ,

µ∗ = µ0−ρ0x0

1−C−1
0

.

The MV efficient frontier is

Var(xT ) =
(E[xT ]−ρ0x0)2

C−1
0 −1

, for E[xT ] ≥ ρ0x0.

Some observations regarding this solution:

1. The solution is considered semi-analytical, as the optimal parameter
vector K∗

t can only be computed using a numerical approach.

2. The optimal parameter vector K∗
t depends on the distribution of Pt,

which necessitates information about the distribution rather than just
the first two moments.

3. In cases where yt ≤ 0, implying that the wealth xt exceeds the threshold
µ0−µ∗

ρt
, the optimal investment policy ut is zero. This means that all the

wealth is allocated to the risk-free asset. Since it offers constant returns,
the wealth remains invested in it until time T and will never fall below
that threshold again.

3.1.2 Time Consistent Approach of Mean-Variance Portfolio Optimization

Recognizing the imperative nature of time consistency for multi-period risk
measures, Chen, Li, and Guo (2013) formulated a dynamic MV PO problem
that obeys this requirement. They accomplish that by taking as a risk mea-
sure the sum of the single-period conditional risks. In their PO problem, their
objective is to minimize the sum of the single-period conditional variances,
offset by the product of the conditional expected returns and a risk aversion
parameter ω for each respective period. They proved that the optimal invest-
ment policy of the problem with that objective satisfies both the time con-
sistency requirements as defined in Boda, Filar, et al. (2006). The analytical
solutions to this problem are expressed in Chen, Li, and Guo (2013, Theo-
rems 4 and 5). Specifically, Theorem 4 provides the solution for a portfolio
comprised solely of risky assets, while Theorem 5 extends the analysis to in-
clude a risk-free asset in the portfolio.
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Transforming this problem to the equivalent one where we minimize the sum
of conditional variances given that the expected return in each period is higher
than a pre-selected minimum desired expected return, the optimization prob-
lem can be formulated as:

min
ut

T

∑
i=1

Var(xi)

s.t. E(xt+1) ≥ xt µ0,

xt+1 = r⊤t ut,

xt = 1⊤ut,

t = 0, . . . ,T −1,

(19)

where we are using ut = (u0
t ,u1

t , . . . ,uN
t ) for this model only (risk-free as-

set allocation is included in the variable ut). Var(xi) and E(xi) can now be
expressed in terms of the wealth allocation ui at period i:

Var(xi) = u⊤
i Σiui and E(xi) = µ⊤

i ui,

where µi is the expected return and Σi the covariance at period i. Moreover,
we can add the no-short constrains and the problem becomes:

min
ut

T−1

∑
i=0

u⊤
i Σiui

s.t. µ⊤
t ut ≥ xt µ0,

xt+1 = r⊤t ut,

xt = 1⊤ut,

ut ≥ 0,

t = 0, . . . ,T −1,

(20)

This is a tractable convex optimization problem which can be efficiently solved
with dedicated computational tools. To this end, the CVXPY library (see Di-
amond and Boyd (2016) and Agrawal et al. (2018)) is employed, which is a
domain-specific library for convex optimization embedded in Python.

3.1.2.1 Mean-Variance Portfolio Optimization including Transaction Costs

In the portfolio allocation process, the primary goal is to achieve an optimal
balance between return and risk. In the previous sections, we discussed this
balance without considering transaction costs. This oversight can result in
suboptimal target portfolio holdings that may incur significant trading costs,
potentially impacting realized risk-adjusted returns negatively. By incorporat-
ing transaction costs directly into the portfolio allocation process, the result-
ing portfolios become more cost-effective and demonstrate improved realized
risk-adjusted returns. Accounting for transaction costs complicates the portfo-
lio optimization problem, as it necessitates tracking the amount traded in each
period to accurately determine the associated costs. Dantzig and Infanger
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(1993) introduced one of the most widely-recognized multi-period portfo-
lio optimization problems with transaction costs. Their formulation employs
three types of decision variables: xt

j, yt
j, and zt

j, which represent the amounts
of asset j held, bought, and sold by investors at period t, respectively. The
new variables yt

j and zt
j are used to estimate the transaction costs for buying

and selling an asset. A more contemporary and comprehensive approach has
been proposed by Boyd et al. (2017). They are only using one extra variable
yt

j representing the amount transacted of asset j at period t. A positive value
of yt

j indicates that asset j was bought by that amount, while a negative value
indicates that asset j was sold by that absolute of that amount. Following a
similar way and adopting the notation from problem (14), in this section we
include transaction costs in the multi-period MV PO problem without intro-
ducing any new variable.

Consider the vector yt ∈ Rn, which signifies the dollar values of trades at
current prices. In a simplified adaptation of the transaction costs model pro-
posed by (Connor (2000)), the transaction cost of a risky asset i at period t is
estimated as TCi

t = γ|yi
t |, interpreting the transaction cost as a proportion of

the transaction amount, where γ is the transaction costs parameter. Given the
assumption of separable transaction costs, the total transaction cost at period
t is TCt = ∑

N
i=1 TCi

t .
Next, we examine the investment procedure at an intermediate period k ∈
{0, . . . ,T − 1}. Here, the investor holds a portfolio u+

k−1, with a total value
of xk = 1⊤u+

k−1 + h+k−1. The terms u+
k−1 and h+k−1 represent the post-trade

wealth allocated to risky assets and risk-free asset respectively.
The investor proceeds to reallocate wealth to uk, subject to the constraints
uk ≥ 0 and hk ≥ 0. The latter constrain results in a condition that xk−1⊤uk−
TCk ≥ 0, where TCi

k = γ|ui
k −ui+

k−1|. Therefore, TCk = ∑
N
i=1 TCi

k = γ∥uk−
u+

k−1∥1 accounts for the transaction costs of the trade from period k−1 to k.
The term ∥uk −u+

k−1∥1 denotes the total amount traded. Consequently, the
wealth allocated to the risk-free asset is now hk = xk −1⊤uk−TCk.
Having completed the investment for period k, the investor proceeds to period
k+1. At this stage, the post-trade portfolio u+

k is evaluated after realizing re-
turns rk, yielding u+

k = uk ◦rk and h+k = hk · sk, where ◦ denotes Hadamard
(elementwise) multiplication of vectors. A visual representation of this pro-
cess can be seen in Figure 6.
These post-trade allocations serve as inputs for period k+1, and this process
is iteratively carried out up until period T −1. The final wealth at period T is
consequently denoted as xT .
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Figure 6: Schematic diagram of the multi-period portfolio optimization process with
transaction costs at some intermediate period k.

Therefore, the new formulation of problem (20) using the notation from prob-
lem (14) is:

min
ut

T−1

∑
i=0

u⊤
i Σui

s.t. u⊤
t µ+R(xt −u⊤

t 1−TCt) ≥ xt µ0,

xt+1 = u⊤
t µ+R(xt −u⊤

t 1−TCt),

xt ≥ 1⊤ut+TCt ,

ut ≥ 0,

t = 0, . . . ,T −1,

(21)

where TCt = γ∥ut−ut−1 ◦rt−1∥ the estimated transaction costs at period t
and u−1 is just zeros as in the beginning (t = −1) we have not invested on
anything.

Illustrative Example

Consider the case study in Li and Ng (2000, Section 7), assuming a stationary
multi-period process with T = 4. An investor, starting with ten units of wealth
at the beginning of the planning horizon (x0 = 10), is trying to find the optimal
allocation of his wealth among three risky assets, A, B, and C, in order to
minimize the sum of variances over all periods, subject to expected return in
each period not exceeding 1.1335, that is, µ0 = 1.1335.
The expected returns for the risky securities A, B, and C are E(rAt ) = 1.162,
E(rBt ) = 1.246, and E(rCt ) = 1.228 for t = 0,1,2,3. The covariance of rt =

[rAt ,rBt ,rCt ] is given by
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Cov(rt) =

0.0146 0.0187 0.0145

0.0187 0.0854 0.0104

0.0145 0.0104 0.0289

 ,

for t = 0,1,2,3. In addition to the three risky assets A, B, and C, there exists
a risk-free asset with a guaranteed return rate of 1.04, that is, E(r0t ) = 1.04.
Transaction costs parameter is set to γ = 1% and using the notation ut for all
assets and u(1:N)

t for risky assets, here are the results from (21):

Results

Period 0:
Initial wealth: x(0) = 10.0
Risky assets allocation: u(1:N)(0) = [0.517,1.081,3.738] (Total: 5.335)
Transaction Costs: TC(0) = 0.053
Risk-free asset allocation: u0(0) = 4.611
Wealth allocation for period 0: u(0) = [4.611,0.517,1.081,3.738] (Total: 9.947)
Post-trade wealth allocation for period 0: u+(0) = [4.796,0.601,1.346,4.59]
(Total wealth: 11.333)

Period 1:
Initial wealth: x(1) = 11.333
Risky assets allocation: u(1:N)(1) = [0.601,1.144,4.059] (Total: 5.804)
Transaction Costs: TC(1) = 0.007
Risk-free asset allocation: u0(1) = 5.521
Wealth allocation for period 1: u(1) = [5.521,0.601,1.144,4.059] (Total: 11.326)
Post-trade wealth allocation for period 1: u+(1) = [5.742,0.698,1.426,4.985]
(Total: 12.851)

Period 2:
Initial wealth: x(2) = 12.851
Risky assets allocation: u(1:N)(2) = [0.698,1.291,4.584] (Total: 6.574)
Transaction Costs: TC(2) = 0.005
Risk-free asset allocation: u0(2) = 6.272
Wealth allocation for period 2: u(2) = [6.272,0.698,1.291,4.584] (Total: 12.845)
Post-trade wealth allocation for period 2: u+(2) = [6.523,0.811,1.609,5.63]
(Total: 14.572)

Period 3:
Initial wealth: x(3) = 14.572
Risky assets allocation: u(1:N)(3) = [0.811,1.451,5.198] (Total: 7.461)
Transaction Costs: TC(3) = 0.006
Risk-free asset allocation: u0(3) = 7.105
Wealth allocation for period 3: u(3) = [7.105,0.811,1.451,5.198] (Total: 14.566)
Post-trade wealth allocation for period 3: u+(3) = [7.389,0.943,1.809,6.383]



3.2 M E A N - C VA R P O RT F O L I O O P T I M I Z AT I O N 29

(Total: 16.524)

The expected final wealth is E(xT ) = 16.524, and the variance of the final
wealth is Var(xT ) = 3.755.
In addition to the scenario with transaction costs, the problem was also solved
without considering transaction costs (20). The figure below illustrates the
desired expected return per period against the sum of variance for both cases
(see Figure 7):

Figure 7: Plot of the desired expected return per period against the sum of variance
for both cases: with and without transaction costs.

3.2 M E A N - C VA R P O RT F O L I O O P T I M I Z AT I O N

In the field of portfolio optimization, the multi-period setting introduces an
additional layer of complexity to the problem. Similar to the single-period
setting examined in Chapter 2, the choice of an appropriate risk measure to
optimize remains a key decision. Variance maintains its limitations, not only
in single-period but also in multi-period scenarios as it was also mentioned
in the conclusions of Cui et al. (2022). To overcome this issue, we turn our
attention to downside risk measures that only focus on negative deviations.
VaR and CVaR are two such quantile-based risk measures. While VaR de-
fines the maximum loss at a certain confidence level, CVaR estimates the
average value of losses exceeding the VaR at the same confidence level. How-
ever, VaR’s shortcomings as a risk measure, such as its lack of coherence
and inability to capture extreme losses beyond the specified probability level,
make it less suitable for multi-period optimization. Given this, this section
will concentrate on the Mean-CVaR PO problem in a multi-period context,
emphasizing its benefits in managing downside risk over multiple periods.

Building upon the problem formulation in (21), where we included a risk-
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free asset, no-short constraints, and transaction costs, we will now explore
the Mean-CVaR optimization problem. This problem aims to minimize the
sum of CVaR values under the condition that the expected return in each pe-
riod exceeds a predefined minimum expected return. As detailed in section
2.2, the computation of single-period CVaRβ (Lt) at period t for Lt =−u⊤

t rt
can be achieved through the following equation:

CVaRβ (Lt) = min
αt∈R

Fβ (ut,αt), (22)

where Fβ (ut,αt) = αt +
1

1−β

∫
rt∈RN −u⊤

t rt · p(rt)drt. However, we can ap-
proximate Fβ (ut,αt) as follows:

F̃β (ut,αt) = αt +
1

q(1−β )

q

∑
k=1

[−u⊤
t rt,k −αt ]

+,

where rt,k denotes the kth sample out of the q samples taken by the distribu-
tion p(·) at period t and [·]+ = max{·,0}.

Given the formulations of the single-period Mean-CVaR problem in (11) and
the multi-period problem in (21), we can define the multi-period Mean-CVaR
PO problem as follows:

min
ut,yt,α

T−1

∑
i=0

αi +
1

q(1−β )

q

∑
k=1

yi,k

s.t. u⊤
t µ+R(xt −u⊤

t 1−TCt) ≥ xt µ0,

u⊤
t rt,k +αt + yt,k ≥ 0 for k = 1, . . . ,q,

yt,k ≥ 0 for k = 1, . . . ,q,

xt+1 = u⊤
t µ+R(xt −u⊤

t 1−TCt),

xt ≥ 1⊤ut+TCt ,

ut ≥ 0,

t = 0, . . . ,T −1,

αt ∈ R.

(23)

where TCt = γ∥ut−ut−1 ◦rt−1∥ the estimated transaction costs at period t.

Illustrative Example

Considering the same inputs as in section 3.1.2.1, the Multivariate Normal
distribution is used to generate 1000 scenarios with vector mean = [0.162,
0.246, 0.228] and the covariance from that example. Taking T = 4, an investor
starting with ten units of wealth at the beginning of the planning horizon
(x0 = 10), is trying to find the optimal allocation of his wealth among three
risky assets and one risk-free with a guaranteed return rate of 1.04, in order
to minimize the sum of CVaR values over all periods, subject to the expected
return in each period not exceeding 1.1335, that is, µ0 = 1.1335. Transaction
costs parameter is set to γ = 1% and for using the notation ut for all assets
and u(1:N)

t for risky assets, here are the results from (23):
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Results

Period 0:
Initial wealth: x(0) = 10.0
Risky assets allocation: u(1:N)(0) = [2.471,0.472,3.178] (Total: 6.121)
Transaction Costs: TC(0) = 0.061
Risk-free asset allocation: u0(0) = 3.817
Wealth allocation for period 0: u(0) = [3.817,2.471,0.472,3.178] (Total: 9.939)
Post-trade wealth allocation for period 0: u+(0) = [3.97,2.871,0.588,3.903]
(Total: 11.333)

Period 1:
Initial wealth: x(1) = 11.333
Risky assets allocation: u(1:N)(1) = [2.871,0.457,3.341] (Total: 6.669)
Transaction Costs: TC(1) = 0.007
Risk-free asset allocation: u0(1) = 4.657
Wealth allocation for period 1: u(1) = [4.657,2.871,0.457,3.341] (Total: 11.326)
Post-trade wealth allocation for period 1: u+(1) = [4.843,3.336,0.569,4.103]
(Total: 12.851)

Period 2:
Initial wealth: x(2) = 12.851
Risky assets allocation: u(1:N)(2) = [3.336,0.473,3.767] (Total: 7.577)
Transaction Costs: TC(2) = 0.004
Risk-free asset allocation: u0(2) = 5.27
Wealth allocation for period 2: u(2) = [5.27,3.336,0.473,3.767] (Total: 12.847)
Post-trade wealth allocation for period 2: u+(2) = [5.481,3.877,0.589,4.626]
(Total: 14.573)

Period 3:
Initial wealth: x(3) = 14.573
Risky assets allocation: u(1:N)(3) = [3.877,0.51,4.238] (Total: 8.625)
Transaction Costs: TC(3) = 0.005
Risk-free asset allocation: u0(3) = 5.944
Wealth allocation for period 3: u(3) = [5.944,3.877,0.51,4.238] (Total: 14.569)
Post-trade wealth allocation for period 3: u+(3) = [6.181,4.505,0.636,5.204]
(Total: 16.526)

The expected final wealth is E(xT ) = 16.526, and the CVaR of the final
wealth is CVaR(xT ) = 2.285.
The figure below illustrates the desired expected return per period against the
sum of CVaR values for this example (see Figure 8):
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Figure 8: Plot of the desired expected return per period against the sum of CVaR
values for this example.



4
RO B U S T A P P ROAC H E S I N P O RT F O L I O
O P T I M I Z AT I O N

In this chapter, we explore robust approaches in portfolio optimization to ad-
dress the limitations of traditional Mean-Risk models. Portfolios generated by
Mean-Risk PO problems often exhibit extreme or impractical weights, mak-
ing them difficult to implement in active trading. Robust optimization offers a
more stable alternative by incorporating uncertainty in input parameters such
as mean vectors and covariance matrices. This approach allows for more re-
silient allocations, reducing sensitivity to changes in model parameters and
estimation errors. Uncertainty can be capture by constructing parameter un-
certainty sets like box or ellipsoidal sets. Throughout this chapter, we focus
on worst-case optimization derived from distribution uncertainty sets for the
MV and Mean-CVaR PO problems, offering insights into its practical impli-
cations for portfolio decision-making.

4.1 RO B U S T A P P RO AC H I N S I N G L E - P E R I O D

In this section, we will address input parameter and distribution uncertainty
for the returns. Consider the sets of parameters: θ and θ0, where θ represents
the true parameters, and θ0 represents the estimated (nominal) parameters.
For instance, in the MV model, θ represents the mean µ and the covariance Σ,
while in the Mean-CVaR model, it refers to the distribution of portfolio return.
θ is unknown, however, it is believed to belong to a specific uncertainty set U
which is generated from the estimated parameter θ0. In other words, θ ∈Uθ0 ,
where the creation of Uθ0 will be specified later in this section. The goal of
this approach is to construct a portfolio that minimizes the risk with respect
to the worst-case scenario of the uncertain parameters in Uθ0 . In this section,
we examine a distinct type of uncertainty that is linked to the distribution of
the portfolio return instead of its moments. To be more precise, we assume
that the density function of the portfolio return is only recognized to be part
of a particular set P of distributions, that is p(·) ∈ P . To account for this
uncertainty, Zhu and Fukushima (2009) introduced the concept of worst-case
CVaR (WCVaR) for a given w ∈ W with reference to P . The WCVaR is
defined as

WCVaRβ (L) = max
p(·)∈P

CVaRβ (L).

Zhu and Fukushima (2009) address uncertainty related to the distribution of
portfolio returns by assuming it belongs to a set of distributions, where each
distribution in the set is a mixture of predetermined distribution scenarios.

33
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The set can be expressed as the following mixture distribution uncertainty
set:

p(·) ∈ P =
{ L

∑
l=1

λl pl(·) :
L

∑
l=1

λl = 1, λl ≥ 0, l = 1, . . . ,L
}

,

where pl(·) represents the density function of the lth distribution scenario,
and L denotes the total number of possible scenarios.

Using Theorem 1 from Zhu and Fukushima (2009) and the definition of CVaR
from (8), WCVaR becomes:

WCVaRβ (L) = min
α∈R

max
p(·)∈P

Fβ (w,α).

They also proved in Proposition 1 that WCVaR preserves coherence. Making
the following reformulation, WCVaR can become:

max
p(·)∈P

Fβ (w,α) = max
λ∈Λ

{
α +

1
1−β

∫
r∈RN

−w⊤r · pλ(r)dr
}

= α +
1

1−β

∫
r∈RN

−w⊤r ·max
λ∈Λ

L

∑
l=1

λl pl(r)dr

= α +
1

1−β

∫
r∈RN

−w⊤r ·max
l∈L

pl(r)dr

= max
i∈L

F i
β
(w,α),

where Λ =
{
λ = (λ1, . . . ,λL) : ∑

L
l=1 λl = 1, λl ≥ 0, l = 1, . . . ,L

}
, L =

{1, . . . ,L} and F i
β
(w,α) = α +

1
1−β

∫
r∈RN

−w⊤r · pi(r)dr. Therefore, fol-

lowing the same logic as in equations (10) and (11), the optimization problem
is:

min
w,u,α

α +
1

qi(1−β )

qi

∑
k=1

uki

s.t. w⊤rki +α + uki ≥ 0 for k = 1, . . . ,qi and i = 1, . . .L,

uki ≥ 0 for ki = 1, . . . ,qi and i = 1, . . .L,

w⊤µ= µ0,

w⊤1= 1,

w ≥ 0,

α ∈ R,

(24)

where rki is the kth
i sample return from distribution pi(·) and qi is the number

of samples from pi(·).

Distributions pi(·) for i = 1, . . . ,L should be determined as an input to the
optimization problem. One way to find which distributions to include in the
uncertainty set is to first attempt fitting a set of different distributions to the
input data. Then, by conducting statistical tests, one can determine whether a
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distribution is representative of the data. The distributions that are a good fit
to the data and pass the test are included in the uncertainty set. The procedure
is described in the following steps:

Steps for deriving the Uncertainty Set.

Step 1: Fit distribution to data using maximum likelihood estimation.

Step 2: Generate a sample from the fitted distribution of the same size as
data.

Step 3: Perform Hotelling’s T-squared test as in Pituch and Stevens
(2015) between data and sample and find the p-value.

Step 4: Accept distribution in uncertainty set if p-value is greater than
the usual significance level of 0.05.

The final step in the process involves the careful selection of candidate dis-
tributions to be included within the uncertainty set. However, there are not
many distributions that can capture well the behavior of the returns. Distribu-
tions from the elliptical family are mostly used since they are easy to calibrate
and generate data from, with Gaussian distribution being the most commonly
used multivariate case. Nonetheless, Gaussian distribution has some disad-
vantages, such as its symmetry, which implies equal probabilities of losses
and gains, and its use of linear correlation as a measure of dependence, which
may not adequately capture non-linear dependencies observed in financial
markets during times of crisis. To overcome these issues, we are using the
approach implemented by Kakouris and Rustem (2014), where they use cop-
ulas to model the distribution of the data. The advantages of copulas include
their flexibility in modeling the dependency between marginal distributions of
random variables, allowing for the selection of the multivariate dependency
separately from the univariate distributions. Copulas are also invariant un-
der monotonic transformations and associated with many measures of depen-
dence that measure the monotonic dependencies between two random vari-
ables, which are themselves invariant under monotonic transformations. This
makes copulas a powerful tool for modeling complex dependence structures.

To obtain the efficient frontier in this case, we have to first define the uncer-
tainty set containing mixture of copulas and then follow the necessary steps as
shown earlier, to construct the efficient frontier. Thus, we proceed as follows:
Following these steps, the following graph for the efficient frontier of the ro-
bust Mean-CVaR PO problem is derived (see Figure 9).

Upon analyzing Figure 9, it is evident that the robust Mean-CVaR efficient
frontier retains a parabolic shape, where the expected returns increase con-
cavely with WCVaR. This indicates that the balance between risk and reward
is similar to other efficient frontiers discussed earlier. Moreover, the robust
Mean-CVaR efficient frontier comprises a wider range of CVaR as it is de-

1 The empirical quantiles where found using statistical methods in Hyndman and Fan (1996).
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Step-by-Step Process for Robust Mean-CVaR Efficient Frontier (Copulas).

Step 1: Define initial set of copulas C0 =
{

Clayton, Gumbel, Frank,
Gaussian, t-Student

}
.

Step 2: Perform the aforementioned four steps to get the fitted copulas
that are representative to the input data and get the final uncer-
tainty set C .

Step 3: Generate qi = S samples from each copula, that is for i =
1, . . . ,L.

Step 4: Use the empirical distributions from the input data for each asset
and apply its quantile function in the sample data1.

Step 5: Solve (24) for µ0 ∈ [ min
i=1,...,N

µi, max
i=1,...,N

µi] given the returns rki

from the sample data.

Step 6: Global minimum CVaR portfolio: Find wmin such that
min
w

CVaRβ (L).

Step 7: Minimum expected return of the efficient frontier: µmin =

w⊤
minµ.

Step 8: Maximum expected return of the efficient frontier: µmax =

max
i=1,...,N

µi.

Step 9: Efficient frontier: Get the CVaR values for µ0 ∈ [µmin, µmax].

Figure 9: The efficient frontier Robust Mean-CVaR on a expected return - WCVaR
plot (note that WCVaR is taken from the worst-case scenario), including
the individual assets as points. Clayton, Gaussian and t-Student copulas
are used in this example with confidence level of β = 0.95.

termined by sampling from fitted distributions and selecting the worst-case
CVaR. However, it should be noted that the robust Mean-CVaR efficient fron-
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tier and the Mean-CVaR efficient frontier discussed earlier cannot be com-
pared directly since the former uses WCVaR and the latter uses CVaR.

4.1.1 Robust Mean-CVaR Portfolio Optimization with the Addition of a
Risk-free Asset

By incorporating the risk-free asset, the problem formulation and solution
procedure remains the same, with the addition of a new component wR to
the weight vector w and a new constant component R to the mean vector µ.
Thus, the first four steps in the solution procedure remain unchanged, while
the remaining steps are as follows:

Step-by-Step Process for Robust Mean-CVaR Efficient Frontier (Copulas).

Step 5: The global minimum CVaR portfolio is achieved for wR = 1
where CVaR is zero.

Step 6: The minimum expected return of the efficient frontier is R, since
wmin is for wR = 1.

Step 7: The maximum expected return of the efficient frontier is
max

i=1,...,N
µi.

Step 9: The efficient frontier is obtained by calculating the CVaR values
for µ0 in the interval [R, µmax].

Figure 10: The efficient frontier Robust Mean-CVaR on a expected return - WCVaR
plot with and without the Risk-free asset, including the individual assets
as points.

Looking at Figure 10, once again, the robust Mean-CVaR efficient frontier
partially takes the form of a straight line, indicating the presence of a tan-
gency portfolio. Below the expected return of the tangency portfolio, the ef-
ficient frontier is a linear combination of the risk-free asset and the tangency
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portfolio, and above this return, the efficient frontier remains unchanged from
the one without the risk-free asset.

4.1.2 Robust Mean-CVaR Portfolio Optimization with the Addition of Trans-
action Costs

If an investor chooses to apply this model to actual market data, they must
account for transaction costs, which are usually related to the trading vol-
ume. When the investor adjusts their current portfolio to the new portfolio
suggested by the Mean-CVaR PO solution, they will face transaction costs
denoted as TC. To incorporate these costs, we use the following problem for-
mulation:

min
w,u,α

α +
1

qi(1−β )

qi

∑
k=1

uki

s.t. w⊤rki +α + uki ≥ 0 for k = 1, . . . ,qi and i = 1, . . .L,

uki ≥ 0 for ki = 1, . . . ,qi and i = 1, . . .L,

w⊤µ+wRR ≥ µ0,

w⊤1+wR = 1−TC,

wR ≥ 0,

w ≥ 0,

α ∈ R,

(25)

where, w is the weights allocation and uki is the kth sample generated from the
ith copula from the copulas set. Here again µ0 is the desired expected return of
the portfolio. The estimated transaction costs are TC = 0.01∥w−wprev◦rt∥,
where wprev is the weights allocation of the previous portfolio.

4.2 RO B U S T A P P RO AC H I N M U LT I - P E R I O D

The previous sections in multi-period have primarily focused on portfolio op-
timization techniques that rely on the known return rates of invested assets.
However, the characterization of uncertainty poses a significant challenge in
practice. In reality, the underlying distribution of random variables, such as
the rate of return of investment assets, remains unknown. Addressing this
inherent uncertainty requires the utilization of efficient tools such as distribu-
tionally robust optimization.
Distributionally robust optimization provides a valuable approach for man-
aging uncertainty in portfolio optimization. In particular, it assumes that the
uncertain distribution resides within an ambiguity set, which is constructed
based on incomplete distribution information of the random variables. One
approach, described by Delage and Ye (2010) in their paper on distribution-
ally robust optimization, involves utilizing generalized moment information.
In their work, the authors introduce two parameters that serve as effective
tools for controlling the size of the moment-based ambiguity set. Another
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method involves constructing the ambiguity set based on a metric, such as
the Kullback-Leibler divergence, as demonstrated by Hu and Hong (2013) in
their study. In the context of this research, the construction of the ambiguity
set is achieved through the utilization of the Wasserstein metric.
The Wasserstein metric offers several advantages in the construction of am-
biguity sets. Firstly, it facilitates the formation of natural confidence sets
for unknown distributions through the use of Wasserstein balls. Moreover,
the Wasserstein distance enables the measurement of distribution differences,
even when their support sets are entirely dissimilar (see Kuhn et al. (2019)),
making it a more flexible alternative to the most commonly used KL diver-
gence. By adjusting the radius of the ambiguity set, one can modulate the
level of conservativeness in the optimization problem. When the radius is set
to zero, the model reduces to an ambiguity-free stochastic program. Conse-
quently, the Wasserstein-based model exhibits improved out-of-sample per-
formance in numerical experiments.
Motivated by the aforementioned advantages, we make the deliberate choice
to incorporate an ambiguity set constructed using the Wasserstein metric as
in Wu and Sun (2023). We also extend it by integrating transaction costs in
the PO problem.

4.2.1 Portfolio Optimization Problem Formulation in Robust Approach

Consider a portfolio consisting of N risky assets and one risk-free with a
constant rate of return st = R. The investor joins the market at time 0 with an
initial wealth x0 which he can allocate among the assets, and exits the market
at time period T . The wealth can be reallocated among the N +1 assets at the
beginning of each of the following T −1 consecutive time periods. Let rt =
(r1

t , . . . ,rN
t ) be the N-vector of uncertain future rates of returns at time period

t. It is assumed that vectors rt, t = 0, . . . ,T −1, are statistically independent.
Let Pt be the underlying distribution of the random return vector rt, then the
expected return and variance are EPt (rt) and VarPt (rt) respectively.
Given the worst-case scenario robust approach, an investor seeks the optimal
investment strategy, ut = (u1

t , . . . ,uN
t ), t = 0, . . . ,T −1, to minimize the worst-

case sum of variances in each time period, subject to the constraint that the
worst-case sum of the expected values in each time period does not exceed a
pre-selected expected return level. This can be represented by the following
optimization problem:
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min
ut

T−1

∑
i=0

max
Pt∈Qθt (Pt,Nt )

VarPi(xi)

s.t. max
Pt∈Qθt (Pt,Nt )

EPt (xt) ≥ xt µ0,

xt+1 = u⊤
t EPt (rt)+ st(xt −1⊤ut−TCt),

xt ≥ 1⊤ut+TCt ,

ut ≥ 0,

t = 0, . . . ,T −1,

(26)

where TCt = γ∥ut−ut−1 ◦rt−1∥ the estimated transaction costs at period t
and Qθt (Pt,Nt ) the ambiguity set.

4.2.2 Wasserstein Metric and Ambiguity Set

The construction of the ambiguity set involves the utilization of the Wasser-
stein metric in combination with the empirical distribution, denoted as Pt,Nt ,
derived from the sample of size Nt for rt. This empirical distribution is math-
ematically represented as:

Pt,Nt =
1
Nt

Nt

∑
i=1

δrt,i.

Here, the term δrt,i represents the Dirac point measure positioned at rt, i.
From the definition given in Wu and Sun (2023), the Wasserstein metric plays
a crucial role in quantifying the dissimilarity between probability distribu-
tions. In their work, the authors provide the following insights regarding the
Wasserstein metric: The Wasserstein metric is defined on the space M (Ω),
which encompasses all probability distributions Q supported on Ω, satisfying
the condition EQ(∥r∥) =

∫
Ω∥r∥Q(dr) < ∞.

According to Definition 2 presented by Wu and Sun (2023), the Wasserstein
metric, denoted as DW : M (Ω)×M (Ω)→ R+, is formulated as follows:

DW (Q1,Q2) := inf
Π∈Γ(Q1,Q2)

∫
Ω2

∥r− r′∥Π(dk,dk′),

where Γ(Q1,Q2) represents the set of joint distributions Π with marginal
distributions Q1 and Q2. Notably, when p = 2, the Wasserstein metric corre-
sponds to a distance of order two.

It is important to note that while DW does not guarantee a real distance, it
can be interpreted as the minimum transportation cost required to move mass
from distribution Q1 to distribution Q2. Based on this concept, the ambiguity
set at time t, denoted as Qθt (Pt,Nt), can be defined as:

Qθt (Pt,Nt ) = {Pt : DW (Pt ,Pt,Nt ) ≤ θt},
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where Qθt(Pt,Nt ) represents the Wasserstein ball of radius θt centered at the
empirical distribution Pt,Nt . Notably, in mild situations, Qθt (Pt,Nt ) comprises
the true distribution Pt with high probability (see Mohajerin Esfahani and
Kuhn (2018)). This property highlights the effectiveness and reliability of
utilizing the Wasserstein metric in constructing the ambiguity set for robust
portfolio optimization.

4.2.3 Portfolio Optimization Problem Using Wasserstein Ambiguity Set

In this section, we propose a reformulation of the portfolio optimization prob-
lem (26) using the Wasserstein ambiguity set, as introduced by Wu and Sun
(2023) in Lemma 1 and Theorem 1. Before presenting the reformulation, we
need to address the estimation of transaction costs, which involves the un-
certainty of returns. To simplify the problem, we assume a small error in
transaction cost estimation due to returns uncertainty and use the empirical
distribution to estimate expected return and thus the transaction costs. Thus,
the transaction cost TCt can be expressed as follows:

TCt = γ∥ut−ut−1 ◦EPt,Nt
(rt−1)∥.

By using Lemma 1 from Wu and Sun (2023), we can equivalently rewrite the
second constraint in problem (26) as follows:

u⊤
t EPt,Nt

(rt)+ st(xt −1⊤ut−TCt)−
√

θt∥ut∥ ≥ xt µ0.

Furthermore, Theorem 1 from the same paper allows us to reformulate the
objective function in problem (26) as:

T−1

∑
i=0

√
u⊤
i VarPi,Ni

(xi)ui+
√

θt∥ut∥.

Consequently, the primal problem (26) can be reformulated into the following
dual problem:

min
ut

T−1

∑
i=0

√
u⊤
i VarPi,Ni

(xi)ui+
√

θt∥ut∥

s.t. u⊤
t EPt,Nt

(rt)+ st(xt −1⊤ut−TCt)−
√

θt∥ut∥ ≥ xt µ0,

xt+1 = u⊤
t EPt,Nt

(rt)+ st(xt −1⊤ut−TCt)−
√

θt∥ut∥,

xt ≥ 1⊤ut+TCt ,

ut ≥ 0,

t = 0, . . . ,T −1.

(27)

The reformulated problem (27) preserves the optimal solutions and optimal
value of the original problem (26). It takes advantage of the Wasserstein ambi-
guity set to ensure robustness in portfolio optimization by considering the un-
certainty in the distribution of returns. Parameters θt are estimated using the
bootstrap method proposed in Kang et al. (2019). To solve this optimization
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problem, the CVXPY library was utilized once again (refer to Diamond and
Boyd (2016) and Agrawal et al. (2018)), which is a specialized Python library
for convex optimization, to formulate and solve the portfolio optimization
problem with the Wasserstein-based robust approach. This library provided
the necessary tools and functions to express the problem in a mathematically
rigorous manner and efficiently find the optimal solution.

In the next chapter, we will present empirical results and performance compar-
isons to demonstrate the effectiveness of the Wasserstein-based robust port-
folio optimization approach in managing uncertainty and achieving superior
risk-adjusted returns.



5
N U M E R I C A L E X P E R I M E N T S

In this chapter, we present a comprehensive analysis of portfolio optimiza-
tion in a multi-period setting through a series of experiments using historical
data. While many existing papers in the field typically analyze a specific set
of stocks, our approach takes a broader perspective. We carefully selected a
diverse wide range of stocks, considering factors such as market capitaliza-
tion, industry diversification, and historical performance, to ensure a repre-
sentative mix of companies across various sectors and market segments. To
introduce variability and randomness into the selection process, we employ
a randomized approach by randomly choosing a subset of the stocks to work
with. Furthermore, to simulate realistic investment scenarios, we randomly se-
lect a starting date for the investor’s initial investment. Having a random set
of stocks and a random starting date, we use historical data from the chosen
starting date and evaluate the performance of different portfolio optimization
models over a specific time horizon.
Throughout the simulation, portfolio rebalancing occurs periodically, ensur-
ing adaptability to changing market conditions. For the single-period models,
the investor maintains the same weights for the duration of the rebalancing
period, while for the multi-period models, the investor dynamically allocates
wealth based on model’s output using total number of periods equal to the
rebalancing period. To capture the variability resulting from different random
selections, we repeat this random process multiple times and track the ex-
pected returns, variance and CVaR for each portfolio model.
As a key performance metric, we evaluate the Sharpe ratio by Sharpe (1994)
for each PO problem. We highlight the model with the highest Sharpe ratio in
each case, as it serves as an important indicator of risk-adjusted returns and
can provide valuable insights into the relative performance of different mod-
els. Additionally, we include the equal weights model and the S&P 500 as
benchmark strategies for comparison. This comprehensive set of experiments
provides valuable insights into the performance of the considered portfolio
optimization methods and their relative strengths compared to benchmark
strategies.

5.1 R A N D O M N U M E R I C A L E X P E R I M E N T P RO C E S S D E S C R I P T I O N

In this section, we will provide a detailed illustration of the methodology em-
ployed in our random numerical experiment. We will outline the step-by-step
process of the experiment, including the selection of stocks, determination
of the investment start date, application of portfolio optimization models, re-
balancing intervals, and tracking of performance metrics. For the numerical
experiments we use the models discussed in Chapters 2, 3 and 4.

43
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In our random numerical experiment, we carefully selected a wide set of
23 stocks representing diverse sectors and market segments. These stocks in-
clude AAPL, AMZN, JPM, XOM, GE, INTC, DIS, IBM, MMM, HD, WMT,
ORCL, MRK, BA, WFC, GS, BMY, GILD, COP, CAT, SBUX, F, PG. Next,
we randomly selected a subset of stocks from this wide set, ranging from 5
to 15 stocks. Thereafter, we choose a random date from 2015 to 2023 to start
our analysis. The historical data of daily returns for the 1000 days before the
starting date are used as an input to our models. Each model has as an initial
wealth of x0 = 10000 , and no additional external cash inflows are considered.
To make the numerical experiments realistic, we apply transaction costs at a
rate of 1% as a proportion of the transaction amount.
To evaluate the performance of the models, they are tested on the next 100
days of realized returns. The investor’s objective is to minimize risk while en-
suring that the expected return at each period exceeds a pre-specified expected
return level. The expected return level is determined based on the means of
the selected stocks from the historical data. Specifically, it is set equal to:

µ0 =
µ + µmax

2
,

where µ is the vector of empirical expected value of the returns from the
historical data, µ is the average of the expected return vector µ and µmax is
the maximum expected return. The logic behind this is to get a higher pre-
specified expected return level than the mean of the expected returns but not
as high as the maximum value.
During the testing period, the investor reevaluates the portfolio allocation ev-
ery 5 days. This means that after 5 days, the investor considers a new set
of historical data comprising the 1000 previous days starting from that date.
His current wealth at the evaluation date serves as the initial value while the
portfolio allocation will also be used as initial allocation in order to calcu-
late the transaction costs. In single-period models, the investor will rebalance
each day the allocation to the weights specified in the beginning applying the
transaction costs. In multi-period models, the investor will dynamically allo-
cate wealth based on five-period multi-period model.
In the next subsections, we provide a detailed description of each model and
its application within this experiment. All models include the risk-free as-
set whose return constant R is given by the yield of 3-months Treasury Bill
(ˆIRX) at the starting date. The risk-free return stays a constant for the rest of
the analysis. Although this is not the case for ˆIRX, in order to better utilize
the idea of a risk-free asset we keep its value constant.

5.1.1 Portfolio Optimization Models

Single-Period Mean-Variance model

The first model used is the MV model for single-period as in problem (6)
where the estimated transaction costs are TC = 0.01∥w−wprev ◦ rt∥, and
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wprev is the weights allocation of the previous portfolio.

Model’s inputs are:

• wprev: the current weights allocation of the portfolio

• Parameters from historical data: Mean µ, Covariance Σ and Minimum
desired expected return µ0.

Single-Period Mean-CVaR model

The second model used is the Mean-CVaR model for single-period as in prob-
lem (12) where the estimated transaction costs are TC = 0.01∥w−wprev ◦
rt∥, and wprev is the weights allocation of the previous portfolio.

Model’s inputs are:

• wprev: the current weights allocation of the portfolio

• Parameters from historical data: Mean µ, Historical data {uk, k =

1. . . . ,q} and Minimum desired expected return µ0.

Robust Single-Period Mean-CVaR model

Third and last model for single-period is the robust approach of Mean-CVaR
as in (25).

Model’s inputs are:

• wprev: the current wealth allocation of the portfolio

• Parameters from historical data: Mean µ, Historical data {uk, k =

1. . . . ,q} and Minimum desired expected return µ0.

Multi-Period Mean-Variance model

For the multi-period, first model we use is the MV with T = 5 and fol-
lowing the time consistent approach as in (21). The estimated transaction
costs are TCt = 0.01∥ut −ut−1 ◦ rt∥, where u−1 is the wealth allocation
of the previous portfolio. The wealth allocation of the risk-free asset is ht =

x0 −u⊤
t 1−TCt .

Model’s inputs are:

• u−1: the current wealth allocation of the portfolio

• x0: the total wealth of the portfolio at that moment (it is also equal to
u⊤
−11).

• Parameters from historical data: Mean µ, Covariance Σ and Minimum
desired expected return µ0.
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Multi-Period Mean-CVaR model

For the multi-period, first model we use is the MV with T = 5 and follow-
ing the time consistent approach as in (23). The estimated transaction costs
are TCt = 0.01∥ut −ut−1 ◦ rt∥, for u−1 the wealth allocation of the pre-
vious portfolio. The wealth allocation of the risk-free asset at period t is
ht = x0 −u⊤

t 1−TCt .

Model’s inputs are:

• u−1: the current wealth allocation of the portfolio

• x0: the total wealth of the portfolio at that moment (it is also equal to
u⊤
−11).

• Parameters from historical data: Mean µ, Historical data {yk, k =

1. . . . ,q} and Minimum desired expected return µ0.

Robust Multi-Period Mean-Variance model

Last multi-period model is the robust approach of the MV using the Wasser-
stein Ambiguity Set discussed in (27). The estimated transaction costs are
TCt = 0.01∥ut−ut−1 ◦EPt,Nt

(rt−1)∥, for u−1 the wealth allocation of the
previous portfolio. The wealth allocation of the risk-free asset at period t is
ht = x0 −u⊤

t 1−TCt .

Model’s inputs are:

• u−1: the current wealth allocation of the portfolio

• x0: the total wealth of the portfolio at that moment (it is also equal to
u⊤
−11).

• Parameters from historical data: Mean µ, Covariance Σ, Historical data
{yk, k = 1. . . . ,q} to estimate θt and Minimum desired expected re-
turn µ0.

5.1.2 Reevaluation Process

After selecting a random starting date, we evaluate the performance of the
portfolio models over the next 100 days. Throughout this period, the portfo-
lios are reevaluated every 5 days based on updated historical data. The process
of reevaluation differs between the single-period and multi-period models, we
show and explain the process in Figure 11.

Single-Period Reevaluation Process

During the reevaluation process in the single-period models, the current port-
folio allocation and historical data from the previous 1000 days serve as in-
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(a) Single-period models. (b) Multi-period models.

Figure 11: Flow chart of the reevaluation process in the single-period models.

puts. The current allocation will provide the initial wealth, while it will be
involved in the estimation of transaction costs. The historical data will con-
tribute to the estimation of expected rewards and risks. Using these inputs,
the single-period model provides the weights that the investor follows for the
next day. Over the remaining four days of the reevaluation period, the investor
rebalances the portfolio allocation to align with the weights provided by the
model. Transaction costs are applied in this case. The 5-days process is pre-
sented in 11a.

Multi-Period Reevaluation Process

For the multi-period models, the inputs are the same, that is, the current port-
folio allocation and historical data from the previous 1000 days. The current
allocation provides the initial wealth and transaction costs, while the histor-
ical data contributes to the estimation of expected rewards and risks. Using
these inputs, the multi-period model provides the weights that the investor



48 N U M E R I C A L E X P E R I M E N T S

will follow for the next 5 days. In this way, for the remaining four days of the
reevaluation period, the investor rebalances the portfolio allocation to align
with the weights provided by the model at that time period. Once again, trans-
action costs are applied in this case. This 5-days process can be seen in 11b.

5.2 N U M E R I C A L E X P E R I M E N T R E S U LT S

In this section, we present the results of the numerical experiments conducted
to evaluate the performance of aforementioned portfolio optimization mod-
els. The experiments aim to assess the expected return, variance, CVaR, and
Sharpe ratio of the portfolios generated by these models. The analysis is based

Portfolio Expected Return [1e-4]

S&P500 EW SP-MV SP-MC R-SP-MC MP-MV MP-MC R-MP-MV

1 0.45 4.67 17.54 14.45 19.94 17.4 15.2 17.5

2 2.31 3.03 -1.71 -1.36 -0.23 -1.37 -0.95 -1.60

3 4.90 6.87 13.5 14.61 13.42 13.26 14.66 11.49

4 2.53 2.84 8.03 6.12 9.19 8.52 7.45 8.61

5 2.70 6.27 8.88 8.26 8.70 9.39 8.58 10.64

6 8.93 -5.69 -3.11 -1.86 -7.17 -2.99 -1.46 -3.27

7 9.73 12.35 3.12 1.55 -0.57 3.00 1.69 4.21

8 4.08 4.74 7.16 6.65 6.38 7.15 6.54 5.68

9 -2.96 -4.07 -4.59 -4.40 -3.82 -4.56 -4.45 -3.90

10 4.03 6.93 10.4 10.67 8.61 10.37 10.17 8.45

11 10.57 10.28 9.15 7.57 10.92 9.30 7.66 11.37

12 7.30 9.18 6.55 7.08 10.33 6.51 7.2 10.04

13 1.26 3.54 3.15 2.86 1.10 2.98 2.89 5.48

14 1.26 -1.92 -1.89 -1.20 2.20 -1.33 -0.76 -1.16

15 6.18 -0.94 -1.97 -1.68 -6.32 -2.04 -1.95 -1.39

16 -3.79 -5.27 0.07 2.34 1.68 -0.40 1.13 -2.52

17 5.76 6.45 -1.75 -2.40 3.45 -1.82 -2.51 1.84

18 -2.74 -1.95 -3.11 -3.46 -6.41 -2.86 -3.18 -3.89

19 0.37 -4.44 2.51 3.86 2.71 2.65 2.90 0.47

20 -9.62 -9.66 -1.04 -1.57 -1.04 -1.05 -1.77 -4.21

Table 1: The portfolio expected returns for each model per experiment.

on custom Python code developed specifically for this research, which can be
found in code link. The code implementation allows for the systematic eval-
uation of various portfolio optimization strategies and provides reliable and
reproducible results. The findings are presented in four tables, each presenting
the respective metrics for the evaluated models. The labels for each model are
defined in Table 6. We want to find the model that performed the best in each
experiment and then count how many best performances each model had. To

https://github.com/vangelisnakos/Portfolio_Optimization
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Portfolio Variance [1e-5]

S&P500 EW SP-MV SP-MC R-SP-MC MP-MV MP-MC R-MP-MV

1 11.42 15.00 18.77 17.82 14.53 19.14 18.44 20.23

2 18.24 20.35 35.49 35.12 39.15 35.47 35.01 38.76

3 2.16 2.88 6.79 7.05 6.87 6.76 7.04 6.31

4 4.52 4.94 9.88 10.19 9.40 9.98 10.48 9.21

5 5.03 5.85 9.10 9.39 10.75 9.24 9.51 9.29

6 4.30 5.12 8.23 8.87 8.55 8.27 8.85 8.25

7 6.88 11.62 8.38 8.99 9.42 8.49 9.24 8.75

8 1.86 1.49 2.67 2.87 3.65 2.67 2.87 2.6

9 6.11 5.97 8.38 8.60 8.23 8.41 8.62 8.44

10 1.85 2.03 1.57 2.02 2.36 1.58 1.95 2.02

11 3.68 4.62 3.76 4.08 5.66 3.82 4.16 4.09

12 2.60 2.56 3.20 3.35 3.22 3.20 3.35 3.22

13 14.99 13.06 18.8 18.50 18.03 18.87 18.45 19.67

14 14.99 13.48 15.04 15.71 15.62 15.13 15.72 15.46

15 4.36 4.56 6.00 7.00 6.63 5.94 7.01 5.75

16 14.10 11.81 13.41 13.46 13.32 13.46 13.45 14.72

17 5.17 6.82 6.87 7.72 6.38 6.96 8.09 7.44

18 16.23 12.89 17.92 17.49 18.02 17.9 17.39 18.63

19 13.46 11.18 14.47 14.22 13.37 14.63 14.65 14.78

20 7.31 5.44 4.03 4.10 4.38 4.06 4.21 4.67

Table 2: The portfolio variance for each model per experiment.

find the best-performing model, we are looking for the highest Sharpe ratio.
We define Sharpe ratio as the following expression:

SP =
µP

σP
,

where µP the empirical expected return and σP the volatility of the portfo-
lio. However, when the empirical expected returns are negative, maximizing
the Sharpe ratio alone may not accurately identify the best model, as higher
volatility would yield higher Sharpe ratio. In such cases, we will look at the
expected return and volatility of the highest Sharpe ratio model, if they are
the highest and lowest respectively from all other models, then this model is
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the one performed better. Otherwise, we will employ an alternative approach,
which is derived by its definition, as proposed by McLeod and Vuuren (2004):

maxP(rP ≥ 0)⇔ maxP
(rp −µp

σP
≥

−µp

σP

)
⇔ maxP

(
Z ≥

−µp

σP

)
where Z ∼ N(0,1)

⇔ min
(−µp

σP

)
⇔ max

(
µp

σP

)
= max(Sharpe ratio).

Portfolio Sharpe ratio [1e-3]

S&P500 EW SP-MV SP-MC R-SP-MC MP-MV MP-MC R-MP-MV

1 4.24 38.16 128.00 108.24 165.40 125.80 111.93 123.04

2 17.13 21.21 -9.07 -7.26 -1.16 -7.26 -5.06 -8.12

3 105.48 128.14 163.91 174.04 161.92 161.21 174.70 144.69

4 37.68 40.37 80.80 60.65 94.80 85.26 72.80 89.71

5 38.07 81.92 93.14 85.23 83.89 97.73 88.00 110.35

6 136.12 -79.55 -34.30 -19.74 -77.59 -32.85 -15.48 -35.98

7 117.23 114.57 34.10 16.31 -5.91 32.54 17.56 44.99

8 94.55 122.93 138.60 124.12 105.49 138.31 122.20 111.50

9 -37.89 -52.73 -50.19 -47.47 -42.15 -49.74 -47.96 -42.45

10 93.67 153.72 262.73 237.62 177.21 261.06 230 188.12

11 174.25 151.19 149.19 118.54 145.19 150.58 118.75 177.71

12 143.13 181.44 115.77 122.24 182.04 115.22 124.36 176.97

13 10.29 30.99 23.00 21.04 8.22 21.67 21.31 39.05

14 10.29 -16.53 -15.45 -9.58 17.62 -10.80 -6.03 -9.31

15 93.59 -13.88 -25.42 -20.13 -77.56 -26.51 -23.34 -18.26

16 -31.92 -48.50 0.56 20.20 14.59 -3.44 9.72 -20.81

17 80.16 78.03 -21.16 -27.34 43.15 -21.82 -27.91 21.30

18 -21.27 -17.13 -23.21 -26.17 -47.77 -21.38 -24.13 -28.47

19 3.20 -42.01 20.86 32.38 23.43 21.87 23.99 3.87

20 -112.5 -130.0 -16.31 -24.46 -15.77 -16.55 -27.35 -61.68

Table 3: The portfolio Sharpe ratio for each model per experiment.

The values P
(

Z ≥ −µp
σP

)
for this alternative Sharpe ratio calculation are in

Table 4. Looking at Table 3, experiments 1, 3, 4, 5, 7, 9, 10, 11 and 12 have
positive Sharpe ratios and the best-performing model can be determined. In
addition, in experiments 6 and 7 there are some negative Sharpe ratios, how-
ever, the highest Sharpe ratio model has both highest expected return and
lowest variance and there is no need for further investigation. Experiments 2,
9, 14, 15, 16, 18, 19 and 20 have some negative Sharpe ratios and the best-
performing model is determined by the alternative metric in Table 4. Finally,
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Portfolio Alternative Sharpe Ratio [1e-2]

S&P500 EW SP-MV SP-MC R-SP-MC MP-MV MP-MC R-MP-MV

1 50.17 51.52 55.09 54.31 56.57 55.00 54.46 54.90

2 50.68 50.85 49.64 49.71 49.95 49.71 49.80 49.68

3 54.20 55.09 56.51 56.91 56.43 56.41 56.94 55.75

4 51.50 51.61 53.22 52.42 53.78 53.40 52.90 53.57

5 51.52 53.27 53.71 53.40 53.34 53.89 53.51 54.40

6 55.42 46.83 48.63 49.21 46.91 48.69 49.38 48.56

7 54.67 54.56 51.36 50.65 49.77 51.30 50.70 51.79

8 53.77 54.89 55.51 54.94 54.21 55.50 54.86 54.43

9 48.49 47.90 48.00 48.11 48.32 48.02 48.09 48.31

10 53.73 56.11 60.35 59.38 57.03 60.29 59.11 57.46

11 56.92 56.01 55.93 54.72 55.77 55.98 54.73 57.06

12 55.69 57.20 54.61 54.87 57.22 54.58 54.95 57.02

13 50.41 51.24 50.92 50.84 50.33 50.87 50.85 51.56

14 50.41 49.34 49.39 49.62 50.70 49.57 49.76 49.63

15 53.73 49.44 48.99 49.20 46.91 48.94 49.07 49.27

16 48.73 48.07 50.02 50.80 50.58 49.86 50.39 49.17

17 53.19 53.11 49.16 48.91 51.72 49.13 48.89 50.85

18 49.15 49.31 49.07 48.96 48.10 49.15 49.04 48.86

19 50.13 48.33 50.83 51.29 50.93 50.87 50.96 50.15

20 45.52 44.79 49.35 49.02 49.37 49.34 48.91 47.54

Table 4: The portfolio Sharpe ratio alternatives for each model per experiment.

a bar graph illustrating the distribution of maximum Sharpe ratio achieved by
each model is provided in Figure 12.

Figure 12: Bar graph with the counts of best-performing models for all experiments.
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Based on the analysis of the bar graph in Figure 12, several key observa-
tions can be made. Firstly, the benchmark S&P500 was outperformed by at
least one of the tested models in the majority of cases, indicating that models
can actually perform in a similar or higher level as the benchmark. Addition-
ally, the single-period models revealed relatively stronger performance, ap-
pearing as the best-performing models in 9 out of the 20 experiments, while
the multi-period models did so only in 4 experiments. Moreover, the robust
approaches demonstrated better performance compared to the nominal cases,
highlighting the importance of considering robustness in PO problem . Re-
markably, the robust single-period Mean-CVaR model stood out as the over-
all top-performing model, suggesting its effectiveness in achieving desirable
risk-return trade-offs.
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C O N C L U S I O N S A N D D I S C U S S I O N

In this chapter, we present the conclusions drawn from our research on MV,
Mean-CVaR, and robust PO problems in both single-period and multi-period
contexts. We then discuss the implications of our findings while we provide
recommendations for decision-makers who want to use the models in practice.
Finally, we discuss the limitations of our study and consider future research
directions.

6.1 S U M M A RY O F F I N D I N G S

We begin by summarizing the main findings from our research. We demon-
strated the equivalence of PO problem formulations for a desired level of
expected return, risk, and risk parameter. In addition, we provided a clear il-
lustration of the efficient frontiers of the PO problems while also exploring
the impact of incorporating risk-free assets and no-short constraints. By ex-
amining these variations, we gained valuable insights into the behavior of the
efficient frontiers under different scenarios.
In the multi-period setting, we extended single-period PO problems by incor-
porating transaction costs without using any extra variable. We also formu-
lated a time-consistent PO problem that includes transaction costs, making
the time-consistent approach more realistic. Transaction costs were included
in the robust optimization approach as well. We found out that the transaction
cost models can work well and provide more realistic results.
Through a series of numerical experiments, we evaluated the performance
of these models and compare their effectiveness in achieving optimal port-
folio allocations in real data. Our experiments were designed to provide an
unbiased assessment of each model’s performance by incorporating random
selection of some of the input parameters. Specifically, we randomly selected
stocks from a predefined set while also the selection of the evaluation period
was randomly chosen. We implemented all the models on market data, and
then assessed their performance by calculating the Sharpe ratio in each experi-
ment. In this way, we found that PO models perform well compared to market
standards set by S&P500 as at least one of the models outperformed S&P500
most of the times. Single-period models outperformed multi-period models
by having the highest Sharpe ratio 9 out of the 20 experiments in contrast
to the 4 counts by all multi-period models. Moreover, robust models seemed
to surpass the nominal models since they typically had better results. Over-
all, robust single-period Mean-CVaR PO problem had the best performance
compered to the other PO problems.
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6.2 I M P L I C AT I O N S A N D P R AC T I C A L R E C O M M E N DAT I O N S

Our research has yielded significant implications for PO practices. Our nu-
merical experiments demonstrate that PO models, exhibit great performance
across various scenarios competing the S&P500 index. As a result, practi-
tioners should have confidence in utilizing these models to optimize their
investment portfolios. Furthermore, the incorporation of robust optimization
techniques has proven to be beneficial in the numerical experiments. Robust
approaches consider uncertainties and extreme scenarios, resulting in port-
folios that are better protected against potential market disruptions. Practi-
tioners are encouraged to favor robust optimization models over traditional
nominal models to protect their portfolios against uncertainties and achieve
more stable performance.

6.3 L I M I TAT I O N S A N D F U T U R E R E S E A R C H

Although our research has provided valuable insights into portfolio optimiza-
tion, it is essential to recognize its limitations and consider potential direc-
tions for future research. To begin with, the models developed in our research
are designed to construct the efficient frontier for any given desired expected
return (or for any other varying parameter). However, an alternative approach
could focus on determining a single portfolio with the highest Sharpe ratio.
This alternative formulation would eliminate the need for additional param-
eters and align more closely with the performance assessment conducted in
our numerical experiments.
Secondly, the numerical experiments conducted in our research were limited
to a total of 20 experiments. While this number allowed for the presenta-
tion of results in manageable and readable tables, increasing the number of
experiments could provide a more robust analysis and reduce the potential
noise resulting from randomness. Future research could consider expanding
the number of experiments to capture a wider range of scenarios and increase
the statistical significance of the findings.
Lastly, the scope of the robust approach in our research was limited to one
worst-case approach for both single-period and multi-period models. The
former involved a distribution uncertainty set using different copulas while
the latter involved an uncertainty ball constructed by the Wasserstein metric.
However, there are various other robust optimization techniques that could
be explored and compared. For instance, alternative distributions or metrics
could be used to construct the uncertainty set or there could also be the in-
clusion of parameter-based uncertainty sets, such as box or ellipsoidal uncer-
tainty sets. Investigating and comparing these additional approaches would
provide a more comprehensive analysis of robust optimization techniques.
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P RO O F S

In this appendix chapter, detailed proofs of the theorems and propositions
presented in MV PO problem are provided.

A.1 O P T I M I Z AT I O N P RO B L E M S E Q U I VA L E N C Y

In this section, the equivalency between the following 3 problems will be
shown:

Problem (A1) Problem (A2) Problem (A3)

min
w

w⊤Σw max
w

w⊤µ min
w

w⊤µ−ω ·w⊤Σw

s.t. w⊤µ= µ0, s.t. w⊤Σw = σ2
0 , s.t. w⊤1= 1.

w⊤1= 1. w⊤1= 1.

A.1.1 Solution to Problem (A1)

To solve the minimization problem (A1) for a given µ0, the methodology as
in chapter 4 of Focardi, Fabozzi, et al. (2004) is used, which originated from
Merton (1972). This methodology uses Lagrange multipliers to convert the
constrained optimization problem into an unconstrained one as in chapter 7
of Ingersoll (1987). The Lagrangian function for this problem is:

L(w,λ ,γ) =w⊤Σw−λ (w⊤µ−µ0)− γ(w⊤1−1),

where λ and γ are the Lagrange multipliers associated with the constraints
w⊤µ= µ0 and w⊤1= 1, respectively.
To find the solution, one needs to solve the system of equations:

∇wL = 2Σw−λµ− γ1= 0,

w⊤µ= µ0,

w⊤1= 1.

Taking the derivative of L with respect to w and setting it equal to zero:

2Σw∗−λµ− γ1= 0.

Solving for w∗:

w∗ =
λ Σ−1µ+ γΣ−11

2
. (28)
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Substituting this expression for w into the constraints w⊤µ= µ0 and w⊤1=

1, we obtain two solutions for the Lagrange multipliers:

λ = 2
µ0A−B

∆
,

γ = 2
C−µ0B

∆
,

where A = 1⊤Σ1 > 0, B = 1⊤Σµ > 0, C = µ⊤Σµ > 0 and ∆ = AC −B2

with ∆ > 0 by the Cauchy-Schwarz inequality.

Therefore, substituting λ and γ in w∗, the optimal variance is:

w∗⊤Σw∗ =
Aµ2

0 −2Bµ0 +C
∆

. (29)

A.1.2 Solution to Problem (A2)

To solve the maximization problem (A2) for a given σ0, again, we can use
Lagrange multipliers to convert the constrained optimization problem into an
unconstrained one. The Lagrangian function for this problem is:

L(w,ν ,κ) =w⊤µ−ν(w⊤Σw−σ
2
0 )−κ(w⊤1−1),

where ν and κ are the Lagrange multipliers associated with the constraints
w⊤Σw = σ2

0 and w⊤1= 1, respectively.
To find the solution, we need to solve the system of equations:

∇wL = µ−ν2Σw−κ1= 0,

w⊤Σw = σ
2
0 ,

w⊤1= 1.

Taking the derivative of L with respect to w and setting it equal to zero:

µ−ν2Σw∗−κ1= 0.

Solving for w∗:

w∗ =
Σ−1µ−κΣ−11

2ν
. (30)

Substituting this expression for w into the constraints w⊤Σw = σ2
0 and

w⊤1= 1, we obtain two solutions for the Lagrange multipliers:

ν =
1
2

√
∆

σ2
0 A−1

,

κ =
B−

√
∆

σ2
0 A−1

A
,
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for σ2
0 A−1 > 0.

Therefore, substituting ν and κ in w∗, the optimal mean is:

w∗⊤µ=

√
∆(σ2

0 A−1)+B

A
. (31)

Setting (31) equal to µ and solving to σ2
0 , we derive the following variance:

σ
2
0 =

Aµ2 −2Bµ +C
∆

,

which is the exact same variance as the one in equation (29) for µ = µ0 and
so the optimal w∗ are also the same.

As a result, problems (A1) and (A2) are equivalent for σ2
0 =

Aµ2
0 −2Bµ0 +C

∆
.

A.1.3 Solution to Problem (A3)

To solve the maximization problem (A3) for a given ω , we again use La-
grange multiplier. The Lagrangian function for this problem is:

L(w,φ ) =w⊤µ−ωw⊤Σw−φ (w⊤1−1),

where φ is the Lagrange multiplier associated with the constraint w⊤1= 1.
To find the solution, the system of equations must be solved:

∇wL = µ−ω ·2Σw−φ1= 0,

w⊤1= 1.

Taking the derivative of L with respect to w and setting it equal to zero, we
obtain:

µ−ω ·2Σw∗−φ1= 0.

Solving for w∗:

w∗ =
Σ−1µ−φΣ−11

2ω
. (32)

Substituting this expression for w into the constraint w⊤1= 1, we obtain the
solution for the Lagrange multiplier:

φ =
B−2ω

A
,

where A = 1⊤Σ1 and B = 1⊤Σµ.

Therefore, substituting φ in w∗, the optimal mean is:

w∗⊤µ=
∆+ 2ωB

2ωA
, (33)
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while the optimal variance given w∗ is:

w∗⊤Σw∗ =
∆+ 4ω2

4ω2A
. (34)

So first, we will choose an ω , such that the mean (33) is equal to µ0 (as in
problem (A1)) and then look at what the variance will be:

∆+ 2ωB
2ωA

= µ0 ⇒ ω =
∆

2Aµ0 −2B
.

And so, substituting this ω in the variance from equation (34):

w∗⊤Σw∗ =
∆+ 4ω2

4ω2A
=

Aµ2
0 −2Bµ0 +C

∆
,

which is the exactly the same variance as in equation (29) and so the opti-
mal w∗ are also the same. Thus, problems (A1) and (A3) are equivalent for

ω =
∆

2Aµ0 −2B
.

We will now choose an ω , such that the variance (34) is equal to σ2
0 (as in

problem (A2)) and then look at what the mean will be:

∆+ 4ω2

4ω2A
= σ

2
0 ⇒ ω =

√
∆

4(σ2
0 A−1)

.

And so, substituting this ω in the mean from equation (33):

w∗⊤µ=
∆+ 2ωB

2ωA
=

√
∆(σ2

0 A−1)+B

A
,

which is the exactly the same mean as in equation (31) and so the optimal
w∗ are the same as well and so problems (A2) and (A3) are equivalent for

ω =

√
∆

4(σ2
0 A−1)

.

To sum up, in the following table 5, the optimal allocation w∗, expected return
and variance for each problem is shown given their parameters (µ0,σ2

0 ,ω)

and for A = I⊤ΣI , B = I⊤Σµ, C = µ⊤Σµ and ∆ = AC−B2:
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Problem (A1) Problem (A2) Problem (A3)

µ0A−B
∆ Σ−1µ+ C−µ0B

∆ Σ−11
Σ−1µ−

B−
√

∆
σ2

0 A−1

A Σ−11√
∆

σ2
0 A−1

Σ−1µ+ B−2ω

A Σ−11

2ω

µ0

√
∆(σ2

0 A−1)+B

A
∆+ 2ωB

2ωA

Aµ2
0 −2Bµ0 +C

∆
σ2

0
∆+ 4ω2

4ω2A

Table 5: Summary of optimal allocation w∗, expected return and variance of each
problem.

A.2 M E A N - VA R I A N C E O P T I M I Z AT I O N P RO B L E M S O L U T I O N W I T H

A R I S K - F R E E A S S E T

In this section the analytical solution of (4) will be provided. Using the second
constrain in the first one, the problem becomes:

min
w

w⊤Σw

s.t. w⊤µ+(1−w⊤1)R = µ0.
(35)

To make computations easier and the results clearer, let µD = µ− 1R. In
practice, this is the discounted return given the rate R for the single period
time horizon. So, problem (35) becomes:

min
w

w⊤Σw

s.t. w⊤µD = µ0 −R.
(36)

To solve this minimization problem for a given µ0, we will use Lagrange
multipliers as before to convert the constrained optimization problem into an
unconstrained one. The Lagrangian function for this problem is:

L(w,λ ) =w⊤Σw−λ (w⊤µD −µ0 +R),

where λ is the Lagrange multiplier associated with the constraint w⊤µD =

µ0 −R.
To find the solution, we need to solve the system of equations:

∇wL =w⊤Σw−λ (w⊤µD −µ0 +R) = 0,

w⊤µD = µ0 −R.

Taking the derivative of L with respect to w and setting it equal to zero:

2Σw∗−λµD = 0.
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Solving for w∗:

w∗ =
λ Σ−1µD

2
. (37)

Substituting this expression for w into the constraint w⊤µD = µ0 −R, we
obtain solution for the Lagrange multiplier:

λ = 2
µ0 −R

E
,

where E = µ⊤
DΣ−1µD ̸= 0.

Therefore, substituting λ in w∗, the optimal solution is:

w =
(µ0 −R)Σ−1µD

E
, (38)

and the optimal variance is:

w∗⊤Σw∗ =
(µ0 −R)2

E
. (39)
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B.1 L A B E L S P E R M O D E L

In this table, we show the labels used for each model.

Label Model

EW Equal Weights

SP-MV Single-Period Mean-Variance

SP-MC Single-Period Mean-CVaR

R-SP-MC Robust Single-Period Mean-CVaR

MP-MV Multi-Period Mean-Variance

MP-MC Multi-Period Mean-CVaR

R-MP-MV Robust Multi-Period Mean-Variance

Table 6: The labels used for each model.

B.2 N U M E R I C A L E X P E R I M E N T S P L OT S

In this section, we will provide two plots per numerical experiment. The first
plot is the portfolio wealth for each model over the 100-day testing period.
The initial wealth is 10000 while the starting period is random. In addition,
the number as well as the selection of the stocks is also random. The number
of stocks used is displayed in the title of each plot. Next to that, the desired
expected return µ0 used in the models is displayed. The second plot includes
8 histograms, one for each model. These histograms represent the portfolio
wealth returns for the testing period. The analysis is based on custom Python
code developed specifically for this research, which can be found in code link.
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Experiment 1

Figure 13: Portfolio wealth over 100-day testing period for experiment 1.

Figure 14: Distribution of portfolio wealth returns for experiment 1.
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Experiment 2

Figure 15: Portfolio wealth over 100-day testing period for experiment 2.

Figure 16: Distribution of portfolio wealth returns for experiment 2.
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Experiment 3

Figure 17: Portfolio wealth over 100-day testing period for experiment 3.

Figure 18: Distribution of portfolio wealth returns for experiment 3.
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Experiment 4

Figure 19: Portfolio wealth over 100-day testing period for experiment 4.

Figure 20: Distribution of portfolio wealth returns for experiment 4.
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Experiment 5

Figure 21: Portfolio wealth over 100-day testing period for experiment 5.

Figure 22: Distribution of portfolio wealth returns for experiment 5.
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Experiment 6

Figure 23: Portfolio wealth over 100-day testing period for experiment 6.

Figure 24: Distribution of portfolio wealth returns for experiment 6.
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Experiment 7

Figure 25: Portfolio wealth over 100-day testing period for experiment 7.

Figure 26: Distribution of portfolio wealth returns for experiment 7.
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Experiment 8

Figure 27: Portfolio wealth over 100-day testing period for experiment 8.

Figure 28: Distribution of portfolio wealth returns for experiment 8.
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Experiment 9

Figure 29: Portfolio wealth over 100-day testing period for experiment 9.

Figure 30: Distribution of portfolio wealth returns for experiment 9.
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Experiment 10

Figure 31: Portfolio wealth over 100-day testing period for experiment 10.

Figure 32: Distribution of portfolio wealth returns for experiment 10.
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Experiment 11

Figure 33: Portfolio wealth over 100-day testing period for experiment 11.

Figure 34: Distribution of portfolio wealth returns for experiment 11.
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Experiment 12

Figure 35: Portfolio wealth over 100-day testing period for experiment 12.

Figure 36: Distribution of portfolio wealth returns for experiment 12.
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Experiment 13

Figure 37: Portfolio wealth over 100-day testing period for experiment 13.

Figure 38: Distribution of portfolio wealth returns for experiment 13.
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Experiment 14

Figure 39: Portfolio wealth over 100-day testing period for experiment 14.

Figure 40: Distribution of portfolio wealth returns for experiment 14.
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Experiment 15

Figure 41: Portfolio wealth over 100-day testing period for experiment 15.

Figure 42: Distribution of portfolio wealth returns for experiment 15.
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Experiment 16

Figure 43: Portfolio wealth over 100-day testing period for experiment 16.

Figure 44: Distribution of portfolio wealth returns for experiment 16.
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Experiment 17

Figure 45: Portfolio wealth over 100-day testing period for experiment 17.

Figure 46: Distribution of portfolio wealth returns for experiment 17.
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Experiment 18

Figure 47: Portfolio wealth over 100-day testing period for experiment 18.

Figure 48: Distribution of portfolio wealth returns for experiment 18.
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Experiment 19

Figure 49: Portfolio wealth over 100-day testing period for experiment 19.

Figure 50: Distribution of portfolio wealth returns for experiment 19.
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Experiment 20

Figure 51: Portfolio wealth over 100-day testing period for experiment 20.

Figure 52: Distribution of portfolio wealth returns for experiment 20.
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