
 
 

Delft University of Technology

Optimal operator preconditioning for pseudodifferential boundary problems

Gimperlein, Heiko; Stocek, Jakub; Urzúa-Torres, Carolina

DOI
10.1007/s00211-021-01193-9
Publication date
2021
Document Version
Accepted author manuscript
Published in
Numerische Mathematik

Citation (APA)
Gimperlein, H., Stocek, J., & Urzúa-Torres, C. (2021). Optimal operator preconditioning for
pseudodifferential boundary problems. Numerische Mathematik, 148(1), 1-41.
https://doi.org/10.1007/s00211-021-01193-9

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s00211-021-01193-9
https://doi.org/10.1007/s00211-021-01193-9


Noname manuscript No.
(will be inserted by the editor)

Optimal operator preconditioning for pseudodifferential

boundary problems

Heiko Gimperlein · Jakub Stocek ·

Carolina Urzúa-Torres
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1 Introduction

This article considers the Dirichlet problem for an elliptic pseudodifferential oper-
ator A of order 2s in a bounded Lipschitz domain Ω, where Ω is either a subset of
R

n, or, more generally, in a Riemannian manifold Γ :

{
Au = f in Ω,

u = 0 in Γ \Ω. (1)

Such pseudodifferential boundary problems are of interest in several applications.
For instance, the integral fractional Laplacian A = (−∆)s and its variants A =
div(c(x)∇2s−1u) in a domain Ω ⊂ Rn arise in the pricing of stock options [14,
Chapter 12], image processing [23], continuum mechanics [15], and in the movement
of biological organisms [16,17] or swarm robotic systems [18]. By considering Ω ⊂ Γ
(with Γ a Riemannian manifold), one can also study the equations for the weakly
singular (A = V) or hypersingular (A = W) operators arising from boundary integral
formulations of the first kind for an elliptic boundary problem on curve segments
or on open surfaces [49, Section 3.5.2]. Another interesting example would be, in
potential theory, where boundary problems of negative order arise for the Riesz
potential [40, Chapter 1, Section 3].

On the one hand, the bilinear form associated to A is nonlocal, and its Galerkin
discretization results in dense matrices. On the other hand, the condition number
of the Galerkin matrices when using low-order piecewise polynomial basis function
is of order O(h−2|s|), where h is the size of the smallest cell of the mesh. Therefore,
the solution of the resulting linear system via iterative solvers becomes prohibitively
slow on fine meshes.

The preconditioning of pseudodifferential equations has been considered in dif-
ferent contexts. Classically, boundary element methods have been of interest, where
multigrid and additive Schwarz methods [5,21,58], [49, Chapter 6], as well as op-
erator preconditioners [52] have been studied. A popular choice is operator pre-
conditioning based on an elliptic pseudodifferential operator of the opposite order
−2s, yet it leads to growing condition numbers when boundary conditions are not
respected. Indeed, in the case s = 1

2 , the achieved condition number grows like
| log(h)|n+1 for n = 1 [43, Theorem 4.1] and n = 2 [13, Proposition 1.3.5]. We prove
that the situation worsens for |s| > 1

2 , and the condition number may increase like

h1−2|s|, as we discuss in Section 5. Therefore, the “opposite order” strategy for A in
(1) could be far from optimal. This motivates the approach we pursue here, which
incorporates the boundary conditions.

The aforementioned suboptimality was recently overcome for the weakly singular
and hypersingular operators V and W on open 2d surfaces [35] and curve segments
[33], respectively. The proposed preconditioners were based on new exact formulas
for the inverses of these operators on the flat disk [34] and interval [−1, 1] [39].
It is important to mention that, in this context, this article provides a novel and
independent approach to the preconditioners used in [34,35]: As discussed in Remark
2, by identifying Ω ⊂ Rn with the flat screen Ω×{0} ⊂ Rn+1, W coincides with the
fractional Laplacian 1

2 (−∆)s for s = 1
2 , while V coincides with 1

2 (−∆)s for s = − 1
2 .

Boggio’s classical formula (Equation (10) below) for the fractional Laplacian in the
unit ball of Rn, respectively its analytic extension to s ∈ C, therefore recovers the
exact formulas for V

−1 and W
−1 from [34,39] as special cases. This connection

between the fractional Laplacian and boundary integral equations was only known
in 1D [39], and we extend it to arbitrary dimension. As a consequence, we obtain a
unified and general preconditioning strategy for pseudodifferential problems, which
includes V, W and (−∆)s.
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Recently, the fractional Laplacian has attracted interest in itself. Multigrid pre-
conditioners have been briefly mentioned in [4], while additive Schwarz precondition-
ers of BPX-type are currently being investigated [9,19]. Applied to this particular
operator A, our results lead to the first operator preconditioner. This offers the
advantage of benefiting from all the rigorous results of the operator precondition-
ing theory, including its applicability to non-uniformly refined meshes, while being
easily implementable. Indeed, solutions to (1) feature edge singularities, analogous
to those for the fractional Laplacian [30, Theorem 4]. Therefore, when discretizing
with low-order finite elements, one requires local refinement to recover optimal con-
vergence rates. Hence, it becomes mandatory that preconditioners can deal with
these non-uniform meshes.

Our main result for preconditioning can be found in Theorem 2; the proposed
preconditioner P is optimal in the sense that the bound for the condition number
neither depends on the mesh refinement, nor on the choice of bases for trial and
test spaces.

We verify that the preconditioner may be used on shape regular algebraically
graded meshes, which lead to quasi-optimal convergence rates for piecewise linear
elements. We prove that the required mesh assumptions also hold for a natural class
of adaptively refined meshes. By doing this, we show for the first time that operator
preconditioning with standard low-order primal-dual finite element discretization
does apply to these adaptive meshes. Our proof in fact shows the H1(Ω)-stability
of the generalized (Petrov-Galerkin) L2(Ω) projection on low-order finite element
spaces, which may also have applications beyond preconditioning.

Outline of this article: Section 2 recalls basic notions of fractional Sobolev spaces.
The fractional Laplacian and Boggio’s formula are discussed in Section 3. There
we also explain how to use the latter to define a bilinear form associated to the
solution operator in the ball. As special cases, we recover the recent solution for-
mulas for the weakly and hypersingular operators V and W. Section 4 introduces
the pseudodifferential Dirichlet problem (1). Next, in Section 5, we recall the op-
erator preconditioning theory and summarize discretization strategies under which
Theorem 2 holds. In particular, Section 5.2 discusses the case of adaptively refined
meshes. The article concludes with numerical experiments and their discussion in
Section 6.

2 Sobolev Spaces

We recall some basic definitions and properties related to Sobolev spaces of non-
integer order and to the fractional Laplacian. For further details we refer to [1,3,
22].

Let Ω ⊂ Rn be a bounded Lipschitz domain, and for s ∈ N0, H
s(Ω) the Sobolev

space of functions in L2(Ω) whose distributional derivatives of order s belong to
L2(Ω). For s ∈ (0,∞), we write m = ⌊s⌋ and σ = s −m and define the Sobolev
space Hs(Ω) as

Hs(Ω) := {v ∈ Hm(Ω) : |∂αv|Hσ(Ω) <∞ ∀|α| = m} .

Here | · |Hσ(Ω) is the Aronszajn-Slobodeckij seminorm

|v|2Hσ(Ω) :=

∫∫

Ω×Ω

(v(x) − v(y))2

|x− y|n+2σ
dy dx.
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Hs(Ω) is a Hilbert space endowed with the norm

‖v‖2Hs(Ω) := ‖v‖2Hm(Ω) +
∑

|α|=m

|∂αv|2Hσ(Ω).

Particularly relevant for this article are the Sobolev spaces [31, Chapter 4.1], [42,
Chapter 3]

H̃s(Ω) := {v ∈ Hs(Rn) : supp v ⊂ Ω}
of distributions whose extension by 0 belongs to Hs(Rn). In the literature, the

spaces H̃s(Ω) are sometimes denoted by Hs
00(Ω).

We recall that when Ω is Lipschitz and 1
2 6= s ∈ (0, 1), H̃s(Ω) coincides with the

space Hs
0(Ω), which is the closure of C∞

0 (Ω) with respect to the Hs-norm. More-

over, for s ∈ (0, 12 ), H̃
s(Ω) = Hs(Ω) = Hs

0(Ω). All three spaces differ when s = 1
2 .

For negative s the Sobolev spaces are defined by duality, and in this article
we denote the duality pairing between H̃s(Ω) and H−s(Ω) by 〈· , ·〉Ω. Using local
coordinates, the definition of the Sobolev spaces extends to a bounded domain Ω
of a Riemannian manifold Γ . For |s| ≤ 1 the definition is independent of the choice
of local coordinates, if Ω is Lipschitz [3, Section 9].

3 The Fractional Laplacian

For s ∈ (0, 1), we define the fractional Laplacian of a function u in the Schwartz
space S(Rn) by

(−∆)su(x) := cn,s lim
ε→0+

∫

Rn\Bε(x)

u(x)− u(y)

|x− y|n+2s
dy , (2)

where Bε(x) the n-dimensional ball of radius ε > 0 centered at x. The normalization
constant cn,s is defined in terms of Γ functions:

cn,s :=
22ssΓ

(
n+2s

2

)

π
n
2 Γ (1− s)

.

For general s > 0, we setm := ⌊s⌋, σ := s−m, and define (−∆)su = (−∆)m(−∆)σu
for u in the Schwartz space.

Equivalently, the fractional Laplacian may be defined in terms of the Fourier
transform on Rn as

F((−∆)su) = |ξ|2sFu, (3)

see for example [48, Equation 25.2]. For s > 0 this formula extends (−∆)s to an
unbounded operator on L2(Rn), as well as to an operator on the space of tempered
distributions S ′(Rn).

To continue the definition of (−∆)s to complex values of s, recall that the homo-
geneous function 0 6= ξ 7→ |ξ|2s admits an extension to a (tempered) homogeneous
distribution on R

n for s ∈ C \ P [48, Equation 25.19] , with

P := {m ∈ 1

2
Z : m ≤ −n

2
}. (4)

Formula (3) then defines (−∆)s for s ∈ C \ P . As |ξ|2s extends to a meromorphic
function of s ∈ C with values in the space of tempered distributions, in the sense
of [27], so does (−∆)s = F−1 ◦ |ξ|2s ◦ F as a meromorphic family in the space of
operators from S(Rn) to S ′(Rn). We refer to [48, Section 25] for details, as well as
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for the fact that (−∆)s admits a holomorphic continuation to s = m ∈ P on the
subspace

Φm := {u ∈ S(Rn) : ∀α ∈ N
n
0 with |α| ≤ −2m− n : 〈xα, u〉Rn = 0} . (5)

For a careful investigation when s = −n
2 , where Φm consists of functions of mean

0, see also [56, Section 3].
Formula (3) finally shows that (−∆)s is an operator of order 2Re(s) and that for

s = 1 one recovers the ordinary Laplace operator. For a bounded domain Ω ⊂ R
n,

the former can be stated as: there holds the continuity (−∆)s : H̃s(Ω) → H−s(Ω)
for s ∈ R.

3.1 Dirichlet problem for the fractional Laplacian

In this article the homogeneous Dirichlet problem for the fractional Laplacian plays
a special role as an “auxiliary problem”, which will help us construct preconditioners
for (1).

For a bounded Lipschitz domain Ω ⊂ Rn and f ∈ L2(Ω), it is formally given
by:

{
(−∆)su = f in Ω,

u = 0 in Rn \Ω. (6)

For s ∈ (0, 1), its variational formulation is expressed in terms of the bilinear form

c on H̃s(Ω),

c(u, v) :=
cn,s
2

∫∫

D

(u(x)− u(y))(v(x) − v(y))

|x− y|n+2s
dy dx , (7)

where D := (Rn × Ω) ∪ (Ω × Rn)= (Rn × Rn) \ (Ωc ×Ωc). Similar formulas for
s > 1 may be found in [1, Section 1.1].

Note that formally

c(u, v) = 〈(−∆)su, v〉Rn − cn,s
2

∫∫

Ωc×Ωc

(u(x)− u(y))(v(x) − v(y))

|x− y|n+2s
dy dx,

when u, v ∈ Hs(Rn), and the second term vanishes on H̃s(Ω). Here 〈·, ·〉Rn denotes
the duality pairing from Section 2.

Using the Fourier definition (3), the bilinear form

c(u, v) = 〈(−∆)su, v〉Rn = 〈F−1(|ξ|2sFu), v〉Rn = 〈(F−1|ξ|2s) ∗ u, v〉Rn (8)

extends meromorphically to s ∈ C \ P . Here, ∗ denotes convolution. For Re(s) < 0
the inverse Fourier transform F−1|ξ|2s is locally integrable and the integrand is
only weakly singular. Specifically, F−1|ξ|2s = cn,s|x|−n−2s for Re(s) < 0, s 6∈ P
([48, Equation 25.25]). For s > 0 the relation between (8) and (7) is discussed in
[48, Section 25.4].

The weak formulation of (6) reads as follows:

Find u ∈ H̃s(Ω) such that

c(u, v) =

∫

Ω

fvdx, ∀v ∈ H̃s(Ω). (9)
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Moreover, the bilinear form c is continuous and elliptic for s > −n
2 real: there

exist Cc, βc > 0 with

c(u, v) ≤ Cc‖u‖H̃s(Ω)‖v‖H̃s(Ω), c(u, u) ≥ βc‖u‖2H̃s(Ω)
.

The ellipticity for s > 0 follows by definition of the H̃s(Ω)-norm, while the case
s ∈ (−n

2 , 0) is a classical result in potential theory [40, Page 358].
Therefore, by the Lax-Milgram theorem, the variational problem (9) admits a

unique solution, and the solution operator f 7→ u extends to an isomorphism from
H−s(Ω) to H̃s(Ω) for all s > −n

2 .
For s ≤ −n

2 ellipticity requires additional assumptions, as in (5). Although we
refrain from discussing these modifications in this article, it is worth pointing out
that ellipticity is well known for n = 1 and s = − 1

2 in the case of the weakly singular
integral operator from Remark 2 [39].

3.2 Solution operator in the unit ball

Let us write B1 for the unit ball B1(0) ⊂ R
n. When Ω = B1, explicit solution

formulas are available. For s > 0, the Green’s function in this case is given by

Gs(x, y) := kn,s|x− y|2s−n

∫ r(x,y)

0

ts−1

(t+ 1)n/2
dt, ∀x, y ∈ R

n, x 6= y. (10)

Here r(x, y) :=
(1− |x|2)+(1− |y|2)+

|x− y|2 , z+ := max{z, 0} and kn,s :=
21−2s

|∂B1|Γ(s)2
.

For s ∈ N, Formula (10) goes back to [6], while for s ∈ (0, 1) it has long been
known in potential theory and Lévy processes (see e.g. [40, Chapter 1, Section 3]
and [47, Chapter 5, Equation 3]). The extension to arbitrary order s > 0 is more
recent and may be found in [1].

The following theorem from [1] shows that Gs in formula (10) indeed defines
the weakly singular integral kernel of the solution operator to (6) for s > 0. More
precisely, we have the following explicit formula for the solution of the Dirichlet
problem for the fractional Laplace operator in the unit ball B1:

Theorem 1 ([1, Theorem 1.4]) Let s, α > 0, 2s + α 6∈ N, m := ⌊s⌋, and σ :=
s−m. For f ∈ Cα(B1), define

u(x) :=

{
0, for x ∈ Rn \ B1∫
B1
Gs(x, y)f(y) dy, for x ∈ B1

.

Then u ∈ C2s+α(B1), δ
1−σu ∈ Cm,0(B1) and

(−∆)su = f in B1, u = 0 in R
n \ B1 .

Here δ(x) := dist(x, ∂B1) for x in a neighborhood of ∂B1.

In particular, u defines a solution to the weak formulation (9) relevant for finite
element approximations.

The previous theorem motivates us to

– derive formulas for Gs(x, y) which are easily computable for use as a precondi-
tioner; and

– extend the aforementioned formula to negative values of s.
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With these purposes in mind, the following Lemma shows that Boggio’s formula
(10) can be implemented efficiently and allows further insight for general values of
n and s:

Lemma 1 Let s > 0. Then

Gs(x, y) = s−1kn,s|x− y|2s−nr(x, y)s 2F1

(n
2
, s; s+ 1;−r(x, y)

)
,

where 2F1 is the hypergeometric function.

Proof We need to prove

∫ r

0

ts−1

(t+ 1)n/2
dt =

rs

s
2F1

(n
2
, s; s+ 1;−r

)
.

This, however, follows directly from the integral representation of 2F1 [60],

2F1

(n
2
, s; s+ 1;−r

)
=
Γ (s+ 1)

Γ (s)

∫ 1

0

ts−1(1 + tr)−
n
2 dt

= sr−s

∫ r

0

ts−1

(1 + t)
n
2
dt .

⊓⊔

Remark 1 For a generic value of s computational libraries are available to effi-
ciently evaluate the hypergeometric function 2F1, see for example [45, Section 4].
For specific values of s, explicit formulas for Gs in terms of elementary functions
are available and allow for more efficient computations as highlighted in Remark 3.

The following result provides an explicit formula for the holomorphic continua-
tion of the integral kernelGs from (10). We restrict ourselves to the case Re(s) > −n

2
relevant for applications.

Lemma 2 The map (0,∞) ∋ s 7→ Gs(x, y) ∈ D′(B1×B1) extends to a holomorphic

family of distributions for s > −n
2 . For N ∈ N0, the holomorphic continuation of

Gs(x, y) to the half-plane Re(s) > max{−N − 1,−n
2 } is given by

Gs(x, y) = kn,s |x− y|2s−n









N∏

j=0

n
2 + j

s+ j



∫ r(x,y)

0

ts+N

(t+ 1)1+N+n/2
dt

+

N∑

k=0




k−1∏

j=0

n
2 + j

s+ j


 r(x, y)s+k

(s+ k)(r(x, y) + 1)k+n/2




 . (11)

Proof Using integration by parts, for Re(s) > 0 we observe the identity

∫ r(x,y)

0

ts−1

(1 + t)n/2
dt =

n

2s

∫ r(x,y)

0

ts

(1 + t)1+n/2
dt+

r(x, y)s

s(r(x, y) + 1)n/2
. (12)

Together with (10), we obtain

Gs(x, y) = kn,s|x− y|2s−n

(
n

2s

∫ r(x,y)

0

ts dt

(1 + t)1+n/2
+

r(x, y)s

s(r(x, y) + 1)n/2

)
(13)

with the right hand side defined for s 6= 0, Re(s) > max{−1,−n
2 }. Because Γ(s)

has simple poles for s ∈ −N0, but no zeros, and kn,s =
21−2s

|∂B1|Γ(s)2
, for x 6= y the
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kernel Gs(x, y) extends holomorphically to s = 0, with a simple zero in s = 0. The
asserted formula follows for N = 0.

The proof for general N follows by induction: We assume that (11) holds for
N ∈ N0. Note that for Re(s) > max{−N − 1,−n

2 },
∫ r(x,y)

0

ts+N

(1 + t)1+N+n/2
dt =

n
2 +N + 1

s+N + 1

∫ r(x,y)

0

ts+N+1

(1 + t)2+N+n/2
dt

+
r(x, y)s+N+1

(s+N + 1)(r(x, y) + 1)1+N+n/2
.

The right hand side of (12) is defined for s 6∈ −N0, Re(s) > max{−N − 2,−n
2 }.

We conclude,




N∏

j=0

n
2 + j

s+ j




∫ r(x,y)

0

ts+N

(t+ 1)1+N+n/2
dt+

N∑

k=0




k−1∏

j=0

n
2 + j

s+ j



 r(x, y)s+k

(s+ k)(r(x, y) + 1)k+n/2

=




N∏

j=0

n
2 + j

s+ j



{

n
2 +N + 1

s+N + 1

∫ r(x,y)

0

ts+N+1

(1 + t)2+N+n/2
dt

+
r(x, y)s+N+1

(s+N + 1)(r(x, y) + 1)1+N+n/2

}
+

N∑

k=0




k−1∏

j=0

n
2 + j

s+ j


 r(x, y)s+k

(s+ k)(r(x, y) + 1)k+n/2
.

Equation (11) for N +1 follows. As above, (11) extends to s = −N−1 because the
simple pole in the denominator is cancelled by the zero of the prefactor kn,s. ⊓⊔

Proposition 1 Let Re(s) > −n
2 and f ∈ C∞

0 (B1). Then the distribution us :=
op(Gs)f ∈ D′(B1) defined by

〈op(Gs)f, v〉B1 = 〈Gs, f ⊗ v〉B1⊗B1 , ∀v ∈ C∞
0 (B1),

belongs to H̃Re(s)(B1) and satisfies the weak formulation (9),

c(us, v) =

∫

Ω

fvdx, ∀v ∈ H̃Re(s)(Ω).

Here, (−∆)s is defined by the continuation of (3).

Proof From Theorem 1, note that for s ∈ (0, 1) the function us satisfies (−∆)sus =
(−∆)s (op(Gs)f) = f in H−s(Ω), i.e. us satisfies the weak formulation (9). As both
the operator (−∆)s with Dirichlet exterior conditions and op(Gs) are holomorphic
for s in the connected set Re(s) > −n

2 , the identity extends from s ∈ (0, 1) to
Re(s) > −n

2 . ⊓⊔

For numerical applications, we require the bilinear form of the solution operator
op(Gs). It is defined as

bs(u, v) := p.f.

∫

B1

∫

B1

Gs(x, y)u(y)v(x) dy dx, (14)

for u, v ∈ C∞(B1).

The continuity and ellipticity of bs in H̃s(B1) for all s > 0 follow from the
continuity and ellipticity of c, as its inverse bilinear form. From the density of
C∞(B1) in H

−s(B1), we conclude:
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Lemma 3 Let s > −n
2 . The bilinear form bs extends to a continuous and elliptic

bilinear form bs : H
−s(B1)×H−s(B1) → R. More precisely, there exist Cbs , βbs > 0,

such that

bs(u, v) ≤ Cbs‖u‖H−s(B1)‖v‖H−s(B1) , bs(u, u) ≥ βbs‖u‖2H−s(B1)
.

At the time of writing this article, such explicit solution formulas are known
for very few specific domains other than B1: the full space Rn (from the Fourier
transform of |x|−s), and the half space Rn

+ (by antisymmetrization).

Remark 2 Problem (6) is closely related to boundary integral formulations. Let us
consider the restriction operator Rs : Hs(Rn) → Hs(Ω). By identifying Ω ⊂ Rn

with the flat screen Γ := Ω × {0} ⊂ Rn+1, the hypersingular operator W for the
Laplace equation in the exterior domain Rn+1 \Γ coincides with R−1/2 ◦ 1

2 (−∆)1/2,

while the weakly singular operator V coincides with R1/2 ◦ 1
2 (−∆)−1/2. Indeed,

K and K
′ vanish on Γ . Therefore, W is a multiple of the Dirichlet-to-Neumann

operator [49, Section 3.7] for the Laplace equation in the exterior domain Rn+1 \Γ
[31, Section 12.3], as is R−1/2 ◦ (−∆)1/2 [28, Chapter 11, Equation 11.72]. Similarly,

V and R1/2 ◦ (−∆)−1/2 are both multiples of the Neumann-to-Dirichlet operator.
In these cases, (10) and (13) recover recent formulas for the inverses of V and W,
which have been of interest in boundary integral equations. Let us compute these
simplifications for the relevant values of n, s:

a) n = 2, s = 1
2 : In this case

∫ r

0
ts−1

(t+1)n/2 dt = 2 arctan(
√
r), so that

G1/2(x, y) =
1

π2
|x− y|−1 arctan(

√
r(x, y)) .

Note that G1/2 coincides, up to a factor 2, with the kernel of the operator V for
the flat circular screen in 3d [34].

b) n = 1, s = 1
2 : Here

∫ r

0
ts−1

(t+1)n/2 dt = 2arsinh(
√
r), and hence

G1/2(x, y) = 2k1,1/2arsinh(
√
r(x, y)) = 2k1,1/2 ln

(√
r(x, y) +

√
1 + r(x, y)

)
.

Writing ω(x) =
√
1− x2, one obtains

√
r(x, y) +

√
1 + r(x, y) =

ω(x)ω(y)

|x− y| +

√
1 +

ω(x)2ω(y)2

|x− y|2 =
ω(x)ω(y) + 1− xy

|x− y|

=
1
2

(
(y − x)2 + (ω(x) + ω(y))2

)

|x− y| .

This agrees with the kernel of the operator V from [33,39] up to a factor 2. Note
that k1,1/2 = 1

π , and see [11] for a detailed discussion of the prefactor kn,s in the
degenerate case n = 2s.
c) n = 2, s = − 1

2 : We obtain

G−1/2(x, y) = − 1

π2

(
1√

r(x, y)|x− y|3
+

arctan(
√
r(x, y))

|x− y|3

)
.

Again, G−1/2 recovers, up to a factor 2, the kernel of the operator W for the flat
circular screen in 3d [34].

d) n = 1, s = − 1
2 : In this case n

2s

∫ r

0
ts

(1+t)1+n/2 dt = − 2
√
r√

1+r
, so that

G−1/2(x, y) = −
√
1 + r(x, y)

π|x− y|2
√
r(x, y)

=
xy − 1

π|x− y|2ω(x)ω(y) .
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G−1/2 matches, up to a factor −2, the kernel of the operator W for the interval
in 2d, Formula (4.21) in [39].

Remark 3 For the numerical experiments, below the cases when n = 2 and s =
1
4 ,

7
10 , and s =

3
4 , are also relevant. There we obtain:

G1/4(x, y) =− 2k2,1/4|x− y|−3/2e3iπ/4
(
arctan( 4

√
reiπ/4) + artanh( 4

√
reiπ/4)

)
,

G7/10(x, y) =− 2k2,7/10|x− y|−3/5
(
arctan( 10

√
r) + e3iπ/10artanh( 10

√
reiπ/10)

+e9iπ/10artanh( 10
√
re3iπ/10) + eiπ/10artanh( 10

√
re7iπ/10)

+e7iπ/10artanh( 10
√
re9iπ/10)

)
,

G3/4(x, y) = 2k2,3/4|x− y|−1/2eiπ/4
(
arctan( 4

√
reiπ/4)− artanh( 4

√
reiπ/4)

)
.

Remark 4 Similar explicit formulas are available for other rational values of s, in
terms of the Lerch Phi function [59] when n = 2 and in terms of elementary functions
for special values of s.

4 Pseudodifferential Dirichlet Problems

In this Section, we introduce the family of problems we aim to solve. Let A :
Hs(Γ ) → H−s(Γ ) be a continuous operator of order 2s on an n-dimensional Cm,σ-
regular Riemannian manifold Γ , |s| ≤ m + σ. Examples include pseudodifferential
operators of order 2s [28, Chapter 7–8], as well as their generalizations like the
weakly or hypersingular boundary integral operators on a manifold Γ with edges or
corners, or Riesz potentials in potential theory.

Recall the Dirichlet problem for A in a domain Ω ⊂ Γ from (1), which is formally
given by

{
Au = f in Ω,

u = 0 in Γ \Ω.

The weak formulation of Problem (1) involves the bilinear form aA on C∞
0 (Ω),

defined by
aA(u, v) := 〈Au, v〉Γ = 〈Au, v〉Ω . (15)

From the mapping properties of A and the fact that H̃s(Ω) ⊂ Hs(Γ ), we note

|aA(u, v)| ≤ CA‖u‖H̃s(Ω)‖v‖H̃s(Ω) .

Thus, by continuity, aA extends to a bilinear form on H̃s(Ω). Then, for f ∈
H−s(Ω), we obtain the following weak formulation of the homogeneous Dirichlet

problem (1): Find u ∈ H̃s(Ω), such that

aA(u, v) = 〈f, v〉 , ∀v ∈ H̃s(Ω). (16)

For simplicity, we assume that aA satisfies the inf-sup condition

supv∈H̃s(Ω)

aA(u, v)

‖v‖H̃s(Ω)

≥ βA‖u‖H̃s(Ω) (17)

for all u ∈ H̃s(Ω), and some βA > 0.
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Remark 5 We remind the reader that ellipticity of the bilinear form aA is sufficient
for the inf-sup condition (17) to hold. Ellipticity of nonlocal Dirichlet problems is
discussed in [22], for example.

On the other hand, coercive pseudodifferential boundary problems, as the bound-
ary integral formulations of the Helmholtz equation, also satisfy the inf-sup con-
dition (17). Indeed, G̊arding inequalities are easily discussed when A is a pseu-
dodifferential operator of order 2s on Γ with symbol pA(x, ξ) [29]. If A satisfies
pA(x, ξ) ≥ c|ξ|2s with c > 0, then for any s̃ < s the associated bilinear form satisfies
a G̊arding inequality on Γ ,

〈Au, u〉Γ ≥ c̃A‖u‖2Hs(Γ ) − C̃A‖u‖2Hs̃(Γ )

for some c̃A, C̃A > 0, see [31, Theorem B.4]. By restriction to u ∈ H̃s(Ω), a G̊arding
inequality is satisfied by aA, and the inf-sup condition (17) then holds on the com-
plement of a finite dimensional kernel.

In the following we assume that Ω is diffeomorphic to the unit ball B1 ⊂ R
n

under a Cm,σ-diffeomorphism χ : B1 → Ω. For |s| ≤ m + σ, by the chain rule it
induces an isomorphism χ∗ : H−s(Ω)

∼−→ H−s(B1) by composition with χ. From χ∗

and the bilinear form bs on B1 defined by Boggio’s kernel (10), we obtain a bilinear
form on Ω:

bs,χ(u, v) := bs(χ
∗u, χ∗v). (18)

The proof of the next Lemma then follows from the continuity and ellipticity of the
bilinear form bs, provided in Lemma 3.

Lemma 4 For Re(s) > −n
2 the bilinear form bs,χ defined in (18) extends to a

continuous and elliptic bilinear form bs,χ : H−s(Ω)×H−s(Ω) → R. More precisely,

there exist Cs,χ, βs,χ > 0, such that

bs,χ(u, v) ≤ Cs,χ‖u‖H−s(Ω)‖v‖H−s(Ω) , bs,χ(u, u) ≥ βs,χ‖u‖2H−s(Ω).

Given its mapping and pseudospectral properties, the operatorBs,χ : H−s(Ω)
∼−→

H̃s(Ω) associated to bs,χ will be used to build a suitable preconditioner for the ho-
mogeneous Dirichlet problem (16).

Remark 6 If (17) does not hold on H̃(Ω) but on the complement of a finite di-
mensional kernel, one can still use the operator Bs,χ to build a suitable operator
preconditioner. We refer to [52] for a detailed discussion.

5 Preconditioning and Discretization

As we saw in the previous section, the bilinear forms aA and bs,χ are continuous and
satisfy inf-sup conditions in their corresponding spaces. Moreover, their associated
operators A and Bs,χ are isomorphisms which map in opposite directions. Their

composition Bs,χA : H̃s(Ω) → H̃s(Ω) therefore is an endomorphism.
In this section, we discuss the missing piece to properly apply the operator pre-

conditioning theory: We look for adequate discretizations such that the composition
Bs,χA remains well-conditioned in the discrete setting, and thereby defines an opti-
mal operator preconditioner. We follow the approach from [13, Section 1.2.2], [32].

Define the bilinear form d : H̃s(Ω) ×H−s(Ω) → R as

d(v, ϕ) := 〈v , ϕ〉Ω , v ∈ H̃s(Ω), ϕ ∈ H−s(Ω),

where 〈· , ·〉Ω denotes the duality pairing from Section 2.
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Let {Th}h be a family of triangulations ofΩ, whose members are labelled by their

mesh width h. Let Ṽh ⊂ H̃s(Ω) and Wh ⊂ H−s(Ω) be conforming finite element
spaces associated to Th. We assume that the restrictions of the bilinear forms aA

and d to these finite dimensional spaces satisfy an inf-sup condition uniformly in h:

sup
vh∈Ṽh

aA(uh, vh)

‖vh‖H̃s(Ω)

≥ βA‖uh‖H̃s(Ω), for all uh ∈ Ṽh, (19)

sup
ϕh∈Wh

d(vh, ϕh)

‖ϕh‖H−s(Ω)
≥ βd‖vh‖H̃s(Ω), for all vh ∈ Ṽh, (20)

with βA, βd > 0 independent of h. Due to ellipticity, an analogous inf-sup condition
for bs,χ holds by Lemma 4.

Then, for any sets of bases

Ṽh = span {ψi}Ni=1 and Wh = span {φj}Mj=1

such that
N := dim Ṽh = dimWh =:M, (21)

the Galerkin matrices

Ai,j := aA(ψi, ψj), Bi,j := bs,χ(φi, φj), Di,j := d(ψi, φj),

satisfy the following bound for the spectral condition number

κ
(
D−1BD−TA

)
≤ Cs,χCA‖d‖2

βAβs,χβ2
d

. (22)

Here ‖d‖ is the operator norm of d [32, Theorem 2.1].
We propose the preconditioner

P := D−1BD−T , (23)

and point out that we only need to choose Ṽh and Wh such that (20) and (21) are
guaranteed.
As a consequence of the general framework for operator preconditioning [32, Theo-
rem 2.1] we obtain:

Theorem 2 Let A be the Galerkin matrix of A and P the preconditioner in (23).
Then there exists a constant C > 0 independent of h and such that for any dis-

cretization satisfying (19), (20) and (21) the spectral condition number κ (PA) is

bounded by C.

In the following, we illustrate how these assumptions can be met on common dis-
cretizations by triangular meshes.

5.1 Discretization

Let us begin by motivating the dicussion and reminding the reader that solutions to
(1) feature edge singularities, and can also have corner singularities when Ω is not
smooth. These singularities are analogous to those for the fractional Laplacian for
s ∈ (0, 1): Even when ∂Ω is smooth, [30, Theorem 4] shows that the solution u to (1)
behaves like u(x) ∼ dist(x, ∂Ω)s in a neighborhood of ∂Ω. Similarly, near a corner
C of a polygon u(x) ∼ dist(x,C)λ, where the exponent λ depends on s and the
geometry of the corner [24]. When discretizing with low-order finite elements, these
singularities are often resolved by local refinements to recover optimal convergence
rates.
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Consequently, it makes sense that preconditioners devised for these kind of prob-
lems are required to work on meshes which are not quasi-uniform. While other pre-
conditioners have been extensively studied on locally refined meshes [5,19,21,41],
this analysis is still incomplete for operator preconditioning.

Usually, local refinements are implemented via two strategies:

1. Using a priori error convergence knowledge to choose suitable algebraically or
geometrically graded meshes;

2. Employing a posteriori error estimates to implement adaptively refined meshes.

We remark that both approaches are broadly used in the numerical solution of
PDEs and relevant for the problems this article is interested in. Moreover, from a
practical point of view, and since we aim for a general preconditioner that can be
used for a large range of problems of the form (1), we take pains to ensure that the
proposed preconditioner works for both refinement strategies. In order to achieve
this, we exploit that Theorem 2 tells us exactly which conditions we need to verify
to make this happen.

In the following we restrict to the 2-dimensional case, n = 2. For simplicity of
notation, assume that Γ is a polyhedral surface and Ω has a polygonal boundary.
Let {Th}h be a family of triangulations of Ω, and let Sp(Th) the finite element spaces
consisting of piecewise polynomial functions of degree p on a mesh Th (continuous

for p ≥ 1). We choose Ṽh = Sp(Th) ∩ H̃s(Ω).
When |s| ≤ 1, the requirements (20) and (21) are known to be satisfied for a

wide class of discretizations based on dual meshes Ť h of Th, with Wh = Sq(Ť h) and
q suitably chosen depending on p [51, Chapter 2]. A typical example of the possible
combinations of degrees p and q would be (p, q) = (1, 0) for 0 < s ≤ 1. We note that
the results for such primal-dual discretizations include quasi-uniform meshes and a
broad family of non-uniform meshes generated via the first local refinement strategy
described above. Indeed, when |s| ≤ 1 and n = 1, one can prove that (20) holds
on shape regular algebraically 2-graded meshes, and shape regular geometrically
r-graded meshes with some conditions on the grading parameter r following the
arguments from [33, Section 4.3]. For higher dimensions, one typically verifies this
numerically.. However, the stability requirement (20) has not been shown for meshes
generated via the second local refinement strategy. We dedicate the next subsection
to address this question.

On the other hand, recent work by [53,54] offers an alternative yet suitable

construction for Ṽh and Wh which avoids the dual mesh approach. It works for
p = 0, 1 and also higher order polynomials. Furthermore, it can also tackle non-
uniform meshes with the advantage that it requires no mesh conditions besides the
so-called K-mesh property.

For s > 1, there have been no results to the best of the authors’ knowledge.

5.2 Stability of primal-dual discretization on locally refined meshes

In this section, we prove for the first time that operator preconditioning with stan-
dard primal-dual finite element discretization also leads to bounded condition num-
bers for adaptively refined meshes.

We believe this is an interesting result on its own account. On the one hand,
one may argue that adaptive refinements are particularly relevant when thinking
on a general preconditioning strategy, as they can be implemented with the same
generality as the preconditioner itself (i.e., no a priori information about the geom-
etry, like smoothness or symmetry, is needed to deliver an optimal output). On the
other hand, this result also implies the H1–stability of a generalized L2–projection,
a fundamental question of independent interest [7,12,50].
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As an extensive presentation of adaptivity is outside the purposes of this article,
we focus this section on key ideas and keep presentation as concise as possible to
communicate this novel and relevant extension to a general audience. Nevertheless,
the interested reader may find the technical details and proofs in Appendix A.

As a proof of concept, we address this question for operator preconditioning
using classical primal-dual discretization Ṽh = S

1(Th) ∩ H̃s(Ω) ⊂ H̃s(Ω) and
Wh = S0(Ťh) ⊂ H−s(Ω) for 0 ≤ s ≤ 1, as introduced in subsection 5.1 1. By

construction of Ṽh and Wh, (19) and (21) hold. Therefore, we only need to show
that the stability requirement (20) is satisfied with the chosen discretizations to be
able to use Theorem 2 on adaptively refined meshes. In order to do this, we briefly
introduce some general notions about adaptivity.

Given an initial triangulation T (0)
h , the adaptive algorithm generates a sequence

T (ℓ)
h of triangulations based on error indicators η(ℓ)(τ), τ ∈ T (ℓ)

h , a refinement
criterion and a refinement rule, by following the established sequence of steps:

SOLVE → ESTIMATE → MARK → REFINE.

This procedure is summarized in the following algorithm:

Algorithm A

Inputs: Triangulation T (0)
h , refinement parameter θ ∈ (0, 1), tolerance ε > 0, data

f .
For ℓ = 0, 1, 2, . . .

1. Solve problem (1), for uh on T (ℓ)
h .

2. Compute error indicators η(ℓ)(τ) in each triangle τ ∈ T (ℓ)
h .

3. Stop if
∑

k η
(ℓ)(τk) ≤ ε.

4. Find η
(ℓ)
max = maxτ η

(ℓ)(τ).

5. Mark all τ with η(ℓ)(τ) > θη
(ℓ)
max.

6. Refine each marked triangle to obtain new mesh T (ℓ+1)
h .

end

Output: Solution uh.

Let us assume that we start with an initial triangulation T (0)
h such that (20)

holds for our choice of Ṽh and Wh. Clearly, step 6 is the only stage in Algorithm A
where one could alter (20) for subsequent refinements. Therefore, this is the part
one has to consider carefully. For the sake of illustration, in this paper we will show
how to do with this for the red-green refinement (see Appendix A for details).

Lemma 5 Let T (0)
h be a shape regular and locally quasi-uniform initial triangula-

tion of Ω. We consider a family of meshes Ξ := {T (ℓ)
h }ℓ∈N generated from T (0)

h

by the adaptive refinement described in Algorithm A using red-green refinement.

Let 0 ≤ s ≤ 1. On each level ℓ ∈ N, we choose Ṽℓ = S1(T (ℓ)
h ) ∩ H̃s(Ω) and

Wℓ = S0(Ťh(ℓ)).
Then, under some mild conditions2 on the local quasi-uniformity constant of

T (0)
h , the following inf-sup constant holds

sup
ϕh∈Wℓ

d(vh, ϕh)

‖ϕh‖H−s(Ω)

≥ βd‖vh‖H̃s(Ω), for all vh ∈ Ṽℓ, (24)

1 It is worth pointing out that the same arguments apply to show stability for the case Vh =
S1(Th) ⊂ Hs(Ω) and W̃h = S0(Ťh) ⊂ H̃−s(Ω) for 0 < s ≤ 1. By duality arguments, this will also

imply (20) for the combination Ṽh = S0(Th) ∩ H̃
s(Ω) ⊂ H̃s(Ω) and Wh = S1(Ťh) ⊂ H−s(Ω) for

−1 ≤ s ≤ 0.
2 condition (27) in Appendix A.
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for all T (ℓ)
h ∈ Ξ, and with βd independent of ℓ ∈ N.

The proof of this Lemma, together with the incumbent definitions of shape regu-

larity, local quasi-uniformity and the mild conditions on T (0)
h can be found in the

Appendix A.

Let us now discuss the result for the generalized L2–projection. Let Th be a
mesh of Ω. As before, we consider finite dimensional spaces Ṽh ⊂ H̃s(Ω) and

Wh ⊂ H−s(Ω) for 0 ≤ s ≤ 1. We define a generalized L2–projection Q̃h,Th
:

L2(Ω) → Ṽh ⊂ L2(Γ ) by a Galerkin–Petrov variational problem,

〈
Q̃h,Th

u,wh

〉

Ω
= 〈u,wh〉Ω for all wh ∈ Wh . (25)

As a direct consequence of Lemma 5 and [51, Theorem 2.2], we obtain:

Corollary 1 Consider a shape regular triangulation T (0)
h under the same assump-

tions as in Lemma 5. Then Q̃
h,T (ℓ)

h

is bounded on H̃s(Ω), with operator norm

‖Q̃
h,T (ℓ)

h

‖L(Hs(Ω)) < C for all ℓ ∈ N with a constant C independent of ℓ.

Related results for the orthogonal L2–projection have been of interest, e.g. in the
analysis of adaptive mesh refinement procedures.

Remark 7 By [7] the stability condition (20) is satisfied when Wh = Ṽh for s > 0.
Therefore, Theorem 2 also holds in that case.

5.3 Opposite order preconditioning

As an alternative to our preconditioner, if A is of order 2s, one may consider to
use the bilinear form c−s arising from the Dirichlet problem (15) for the operator
(−∆)−s to build a preconditioner for aA. In the case of boundary integral equations
this approach is well-established as Calderón preconditioning, specially on closed
surfaces. For the boundary problems here, we note that the resulting spectral con-
dition number may not be h-independent, due to the mismatch of the mapping
properties of the operators. Indeed, we obtain the following condition number bound
in terms of h.

Proposition 2 Let |s| ∈ (1/2, 1] and set Ṽh = Sp(Th)∩ H̃s(Ω), p = 0, 1. Let C̃s be

the Galerkin matrix induced by c−s in Ṽh. Then, the following bound on the spectral

condition number is satisfied when h is sufficiently small:

κ
(
D−1C̃sD

−TA
)
≤ O(h−2|s|+1)

CγCA‖d‖2
βAβγβ2

d

, (26)

where Cγ and βγ are the continuity and ellipticity constants of c−s.

The proof follows similar arguments to those in [13] and is provided in Appendix B.
For s = ± 1

2 a logarithmic growth of the condition number in h is well-known for
Calderón preconditioning on screens [33,35].
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6 Numerical Experiments

In order to test our preconditioner, we study different pseudodifferential operators
A and implement their bilinear forms aA in Ṽh = S1(Th) ∩ H̃s(Ω) as described in
[4,25]. The bilinear form bs,χ is implemented in Wh = S

0(T ′
h) on the corresponding

(barycentric) dual mesh [37, Section 3].
When operators have singular kernels, as it is the case for bs,χ, the implemen-

tations of the bilinear forms split the integral into a singular part near x = y and
a regular complement. The singular integral is evaluated using a composite graded
quadrature rule, which converts the integral over two elements into an integral
over [0, 1]4 and resolves the singular integral with a geometrically graded composite
quadrature rule. The regular part is evaluated using a standard composite quadra-
ture rule. This approach is standard in boundary element methods, see [49, Chapter
5] 3.

For the specific values of s used in the experiments we employ formulas from Re-
mark 3. For general values of s, due to Lemma 1, one can make use of computational
libraries such as [45, Section 4] for the hypergeometric function 2F1.

Numerical results for the weakly singular and hypersingular operators on open
curves and surfaces, where s = ± 1

2 , may be found in [33,35].
Here we perform numerical experiments for pseudodifferential operators related

to the fractional Laplacian on quasi-uniform meshes; on graded triangular meshes,
which lead to quasi-optimal convergence rates [2,24]; and on adaptively generated
triangular meshes obtained using Algorithm A. In all cases we report the achieved
spectral condition numbers (denoted as κ) and iterations needed to solve the lin-
ear system (labeled It.). We use conjugate gradient (CG) when A is symmetric,
and GMRES when it is not. N denotes the number of degrees of freedom (dofs).
The CG/GMRES iterations were counted until the relative Euclidean norm of the
residual was 10−10.

Note that we report condition numbers and iteration counts to measure the
performance of our preconditioner. A theoretical discussion of runtime complex-
ity is beyond the scope of this work. We mention, however, that implementations
which avoid the barycentric dual mesh have been investigated in [53,54] and multi-
level preconditioners for negative order operators with linear complexity have been
addressed in [55].

Remark 8 For the numerical experiments below, we follow Algorithm A with the
following considerations:

– In step 2, we use the residual error indicators introduced in [4,25]. This means:
For α > 0, we approximate the dual norms ‖vh‖H−α(Ω) and ‖vh‖Hα(Ω) by the
scaled L2-norms hα‖vh‖L2(Ω) and h−α‖vh‖L2(Ω) , respectively. We define the

local error indicators η(ℓ)(τk) for all elements τk ∈ T (ℓ)
h :

η(ℓ)(τk)
2 :=

∑

i∈Nh

h2si ‖(rh − r̄h)ϕi‖2L2(ωi)
,

where, Nh is the set of all vertices in T (ℓ)
h , rh := f−(−∆)suh, and r̄h :=

∫
ωi

rhϕi∫
ωi

ϕi

for the interior vertices i ∈ Nh, and r̄h = 0 otherwise. Here, ϕi is a piecewise
linear basis function in the span of Ṽh and ωi := supp ϕi. All integrals are
evaluated using a Gauss-Legendre quadrature.

– In step 6, we use red-green refinement subject to the 1–irregularity and 2–
neighbour rules (see Definitions 3–4 in Appendix A or [8] for further details).

3
MATLAB code for the assembly of the preconditioner for s > 0 is available on

github.com/nc09jsto/preconditionercode. The case s = −1/2 was assembled using BETL2 [36], which
currently cannot handle adaptive refinements.
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(a) Quasi-uniform (b) 2-graded (c) adaptively generated

Fig. 1: Meshes for B1.

Example 1 We consider the discretization of the Dirichlet problem (16) with A =
(−∆)s and f = 1 in the unit disk B1 ⊂ R2. The exact solution for this problem

is given by u(x) = an,s(1 − |x|2)s, where an,s :=
Γ(n/2)

22sΓ(1 + s)Γ(s+ n/2)
. B1 is

approximated by three meshes: quasi-uniform, 2-graded, and adaptively generated
triangular meshes as depicted in Figure 1. We consider fractional exponents s =
− 1

2 ,
1
4 ,

7
10 ,

3
4 , to indicate the general applicability of our methods.

Tables 1–3 show the results of the Galerkin matrix A and its preconditioned
form PA for the different fractional exponents on the three families of meshes under
consideration.

On all three classes of meshes, the condition number and the number of solver
iterations for A show the expected strong growth when increasing N , while they
are small and bounded for PA. We remark that the reduction of CG iterations
achieved by our preconditioner is significant, with a higher reduction for larger
|s|. Furthermore, κ(PA) remains almost constant across the refinement levels when
s = 1

4 . We note, however, a very slow growth for s = 7
10 and s = 3

4 for the considered
dofs. For s = − 1

2 we obtain larger condition numbers consistent with previous
observations [35]. We note the larger condition number for the last data point on 2-
graded meshes of the preconditioned problem. We attribute this to a discretization
error of the particular implementation. Even though we use the exact inverse on
the unit disk to build our preconditioner, it is worth noticing that in this case
PA achieves only an approximate identity after discretization. This approximation
error, together with the tolerance of 10−10 for the residual, explain why condition
numbers and CG iteration counts are larger than 1.

Table 1: Condition numbers and CG iterations on quasi-uniform mesh (Figure 1a),
Example 1.

s = −1/2 s = 1/4 s = 7/10 s = 3/4

N A PA A PA A PA A PA

κ It. κ It. κ It. κ It. κ It. κ It. κ It. κ It.
123 35.63 27 2.61 12 1.98 12 1.16 6 6.85 15 1.50 9 8.24 16 1.54 10
492 73.58 40 2.69 12 2.65 13 1.20 7 20.87 28 1.52 10 26.99 30 1.54 10
1968 153.95 56 2.74 13 4.11 16 1.25 7 62.10 47 1.56 10 87.24 51 1.72 11
7872 316.74 78 2.78 13 6.34 21 1.26 7 176.19 79 1.76 11 268.02 92 2.14 12
31488 643.01 131 2.83 14 9.36 27 1.28 7 478.78 135 1.93 11 784.22 160 2.57 12

To gain further insight about this small growth in κ(PA), we also inspect the
eigenvalues of A and PA for the two families of meshes where this behaviour is
more notorious. These are displayed in Figure 2. We see in plots (a), (c), (e) that
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Table 2: Condition numbers and CG iterations on 2-graded mesh (Figure 1b), Ex-
ample 1.

s = −1/2 s = 1/4 s = 7/10 s = 3/4

N A PA A PA A PA A PA

κ It. κ It. κ It. κ It. κ It. κ It. κ It. κ It.
123 35.63 27 2.61 12 8.41 20 1.14 6 4.53 16 1.72 11 5.17 16 1.94 12
1068 8190.98 255 4.92 20 23.33 36 1.21 7 28.33 32 2.42 14 33.57 34 2.92 14
4645 24657.62 431 6.17 22 41.63 44 1.25 7 106.53 70 2.85 14 133.26 75 3.65 15
13680 58165.89 620 9.25 26 63.52 48 1.27 7 282.57 99 2.97 14 364.14 116 3.87 16

Table 3: Condition numbers and CG iterations on adaptively generated meshes
(Figure 1c), Example 1.

s = 1/4 s = 7/10 s = 3/4

N A PA A PA A PA

κ It. κ It. κ It. κ It. κ It. κ It.
123 1.98 12 1.16 6 6.85 15 1.50 10 8.24 16 1.54 9
238 5.39 22 1.17 6 7.82 21 1.60 10 9.22 21 1.67 11
518 15.46 37 1.20 7 11.27 28 1.76 11 12.55 29 1.89 12
1098 45.30 58 1.21 7 17.53 37 1.83 11 18.15 38 2.01 12
2278 131.77 85 1.23 7 28.28 48 1.91 12 27.17 48 2.16 13
4658 386.95 121 1.26 8 46.65 65 2.00 12 41.48 61 2.35 14
9438 1138.72 165 1.27 8 78.41 85 2.08 13 64.30 77 2.50 14

the spectra on quasi-uniform meshes are as expected, while on graded meshes, plots
(b), (d), (f) reveal that the clustering of eigenvalues for the preconditioned matrix
still increases slowly with the dofs. As the slope of this small growth tends to 0
when augmenting the number of dofs, we attribute it to the preasymptotic regime.

The next example illustrates the performance of the preconditioner defined by
the bilinear form (18) on a domain bi-Lipschitz to B1.

Example 2 We consider the discretization of the Dirichlet problem (16) with A =
(−∆)s and f = 1 in the L-shaped domain Ω = [−1, 3]2 \ [1, 3]2 ⊂ R2 depicted in
Figure 4a. We examine fractional exponents s = 1

4 ,
1
2 ,

3
4 on quasi-uniform, geometri-

cally and algebraically graded meshes, see Figure 3 for an illustration. A numerical
solution on a mesh with 3968 elements is shown in Figure 4b. The preconditioner
is computed using the radial projection χ from the L-shaped domain to B1. Here,

χ : Ω → B1, χ(x) =
1

r(x)

x

|x| ,

where r(x) := sup{λ ∈ [1,∞) : λx ∈ Ω}.

Tables 4–7 display the results of the Galerkin matrix A and its preconditioned
form PA on a sequence of corresponding meshes. As in the unit disk B1 in Example
1, the condition number and the number of solver iterations for A show a strong
increase with augmenting the dofs N , while the growth is small and of slope tend-
ing to 0 for PA. We also note that the size of the condition numbers is slightly
bigger than those from Example 1. This is a consequence of the fact that the
preconditioner is no longer defined from an exact solution operator to the contin-
uous problem, and thus the bound on the condition number is h-independent, yet
larger than in the previous example. Indeed, as predicted by the theory, we see that
the condition numbers and CG iterations obtained with the preconditioner remain
small and bounded on quasi-uniform and geometrically graded meshes. However,
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(a) Uniform mesh, s = 1
4

10 2 10 3 10 4

Number of triangles

10 -4

10 -2

10 0

E
ig

en
va

lu
es

(b) 2–graded mesh, s = 1
4

(c) Uniform mesh, s = 7
10

(d) 2–graded mesh, s = 7
10

(e) Uniform mesh, s = 3
4

(f) 2–graded mesh, s = 3
4

Fig. 2: Eigenvalues of A (blue), resp. PA (red), Example 1.

the condition numbers of PA for the algebraically graded meshes (Figure 3c) do not
remain bounded. This is consistent with the theory, which applies to shape regular
meshes, a condition not satisfied here. In order to illustrate this further, we also
study a shape regular variant of the algebraically graded meshes (Figure 3d). The
obtained results are reported in Table 7, which reveals that the condition numbers
are bounded again. We point out that the assumptions of Theorem 2 are satis-
fied under certain mesh conditions introduced in Appendix A.2. The algebraically
graded meshes from Figure 3c) violate the shape regularity condition (C1) (and
also condition (C3) for s = 3

4 ), while all other meshes considered verify all mesh
conditions.

Example 3 We consider the discretization of the Dirichlet problem (16) with A =
(−∆)s and f = 1 in rectangular domains [−a, a]× [−1, 1] ⊂ R2 with varying aspect
ratio a : 1. We examine fractional exponents s = 1

4 ,
1
2 ,

3
4 on quasi-uniform meshes,

see Figure 5 for illustration. The preconditioner is computed using the radial pro-
jection χ from the rectangular domain to B1(0).
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(a) Quasi-uniform (b) Geometrically
graded

(c) Algebraically
2-graded

(d) Algebraically
2-graded shape regular

Fig. 3: Meshes used for L-shaped domain, Example 2.

Table 4: Condition numbers and CG iterations on quasi-uniform meshes for L-shape
(Figure 3a), Example 2.

s = 1/4 s = 1/2 s = 3/4

N A PA A PA A PA

κ It. κ It. κ It. κ It. κ It. κ It.
248 2.35 15 1.24 8 4.00 16 1.48 9 8.90 23 2.35 12
992 2.86 16 1.27 8 8.22 24 1.58 9 26.22 40 2.68 13
3968 4.25 19 1.30 8 17.02 36 1.65 10 77.35 70 2.92 13
15872 6.73 24 1.32 8 35.00 52 1.69 10 226.56 118 3.11 14

Table 5: Condition numbers and CG iterations on 2–graded (geometrically) meshes
for L-shape (Figure 3b), Example 2.

s = 1/4 s = 1/2 s = 3/4

N A PA A PA A PA

κ It. κ It. κ It. κ It. κ It. κ It.
288 4.28 20 1.24 8 7.08 21 1.51 9 14.06 26 2.36 13
720 12.53 34 1.29 8 18.65 34 1.60 10 35.02 38 2.46 14
1632 36.44 53 1.33 9 47.03 50 1.68 11 82.34 57 2.56 15
3504 105.28 76 1.37 9 114.49 76 1.75 11 185.29 83 2.67 15
7296 302.23 111 1.39 10 271.20 109 1.79 12 403.92 122 2.75 15
14928 862.91 162 1.39 10 628.32 155 1.76 11 859.51 172 2.84 15

Table 6: Condition numbers and CG iterations on 2–graded (algebraically) meshes
for L-shape (Figure 3c), Example 2.

s = 1/4 s = 1/2 s = 3/4

N A PA A PA A PA

κ It. κ It. κ It. κ It. κ It. κ It.
384 12.49 34 1.36 9 8.91 28 1.78 12 28.72 37 4.30 22
1536 41.86 61 1.64 10 21.51 46 2.81 16 146.66 82 26.52 46
4704 105.76 94 1.94 12 47.29 67 3.76 18 559.48 159 91.34 161
16224 283.50 153 2.65 13 124.63 104 5.17 19 2726.63 486 695.92 443

Tables 8–10 display the results of the Galerkin matrix A and its preconditioned
form PA on a sequence of corresponding meshes. In most cases, the preconditioner
performs qualitatively the same as we already observed for Example 2: the condition
numbers and the number of solver iterations for PA tend to remain constant with
respect to h.

The novelty here is how results change when the aspect ratio a : 1 increases.
Indeed, as expected from the theory, condition numbers, and consequently CG itera-
tion counts, grow when the “distortion” from the unit disk is more significant, i.e. for



Optimal operator preconditioning for pseudodifferential boundary problems 21

Table 7: Condition numbers and CG iterations on 2–graded (algebraically shape
regular) meshes for L-shape (Figure 3d), Example 2.

s = 1/4 s = 1/2 s = 3/4

N A PA A PA A PA

κ It. κ It. κ It. κ It. κ It. κ It.
528 13.12 36 1.28 8 12.99 31 1.67 11 25.12 33 2.64 15
912 19.15 44 1.30 8 19.78 37 1.71 11 42.33 43 2.87 16
2736 43.93 66 1.34 9 44.51 58 1.78 12 111.22 76 4.01 19
4920 63.79 79 1.36 9 67.06 73 1.79 12 183.65 99 4.22 19
9072 97.20 96 1.37 9 102.45 91 1.76 12 306.14 129 4.39 20
14784 140.13 114 1.38 9 142.72 108 1.73 11 458.32 161 4.49 20

(a) (b)

Fig. 4: Numerical solutions for Example 2 (a) and Example 4 (b) with s = 3
4 .

(a) 2 : 1 (b) 4 : 1

Fig. 5: Meshes for rectangles with varied aspect ratio.

bigger aspect ratios. Moreover, how the transformation impacts condition numbers
depends on the related Sobolev norms, reason why they are actually s-dependent.
This is clearly reflected in our experiments where the difference between the re-
sults when the aspect ratio is 1 : 1 and 16 : 1 is relatively small for s = 0.25, but
notorious for s = 0.75. Nevertheless, as the original system for these distorted ge-
ometries are more ill-conditioned, PA still reduces the number of iteration counts
in a meaningful manner.

Although it is hard to draw general conclusions, with these results we expect
to convey two messages: On the one hand, we highlight the robustness of this pre-
conditioning approach. On the other hand, we warn the reader that there may be
geometries for which, despite of the quasi-uniform mesh on the original geometry,
“the mapping trick” from (18) can lead to large, yet bounded, condition numbers
and thereby may no longer be a practical strategy to construct a preconditioner.

As a final example, we apply the preconditioner to a non-symmetric model
problem motivated by the fractional Patlak-Keller-Segel equation for chemotaxis
[16].
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Table 8: Condition numbers and CG iterations on quasi-uniform mesh with s = 0.25
and varied aspect ratio a : 1, Example 3.

1 : 1 2 : 1 4 : 1 8 : 1 16 : 1

h A PA A PA A PA A PA A PA

κ It. κ It. κ It. κ It. κ It. κ It. κ It. κ It. κ It. κ It.
1

5
√

2
1.90 12 1.98 11 2.06 12 2.05 11 2.22 12 2.16 12 2.30 13 2.29 12 2.34 14 2.43 13

1
10

√
2

2.54 12 2.05 11 2.91 13 2.12 12 3.14 14 2.25 12 3.26 16 2.41 13 3.32 18 2.56 14
1

15
√

2
3.11 13 2.09 12 3.57 15 2.15 12 3.85 16 2.28 12 4.00 19 2.45 13 4.15 20 2.62 14

1
20

√
2

3.59 14 2.10 12 4.12 16 2.17 12 4.45 18 2.31 12 4.62 20 2.49 14 4.78 21 2.67 14

Table 9: Condition numbers and CG iterations on quasi-uniform mesh with s = 0.50
and varied aspect ratio a : 1, Example 3.

1 : 1 2 : 1 4 : 1 8 : 1 16 : 1

h A PA A PA A PA A PA A PA

κ It. κ It. κ It. κ It. κ It. κ It. κ It. κ It. κ It. κ It.
1

5
√

2
4.35 14 1.81 11 5.64 17 1.92 11 6.37 20 2.25 12 6.68 23 2.74 13 6.80 27 3.41 15

1
10

√
2

8.70 20 1.83 11 11.30 25 1.96 12 12.79 30 2.32 13 13.42 35 2.91 15 13.72 40 3.64 17
1

15
√

2
13.07 25 1.84 11 16.98 31 1.97 11 19.22 37 2.36 13 20.19 45 2.99 15 20.63 49 3.77 17

1
20

√
2

17.44 29 1.85 11 22.66 36 1.99 12 25.66 42 2.39 14 26.97 52 3.05 15 27.48 54 3.86 17

Table 10: Condition numbers and CG iterations on quasi-uniform mesh with s =
0.75 and varied aspect ratio a : 1, Example 3.

1 : 1 2 : 1 4 : 1 8 : 1 16 : 1

h A PA A PA A PA A PA A PA

κ It. κ It. κ It. κ It. κ It. κ It. κ It. κ It. κ It. κ It.
1

5
√

2
13.16 22 1.70 11 19.06 30 1.99 12 22.13 37 3.62 14 23.23 44 11.56 17 23.60 53 39.03 25

1
10

√
2

37.19 37 1.75 12 53.94 51 2.05 14 62.68 62 3.99 16 65.87 76 17.33 20 67.36 91 18.12 30
1

15
√

2
68.36 50 1.81 13 99.16 68 2.11 15 115.27 83 4.21 17 121.21 103 21.58 22 123.93 124 20.09 34

1
20

√
2
105.28 62 1.87 14 152.74 85 2.15 15 177.61 107 4.35 18 186.92 129 24.94 24 189.17 147 21.84 36

Example 4 We consider the discretization of the Dirichlet problem (16) with A =
(−∆)s + c · ∇, c = (0.3, 0)T and f = 1 on the unit disk B1 ⊂ R2 with s = 1

2 ,
s = 7

10 and s = 3
4 . Quasi-uniform and algebraically 2-graded meshes are considered.

A numerical solution on a uniform mesh with 7872 elements is depicted in Figure 4.

Tables 11 and 12 display the condition numbers of the Galerkin matrix A and
its preconditioned form PA for the different fractional exponents on sequences of
quasi-uniform meshes, and on algebraically graded meshes. The number of GMRES
iterations is given for this non-symmetric problem.

As in the earlier examples, on both quasi-uniform and graded meshes the condi-
tion number and the number of solver iterations for A show a strong increase with
N . For PA they are bounded with a slight growth, with numbers very close to those
in Example 1 for s = 7

10 ,
3
4 . Note that for s = 1

2 the gradient term is of the same
order as (−∆)s.
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Table 11: Condition numbers and GMRES iterations on quasi-uniform mesh, Ex-
ample 4.

s = 1/2 s = 7/10 s = 3/4

N A PA A PA A PA

κ It. κ It. κ It. κ It. κ It. κ It.
123 3.11 14 1.08 12 6.69 17 1.48 11 8.11 18 1.49 11
492 7.02 22 1.15 12 20.39 29 1.50 11 26.59 32 1.53 11
1968 15.08 35 1.19 12 60.87 48 1.54 11 85.93 55 1.71 11
7872 31.85 54 1.22 13 172.73 83 1.77 11 264.01 95 2.15 12

Table 12: Condition numbers and GMRES iterations on graded mesh, Example 4.

s = 1/2 s = 7/10 s = 3/4

N A PA A PA A PA

κ It. κ It. κ It. κ It. κ It. κ It.
123 3.31 19 1.17 12 4.42 17 1.70 12 5.07 18 1.93 12
1068 14.24 31 1.26 12 27.78 36 2.39 14 33.07 38 2.91 15
4645 44.15 54 1.34 12 104.49 69 2.84 15 131.43 79 3.64 16
13680 101.41 73 1.37 12 277.05 103 2.96 15 358.78 117 3.87 16
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A Proof of Results for Operator Preconditioning on Adaptive Meshes

For the sake of presentation, we dedicate the next two subsections to briefly summarize some
key concepts about adaptivity and the mesh conditions we need to fulfill for stability. Finally, we
combine these preliminaries to state and and prove the new results on operator preconditioning in
adaptively refined meshes.

A.1 Adaptivity preliminaries

We begin by reminding the reader of some of the concepts introduced in Section 5.2. Given an

initial triangulation T
(0)
h , the adaptive Algorithm A generates a sequence T

(ℓ)
h of triangulations

based on error indicators η(ℓ)(τ), τ ∈ T
(ℓ)
h , a refinement criterion and a refinement rule, by

following the established sequence of steps:

SOLVE → ESTIMATE → MARK → REFINE.

There are different refinement rules that one can choose for the step REFINE. We now present
some of the most common ones: red refinement, green refinement, and red-green refinement.

Definition 1 Let T
(ℓ)
h be a triangulation. A triangle τ ∈ T

(ℓ)
h is red refined by connecting edge

midpoints of τ , thus splitting τ into 4 similar triangles.

Definition 2 Let T
(ℓ)
h be a triangulation. A triangle τ ∈ T

(ℓ)
h is green refined by connecting

an edge midpoint with the opposite vertex of τ , thus splitting τ into 2 triangles.

Next, in order to define a red-green refinement, we introduce two related properties.

Definition 3 a) A triangulation T
(ℓ)
h is called 1–irregular if the property

| lev(τk)− lev(τm)| ≤ 1,

holds for any pair of triangles τk, τm ∈ T
(ℓ)
h such that τk ∩ τm 6= ∅.

Here lev(τk) corresponds to the number of refinement steps required to generate τk from the

initial triangulation T
(0)
h .

b) The 2–neighbour rule: Red refine any triangle τk with 2 neighbours that have been red
refined. Two triangles are neighbours, if they have a common edge.

Definition 4 A Red-green refinement for a triangulation T
(ℓ)
h proceeds as follows:

1. Remove edges from any triangles that have been green refined.
2. All marked triangles are red refined.
3. Any triangles with 2 or more red refined neighbours are red refined, by 2–neighbour rule.
4. Any triangles that do not fulfil 1–irregularity rule are further refined.
5. Any triangles with hanging nodes generated during the refinement are green refined.

For further description of the refinement rules, we refer to [8,26].
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Fig. 6: Example of red refined triangle (left) and green refined triangle (right).

Fig. 7: Example of a sequence of red-green refinement. Top element is marked by
(o) and therefore is red refined in the first step. Bottom triangle then has a hanging
node and is green refined in the consequent step.

A.2 Mesh conditions

We recall that we aim to show (20), i.e.

sup
ϕh∈Wh

d(vh , ϕh)

‖ϕh‖H−s(Ω)

≥ βd‖vh‖H̃s(Ω)
, for all vh ∈ Ṽh,

(see Section 5 for notation).
In the case of the discretizations based on dual meshes, this inf-sup stability is a consequence

of three regularity conditions on the triangulation Th, see [51, Chapters 1–2]. We now proceed to
introduce some notation to properly summarize this result.

Let Th be a triangulation of Ω ⊂ Rn. For each triangle τk ∈ Th we define its area∆k :=
∫
τk
dx;

its local element size hk := ∆
1/n
k ; and its diameter dk := supx,y∈τk

|x− y|.

Let ϕj be a piecewise linear basis function in the span of Ṽh. We write ωj := supp ϕj and

define its associated local mesh size ĥj as

ĥj :=
1

#I(j)

∑

m∈I(j)

hm.

Here, I(j) := {m ∈ {1, . . . ,#Th} : τm ∩ ωj 6= ∅} , for j = 1, . . . , N, is the index set of triangles
τm ∈ Th where the basis function ϕj is not identically zero.

Definition 5 For a triangulation Th, we define the following mesh conditions

(C1) Shape regularity: there exists cR > 0 such that for all τk ∈ Th

0 < cR <
hk

dk
< 1.

(C2) Local quasi-uniformity: for all τk, τm ∈ T with τk ∩ τm 6= ∅

hk

hm
≤ cL,

with CL a (uniform) positive constant.
(C3) Local s-dependent condition: there exists c0 > 0 such that for all τ ∈ Th

51

7
−

√ ∑

j∈J(m)

ĥ2sj

∑

j∈J(m)

ĥ−2s
j ≥ c0 > 0,

with J(m) := {i ∈ {1, . . . , N} : ωi ∩ τm 6= ∅} for m = 1, . . . ,#Th, the index set of basis func-
tions ϕi which are not identically zero on triangle τm.
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Theorem A1 ([50, Theorems 2.1 and 2.2]) Let Th be a triangulation of Ω such that (C1), (C2)

and (C3) are satisfied. Consider the primal-dual discretization Ṽh = S1(Th) ∩ H̃
s(Ω) and Wh =

S0(Ťh) for 0 ≤ s ≤ 1 (see subsection 5.1).
Then, the discrete inf-sup condition (20) holds with a positive constant βd independent of h.

A.3 Results on adaptively refined meshes

Now we turn our attention to study these conditions for a sequence of adaptive triangulations
generated by Algorithm A. For this, we write the constants from conditions (C1), (C2) and (C3)

associated to a triangulation T
(ℓ)
h as c

(ℓ)
R , c

(ℓ)
L and c

(ℓ)
0 , respectively.

The next Lemma is the complete version of Lemma 5 introduced in Section 5.2.

Lemma 6 Consider an initial triangulation T
(0)
h satisfying the mesh conditions from Defini-

tion 5, and such that its local quasi-uniformity constant c
(0)
L verifies

c
(0)
L ≤

1

2
4|s|

√
1129

49
≈

2.191/|s|

2
. (27)

Let Ξ := {T
(ℓ)
h }ℓ∈N be a family of meshes generated from T

(0)
h by the adaptive refinement

described in Algorithm A, using red-green refinements. Then (C1), (C2) and (C3) hold for all

T
(ℓ)
h ∈ Ξ for some constants cR, cL, c0 > 0, which are independent of ℓ ∈ N.

In particular, the inf-sup condition (20) holds for |s| ≤ 1, Ṽh = Sp(Th)∩H̃
s(Ω), Wh = Sq(T ′

h),

and for all T
(ℓ)
h independent of ℓ.

Proof The proof proceeds by induction on ℓ. By hypothesis, the initial triangulation T
(0)
h satisfies

(C1) and (C2). Therefore, for the initial triangulation T
(0)
h we only need to check (C3).

For the sake of convenience, let us re-label the basis functions j ∈ J(m) by mi, with i =
1, . . . ,#J(m). We note that maxm #J(m) = 3 and that this is our worst case scenario. Therefore,
it suffices to verify (C3) in this case:

51

7
−

√√√√
3∑

i=1

ĥ2smi

3∑

i=1

ĥ−2s
mi

≥ c0 > 0.

Without loss of generality, let ĥm1 ≥ ĥm2 ≥ ĥm3 . Then

3∑

i=1

ĥ2smi

3∑

i=1

ĥ−2s
mi

= 3 +

(
ĥm1

ĥm2

)2|s|
+

(
ĥm2

ĥm3

)2|s|
+

(
ĥm3

ĥm1

)2|s|

+

(
ĥm1

ĥm3

)2|s|
+

(
ĥm2

ĥm1

)2|s|
+

(
ĥm3

ĥm2

)2|s|

≤ 3 + 2

((
ĥm1

ĥm3

)2|s|
+

(
ĥm2

ĥm2

)2|s|
+

(
ĥm3

ĥm1

)2|s|)
≤ 7 + 2

(
ĥm1

ĥm3

)2|s|
,

where we use the rearrangement inequality. We conclude that (C3) is satisfied for T
(0)
h provided

that (
ĥm1

ĥm3

)2|s|
< 1129

49
. (28)

A simple calculation using the mesh conditions yields
ĥm1

ĥm3

≤ (c
(0)
L )2, so that (28) holds and (C3)

is satisfied for T
(0)
h .

For the inductive step, assume that conditions (C1)–(C3) are satisfied on an adaptively refined

triangulation T
(ℓ)
h using red-green refinements subject to 1–irregularity and 2–neighbour rules. In

order to generate a new triangulation T
(ℓ+1)
h , the appropriate triangles are marked.

We note that red-refinement does not change the shape regularity constant, but green refine-
ment worsens the shape regularity constant by at most a factor of 1√

2
. However, due to the removal

of green edges, the constant does not degenerate as ℓ → ∞. Thus condition (C1) is satisfied with

c
(ℓ+1)
R ≥ 1√

2
c
(0)
R for T

(ℓ+1)
h .

Condition (C2) remains satisfied due to the 1–irregularity condition in the refinement proce-

dure. This restriction guarantees that hi
hj

≤ c
(ℓ+1)
L ≤ 2c

(0)
L .
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As for the initial triangulation T
(0)
h , we know that condition (C3) is satisfied for T

(ℓ+1)
h when

(28) holds. Due to the 1–irregularity condition, we have that
ĥm1

ĥm3

≤ (2c
(0)
L )2, so the estimate (28)

is satisfied provided c
(0)
L < 1

2

(
1129
49

)1/4|s|
.

We conclude that (C1), (C2), (C3) are satisfied for {T
(ℓ)
h }∞ℓ=0 independently of ℓ. ⊓⊔

Remark 9 a) We note that the estimates in Lemma 6 are not sharp. Still, the local quasi-
uniformity assumption on the initial triangulation T (0) becomes more restrictive as |s| in-
creases. Thus, the initial mesh needs to be of increasingly higher regularity for higher values
of |s|.

b) Let Γ⊂Rn be a polyhedral domain which satisfies an interior cone condition. Then the as-

sumptions in Lemma 6 can be satisfied for a sufficiently fine T
(0)
h .

Remark 10 Similar results can be shown for alternative refinement strategies, such as the newest
vertex bisection [20, Section 2.2]. See [57, Chapter 4] for details.

B Proof of Proposition 2

The idea for the proof is like in [13] where the case Wh = Ṽh is shown. Here we generalize the
proof to different discrete test and trial space. For the sake of brevity we will discuss the case when
s ∈ (1/2, 1] and remark that the proof for s ∈ [−1,−1/2) follows analogously. We remind the reader

that in this setting H̃s(Ω) ≡ Hs
0 (Ω) 6= Hs(Ω), but that ‖u‖

H̃s(Ω)
≡ ‖u‖Hs(Ω), ∀u ∈ H̃s(Ω).

Let Th, S
p(Th), p ∈ N be as in Section 5. Moreover, we recall that for this setting we consider

the finite element spaces Ṽh = S1(Th) ∩ H̃s(Ω) and Wh ⊂ H−s(Ω). Additionally, we denote

Vh = S1(Th) ⊂ Hs(Ω) and note that Ṽh ⊂ Vh. Indeed, Ṽh is the space of affine continuous

functions that are zero on the boundary, while Vh is analogous to Ṽh, but admits non-zero values
on ∂Ω.

Let us introduce the generalized L2-projection Q̃h : L2(Ω) → Ṽh for a given u ∈ L2(Ω), as
the solution of the variational problem

〈
Q̃hu , ψh

〉

Ω
= 〈u , ψh〉Ω , ∀ψh ∈ Wh. (29)

From [51, Chapter 2], [37], we know that it satisfies

‖Q̃hu‖H̃s(Ω)
≤ β−1

d
‖u‖

H̃s(Ω)
, ∀u ∈ H̃s(Ω). (30)

where βd is the inf-sup constant from (20).
Given that we are interested in the case where we have a space mismatch, i.e. when u ∈ Hs(Ω)

but u /∈ H̃s(Ω), we additionally prove the following:

Lemma 7 The projection Q̃h satisfies

‖Q̃huh‖Hs(Ω) ≤ (1 +
c2

s− 1/2
h1/2−s)‖uh‖Hs(Ω), ∀uh ∈ Vh, (31)

with c2 > 0 and independent of h.

Proof Set u0h ∈ Ṽh to be the function defined by

u0h :=

{
uh, in all interior nodes,

0, on ∂Ω.
(32)

Then, by definition

‖uh − Q̃huh‖L2(Ω) = ‖uh − u0h‖L2(Ω) ≤ h1/2‖uh‖L2(∂Ω),

where the last inequality holds by basic computations (c.f. [13, Equation 1.3.27]).

From the trace theorem, we have that ‖uh‖L2(∂Ω) ≤
ctt

s− 1/2
‖uh‖Hs(Ω), with ctt > 0 inde-

pendent of h.
Therefore, combining all the above, we obtain

‖Q̃huh‖Hs(Ω) ≤ ‖uh‖Hs(Ω) + ‖Q̃huh − uh‖Hs(Ω)

≤ ‖uh‖Hs(Ω) + c1h
−s‖Q̃huh − uh‖L2(Ω)

≤

(
1 +

c1ctt

s− 1/2
h1/2−s

)
‖uh‖Hs(Ω).

⊓⊔
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Now, let us also introduce the finite element space W̃h ⊂ H̃−s(Ω). We consider the generalized

L2-projection P̃h : L2(Ω) → W̃h for a given ϕ ∈ L2(Ω), as the solution of the variational problem
〈
P̃hϕ , vh

〉

Ω
= 〈ϕ , vh〉Ω , ∀vh ∈ Vh. (33)

Then, in analogy with Lemma 7, we have that

Lemma 8 The projection P̃h satisfies

‖P̃hΦh‖H−s(Ω) ≤ c3(1 +
c2

s− 1/2
h1/2−s)‖Φh‖H−s(Ω), ∀Φh ∈ Wh, (34)

with c2, c3 > 0 and independent of h.

Proof Let us use the norms’ properties and write

‖P̃hΦh‖H−s(Ω) ≤ ‖P̃hΦh‖H̃−s(Ω)
= sup

06=u∈Hs(Ω)

〈
P̃hΦh , u

〉

Ω

‖u‖Hs(Ω)

.

Then, using the definition of Q̃h and the estimates above, we get

‖P̃hΦh‖H−s(Ω) ≤ (1 +
c2

s− 1/2
h1/2−s) sup

06=u∈Hs(Ω)

〈
P̃hΦh , Q̃hu

〉

Ω

‖Q̃hu‖Hs(Ω)

≤ (1 +
c2

s− 1/2
h1/2−s) sup

06=uh∈Ṽh

〈
P̃hΦh , uh

〉

Ω

‖uh‖Hs(Ω)

.

Now, by definition of P̃h, and since Ṽh ⊂ Vh, we have

‖P̃hΦh‖H−s(Ω) ≤ (1 +
c2

s− 1/2
h1/2−s ) sup

06=uh∈Ṽh

〈Φh , uh〉Ω
‖uh‖Hs(Ω)

≤ c3(1 +
c2

s− 1/2
h1/2−s )‖Φh‖H−s(Ω).

⊓⊔

Lemma 9 Let s ∈ (1/2, 1). Then, the following inf-sup condition holds

sup
φh∈W̃h

〈vh , φh〉Ω
‖φh‖H−s(Ω)

≥
βd

c3

(
1 +

c2

s− 1/2
h1/2−s

)−1

‖vh‖H̃s(Ω)
, ∀vh ∈ Ṽh, (35)

with c3, c2 > 0 and independent of h.

Proof Let us introduce the operator Πs
h : H̃s(Ω) → Wh ⊂ H−s(Ω) for s ∈ (0, 1], defined by the

variational formulation
〈Πs

hu , vh〉Ω = (u, vh)H̃s(Ω)
, ∀vh ∈ Ṽh, (36)

where (·, ·)
H̃s(Ω)

denotes the H̃s(Ω)-inner product. This operator is analogous to [51, Equa-

tion 1.75] [35, Equation 4.22], and thus it verifies

‖Πs
hu‖H−s(Ω) ≤ β−1

d
‖u‖

H̃s(Ω)
, ∀u ∈ H̃s(Ω). (37)

Next, we have that for any vh ∈ Ṽh

‖vh‖H̃s(Ω)
=

(vh , vh)H̃s(Ω)

‖vh‖H̃s(Ω)

=
〈vh , Πhvh〉Ω
‖vh‖H̃s(Ω)

≤ β−1
d

〈vh , Πhvh〉Ω
‖Πhvh‖H−s(Ω)

= β−1
d

〈
vh , P̃hΠhvh

〉

Ω

‖Πhvh‖H−s(Ω)

,

where in the last step we used that Πhvh ∈ Wh and the definition of P̃h.
Now, let us use our previous estimates to derive

‖vh‖H̃s(Ω)
≤
c3

βd
(1 +

c2

s− 1/2
h1/2−s)

〈
vh , P̃hΠhvh

〉

Ω

‖P̃hΠhvh‖H−s(Ω)

.

Set ϕh := P̃hΠhvh and note that ϕh ∈ W̃h. Therefore, this gives

‖vh‖H̃s(Ω)
≤
c3

βd
(1 +

c2

s− 1/2
h1/2−s )

〈vh , ϕh〉Ω
‖ϕh‖H−s(Ω)

≤
c3

βd
(1 +

c2

s− 1/2
h1/2−s ) sup

φh∈W̃h

〈vh , φh〉Ω
‖φh‖H−s(Ω)

.

Finally, move the factors to the other side and one gets the desired result. ⊓⊔
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Proof of Proposition 2 First notice that in this context the inf-sup constant of d is

β̃d :=
βd

c3

(
1 +

c2

s− 1/2
h1/2−s

)−1

.

Then, we plug this in (22) and get

κ
(
D−1C̃sD

−TA
)
≤

CγCA‖d‖2c23

(
1 +

c2

s− 1/2
h1/2−s

)2

βAβγβ
2
d

∼ O(h1−2s). (38)

⊓⊔
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