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Abstract

Many fields rely on scarce and sensitive time series data, such as patient health records. Privacy
regulations often make sharing such data challenging, slowing research progress. Synthetic time series
offer a potential solution by replicating statistical characteristics of real data without revealing private
information. Yet, they introduce new risks, as synthetic data may be mistaken for real. Watermarking
can mitigate this by embedding a machine-detectable signal that preserves data quality. For such
methods to be effective, watermarks must be robust to removal attempts. Existing research lacks
direct comparisons of generative models for time series synthesis and watermarking. Furthermore,
they only evaluate watermark robustness against time-domain attacks. Attacks in other domains, such
as the frequency domain, remain unexplored. In order to address these gaps, this thesis investigates
three key questions. First, which generative models are best suited for time series synthesis. Second,
whether latent diffusion models (LDMs) can support watermarking. Lastly, how robust existing diffusion
watermarks are against adversarial attacks.

A comparative study between GPT-based models and diffusion models showed that diffusion models
produce synthetic data of higher quality. LDMs were then evaluated as a potential alternative. Their
reliance on a variational autoencoder led to low quality outputs. Hence, standard diffusion models
were elected as the superior watermarking candidate. Finally, we introduced an extended set of time-,
frequency-, and time-frequency domain attacks to asses watermark robustness. TimeWak emerged
as the most robust watermark. However, our extended attack suite revealed new vulnerabilities in all
watermarks, highlighting the importance of comprehensive robustness evaluations.
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Introduction

Time series data is used across a wide range of domains, including finance [28, 7, 63], medicine [13,
35, 6] and energy systems [3, 10, 25]. Yet, challenges related to data availability and privacy remain
significant barriers to progress. Many time series datasets contain sensitive information, such as patient
health records, that cannot be freely shared. Other domains lack sufficient labeled data for training
robust models. Synthetic time series generated by Al models are becoming an increasingly popular
solution for these problems. They preserve the statistical and temporal characteristics of real-world
data while removing any sensitive or personally identifiable information. As such, they can facilitate
open data sharing and privacy-preserving model training. Additionally, synthetic time series play a
critical role in data augmentation, addressing the scarcity of labeled time series data compared to
other modalities such as images or text. However, the proliferation of synthetic time series has given
rise to several concerns. Without the ability to identify and trace synthetic data, we risk compromising
research integrity, enabling misuse, and losing accountability. Watermarking techniques for synthetic
time series offer a potential solution. These watermarks embed human-imperceptible yet computer-
detectable signals into Al generated content. Watermarks fulfill two key functions. First, they allow us
to distinguish between real and synthetic data. By doing so, they contribute to the continued integrity of
scientific research, industry applications, and model evaluation. Second, they provide accountability in
the event of misuse. This is particularly important as synthetic datasets are increasingly being shared
across organizations.

For watermarks to be effective in practice, robustness to modifications is paramount. A watermark
that disappears under simple post-processing or noise has limited utility. Yet, much of the existing
watermarking research focuses primarily on detectability in clean conditions. Even when they evaluate
robustness against removal attempts, they only consider simple attacks. Realistic data manipulations
are often overlooked. In real-world deployments, synthetic data often undergoes scaling, compres-
sion, filtering, or domain-specific transformations that could alter or erase embedded watermarks. The
robustness of a watermark to such attacks ultimately determines its viability as an identification and
traceability tool.

Despite the importance of robustness, current work on time series watermarking remains limited. At
the time of writing, only a single watermarking method designed specifically for synthetic time series
exists: TimeWak [55]. TimeWak is designed for diffusion models that operate directly in the data do-
main. Prior evaluations of TimeWak and other general-purpose watermarking schemes (e.g., TreeR-
ing [67] and Gaussian Shading [70]) consider only simple time domain attacks such as cropping or
mean shifts. These assessments provide little insight into how watermarks behave under more sophis-
ticated, domain-spanning perturbations, such as Fourier or wavelet transformations, that are common
in real data pipelines. This gap in robustness evaluation limits our understanding of watermark reliability
for real-world time series applications. To address this, this thesis develops and applies a comprehen-
sive robustness evaluation framework for time series watermarks. The framework extends beyond
prior work by introducing attacks that operate in the frequency and joint time-frequency domains. The
attack suite also includes more sophisticated temporal perturbations inspired by established data aug-



mentation techniques. We use this framework to assess the resilience of three watermarks (TimeWak,
TreeRing, and Gaussian Shading) across four benchmark datasets and multiple attack intensities.

Before we can evaluate robustness, we first need to ensure that the watermark can embed a detectable
yet imperceptible signal. Watermark performance is often intertwined with model characteristics. Wa-
termarking can cause slight degradation in generation quality, so models must preserve high synthetic
data quality despite this trade-off. As such, the choice of generative model is crucial. To generate high-
fidelity synthetic time series, various generative modeling approaches have been explored. Among
the most established are Variational Autoencoders (VAEs), such as TimeVAE [14], and Generative
Adversarial Networks (GANSs), such as TimeGAN [72]. More recently, transformer-based models and
diffusion models have demonstrated strong performance in time series generation. Models such as
Chronos [2], Moirai [68], TSGM [44] and Diffusion-TS [73] have shown they can generate high quality
synthetic time series without any of the drawbacks typically associated with VAEs and GANs. In many
fields the generative modeling landscape is shifting toward latent diffusion models (LDMs) [54], which
have demonstrated impressive results in image [46, 48, 77] and video generation [41, 4, 80]. This
trend is beginning to influence time series research as well, as seen in emerging models like TimeAu-
toDiff [60] and TimeLDM [49]. At present, no studies directly compare generative models for time series
to determine their suitability for watermarking.

Accordingly, this thesis investigates existing time series watermark techniques. We examine their weak-
nesses and strengths across different generative model architectures and attack scenarios. We focus
on three main research questions:

RQ1 Which generative model architecture is more effective for time series synthesis, transformer-
based models or diffusion models?

RQ2 To what extent can latent diffusion models provide a viable framework for embedding robust wa-
termarks in synthetic time series?

RQ3 To what extent are existing watermarking techniques for time series resilient against sophisticated
post-editing attacks in both the time and frequency domains?



Background - Time Series Synthesis

A time series is a sequence of observations recorded over time, typically at regular intervals [31]. What
sets time series data apart from other data types is its inherent temporal structure. Each observation
depends on preceding values, and reordering the sequence would disrupt the underlying dynamics.
This temporal ordering allows for the detection of patterns that only emerge across extended horizons,
such as long-term growth trends or recurring seasonal cycles. Time series may be univariate, focusing
on a single variable such as stock prices, unemployment rates, or temperature readings. They may
also be multivariate, involving multiple variables observed together, as in macroeconomic indicators,
air pollution monitoring or patient vital signs.

Time series data can be decomposed into four key components: trend, seasonality, cyclicity, and irreg-
ularity. The trend captures the long-term progression of the data, whether upward, downward, or stable.
Seasonality reflects systematic and recurring fluctuations tied to fixed time intervals. Cyclicity refers
to longer, less regular oscillations that often reflect business or economic cycles. Finally, irregularity
represents the unpredictable noise in the data, often stemming from random shocks or measurement
errors.

Applications of time series generally fall into two categories: analysis and forecasting. Analysis seeks
to extract insights from historical data, such as identifying structural changes, quantifying risk, or reveal-
ing dependencies across series. Forecasting, by contrast, projects future values based on historical
patterns. This enables planning and decision-making under uncertainty. Forecasts may be short-term
or long-term, with accuracy and efficiency generally declining as the horizon extends [69]. These ap-
plications rely on the availability of time series data, and the quality of analysis or forecasting depends
strongly on its quantity. However, in many domains data is scarce, as measurements cannot always be
collected at the rate or scale required to achieve robust performance. Moreover, security and privacy
regulations often restrict the use of real-world data. To mitigate these limitations, synthetic time series
have been proposed as a promising alternative.

2.1. Synthetic Time Series

With the growing adoption of artificial intelligence in many domains[45, 61, 62], the demand for synthetic
time series has grown significantly. Deep learning and related methods require extensive amounts of
training data, yet access to real-world datasets is often restricted. Privacy and security regulations such
as the GDPR [52] place strict limits on how sensitive data can be used, stored, and shared. Additionally,
many organizations, including hospitals and financial institutions, work with information that is highly
confidential. As a consequence, they are reluctant or legally unable to provide access to their data.
Even when regulatory and privacy barriers are not the main issue, data scarcity often is.

One promising way to address these limitations is through the use of synthetic time series. These
are time series designed to replicate real-word time series in terms of statistical characteristics and

3
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temporal correlations. Unlike random or purely simulated data, high-quality synthetic time series must
behave as credible stand-ins for actual datasets. This requires replicating not just correlations between
variables but also the dynamic properties that unfold over time, including seasonality, long-term trends,
and dependencies across multiple time steps. For example, in financial markets, a realistic synthetic
time series of stock prices should reflect volatility clustering, where volatile periods are followed by
further volatility [61]. These domain-dependent peculiarities highlight the need for specialized genera-
tive models that can learn complex dependencies not limited to independent and identically distributed
(i.i.d.) assumptions.

Synthetic time series provide several notable benefits. By enabling organizations to train models with-
out disclosing sensitive raw data, they allow for better privacy protection. They also reduce costs and
time associated with data collection, since synthetic data can be generated using a computer and can
be tailored to the problem at hand. Finally, they make it possible to introduce rare but important cases
into training datasets, ensuring that models are exposed to critical edge scenarios that may otherwise
be absent. These advantages make synthetic time series a valuable tool for creating robust, privacy-
preserving, and scalable Al models.

2.1.1. Traditional Methods

Statistical and programming techniques formed the foundation of early time series generating systems.
These techniques generate data that replicates known patterns by using a set of preset rules, mathe-
matical formulas, or simulation models. A straightforward example involves combining a linear trend
with seasonal components and random noise using simple mathematical equations. Despite being
reproducible and predictable, these techniques lack flexibility and have trouble capturing the intricate,
non-linear dynamics of real-world data.

To address these shortcomings, a more sophisticated family of models was developed, namely the
Autoregressive Integrated Moving Average (ARIMA) models [5]. ARIMA is a statistical model used for
time series forecasting and analysis. It consists of three components: Autoregression (AR), Integrated
(), Moving Average (MA). ARIMA models are transparent and excel at capturing linear trends and well-
defined seasonal patterns, making them a useful benchmark for more complex models. However, their
reliance on linearity is a significant limitation. They cannot effectively model the complex, non-linear
dependencies present in many time series, and are also unable to capture properties unique to certain
domains. These drawbacks spurred a search for more advanced, non-linear models.

2.1.2. GAN and VAE

The shortcomings of traditional models lead to the adoption of deep learning models. Deep learning
models are capable of learning the intricate, non-linear processes that generate complex time series
data. Generative Adversarial Networks (GAN) [20] and Variational AutoEncoders (VAE) [29] in particu-
lar were used for this purpose.

GANSs introduced an adversarial training framework with two neural networks. One of those networks
is a generator network that learns to produce realistic synthetic time series. The other is a discriminator
network that learns to distinguish between the real and synthetic time series. The goal of the generator
is to produce synthetic time series capable of fooling the discriminator into classifying a fake time series
as real. Early adaptations for time series included TimeGAN [72], which incorporated both supervised
and adversarial losses to preserve temporal dynamics. Unlike the statistical methods used before,
GANs are able to learn complex, non-linear patterns without explicit modeling assumptions. They
can capture intricate temporal correlations, irregular patterns, and domain-specific characteristics that
would be difficult to express manually. However, they also face several challenges such as unstable
training and mode collapse. The former making them difficult to train, and the latter causing low variety
in the model’s output.

VAEs offer an alternative generative approach. Section 2.2 discusses them in more detail. In short,
VAEs learn to encode time series into a structured latent space. First, the input is mapped to a latent
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distribution. After which, the latent is decoded to the original data space. A latent parameterization
trick combines the encoder decoder structure in to a stochastic one. After training, the model permits
efficient sampling of the learned data distribution. However, VAEs typically produce less sharp outputs
compared to GANs due to their reconstruction-based training objective. Moreover, they also struggle
with capturing fine-grained temporal details and can suffer from a posterior collapse.

Both GANs and VAEs represented significant advances over statistical methods by automatically learn-
ing complex temporal patterns from data. Breaking with the explicit reliance on predefined mathematical
relationships requirement. Instead, establishing deep learning as a viable approach for synthetic time
series tasks. Despite these advances, there remained significant obstacles [40] due to training insta-
bility and preserving time-series properties. Recent developments in diffusion models and large-scale
foundation models aim to improve upon these limitations.

2.1.3. Diffusion Models and Foundation Models

The most recent advances in synthetic time series generation have been driven by two developments:
diffusion models [23] and large-scale, token-based foundation models [38]. These approaches have
addressed many of the persistent challenges faced by GANs and VAEs while introducing new capa-
bilities for high-quality synthetic time series. Unlike the adversarial training of GANs or the variational
objectives of VAEs, diffusion models learn to reverse a gradual noise corruption process. The reversal
starts from pure noise and iteratively refines towards realistic samples. TimeGrad [51] was among the
first to successfully adapt diffusion models for time series forecasting and generation, demonstrating
superior performance in capturing temporal dependencies. More recently, Diffusion-TS [73] incorpo-
rated techniques to handle variable-length sequences and multivariate dependencies for general time
series generation. Diffusion models have been shown to generate samples of high quality, while hav-
ing stable training dynamics without adversarial optimization. However, they require significantly more
computational resources during inference due to the iterative denoising, making them slower than other
generators.

Another new development in the field is large-scale foundation models for time series. These models
leverages advances in the domain of natural language processing, but are adapted to handle numerical
time series data. Due to their massive scale, foundation models enable learning from diverse time
series across multiple domains, leading to robust representations that capture both universal temporal
patterns and domain-specific characteristics. Furthermore, these models support few-shot and zero-
shot generation, where high-quality synthetic data can be produced for new domains with minimal
or no training examples. Models like TimeGPT [18] and Moirai [68] demonstrate how autoregressive
language modeling objectives can be directly applied to time series prediction and generation.

However, like other methods, foundation models have drawbacks as well. The discrete nature of lan-
guage model training may not fully represent the continuous, numerical properties of time series data.
Maintaining precise statistical properties, such as exact means, variances, or distributions, can be dif-
ficult when generation is mediated through learned vocabularies or embedding spaces. Additionally,
the computational requirements for training and inference with foundation models are substantial, po-
tentially limiting accessibility compared to smaller, specialized models.

2.2. Variational Autoencoders

Variational Autoencoders (VAEs) [29] represent an approach to generative modeling that combines the
reconstruction capabilities of standard autoencoders with probabilistic inference. Unlike standard au-
toencoders that learn deterministic mappings, VAEs introduce a probabilistic framework that enables
both data reconstruction and generation of new samples. Traditional autoencoders consist of an en-
coder network that maps input data = to a latent representation z, and a decoder network that recon-
structs the input from this latent space. While effective for dimensionality reduction and feature learning,
standard autoencoders struggle with generative tasks because their latent space lacks structure and
continuity. Their encoder learns to map similar inputs to arbitrary, potentially distant points in the latent
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Figure 2.1: The general structure of a VAE. The encoder maps input z to a latent representation z. The decoder constructs the
latent representation z into output z.

space. Consequently, random sampling from the latent space typically produces poor reconstructions.
VAEs address this limitation by imposing a probabilistic structure on the latent space.

Instead of learning a deterministic encoding z = f(x), VAEs learn to encode inputs as probability
distributions over the latent space. This probabilistic approach ensures that the latent space is continu-
ous and well-structured, enabling meaningful interpolation and generation of new samples. Figure 2.1
showcases the general structure of a VAE. A typical VAE consists of two networks: an encoder and
a decoder. The encoder ¢,(z|z) maps input z to latent distribution parameters 1.4(z) and o4(x). The
decoder py(x|z) maps latent samples z back to the data space.

VAEs are based on variational inference, where we approximate intractable probability distributions by
finding the closest tractable distribution. Given observed data = and latent variables z, the goal is to
maximize the marginal likelihood:

plz) = / plal2)p(z) dz

However, this integral is typically intractable for complex models since it would require integrating over
all possible values of z. VAEs avoid this complexity, by approximating the true distribution with a learn-
able one. Specifically, using the variational approximation ¢,(z|z) to the true posterior p(z|x), where
¢ parametrizes the encoder network. The VAE objective is derived from the Evidence Lower Bound
(ELBO). This objective consists of two terms. First, a reconstruction term that encourages accurate re-
construction of the input by maximizing the likelihood of reconstruction. Second, a regularization term
that constrains the approximate posterior to be close to the prior p(z), typically chosen as a standard
Gaussian N (0, I). The ELBO provides a tractable lower bound on the log marginal likelihood:

logp(x) > L(0, ¢; ) = Bq, (z12)[log pe(2]2)] — Dxr(gs(2]7)lp(2)),

. Here, 0 parametrizes the decoder network py(z|z). Dk, denotes the Kullback-Leibler divergence
[33], serving as the regularization term.

A key innovation in VAEs is the reparameterization trick, which enables gradient-based optimization
of the ELBO. Normally, this would be impossible due to the expectation E, . ,)[log ps(|2)], which
involves sampling from ¢, (z|z). There is no way to differentiate 1.4 and o, when z is obtained by random
sampling. Hence, direct sampling would break the gradient, making backpropagation impossible. The
reparameterization trick addresses this by expressing the random variable z as a deterministic function
of the parameters and an auxiliary noise variable. For a Gaussian posterior ¢, (z[x) = N (p4(x), o (x)I),
we can write:
z = py(x) +og(x) @€, €~N(0,I)

where © denotes element-wise multiplication. This transformation moves the stochasticity to the noise
variable ¢, allowing us to compute gradients with respect to ;4 (x) and o.

The training loss combines reconstruction and regularization,

Lyvap = Eq,zz)llogpe(z]2)] — B Drr(ge(2|z)|p(2)),
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where § is a hyperparameter that controls the trade-off between reconstruction quality and latent space
regularity. Once trained, VAEs sample z ~ p(z) = N(0,I) from the prior, then generate = ~ py(x|z)
using the decoder. This process produces new samples that should follow the learned data distribution.
The probabilistic nature of VAEs results in a smooth latent space where interpolation between points
in the latent space produces meaningful intermediate samples. However, VAEs struggle with blurry
outputs. Furthermore, the wrong choice of variational posterior may be too restrictive to fully capture
the true posterior distribution, limiting the model’s expressiveness. Another common challenge of VAEs
is one where the model ignores the input, causing the variational posterior to collapse to the prior. This
is referred to as posterior collapse.

2.3. Generative Pre-trained Transformer

The Generative Pre-trained Transformer (GPT) architecture [50] has become the cornerstone of mod-
ern large language models (LLMs). They are not constrained to specific data types or domains, making
them a powerful tool for diverse sequential modeling applications [71]. Their generalizability stems from
the architecture’s ability to learn abstract representations of sequential patterns. Time series are one
of the sequential data types GPT models have proven capable of processing [68, 2, 43].

To understand how GPT models process data, it is essential to first understand its way of representing
data. To model data of arbitrary length, it creates a list of representations for parts of the data. These
representations are referred to as tokens, which a learned tokenizer generated from some input. In
text, this could be a word, a stem, or even individual characters, depending on the tokenization scheme.
For time series data, a token might represent a single data point or a patch of consecutive values. The
model processes these tokens sequentially to learn patterns and make predictions.

GPT processes this sequence of tokens using autoregressive generation. The autoregressive property
ensures that predictions at each time step depend only on previously observed values. GPT models
leverage this autoregressive mechanism to generate coherent sequences through iterative prediction.
They repeatedly sample one token at a time until a stopping condition is reached, yielding a coherent
sequence of data. The GPT architecture builds upon the Transformer block [65]. GPT utilizes only
the decoder component, unlike the full Transformer architecture which consists of both encoder and
decoder components. The original Transformer encoder processes input sequences to create contex-
tual representations, while the decoder generates output sequences. By using only the decoder, GPT
models become suitable for autoregressive generation.

Formally, the autoregressive property can be expressed using the conditional probability. The condi-
tional probability of a sequence s = (s1, s2,. .., s7) is expressed as:

T

p(s) = HP(St | s<t),

t=1

where s, denotes all tokens before position ¢. This expression turns the task of modeling the joint prob-
ability of an entire sequence into a series of simpler conditional prediction problems. Training a GPT
model therefore amounts to maximizing the likelihood of observed tokens under this autoregressive
expression.

GPT models are accessible for applications with limited data availability. They require significantly less
computational resources and training data compared to training from scratch. Training GPT is typically
carried out in two stages. First it learns to ‘complete’ a sequence of tokens with the next one. During
this stage, it pre-trains on large volumes of data to perform next token prediction. This approach uses
a self-supervised objective that does not require human-labeled data. By learning to predict the next
token given the vast training dataset, the model implicitly learns the most general statistical properties in
the training data. The second stage is fine-tuning. During this stage, the pre-trained model is fine-tuned
on specific downstream tasks by training it on a smaller, more task-specific dataset.



2.4. Diffusion Models 8

2.4. Diffusion Models

Reverse Denoising Process

Forward Diffusion Process

Figure 2.2: Overview of the forward diffusion process and reverse denoising process in DDPMs. The forward diffusion process
gradually adds Gaussian noise to the original data x( until reaching pure noise x1. The reverse denoising process learns to
iteratively remove the noise from z to reconstruct z.

Diffusion models [23] are a class of generative models that learn to synthesize data by simulating and
reversing a gradual noising process. Recent work has shown that diffusion models achieve state-of-
the-art performance in generative tasks, including image [47, 24, 79] and time series generation [73,
36, 60, 49]. For time series generation, the forward and reverse processes operate on time series data,
and specialized architectures (e.g., Transformers) are used to capture dependencies across time. This
enables time series diffusion models to generate synthetic time series in which temporal coherence is
maintained.

Several variants of diffusion models exist, such as score-based generative models that learn the gradi-
ent of the data distribution directly [57]. However, this section focuses primarily on Denoising Diffusion
Probabilistic Models (DDPM). For this reason, DDPM models will often be referred to as "diffusion
models” or "standard diffusion models”. Diffusion models define a forward diffusion process that slowly
destroys structure in the data by adding noise over a series of time steps, and a reverse process that
reconstructs data samples from pure noise. Figure 2.2 provides a visualization of both the forward and
reverse diffusion processes.

Formally, the forward diffusion process adds Gaussian noise to data =y over T discrete time steps. At
each step, the transition is defined as

q(JCt | xtfl) :N(mt; v1- Bt w1, ﬁtI)v

where 3, is a small variance term controlling the amount of noise added at step ¢. The choice of noise
schedule {3;}7_, influences the training of the diffusion model.

The schedule must satisfy several constraints: 3; values should be small to ensure gradual noise
addition, increase monotonically over time, and result in ar = 0 so that z7 approximates pure Gaussian
noise.

Common schedules include linear schedules where j3; increases linearly from a small value (e.g., 10~%)
to a larger one (e.g., 0.02), and cosine schedules that provide more gradual transitions. The schedule
directly affects training stability and generation quality, with poorly chosen schedules potentially leading
to difficulty generating coherent samples [42].

The noisy sample =7 at any step can be sampled directly from the original data xo using a closed-form
expression:
v =V o+ V1 —aze, e~N(0,I),

where a; = Hi,:l(l — B¢). This reparameterization is mathematically possible due to the properties of
Gaussian distributions. Since each forward step adds Gaussian noise, and the Central Limit Theorem
states that the sum of Gaussian random variables is also Gaussian [34], we can derive a closed-form
expression for g(x|zo). Specifically, by repeatedly applying the transition ¢(z;|z;—1) and using the
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reparameterization trick, we obtain:
q(xt|wo) = N(; Varwo, (1 — ax)T)

This allows us to sample z; directly from x during training without computing all intermediate steps,
which is computationally efficient. The coefficient \/a; controls how much of the original signal remains,
while /1 — a; determines the noise level, ensuring that the total variance remains constant.

The generative task is to learn the reverse diffusion process, which transforms Gaussian noise back
into a data sample with the original distribution, removing the noise that was added during the forward
process. The reverse diffusion process is modeled as

po(@i—1 | @) = N(@—1; po(we, t), Lo, 1)),

where a neural network parameterized by 6 is trained to predict either the noise ¢ added at each step or
directly the denoised data. Predicting the noise is usually the preferred approach since the noise ¢ has
a fixed, known distribution A/ (0, I), whereas the the denoised data can have complex distributions that
are difficult to learn. For a given noisy sample z; at timestep ¢, the network is trained to predict ey (x¢, t).
Once we have this prediction, we can take a small step backwards towards a slightly less noisy sample
x;_1. The training objective is a mean-squared error loss between the actual noise added in the forward
process and the network’s prediction:

L(0) = Epy e [He - ee(xt,t)Hz] ‘

Minimizing this loss ensures that the model learns to gradually denoise z;, reconstructing clean sam-
ples from noise over multiple iterations. During generation, the process begins from pure Gaussian
noise z;. The model then iteratively applies the learned reverse process until a synthetic sample x is
obtained. Although this required many steps in the early days of diffusion models, subsequent works
have introduced new sampling methods to reduce the number of steps without significantly compromis-
ing sample quality.

Diffusion models have demonstrated great generative capabilities, but DDPM comes with several draw-
backs. The requirement for many sequential denoising steps during sampling presented a significant
computational bottleneck. The stochastic nature of DDPM also makes it impossible to retrieve the
original noise vector at the start of diffusion, limiting its use in novel techniques such as watermarking.
New adaptations have since been developed to tackle these limitations. One of these adaptations is
Denoising Diffusion Implicit Models (DDIM) [56], which introduced deterministic sampling procedures
that enable both faster generation and exact inversion capabilities.

2.4.1. DDIM

DDPM is computationally expensive and does not allow for retrieval of the initial diffusion noise. Denois-
ing Diffusion Implicit Models (DDIM) [56] is one of the developments designed to address the limitations
of DDPM. It introduces a deterministic sampling procedure that enables high-quality generation with
fewer steps. DDIM treats the forward diffusion process as a family of inference distributions, rather
than requiring sequential progression through every timestep. By removing the requirement for step-
by-step transitions, the inference process no longer needs to go through every timestep and can instead
skip intermediate timesteps while maintaining the same training objective as DDPM. Depending on the
number of timesteps skipped this can greatly reduce computational resources necessary for inference.

Formally, DDIM defines the reverse process as:

Ty — /1 — Qeeg(x, t / _
Ti_1 =/ Q1 < ! \/a»t 9( i )> +/1 =i —0752'60(3%7?5) + o€t
t

where ¢; ~ N (0, ) and o, control the stochasticity. The parameter o, in particular controls the degree
of stochasticity during sampling:
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« When o2 = 3, = :=%=13, sampling is equivalent to DDPM

1—ay

* When o; = 0, sampling becomes completely deterministic

The deterministic case (o; = 0) enables DDIM to perform exact inversion. Given a data sample x,
DDIM can deterministically reverse each sampling step to obtain the corresponding noise representa-
tion z7, and then reconstruct the original sample exactly. The deterministic reverse process simplifies

to:
Tt — \/]. — O_étﬁg(llit,t)
e

The corresponding forward inversion process, which maps from x;_; to zy, is given by:

Ti_1 — /1 — Qy_ Ty_1,t—1 _
Ty = O_ét< t—1 t 169( t—1 )>+ /]_70ét’€9(zt_1,t*1)

Ot—1

Tio1 =041 (

> + /1 —ay_1- eg(xt,t)

This inversion process is theoretically exact because each step is a deterministic function. Starting
from a sample z(, we can apply the forward inversion iteratively to obtain z1,zs,...,zr, where zr
represents the noise vector of the original sample. Applying the deterministic reverse process to this
a7 Will reconstruct the original xo exactly.

The training procedure for DDIM remains identical to DDPM, using the same noise prediction objective:
£(0) = Eag,e [|le = eola,t)]”]

This means that a single trained model can be used for both DDPM and DDIM sampling, providing
flexibility and efficiency.

2.4.2. BDIA

A major limitation of standard DDIM inversion is the inconsistency between intermediate diffusion states
generated during forward and backward processes. This inconsistency is caused by approximations
in the sampling procedure. While DDIM should theoretically enable perfect recovery of the original
Gaussian noise after inversion, in practice these inconsistencies accumulate, leading to inexact recov-
ery. This inexactness compromises applications requiring precise noise recovery, such as watermark
detection, where even small deviations can lead to failure. Bi-directional Integration Approximation
(BDIA) [74] addresses this limitation by introducing a more robust approach to maintaining consistency
between forward and backward diffusion processes.

The key property of BDIA is that its update expression for x;_; is formulated as a linear combination of
Z¢+1, xt, and the estimated Gaussian noise é(x,, t). This formulation enables exact backward compu-
tation of x;,1 given the pair (2, z;—1). BDIA defines the reverse process as

x bey1 . é
i t+1 Eg(l‘t7t) _ wt) + (atgjt + btﬁe(xtat))a

Tp1 =Y (Tep1 —x) — (
at+1 A1

where the coefficients a; and b, are defined as a; = a;—1/a; and by = o471 — orou—1 /v, and v is a
scaling parameter.

The corresponding inverse process is expressed as

T 1 R x bit1 .
Ti41 = L (arxs + biéo (x4, 1)) + < A 66(%%))
vy v at41 Q41

While this should theoretically result in a more accurate inversion than regular DDIM, a practical draw-
back of BDIA is that, in most applications, only x is available, whereas the inversion process requires
access to both xy and z;. Soi et al. [55] propose addressing this constraint through a simple yet ef-
fective approximation: setting x; = zy. Despite its simplicity, this approximation proves remarkably
accurate in practice and maintains the enhanced inversion properties of BDIA.
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2.4.3. Latent Diffusion Models

Standard diffusion models operate directly in the data space, requiring the denoising network to pro-
cess the input at their full dimensionality at each timestep. For high-dimensional data, this can lead to
extremely expensive training and inference costs. Latent Diffusion Models (LDMs) [54] address these
computational bottlenecks by performing the diffusion process in a lower-dimensional latent space
rather than directly on the data. Much of the semantic information in high-dimensional data can be cap-
tured in a compressed representation, allowing the diffusion process to focus on learning the essential
generative patterns without the computational cost of standard diffusion models.

LDMs consists of an encoder-decoder pair from a pre-trained VAE [29], and a diffusion model oper-
ating in the latent space produced by the VAE’s encoder. The VAE encoder £ maps input data z to
a lower-dimensional latent representation = = £(x). The corresponding decoder D reconstructs the
data from the latent space: & = D(z). The forward diffusion process in LDMs operates on these latent

representations:
q(zt | ze-1) = N(2; /1 = Br, 261, Be]),

where zy = &(xo) is the encoded version of the original data. This preserves the mathematical foun-
dation of standard diffusion models while reducing computational requirements. The training objective
becomes:

L(0) = Ezg, e, t Ue - e@(zt,t)ﬂ ,

where the denoising network ¢y now operates on latent vectors rather than the original data space.

During generation, the process begins with Gaussian noise zr in the latent space. The trained denois-
ing network iteratively removes this noise to produce a clean latent representation z, which is then
decoded using the VAE decoder to obtain the final sample 2o = D(zp). The quality of this final sample,
and the performance of the LDM as a whole, strongly relies on the quality of the VAE. The encoder
must preserve sufficient semantic information in the latent space, while the decoder must accurately
reconstruct high-quality outputs from the latent space. Poor reconstruction quality in the VAE directly
limits the generation quality of the entire LDM, as the diffusion model can only be as good as the latent
space it operates within.



Related Works

The proliferation of Al-generated content has created a need for accountability and traceability mech-
anisms. As synthetic media becomes increasingly sophisticated, distinguishing it from human-created
content has become critical. Tracing synthetic content back to its source is essential for combating
misinformation and protecting intellectual property. It also ensures responsible Al deployment. Water-
marking represents a promising approach to address these challenges.

Generative Al watermarking is a technique that embeds a detectable yet imperceptible signal into
content created by Al models [75]. The purpose of this watermark is to denote synthetic data as Al-
generated without compromising the quality of the synthetic data. In many cases, it also enables attribu-
tion to a specific model or source. Watermarking techniques are domain-agnostic and can be adapted
across content types. Examples of data modalities which have adopted watermarks are images [9, 11,
76, 53] and time series [55]. This chapter proceeds in two parts. We first provide an overview of the
stages in Al content generation where watermarks may be embedded. We then present three water-
marking approaches for Al models: Gaussian Shading [70], TreeRing [67] and TimeWak [55]. For each
approach, we explain its embedding and detection mechanisms.

However, developing effective watermarks presents significant hurdles. The fundamental challenge lies
in balancing three competing objectives: detectability, imperceptibility and robustness. A detectable
watermark should be reliably identifiable by a detection algorithm so it can easily be distinguished from
real data. An imperceptible watermark is not noticeable to humans and does not degrade the quality
of the content, which is important for preserving the functional integrity of the generated output. A
robust watermark can withstand various common transformations and attacks, such as compression,
cropping and scaling. A robust watermark ensures that the watermark can still be detected even after
the content has been modified. These objectives can conflict with each other. Increasing robustness
typically requires embedding a stronger signal. However, this risks becoming perceptible and degrading
content quality. Conversely, subtle watermarks that preserve quality are often less detectable. They
are also more vulnerable to even benign transformations. The optimal balance among these trade-offs
depends on the specific application. Certain use cases may prioritize robustness to modifications over
imperceptibility. Others require near-perfect quality preservation.

3.1. Watermarks for Generative AI Models

Watermarking techniques for generative Al can be categorized based on when the watermark is em-
bedded in the generation pipeline. The three primary approaches differ in their integration point: during
model training, during sampling, or after content has been produced. Each approach presents trade-
offs between robustness, flexibility and computational cost.

Training-phase watermarks embed the watermark directly into the model’s parameters during or at
the end of the training process, creating models that inherently produce watermarked content [37]. The

12
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integration of the watermark into the model parameters provides strong robustness against removal at-
tempts, as removal is challenging without modifying the model itself [9]. This approach also ensures
that the watermark is present across all content generated by the model. Furthermore, training-time wa-
termarks are learned as part of the generation process rather than being imposed on existing content.
As a result, they can potentially achieve better imperceptibility compared to post-processing methods
[70]. Herein also lies a drawback of this type of watermark, though. Improper integration of the water-
mark during training could introduce unintended bias or artifacts in the generated content, decreasing
model performance and limiting its applicability [30]. Another drawback is that the strong coupling be-
tween model and watermark means that the model requires retraining when the watermark is updated.
This could carry a substantial computational cost, especially for large models. And while the method is
robust, it is notimmune to attack. Recent attacks [8] have been shown to successfully remove training-
time watermarks by employing sophisticated fine-tuning. Hence, the design of robust domain-specific
watermarking methods has become an actively researched topic.

Sampling-time watermarks strike one of the most favorable balances between detectability, imper-
ceptibility, robustness, and efficiency. These watermarks operate by modifying the generation process
during sampling, embedding detectable patterns directly into the output [70]. This approach can be
applied to any pre-trained model. It is often regarded as a middle ground between training-time wa-
termarks, which offer robustness to attacks but require retraining, and post-processing watermarks,
which provide flexibility but are more vulnerable. Sampling-time watermarking can be implemented
as a modular component of an existing generation pipeline, requiring minimal changes to the model’s
architecture. A key design objective is to ensure that the watermark remains both imperceptible and
detectable. This is typically achieved by constraining the sampling distribution under watermarking to
remain as close as possible to the original distribution [11]. Notable examples of sampling-time water-
marks that achieve this include the distortion-free watermark introduced by Kuditipudi et al. [32], which
preserves the data distribution by mapping watermarked random numbers to language model sam-
ples. Other examples are Gaussian Shading [70] and TimeWak [55], which embed signals in diffusion
models while maintaining the Gaussian distribution of the initial noise during sampling. Despite their ad-
vantages, sampling-time watermarks remain vulnerable to tampering and modifications. Sampling-time
watermarks for language models, like their post-processing counterparts, are especially fragile under
modification [30]. Diffusion-based watermarks, while more stable, can still be disrupted as shown in
Section 6.

Finally, we discuss post-processing watermarks. Post-processing watermarking applies watermarks
to content that has already been generated, similar to traditional digital watermarking techniques [21].
The ability to retroactively apply the watermark is particularly valuable. Users of Al models can ap-
ply watermarks as needed without requiring changes to their generation pipeline. Furthermore, post-
processing watermarks can be easily updated or modified without retraining models, offering an effi-
cient alternative to training-time watermarks. Despite their flexibility, these watermarks face several
limitations. One of the difficulties in developing post-processing watermarks is the trade-off between
robustness and imperceptibility. Post-processing modifications are applied to existing content. There-
fore, they may be more noticeable than watermarks embedded during generation or sampling. Nu-
merical data such as time series can be particularly challenging for post-processing watermarks. This
type of data often contains important inter-dependencies that make it highly sensitive to even minor
alterations [55]. Thus, post-processing watermarks should take care to preserve essential properties.
Robustness against removal attacks also present a significant concern, as adversaries can apply vari-
ous techniques to corrupt or remove the watermark. Simple modifications have been shown to remove
post-processing watermarks, indicating the need for more robust post-processing methods [21].

3.2. Existing Watermarks for Diffusion Models

Diffusion models have achieved state-of-the-art performance in image synthesis [54] and time series
synthesis [73]. Their success has raised concerns about content authenticity, provenance tracking,
and potential misuse of generated outputs. To address these concerns while preserving generation
quality, researchers have developed watermarking techniques specifically tailored to diffusion mod-
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els. Among these approaches, sampling-time watermarking has emerged as a particularly promising
solution. Sampling-time watermarks embed their signal directly into the generation process without
requiring model retraining or post-processing modifications. This section examines three representa-
tive sampling-time watermarking techniques for diffusion models: Gaussian Shading [70], TreeRing
[67] and TimeWak [55]. Gaussian Shading embeds watermarks through distribution-preserving noise
sampling. TreeRing operates in the frequency domain of the initial noise. TimeWak manipulates the
temporal and feature dimensions for time series generation.

3.2.1. Gaussian Shading
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Figure 3.1: An overview of the Gaussian Shading pipeline. 1. First a seed is generated. 2. The seed is encrypted. 3.
Distribution preserving sampling according to the seed forms the initial diffusion latent with watermark. 4. DDIM sampling. 5.
DDIM inversion to reconstruct the starting noise. 6. Reverse sampling to extract the encrypted watermark. 7. Seed decryption.
8. Seed is compared with ground-truth watermark to calculate bit accuracy.

Gaussian Shading [70] is a recent watermarking method for latent diffusion models. It embeds infor-
mation directly into the model’s latent sampling stage while keeping the statistical properties of the
generated outputs unchanged. Although the original work proposes a watermark for latent diffusion
models, it permits adaptation to data diffusion as well.

Figure 3.1 provides an overview of the Gaussian Shading pipeline from embedding to detection. @
During embedding, the watermark is first represented as a binary sequence. To make it robust against
transformations, a watermark diffusion step replicates this sequence across every dimension of the
data. As a result, the watermark is distributed throughout the entire noise vector. Since the distribution
of the diffused watermark is not directly known, Gaussian Shading applies watermark randomization
by @ encrypting the diffused watermark with a secure stream cipher. This produces a randomized
binary sequence that is uniformly distributed and statistically indistinguishable from random noise.

The randomized watermark then guides distribution-preserving sampling. The Gaussian distribution
N(0,1) is split into intervals with equal probability, each corresponding to a possible watermark bit
value. For each position in the initial diffusion noise, Gaussian Shading samples only from the interval
matching the watermark bit. This preserves the overall Gaussian distribution exactly. Consequently,

the resulting watermarked values are statistically equivalent to unwatermarked ones. @ After this, the
standard denoising process and decoding are used to generate the final output.

@ To detect a watermark, Gaussian Shading applies DDIM inversion to an image to approximately
recover its initial noise x/.*. @ Through reverse sampling, each noise value is then mapped back
to its corresponding bit. @ The resulting bit sequence is decrypted with the original stream key to
recover the diffused watermark. Finally, the recovered watermark bit sequence is compared with
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a ground-truth watermark to compute a bit accuracy score.

3.2.2. TreeRing
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Figure 3.2: An overview of the TreeRing pipeline. 1. FFT is applied to initial Gaussian noise to inject watermark in FFT domain.
2. IFFT is performed to return to data domain. 3. DDIM sampling. 4. DDIM inversion to recover initial noise. 5. FFT is applied
to extract watermark. 6. Extracted watermark is compared with ground truth patch.

TreeRing [67] is a watermarking method for diffusion models that embeds information directly into the
frequency domain of the initial Gaussian noise. The main idea behind this method is to embed a
pattern into the noise in a way that remains imperceptible after decoding, yet is recoverable through
frequency analysis. Unlike other methods which embed the watermark in the time domain, the TreeRing
watermark is embedded in the frequency domain.

The complete pipeline is depicted in Figure 3.2. The embedding process begins with the model’s initial
noise tensor xr. @ This noise is transformed to the frequency domain with a Fast Fourier Transform
(FFT). A fixed-frequency pattern called the ground-truth watermark patch is generated that will serve as
the watermark signal. A corresponding watermarking mask is then computed, identifying the frequency
domain locations where the watermark should be applied. @ Watermark injection is performed by per-
turbing the values at the masked locations with the watermark patch values. Afterwards, the frequency
representation of the initial noise is transformed back to the time domain, producing the watermarked

noise x7. @ The watermarked noise vector is then returned to the generative process for denoising
and decoding.

Detection of the TreeRing watermark starts by @ taking an image and applying inverse sampling to

recover its approximate starting Gaussian noise. @ The recovered noise is transformed into the fre-
quency domain with a Fourier transform, centering the low-frequency components. Using the same
watermarking mask as in embedding, the detection process isolates the frequency bins where the
watermark was originally applied. The target watermark patch, identical to the one used during embed-

ding, is also regenerated. @ The extracted frequency coefficients from the recovered noise are then
compared against the target patch using a predefined distance metric. This comparison is computed
only over the masked locations. Smaller values indicate closer alignment with the original watermark
pattern, suggesting the presence of the watermark. This approach enables reliable verification while
remaining compatible with standard diffusion generation pipelines.
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Figure 3.3: An overview of the TimeWak pipeline. 1. First a seed is generated. 2. Temporal shuffling. 3. Feature shuffling. 4.
Distribution preserving sampling according to seed to form watermarked noise. 5. BDIA sampling. 6. BDIA inversion to
reconstruct initial noise. 7. Reverse sampling to extract watermark. 8. Feature un-shuffling. 9. Hash verifications. 10.
Compute bit accuracy between recovered watermark and hash

3.2.3. TimeWak

TimeWak [55] is a watermarking method for diffusion models that embeds information by manipulating
the temporal and feature-wise structure of the initial noise. Unlike watermarking methods that focus on
images generated by latent diffusion models, TimeWak was designed to operate directly on time series
without first transforming them to a latent representation. Furthermore, it relies on BDIA [74] sampling
rather than DDIM [56] to improve watermark recovery.

The embedding process begins @ by generating a binary bit tensor. A temporal permutation pattern is

then applied @ At even-indexed time steps, the bits are permuted independently across the feature
dimension using a deterministic random seed tied to the time index. At odd time steps, the bits are
instead permuted to mirror the arrangement from the preceding time step, encoding temporal relation-
ships between consecutive steps. Next @ a feature-wise permutation step is performed. For each
feature index, the bits are permuted along the time dimension using a deterministic seed tied to the
feature index. This two-stage permutation process creates a complex, repeatable pattern that can be
exactly reversed during detection, provided the seeding scheme is known. @ Once the bit pattern
is finalized, it is embedded into the Gaussian distribution using a distribution-preserving quantile map-
ping. The standard normal distribution is split into two equal-probability halves: one corresponding to
bit value 0 and the other to bit value 1. This preserves the global Gaussian distribution while encod-

ing the watermark in the sign distribution of the initial noise. @ Inference then proceeds with BDIA
sampling.

@ To extract the watermark, the BDIA sampling process is inverted to recover the initial noise from
the sample. A median-based threshold is computed along the time dimension. Each value is assigned
a bit value of 0 or 1 depending on whether it falls below or above the threshold. This produces a recov-
ered bit tensor matching the shape of the original. The detection process then reverses the embedding

permutations @ Feature-wise permutations are inverted first , followed by timestep-wise permuta-

tions @ The reconstructed bit sequences can then be compared against the expected temporal
permutation relationships, resulting in a bit accuracy score.



GPT vs. Diffusion for Synthetic Time
Seriles Generation

For watermark embedding to be effective during data generation, the generated data must be of high
quality. This requirement arises because the watermark introduces a bias into the generator, potentially
leading to a degradation in output quality. As a result, if the generator already produces low-quality data,
watermarking will further diminish its usefulness. Furthermore, watermarking a generative model only
makes sense if the model is capable of producing synthetic data that is indistinguishable from real data
to both humans and statistical detectors. If a model consistently produces synthetic samples that are
clearly unrealistic or systematically different from real time series, then its lack of fidelity essentially
functions as a watermark. Consequently, any additional watermarking would become unnecessary. To
ensure that watermarking is both meaningful and effective, it is therefore essential to identify generative
models capable of producing high-quality synthetic data.

Recently, both diffusion- and transformer-based models have shown to be capable generators for se-
quential data. As such, recent research [2, 68, 73, 44] has explored their application towards time
series data generation. While these two architectures for time-series synthesis have been well studied
individually, a comparative study is lacking for these methods. Moreover, at the time of writing, no trans-
former based generation method exists. Hence, this chapter pursues two main goals. First, we provide
a general method towards time-series synthesis with probabilistic transformer-based models. Second,
we perform a comparative study of the two generative methods, with state-of-the-art representative
backbones for each. Through this comparative study, we aim to identify the model that most consis-
tently produces high-quality synthetic time series. In turn, this allows us to determine which model is
the more appropriate candidate for watermarking.

4.1. GPT for Time Series Synthesis

GPT models have achieved strong performance on a variety of time series tasks [1, 18]. These models
are typically designed to operate in a conditional setting, where predictions are generated based on
a fixed input window consisting of prior timesteps. In the context of forecasting, the model learns to
predict future values conditioned on a sequence of observed past values, i.e., completions. However,
unconditional generation imposes that no context is available to complete, requiring additional steps to
generate data with a forecaster. To the best of our knowledge, currently no unconditional transformer-
based time series generators exist. As such, we propose to adapt a forecasting model for this purpose.

Our goal is to evaluate the ability of transformers to produce fully synthetic time series in an uncondi-
tional setting. The model should generate plausible time series from scratch, without conditioning on
real historical data. Given the lack of transformer-based unconditional models, we now describe our
generation method. From a high level, it is an iterative method to build sequences using autoregres-
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sive predictions. At each iteration, the method performs three steps. First, we leverage the forecasting
backbone to make multiple probabilistic predictions. Second, we compute a quality score for each can-
didate prediction. Lastly, we rank the samples according to our scoring mechanism to select the next
completion before proceeding to the next iteration.

We now provide the specifics of this generation process, as outlined in Algorithm 13.

Step 1: The generation process begins by providing the model with a short initial context window
drawn from real data. This initial context provides the model with sufficient historical information
to make its first prediction while minimizing dependence on real data for the majority of the gener-
ated sequence. The generation proceeds through repeated application of the forecasting model
in a sliding window fashion. Once the model has generated the first prediction window, we append
those outputs to the current context to form the new context window and repeat the forecasting
step. In this way, we iteratively construct a full-length time series by sliding the model’s predic-
tion window forward, decomposing the long-sequence generation task into a series of short-term
forecasting problems.

Step 2: Since the forecasting model is probabilistic, it produces multiple stochastic samples
rather than a single point estimate. To select which sample to append to the context, we lever-
age Dynamic Time Warping (DTW) distance as our quality metric. DTW measures the temporal
alignment between two sequences and is robust to phase shifts and temporal distortions, making
it well-suited for comparing time series with similar patterns but different timing. By computing
the DTW distance between each candidate sample and the corresponding ground truth window,
we can identify the prediction that best preserves temporal coherence.

Step 3: We rank all candidate samples by their DTW distance and select the sample with the
minimum distance to append to the context window. This sample then becomes part of the context
for the next forecasting iteration.

Algorithm 1 Moirai Time Series Synthesis
Input: Dataset D, Context length C, Prediction length P, Target length L, Num samples N
Output: Generated time series X1
Load dataset and extract first sequence as ground truth X,..,;
Initialize context: Xynin < Xreal:: C]
Initialize forecasting model with context length C' and prediction length P
while length(X ) < C + L do
Create dataset from current synthetic series Xy .¢1
Generate N forecast samples: {S1,5s,..., Sy} + Moirai(Xsyn:n)
// Select best sample using DTW distance to ground truth
for:=1to N do
\ Compute DTW distance: d; + DTW(S;, X,cq[next P steps])
end
1* <— argmin; d;
// Append best prediction to synthetic series
Xsyntn < concatenate(Xgynin, Six)
end
return X, .1,

For our experiments, we selected Moirai-Large [68], a recently proposed Transformer-based model for
zero-shot time series forecasting. We chose this model primarily because it supports multivariate time
series, which is essential for our benchmark datasets. Moirai is designed to forecast future time steps in
the near future by encoding a context window of past values using a patch-based attention mechanism.
It generates probabilistic predictions over the forecast horizon. Since Moirai was not originally intended
for unconditional sequence generation, we modified its use at inference time to produce long, synthetic
time series, simulating unconditional generation. We attempted fine-tuning Moirai on each dataset to
improve generation quality, but observed no meaningful difference in performance compared to the
pretrained model.
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While this auto-regressive sampling approach enabled us to repurpose Moirai for long sequence gen-
eration, it is important to note the limitations caused by using a forecasting model for this task. Moirai
enables short-term forecasting, its performance on longer time horizons is not studied. The model’s
predictions also become increasingly dependent on its own previous outputs due to the way previous
predictions are appended to the context window. As a result, errors can accumulate over succes-
sive autoregressive steps, potentially degrading the realism and temporal coherence of the generated
sequences. Second, the DTW-based sample selection improves temporal realism during evaluation.
However, it may not accurately represent how the model would behave in fully unconditional generation
scenarios, where no ground truth data are available for comparison. Finally, the sliding windows may
not capture long-range dependencies that extend beyond the context window length. Nonetheless,
this adaptation provided a reasonable baseline for evaluating the viability of existing GPT models for
synthetic time series generation.

4.2. Diffusion Model for Time Series Synthesis

While transformer-based models generate time series sequentially, diffusion models take a different
approach by learning to iteratively denoise corrupted data. Broadly speaking, diffusion models for
time series synthesis can be categorized into two main types: standard diffusion models and latent
diffusion models. Vanilla diffusion models operate directly in the data space, learning to denoise time
series in their original form. By contrast, latent diffusion models use a learned representation (i.e.,
latent), in which they perform the generation. Generally, an Auto-Encoder like structure is used, to
provide the latent space for the diffusion process. While latent diffusion offers significant computational
advantages for high-dimensional data such as images [54] or multivariate time series [60], it is a more
recent development. To the best of our knowledge, there are no state-of-the-art latent diffusion models
for time series synthesis at the moment of writing. Hence, we focus exclusively on standard diffusion
models in this experiment, specifically evaluating Diffusion-TS [73], a recent data-diffusion model for
time series synthesis.

Unlike GPT models, which are typically optimized for conditional downstream tasks such as forecasting,
classification, or imputation, diffusion models are often trained to unconditionally generate synthetic
sequences. However, diffusion models have also been adapted for downstream tasks by modifying the
denoising objective or conditioning mechanism. These extensions make diffusion models increasingly
versatile, but in the time series domain they remain most commonly used for generation. Due to its
unconditional generation capability, we train a Diffusion-TS model on each dataset using recommended
hyper-parameters.

4.3. Methodology

Table 4.1: Overview of datasets used, including the total number of features and their types (Pollution is only used for the
experiment in Section 5).

Dataset Total # of Features Numerical Features Categorical Features

ETTh 7 7 0
Energy 27 25 2
fMRI 49 49 0
Stocks 6 6 0
Pollution 8 6 2

To evaluate the quality of synthetic time series generated by the models, we leverage four common
time-series benchmarks. Specifically, we select ETTh1 (electricity load), Stocks (financial time series),
Energy (power consumption), and fMRI (neural signals), to consider a range of domains and statistical
characteristics: This diversity allows us to assess the generalizability of each generative model across
different types of time series. Table 4.1 provides an overview of key characteristics of these datasets.
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The generated synthetic datasets were evaluated using four common quality metrics used in synthetic
time series research. These metrics were chosen to capture different dimensions of generation qual-
ity: statistical similarity, predictive usefulness, temporal coherence, and inter-variable relationships. By
combining discriminative, predictive, contextual, and correlational evaluations, we aim to determine not
only whether the synthetic sequences look realistic, but also whether they behave like real time series
in practical downstream tasks and structural dependencies. Together, these metrics provide a compre-
hensive view of the generative performance of each model. All metrics were computed independently
for each dataset and each model, and results were aggregated to compare overall performance.

» Discriminative score [72]: Measures the similarity between real and synthetic data using a
binary classification task. A model is trained to classify time series as either real or synthetic.
A high-quality synthetic time series should cause the model to erroneously classify it as real. A
lower score means the model struggles to distinguish between real and synthetic data.

* Predictive score [72]: Evaluates temporal dynamics and practical usefulness by training on
synthetic data and testing a downstream task on real data. In this case, the downstream task
is forecasting. Close alignment between the forecasts and real data indicates that the synthetic
data possesses similar temporal characteristics to the real data. Hence, it can serve as a viable
substitute for the real data. The Predictive score is measured using Mean Absolute Error (MAE),
with lower values being better.

Context-FID score [27]: Evaluates how closely synthetic data fits local contexts. It captures both
distributional similarity and temporal coherence. Lower scores indicate better fidelity.

» Correlational score [39]: Measures errors between cross-correlation matrices of real and syn-
thetic data. Lower values indicate that the synthetic data captures the inter-variable relationships
of the real data more accurately.

4.4. Results

Table 4.2: Results of synthetic time series generated by Moirai and Diffusion-TS. It lists mean scores along with the standard
deviation in brackets. All results use the non-watermarked version of Diffusion-TS. For all metrics, lower scores are better. Best
results are shown in bold.

Dataset Model Discriminative Predictive Context-FID Correlational
ETTh Moirai 0.454 . (01 3.849 . 000 13.221 . 202 0.683 . (5053
Diffusion-TS 0.095 . 00 0.123 . (002 0.198 . (012 0.068 . 05
StOCkS MOIraI 0'073 =+ (0.007) 34967261 4 =+ (0.000) 5077523276055 1 57 + (1712315826271.960) 1 037 =+ (0.040)
Diffusion-TS 0.100 + (0.007) 0.037 + (0.000) 0.209 + (0.028) 0.015 +(0.012)
Energy Moirai 0.442 43 56.162 . 000 758.871 . (5525 12.444 | o
Diffusion-TS 0.145 . 05 0.251 . (5000 0.082 . 415 0.930 . (125
MRI Moirai 0.306 - 021) 1.771 -+ o) 4095.063 . (145670 16.000 . (o305
Diffusion-TS 0.110 . o015 0.100 . (00, 0.191 . 006 2.615 . 7

Table 4.2 provides a qualitative overview of the two data-generators. Figure 4.1 provides a visual
comparison of time series sequences generated by Moirai and Diffusion-TS. Generally, we see that
Diffusion-TS significantly outperforms our adapted Moirai across nearly all datasets and metrics. The
only exception is the discriminative score on the Stocks dataset, where Moirai slightly edges out Diffusion-
TS. In all other cases, Diffusion-TS achieves lower scores, indicating better alignment with real data in
terms of predictive performance, distributional similarity, and inter-variable structure.

Diffusion-TS achieves considerably lower scores on ETTh, Energy, and fMRI, suggesting it produces
data distributions that are harder to distinguish from the real ones. The only case where Moirai per-
forms better is the Stocks dataset (0.073 vs. 0.100). However, this anomaly may not reflect genuine
generative quality. Notably, Moirai’s predictive and context-FID scores for Stocks are extraordinarily
high, indicating poor temporal and structural quality. This discrepancy suggests that the synthetic data
from Moirai may include extreme or inconsistent values that confuse the classifier, thereby artificially
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Figure 4.1: Synthetic samples generated by Moirai and Diffusion-TS of each dataset (ETTh, Energy, fMRI, Stocks). The real
sequence is displayed alongside the synthetic sequences.

lowering the discriminative score. Thus, the result should be interpreted with caution.

Across all datasets, Diffusion-TS achieves lower Predictive scores than Moirai, indicating better ability
to generate useful synthetic data. On the ETTh dataset, for instance, Diffusion-TS reaches an MAE
of 0.123, compared to 3.849 for Moirai. The disparity is even more extreme on Stocks, where Moirai
yields an MAE over 349,000, compared to just 0.037 for Diffusion-TS. These results suggest that the
synthetic sequences produced by Moirai are not just structurally unrealistic, but also unsuitable for
training models intended to operate on real-world data. In terms of Context-FID score, Diffusion-TS
again outperforms Moirai by several orders of magnitude. Moirai’s large Context-FID scores indicate
that even when generation is seeded with real context, it fails to continue sequences in a way that sta-
tistically resembles the real data distribution. For the Correlational score we observe that Diffusion-TS
performs significantly better on all datasets. On high-dimensional datasets like fMRI (49 features) and
Energy (27 features), this metric becomes especially important. Diffusion-TS maintains reasonably
low correlational errors for these datasets, whereas Moirai’s errors are larger. These results suggest
that Diffusion-TS is capable of preserving multivariate dependencies across variables. Moirai, by con-
trast, appears to produce samples where inter-variable structure is not captured at all, especially as
dimensionality increases.

When looking at the performance per dataset, we see no single dataset for which Diffusion-TS consis-
tently performs best across all metrics. However, results on ETTh and Stocks are the strongest overall,
followed by Energy, with fMRI yielding the worst scores. This pattern correlates strongly with the num-
ber of features: ETTh and Stocks are low-dimensional (7 and 6 features, respectively), whereas Energy
and fMRI are higher-dimensional (27 and 49). The higher dimensionality of these datasets may pose
additional challenges for generating realistic cross correlations between the features, which is reflected
in the higher correlational scores. For Moirai, the overall performance is poor across the board, but the
ETTh dataset shows slightly more reasonable scores than the others. On Energy and fMRI, the scores
degrade significantly, suggesting that Moirai does not scale well with dimensionality in a generative
setting. Stocks is a particularly confusing case since the discriminative and correlational scores are not
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terrible, but the predictive and context-FID scores are completely unusable. This inconsistency shows
that Moirai may generate extreme or inconsistent values in some cases, which corrupt the statistical
evaluation. Since this limitation could not be resolved through fine-tuning, we select diffusion models
for subsequent experiments.

Experiment Summary: We evaluate transformer-based (Moirai) and diffusion-based (Diffusion-
TS) generative models across four time series benchmarks using discriminative, predictive, context-
FID, and correlational scores.

Key Takeaway: Diffusion-TS significantly outperforms Moirai across all metrics and datasets,
achieving lower scores by orders of magnitude in most cases. Generation quality correlates with
dimensionality. Both models perform best on low-dimensional datasets. Due to their superior
generation quality, diffusion models make a better candidate for watermarking.

4.5. Conclusion

The superior performance of Diffusion-TS over Moirai demonstrates that high-quality time series gen-
eration benefits from training objectives focused on global sequence synthesis. In contrast, objectives
based on step-wise prediction for short horizons appear less suited for capturing long-range temporal
structure. Given these results, we can conclude that adapting a GPT forecasting model like Moirai for
time series generation proved ineffective. We hypothesize that when used for synthesis, errors from
each generation step might propagate and amplify, leading to poor long-range coherence. Moreover,
Moirai was not trained to match the global or joint distribution of sequences, but only to minimize short-
horizon prediction error. These limitations make it unsuitable for time series generation with the current
transformer-based models available.

Overall, our results indicate consistent and substantial performance gap between Diffusion-TS and
Moirai across the considered metrics. Unlike Moirai, Diffusion-TS is capable of generating realistic
time series that support downstream tasks and capture structural properties of the original datasets.
These capabilities make it the superior candidate for applications requiring high-fidelity synthetic time
series, including the downstream task of watermarking explored in later sections. For this reason, we
elect diffusion models as the backbone of our evaluation of time series watermark robustness.



Latent Diffusion Models for Time
Series Watermarking

Chapter 4 demonstrated that standard diffusion models successfully generate high-quality synthetic
time series. This quality is essential for watermarking as embedded watermarks almost inevitably
degrade generation quality slightly. Models must produce realistic synthetic data to absorb this cost.
Additionally, watermarking serves no practical purpose if synthetic data is easily distinguishable from
real data. The strong performance of standard diffusion models establishes them as viable candidates
for watermarking.

This raises the question: can Latent Diffusion Models (LDMs) serve as viable candidates for water-
marking as well? The additional VAE component introduces potential challenges. The latent space
must faithfully represent time series structure. Furthermore, encoding and decoding processes must
preserve sufficient information for both quality generation and watermark recovery. For LDMs to serve
as viable watermarking candidates, they must satisfy three conditions: invertibility between data and la-
tent spaces, successful watermark embedding during generation, and reliable watermark detectability
after synthesis.

In this chapter, we conduct an emperical evaluation of LDMs for the task of synthetic time series gen-
eration. Our goal is to critically assess the viability of LDMs in producing high quality, realistic, and
watermarkable time series across datasets with varying properties. By combining quantitative evalu-
ations with latent space analysis and dataset-specific observations, we aim to uncover the limitations
and strengths of LDMs in this setting. This analysis highlights not only the technical feasibility of wa-
termarking but also the broader challenges LDMs face in representing heterogeneous time series data
effectively.

5.1. Decoder Inversion

As discussed in Chapter 3, effective watermark detection requires recovering the initial noise vector
in which the watermark was originally embedded during the generation process. This recovery neces-
sitates transforming the generated sample back to its corresponding latent representation. A naive
approach would directly apply the the encoder to transform observed samples. By doing so, obtaining
%2 = &(x) where z is the generated output. However, this approach is limited by the reconstruction
error inherent in encoder-decoder architectures. Since the encoder is not the exact inverse of the de-
coder, applying £(D(2)) does not perfectly recover the original latent representation z. The resulting
latent representation obtained through direct encoding is therefore expected to deviate from the original
latent code used during generation, compromising the watermark detection process. Decoder inver-
sion [26] aims to overcome this through inverting the decoder itself rather than relying on the encoder.
Through the formulation of an optimization problem, gradient descent is used to estimate the original
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latent. Generally, decoder inversion approaches enable a more faithful latent recovery compared to
direct encoding—i.e., enabling watermark detection.

Algorithm 2 Decoder Inversion
Input: Target samples x, pre-trained decoder D, encoder £
Output: Latent representation 2
Require: Learning rate n, number of epochs T’
Initialize: 2 « £(x)
for epoch = 1to T do
Z+ D(%)
£ ||& — )3
2+ zZ— nv,gg
end
return 2 ;

The decoder inversion process is described in Algorithm 2. In each iteration, the gradient is updated
in the direction that minimizes the difference between the original samples = and the decoder output z.
Each gradient descent step is computed using the loss £ and learning rate 5. This continues until we
reach convergence, returning a latent representation 2 similar to the one used during inference.

5.2. Methodology

5.2.1. Synthetic Time Series Evaluation

We evaluate the quality of synthetic time series generated by LDMs using the same experimental setup
described in Chapter 4. Specifically, we use the same four time-series benchmarks: ETTh, Stocks, En-
ergy, and fMRI (see Table 4.1). We also use the same quality metrics, which are the Discriminative
score, Predictive score, Context-FID score, and Correlational score. The key difference in this experi-
ment is the application of these metrics to latent diffusion models rather than transformers and standard
diffusion models. With this experiment, we aim to assess whether the latent space representation in
LDMs affects generation quality across diverse time series domains.

5.2.2. Watermark Embedding and Detection

We embed a watermark into the initial Gaussian noise of the diffusion process. Afterwards, this wa-
termarked noise is used to generate synthetic time series data through the sampling procedure of the
diffusion model. Following generation, the time series is decoded and given as input to decoder inver-
sion to retrieve its final latent representation 2. For decoder inversion, the latent representation 2 is
optimized using the Adam optimizer with an initial learning rate of 1 x 10~!. To adapt the learning rate
during training, we employ a ReduceLROnPlateau scheduler that reduces the learning rate by a factor
of 0.25 when the loss plateaus for 20 consecutive epochs.

After generation and decoder inversion, we perform inverse sampling to recover the initial noise and
reconstruct the watermark. The detection process proceeds by computing a metric score measuring
the similarity between the reconstructed and ground truth watermarks. Using these scores, we conduct
a hypothesis test to compute the Z-score. A Z-score above 1.64 indicates that the watermark is present.
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5.2.3. Watermark Robustness Against Post-Processing

Algorithm 3 Compute Z-score of Watermark Post-Attack

Input: Watermarked attacked noise Nwa, Unwatermarked noise N,
Output: Z-score z-score

Compute metric scores: s,, + Metric(Nwa), Sy — Metric(Nu)
Compute mean p,, and std o, of s,

Compute Z-score: z-score «— et

return z-score

A similar procedure to the complete generation pipeline was used in the robustness evaluation. After
decoding, we obtained a synthetic time series (as seen in Figure 5.6). We applied a post-editing attack
to this time series at one of two intensities (0.05 or 0.3). The attacked time series was again brought
back into its latent space via decoder inversion, followed by inverse sampling to estimate the initial latent
noise vector. Finally, we computed the Z-score to assess whether the watermark remains detectable
after the attack. Algorithm 3 shares the Z-score computation procedure. We evaluated three types of
simple post-editing attacks, a more in depth description of these attacks can be found in Chapter 6:

» Offset attack: This attack adds a small shift to the entire time series by computing the mean
across the sequence and applying a scaled version of this mean as an additive offset to all values.

» Crop attack: This attack crops a random subregion of the time series.

* Min-Max insert attack: This attack randomly replaces a subset of time points with values sam-
pled uniformly between the minimum and maximum of each feature.

5.3. Results

5.3.1. Synthetic Data Quality

The results of our synthetic data quality evaluation are presented in Table 5.1.

For the unwatermarked synthetic data, the model produced the highest quality results on the ETTh and
Stocks datasets. Both of these datasets have relatively few features and contain no categorical vari-
ables, which appears to facilitate the generation of high-fidelity synthetic data. In contrast, the quality
of synthetic data for the Energy and Pollution datasets was considerably lower across most metrics.
Notably, the synthetic Energy data did achieve a reasonably strong context-FID score. However, it
performed poorly on the correlational score, implying the model had difficulty capturing inter-feature
relationships, likely due to the dataset’s high number of features. Conversely, the synthetic Pollution
data achieved a good correlational score but struggled significantly with local context, as reflected in
its poor context-FID score.

With the inclusion of latent-adapted watermarks, we observe that generally TimeWak does not impose
significant degradation across all datasets. In contrast to TreeRing and Gaussian Shading, Timewak
does not negatively impact the Correlational Score on Energy and fMRI. Importantly, TimeWak never
caused a significant degradation in any of the four metrics, making it the most consistent watermark in
terms of preserving the fidelity of the synthetic data. TreeRing demonstrates strong performance on the
Discriminative and Predictive scores, typically inducing only minimal degradation. Occasionally, it even
manages to preserve these metrics at levels comparable to unwatermarked data. However, the water-
mark exhibits notably weaker performance on Context-FID and Correlational scores. With the exception
of ETTh, TreeRing consistently reduces performance on these metrics across all other datasets. The
most pronounced drops occur on the high-dimensional Energy and fMRI datasets. Gaussian Shading,
while excelling on specific metrics for certain datasets, such as achieving strong context-FID and corre-
lational scores on the Stocks dataset, tended to degrade overall quality the most. This was especially
evident in the discriminative score, where it consistently produced the worst scores across all datasets,
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Table 5.1: Comparison between TimeAutoDiff and Diffusion-TS on synthetic time series generation with and without watermark.
Scores are the mean values over ten seeds (standard deviation in brackets). TR = TreeRing, GS = Gaussian Shading, TW =
TimeWak. For every metric, lower is better. For TimeAutoDiff, the best results are shown in bold.

Dataset Model WM Discriminative Predictive Context-FID Correlational
None  0.014. 00  0.083 ,omy 0.016 . oums  0.086 + gom,
. TR 0.016 0.083 0.017 0.098
T A t D ff + (0.012) =+ (0.002) =+ (0.002) =+ (0.035)
IMEAUIORIT 6s 0.035 . 4oy 0.083 .o  0.041 .0  0.084 . oo
None  0.096 . cen  0.121 1 ooy 0.209 . ooy 0.082 - ous
o R 0.276 0.136 1.651 0.201
D ff n_TS + (0.013) + (0.002) + (0.068) + (0.028)
nusio GS 0.388 4 poy 0176 ooy 4.216 . sy 0.416 4 oo
TW 0092 =+ (0.014) o 1 24 =+ (0.003) 0207 =+ (0.011) 0 1 97 =+ (0.036)
None  0.388 .0m  0.240 : ooy 0.181 200  2.065 - oss
. TR 0.398 0.239 0.664 2.852
T A t D ﬁ =+ (0.007) =+ (0.002) =+ (0.105) =+ (0.477)
IMEAUIOUIT &s 0407 L ooy 0244 Loy 0283 . omy 2508 . gu
Energy T™W 0.387 . ooy 0.239 .0y 0170 . 00  1.963 - s
None  0.144 . o0 0.253 1oy 0117 soow 1597 - ouos
o TR 0.415 0.292 0.379 2.551
D ff S On_TS =+ (0.010) =+ (0.002) =+ (0.033) =+ (0.319)
must GS 0494 | oy 0.330 L ooy 1459 . ooy 3.503 . a0
T™W 0142 , ooy 0.253 1oy 0118 4 ooy 2.177 4 paeg
None  0.095. oo  0.063 ;oo 0117 4ome  0.044 . oo
. TR 0.161 0.065 0.475 0.052
TimeAutoDiff +(0.017) + (0.000) + (0.061) +(0.022)
GS 0.1 96 =+ (0.067) 0-062 =+ (0.000) 0-046 =+ (0.002) 0-011 =+ (0.010)
StOCkS TW 0-081 + (0.017) 0063 =+ (0.001) 0 1 1 0 =+ (0.022) 0045 +(0.017)
None  0.155 .40  0.037 4omy 0.338 - o 0.029 . gorm
o TR 0.217 0.039 1.119 0.098
D ff S On_TS =+ (0.044) =+ (0.000) =+ (0.088) =+ (0.025)
st GS 0425 ooy 0.042 4 ooy 9673 Ly 0.109 . i
TW 0.1 55 =+ (0.016) 0.037 =+ (0.000) 0.288 =+ (0.039) 0.027 =+ (0.010)
None  0.493 ..y 0102+ oo 4727 2050 8.075 - orme
. TR 0.496 0.104 5.115 11.501
TImeAUtODIﬁ =+ (0.002) + (0.000) + (0.465) + (0.304)
GS 0497 ; ooy 0.108 ooy 4419 4 i 10179 - gare
fMRI T™W 0.494 + (0.002) 0.102 + (0.000) 4.734 + (0.426) 7.958 + (0.106)
None  0.110 .00  0.100 4 omy  0.191 . ooy 2.615 & gore
o TR 0.479 0.148 2.384 13.540
D ff _Ts =+ (0.055) =+ (0.002) =+ (0.145) =+ (0.183)
uston GS 0.500 1 ooy 0.109 1 ooy 0.679 4 gz 14.821 - oes
T™W 0.116 4 ooy 0.100 4 oy 0.186 & oo 2.576 - poco,

indicating that synthetic samples generated with this watermark were the easiest to distinguish from
real data.

Experiment Summary: We evaluate LDM-generated synthetic time series quality across four
datasets using discriminative, predictive, context-FID, and correlational scores. We embed three
watermarks (Gaussian Shading, TreeRing, TimeWak) and assess theirimpact on generation qual-

ity.

Key Takeaway: Quality correlates strongly with dataset composition. Low-dimensional, numerical
only datasets achieve the best scores. Feature heterogeneity proves challenging to LDMs. Time-
Wak preserves quality most consistently across all metrics and datasets. TreeRing maintains
discriminative and predictive scores but degrades context-FID and correlational scores, espe-
cially on high-dimensional datasets. Gaussian Shading causes the most quality degradation.
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5.3.2. Watermark Detectability

Table 5.2: Z-scores for watermarks embedded during sampling after attacks. The intensity of each attack (0.05 and 0.3)
appears under the attack name. Scores are the mean values with standard deviations in subscript parentheses. The highest
Z-score is shown in bold.

Dataset Watermark Unattacked Offset Crop Min-Max Insert
0.05 0.3 0.05 0.3 0.05 0.3
Energy Gaussian Shading  61.52.,, 37.46. s 5.36. 06y 10.58. o, 11.69. ¢, 42.03. s 10.81. 4
Treeng 062i (0.03) 1 01 + (0.02) 1 64i (0.03) Oozi (0.02) 079i (0.02) _0-67i (0.02) _1 58i (0.02)
TimeWak 4-661 (0.67) 2-281 (0.65) O.32i (0.59) 1 -031 (0.61) -0.91 =+ (0.71) 1-78i (0.71) -1 -32i (0.71)
ETTh Gaussian Shading  276.41, e, 71.43. 0., 32.90. s, 20.13. 06 -17.20. s 142.22. 4 26.43. ¢
TreeRing 0.60. g0 -5.45. 00y 6524005 -8.09. 0 -7.46. g0 -2.93. 0y -8.66. g0
TimeWak 10914, ooy 494,06y -0.01L06) 2.45. ey 5.04, 29.03. o7e  0.91. 6r)
fMRI Gaussian Shading  103.84, ., 98.45. (¢ 61.59. 6 58.92. (e 33.05. 6, 89.02. 7, 51.77. ¢
TreeRing 0-57i (0.02) 0-361 (0.02) -0.1 91 (0.02) '0-881 (0.02) -1 -321 (0.02) 0.1 4i (0.02) '0-84i (0.02)
TimeWak 640i (0.69) 4-391(072) 025i (0.69) 2-57i(060) 10-23i(071) 4.82i(055) 0.50i(063)
Stocks  Gaussian Shading  103.17. s, 87.08. 7, 2241, ., 27.20, .46  5.49. s 90.91. ooy 49.46. (¢
TreeRing 1 081 (0.02) 0 Sgi (0.02) -0 691 (0.04) -1 -32i (0.03) -3.1 4i (0.03) 0931 (0.02) 0.1 5i (0.03)
TimeWak 1 8-821 (0.69) 1 5,99i ©0.71) 8-83i (0.81) 3-771 (0.82) 2-931 (0.67) 1 5-041 (0.67) 2-671 (0.74)

Having established the LDM’s ability to generate realistic time series, we next examine watermark
detectability. Here, we focus on watermarks embedded at the start of inference. The results of this
experiment are summarized in column 'Unattacked’ of Table 5.2.

Across all datasets, Gaussian Shading consistently achieves the highest Z-scores, surpassing the other
methods. Its lowest score appears on the synthetic Energy dataset, which contains heterogeneous
features. This suggests that feature heterogeneity may slightly reduce detectability, although the Z-
score remains well above the detection threshold. TimeWak is also detectable across all datasets.
Although its scores are lower than those of Gaussian Shading, they still exceed 1.64, ensuring reliable
detection. TimeWak achieves its lowest scores on Energy and fMRI, which both contain a high number
of features. Their high dimensionality might disperse TimeWak’s signal too much, leading to lower
Z-scores in comparison to those on ETTh and Stocks. Lastly, TreeRing consistently performs poorly
across all datasets, with all Z-scores below the 1.64 threshold. Even in absence of post-processing
attacks, TreeRing fails to be detectable. Unlike the other watermarks, its performance does not appear
to correlate with the presence of heterogeneity or number of features. TreeRing’s poor performance
suggests that Fourier-based watermarking might not be compatible with the structure of time series
data.

Experiment Summary: We assess watermark detectability after generation by computing Z-
scores on unwatermarked and watermarked synthetic time series. A Z-score above 1.64 indicates
reliable detection.

Key Takeaway: Gaussian Shading achieves the highest detectability across all datasets, main-
taining Z-scores well above the threshold. TimeWak remains detectable on all datasets but shows
reduced performance on high-dimensional data. TreeRing fails to achieve detectability on any
dataset, with all Z-scores below 1.64.

5.3.3. Watermark Robustness Against Post-Processing

Finally, we examine the robustness of each watermark against post-processing operations. Specifi-
cally, we evaluate whether the watermarks remain detectable after the synthetic time series undergoes
common data augmentations. The results of this evaluation can be found in Table 5.2. In terms of
robustness, Gaussian Shading emerged as the most robust watermark across all datasets and attack
types. It remained detectable even under strong attack intensities, with the sole exception being a high-
intensity cropping attack on the ETTh dataset. This suggests that the Gaussian Shading watermark
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is well-preserved throughout the decoding and inversion process, even when the time series is per-
turbed. TimeWak was the second most robust watermark but exhibited significantly more sensitivity to
perturbations than Gaussian Shading. Its detectability frequently dropped below the threshold of 1.64
under moderate or strong attack intensities, particularly for the cropping and min-max insertion attacks.
Finally, TreeRing exhibited the lowest robustness of all the watermarks. However, since it was already
undetectable in the unattacked scenario, further decreases in Z-score due to post-editing attacks have
no meaningful practical impact.

Experiment Summary: We evaluate watermark robustness against three post-processing at-
tacks (offset, crop, min-max insertion) at two intensity levels (0.05 and 0.3). Z-scores are com-
puted after applying attacks to assess whether watermarks remain detectable. Watermarks are
reliably detectable when their Z-score is at least 1.64.

Key Takeaway: Gaussian Shading demonstrates superior robustness across all datasets and at-
tack types, maintaining detectability even under strong attacks with one exception (high-intensity
crop on ETTh). TimeWak shows moderate robustness but frequently falls below the 1.64 thresh-
old, particularly for cropping and min-max insertion. TreeRing exhibits the lowest robustness, but
this is inconsequential since it was already undetectable before attacks.

5.4. Latent Space Analysis

The results of our synthetic data quality evaluation in Section 5.3.1 show differences in the quality of
synthetic datasets generated by the LDM. High-dimensional datasets and datasets with heterogeneous
features appear to pose challenges in particular. Compared to the data diffusion model, the LDM yields
lower metric scores on synthetic data with these characteristics. In order to gain insight into the cause
of these differences, we first perform an ablation on the latent representation created by the VAE. The
data diffusion model does not employ a VAE, unlike the LDM. We therefore aim to assess whether the
quality of synthetic time series generated by the LDM depends on the latent space produced by the VAE
encoder. Since the VAE is trained with a Gaussian prior, it is expected to map input time series to a latent
space that closely approximates a standard normal distribution. If the latent space fails to approximate
the Gaussian prior, it could indicate that the VAE failed to capture underlying patterns in the data. If this
flawed representation of the original data is given to the diffusion model as input, it could in turn affect
the output quality of the diffusion model, resulting in low quality synthetic data. Beyond generation
quality, the structure of the latent space has direct implications for watermark detectability. Effective
watermark retrieval requires precise reconstruction of the latent representation. That is, z ~ z. If the
VAE cannot maintain a coherent latent space throughout encoding, decoding, and decoder inversion,
then adapting existing watermarking methods to LDMs becomes infeasible.

5.4.1. Ablation

To evaluate how the structure of the latent space changes throughout the diffusion and decoding pro-
cess, we analyze the distributions of latent representations at three checkpoints within the model
pipeline. First, after completion of the VAE training procedure. Second, after re-encoding the gen-
erated data. Third, after applying decoder inversion to the generated data. Algorithm 4 provides a
high-level overview of the procedure.
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Algorithm 4 Latent Space Distribution Analysis

Input: Original data z, synthetic data &

Output: JS and Wasserstein distances for all checkpoints

Require: Encoder &, decoder inversion DT

// Obtain latent representations

Zoracle < €()

Zre-enc < E£(2)

Zpl 'DI(.%)

Compute empirical distributions Pyragle; Pre-enc, Fbi

Compute Jensen-Shannon distances d js(Poracle, N(0, 1)), djs(Pre-enc; N (0, 1)), dys(Poi, N(0, 1))
Compute Wasserstein distances dw (Poracie; N (0, 1)), dw (Pre-enc, N (0, 1)), dw (Ppi, N (0, 1))

The first checkpoint examines the oracle distribution, obtained immediately after encoding real time
series data using the VAE encoder. This representation, z, is passed directly to the diffusion model
and serves as the cleanest view of how well the VAE aligns its latent space with the standard normal
distribution. Since the VAE is explicitly trained to enforce a Gaussian prior on this space, the oracle
distribution provides a baseline for evaluating encoder effectiveness.

The second checkpoint involves decoding followed by re-encoding. After completing the diffusion sam-
pling, we decode the resulting latents into a synthetic time series. Afterwards, we re-encode this time
series using the VAE encoder, obtaining Z,._.,... Thereby giving insight into the error introduced by
the decoder, and the encoder’s ability to recover a latent representation after generation. This stage
is particularly informative because it provides a baseline for understanding the fidelity of re-encoding
relative to the original latent distribution, independent of decoder inversion. If the decoder introduces
minimal distortion and the encoder is robust to such distortions, then the resulting distribution should
still approximate a Gaussian reasonably well.

The third checkpoint applies decoder inversion to the decoded time series. By doing so we recover a
latent representation, Zp;, that closely corresponds to the one at the end of the diffusion process. In
this case, we do not rely on the encoder at all. By analyzing the latent distribution recovered through
decoder inversion, we can evaluate how well this process preserves or distorts the structure of the latent
space. Additionally, this checkpoint provides evidence to determine whether the post-DI distribution
diverges from both the oracle and re-encoded distributions.

We compute quantitative divergence metrics to assess the degree of alignment with the standard nor-
mal distribution at each checkpoint. Specifically, we compute both the Wasserstein distance and the
Jensen-Shannon (JS) distance between the observed latent distribution and a standard Gaussian. To-
gether, these metrics provide a comprehensive view of how the latent space evolves and where distor-
tions arise. We revisit the datasets from Chapter 4 and include the Pollution dataset, all summarized in
Table 4.1. We augment our quantitative evaluation with visualizations of the latent distribution at each
of the three checkpoints.

5.4.2. Results

The Energy dataset (Figure 5.3) exhibits the most divergent latent distribution, showing the greatest
deviation from the standard Gaussian prior. The distribution remains largely unchanged even after
re-encoding and decoder inversion, with stable Wasserstein and JS distance values (Table 5.4). The
relatively low Discriminative score and Correlational score (see Table 5.1) we observe for Energy could
be related to its latent space diverging significantly from the standard Gaussian distribution.

In contrast, the Pollution dataset (see the top image of Figure 5.5) presents a more complex case.
Like Energy and fMRI, Pollution yields relatively low metric scores (Table 5.3). In the oracle scenario,
its latent distribution somewhat approximates a standard Gaussian, but this structure is significantly
disrupted after decoding and returning to the latent space. We summarize this in Table 5.4, with both
the re-encoded and decoder inversion JS distances diverging significantly from the oracle distance.
Interestingly, its Wasserstein distance sees little change between checkpoints To investigate the source
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Table 5.3: Results of synthetic time series generated by TimeAutoDiff with and without watermark on Pollution datasets.
Pollution (num) denotes the Pollution dataset with only numerical features. Scores are the mean values over ten seeds
(standard deviation in brackets). TR = TreeRing, GS = Gaussian Shading, TW = TimeWak. For every metric, lower is better.
The best scores are shown in bold.

Dataset WM

Discriminative

Predictive

Context-FID

Correlational

None
TR

Pollution GS

0.428 (0.010)
0.418 (0.022)
0.428 (0.021)
0.415 (0.024)

0.008 (0.000)
0.009 (0.000)
0.008 (0.000)
0.009 (0.000)

1.987 (0.093)
1.935 (0.127)
2.261 (0.146)
1.978 (0.101)

0.204 (0.021)
0.203 (0.028)
0.201 (0.026)
0.202 (0.018)

Pollution (num)

0.011 (0.006)
0.017 (0.010)
0.024 (0.012)
0.012 (0.013)

0.009 (0.000)
0.009 (0.000)
0.009 (0.000)
0.009 (0.000)

0.009 (0.001)
0.011 (0.001)
0.068 (0.004)
0.018 (0.001)

0.047 (0.016)
0.049 (0.018)
0.050 (0.012)
0.052 (0.012)

Table 5.4: Distance between latent distribution and Gaussian distribution for every dataset at different checkpoints in synthesis

pipeline.
Metric Checkpoint ETTh Stocks Energy fMRI Pollution Pollution (num)
Jensen-Shannon Distance (lower is better) Oracle 0.138 0.071 0.363 0.113 0.229 0.108
Re-encoded 0.214  0.071 0.331  0.095 0.427 0.281
Decoder Inversion 0.165  0.099 0.325 0.109 0.554 0.227
Wasserstein Distance (lower is better) Oracle 0.077  0.068 0.943 0.124 0.622 0.216
Re-encoded 0.074  0.065 0.943 0.123 0.620 0.221
Decoder Inversion 0.076  0.066 0.942 0.123 0.619 0.222
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Figure 5.1: Distribution of the latent spaces of the ETTh dataset.
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Figure 5.2: Distribution of the latent spaces of the Stocks dataset.
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Figure 5.3: Distribution of the latent spaces of the Energy dataset.
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Figure 5.4: Distribution of the latent spaces of the fMRI dataset.

of this degradation, we trained a version of the model on a modified Pollution dataset that includes
only numerical features. As can be observed in the bottom image of Figure 5.5, the resulting latent
distributions appear considerably more Gaussian after decoding. The JS distance and Wasserstein
distance of numerical-only Pollution support this observation, with both being lower than those of the
original dataset (see Table 5.4). Removing the categorical features improved the synthetic data quality
markedly across all metrics, matching the scores achieved on ETTh and Stocks (Table 5.3).

For the ETTh and Stocks datasets, the latent representations (Figures 5.1 and 5.2 respectively) closely
approximate a standard Gaussian distribution across all three checkpoints. Table 5.4 supports this
observation, with both datasets exhibiting relatively low JS distance values. In terms of Wasserstein
distance, they are the best performing datasets. Importantly, even after a full pass through the diffusion
process, decoding, and decoder inversion, the latent distributions remain reasonably Gaussian. The
fMRI dataset (Figure 5.4) also demonstrates approximate Gaussian latent representations across every
checkpoint. Its divergence metrics are comparable to ETTh and Stocks (Table 5.4). Similar to those
datasets, fMRI consists of only numerical features. Despite its high dimensionality, fMRI maintains a
well-structured latent space, suggesting that dimensionality alone does not determine latent distribution
quality.

Overall, categorical features appear to hinder the VAE’s ability to impose a Gaussian prior on the
latent space. Latent spaces that deviate from Gaussian distributions generally correlate with poor
synthetic data quality. However, Gaussian alignment alone does not guarantee high-quality generation.
The fMRI dataset demonstrates this limitation. Despite maintaining approximately Gaussian latent
distributions across all checkpoints, it achieves poor scores on every quality metric. This suggests
that LDMs struggle with high-dimensional data even when latent representations resemble the prior
distribution. Thus, poor latent representation typically leads to poor generation performance. However,
well-structured latent spaces are not sufficient for high-quality synthetic data.
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Figure 5.5: Distribution of the latent spaces of the standard Pollution dataset (top image) and of the edited Pollution dataset

with only numerical features (bottom image).

Experiment Summary: We analyze latent distributions at three checkpoints: oracle (directly
after encoding), re-encoded (after decoding and re-encoding), and decoder inversion (after de-
coding and inversion). JS distance and Wasserstein distance measure alignment with standard
Gaussian distributions across six datasets.

Key Takeaway: Dataset composition strongly determines latent space quality. Numerical-only
datasets maintain Gaussian-aligned latent spaces throughout the pipeline. Datasets with cate-
gorical features exhibit severe distributional divergence. Removing categorical features frrom
heterogeneous datasets substantially improves Gaussian alignment. However, Gaussian align-
ment alone is insufficient: fMRI maintains Gaussian latents but produces poor quality synthetic
data.

5.5. Decoder Inversion Analysis

The previous section demonstrated that latent space structure varies significantly across datasets.
Some maintain Gaussian distributions throughout the pipeline, while others diverge from this prior.
Watermark detection in latent diffusion models requires recovering the latent representation from gen-
erated synthetic time series. Decoder inversion allows us to recover this latent representation. We now
investigate how well decoder inversion manages to recover the latent and whether watermarks remain
detectable after the decoder inversion process.
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Figure 5.6: The complete watermarking pipeline from embedding to detection for the Oracle scenario and for Decoder
Inversion. The Oracle, indicated by the yellow arrow, preserves the original latent representation. In contrast, Decoder
Inversion approximates the original latent representation.

<::l

Watermark

Watermark Evaluation Extraction
Accuracy Score j ]

5.5.1. Ablation

We evaluated the detectability of each watermark by computing Z-scores under two conditions. Figure
5.6 visualizes the detection pipeline of each condition. The first is an oracle scenario in which diffusion
inversion was performed directly on the latent representation at the end of the diffusion process, without
decoding. This represents an ideal upper bound on detectability, as it eliminates any information loss
from the decoder or inversion process. The second condition is the complete pipeline, which involves
decoder inversion. The generated latent is decoded into a synthetic time series, followed by decoder
inversion (as described in Algorithm 2) to recover an approximate latent representation. Afterwards,
diffusion inversion is performed on this recovered latent to attain the initial watermarked noise. Finally,
we extract the watermark through reverse sampling and compute a bit accuracy score. This pipeline
mimics the practical watermark detection workflow where only the synthetic time series is available, not
the original latent representation.

Using both procedures allows us to gain insight into how much information is lost during the decoding
and decoder inversion process. By comparing the Z-scores obtained in the oracle case with those from
the full pipeline, we can assess how reliably the watermark survives the generative process. A large
gap between the two Z-scores suggests that decoding and inversion introduce significant distortion that
hinders watermark recovery. This comparison thus provides valuable insight into both the robustness
of the watermark and the fidelity of the model’s latent representations across different stages of the
generation process.

For both conditions, we compute Z-scores across 1000 samples as a measure of watermark detectabil-
ity. A Z-score above 1.64 indicates statistical significance, meaning the watermark is reliably detectable.
We evaluate the same watermarking methods as in Section 5.3.1: Gaussian Shading, TreeRing, and
TimeWak. We also use the same datasets as in 5.4, the properties of which can be found in Table 4.1.
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Table 5.5: Z-scores of each watermark after decoder inversion, and in the Oracle scenario. Scores are the mean Z-values over
1000 rows (with standard deviations). Pollution (Num) represents an abliation on the Polllution dataset with categorical
columns removed.

Dataset Watermark Oracle Post-Decoder Inversion
ETTh Gaussian Shading  345.83 (0.42) 276.41 (0.60)
TreeRing 2.25(0.02) 0.60 (0.02)
TimeWak 192.92 (0.55) 109.14 (0.67)
Energy Gaussian Shading  775.11 (0.21) 61.52 (1.01)
TreeRing 5.22 (0.02) 0.62 (0.03)
TimeWak 413.29 (0.56) 4.66 (0.67)
Stocks Gaussian Shading  323.46 (0.34) 103.17 (0.63)
TreeRing 6.11 (0.02) 1.08 (0.02)
TimeWak 184.55 (0.54) 18.82 (0.69)
fMRI Gaussian Shading 1082.61 (0.15) 103.84 (0.79)
TreeRing 6.75 (0.03) 0.57 (0.02)
TimeWak 535.38 (0.51) 6.40 (0.69)
Pollution Gaussian Shading  393.44 (0.31) 0.18 (0.73)
TreeRing 5.73 (0.02) -0.01 (0.02)
TimeWak 211.57 (0.48) 0.42 (0.67)
Pollution (Num) Gaussian Shading 325.13 (0.42) 3.02 (0.61)
TreeRing 5.46 (0.02) -0.04 (0.02)
TimeWak 183.44 (0.56) -0.30 (0.76)

5.5.2. Results

First, all watermarks exhibit significant drops in Z-score after decoder inversion, compared to the or-
acle case. This suggests that decoder inversion introduces substantial information loss or distortion
in the latent space, which in turn weakens the ability to accurately recover the embedded watermark.
Additionally, the Z-score drop appears to correlate with the alignment between the latent distribution
and a standard Gaussian. Datasets such as ETTh and Stocks, which have latent spaces more closely
resembling a standard Gaussian after decoder inversion, show relatively smaller reductions in Z-score.
In contrast, Energy and Pollution exhibit severe drops, likely due to their post-inversion latent distri-
butions diverging more significantly from a standard Gaussian prior. However, Gaussian alignment
alone does not fully account for Z-score degradation. The fMRI dataset maintains an approximately
Gaussian latent space after decoder inversion. Yet, it experiences substantial Z-score reductions com-
parable to datasets with poorly structured latent spaces. These results suggest that the effectiveness
of watermark recovery is, at least in part, dependent on the degree to which the latent space retains
Gaussian structure after decoding. Dimensionality appears to be an additional factor of influence, with
high dimensional data presenting additional challenges for accurate reconstruction, regardless of latent
distribution.

Looking solely at the absolute Z-scores after decoder inversion, it is notable that some watermarks in
the synthetic Energy dataset still achieve relatively high detectability, despite the latent space diverging
from a Gaussian prior. In fact, synthetic Energy data yields higher Z-scores than synthetic Pollution
data even though the latent space of the latter matches the Gaussian distribution more closely. This
suggests that the divergence between oracle and post decoder inversion distributions may be more criti-
cal than alignment with the Gaussian distribution. Table 5.4 illustrates this pattern through JS distances.
Energy’s oracle JS distance (0.363) decreases slightly to 0.325 post-DI. In contrast, Pollution’s distance
jumps from 0.229 to 0.554. This represents the largest distributional shift across all datasets. Notably,
Pollution is also the only dataset where no watermarks remain detectable after decoder inversion. The
numerical-only Pollution variant provides supporting evidence. Removing categorical features reduces
the difference between the oracle JS distance and post-DI JS distance. This version achieves de-
tectability for one watermark, Gaussian Shading, with a Z-score of 3.02. However, Z-scores remain
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lower than other datasets, and two out of three watermarks still fall below the detectability threshold.
The low Z-scores of the numerical-only Pollution variant is unsurprising. Its gap between the oracle
JS distance and post-DI JS distance remains substantially larger than other datasets. The divergence
between oracle and post decoder inversion distributions appears to play a part in watermark recovery
success. Greater divergence indicates information loss or distortion during decoding and inversion.
This lost information may contain crucial components of the watermark signal, reducing the Z-score.

Nevertheless, depending on the dataset detectability can still be maintained through careful selection of
the watermarking method. Thus, a poor approximation of the Gaussian distribution does not necessarily
preclude good watermark detectability. However, it does make the choice of watermark more critical.
Datasets where decoder inversion cannot preserve sufficient information present a greater challenge.
For such cases, refining the decoder inversion procedure may be necessary to achieve more accurate
latent reconstruction.

Experiment Summary: We compare watermark detectability between oracle (direct latent ac-
cess) and decoder inversion scenarios across six datasets. Z-scores above 1.64 indicate reliable
detection. This reveals information loss during decoding and inversion.

Key Takeaway: All watermarks experience substantial Z-score drops after decoder inversion

compared to oracle scenarios. Gaussian Shading maintains detectability across four datasets
despite drops. Despite yielding lower Z-scores than Gaussian Shading, TimeWak remains de-
tectable on four datasets as well. TreeRing becomes undetectable across all datasets. Z-score
degradation correlates more strongly with oracle-to-post-inversion distributional divergence than
absolute Gaussian alignment.

5.6. Conclusion

Our findings indicate that latent diffusion models are not well-suited for generating synthetic time series
data. While these models demonstrate good performance on small datasets composed of solely numer-
ical features, their effectiveness drops significantly on datasets more reflective of real-world time series,
which often contain a large number of heterogeneous features. This reduces the practical applicability
of latent diffusion models for time series synthesis in realistic scenarios.

Despite these limitations, the experiments show that it is technically feasible to embed an imperceptible
yet detectable and robust watermark during sampling. However, the utility of watermarking becomes
questionable when the generated synthetic data is visibly distinguishable from the real data, making
the watermark redundant.

The main bottleneck appears to be the VAE of the latent diffusion model. Depending on the dataset, the
VAE fails to adequately enforce a standard Gaussian distribution on the latent space, suggesting that
it might not be capturing key characteristics of the input data. This likely contributes to the inconsistent
quality of the synthetic time series. By contrast, diffusion models that operate directly on the data
achieve better results in terms of both data quality and watermark performance. This suggests that the
VAE may be more of a hindrance than a help in this latent diffusion model.

If an autoencoder better capable of effectively encoding a wide variety of time series into a latent space
with the given prior distribution can be found, latent diffusion models might become a more viable
alternative. Until such an advancement is made, standard diffusion models remain the more reliable
choice for high-quality time series synthesis and watermarking.



Robustness of Time Series
Watermarks

In this chapter, we aim to extend the attack evaluation of time series watermarking. Therein con-
sidering more realistic attacks, leveraging aspects of the time series themselves. Current works on
time series watermarking only consider simple, time domain-based attacks. However, real-world time
series data is subjected to a broader range of data modification techniques, even in non-adversarial
settings. These include operations not only in the time domain, but also in the frequency domain and
joint time-frequency domain. Consequently, a robust watermark for time series should be resilient to
such manipulations, regardless of the domain in which they occur.

This raises a critical question: are existing watermarks robust against sophisticated post-editing at-
tacks? To address this gap, we developed a comprehensive robustness evaluation framework that
tests TimeWak and the two baseline watermarking methods we used previously, TreeRing and Gaus-
sian Shading, against a diverse suite of domain-specific attacks. Through our evaluation, we first
examine how robust TimeWak is against a diverse range of domain-spanning attacks. Second, we
compare its robustness to existing watermarking methods not designed for time series data.

6.1. Frequency Domain Transformations

Frequency domain transformations break down signals into different frequency parts, revealing patterns
not easily visible in the time domain. These transformations enable manipulation of specific frequency
coefficients. As a result, they are used for various applications, including adversarial attacks. By oper-
ating in the frequency domain, attackers can selectively distort or remove frequency components while
maintaining overall signal coherence. If performed well, these attacks could potentially compromise
watermark detectability without obvious degradation to signal quality.

A commonly used transformation is the Discrete Cosine Transform (DCT) [58]. It transforms a signal
to its corresponding representation in the frequency domain. To do so, each signal is transformed from
a real number, into a sum of cosine functions oscillating at different frequencies. Several variations
of the discrete cosine transform exist, but DCT-II is the most commonly used. It is therefore often
referred to as simply DCT. In this work we follow this convention, as DCT-Il is the variant employed in
our evaluation.

Given a real-valued signal X € R" of length vV, where n = 0,1, ..., N — 1, the DCT is defined as:

X[k]—a(k)Nzlx[n}~cos(; <n+;> k) k=01,...,N—1.

n=0

36
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In the above formula, X [k] denotes the DCT coefficient corresponding to the k-th cosine basis function.
These coefficients quantify the contribution of different cosine frequency components in reconstructing
the original signal.

The normalization factor «(k) is given by:

— ifk=0,

o 2
\/~— otherwise.
N otherwise

DCT exhibits a characteristic energy distribution where coefficients at lower values of k£ have larger
magnitudes than those at higher indices. Energy, defined as the sum of squared coefficients, becomes
concentrated in these low-frequency components through a property known as strong energy com-
paction. Its strong energy compaction enables DCT to compress data without significantly degrading
the data quality.

The inverse DCT reconstructs the original time domain sequence from its frequency domain represen-
tation:

x[n}zAfa(k)-X[k]-cosG <n+;)k> n=01, . N-1

k=0

Another common transformation is the Discrete Fourier Transform (DFT). DFT also transforms a
signal to the frequency domain, decomposing it into sine and cosine components. Unlike the DCT,
which only yields real output, the DFT yields both real and imaginary components. Given a signal z[n]
of N complex values, where n =0,1,..., N — 1, the DFT is defined as:

N-—1
X[k =3 afn] e ¥ k=01, N1,

n=0

Here, X [k] denotes the complex frequency domain representation of the signal. e are the basis func-
tions corresponding to complex exponentials of increasing frequency. The index k represents a fre-
quency bin, with X[k] describing the amplitude and phase of the frequency component at k. The
amplitude constitutes the real part of the complex output, while the phase constitutes the imaginary
part.

The inverse DFT allows for reconstruction of the original time domain signal from its frequency domain
representation and is given by:

N-1

- 27
> XK R n=0,1,...,N -1
k=0

1
zln] = N
Due to the computational complexity of DFT, which is O(N?), more efficient variations of the DFT have

been proposed. One of those is the Fast Fourier Transform (FFT)[12], which significantly improves
performance by reducing the computational complexity to O(N log N).

A limitation of purely frequency-based transformations is that they provide no temporal information.
While they show which frequencies are presentin a signal, they cannot indicate when these frequencies
occur. This loss of temporal information makes frequency-only transforms insufficient for analyzing
signals of which the frequency composition changes over time.

6.2. Joint Time-Frequency Transformations

Joint time-frequency domain transformations can identify both the timing and frequency characteristics
of signal components simultaneously [22]. Frequency-only transformations show what frequencies are
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present overall. Unlike those methods, joint time-frequency transformations reveal how the frequency
composition evolves throughout the duration of the signal. This combined perspective makes them
suitable for analyzing signals that change over time. In addition, it enables selective modification of
particular time-frequency regions.

The joint time-frequency transformation employed in this work is the Discrete Wavelet Transform
(DWT) [22]. DWT breaks a signal down into components at different frequency bands and time intervals,
transforming it to the joint time-frequency domain. Unlike the DCT and DFT, which decompose a signal
into globally defined sinusoidal basis functions, the DWT uses wavelets, which are localized in both
time and frequency.

Given a discrete time signal x[n], the DWT performs a multi-resolution analysis by repeatedly passing
the signal through two filters: a low-pass filter h[n] associated with the scaling function and a high-pass
filter g[n] associated with the wavelet function. After each filtering step, the output is down sampled by
a factor of two, producing:

aln] = Zx[k] ~h[2n — k], dn] = Zax[k‘] - g[2n — k]

k k

Here, a[n] are the approximation coefficients which represent the low-frequency content, and d[n] are
the detail coefficients, which represent the high-frequency content.

The inverse DWT reconstructs the original signal with the corresponding reconstruction filters h[n] and
g[nl:
zln] = (alk] - 1'[n — 2k] + d[K] - g'[n — 2k])
k

The DWT can be performed with a number of wavelets, such as Haar [59] or Daubechies [19]. Each
wavelet offers different trade-offs between time localization, frequency localization and the ability to
represent smooth versus abrupt changes in the signal.

6.3. Methodology

We developed a comprehensive attack suite by drawing inspiration from common data augmentation
techniques used in time series literature. They involve transformations based on the DFT, DCT, and
DWT, in addition to more conventional time-domain modifications. A complete overview of the attacks
can be found in Figure 6.1.

For each attack, we assess the detectability of the watermark by computing the Z-score of the wa-
termark post-attack. A watermark is considered robust if the Z-score remains above a threshold of
approximately 1.64 for p is 0.005, indicating statistically significant presence despite the applied pertur-
bation.

6.3.1. Time Domain Attacks

The original TimeWak evaluation assessed robustness against three simple time-domain attacks: off-
set, cropping, and min-max insertion. These transformations represent plausible manipulations a wa-
termark might encounter [66]. However, due to their nature they provide only a limited perspective on
TimeWak’s overall robustness within the time domain. To address this limitation, we draw on estab-
lished time series data augmentation techniques [66] to design a more comprehensive and challenging
suite of time-domain attacks. Our proposed suite includes both elementary and refined attacks to rigor-
ously evaluate TimeWak’s robustness. The complete set of time-domain attacks is visualized in Figure
6.2 and comprises the following:

» Offset: This attack shifts the baseline of the entire time series by adding a scaled version of the
mean of the time series to all time points. This perturbation tests watermark resilience to linear
translations in the time domain.
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Offset attack
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———— Fourier noise attack
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L Fourier shuffle attack

L— Time-Frequency Domain Attacks Wavelet scale attack

Figure 6.1: A taxonomy of propose time series attacks, grouped by the domain they target: time domain, frequency domain, or
joint time-frequency domain.

» Crop: The crop attack emulates partial signal loss by removing a randomly selected region from
the time series and padding the remainder with zeros. This form of cropping can disrupt local
patterns in both time and feature space, challenging the watermark’s spatial-temporal localization.

* Min-max insert: For each time series, a number of random time steps are selected according to
the specified attack factor, and the values at those time steps are overwritten with random values
drawn uniformly from the minimum to the maximum values observed in that feature. By injecting
plausible but incorrect values into arbitrary locations, the insert attack targets the integrity of both
local and global structures in the time series.

« Jitter: The jitter attack simulates random, high-frequency sensor noise by adding Gaussian-
distributed noise to every point in the time series. This additive noise distorts fine-grained features
of the time series without introducing large-scale structure changes, assessing sensitivity to small
local changes.

Time warp [64]: The time warp attack performs nonlinear temporal distortions by resampling the
original time series along a smooth, warping curve. This attack tests the watermark’s robustness
to time misalignment and sampling irregularities.

+ Magnitude warp [64]: This attack distorts the time series by adjusting its amplitude over time
using a smooth multiplicative curve. Unlike the time warp attack, which perturbs the temporal axis,
magnitude warping alters the time series measurements while preserving temporal alignment. It
challenges watermarking techniques that depend on consistent amplitude or local magnitude.



6.3. Methodology 40

Crop Attack - Original vs Reconstructed Signal at factor 0.3

Offset Attack - Original vs Reconstructed Signal at factor 0.3

— original

- Reconstructed - Reconstructed
05 /

80 100 20 W

— original

20 Qo £ £
Time Step Time Step

(a) Offset attack (b) Crop attack

Min-Max Insertion Attack - Original vs Reconstructed Signal at factor 0.3

— original
-~ Reconstructed

Jitter Attack - Original vs Reconstructed Signal at factor 0.3

— Original H

-~ Reconstructed

2 a0 60 80 100 20 a0 60 80 100
Time Step Time Step
(c) Min-Max attack (d) Jitter attack
Time Warp Attack - Original vs Reconstructed Signal at factor 0.3 Magnitude Warp Attack - Original vs Reconstructed Signal at factor 0.3

— original

_ — Original
-~ Reconstructed

-~ Reconstructed

Time Step Time Step

(e) Time Warp attack (f) Magnitude Warp attack

DTW-DBA Attack - Original vs Reconstructed Signal at factor 1
N\ A N

— original
-~ Reconstructed

Value

Time Step

(g) DTW-DBA attack

Figure 6.2: Time domain attacks at strength 0.3 on a low frequency sine signal.

+ DTW-DBA [15]: The DTW-DBA (Dynamic Time Warping - Barycentric Averaging) attack con-
structs several noisy variants of the given time series and combines them using DTW-based
barycentric averaging. This attack produces a smoothed, synthetic sequence that retains global
similarity to the original but potentially eliminates subtle watermark signals.

Each attack was performed at two levels of intensity, 0.05 and 0.3. Thereby, providing insight into
the watermarking method’s sensitivity to varying degrees of perturbation. The only exception was the
DTW-DBA attack, which does not have a tunable attack strength.

6.3.2. Domain Transformation Attacks

We continued our evaluation with domain transformation attacks. The initial TimeWak evaluation did
not consider attacks in domains beyond the time domain. As a result, potential vulnerabilities in the fre-
quency and time-frequency domains were overlooked. Similarly, the baseline watermarks we compare
against, TreeRing and Gaussian Shading, have not been evaluated against such attacks either despite
the viable avenue that other domains provide to adversaries. To address gaps in existing evaluations,
we extended the attack suite with frequency domain and time-frequency domain attacks using the DCT,
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Figure 6.3: Domain transformation attacks at strength 0.3 on a low frequency sine signal.

DFT and DWT. As with our time domain attacks, most attacks were derived fromdata augmentation
techniques for time series. Naturally a robust watermark should remain detectable even in scenarios
where no perturbations have been performed. The domain transformation attack suite consists of the
following attacks:

» DCT drop: This attack removes spectral content by zeroing out a random selection of DCT co-
efficients. Setting these coefficients to zero removes their contribution to the reconstructed time
series. By dropping specific frequency bands, this attack distorts the frequency composition of
the time series, changing the ratio between low frequency measurements and high frequency
measurements.

DCT high/low frequency noise: The high frequency noise attack injects Gaussian noise into the
high-frequency region of the DCT spectrum. This region corresponds to the smallest time-scale
structures. The attack selectively targets sharp transitions between consecutive time steps and
local features. In doing so, it can potentially degrade watermark patterns without affecting broader
trends. In contrast to its high-frequency counterpart, the low frequency noise attack targets the
low-frequency components of the DCT spectrum. These components correspond to slow-varying
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trends or global signal shape. Adding noise to the low frequency components distorts the global
time series structure while maintaining the fine-grained structures.

* DCT merge [17]: The DCT merge attack perturbs the signal in the frequency domain by selec-
tively averaging randomly chosen frequency components. This flattens variations in the frequency
spectrum, effectively removing fine-grained frequency distinctions.

Fourier drop: This attack removes energy from specific frequencies by zeroing out symmetric
pairs of FFT coefficients. The resulting time-domain time series is globally altered but remains
smooth and continuous, muting detailed spectral patterns while preserving overall coherence.

» Fourier noise [16]: The Fourier noise attack perturbs both amplitude and phase information
in the frequency domain. The input time series is transformed using the FFT, separating it into
amplitude and phase components. Some selected frequency bins have their amplitudes replaced
with normally distributed values. Other bins receive phase perturbations, altering both signal
shape and timing.

Fourier shuffle [78]: This attack selectively disrupts dominant spectral components by shuffling
the frequencies with the highest magnitudes. This attack introduces unpredictable changes to
dominant oscillatory patterns without altering the overall energy.

» Wavelet scale: The wavelet scale attack modifies the low-frequency content of a signal by ma-
nipulating its wavelet decomposition. This attack reduces the global amplitude of the time series
while preserving detail at higher frequencies.

Each attack was conducted twice at an intensity of 0.05 and 0.3. For most attacks, the intensity was
used to determine the number of samples to target, or the number of frequency coefficients to select.

6.4. Results

We evaluate the robustness of TimeWak, TreeRing and Gaussian Shading against our comprehensive
attack suite spanning time-domain and domain transformation attacks. Each watermark was embedded
in four time series datasets (ETTh, Energy, fMRI, Stocks) and subjected to attacks at two intensity
levels (0.05 and 0.3). We measure robustness using Z-scores, where values above 1.64 indicate
statistically significant watermark detection (p < 0.05). We also use critical difference diagrams to
identify statistically significant performance differences.

Table 6.1: Z-scores (with standard deviations between parentheses) of time series for different Watermarking (WM) methods
under simple temporal domain attacks. GS = Gaussian Shading, TR = TreeRing, TW = TimeWak. Attack intensities of 0.05 and
0.3 are shown. Best results are shown in bold.

Dataset WM Unattacked Offset Crop Min-Max Insert Jitter
0.05 0.3 0.05 0.3 0.05 0.3 0.05 0.3

Energy GS 45.31+ 0s0) 43.66+ 075) 28.43+ 089 -2.60+ 0s6) 38.65+ (1o 42.25+ 089 26.38+ (100) 56.67+0m) 47.98 032
TR -1.55+ 003 -1.56+ 003 -1.93+ 0oy -110.62+ 0300 -137.02+ 0259 -11.48+011 -31.37+01m) -2.21+ 00y -12.12+ 003
TW 224.34i(1 74) 223.60i(1 67) 187.66i(1 72) 0.691(1 01) 9.221(084) 184-55i(| 42) 57.851(1 1) 145.561(1 13) 27.781(087)

ETTh GS  107.23+¢2 104.07:0sny 84.40:09  73.22:0.19 24.53: (1.10) 99.63: 00  66.25:12  111.38:02y  109.66- (120
TR -4.19+ ©08) -4.12+ 008 -3.73+ 009 -14.07 = 024 -19.91+ 01s) -7.91+ 019 -16.96: (028) -3.88+ 0o -5.72+ 006
T™W 128.24. 0149 124.38: (05 112.85: 105 34.154 os8) 4.311 084 97.50 ©s0) 19.48.: oo 108.83+ .13 33.87+ 089

fMRI GS  365.62:(02 36594102 366.67+¢2 319.55:+00 179.20:00n 352.84:2) 248.61:022 359.04:09 321.18:0n
TR 4.37 + 0.05) 4.4+ 000) 4.49; 000) 3.67+ 00s) 3.70= o) 3.29 (o) -1.32+ 0o 4.60 (.06 4.47 + 0.06)
T™W 386.13: 039 385.99. 08y 382.79:0ss 277.53: 093 7512+ 081 333.56+ 089 135.68+¢01 383.47:09) 344.86: 095

Stocks GS 75.79+ 0s) 7564+ 059  73.28+0sn  -28.65+ 053 6.26 (059 7248+ 052 50.16:0sy  75.12:0s)  75.36+ 07
TR 2.08+ 002 2.05+ 002 1.89 (002 -53.30- (97 -67.62+ (1.1 1.69: 003 0.07=+ 05 0.62+ 003 0.61+ 003
™™ 182.48: 075 182.58: 0s5) 181.63: 0s1) 59.56-: (1.03) 11.32- 098 156.11 = (101 56.57 - (1.06) 182.44: 079 181.35:072)

The robustness evaluation reveals that across all attack types and domains, TreeRing exhibits the low-
est robustness out of the watermarks, ranking significantly lower than TimeWak and Gaussian Shading
(see Figure 6.4). TimeWak emerges as the most robust watermark, followed by Gaussian Shading.

TimeWak and Gaussian Shading demonstrate high Z-scores across all scenarios. Their Z-scores typ-
ically range in the hundreds in the unattacked scenario, and even after some attacks. While certain
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Table 6.2: Z-scores (with standard deviations between parentheses) of time series watermarked with different watermarks
(WM) under complex temporal domain attacks. GS = Gaussian Shading, TR = TreeRing, TW = TimeWak. Attack intensities of
0.05 and 0.3 are shown (except for DTW-DBA which has no intensity parameter). Best results are shown in bold.

Dataset WM Unattacked Time Warp Magnitude Warp DTW-DBA
0.05 0.3 0.05 0.3

Energy GS 45.31+ (0.80) 40.68+ (0.94) 23.47 (0.92) 52.84. (1.07) 28.34. (1.15) 46.03.: (0.86)
TR -1.554 (0.03) -1.58+ (0.03) -1.84 . (0.04) -18.72+ (0.18) -31.19+ (0.23) -8.23+ (0.03)
TW 224.34. (1.74) 192.31. (1.43) 48.52 (1.59) 7.28+ (0.84) -0.56+ (0.92) 43.33+ (1.04)

ETTh GS 107-23i (1.22) 100.891(144) 71.25;{; (1.16) 100.00:{:(1.08) 22.321(0,79) 100.511(140)
TR -4.19+ (0.08) -4.00+ (0.08) -4.39+ (0.08) -3.71+ (0.07) -1.33+ (0.03) -4.85+ (0.07)
TW 128.24 . (1.14) 108.75i(1.10) 29.87+ (1.19) 108.82i(1.03) 38.47i(1.11) 50.87i(0.93)

fMRI GS  365.62+(02 330.75:¢2) 196.25+¢83 326.88+09) 189.86+089 336.44 (100
TR 4.37 + ©0.05) 4.95 (0.05) 3.59: (005) 4.91+ 00 2.34+ o0s) 4.37 + 0.0)
TW 386.1 3i (0.88) 340.34i (1.22) 9559i (2.48) 363.55i (0.77) 298.1 1 =+ (1.05) 362.79i (0.75)

Stocks GS 75.79+ (0.64) 72.09+ (0.53) 4917+ (0.68) 66.96+ (0.63) 19.254 (0.74) 72.62+ (0.66)
TR 2.08+ (002 0.59: (0.03) 0.47 + 03 0.01=+ 003 -5.07+ 15 0.61+ 003)
T™W 182.48 (.19 163.56: (093 49.93.: (123 97.59- (130 20.53- (1.07) 181.80-: (0s)

Table 6.3: Z-scores (with standard deviations between parentheses) of time series watermarked with different watermarks
(WM) under DCT-based domain transformation attacks. GS = Gaussian Shading, TR = TreeRing, TW = TimeWak. Attack
intensities of 0.05 and 0.3 are shown. Best results are shown in bold.

Dataset WM Unattacked DCT Drop DCT High Freq. Noise DCT Low Freq. Noise DCT Merge
0.05 0.3 0.05 0.3 0.05 0.3 0.05 0.3
Energy GS 45.31 + (0.80) 43.62110.72) 41.741(0,35) 52.491(077) 47.52110 85) 53.891(034) 56.971(097) 47.601(054) 44.831(1 06)
TR -1.55+ 003 -33.87+ 020y -50.54+ 019  -2.80+ 004 -6.01+ 003 -2.02+ 003 -5.13+ 005  -52.61+0769 -74.86+ 025
TW 224.34i(1 74) 16.761(099) 15.001(094) 98.31i(| 06) 47.18i1ﬂ 90) 153.391(1 25) 59.911(091) 14.961[087) 6.76i1| 00)
ETTh GS  107.23:022 102.20:¢3) 67.94:03 105.73:01) 113.14:01 106.93:¢0) 107.84:¢0s 91.21:1¢20  61.75+ 009
TR '4.191(008) ‘2.101(011) '6.951(015) ‘3.3411007) ‘5.041(007) '2.701(007) '1.961(006) '4.11;{1014) ‘13.211(021)
TW  128.24. 014 4262100  13.17:0s  87.47+00y 55704000 112.79+0sn 67.22:000  46.49+ (120 4.97 + 090)
fMRI GS 365.62+(1 02) 234.88‘#(0'85) 228-22+(1 03) 36017+ (1.10) 356.34+10 87) 366.15+(1 21) 342.25+(1 13) 303.75+(099) 227-37+1098)
TR 4.37i(005) 4.491(005) 2.701(007) 4.18i(005) 4.28i1005) 4.601(005) 5.441(005) 4.721[005) 2.83i1005)
TW 386.1 31 (0.88) 293.821 (0.95) 16343i (0.87) 377.27i (0.69) 361 .76i (0.92) 380.291 (0.97) 370.21 +(0.77) 326.96i (0.93) 17495i (0.86)
StOCks GS 75-79i(ﬂ€4) 31 .621(1 43) '0.83;{(1 10) 75.35;{(06“ 73.77i1ﬂ 62) 76.27;{(067) 76.391(063) 24.72;&(1 29) ‘3.12;{(1 03)
TR 2.08i(0.02) ‘8.34;t(031) '20.34i(039) 0.61i(003) 0.61i10.04) 0.611(0.03) 0.601(003) '11.42i1060) '32.1gi(0.81)
TW 182.48;&(0 78) 102.581(1 32) 46.72;&(1 13) 182-10i107A) 182-30i10 73) 182-39i(081) 182-081(085) 77.95i(1 50) 9-91i11 00)
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Figure 6.4: Critical Difference diagram of robustness rankings across all attacks of evaluated methods. Lower rank is better.

attacks manage to substantially reduce these scores, the post-attack Z-scores frequently remain far
above the detectability threshold of 1.64. Notably, TimeWak achieves its robustness while also main-
taining superior quality metrics compared to Gaussian Shading. This suggests TimeWak possesses
the ability to introduce a subtle watermark that preserves detectability under adversarial attacks.

TreeRing’s performance shows substantial variation across datasets. Even in unattacked scenarios,
TreeRing fails to achieve detectable watermark signals for two datasets (ETTh and Energy). As a
result, post-attack detection is impossible for these cases. Among datasets where TreeRing does
embed detectable watermarks, its performance is inconsistent. The watermark remains poorly robust
when embedded in the Stocks dataset, becoming undetectable after nearly every attack regardless
of intensity. Conversely, TreeRing demonstrates better resilience when applied to the fMRI dataset,
surviving most attacks with detectable Z-scores. This dataset-dependent behavior appears unrelated
to the number of features, as TreeRing’s best performing datasets (fMRI with 49 features and Stocks
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Table 6.4: Z-scores (with standard deviations between parentheses) of time series watermarked with different watermarks
(WM) under Fourier and Wavelet domain transformation attacks. GS = Gaussian Shading, TR = TreeRing, TW = TimeWak.
Attack intensities of 0.05 and 0.3 are shown. Best results are shown in bold.

Dataset WM Unattacked Fourier Drop Fourier Noise Fourier Shuffle Wavelet Scale

0.05 0.3 0.05 0.3 0.05 0.3 0.05 0.3
Energy GS 4537 .oe  40.13 tom  38.15 . oe  55.64 .oy 4261 Lq0y 4502 Loay  40.04 (o  56.08 . os  63.78 - oay
TR 155,00 726 c00y 1471 o 3830 1o 5481 g 155 _poy 13627 Lpw 156 Lo  -2.91 - o0y
TW 22434 .., 61.78 ., 31.32 . oy 0.98 . e9) 1.86 4 109 224.40 . 7y 2.38 4 s 221.92 ;5 14717 41z
ETTh  GS 10723 4z 100.73 .0  75.39 . )  38.00 .o 6207 Lo  107.31 Lo 4944 Lo 107.39 4o 94.98 - oo
TR -4.19 +(0.08) -4.23 +(0.08) -6.36 +(0.12) -3.69 +(0.07) -11.63 +(0.14) -4.18 +(0.08) -19.54 +(022) -4.23 +(0.08) -4.54 +(0.08)
TW 12824 ..y 5037 10 1488.0s M60.0en 171 .0e 12831 4409  -091,00 130.60 .00 136.20
fMRI GS 36562 .0, 303.29 .., 24556 .., 302.28 ., 20249, 365.85,,, 218.29.,., 36857 .. 30493 n
TR 4.37 + (0.05) 4.29 + (0.05) 3.28 + (0.06) 4.49 + (0.05) 1.06 + (0.05) 4.38 + (0.05) 3.51 + (0.06) 4.28 + (0.05) 3.53 + (0.06)
TW 38613 . e 290.90 . ey 15572 .0y 290.55 . ey 15824 . e 38631 ,om 193.94 . g 387.38 , 00 361.88 . g
Stocks GS 7579 .00  58.07 107 48.98 Lom  12.96 .00  16.77 20w 7583 1o 616 Lom 7566 .00 70.56 1 os
TR 208.0m 049 .00  025.0m 1857 0m 2350, 0.62.0m  -56.06.0m 062,00  0.63 .00
TW 18248 .4, M7.146 ., 47.66..m 663 .00  0.66 .00 182.30 ,on -0.44 0  182.69 , 00 170.23 . 4,

with 6 features respectively) sit at opposite ends of the spectrum. On the other hand, the number of time
steps may play a role in TreeRing’s performance. Datasets in which TreeRing is undetectable (ETTh
and Energy) contain nearly twice as many time steps as fMRI. The performance difference between
these datasets suggest that TreeRing may have an optimal number of time steps where it can effectively
disperse its signal without becoming diluted.

Experiment Summary: We evaluate the robustness of three watermarking methods (TimeWak,
TreeRing, and Gaussian Shading) against a comprehensive attack suite. Each watermark is
embedded in four time series datasets (ETTh, Energy, fMRI, Stocks) and subjected to attacks at
two intensity levels (0.05 and 0.3). Robustness is measured using Z-scores, where values above
1.64 indicate statistically significant detection.

Key Takeaway: TimeWak emerges as the most robust watermark overall, followed by Gaussian
Shading. TreeRing exhibits the lowest robustness. TimeWak maintains superior quality metrics
while achieving high robustness, suggesting it can introduce subtle watermarks that preserve
detectability under adversarial conditions.

6.4.1. Time Domain Attacks

Ranking of Robustness against Time Domain Attacks
3 2 1

TreeRing J

Gaussian Shading

TimeWak

Figure 6.5: Critical Difference diagram of robustness rankings after temporal domain attacks. Lower rank is better.

To better understand the specific approaches that pose the greatest threats to each watermarking
method, we analyze robustness within individual domains. We begin by analyzing the impact of time-
domain attacks, which represent the most direct form of attack. When considering each domain in
isolation, TimeWak demonstrates the greatest robustness in the time domain. It achieves significantly
higher Z-scores than the runner up Gaussian Shading as shown in Figure 6.5. Despite its strong
performance, TimeWak falters against Cropping attacks and Magnitude Warp attacks on watermarked
Energy data. The watermark fails to remain detectable after facing these attacks at strengths 0.05 and
0.3 respectively (Table 6.1 and Table 6.2). Gaussian Shading also becomes undetectable after 0.05
strength Cropping attacks on watermarked Energy data, but does survive the Magnitude Warp attack.

Surprisingly, in some datasets, mild Cropping attacks lead to larger Z-score drops than more aggressive
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variations for the TimeWak and Gaussian Shading watermarks. Such behavior may be attributed to
how watermark verification is performed. For Gaussian Shading, evaluation relies on whether the signs
of recovered noise match a fixed random bit sequence. For TimeWak, the bit sequence of every second
row is compared to its predecessor after an inverse permutation. Following heavy cropping, a row might
consists entirely of zeros. The outcome then becomes invariant to permutation, artificially boosting the
match rate. Similarly, if the latent bits in Gaussian Shading contain many zeros, zeroed regions might
coincide with expected values, leading to higher scores.

TreeRing fails against most attacks, only consistently withstanding attacks when applied to fMRI. We
hypothesize that the temporal length of fMRI allows TreeRing to embed its signal well enough to with-
stand attacks. We hypothesize that fMRI contains sufficient temporal length for TreeRing to embed a
robust watermark signal. This length enables TreeRing to withstand attacks, while being short enough
to prevent the watermark from becoming too dispersed for detection. In contrast to the other water-
marks, it even fails to withstand the simple attacks like Min-Max Insert and Jitter, dropping below the
detectability threshold on synthetic Stocks data. Out of all time domain attacks, Cropping, Time Warp
and Magnitude Warp cause the largest drops in Z-score. However, with the exception of attacks per-
formed on synthetic Energy data, Gaussian Shading and especially TimeWak remain far above the
detectability threshold after these attacks.

Experiment Summary: We analyze the impact of time-domain attacks on watermark detectabil-
ity. These attacks represent the most direct form of manipulation, operating on raw temporal
values.

Key Takeaway: TimeWak demonstrates the greatest robustness in the time domain, achieving

significantly higher Z-scores than Gaussian Shading. However, both watermarks falter against
Cropping attacks on Energy data. TreeRing fails against most time-domain attacks. Cropping,
Time Warp, and Magnitude Warp cause the largest Z-score drops, yet TimeWak and Gaussian
Shading typically remain far above the detectability threshold.

6.4.2. Domain Transformation Attacks

Ranking of Robustness against Frequency and Time-Frequency Domain Attacks
3 2 1

L 1 1 1 | 1 1 1 J

TreeRing J

TimeWak

Gaussian Shading

Figure 6.6: Critical Difference diagram of robustness rankings after frequency and joint time-frequency domain attacks. Lower
rank is better.

In the frequency domain, TimeWak and Gaussian Shading display roughly equivalent levels of robust-
ness (Figure 6.6). Same as with the preceding attacks, TreeRing again exhibits a poor resistance
against these attacks. Even though TimeWak yields higher Z-scores on the unattacked datasets than
Gaussian Shading, these higher Z-scores do not appear to translate to increased robustness to fre-
quency attacks. Notably, Fourier-based attacks prove especially devastating to TimeWak. Both the
Fourier Noise and Fourier Shuffle attacks succeed in completely removing the watermark in some
datasets, whereas Gaussian Shading maintains detectability under all Fourier-related attacks (Table
6.4). We hypothesize that this could be because these methods disrupt the temporal dependencies
on which TimeWak relies. Fourier Noise does so by altering both the phase and amplitude, effectively
scrambling temporal relationships between consecutive rows. Fourier Shuffle achieves a similar result
by reordering the frequencies most responsible for the dominant structural components of the time
series. Both approaches break the sequential and spatial consistency required for the TimeWak water-
mark to be correctly recovered. In contrast, Gaussian Shading shows greater resilience to these types
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of attacks, particularly the Fourier Shuffle attack. This resilience could be attributed to its detection
implementation, which is based on sign comparisons. Gaussian Shading’s detection mechanism does
not rely on the precise order or temporal structure of the values. Instead, it only depends on whether
their signs match a seeded pattern. Therefore, Fourier-based reordering might fail to push a sufficient
number of values across the sign threshold. This prevents significant degradation of detection accu-
racy. In essence, Gaussian Shading gains a degree of inherent robustness from its threshold-based
evaluation strategy.

DCT-based attacks affect both TimeWak and Gaussian Shading similarly, as illustrated in Table 6.3.
While Gaussian Shading generally exhibits better robustness against DCT Merge attacks, it does fail
under the strong variant of this attack on the Stocks dataset. The watermark is also removed by strong
DCT Drop attacks on the Stocks dataset. In these particular scenarios, it is less robust than TimeWak.
In general, we observe that some DCT-based attacks demonstrate greater success on the Stocks
dataset than on other datasets. One possible explanation is that the Stocks time series may contain
more abrupt transitions or high-frequency fluctuations. These properties lead to a less concentrated
energy distribution in the DCT domain. Under such conditions, randomly removing or merging coeffi-
cients can cause meaningful signal distortion. This occurs even when targeting the higher frequency
range. Once the inverse transformation is applied, this distortion can then potentially degrade or remove
embedded watermarks. This effect was especially pronounced for the Gaussian Shading watermark.
In these cases, the attack likely pushed many watermarked values across the median threshold of
the Gaussian distribution they were sampled from. Consequently, these values had their sign flipped,
thereby reducing detection accuracy.

Another consistent trend observed across datasets is the relative robustness of all watermarking meth-
ods against noise injection in the DCT frequency domain. Regardless of whether low or high-frequency
coefficients were targeted, the impact of added noise is generally limited. Such limited impact contrasts
sharply with the Fourier-based noise attack, which proved to be one of the most powerful overall. A
plausible explanation lies in the structural differences between the two transforms: while the DCT oper-
ates solely in terms of signal amplitude, the DFT captures both amplitude and phase. Since the phase
of a signal plays a critical role in determining its temporal structure, injecting noise into both phase and
amplitude is more disruptive than perturbations only targeting the amplitude. This distinction likely ex-
plains why DCT noise attacks fail to fully eliminate watermarks, whereas Fourier-based noise injection
often succeeds.

When subjected to a joint time-frequency attack using DWT, TimeWak is the most robust method. It
consistently achieves the highest Z-scores across all datasets for this attack (see Table 6.4), demon-
strating its ability to withstand attacks in joint domains. Gaussian Shading also proves its robustness
in this setting, while TreeRing ranks last. We observe that the DWT attack is the least destructive of
all the domain transformation attacks. The attack often fails to drastically decrease the Z-score, and
occasionally even improves the detectability of the watermarks. The DWT attack only targets the co-
efficients at the lowest index, leaving the other coefficients intact. The low impact of the DWT attack
suggests that rather than the low frequency component that controls overall trend and signal energy,
the watermark signal is embedded in the higher frequency components of the DWT domain.

Experiment Summary: We evaluate robustness against frequency-domain (Fourier and DCT)
and time-frequency domain (DWT) attacks. These attacks target different frequency components
or combine temporal and frequency information.

Key Takeaway: TimeWak and Gaussian Shading display roughly equivalent robustness in fre-

quency domains overall, though each has distinct vulnerabilities. TimeWak seems especially
vulnerable to Fourier-based attacks. DCT-based attacks affect TimeWak and Gaussian Shad-
ing similarly. DWT attacks prove least destructive overall, with TimeWak showing the highest
resilience. TreeRing again ranks last across all transformation attacks.
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6.5. Conclusion

Our results confirm the superior robustness of TimeWak to a variety of attacks when compared to
TreeRing and Gaussian Shading. While Gaussian Shading demonstrates competitive performance, es-
pecially under Fourier and DCT-based attacks, it is generally less consistent across domains. TreeRing,
in contrast, exhibits limited robustness and fails to withstand most attacks. Taken together, the findings
confirm that TimeWak provides a more resilient watermark for time series data while also preserving
data quality. It strikes a better balance in the quality-detectability-robustness trade-off than both Gaus-
sian Shading and TreeRing. Gaussian Shading provides resilience against attacks at the cost of data
quality, while TreeRing preserves quality at the cost of detectability and robustness. TimeWak is the
only watermark that does not incur any debt to provide robustness, particularly in scenarios involving
time domain attacks. However, the results also highlight the importance of a diverse attack suite. The
novel attacks uncovered new vulnerabilities in not only the TimeWak watermark but all evaluated wa-
termarks. The frequency domain attacks in particular emerge as effective perturbation approaches.
These attacks consistently cause large drops in Z-score, in some cases even removing the watermark
completely.

While the present results affirm TimeWak’s robustness in many scenarios, its vulnerability to specific
frequency-domain transformations indicates room for improvement. Strengthening resistance to DCT
and especially Fourier-based attacks will help to enhance the watermark’s real-world applicability. Such
improvements are particularly important in settings where adversarial or preprocessing-related modifi-
cations are common.



Conclusion

This thesis examines synthetic time series generation and watermarking along three dimensions: the
choice of generative model, the suitability of latent diffusion models for watermarking time series, and
the robustness of current watermarking methods against realistic attacks.

The first question we answer is: Which architecture generates higher quality synthetic time series? Our
comparative evaluation of transformer-based and diffusion-based generative models demonstrates a
decisive advantage for diffusion models. Current transformer models struggle to maintain long-range
coherence and capture global statistical structure. As a result, their synthetic sequences tend to share
little similarities with the data they are meant to emulate. In contrast, diffusion models succeed in
generating synthetic sequences that are both statistically faithful and practically useful. They achieve
better discriminative scores, predictive scores, context-FID scores and correlational scores across all
datasets. This makes diffusion the more appropriate backbone for time series synthesis at the time of
writing. Their superior generation quality also make them a more suitable candidate for watermarking.

The success of standard diffusion models raises the question: To what extent can latent diffusion mod-
els offer a viable approach to watermarking time series? Our emperical evaluation of both data and
latent diffusion models highlights key limitations of the latter. Due to their limitations, at present LDMs
do not translate well to the time series domain. While LDMs perform adequately on small datasets with
homogeneous numerical features, their effectiveness deteriorates on datasets with heterogeneous fea-
tures. Moreover, high-dimensional datasets prove challenging as well. On average, they yield higher
discriminative scores, context-FID scores and correlational scores than low-dimensional datasets.
Through our ablations, we identify the VAE component of the LDM as the primary bottleneck. We
provide empirical evidence that the VAE fails to adequately enforce a standard Gaussian distribution
on the latent space of datasets with heterogeneous features. Using this evidence, we demonstrate
that divergence from the Gaussian prior correlates with higher discriminative scores for the synthetic
data. The VAE also presents a roadblock to sampling-time watermarking. Currently, decoder inversion
is too inexact to effectively retrieve the diffusion latent space, leading to poor watermark detectability.
Standard diffusion models operating directly on data proved more reliable for both synthesis quality
and watermark performance. Hence, LDMs remain impractical until more capable autoencoders are
developed for time series data. Future work could also explore different loss functions to improve the
decoder inversion process.

After establishing standard diffusion models as the most suitable candidate for watermarking, we pro-
ceed to a closer examination of the watermarks themselves. Here we focus on the following question:
How robust are diffusion watermarks against sophisticated post-processing attacks? We introduced a
comprehensive attack framework covering time, frequency, and joint time-frequency domains. Using
this framework, we evaluated three watermarking methods: TimeWak, TreeRing, and Gaussian Shad-
ing. The watermarking robustness evaluation demonstrates TimeWak’s advantages over competing
methods. TreeRing sacrifices robustness for quality, whereas Gaussian Shading sacrifices quality for
robustness. Unlike these methods, TimeWak achieves strong performance across all three dimensions
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of the quality-detectability-robustness trade-off. However, our novel frequency-domain attacks expose
significant vulnerabilities in all evaluated watermarks, with DCT and Fourier transformations proving
particularly effective at degrading or removing watermarks. These results emphasize that watermark
evaluation must include diverse attack types to attain a complete picture of a watermark’s robustness.
Future research could focus on developing watermarks explicitly designed to withstand transformations
across both time and frequency domains.

Through systematic evaluation across models, architectures, and attack scenarios, this thesis ad-
vances our understanding of watermarking time series. We demonstrate that standard diffusion models
outperform both transformer-based models and LDMs in generating high quality synthetic time series.
Our novel multi-domain attack suite reveals vulnerabilities overlooked by existing evaluations. These
findings highlight that watermark design must consider attack diversity beyond simple time-domain per-
turbations. As synthetic data becomes increasingly prevalent, robust watermarking grows more critical
to prevent misuse. The robustness framework and findings presented here provide a foundation for
developing stronger, more resilient watermarking techniques.
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