Efficient Fact-checking through

Supporting Facts Extraction from Large

Ar o

S i

....M..n.w.oo :

.mmm oo o ®

no.“.m.m.m....... oo oo oo oo

7 g Ci S et

= @ muooo

O Q M”.m oo e o ® oo..
.Lu .m ..nn. e o o o 00000

Q = pleies o ...oooooooo.

e N ..-n".. : o S S see® [BN

u m A_..ﬁ. g 000.0........A

S m A 2ooooooo eeo o o OOU

eet * o e ® [N J . .

C e eest -.\.oosoto ® o0 o 00 s .O“
a PR -oooo‘.. °® o - ® 00

= = e T " eses

& ..\Woooooooooooi

Ed

e .
-, S S o ® - o9
-~ e o ®e
-, Rate ot ® . ‘ .‘....
-, ; . .o‘.. 8. .'..... ... A
o.H . ..’o 00000 £ |
LR ey ooooo 000.
s, " o . o ..”0.. ..‘. ‘. F'Y ‘
e L .V e . 00000 .“. ® @
e /.. . e ey "0 . |
: ® ®
. .n/n ' ooo o ®e » Py
ey i . . ° o % |
. s 1Y of > ® .' & '
s o % ® e ... ®e .. ® -
h. .m. ...o ooo.-.. > L ° L4 » .. ® ‘ . ‘ .
il S N e 05 ooo e ®e E
....W.. . ooooooo °s‘ ... E] ® “
.oio.ouo > ® . . ‘ ‘
&oooooo ®e °e ..
22, i . ooo ° ® ° .. ® @
.“. oo.. . ® ...‘ ® . . . ‘
... ® Y .. ‘
. . oo.. L ... ® ® ™ Ll . ‘ .
%1 . o .7 ® @ L3 @
0 oo L4 ... ® ® & .. £ '
L o
. * * .
. o ¥ o ® o £l ® ‘ ‘
bl _ g 9 ..I E] w = ..’ s -

Efficient Fact-checking through
Supporting Facts Extraction from Large
Data Collections

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
COMPUTER SCIENCE
by

Kevin Nanhekhan
born in The Hague, The Netherlands

e
TUDelft

Web Information Systems Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

© 2024 Kevin Nanhekhan. All rights reserved.

Efficient Fact-checking through
Supporting Facts Extraction from Large
Data Collections

Author: Kevin Nanhekhan
Student id: 4959094
Email: K.R.Nanhekhan@student.tudelft.nl

Abstract

Amidst the rampant spread of misinformation, fact-checking of diverse claims made
on the internet has become a pertinent task to mitigate this problem. Manual fact-checking
cannot scale up with this demand and is very cumbersome, therefore instead automated fact-
checking can be used. However, existing work has primarily focused on the fact-verification
part rather than evidence retrieval for large data collections, leading to scalability issues
for practical applications. In this study, we address this gap by exploring various meth-
ods for indexing a succinct set of supporting facts extracted from large data collections
and enhancing the retrieval phase of the fact-checking pipeline. Our evaluation, consist-
ing of measuring the performance and efficiency, is performed on the state-of-the-art claim
datasets HoVer and WiCE, where we utilised the English Wikipedia as a large evidence data
collection. Overall our results underscore the effectiveness of integrating supporting facts
and advanced retrieval techniques for fact-checking pipelines in practical applications. We
achieve, through a combination of indexing supporting facts together with Dense retrieval
and Index compression, a massive improvement over the original fact-checking pipeline.
This is up to a 10.0x speedup using a CPU-based approach and up to a 20.0x speedup using
a GPU-based approach, while only incurring a modest loss of less than 6 points in accuracy.

Thesis Committee:

Chair: Prof. Avishek Anand, Web Information Systems, TU Delft
Supervisor: Venktesh Viswanathan, Web Information Systems, TU Delft
Committee Member: Prof. Pradeep Murukannaiah, Interactive Intelligence, TU Delft

K.R.Nanhekhan@student.tudelft.nl

Preface

Embarking on this thesis journey has been an enriching and transformative experience, one that
I could not have undertaken without the support and guidance of several individuals whom I am
deeply grateful to acknowledge.

First and foremost, I extend my sincerest gratitude to my thesis advisor, professor Avishek
Anand, for providing me with the opportunity to delve into this fascinating research as well as
the constructive feedback that has been instrumental in shaping the course of this thesis. Like-
wise, I am equally indebted to my daily supervisor, Venktesh Viswanathan, whose guidance and
expertise have been invaluable throughout every stage of this journey and helped me out in striv-
ing for excellence.

Furthermore, I extend my heartfelt appreciation to my family and friends as a constant source
of motivation for their unwavering encouragement, patience, and unwavering support. More-
over, | extend my sincere thanks to the Web Information Systems group members and fellow
master students who participated in the ELIXER reading group, whose insightful discussions
and shared knowledge broadened my understanding of the field. Lastly, I also want to thank
professor Pradeep Murukannaiah for being a member of the thesis committee.

In the end, this thesis is the culmination of countless hours of research, collaboration, and
reflection, and it is with immense gratitude that I acknowledge the contributions of all those who
have played a part in its realization.

Kevin Nanhekhan
Delft, the Netherlands
April 19, 2024

i

Preface

Contents

List of Figures

List of Tables

1

Introduction

1.1 Research Motivation . .

1.2 Scientific Contributions

1.3 Thesis Outline

Related Work

2.1 Fact-checking

Contents

2.2 Efficient Retrieval Mechanisms
2.3 Factual Consistency in LLMs

2.4 Related work relevancy

Methodology

3.1 Problem Statement . . .
3.2 Improving efficiency . .

Experiments

4.1 Datasets
4.2 Experimental design . .
4.3 Experiment Setup

4.4 Assessment and Metrics

Results and Discussion

5.1 RQ 1: How does indexing supporting facts improve information retrieval effi-

ciency?

5.2 RQ 2: How does indexing supporting facts affect overall pipeline efficiency and

il

ii

iii

vii

<N OB~ W W N DN =

>]

16
16
19
21
24

26

Contents

5.3 RQ 3: In what ways does index compression enhance the efficiency of dense

retrieval and fact-checking systems? 33

6 Conclusions and Future Work 36
6.1 Conclusions e 36

6.2 Future Work 37
Bibliography 39
A Detailed HoVer Experiments Measurements 44
A.1 Sparse retrieval setup with Reranking 44
A2 Denseretrieval setupo 46
A3 Index compression Setup e e e 48

B Detailed WiCE Experiments Measurements 50
B.1 Sparse retrieval setup with Reranking 50
B.2 Denseretrieval setup 53
B.3 Index compression S€tup e e e 54

C Experiment Results Graphs 56
C.1 Document Retrieval Latency 56
C.2 Pipeline Inference Latency 57
C.3 Performance Accuracy Evaluation 58

v

List of Figures

3.1 Comparison of Existing and Proposed Fact-Checking Pipelines. 8
3.2 The first adjustment to the pipeline using the Re-ranking setup, eliminating the need
for fine-grained top-k sentence selection., 10
3.3 A general depiction of claim detection model training and deployment. 10
3.4 Citation extraction for the lead section of the Delft Wikipedia page. 11
3.5 Fusion setup showing claim detection being used when citation extraction is not
possible. Based on the ‘Shonen Jump (magazine)* Wikipedia page. 12
3.6 The second adjustment to the pipeline in replacing Sparse Retrieval with Re-ranking
stages with a single Dense Retrieval module. 13
3.7 Retrieval methods for retrieving top-k relevant documents pertaining to a query. . . 13
3.8 The third adjustment to the pipeline with the added Index Compression module to
enhance Dense Retrieval. L oL 14
4.1 Layout of processed Wikipedia dump used for our experiments. 18
4.2 Example of HoVer’s fact-extraction and -verification pipeline with the 4-stage ar-
chitecture 20
A.1 BM2S5 retrieval on the original HoVer datacorpus. 44
A.2 BM2S5 retrieval on the claim-detected HoVer datacorpus. 45
A.3 BM2S5 retrieval on citation extracted HoVer datacorpus. 45
A4 BM2S5 retrieval on the fusion (citations + claim-detected) HoVer data corpus. . . . 46
A.5 FAISS retrieval with Sentence-Selection stage on the original HoVer data corpus. . 46
A.6 FAISS retrieval on the original HoVer data corpus. 46
A.7 FAISS retrieval on the claim-detected HoVer datacorpus. 47
A.8 FAISS retrieval on citation extracted HoVer datacorpus. 47
A.9 FAISS retrieval on the fusion (citations + claim-detected) HoVer data corpus. . . . 47
A.10 JPQ retrieval with Sentence-Selection stage on the original HoVer data corpus. . . 48
A.11 JPQ retrieval on the original HoVer datacorpus. 48
A.12 JPQ retrieval on the claim-detected HoVer datacorpus. 48
A.13 JPQ retrieval on citation extracted HoVer datacorpus. 49
A.14 JPQ retrieval on the fusion (citations + claim-detected) HoVer data corpus. 49
B.1 BM2S5 retrieval on the original WiCE datacorpus. 50
B.2 BM2S5 retrieval on the claim-detected WiCE datacorpus. 51

List of Figures

B.3 BM2S5 retrieval on citation extracted WiCE datacorpus.
B.4 BM2S5 retrieval on the fusion (citations + claim-detected) WiCE data corpus.
B.5 FAISS retrieval without Sentence-Selection stage on the original WiCE data corpus.
B.6 FAISS retrievalon the original WiCE datacorpus.
B.7 FAISS retrieval on the claim-detected WiCE datacorpus.
B.8 FAISS retrieval on citation extracted WiCE datacorpus.
B.9 FAISS retrieval on the fusion (citations + claim-detected) WiCE data corpus.

B.10 JPQ retrieval without Sentence-Selection stage on the original WiCE data corpus. .
B.11 JPQ retrieval on the original WiCE datacorpus.
B.12 JPQ retrieval on the claim-detected WiCE datacorpus.
B.13 JPQ retrieval on citation extracted WiCE datacorpus.
B.14 JPQ retrieval on the fusion (citations + claim-detected) WiCE data corpus.

C.1 Document retrieval latency comparison between all the HoVer experiments.
C.2 Document retrieval latency comparison between all the WiCE experiments.

C.3 Opverall pipeline latency comparison between all the HoVer experiments.
C.4 Overall pipeline latency comparison between all the WiCE experiments.
C.5 Accuracy comparison between all the HoVer experiments.
C.6 Accuracy comparison between all the WiCE experiments.

52
53
53
53
54
54

55
55
55
55

vi

4.1

5.1

5.2

53

54

55

5.6

List of Tables

Sizes of the claim dataset splits as used in our experiments. 16

Comparison sizes for the corpora per experiment setting, consisting of English Wikipedia
articles 2017 (HoVer) and 2024 (WiCE). Reduction is measured with respect to the
original data setting. 27
Retrieval and inference latency for Sparse retrieval with Re-ranking setup on data
settings. Speedup is compared with respect to the total latency of the original data
setting (bold font). 28
Retrieval and inference latency for Dense retrieval setup on data settings. Speedup is
compared with respect to the total latency of the Sparse Retrieval setup with original

data setting (bold font). 28
Performance experiments on HoVer data and adjustments using full document text

of English Wikipedia. The bold-styled values represent the baseline while the underlined-
styled values represent the highest scores of the re-ranked data within a retrieval

setup Category. e 30
Performance experiments on WiCE data and adjustments using full document text of
English Wikipedia. The bold-styled values represent the baseline while the underlined-
styled values represent the highest scores of the re-ranked data within a retrieval

SELUP CALEZOTY. .« .+ v v v et e e e e e e e e e e e e e e e 31
Retrieval and inference latency for Index compression setup. Speedup is compared

with respect to the total latency of the Sparse Retrieval setup with original data
setting (bold font). 33

vii

Chapter 1

Introduction

1.1 Research Motivation

Detecting misinformation and disinformation is of critical importance in the digital era. Fact-
checking forms a crucial process for confirming the veracity of claims made on the web to
detect misinformation. Initially, this was done through manual annotation by a small group of
professionals and later on crowd-sourced workers which is expensive and cumbersome [39].
This is primarily because fact-checking involves researching existing evidence, understanding
the context, and reasoning about the implications of the evidence. With the huge growth of mis-
information growing larger, manual fact-checking can thus not keep up in speed and capacity
[12, 37]. Additionally, since fact-checking is done through human annotators, due to differences
between individual ideals and opinions their work is still susceptible to human biases.

Therefore, automated fact-checking is critical to mitigating the negative consequences of
misinformation. Typically, an automated fact-checking pipeline entails several stages, namely
claim detection, retrieval of evidence, re-ranking of the retrieved evidence to get the claim-
worthy ones, and performing the verification using a Natural Language Inference model [12, 23].
For retrieval of evidence from a collection, traditional approaches use term-based retrieval ap-
proaches [17]. However, this may result in sub-optimal results due to a lack of overlapping terms
between passages and the claim. While significant attention has been devoted to fact verifica-
tion, the retrieval stage has received less focus, particularly in real-world scenarios. Existing
works for retrieval often rely on artificially constructed experiment settings that may not ac-
curately reflect real-world conditions [37]. This is due to the assumption that the retrieval of
relevant documents is perfect, potentially limiting their applicability in practical settings where
this assumption may not hold. Fact-checking in the real world often involves accessing vast data
collections such as Wikipedia. However, this process presents significant scalability challenges,
primarily due to the extensive resources required for indexing entire Wikipedia articles along-
side their corresponding embeddings. Consequently, this approach is computationally expensive
and can cause significant latency during inference time [49], which poses limitations for deploy-
ing production-grade fact-checking systems. Thus as the retrieval stage forms the bottleneck in
fact-checking pipelines, we propose some retrieval approaches aimed at efficiency that apply to
real-world applications.

1.2. Scientific Contributions

To guide us in research, we investigate the following research questions.
* RQ 1: How does indexing supporting facts improve information retrieval efficiency?

* RQ 2: How does indexing supporting facts affect overall pipeline efficiency and down-
stream fact-checking performance?

* RQ 3: In what ways does index compression enhance the efficiency of dense retrieval and
fact-checking systems?

1.2 Scientific Contributions

The main contributions of our work can be summarised in the following:

* We introduce techniques for identifying supporting facts relevant to the claims being fact-
checked. These mechanisms are designed to efficiently extract pertinent information from
large corpora, enabling more targeted retrieval and verification processes.

* We use and show methods for indexing supporting facts in a manner that optimizes re-
trieval efficiency. By selectively indexing relevant information, our approach reduces
computational overhead and accelerates the retrieval process, thereby enhancing overall
pipeline performance.

* Our study includes a comprehensive evaluation of various retrieval approaches, mainly
showing the difference in indexing supporting facts versus indexing the entire data corpus.
We meticulously analyze performance metrics at each step of the fact-checking pipeline,
offering detailed insights into the effectiveness and efficiency of different experimental
configurations.

* In addition to our research findings, we contribute to the scientific community by pro-
viding access to the supporting facts datasets we constructed and the codebase' used in
our study. This includes modifications to existing algorithms used in our work, as well
as the implementations for identifying, extracting, and processing supporting facts within
diverse data collections such that it can be used in a fact-checking pipeline.

1.3 Thesis Outline

The report is laid out the following way. Chapter 2 delves into the existing body of literature and
research about the challenge of hallucinations in generated content and the field of fact-checking.
Chapter 3 lays out the primary methodology of our work, introducing the improvements we
aimed to explore and test. The ensuing Chapter 4 establishes everything concerning the various
aspects of the executed experiments, ranging from providing information on the used resources
to fines implementation details. Following the experiments, Chapter 5 lays out the findings of the
experiments coupled with detailed answers to our research questions. Lastly, Chapter 6 serves
as the conclusion, summarising our key findings and also putting forward possible research
directions for future work.

Uhttps://github.com/kevin-rn/Efficient-Fact-checking

Chapter 2

Related Work

This chapter discusses previous work that is related to the hallucination problem and a break-
down of definitions and such. Additionally, the current work that aims to mitigate that problem
is also laid out, where important works are named and further explained.

2.1 Fact-checking

The notion of fact-checking delves into the logic, coherence, and context of claims [39]. In
the fact-checking process, fact verification serves as a crucial preliminary step in acquiring and
confirming facts, ensuring the trustworthiness of the information under consideration. The surge
in demand for automated fact-checking has prompted rapid advancements in the development
of tools and systems for it. Successful of these pipelines rely on efficient handling of large doc-
ument collections, optimal text span granularity for detailed answers, contextual awareness for
appropriate text granularity selection, and versatility across domains [1]. Currently, the typi-
cal fact-checking process involves three stages: (i) claim detection involves identifying salient
text spans from a large collection; (ii) evidence retrieval focuses on finding sources that either
support or refute the claim; and (iii) fact verification entails assessing the veracity of the claim
based on the retrieved evidence [12].

For the claim detection part, there is no formal definition of what constitutes a claim [23].
Some existing work establishes check-worthiness as a possible concept [12]. It determines a
claim when one wants to know the truth of that assertion, which either requires binary classi-
fication or an importance-ranking to classify. Another method, used in social media settings,
is whether text spans are detected for rumourness. Nonetheless, these two methods are quite
subjective as the language understanding and importance of the concepts differs between social
groups or even individuals [12, 39]. Furthermore, the information pertaining to the claim can
change over time or have been debunked already, no longer necessitating the need for verifica-
tion. A more objective approach is to classify text as an assertion if it’s checkable with available
evidence.

Early retrieval systems were typically complex, composed of numerous components [20,
49]. However, recent advancements in reading comprehension models advocate for a simplified
two-step approach: initially, a context retriever selects a subset of passages, some of which po-
tentially contain the answer to the query, followed by a thorough analysis by a machine reader

2.2. Efficient Retrieval Mechanisms

to identify the correct answer. Nonetheless, a notable challenge arises concerning the sources
from which information is pulled [12]. The task of fact-checking requires access to reliable and
trustworthy knowledge sources that have been thoroughly verified. These sources serve as the
foundation for retrieving evidence-based information. These include a diverse array of textual
sources such as encyclopedia articles, policy documents, verified news articles, and scientific
journals, which offer rich information for verifying claims [23, 39]. Additionally, knowledge
graphs or fact databases provide structured canonical information about the world, though their
limitations must be considered, as not all facts may be present in them. Social media and online
content analysis offer insights into the veracity of claims, especially when traditional textual or
structured knowledge sources are unavailable.

Lastly, for fact verification, either binary classification using supported/refuted labels or
Multi-class labels are utilized [12, 39]. The latter mimicking journalistic fact-checking prac-
tices, to include more fine-grained classification schemes or indicate when not enough informa-
tion could be retrieved. Automated fact-checking primarily relies on supervised text classifica-
tion methods, often using labelled data from fact-checking agencies [39]. While effective for
some tasks, it lacks the broader world knowledge necessary for comprehensive fact-checking.
Other approaches include network analysis, Recognizing Textual Entailment, and distant rela-
tion extraction. Speaker profiling, such as analyzing the credit history of claim originators, can
enhance accuracy but raises ethical concerns. To further improve the verdict interpretations,
the justification procedure is important [12]. Particularly in automated fact-checking where
black-box models lack transparency. Strategies include highlighting salient evidence, designing
understandable decision-making processes, and generating textual explanations.

2.2 Efficient Retrieval Mechanisms

Efficient Retrieval Mechanisms themselves play a crucial role in not only major web search en-
gines and recommendation systems but also Natural Language Processing tasks [5, 43]. With
the rise of the Web and the development of early search engines, early approaches concerned
that of inverted indexes, which efficiently stored term-document relationships, enabling rapid
retrieval of documents containing specific terms. Examples are TF-IDF and BM25. However
inverted indexes only retrieve text-like keywords, but do not include semantic recognition. An-
other approach was that of the Vector Space Model, which represented documents and queries as
vectors in a high-dimensional space and used similarity measures like cosine similarity for rank-
ing documents by relevance. A notable evolution in retrieval mechanisms is observed in Dense
Retrieval, where dense encodings replace traditional methods [20]. Dense encodings, being
learnable through adjustable embedding functions, offer enhanced flexibility for task-specific
representations.

With the exponential growth of digital data, the deployment of models that utilize this data
tends to become extensive in size to achieve cutting-edge results, sometimes even exceeding bil-
lions of parameters [6, 51]. This expansion brings about costly repercussions: a larger memory
footprint in terms of storage space and prohibitively large energy consumption. Furthermore,
traditional retrieval techniques have encountered scalability challenges leading to higher latency
in inference time, particularly due to the limitations posed by the needed high-dimensional vec-
tors, known as the dimensionality catastrophe [14, 43]. Therefore, developing techniques or

2.2. Efficient Retrieval Mechanisms

algorithms to create more compact representations of data vectors is crucial [6, 29]. This does
come with the possible caveat of introducing some unwanted noise to achieve compressed vec-
tors which results in some performance degradation. The goal, therefore, is to make more ef-
ficient representations by reducing the size of data structures without compromising too much
of the integrity of the information they encapsulate. This optimization not only contributes to
more effective storage and retrieval of data, but also due to lesser data complexity facilitates
faster processing and transmission of information [45, 51]. As a solution, vector databases that
employ Approximate Nearest Neighbors (ANN) search have emerged as a solution to alleviate
complexity and enhance the accuracy of similarity searches for vectors [14, 43, 50].

Early on hash-based approaches [14, 29], such as Locality-Sensitive Hashing, spectral hash-
ing deep hashing, were adapted for ANN in text retrieval. These functions aimed to map similar
data points to the same bucket with high probability, enabling efficient approximate retrieval in
a reduced space. For faster search, Tree-based structures, like KD-trees and Ball trees, were
employed to organize text data for efficient ANN by partitioning the data space into subsets.
While these two approaches achieve fast high-recall searches, these do come at the cost of be-
ing extremely expensive when handling very large-scale databases. Additionally, there are still
problems concerning the lack of sufficient semantic features, slow response times, and infor-
mation loss on the query side [50, 29]. More recently, word and document embeddings (such
as Word2Vec and BERT embeddings) gained prominence as these dense vector representations
captured semantic information and enabled efficient ANN-based text retrieval. Metric learning
techniques were applied to learn similarity metrics that better captured semantic relationships in
text data, further improving the quality of ANN-based retrieval. However, to go one step further,
Quantization, which is widely employed in state-of-the-art systems, can be applied as it places
a significant emphasis on reducing the precision of numerical representations. This involves
transforming what are mostly high-dimensional vectors into low-dimensional ones, enhancing
efficiency in terms of storage and computational requirements for retrieval systems [6]. While
the aforementioned performance degradation is inevitable, meticulous quantization techniques
can achieve significant model compression with minimal loss [51].

A pioneering method within Quantization involves that of Product Quantization (PQ) [14,
18, 29, 45]. PQ is a method that encodes high-dimensional vectors by breaking them into m
smaller subvectors known as codebooks each containing k codewords. This effectively partitions
the vector space into smaller cells, allowing for fast Euclidean distance computation through pre-
computed distances. A further improvement is introduced in Optimized Product Quantization
(OPQ) [11] which applies orthogonal transformations to vectors as preprocessing, improving the
degree of independence and overall performance. In contrast to concatenation, Non-orthogonal
quantization methods like Residual Vector Quantization (RVQ), Additive Quantization (AQ),
and Composite Quantization (CQ) approximate vectors as sums of codewords, boosting approx-
imation accuracy while maintaining efficient procedures. RVQ iteratively quantizes approxima-
tion residuals from previous iterations, while AQ, though slower, offers minimal compression
errors without constraints on codewords. Lastly, there is also JPQ [45] that tries to overcome the
delayed information retrieval capabilities in existing compression methods. This is by bridging
the gap in the separation between encoding and compression training that is present in the ex-
isting methods. For our work, JPQ would be the most relevant one as we intend to optimize the
efficiency of the index while still achieving similar performance for evidence retrieval using the

2.3. Factual Consistency in LLMs

claim as the query.

2.3 Factual Consistency in LLMs

With the huge growth of open source and commercial Large Language Models (LLM), the adop-
tion of these models has increased exponentially. These models deliver impressive performance
on a wide range of natural language tasks [31, 32, 41]. Hence, there has been an increase in
reliance on LLMs to deliver precise information needs. However, when generating responses,
LLMs tend to hallucinate and generate factually inconsistent outputs which deviate from es-
tablished world knowledge [4, 16, 25]. These errors are imperceptible, as the generated text is
seemingly plausible [48]. The limited factual consistency frequently hinders the wide-spread
acceptance of these generative LLMs in real-world applications, such as in summarizing patient
information in healthcare [16, 36] or question answering in critical scenarios such as healthcare
[42] or legal proceedings. The hallucinations raise safety concerns for said applications, the
spread of misinformation and disinformation on the web to be further exacerbated, and potential
privacy violations.

Studies have demonstrated that LLMs have sufficient parameters to encode large volumes of
information, serving as a proxy for knowledge bases [2, 15]. However, with the rate of growth
of information, it is not possible for LLMs to encode factual knowledge with temporal aspects
where facts change over time [27, 38]. To tackle these limitations, there have been growing
efforts to augment LLMs with external knowledge [13, 35, 47], which in general can be divided
into two broad categories:

* The first category consists of retrieve-and-generate language models, based on Retrieval
Augmented Generation (RAG) [24], which includes a knowledge retriever and a genera-
tive model that utilizes gathered evidence for text generation tasks [13, 24]. Some further
improved RAG systems involve REALM [13] and RetGen [47].

* The second category involves k-Nearest Neighbor LMs, such as RETOMATON [3] and
COG [22], which interpolate the next token probabilities of a pre-trained LM using a K-
NN model [21, 26]. The model computes the k-nearest neighbours based on the distance
from the representation of the generated prefix. Overall k-NN LMs have been found to
have better performance compared to the regular generative task.

Besides incorporating external knowledge, some efforts have also gone to post-hoc attribution
and edit methods like RARR [10] and PURR [8]. These aim to retrieve relevant evidence for
the output from an LLLM followed by an editing approach to ensure the LLM-generated output
is factually consistent with the evidence.

To evaluate the factual consistency of these frameworks and LLM-generated texts in general,
various benchmarks and metrics have been proposed such as AtrributionScore [44], FactScore
[28], HaluEval benchmark collection [25] and LLM-augmenter [33]. However, a common fal-
lacy present in existing work is that most efforts towards mitigating the hallucination problem
focus on assessing the fact verification part rather than also focusing on the evidence retrieval
part. Here, the aforementioned approaches are expensive as they require fine-tuning multiple
large-scale models that are involved in the retriever and the generator components. This leads to

2.4. Related work relevancy

the retrieved context also increasing the latency at inference time. Additionally, The system is
tightly coupled, as the optimization of the generative model depends on the quality of the output
(relevant documents) of the retrieval module [47]. These problems make the use of LLMs that
leverage external knowledge susceptible to scalability issues in practical applications. Therefore
to close this gap, our contributions involve extending the evaluation process to include measur-
ing the efficiency of the fact-checking process. Consequently, this can help these systems to be
more of practical value for real-world use cases.

2.4 Related work relevancy

In the sections of this chapter, we have explored the main topics related to the different com-
ponents that make up the general fact-checking process. A further look has been taken at the
topic of retrieval mechanisms, a crucial component of the fact extraction phase of the pipeline.
Additionally, the factual consistency in Large Language Models has also been explored in this
chapter as an emerging application for which fact-checking has gained paramount importance.
While our work does not propose any novelties, it does introduce a fresh perspective by combin-
ing existing research explored throughout this chapter. Key themes such as the general stages
of a fact-checking pipeline, different retrieval methods and their benefits and index compression
methods to condense vector embeddings, are all central to the main experiments conducted in
this study. Showcasing their improvements in the overall efficiency while still retaining a certain
performance output, underscores their significance in addressing the challenges posed by claims
that contain misinformation.

Chapter 3

Methodology

In Chapter 2, an in-depth exploration of prior research has been presented, laying the ground-
work for our study. Taking that knowledge, the main methodology will be explained in this
chapter. This will be done by elaborating further upon the key contribution of our work.

Relevant evidence source: National Geographic
"[.] Komodo dragon kill using a one-two punch of sharp feeth and a venomous bite.
scientists have confirmed for the first time.Researchers have long thought that the
Komoda dragon, native to Indonesia, kills via blood poisoning caused by the multiple

strains of bacteria in the dragon's saliva. ... The research team found that the dragon's

venom rapidly decreases blood pressure, expedites blood loss, and sends a victim into E""f)'{'j‘":j il usi — 5
shock, rendering it too weak to fight. In the venom, some compounds that reduce cl?mh 0 I:’glf." Id using a one- bit puncl
blood pressure are as potent as those found in the word's most venomous snake, shamieehian davenomo] e
| western Australia's inland Taipan. [.]"
- = — 3 ™ e |
: [.]
| --4';_[““31 \ -~ - |
I S ek 5 || Fact Verificatio SUPPORT/
‘orpus N parse act-Verification
| ————— | index] Retriever ¥ Reraker o> model NON-SUPPORT
' o I
L - - - - - - - - - - - - - - - - -
Fact-extraction
Not Supported:
Claims sources: The evidence does not
Language Model output .| Claim: confim & harmful bacteria
Wl i The Komodo dragon uses harmiul bacteria :;::‘f‘i but ’."m‘;‘me*
Dataset collections from rotting flesh to kill their prey. emam is use
Mainstream Media
efe.

(a) The existing fact-checking pipeline structure with illustrative example snippets.

- ; Textual
Supporting -
Facts extractor ey

Corpus

|
|
| l —
A /|
g Sy e Fact Verification SUPFORT/
() C ed jever ——] N
| _ - Dense Retriever ‘ model NON SUPPORT
| ' |
|

__ Index i
> ' index _
Fact Compressor —

Fact-extraction
Claims sources:

Language Model output
News Articles
Dataset collections
Mainstream Media
efe.

(b) The proposed fact-checking pipeline structure using just supporting facts in the index to achieve
efficiency.

Figure 3.1: Comparison of Existing and Proposed Fact-Checking Pipelines.

3.1. Problem Statement

3.1 Problem Statement

The presence of misinformation in claims poses a significant challenge that needs to be ad-
dressed. There are numerous ways to face this challenge. Therefore for our research, we will
solely focus on enhancing the efficiency of detecting whether claims are supported or not sup-
ported through a fact-checking pipeline. Our approach involves constructing an efficient index of
facts sourced from known knowledge repositories to facilitate grounding the generated content.
Our emphasis lies on optimizing for efficiency in terms of both time and space consumption,
enabling the deployment of end-to-end pipelines on less resource-intensive hardware without
compromising performance. Thus our primary contribution lies in refining the index retrieval
process, while maintaining comparable fact-checking performance. This refinement allows for
faster information retrieval, improving the overall efficiency of the pipeline.

A core part of our research revolves around indexing supporting facts. This is illustrated
in Figure 3.1 where we display how we intend to change the general existing state-of-the-art
pipeline structure (Figure 3.1a) to one with more efficient components (Figure 3.1b). Here for
our study, emphasis is put on how to identify relevant text spans, thus filtering out anything
that is not a fact to construct a concise fact database. To guide our research, we formulate the
following research questions:

* RQ 1: How does indexing supporting facts improve information retrieval efficiency?
Specifically, we seek to understand how incorporating the supporting facts into the in-
dexing process influences the retrieval latency of relevant information about a claim and
the index size on disk. Additionally, this also involves utilising different retrieval meth-
ods (sparse and dense retrieval) to more generally see the effects it has on the latency.
In the end, we want to see to what extent storing just the supporting facts in the index
and performing retrieval on it will degrade performance loss. Additionally we also want
to showcase the benefits of this approach over the existing approach of storing the entire
document corpus as an index.

* RQ 2: How does indexing supporting facts affect overall pipeline efficiency and
downstream fact-checking performance?
The focus here shifts from the information retrieval part towards assessing the broader
implications of indexing supporting facts on the overall efficiency of the fact-checking
pipeline. Here analysing the overall inference time as well as fact-verification perfor-
mance becomes important. The aim here is to replace parts of the pipeline to make it
more efficient in inference and memory footprint, while trying to achieve approximately
the same results compared to the original full-pipeline setting.

* RQ 3: In what ways does index compression enhance the efficiency of dense retrieval
and fact-checking systems?
In particular to the dense retrieval part, our objective is to leverage an existing index com-
pression technique to significantly diminish the size of the index stored on disk. Further-
more, we aim to evaluate whether comparable retrieval results can be achieved despite the
substantial reduction in index size. By exploring the feasibility of maintaining retrieval
effectiveness through a significantly smaller index footprint, we aim to not only optimize
storage utilization, but also enable faster query processing, ultimately improving overall
system efficiency.

3.2. Improving efficiency

By addressing these questions, we aim to provide insights into optimizing the efficiency
of fact-checking processes for existing pipelines, ensuring robustness in terms of performance
while minimizing resource requirements.

3.2 Improving efficiency

In this section, some concepts for improving efficiency are explained. These are the re-ranking
setup that tackles selecting the supporting facts, the use of Dense retrieval compared to Sparse
retrieval and lastly, Index compression to further improve Dense retrieval.

3.2.1 Extracting Supporting Facts

- Extracting Knowledge
Supporting Facts Corpus
Fact Index b g

(sparse vectors)

— Reranker > NOT SUPPORTED

- Sparse Fact-Verification SUPPORTED/
Retriever model
b o

CLAIM

Figure 3.2: The first adjustment to the pipeline using the Re-ranking setup, eliminating the need
for fine-grained top-k sentence selection.

A first improvement that could be made is storing only the salient sentences in the data
corpus instead of every sentence, as seen in Figure 3.2. As a result, this will reduce the total
pipeline runtime drastically and also save disk space for the index. There are various ways to
extract supporting facts from a text document from the data corpus. Manually curating the text
of the document to only keep the most important ones is the best way to get great performance
results. However, this is not only a very time-consuming process, but also does not scale well
when using a different data corpus for different use cases.

Finetune Modsl on Claim detection EPs.vjbrmIrgfs.rencs 1o get salient zentences ©

|=—=| Train or Retrain

| | Model “« Evidence Text
| | 1
_l—)(Training split + 5 ¥

—_— —

Claim Dataset | Trained Model L —> Serve Model

- TR | I —

S Supported
_I—b{ Evaluation Split ———— E"a'”at;gggl Deploy Not Supperted
(Partially Supportzd

Figure 3.3: A general depiction of claim detection model training and deployment.

10

3.2. Improving efficiency

Claim-detection model As an automated alternative, a claim-detection model can be em-
ployed. The idea here is to train a model to specifically detect important sentences out of a
text span (see Figure 3.3). Important here is that the model is trained with enough training data
to distinguish non-salient from salient sentences. For our experiment, we will be utilising an off-
the-shelf pre-trained model as we do not particularly focus on getting the best performance and
instead will just be comparing different methods for efficiency. This choice allows us to fully put
our efforts towards experimentation and facilitates easy comparison of various methods without
the need for extensive training or fine-tuning efforts.

Delft
> Identify Citations in Text (c.g. [1])
Article Talk
From Wikipedia. the free encyclopedia l
For other uses, see Deilt y ¢
Delft (Dutch pronunciation: [del(2)ft] 49 ©) is a city and municipality in the province of South Holland, 13308
Netheriands. It is located between Rotterdam, to the southeast, and The Hague, to the northwest. :1:1 ‘me:-- en wikipedia or/wiki?cutid=8308'
Together with them, it is a part of both the Rotterdam-The Hague metropolitan area and the sitle'- ‘Del;}' - :
Randstad. text: [['Historically, Delft played a highly influential role in the Dutch Golden Age',
Tn terms of science and technology, thanks to the pionesring contributions
Delft is a popular tourist destination in the Netheriands, famous for its historical connections with the of Antonie van Lecuwenhoek and Martinus Beijerinck, Del#t can be considered
reigning House of Orange-Nassay forjts blue pofterv for being home fo the painter Jan Vermeer to be the birthplace of microbiology'], [..], [..], -])
and for hosting Delft Unive Technology (TU Delit). Historically. Delft played a highly influential
role in the Dutch Golden A In terms of science and technology, thanks to the pioneering | |

contributions of Antonie van Leeuwennoekl'%l and Martinus Beijerinck [Delft can be considered
to be the birthplace of microbiology:

Figure 3.4: Citation extraction for the lead section of the Delft Wikipedia page.

Citation Extraction An alternative approach for our use case involves sentence extraction
based on citations. This concept relies on the underlying assumption that authors include ref-
erences and citations of reliable sources in parts of the text, that they consider particularly cru-
cial. In other words, citations serve as indicators of claim-worthy sentences within a text. This
methodology accelerates the extraction process, eliminating the need to train a model specit-
ically for the task of identifying or selecting claim-worthy sentences. Furthermore, this ap-
proach provides a higher level of confidence that the retained sentences are indeed claim-worthy.
This stands in contrast to models trained for claim detection or claim extraction, which, despite
achieving high accuracy, may still make errors by misclassifying non-salient sentences as salient.
A commonly used knowledge data collection is that of Wikipedia, where there are three distinct
citation types!. These are: ‘Inline citations’ that place citations close to the text they support,
‘In-text attribution’ that names the source of a statement, and ‘General reference’ that is not
linked to any particular piece of material. In our use case, as depicted in the Delft Wikipedia
page? example in Figure 3.4, the strategy involves using the original evidence page and extract-
ing the sentences containing references. These are indicated by its numerical reference notation
or footnote. By doing so, we will effectively be able to retrieve the inline and in-text attribution
types of citations. However, we will also miss the general reference type as we only extract the
closest sentence. In Wikipedia’s case, a single cited source can support consecutive sentences,
which is indicated by a single citation at the end of the final sentence and thus not for each
sentence. In our simplistic automated approach, we will not know what sentences belong to a
consecutive sequence and just extract the closest sentence to its citation. Consequently, this will
cause our approach to miss the surrounding sentences that may also belong to that citation.

https://en.wikipedia.org/wiki/Wikipedia:Citing_sources
Zhttps://en.wikipedia.org/wiki/Delft

11

3.2. Improving efficiency

Shonen Jump (magazine) % 5languages (\
Identify Citations
Article alk Read Edit e’ istory ools v in Text id'"- 18060198,
rom Wi \ “url’: ‘https://: vikipeds g/wiki?curid=18060198',
From Wikpeds, the free encycopedia Shonen Jump ‘uel: 'https://en wikipedia org/wikiZcuri
A

i ‘title':'Shonen Jump (magazine).
Shonen Jump., officially stylized SHONEN JUMP and text: [T L L1,
abbreviated SU, was a shonen manga anthology published g

in North America by Viz Media. It debuted in November
2002 with the first issue having a January 2003 cover date.
Based on Shucisha's popular Japanese magazine Weekly
Shinen Jump, Shonen Jump was retooled for English
readers and the American audience, including changing it
from a weekly publication to a monthly one. It featurcd
serialized chapters from different manga serics and articles
on Japanese language and culture, as well as manga,
anime, video games, and figurines. Famous works
published in Shonen Jump include Dragon Ball Z, One

Pi Gi-Oh!, YuYu Hakusho, Naruto, Gintama and

Claim Detection

Model No supporting facts found,
thus use alternative method

Prior to the magazine's launch, Viz launched an extensive
marketing campaign to promote it and help it succeed
where previous manga anthologies published in North
America had failed. Shueisha purchased an equity
interest in Viz to help fund the venture, and Cartoon
Network, Suncoast, and Diamond Distributors became

'id''18060198",

‘el "https://en wikipedia org/wikiZcurid=18060198",

‘itle': ‘Shonen Jump (magazine),

TR TR, Iu cojvacion text: [["Shonen Jump, officially stylized SHONEN JUMP and abbreviated SJ, was a shonen

with the magazine, Viz launched new imprints for L manga anthology published in North America by Viz Media. It debuted in November 2002 with
releasing media related to the series presented in the Fistissue November 28,2002 21 years the first issue having a January 2003 cover date.”, "Based on Shucisha's popular Japanese
magazine, and other shonen works. This includes two oo magazine Weekly Shonen Jump, Shonen Jump was retooled for English readers and the American
new manga imprints, an anime DVD imprint, a fiction audience, including changing it from a weekly publication to a monthly one "], ["Shucisha

line for relcasing light novels, a label for fan and data purchased an equity interest in Viz to help fund the venture ..], [.]. .]

books, and a label for the release of art books. b ,
s

Company
Language

Figure 3.5: Fusion setup showing claim detection being used when citation extraction is not
possible. Based on the ‘Shonen Jump (magazine)* Wikipedia page.

Fusion of Citation extraction and Claim Detection While cited sentences are valuable for
providing trustworthy support, they may not always be abundant enough to rely on exclusively.
While some pages boast numerous well-sourced references, others may have only a handful or
even none at all. Additionally, due to the way we extract citations, there may be some surround-
ing sentences missed that are also part of the citation. In both such instances, citation extraction
might overlook valuable claim-worthy information present in the text. Take for example Fig-
ure 3.5 showing that the ‘Shonen Jump (magazine)® article does not have any citations in the
given text span. Here one can see that while no references are used, there are sentences present
that are worthwhile to consider as supporting facts. While preserving the original text could be
considered a valid option, it is important to note that for external knowledge sources beyond
Wikipedia, citations may only be available for a small percentage of data. As a consequence,
this leads to a negligible reduction of the data in those cases. Thus, to optimize efficiency and
achieve our end goal, a more effective approach is to utilize claim detection whenever citations
have not been extracted. This strategy ensures that entries in the data collection without citations
still capture potential supporting facts, while simultaneously reducing the overall corpus size. In
this approach, it’s important to keep in mind that the inference latency for detecting support-
ing facts now depends not only on the number of citations present in a corpus, but also on the
inference process of the claim detection model.

3.2.2 Evidence Retrieval

In addition to employing re-ranking to reduce the corpus size, we can incorporate Dense Re-
trieval as a more efficient alternative to Sparse Retrieval and re-ranking. This is as depicted in
Figure 3.6. Like is mentioned in Section 2.1, the evidence retrieval consists of retrieving data
that most likely contains the answer followed by selecting the top relevant ones pertaining to
the query/claim. The first step is usually done using a Sparse retrieval setup, as depicted in Fig-
ure 3.7a. This setup however is very costly to run, as one would require a module for retrieving

3https://en.wikipedia.org/wiki/Shonen_Jump_(magazine)

12

3.2. Improving efficiency

e - Extracting Knowledge
Supporting Facts Corpus
Fact Index —
(dense vectors)

— . Fact-Verification SUPPORTED/
Dense Retriever —» model NOT SUPPORTED

CLAIM —_—

Figure 3.6: The second adjustment to the pipeline in replacing Sparse Retrieval with Re-ranking
stages with a single Dense Retrieval module.

and a module for re-ranking. As the re-ranking setup eliminates the need to perform sentence se-
lection to reduce non-relevant sentences, we can essentially directly retrieve the top-k documents
from the newly formed data corpus using Dense Retrieval (see Figure 3.7b) This is because
we no longer need the other two-step process for iteratively increasing the chances of getting
the most relevant documents pertaining to a claim. Additionally, in the current state-of-the-art
systems, Neural network-based approaches are used as re-rankers to enhance Sparse retrieval
by leveraging techniques like word2vec for semantic similarity assessment, pre-trained models
such as BERT for predicting term importance, and term expansion methods to enhance recall.
These advancements significantly augment traditional methods by providing more nuanced un-
derstandings of query-document relationships and improving retrieval performance from a se-
mantic aspect. Here Dense retrieval can potentially benefit the fact-checking pipeline, as it can
immediately in its first stage retrieval give high similarity scores in the to semantically relevant
text pairs, even without exact token matching [20].

=)

: EDi
: Epr
: Documents —»% -

2 e g
12 S— o
e 2 7 Inverted L
| ps 2 8 _ Index | L .
— . e
uery ——> Tokenizer 4>| '—b
Quen Candidate i Top-K

documents documents

Sparse Retrieval Re-ranker

| Documents —»| Encoder
Query —» Encoder Top-K
documents

(b) Dense Retrieval

Figure 3.7: Retrieval methods for retrieving top-k relevant documents pertaining to a query.

Although implementing Dense Retrieval offers a more streamlined approach, it is important

13

3.2. Improving efficiency

to also acknowledge its limitations compared to the original two-step retrieval approach. A no-
table limitation is that the dense representation is typically inferior to the sparse representation
of data [20]. To elaborate, the use of Dense Retrieval necessitates the creation of vector embed-
dings capable of encapsulating the entirety of semantic information within the text. This task
becomes very challenging, particularly for extensive textual spans. Thus, while Dense Retrieval
enhances overall computational efficiency by simplifying the process, it may not necessarily sur-
pass the original pipeline’s retrieval methods due to the complexity of capturing comprehensive
semantic representations. However, we do expect the performance to be within a few points
difference.

3.2.3 Index Compression

Index — s Extracting Knowledge
T Compression @ AiE 1 tex) Supporting Facts Corpus
S ——— ense vectors
Fact Index - -
(compressed
_dense vectors) _ p
o Dense Retriever Fact Verification SUPPORTED/

model NOT SUPFORTED

CLAIM |

Figure 3.8: The third adjustment to the pipeline with the added Index Compression module to
enhance Dense Retrieval.

As described in Section 2.2, leveraging Quantization can significantly enhance efficiency in
the Dense Retrieval setup. In our research, we will adopt the JPQ model introduced by Zhan et al.
[45] into the fact-checking pipeline (see Figure 3.8). JPQ, short for Joint optimization of query
encoding and Product Quantization, offers a novel approach by optimizing ranking performance
in an end-to-end manner, departing from the traditional encoding-compression two-step process.
Conventional compression techniques indeed enhance the efficiency of Dense Retrieval. How-
ever, these methods typically rely on a task-independent reconstruction error as the loss function
during training. Moreover, the encoders and compressed index are trained separately. As a
consequence of these design choices, compression fails to capitalize on supervised information,
and the compatibility between the query-doc encoders and the compressed index might not be
optimally aligned, overall leading to sub-optimal performance.

To resolve this, JPQ trains the query encoder and PQ index jointly based on three optimiza-
tion strategies.

1. First, the model employs a ranking-oriented loss to precisely measure the disparity be-
tween the PQ index and dual encoders. Computation of this loss involves reconstructing
the quantized document embeddings, denoted as d' = C1,01(d)> C2,05(d)s -+ s CM.gps(d)- ThiS
is then used in embedding similarity computation between the query and document, to
derive the relevance scores s'(q,d) = (g,d") utilized by PQ for ranking purposes. Subse-
quently, these scores are fed into a pair-wise loss function to compute the loss accurately:

(s"(q.d™),s"(q,d7)) 3.1

14

3.2. Improving efficiency

2. Second, PQ centroid optimization is used to train the PQ index with the ranking-oriented
loss. This would otherwise be non-trivial due to problems related to differentiability and
the substantial number of index assignments (proportional to the corpus size) leading to
potential overfitting. The PQ centroid optimization approach initializes a small set of PQ
centroid embeddings and updates the embedding through gradient descent, defined as:

—og;, if j=@i(d"),j#ei(d)
aﬁ(s-{-(q,d"'),s-;_(q,d_)) _ 0“?1‘7 ifj 7é (Pi(dJr)aj = (Pi(di) (3 2)
dei,j 0, if j=¢i(d"),j=qi(d) .
0, if j#@i(d"),j#@i(d)

These embeddings are differentiable and due to their compact size avoid the problem
of overfitting. The PQ centroid optimization strategy benefits from supervised signals
guiding updates within the PQ index compared to other existing approaches. Additionally,
PQ parameters directly evolve the query encoder through g;, which is part of the encoder’s
output, ensuring efficient refinement and adaptation.

3. Finally, incorporating end-to-end negative sampling can further bolster ranking perfor-
mance. Previous research by the authors [46] demonstrated that dynamic hard negative
sampling contributes to enhancing top-ranking performance. This technique involves pe-
nalizing the scores of top-ranked irrelevant documents treated as negatives. The rationale
behind this approach lies in the significant impact that top-ranked negatives have on rank-
ing performance, whereas low-ranked documents are often cut-off by truncated evaluation
metrics. The process entails the real-time retrieval of negative samples by leveraging cur-
rent PQ parameters to extract the top-7i irrelevant documents as negatives at each training
step. The incorporation of retrieved negatives (D;T) helps minimize the top-7i pairwise

errors, thereby aligning with the truncated evaluation metric. The formulation for D;T,
with C being the entire document corpus and D:]r+ the labeled relevant documents, can be
expressed as:

_f .
D, =sort (d € C\D;“T based on ST(q,d)) [7] (3.3)

In essence, JPQ jointly optimizes the query encoder and PQ Centroid Embeddings through
end-to-end negative sampling and ranking-oriented loss computation. The entire optimization
objective of JPQ can thus be formulated as follows:

ffAcijt” —arg mln Z Z Z U(s"(q,d"),s"(q,d™)) (3.4)

cij} 9 d+eD}d-eDy

Given our reliance on establishing an efficient index for accurate retrieval, the work by JPQ
[45] aligns closely with our work. Having optimally compatible trained dual-encoders with a
PQ index can help ensure the corpus index footprint in memory is small. This can be seen in
the reported compression ratio of 4D/M, where D represents the vector dimensionality and M
denotes the number of codebooks used for compression. Concurrently, this approach facilitates
efficient retrieval of supporting facts while maintaining performance levels comparable to those
of standard Dense Retrieval setups, albeit without the overhead of a compressed index. This
is evidenced by the reported speedup ratio of (D+logn)/(M +logn), with n being the total
number of documents in the index.

15

Chapter 4

Experiments

This chapter delineates the datasets utilized. Furthermore, it delves into the intricacies of each
stage within the end-to-end fact-checking pipeline, elucidates the configuration and setup em-
ployed for the experiments, and finally, provides an explanation of the assessment criteria and
details the measurements taken during the experiment runs.

4.1 Datasets

Our experiments utilize two state-of-the-art comprehensive claim datasets for evaluating the
fact-checking pipeline, namely HoVer [17] and WiCE [19]. These datasets pose challenges to
textual entailment models in evidence extraction and fact verification due to their intricate multi-
hop reasoning requirements. Besides the claim data, also required is the Wikipedia data dumps
as a vast source of evidence data collection. The distribution of entailment labels across dataset
splits for both HoVer and WiCE, as utilized in our experiments, is illustrated in Table 4.1.

Claim Data Supporting Non-Supporting Total

Train 11023 (61%) 7148 (39%) 18171
HoVer Dev 2000 (50%) 2000 (50%) 4000
Test 2000 (50%) 2000 (50%) 4000

Train 460 (37%) 800 (63%) 1,260
WIiCE Dev 115 (33%) 234 (67%) 349
Test 111 (31%) 247 (69%) 358

Table 4.1: Sizes of the claim dataset splits as used in our experiments.

4.1.1 HoVer dataset

The work by Jiang et al. [17] will be used. The paper with regards to other datasets states
that, while valuable for community engagement, single-hop datasets (e.g. FEVER) and current
multi-hop question-answering datasets (e.g. HotPotQA) face limitations related to the number
of reasoning steps and word overlap between questions and evidence. Therefore the paper intro-

16

4.1. Datasets

duces HOppy VER!ification (HoVer) consisting of 26k claims that require evidence from up to
four English Wikipedia articles. Additionally, those claims contain significantly less semantic
overlap between the claims and some supporting documents. This is to avoid reasoning shortcuts
such as shallowly performing direct semantic matching with only the claims. The data corpus
comprises only the first Wikipedia paragraph (the lead section). To stay in line, we will do the
same and also add another setup of using the whole Wikipedia article text.

The HoVer dataset is curated using the HotPotQA! dataset as a basis, which consists of
multi-hop question-answer pairs derived from the 2017 English Wikipedia dump. The creation
of the HoVer dataset unfolds in three stages, guided by the collaborative efforts of trained crowd-
workers.

1. Claim Creation: In the initial stage, question-answer pairs sourced from HotPotQA are
rewritten into claims. These claims incorporate information from two distinct English
Wikipedia articles. To enhance complexity, extra hops are introduced by substituting an
entity with information from another article that pertains to the original entity. To im-
prove readability, many-hop claims are articulated across multiple sentences, intercon-
nected through coreferences. To ensure the quality of the claims, a separate group of
crowd workers validate the claims. Here only claims for which at least two out of three
annotators agree on a valid statement and cover the same information from the original
question-answer pair are kept.

2. Claim Mutation: The second stage involves the generation of unsupported claims by
modifying those produced in the first stage. This process includes automatic word/entity
substitution, followed by human editing. Crowd-workers refine claims to make them ei-
ther more specific or more general, and some claims are negated. A human validation
process ensures the quality of machine-generated claims.

3. Claim Labeling: In the third stage, a binary classification system is adopted for claim
labels: SUPPORTED and NOT-SUPPORTED. Recognizing the inherent ambiguity in
distinguishing between REFUTED and NOTENOUGHINFO, particularly in many-hop
claims, the label NOT-SUPPORTED is employed. This decision streamlines the catego-
rization process and addresses challenges in determining refutation or insufficient infor-
mation.

4.1.2 WiCE dataset

Besides HoVer, we also aim to use the WiCE dataset proposed in the work of Kamoi et al. [19].
WICE, an acronym for Wikipedia Citation Entailment is a dataset consisting of real-world claims
from Wikipedia articles. The dataset aims to mitigate the challenges that arise for modern en-
tailment systems. This is due to Natural Language Inference (NLI) datasets having a limited
analysis scope due to too much focus on short premises, causing entailment systems to rely
solely on local scores or retrieval methods. There are a few exceptions like DocNLI, which has
synthetic negatives. However, this introduces a different challenge of spurious correlations and
insufficient annotations of claim support due to a lack of ecologically valid negatives hampering
the training. These gaps highlight the need for more robust methodologies and diverse training

Uhttps://hotpotqa.github.io/wiki-readme.html

17

4.1. Datasets

data for better inference accuracy.

The WiCE dataset uses the same base claim data as SIDE [34] and consists of sentences
constructed from Wikipedia together with the corresponding articles it cites. To help in the an-
notation process, the authors introduce the Claim-Split method, which decomposes hypotheses
into sub-claims using few-shot prompting with ‘GPT-3.5°. By breaking down long claims into
short sub-claims, they manage to not only simplify the annotation process, but also simplify
the entailment prediction task and enhance the classification performance. Additionally, this
method also allows for a more fine-grained view of which parts of the claims are supported. For
the annotation process itself, attained are the entailment label, the list of the article’s sentences
that support the claim sentence, and tokens in the claim that are unsupported.

For our experiment evaluation, we conducted the pipeline analysis on the WiCE claim
dataset rather than their sub-claim dataset. This decision was made because the sub-claims
often lack the necessary surrounding context to be considered claims in their own right. This
limitation becomes apparent when considering an example claim: ”The couple married in New
York in December 2012, and their son, Bear, was born the next year,” which pertains to the ac-
tress Kate Winslet. However, the corresponding sub-claim: “The couple married in New York
in December 2012.” is highly ambiguous and tends to yield non-relevant documents when used
in isolation. Another decision made concerning the dataset is the change of labelling. WiCE
utilizes a three-way entailment system, which we adapted into a binary labelling scheme. It’s
important to acknowledge that many of the unsupported claims in the dataset are likely true.
However, they are labelled as unsupported due to the lack of specific evidence documents. Fur-
thermore, the original partially supported label can be considered ambiguous, because it doesn’t
necessarily imply that all parts of the claim are verified by the retrieved evidence documents.
Therefore, in line with the principles of the HoVer dataset, we adapted the instances labelled
as ‘PARTIALLY-SUPPORTED’ to ‘NOT-SUPPORTED’. This adjustment ensures consistency
and clarity in our evaluation process.

"N —

English / {->
Wikipedia “id" 47004071,

“url": "hitps:#ien wikipedia.org/wiki?curid=47094971",

“title": "Dark Souls",

___ e "text': [["Dark Souls"], ['Dark Souls is a series of <a href="/wiki/Action_role-

: playing_game" title="Action role-playing game">action role-playing games

developed by FromSoftware

 and published by <a href="fwiki/Bandai_Namco_Eniertainment®

tile="Bandai Namco Entertainment">Bandai Namco Entertainment ",],],
“charoffset": [[[[0, 5], [6, 10]), [[[0. 5, [6, 10], [12, 14], [15, 161, .1, .1, ..]

S
.

Figure 4.1: Layout of processed Wikipedia dump used for our experiments.

18

4.2. Experimental design

4.1.3 Wikipedia corpus

As both of the datasets contain claims with supporting documents related to Wikipedia arti-
cles, we used those Wikipedia dumps as corpus collection to ensure relevant documents were
retrieved. For HoVer, as mentioned before, we used the same processed 2017 English Wikipedia
dump, retrieved from the HotPotQA website. This dump consists of in total of 5,486,211
Wikipedia articles which in total constitute a total of 94,914,378 sentences. Similarly, the WiCE
dataset also uses an English Wikipedia where they re-retrieved relevant articles using Common
Crawl. Instead of doing the same and to speed up the process, we used one of the latest avail-
able English Wikipedia dumps at the moment (namely 01-Jan-2024). This dump consists of in
total of 6,777,401 Wikipedia articles which constitutes a total of 126,533,841 sentences. For
processing the corpus to be of the same format as the HotPotQA Wikipedia dump, we utilised
the HotPotQA fork? of the official Wikiextractor® tool. This tool helps format the dump into
a folder structure, as seen in Figure 4.1, containing multiple sub-folders holding one hundred
Bzip2 files, where each zip file contains multiple Wikipedia articles.

4.2 Experimental design

It is crucial to establish a baseline for our experiments amidst the myriad of discussed approaches
for improvements and setups. Additionally, we provide an overview of the various ablations and
other studies conducted for our experiments, as to offer a more streamlined perspective.

4.2.1 Fact-checking Pipeline

The authors of HoVer have developed an initial baseline pipeline system for fact extraction and
claim verification, following the state-of-the-art model by Nie et al. [30] on FEVER [40], to
highlight the complex multi-hop challenge. This pipeline* forms the core part of our work as we
will be comparing the performance and efficiency of it, to the improvements we will introduce.
The pipeline, depicted in Figure 4.2 consists of the following stages:

1. Term-based Document Retrieval: The system employs Chen et al.’s [9] document re-
trieval component, utilizing cosine similarity on binned uni-gram and bi-gram TF-IDF
vectors. This process identifies and returns the k most relevant Wikipedia documents and
their probabilities for a given query.

2. Neural-based Document Retrieval: The BERT-base model utilizes a single document p
from the set Pr and a claim c as inputs. It produces a relatedness score reflecting the con-
nection between p and c. The system selects a set Pn consisting of the top kp documents
with relatedness scores surpassing a threshold kp.

3. Neural-based Sentence Selection: Another BERT-base model is fine-tuned to encode
the claim c and all sentences from a chosen document p in the set Pn. It predicts sen-
tence relatedness scores using the first token of each sentence. A set Sn is then selected,
comprising the top sentences from Pn with relatedness scores exceeding a threshold ks.

Zhttps://github.com/qipeng/wikiextractor
3https://github.com/attardi/wikiextractor
“https://github.com/hover-nlp/hover

19

4.2. Experimental design

CLAIM: S

Knowledge
"Yakuza Kiwami and Yakuza 0 were Corpus Index Corpus -

released on the PlayStation 2 —_—

gaming console.”

—

Neural-based
_, Sentence Selection

Yakuza Kiwamj was released on PlayStation 3
and PlayStation 4 in Japan on January 21, 2016
Term-based

Yakuza O was released for PlayStation 3 and

Document Retrieval Retrieve top-5 PlayStation 4 in Japan in March 2015
sentences
Retrieve top-100
documents J
Claim Verification Claim:
Model ... released on the PlayStation 2 gaming console.”
Yakuza Kiwami Recognize textual entailment | Eevidence
between the claim and " released for Playstation 3 and Playstation 4..”
Neural-based Yakuza Kiwami 3l is an action: the retrieved evidence

adventure video game developed by

Docllme]lt Retrieval a Gotoku Studio and published

Itis a remake of Yakuza,
the first game in the Yakuza series,
originally released on Sony's
PlayStation 2. Yakuza Kiwamiwas
released on PlayStation 3 and
Retrieve top-2D PlayStation 4 in Japan on January ~ N

21, 2016, and on PlayStation 4 in

documents Eurcpe and Norih America on
August 29, 2017121131 i I
L] p:rgl:; to Windows via S";:?na = NOT
|| worldwide on February 19, 2013 |4 SUPPORTED

Figure 4.2: Example of HoVer’s fact-extraction and -verification pipeline with the 4-stage archi-
tecture

4. Claim Verification Model: A BERT-base model is fine-tuned for textual entailment be-
tween the claim c and the retrieved evidence Sn. The model takes the claim and evidence,
separated by a [SEP] token, as input and conducts binary classification based on the output
representation of the [CLS] token at the first position.

4.2.2 Overview Experiments

As the main baseline, we will take the original datasets before using any of the aforementioned
adjustments (see Section 3.2) and run the HoVer pipeline on it. After having established the
baselines on both datasets, for our experiments we aim to compare the three types of improve-
ments for efficiency, as explained in Chapter 3. To provide a streamlined view, we will iteratively
go through them and show how each iteration improves the pipeline.

Retrieval Setups We distinguish three types of retrieval methods in our experimental setup.
The First consists of the Sparse retrieval which is part of the original baseline pipeline. For this,
we will use the BM25 retrieval from Elasticsearch. For the second method, as mentioned in
Section 3.2.2, the Term-based retrieval stages (Sparse retrieval and Neural-based) in the HoVer
pipeline can be replaced by a single Dense Retrieval setup. For our specific use case, we will
implement FAISS as our chosen dense retrieval method, aiming to retrieve the top 5 documents
similar to the original pipeline. Lastly, there is also the Index compression setup aims to further
improve the Dense Retrieval setup. Unlike the previous two improvements, this setup does not

20

4.3. Experiment Setup

replace any component in the HoVer pipeline. Instead, it introduces a new module. Here instead
of storing text in its original form in the index, as in previous setups, we utilize a document
encoder segment to compress the index into a PQ index, significantly reducing its size compared
to the Dense Retrieval Setup. During retrieval, the query encoder encodes the claim with the
learned index, which is then utilized for retrieval purposes in the Dense Retrieval process. The
retrieval process is expected to exhibit a speedup owing to the smaller size of vector embeddings
in the index to search through. Moreover, in terms of performance, it is anticipated that there
will be only marginal differences compared to the standard Dense Retrieval setup.

Re-ranking data Within each retrieval method, we will execute the same three distinct fact-
extraction data settings. These settings, as explained in Chapter 3, involve the utilization of a
pre-trained claim-detection model, the extraction of citations, and a fusion of both approaches.
The goal of these methods is to bypass the Sentence Selection stage. This means there’s no need
to train and employ a separate model for identifying claim-worthy sentences in each candidate
document, as we pre-compute and store them in the index. This is to essentially eliminate the
need for on-the-fly computation, resulting in the amount of resources and time needed to be
reduced for the fact-checking pipeline. It’s important to highlight that although we still employ
a BERT model for claim detection, it’s only utilized during the curation of the data corpus,
rather than during the inference time of the pipeline. This shift enhances the efficiency of our
pipeline since the claim detection step is executed less frequently, resulting in overall improved
performance.

Sentence Retrieval Ablation Expanding upon our experiments involving the three re-ranking
data settings, we will also aim to gauge the impact of Dense Retrieval on the original corpus
data across two distinct setups through an ablation study. Firstly, we’ll assess its influence in a
manner akin to the baseline pipeline configuration, which encompassed the Sentence Selection
stage. Secondly, we’ll examine its effects in a setup resembling the re-ranking approach, but
without the Sentence Selection stage. This comparative investigation will elucidate the degree
to which Sentence Selection contributes to the overall pipeline performance. Furthermore, this
provides us with a valuable means to compare and contrast the outcomes against those derived
from fact-extracted data settings. It also lets us see how much performance degradation these
settings experience compared to the original data.

4.3 Experiment Setup

To ensure the reproducibility of our work, we provide a comprehensive overview of both our
hardware setup and the implementation details of our code. The latter part involves which mod-
els are used in our experiments and some design decisions.

4.3.1 Hardware configuration

The experiments were run on a dedicated private server equipped with high-performance hard-
ware. This to ensure robust and efficient processing of our experiments could be carried out,
without facing problems due to hardware limitations. The server, powered by Arch Linux, con-
sists of a 16-core 2nd Gen AMD EPYC™ 7302 processor coupled with two NVIDIA GeForce
RTX 3090 GPUs, providing ample computational resources for our tasks. Complementing this

21

4.3. Experiment Setup

powerful hardware configuration was a substantial 256 GB of RAM, enabling smooth and unin-
terrupted operation even during intensive computational tasks.

The HoVer pipeline boasts support for multi-GPU usage, yet we encountered some issues
in that regard. Consequently, we executed the pipeline and all GPU-enabled models in a single
GPU configuration to ensure seamless operation and consistency across the different experi-
ments.

4.3.2 Implementation details

Text Processing For the re-ranking setup, the corpus files needed to be processed before be-
ing able to use them in our experiments. As mentioned before the Wikipedia dumps that we
used are processed through the WikiExtractor tool. To speed up the process, we used JobLib to
multiprocess the files in parallel. For the re-ranking setup, the claim-detection model used is a
pre-trained BERT model > that has been finetuned on the ClaimBuster dataset. The model has
scored an 82% accuracy score in correctly identifying claims and thus made for a proper model
to use for our experiments. Overall processing the entire corpus for Claim detection takes around
two to three days on our hardware setup. On the other hand processing for citation extraction
takes around eight days to process. This is due to the need to retrieve the html webpages asyn-
chronously as in a multi-processing setup we can miss some pages to be retrieved. Additionally,
NLP models are used for sentence splitting. Using a single model instance would not work in
multi-processing due to lack of multi-processing support and there not being any shared memory
between the processes. This results in no retained text despite articles having citations, therefore
the multi-threading option should be used instead. However in Python, as stated in their doc-
umentation®, the ‘Global Interpreter Lock’ threading has been implemented as a concurrency
instead of parallelism way. This has as a consequence that only one thread is to be run at a time
instead of multiple ones concurrently. Even more in our case, we noticed it slowed the code
even further compared to running it in a serial manner. Therefore to mitigate these issues we
use the default multiprocessing and instantiate the NLP model in each process rather than share
the model between the processes. Although this adds some overhead in latency and memory for
each process, in the end, it significantly speeds up our text processing for citation extraction on
the data collection. Finally, it’s important to highlight that the initial setup of the HoVer pipeline
utilized only the lead section of the Wikipedia corpus in its downloaded database file. However,
since Wikipedia’s lead sections don’t include citations and serve as self-contained summaries
of the entire articles, we decided to utilize the full article text for our experiments. Despite this
adaptation, we’ve retained the option in our code to choose whether to use the full text or just
the lead section.

NLP models For extracting supporting facts in our text processing pipeline, we leveraged
several state-of-the-art models to facilitate various tasks. The HoVer pipeline, by default, incor-
porates StanfordCoreNLP for sentence splitting. However, StanfordCoreNLP requires the Java
Runtime Environment to be installed, which may not always be convenient for Python-centric
workflows. Additionally, the setup of StanfordCoreNLP acts like a server. This works well in

Shttps://huggingface.co/Nithiwat/bert-base_claimbuster
Shttps://docs.python.org/3/library/threading. html
7https://stanfordnlp.github.io/CoreNLP/

22

4.3. Experiment Setup

the pipeline as it works on smaller amounts of text. Unfortunately, for processing the entire
Wikipedia corpus for extracting supporting facts, we noticed it suffered from disconnections as
the response was not being received at the server endpoint. To address this, we have integrated
instead the ‘en_core_web_lg’® model from the SpaCy library as an alternative. This choice of-
fers several advantages, including SpaCy’s renowned efficiency and speed, often surpassing that
of StanfordCoreNLP. This ensures quicker processing times and optimized resource utilization,
which is particularly beneficial for real-time applications. Moreover, Spacy enables the creation
of custom NLP pipelines, allowing us to tailor the functionality to our specific needs. For in-
stance, if only sentence splitting is required, we can configure Spacy to load only the Sentencizer
component, thereby avoiding unnecessary overhead from other components.

Sparse Retrieval The current implementation of the HoVer pipeline includes the utilization of
retrieved article files from the Term-based Document Retrieval stage, although it lacks specific
setup details. It does reference the use of the DrQA library® as an option for processing HoVer
data, which could enable a more fair comparison. However, for our specific use case, we plan to
replace the TF-IDF Document Retrieval step using BM25 from Elasticsearch!®. This decision
is primarily motivated by the fact that our system already has an Elasticsearch instance set up,
making integration with BM25 retrieval more straightforward compared to incorporating DrQA.
Additionally, we anticipate that the Sparse Retrieval between the two methods should yield
comparable results.

Dense Retrieval As mentioned before, for our Dense Retrieval we will employ the FAISS!!
library with GPU support. Here we used the FAISS flat index data structure for a fast similarity
search of dense vectors, using dot product against the query as a scoring function. This particular
index data structure stores all vectors directly in a single structure, making it simple and efficient
for exact searches. However, it may not scale as well to very large datasets compared to more
complex index structures of the FAISS library (e.g. IVF). For generating text embeddings, we
employed the pre-trained ‘all-MiniLM-L6-v2’ model from Sentence Transformers'?, a versatile
and effective solution for creating dense representations of textual data. This model has only
been used for the Dense Retrieval setup without index compression, as the index compression
used the JPQ!3 model to encode the textual data.

Index Compression As detailed in the JPQ paper [45], variable K (the number of codewords)
is set to 256 to store embedding in one byte, and M (number of codebooks/sub-vectors) can be
set to any number of sub-vectors smaller than the embedding size. For our use case, we only
ran it for M = 96, to see how much reduction can be achieved in index size, while still getting as
high performance as possible from using a relatively high number of sub-vectors to represent the
data. The dual-encoders are based on the Roberta model from Huggingface Transformers. The
document encoder uses OPQ [11] to learn a linear transformation of embeddings and PQ [18]
for compression. Furthermore, for training, the AdamW optimizer has been used with a batch

8https://spacy.io/models/en
“https://github.com/facebookresearch/DrQA
Ohttps://elasticsearch-py.readthedocs.io/en/v8.12.1/
htps://github.com/facebookresearch/faiss
2https://www.sbert.net/docs/pretrained_models.html
Bhttps://github.com/jingtaozhan/TPQ

23

4.4. Assessment and Metrics

size of 32, LambdaRank [7] as a pair-wise loss function, and the top-200 irrelevant documents as
hard negatives. For the query encoder, the learning rate is set to 5 x /0-6 and the PQ learning rate
is set to 1 x 10-4 for our setting (depends on M). Creating the index for the original Wikipedia
dumps (without re-ranking applied) for our experiments took roughly between /0-12 hours on
our setup. Subsequently, the reduced corpus size through re-ranking took 6-7 hours, roughly
half the time.

Fact-checking pipeline In our custom scripts, we predominantly utilize Python version 3.10.9
due to its compatibility with various existing tools and libraries essential for our experimental
work, such as retrieval libraries and the wiki extractor. However, we made an exception for the
HoVer codebase, which contains legacy code relying on older dependencies. For this particular
codebase, we opted for Python version 3.7.16 to maintain compatibility and avoid disrupting
existing functionality. Updating to a newer Python version would have necessitated not only
updating dependencies, but also extensive re-implementation of core components, which is be-
yond the scope of our study. The models employed in different stages of the HoVer fact-checking
pipeline are based on pre-trained BERT-base uncased models, with variations arising from their
fine-tuning for specific pipeline stages. Fine-tuning involves using a batch size of 16 and a de-
fault learning rate of 3e-5 without warmup. The number of training epochs is set to 3 for the
Sentence Selection stage and 5 for the remaining stages. For model parameters, kr = 20, kp =
5,p =0.5, and s = 0.3 are used depending on the memory limitations and performance on the
development claim dataset.

4.4 Assessment and Metrics

Performance Evaluation: In alignment with the original HoVer methodology, we will utilize
accuracy as the primary metric to assess the correct identification of claims as either ‘Supporting’
or ‘Not Supporting’. However, to provide a comprehensive evaluation, we will supplement
accuracy with additional metrics including F1 score, recall, and precision. Given the uneven
distribution of entailment labels in the WiCE dataset, both macro and weighted metrics will be
reported for a more nuanced understanding (Table 4.1). Since the HoVer claim data is well-
balanced and much larger, the various metrics do not vary by much compared to the WiCE
claim data where accuracy is not particularly indicative of how well the experiments score. This
as the accuracy can be quite misleading with incorrectly labelling every claim as ‘not supported’
would already yield a 66% accuracy. Therefore by using the combination of both weighted and
macro scores, these metrics allow us to take into account class imbalances of the WiCE data,
while also ensuring equal considerations between the two labels. As end results, we select and
report the model checkpoints with the best predictions. The selection process will prioritize
sorting based on taking the five best F1-weighted scores, followed by selecting the one with the
highest F1-macro score. This approach ensures the choice of the model checkpoint is less biased
towards specific labels. For example, it may occur that a checkpoint scores highly in accuracy
and fl-weighted, but perhaps very poorly in fl-macro. To mitigate the risk of selecting such
a checkpoint, this selection approach minimizes the chances of under- and over-prediction for
any particular class label, causing checkpoints to be selected that have an overall well-balanced
score across the different metrics.

24

4.4. Assessment and Metrics

Efficiency Evaluation The evaluation of retrieval latency will encompass both CPU and GPU
implementations of FAISS (with and without Index Compression). As BM25 lacks GPU sup-
port, latency measurements will be limited to CPU performance. In addition to the above, the
following metrics will be recorded for each retrieval setting: index size on disk, time taken for
index creation, and time for document retrieval in both BM25 and FAISS setups. Furthermore,
secondary measurements will include total runtime, corpus data size on disk, disk writes for
constructing train and development sets at each stage, and disk writes for model checkpoints
and predictions. These are measured using Python’s in-built ‘psutil’'* tool. Lastly, maximum
CPU usage, maximum memory consumption, and GPU utility and memory usage will be moni-
tored throughout the experiments using the ‘nvidia-ml-py3’ library!3, which is a Python wrapper
around the NVML library'®. Important for retrieval and inference operations is to mimic a re-
alistic setting, where each search operation should act as if it would be operating in real-time
practical applications. To ensure this realism in performance estimation, although not fully sim-
ulated, the sequential retrieval latency on the dev dataset will be measured (essentially batch
size of 1). Since the training dataset is not used in the inference of the various stages and also is
much larger, it will undergo batched measurement with a consistent batch size of 128 to process
it in a reasonable time. For the inference latency comparisons, the time to perform the average
inference on a sample in milliseconds will not only encompass the inference time, but also the
preparation time of the data for each stage. It should be noted that the time to load the model for
each inference step will be excluded from the latency comparisons.

https://psutil.readthedocs.io/en/latest/
Shitps://github.com/nicolargo/nvidia-ml-py3
16https://developer.nvidia.com/nvidia-management-library-nvml

25

Chapter 5

Results and Discussion

In this chapter, we present the results of our experiments. The main goal here is the analysis
of how indexing supporting facts can enhance the efficiency of a fact-checking pipeline. Our
analysis is organized around the research questions posed in Chapter 3, providing a structured
approach for deriving meaningful insights. It should be noted that only the key observations
will be analysed in this chapter. So only a subset of the results will be discussed here, namely,
the performance measured in accuracy (percentage) and efficiency measured in latency (mil-
liseconds). For the full tables containing all the measurements, refer to Appendix A for the
difference experiment settings on HoVer data and similarly Appendix B on WiCE data. Finally,
we also present an alternative perspective of the tabular results data through graph visualizations
in Appendix C, aiming to enhance comprehension of the impact of our findings.

5.1 RQ 1: How does indexing supporting facts improve
information retrieval efficiency?

In this section, we investigate the impact of indexing supporting facts on information retrieval
efficiency by comparing the disk space utilization and retrieval latency across different experi-
ment settings. Here we aim to discern the benefits of storing only supporting facts in the index
as opposed to the entire corpus.

5.1.1 Corpus Size

To get an idea of how storing just the supporting facts data in the index improves efficiency
compared to storing the entire corpus, a comparison can be made on how much these different
settings occupy disk space. As mentioned in Section 4.4, to get an accurate estimate, only the
dictionaries containing the article’s title and document text are saved to raw JSON files. Across
all experiment settings as seen in Table 5.1, a notable reduction in disk space usage is observed
compared to the original Wikipedia document corpus. This reduction ranges from approximately
45% (claim detection) to 55% depending on the setting for the HoVer corpus data. Likewise,
for the WiCE corpus data, we can observe approximately 44% to 57% reduction. Moreover, in
correlation with the reduced disk size, it is evident that the number of sentences stored in the
index also decreases across each experiment setting compared to the original corpus data. For
HoVer this ranges from 52% (claim detection) to 61% (citation extraction) and WiCE ranges

26

5.1. RQ 1: How does indexing supporting facts improve information retrieval efficiency?

Experiment setting Disk Size Size reduction =~ #Sentences Sentences reduction

HoVer
Original 11.28 GiB - 94,914,378 -
Claim detection 6.19 GiB 45% 45,894,704 52%
Citation Extraction 5.07 GiB 55% 36,886,889 61%
Fusion 5.45 GiB 52% 39,842,574 58 %
WIiCE
Original 15.28 GiB - 126,533,841 -
Claim detection 8.56 GiB 44% 61,040,380 52%
Citation Extraction 6.56 GiB 57% 51,735,961 59%
Fusion 6.85 GiB 55% 54,070,295 57%

Table 5.1: Comparison sizes for the corpora per experiment setting, consisting of English
Wikipedia articles 2017 (HoVer) and 2024 (WiCE). Reduction is measured with respect to the
original data setting.

from 52% to 59%. This indicates that at least half of the sentences are considered as not claim-
worthy across the different re-ranking methods.

5.1.2 Retrieval Latency

Sparse retrieval Following the reduction in disk size, a notable enhancement in retrieval la-
tency is evident, as demonstrated in both the Term-based and Neural-based document retrieval
columns of Table 5.2. To avoid any ambiguity, it’s crucial to clarify that the speedup listed in
the table pertains to the total latency, which is relevant for addressing RQ2, rather than solely
focusing on document retrieval. Regarding document retrieval latency (which encompasses both
column values), there’s an observed speedup ranging from approximately 1.5x (334 ms) to 1.6x
(316 ms) compared to the original experimental setting for HoVer (495 ms). Similarly, in WiCE
experiments, we witness a comparable speedup rate ranging from 1.4x (446 ms) to 1.6x (399
ms) compared to the original experimental setting (636 ms). This observation suggests that
while the reduced text size contributes to expedited retrieval, the enhancement is only somewhat
proportional.

CPU-based Dense Retrieval One might typically anticipate a more pronounced disparity be-
tween the original data and the reranked data in the document retrieval phase. However when
transitioning from the Sparse retrieval setup to the Dense retrieval setup, as depicted in the first
column of Table 5.3, only negligible differences between the different settings are observed.
This is attributed to FAISS utilizing vectors instead of computing the relevance ranking of doc-
uments to the query, as is the case with BM25. Despite variations in the length of each article
across settings, the number of text embeddings (with fixed dimensionality size) created remains
constant, corresponding to the number of encoded text spans, which is consistent across settings.
Thus minimizing the impact of extracting supporting facts on document retrieval latency when
using Dense Retrieval. Comparing the Dense document retrieval (CPU) column in Table 5.3 to
the baselines listed in Table 5.2, it is observed to be of a similar latency or even slightly slower.
For HoVer, we can observe a 0.9x (523 ms) to 1.0x (479 ms) compared to the baseline (495 ms).
Likewise, for WiCE we can observe a similar latency speedup of 0.9x (685 ms) to 1.0x (610 ms)

27

5.1. RQ 1: How does indexing supporting facts improve information retrieval efficiency?

Sparse Retrieval Term-base.d Neural-based Sentence Claim Total

with Re-ranking setup document retrieval document retrieval ~ Retrieval ~ Verification Latency Speedup
CPU GPU

HoVer
Original (baseline) 426 ms - 69 ms 157 ms 7 ms 659 ms -
Claim detection 257 ms - 71 ms - 10 ms 338 ms 1.9x
Citation Extraction 246 ms - 70 ms - 11 ms 327 ms 2.0x
Fusion 265 ms - 69 ms - 11 ms 345 ms 1.9x
WiCE
Original (baseline) 559 ms - 77 ms 186 ms 9 ms 831 ms -
Claim detection 372 ms - 74 ms - 22 ms 468 ms 1.8x
Citation Extraction 330 ms - 69 ms - 20 ms 419 ms 2.0x
Fusion 347 ms - 69 ms - 20 ms 436 ms 1.9x

Table 5.2: Retrieval and inference latency for Sparse retrieval with Re-ranking setup on data
settings. Speedup is compared with respect to the total latency of the original data setting (bold
font).

speedup compared to its baseline (636 ms). This suggests that the indexing of supporting facts
would not significantly impact information retrieval efficiency in such scenarios.

. Term-baseq Sentence Claim Total Latency Speedup

Dense Retrieval setup document retrieval Retrieval Verification
CPU GPU CPU GPU CPU GPU

HoVer
Original (baseline) 491 ms 157 ms 7 ms 659 ms - -
Original (+ Sent. Select.) 515 ms 31 ms 153 ms 8 ms 676 ms 192ms 1.0x 3.4x
Original 523ms 30 ms - 9 ms 532ms 39 ms 1.2x 16.9x
Claim detection 513 ms 23 ms - 8 ms 521ms 31 ms 1.3x 21.3x
Citation Extraction 479 ms 23 ms - 9 ms 488 ms 32 ms 1.4x 20.6x
Fusion 500 ms 23 ms - 9 ms 509 ms 32ms 1.3x 20.6x
WiCE
Original (baseline) 636 ms 186 ms 9 ms 831 ms - -
Original (+ Sent. Select.) 685 ms 34 ms 184 ms 9 ms 878 ms 227 ms 1.0x 3.7x
Original 610 ms 34 ms - 9 ms 619ms 43 ms 1.3x 19.3x
Claim detection 622 ms 31 ms - 9 ms 631 ms 40 ms 1.3x 20.8x
Citation Extraction 610 ms 31 ms - 9 ms 619ms 40 ms 1.3x 20.8x
Fusion 619 ms 31 ms - 9 ms 628 ms 40 ms 1.3x 20.8x

Table 5.3: Retrieval and inference latency for Dense retrieval setup on data settings. Speedup is
compared with respect to the total latency of the Sparse Retrieval setup with original data setting
(bold font).

GPU-based Dense Retrieval However, it is worth noting that Dense retrieval can still be
faster, particularly with dense retrieval libraries such as FAISS offering GPU support, which can
yield substantial speedups compared to both CPU retrieval of BM25 and FAISS. This advantage
is evident in the data, showcasing notable speedups ranging from 16.6x to 22.3x speedup for
HoVer GPU retrieval over CPU retrieval, and 17.9x to 20.2x speedup for WiCE. Furthermore,

28

5.2. RQ 2: How does indexing supporting facts affect overall pipeline efficiency and
downstream fact-checking performance?

when comparing FAISS GPU retrieval to the BM25 retrieval, we can see an approximate 16.0x
(31 ms) to 21.5x (23 ms) speedup for HoVer and 18.7x (34 ms) to 20.5x (31 ms) speedup for
WiCE. Therefore the GPU-based approach makes Dense Retrieval a viable option, unlike the
CPU-based variant.

5.1.3 Key Takeaways

Extracting supporting facts from the data corpus can lead to only requiring to store at least
half of the data. Although this has a positive effect on the latency for Sparse retrieval, with
Dense document retrieval this is not the case due to how the vector embeddings are constructed
(being per article rather than per sentence). Furthermore, while CPU-based Dense retrieval may
not necessarily outperform Sparse retrieval methods in terms of latency, thereby presenting less
immediate appeal, the incorporation of GPU support leads to significant speed enhancements.
Thus, although extracting supporting facts does not help much in Dense document retrieval
unlike Sparse retrieval in terms of retrieval latency, the incorporation of the GPU-based Dense
retrieval renders it a much more compelling option for achieving efficiency.

5.2 RQ 2: How does indexing supporting facts affect overall
pipeline efficiency and downstream fact-checking
performance?

In continuation of the previous research inquiry concerning retrieval latency and disk size, this
section delves into an analysis of the overall inference time across the entire pipeline. Addition-
ally, recognizing that faster processing times do not necessarily equate to better performance a
further analysis will be done on the performance metrics.

5.2.1 Inference Latency

Sparse Retrieval Setup: The enhancement in retrieval latency, as evidenced in Table 5.2,
mirrors a noticeable improvement in the overall inference latency across the pipeline. This im-
provement spans approximately 1.9x to 2.0x for the HoVer experiments and 1.8x to 2.0x for
WiCE experiments. However, the reduction in total latency cannot be solely ascribed to faster
retrieval times. It also arises from the elimination of the Sentence Retrieval stage, which pre-
viously imposed significant latency overhead. Upon closer inspection of Table 5.2, it becomes
apparent that the absence of the Sentence Retrieval stage impacts the Claim Verification stage.
Notably, experiments conducted on the original corpus data exhibit much lower inference la-
tency compared to supporting facts data. Nevertheless, the variance between these experiment
settings is minimal, and the impact on total latency results is insignificant. This overall trend
indicates that indexing supporting facts for the BM25 retrieval setup predominantly benefits in-
ference times for the Rule-based document retrieval and Sentence Retrieval stages. Furthermore,
it reveals that the Claim Verification stage is slightly, yet negligibly, affected when considering
the entire pipeline inference.

Dense Retrieval Setup: In a similar vein as the document retrieval comparisons of RQ1 (see
Section 5.1.2), the total inference of the Dense retrieval setup presents notable differences in

29

5.2. RQ 2: How does indexing supporting facts affect overall pipeline efficiency and
downstream fact-checking performance?

results between CPU- and GPU-based Dense retrieval compared to Sparse retrieval. This diver-
gence is evident in Table 5.3, where for HoVer experiments, the CPU-based approach exhibits
a 1.2x to 1.4x speedup, while the GPU-based approach demonstrates a 16.9x to 21.3x speedup
compared to the baseline. Similarly, WiCE experiments show approximately a 1.3x speedup for
the CPU-based approach and 19.3x to 20.8x speedup for the GPU-based approach. The key dis-
tinction lies in the influence of omitting the Sentence Retrieval stage for the original corpus data.
Its omission introduces significant overhead to the total latency. For the CPU-based approach,
this translates to a 1.3x speedup for HoVer (676 ms vs. 532 ms) and a 1.4x speedup for WiCE
(878 ms vs. 619 ms). Conversely, the GPU-based approach experiences a 4.9x speedup for
HoVer (192 ms vs. 39 ms) and a 5.3x speedup for WiCE (227 ms vs. 43 ms). Overall, this un-
derscores that including Sentence Retrieval adds substantial overhead, especially for GPU-based
approaches operating with lower latency magnitudes. Therefore, the supporting facts data for
Dense Retrieval, while not significantly impacting document retrieval, offers significant speedup
for total inference latency, allowing for the effective omission of the Sentence Retrieval stage
and its associated latency overhead.

5.2.2 Performance Metrics Evaluation

. . F1 Precision Recall
Experiment setting Accuracy

Weighted Macro Weighted Macro Weighted Macro

Sparse retrieval with Re-ranking

Original 67.79 67.59 67.63 68.45 68.39 67.79 67.93
Claim detection 62.33 62.02 62.08 62.98 62.92 62.33 62.50
Citation Extraction 60.91 60.61 60.66 61.47 61.42 60.91 61.07
Fusion 62.28 62.15 62.18 62.60 62.56 62.28 62.39

Dense Retrieval

Original (with Sent. Select.) 64.60 64.45 64.45 64.86 64.86 64.60 64.60
Original 62.90 62.72 62.76 63.33 63.28 62.90 63.02

Claim detection 61.50 60.94 60.94 62.20 62.20 61.50 61.50
Citation Extraction 59.67 59.40 59.46 60.13 60.09 59.67 59.82
Fusion 59.51 59.32 59.37 59.85 59.81 59.51 59.64

Index Compression

Original (with Sent. Select.) 63.30 62.54 62.54 64.48 64.48 63.30 63.30
Original 63.02 62.08 62.08 64.46 64.46 63.02 63.02

Claim detection 61.92 61.71 61.71 62.19 62.19 61.92 61.93
Citation Extraction 59.98 59.12 59.12 60.89 60.89 59.98 59.98
Fusion 61.58 61.43 61.43 61.75 61.75 61.58 61.58

Table 5.4: Performance experiments on HoVer data and adjustments using full document text
of English Wikipedia. The bold-styled values represent the baseline while the underlined-styled
values represent the highest scores of the re-ranked data within a retrieval setup category.

Sparse Retrieval performance Utilising the metrics laid out in Section 4.4, the pipeline re-
sults have been evaluated for the different settings and laid out in Table 5.4 for the HoVer exper-
iments and Table 5.5 for WiCE experiments. When comparing the different HoVer experiment
settings within the Sparse Retrieval setup, Claim detection comes the closest to the baseline with

30

5.2. RQ 2: How does indexing supporting facts affect overall pipeline efficiency and
downstream fact-checking performance?

F1 Precision Recall

Experiment setting Accuracy Weighted Macro Weighted Macro Weighted Macro

Sparse retrieval with Re-ranking

Original 63.69 61.84 55.24 61.12 56.54 63.69 55.32
Claim detection 61.90 60.12 53.33 59.27 54.26 61.90 53.53
Citation Extraction 61.01 59.56 52.96 58.75 53.59 61.01 53.09
Fusion 63.39 60.21 52.48 59.46 54.69 63.39 53.27

Dense Retrieval

Original (with Sent. Select.) 61.61 60.95 55.21 60.47 55.49 61.61 55.13
Original 60.42 58.80 51.96 57.90 52.58 60.42 52.19

Claim detection 61.01 58.94 51.78 57.96 52.70 61.01 52.17
Citation Extraction 58.63 58.48 52.92 58.35 52.95 58.63 52.91
Fusion 61.31 59.34 52.30 58.40 53.23 61.31 52.62

Index Compression

Original (with Sent. Select.) 62.46 6138 5527 60.74 5584 6246 55.20
Original 60.46 60.63 5564 60.81 5560 6046 5570

Claim detection 59.31 59.02 5332 5877 5339 5931 53.30
Citation Extraction 60.74 59.21 5242 5834 53.04 60.74 52.60
Fusion 63.04 59.79 51.89 5894 5397 63.04 5276

Table 5.5: Performance experiments on WiCE data and adjustments using full document text
of English Wikipedia. The bold-styled values represent the baseline while the underlined-styled
values represent the highest scores of the re-ranked data within a retrieval setup category.

close to 5.5 points difference across the metrics for the HoVer experiments. Important to note is
that Fusion follows close with less than a point difference. For the WiCE Sparse retrieval setup,
the opposite occurred with the Fusion data being the closest with a marginal 0.3 point differ-
ence followed by Claim detection with a 1.5 points difference. In both datasets, the Citation
extraction takes the biggest loss in accuracy that being 6.9 points for HoVer and 2.7 points dif-
ference for WiCE. We can reason the fact that citation extraction takes the biggest performance
degradation to the fact that not all claim-worthy sentences contain citations, therefore missing
out on crucial evidence sentences. Unlike the other settings which consider the complete text
instead of only the cited sentences and determine claim-worthiness on what the claim-detection
model selects. Overall, relating to the inference time, we can see that for HoVer with a speedup
of at least 1.5x to 1.6x, we only lose 6.9 to 5.5 points in performance across various metrics
for the best re-ranking setup. Likewise, for WiCE, with a speedup of 1.4x to 1.6x we only lose
2.7 to 0.3 points. This positively demonstrates that indexing just the supporting facts does show
meaningful results in terms of overall pipeline efficiency, while maintaining roughly the same
performance. Additionally, this also indicates we can achieve good results by using a combi-
nation of citation extraction together with another supporting facts extraction method such as
Claim detection.

Dense Retrieval performance When examining the performance results of Dense retrieval
compared to Sparse Retrieval, it becomes evident that there is a slight decline across all exper-
iments. For HoVer, this decline ranges from a modest 0.8 point difference in Claim detection
to a more substantial 2.9 points in Fusion data. Similarly, WiCE experiences a loss ranging
from a 0.9 difference in accuracy between Claim detection settings to approximately 2.4 points

31

5.2. RQ 2: How does indexing supporting facts affect overall pipeline efficiency and
downstream fact-checking performance?

in Citation extraction. Crucially, it is to assess how these performances compare against the
baselines. In HoVer, the accuracy loss ranges from 8.3 points for Fusion data to 6.3 points for
Claim detection. WiCE experiences a loss ranging from 5.1 points in Citation extraction to 2.4
points in Fusion. These findings suggest that while transitioning from Sparse retrieval to just
a Dense retrieval component incurs some loss, it’s not substantial across various experiments
involving supporting facts data. Moreover, the performance is notably strong in claim detection,
while citation extraction lags behind by only a few points. Interestingly, while Fusion performs
as well as Citation extraction in HoVer experiments, Fusion data outperforms Claim detection in
WiCE. This highlights the significance of combining citation extraction with another supporting
facts extraction method to achieve optimal results, similar to the Sparse retrieval setup.

Sentence Retrieval stage ablation Comparing experiments on the original data between the
two retrieval methods reveals a more significant decline for HoVer, with a loss of 3.2 points
with Sentence Selection and 4.9 points without it. For WiCE, the difference is 2.1 points with
Sentence Selection and 3.3 points without it. When assessing these losses against the baselines,
it becomes evident that both methods generally outperform the supporting facts data experiments
by a few points. This suggests that the contribution of the Sentence Retrieval stage in the pipeline
to performance improvement is marginal. With the supporting facts extraction thus becomes
quite effective in achieving nearly the same performance. Consequently, to enhance efficiency,
eliminating this Sentence Retrieval stage would result in only a loss of less than a few points.

5.2.3 Key Takeaways

Incorporating supporting facts into both Sparse and Dense retrieval setups yields noteworthy
enhancements in overall pipeline efficiency. Sparse retrieval setups demonstrate speedups rang-
ing from up to around 1.5x, while Dense retrieval setups exhibit even more substantial im-
provements, achieving up to approximately 20.0x with GPU-based approaches. These notable
speedups are primarily attributed to the removal of the Sentence Retrieval stage, which incurs
considerable latency overhead. Further evaluation indicates a minor decline in performance
when transitioning from Sparse to Dense retrieval, though the loss is not substantial. Specifi-
cally, claim detection remains robust, while citation extraction may lag behind by a few points.
However, Fusion data yields promising results, often comparable to or outperforming other ex-
traction methods, emphasizing the significance of amalgamating various extraction techniques
for supporting facts. Moreover, ablation experiments on the Sentence Retrieval stage reveal its
marginal contribution to performance improvement. Comparisons between original data and
supporting facts data show only a slight decline in performance, showcasing that utilising only
the supporting facts only incurs a modest loss in performance (around 6 points for HoVer and 3
points for WiCE). This suggests that although supporting facts do not affect document retrieval
latency in the Dense Retrieval setup, it does help with overall pipeline latency due to avoiding
the latency overhead of Sentence Selection. In conclusion, these results underscore the mean-
ingful impact of indexing supporting facts on the overall pipeline efficiency, with only minimal
losses in downstream fact-checking performance.

32

5.3. RQ 3: In what ways does index compression enhance the efficiency of dense retrieval and
fact-checking systems?

5.3 RQ 3: In what ways does index compression enhance the
efficiency of dense retrieval and fact-checking systems?

In this final research inquiry concerning the addition of index compression, this section explores
how index compression improves upon Dense Retrieval in not only the constructed index size,
but also document retrieval and total inference latency. Additionally, a final comparison will be
made on the overall performance against Sparse retrieval and standard Dense Retrieval.

5.3.1 Compressed Index Size

In our FAISS experiments, we consistently observe an index size of approximately 7.51 GiB
across all HoVer settings and 9.70 GiB across all WiCE settings. While one might anticipate
that re-ranking would influence the amount of text utilized for generating vector embeddings,
it’s crucial to note that the index size remains unchanged. This is due to the fact that we generate
vector embeddings on a per-article basis with only the text itself being altered. To address this
issue, we employed JPQ, an index compression model. Despite using a relatively high number
of subvectors for the JPQ model (M=96), we observed a significant reduction in the total index
size. Specifically, the individual vector embeddings now occupy only 104.12 B in storage space,
down from 1.5 KiB previously. This reduction is remarkable. For the HoVer experiments, the
index size decreased from 7.51 GiB to 544.89 MiB, and for the WiCE experiments, we observed
a decrease from 9.70 GiB to 672.95 MiB. Overall, this constitutes an impressive reduction of
nearly 93% or a compression ratio of 14.4:1 in index size for both experiment setups. It’s
worth noting that employing fewer sub-vectors could potentially lead to an even more substantial
reduction in index size; however, this would come at the cost of decreased performance.

. Term—basefi Sentence Claim Total Latency Speedup

Index Compression setup ~ document retrieval Retrieval Verification
CPU GPU CPU GPU CPU GPU

HoVer
Original (baseline) 491 ms 157 ms 7 ms 659 ms - -
Original (+ Sent. Select.) 53 ms 13 ms 153 ms 8 ms 214ms 174ms 3.1x 3.8x
Original 55 ms 13 ms - 12 ms 67 ms 25 ms 9.8x 26.4x
Claim detection 51 ms 12 ms - 9 ms 60 ms 21 ms 11.0x 31.4x
Citation Extraction 46 ms 11 ms - 9 ms 51 ms 20 ms 129x 33.0x
Fusion 51 ms 12 ms - 12 ms 63 ms 24 ms 10.5x 27.5x
WiCE
Original (baseline) 636 ms 186 ms 9 ms 831 ms - -
Original (+ Sent. Select.) 97 ms 43 ms 186 ms 9 ms 292ms 238ms 2.8x 3.5x
Original 95 ms 43 ms - 11 ms 106 ms 54 ms 7.8x 15.4x
Claim detection 92 ms 37 ms - 11 ms 103ms 48 ms 8.1x 17.3x
Citation Extraction 89 ms 37 ms - 9 ms 98 ms 46 ms 8.5x 18.1x
Fusion 89 ms 37 ms - 9 ms 98 ms 46 ms 8.5x 18.1x

Table 5.6: Retrieval and inference latency for Index compression setup. Speedup is compared
with respect to the total latency of the Sparse Retrieval setup with original data setting (bold
font).

33

5.3. RQ 3: In what ways does index compression enhance the efficiency of dense retrieval and
fact-checking systems?

5.3.2 Pipeline Efficiency

Document Retrieval Latency When examining the retrieval latency outlined in Table 5.6, a
notable observation can be made towards the Dense document retrieval compared to the Dense
Retrieval results outlined in Table 5.3. This significant enhancement can be primarily attributed
to the utilization of the index compression model, which effectively reduces the index size. As
a result, retrieval latency experiences a considerable improvement due to the smaller vector em-
beddings, facilitating faster similarity computation. Here one can observe a substantial speedup
achieved in CPU retrieval of approximately 10.0x across the HoVer experiment settings and 7.0x
for WiCE experiments. Similarly, GPU retrieval exhibits a speedup of approximately 2.0x for
HoVer experiments and 0.8x for WiCE experiments. This is generally in line with the reported
results in the original JPQ paper [45]. Although the measurements for HoVer fall in line with
these reported results, one may notice that the WiCE retrieval speedup is lower than that of
HoVer. This is even worse for the GPU-based retrieval latency instead of being better than the
standard GPU-based Dense retrieval. We reason this to the fact that the WiCE claim dataset is
a lot more complex. In the original WiCE paper, the results that were reported already indicate
a not so particularly high performance being achieved. This coupled with the use of a different
model for creating the embeddings results in marginally worse performance instead of a speedup
such as the case with HoVer.

Pipeline Inference Latency In examining the total inference latency, as further detailed in
Table 5.6, the utilization of compressed indexing and the ensuing document retrieval speed en-
hancements result in a notable boost across the board. The advancements brought about by
JPQ, which further build upon the foundations of Dense Retrieval, are particularly significant.
Notably, CPU latency has seen a substantial improvement compared to previous benchmarks
on the supporting fact data, exhibiting a noteworthy speedup ranging from 10.5x to 12.9x for
HoVer experiments, and 8.1x to 8.5x for WiCE experiments relative to their respective base-
lines. Meanwhile, the GPU-based approach, especially in the case of HoVer experiments, has
yielded even more impressive results, achieving speedups ranging from 27.5x to 33.0x. While
WiCE experiments on the GPU may not experience such dramatic speedups, they still showcase
marked enhancements over their original baselines that range from 17.3x to 18.1x speedups.
When assessing the impact of the Sentence Selection stage on the original corpus data settings,
the findings reinforce the observations made in the standard Dense Retrieval setup. Further-
more, the disparity in the reported speedups between the tables underscores the significance of
incorporating index compression.

5.3.3 Performance Metrics Evaluation

When comparing the performance of JPQ in the HoVer experiments (as shown in Table 5.4)
as well as the performance of the WiCE experiments (presented in Table 5.5), a notable trend
emerges. The index compression brought by JPQ generally yields higher scores compared to
the standard Dense retrieval experiments. This improvement is particularly striking as the gap
between the JPQ experiments and the baseline performances is further narrowed. In the HoVer
experiments, this enhancement ranges from marginal increases of less than a point in Claim de-
tection and Citation extraction to a significant 2-point boost in the Fusion data. Conversely, in
the WiCE experiments, while Claim detection experiences a slight decline of almost 2 points,
Citation extraction and Fusion demonstrate the opposite trend. Typically, one might expect in-

34

5.3. RQ 3: In what ways does index compression enhance the efficiency of dense retrieval and
fact-checking systems?

dex compression techniques to yield inferior results compared to the standard Dense retrieval
setup due to the lossy nature of compressing embeddings. However, a straightforward expla-
nation for this unexpected improvement lies in the utilization of different pre-trained models
for generating the embeddings. In the standard Dense retrieval, we rely on the all-MiniLM-L6-
v2 model, which maps sentences and paragraphs to a 384-dimensional dense vector space. In
contrast, the JPQ model employed for index compression initially generates embeddings of size
768 and subsequently reduces the embedding size using PQ centroids to achieve smaller vector
sizes. Furthermore, it’s worth noting that JPQ learns the index for the query vectors, unlike the
approach in standard Dense retrieval where the index is kept separate. The latter essentially op-
erates in a zero-shot inference manner, as we do not fine-tune the encoders on specific datasets
but instead store and retrieve the created embeddings directly in our FAISS setup.

5.3.4 Key Takeaways

Enhancing Dense retrieval through the use of index compression via the JPQ model has remark-
ably reduced the index size for Dense retrieval by a substantial 93%. Further analysis indicates
significant speedups of up to 10.0x for the CPU-based approach, while the GPU-based approach
achieves a modest speedup of up to 2.0x in the HoVer experiments. However, it experiences
a slight slowdown in the WiCE experiments. A huge emphasis on achieving efficiency is par-
ticularly pertinent in the context of CPU-based Dense Retrieval with index compression. Here
the latency times of the CPU-based approach come in close to the GPU-based approach. These
findings not only signify efficiency gains concerning resource utilization for index storage, but
also pave the way for experiments on lower-end machines especially ones lacking GPU capabil-
ities. Thereby maximizing the benefits of CPU-based methodologies. Regarding performance,
experiments involving index compression generally outperform standard Dense retrieval. This
superiority can be attributed to the utilization of different pre-trained models and learned index
techniques, resulting in slightly enhanced outcomes.

35

Chapter 6

Conclusions and Future Work

6.1 Conclusions

This research study aimed to explore the impact of indexing supporting facts from large data
collection as to improve fact-checking pipelines. Existing work on the fact-checking process
focuses primarily on the fact-verification part, but not on the evidence retrieval part. Here we
explored three distinct fact-extraction methods to attain supporting facts, namely, the use of a
claim detection model, citation extraction and a fusion of the two. Aside from methods for
identifying the supporting facts, we also explored various retrieval methods for indexing these.
To guide us in this research, we aimed to answer the following three research questions:

* RQ 1: How does indexing supporting facts improve information retrieval efficiency?

* RQ 2: How does indexing supporting facts affect overall pipeline efficiency and down-
stream fact-checking performance?

* RQ 3: In what ways does index compression enhance the efficiency of dense retrieval and
fact-checking systems?

From our in-depth analysis, we made several observations. Incorporating supporting facts
into both Sparse and Dense retrieval setups leads to significant enhancements in overall pipeline
efficiency. Sparse retrieval setups experience speedups of up to around 1.5x, while Dense re-
trieval setups show even more substantial improvements, reaching up to approximately 20.0x
with GPU-based approaches. These speedups are primarily due to the removal of the Sentence
Retrieval stage, which incurs considerable latency overhead. While there may be a minor decline
in performance when transitioning from Sparse to Dense retrieval, particularly in citation extrac-
tion, Fusion data often yields promising results, emphasizing the importance of amalgamating
various extraction techniques. Ablation experiments on the Sentence Retrieval stage reveal its
marginal contribution to performance improvement. Comparisons between original data and
supporting facts data show only a slight decline in performance, showcasing that utilizing only
supporting facts incurs a modest loss. Further experiments incorporating index compression
substantially reduce the index size for Dense retrieval by 93%, resulting in significant speedups,
particularly for CPU-based approaches. Here a key observation to be made is that CPU-based
approaches, which experience up to 10.0x the speedup, come in close to the latency times of
GPU-based approaches. Thereby effectively paving the way for fact-checking pipelines to be
run on lower-end machines, that do not benefit from more GPU-based methodologies but do for

36

6.2. Future Work

CPU-based ones.

All these findings underscore the meaningful impact of indexing just the supporting facts on
retrieval efficiency and consequently the overall pipeline efficiency, with only minimal losses in
downstream fact-checking performance. With optimizing efficiency comes several implications
for which real-world applications stand to benefit significantly. Facilitating faster fact-checking
processes enables various organizations to verify information in real-time where timely ver-
ification is paramount. For example in journalism where news organizations need to verify
the authenticity of new information before being able to publish any reports. These advance-
ments also contribute to scalability and resource efficiency, enabling fact-checking solutions to
be deployed on a wider range of devices, including those with limited computational resources.
This accessibility expands the reach of fact-checking technology, empowering users to make
informed decisions and navigate online content more effectively. Moreover, the conservation
of resources, such as reduced energy consumption, adds an eco-friendly dimension, rendering
these solutions more appealing to companies and platforms. In essence, streamlining the general
fact-checking process promises to yield significant benefits, ultimately aiding in the fight against
misinformation and disinformation prevalent in the online sphere.

6.2 Future Work

To foster continued research related to the topic of our research, we identified several limitations
in our work. Additionally, we have pinpointed several areas for improvement aimed at enhanc-
ing the efficiency and performance of the fact-checking process, while also facilitating a more
comprehensive analysis.

6.2.1 Limitations

Indexing granularity In our re-ranking of the corpus data, we processed the article text at a
sentence level. However, for use in the fact-checking pipeline, we concatenated sentences into
single texts per article. This does come with the risk of possible topic drift due to sentences, that
may be claim-worthy on their own, but not pertaining to the claim also being used as part of the
retrieved relevant documents. To alleviate this, exploring alternative granularities like storing
sentence-level text instead of on a per-document article basis could be beneficial. However, this
may sacrifice crucial contextual information that is part of the evidence sentences. Additionally,
it will increase computational complexity in creating the retrieval index. It should be noted that
for dense retrieval where generating text embeddings becomes more intensive, techniques like
index compression would play a more crucial role in alleviating that problem. Therefore, thor-
ough experimentation and analysis with regard to the granularity level would make for another
important step towards efficiency.

Retrieval methods In our study, we focused solely on a select few retrieval methods, thereby
limiting the scope of our findings to these specific techniques. Consequently, we advocate for
enhanced generalizability by delving into a broader range of Sparse and Dense retrieval methods,
alongside investigating varied index compression methodologies. Moreover, we encourage the
exploration of alternative retrieval approaches not covered in our analysis, which could poten-
tially yield greater efficiency gains or mitigate performance degradation. Furthermore, regarding

37

6.2. Future Work

index compression, our experimentation was confined to the utilization of 96 subvectors. While
our initial findings demonstrated considerable promise in terms of efficiency, we suggest a more
comprehensive examination involving varying quantities of subvectors. This is to ascertain a
deeper understanding of their impact in not only the efficiency aspect but also the performance.
Lastly, we also advocate for a more in-depth evaluation of the retrieval performance as for our
work we only looked at the efficiency in terms of latency.

Implementation efficiency Although the code we used for running the experiments sufficed
for the research we performed. We do acknowledge that certain parts of the code could have
been better optimised. Notably, the fact-checking pipeline, derived from the original HoVer
work, relies on outdated dependencies. For our work, we did not update these dependencies
as that would require changing their code base or even re-implementing some parts of the code
which fell outside the scope of our work. Additionally, comes the fact that HoVer’s fact-checking
pipeline is limited in its capabilities. For example, the Claim verification part can only evaluate
to binary labels and not multi-labels. In a more practical setting, a more granular level of labels
can be more helpful in the case of denoting when no information can be found that supports or
contradicts a statement. Lastly, the citation extraction implementation, as detailed in Section 4.3,
encountered runtime issues that could have been addressed with better optimization strategies
about the model usage. Going forward, refining these aspects of the codebase could contribute
to more robust and efficient research outcomes.

6.2.2 Extensions

Supporting facts extraction To enhance efficiency while also optimizing performance in our
re-ranking setup, several key improvements can be made. Firstly, upgrading the claim-detection
model from an off-the-shelf solution to a custom-trained model would enable better contextual
understanding within text spans, allowing for the detection of single or multiple claims within
a coherent context. This improvement necessitates a robust dataset for training, presenting an
opportunity for further refinement. Secondly, enhancing citation extraction beyond solely se-
lecting sentences containing the citation symbols is crucial. This as surrounding sentences may
also be part of the citation and thus contribute to enriching the extracted information. Lastly,
exploring alternative fusion methods that integrate both claim detection and citation extraction,
along with potentially novel approaches, can lead to more effective re-ranking strategies. By
combining these enhancements, we can achieve a more refined and comprehensive system that
balances efficiency with performance in our re-ranking workflow.

More comprehensive analysis To further enhance our work, it is essential to diversify the
data used in experimentation by incorporating a broader range of complex claim datasets, as
well as exploring corpus data beyond Wikipedia. It’s worth noting that utilizing larger corpus
data sizes can yield more realistic results, as practical applications often involve datasets ranging
in the hundreds of millions or even larger. This expansion will broaden the scope of our analysis
and ensure the robustness and adaptability of our solutions across various contexts. Moreover,
analyzing the fact-checking pipeline within a scalable real-world application would be pivotal.
Our experiments, conducted on a single machine, have limitations in replicating real-world com-
plexities. By scaling up, we can assess performance under heavier workloads, optimize settings
for efficiency, and evaluate robustness to failures. This approach will provide more actionable
insights for the practical deployment of fact-checking solutions.

38

(1]

(2]

(3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

Bibliography

Amin Ahmad, Noah Constant, Yinfei Yang, and Daniel Cer. Reqa: An evaluation for end-
to-end answer retrieval models. In Proceedings of the 2nd Workshop on Machine Reading
for Question Answering, pages 137-146, Hong Kong, China, nov 2019. Association for
Computational Linguistics.

Badr AlKhamissi, Millicent Li, Asli Celikyilmaz, Mona Diab, and Marjan Ghazvininejad.
A review on language models as knowledge bases, 2022.

Uri Alon, Frank F. Xu, Junxian He, Sudipta Sengupta, Dan Roth, and Graham Neubig.
Neuro-symbolic language modeling with automaton-augmented retrieval, 2022.

Amos Azaria and Tom Mitchell. The internal state of an llm knows when its lying, 2023.

Dmitry Baranchuk, Artem Babenko, and Yury Malkov. Revisiting the inverted indices for
billion-scale approximate nearest neighbors, 2018.

Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Understanding and over-
coming the challenges of efficient transformer quantization, 2021.

Christopher Burges. From ranknet to lambdarank to lambdamart: An overview. Learning,
11, 01 2010.

Anthony Chen, Panupong Pasupat, Sameer Singh, Hongrae Lee, and Kelvin Guu. Purr: Ef-
ficiently editing language model hallucinations by denoising language model corruptions,
2023.

Danqgi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to an-
swer open-domain questions, 2017.

Luyu Gao, Zhuyun Dai, Panupong Pasupat, Anthony Chen, Arun Tejasvi Chaganty,
Yicheng Fan, Vincent Y. Zhao, Ni Lao, Hongrae Lee, Da-Cheng Juan, and Kelvin Guu.
Rarr: Researching and revising what language models say, using language models, 2023.

Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Optimized product quantization. /[EEE
Transactions on Pattern Analysis and Machine Intelligence, 36(4):744-755, 2014.

39

Bibliography

[12] Zhijiang Guo, Michael Schlichtkrull, and Andreas Vlachos. A survey on automated fact-
checking. Transactions of the Association for Computational Linguistics, 10:178-206,
2022.

[13] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Realm:
Retrieval-augmented language model pre-training, 2020.

[14] Yikun Han, Chunjiang Liu, and Pengfei Wang. A comprehensive survey on vector
database: Storage and retrieval technique, challenge, 2023.

[15] Benjamin Heinzerling and Kentaro Inui. Language models as knowledge bases: On entity
representations, storage capacity, and paraphrased queries. In Proceedings of the 16th Con-
ference of the European Chapter of the Association for Computational Linguistics: Main
Volume, pages 1772—1791, Online, April 2021. Association for Computational Linguistics.

[16] Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin
Bang, Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language
generation. ACM Comput. Surv., 55(12), mar 2023.

[17] Yichen Jiang, Shikha Bordia, Zheng Zhong, Charles Dognin, Maneesh Singh, and Mohit
Bansal. Hover: A dataset for many-hop fact extraction and claim verification, 2020.

[18] Herve Jégou, Matthijs Douze, and Cordelia Schmid. Product quantization for near-
est neighbor search. IEEE Transactions on Pattern Analysis and Machine Intelligence,
33(1):117-128, 2011.

[19] Ryo Kamoi, Tanya Goyal, Juan Rodriguez, and Greg Durrett. WiCE: Real-world entail-
ment for claims in Wikipedia. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Pro-
ceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
pages 7561-7583, Singapore, December 2023. Association for Computational Linguistics.

[20] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov,
Dangi Chen, and Wen tau Yih. Dense passage retrieval for open-domain question answer-
ing, 2020.

[21] Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Gen-
eralization through memorization: Nearest neighbor language models, 2020.

[22] Tian Lan, Deng Cai, Yan Wang, Heyan Huang, and Xian-Ling Mao. Copy is all you need.
In The Eleventh International Conference on Learning Representations, 2023.

[23] Eric Lazarski, Mahmood Al-Khassaweneh, and Cynthia Howard. Using nlp for fact check-
ing: A survey. Designs, 5(3), 2021.

[24] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Kiittler, Mike Lewis, Wen tau Yih, Tim Rocktéschel, Sebastian Riedel, and
Douwe Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks, 2021.

[25] Junyi Li, Xiaoxue Cheng, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. HaluEval:
A Large-Scale Hallucination Evaluation Benchmark for Large Language Models. arXiv
e-prints, page arXiv:2305.11747, May 2023.

40

Bibliography

[26]

[27]

[28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]

[37]

Shaobo Li, Xiaoguang Li, Lifeng Shang, Zhenhua Dong, Chengjie Sun, Bingquan Liu,
Zhenzhou Ji, Xin Jiang, and Qun Liu. How pre-trained language models capture factual
knowledge? A causal-inspired analysis. In Smaranda Muresan, Preslav Nakov, and Aline
Villavicencio, editors, Findings of the Association for Computational Linguistics: ACL
2022, Dublin, Ireland, May 22-27, 2022, pages 1720-1732. Association for Computational
Linguistics, 2022.

Xingxuan Li, Liying Cheng, Qingyu Tan, Hwee Tou Ng, Shafiq Joty, and Lidong Bing.
Unlocking temporal question answering for large language models using code execution,
2023.

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen tau Yih, Pang Wei Koh, Mo-
hit Iyyer, Luke Zettlemoyer, and Hannaneh Hajishirzi. Factscore: Fine-grained atomic
evaluation of factual precision in long form text generation, 2023.

Stanislav Morozov and Artem Babenko. Unsupervised neural quantization for compressed-
domain similarity search, 2019.

Yixin Nie, Haonan Chen, and Mohit Bansal. Combining fact extraction and verification
with neural semantic matching networks, 2018.

OpenAl. Gpt-4 technical report, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training
language models to follow instructions with human feedback. Advances in Neural Infor-
mation Processing Systems, 35:27730-27744, 2022.

Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng, Yujia Xie, Yu Hu, Qiuyuan
Huang, Lars Liden, Zhou Yu, Weizhu Chen, and Jianfeng Gao. Check your facts and
try again: Improving large language models with external knowledge and automated feed-
back.

Fabio Petroni, Samuel Broscheit, Aleksandra Piktus, Patrick Lewis, Gautier Izacard, Lu-
cas Hosseini, Jane Dwivedi-Yu, Maria Lomeli, Timo Schick, Pierre-Emmanuel Mazaré,
Armand Joulin, Edouard Grave, and Sebastian Riedel. Improving wikipedia verifiability
with ai, 2022.

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin Leyton-
Brown, and Yoav Shoham. In-context retrieval-augmented language models. 2023.

Paul Roit, Johan Ferret, Lior Shani, Roee Aharoni, Geoffrey Cideron, Robert Dadashi,
Matthieu Geist, Sertan Girgin, Léonard Hussenot, Orgad Keller, Nikola Momchev, Sabela
Ramos, Piotr Stanczyk, Nino Vieillard, Olivier Bachem, Gal Elidan, Avinatan Hassidim,
Olivier Pietquin, and Idan Szpektor. Factually consistent summarization via reinforcement
learning with textual entailment feedback, 2023.

Aalok Sathe, Salar Ather, Tuan Manh Le, Nathan Perry, and Joonsuk Park. Automated
fact-checking of claims from Wikipedia. In Nicoletta Calzolari, Frédéric Béchet, Philippe
Blache, Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara,

41

Bibliography

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Bente Maegaard, Joseph Mariani, Hélene Mazo, Asuncion Moreno, Jan Odijk, and Stelios
Piperidis, editors, Proceedings of the Twelfth Language Resources and Evaluation Con-
ference, pages 6874-6882, Marseille, France, May 2020. European Language Resources
Association.

Qingyu Tan, Hwee Tou Ng, and Lidong Bing. Towards benchmarking and improving the
temporal reasoning capability of large language models. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
14820-14835, Toronto, Canada, July 2023. Association for Computational Linguistics.

James Thorne and Andreas Vlachos. Automated fact checking: Task formulations, meth-
ods and future directions, 2018.

James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. Fever: a
large-scale dataset for fact extraction and verification, 2018.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Roziére, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien
Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and
efficient foundation language models, 2023.

Logesh Kumar Umapathi, Ankit Pal, and Malaikannan Sankarasubbu. Med-halt: Medical
domain hallucination test for large language models, 2023.

Zhimin Wei, Xiaowei Xu, Chenglin Wang, Zhenyu Liu, Peng Xin, and Wei Zhang. An
index construction and similarity retrieval method based on sentence-bert. In 2022 7th
International Conference on Image, Vision and Computing (ICIVC), pages 934-938, 2022.

Xiang Yue, Boshi Wang, Kai Zhang, Ziru Chen, Yu Su, and Huan Sun. Automatic evalua-
tion of attribution by large language models, 2023.

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping Ma. Jointly
optimizing query encoder and product quantization to improve retrieval performance,
2021.

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping Ma. Opti-
mizing dense retrieval model training with hard negatives, 2021.

Yizhe Zhang, Siqi Sun, Xiang Gao, Yuwei Fang, Chris Brockett, Michel Galley, Jianfeng
Gao, and Bill Dolan. Retgen: A joint framework for retrieval and grounded text generation
modeling. 2022.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang,
Enbo Zhao, Yu Zhang, Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei Bi, Freda Shi,
and Shuming Shi. Siren’s song in the ai ocean: A survey on hallucination in large language
models, 2023.

Wayne Xin Zhao, Jing Liu, Ruiyang Ren, and Ji-Rong Wen. Dense text retrieval based on
pretrained language models: A survey, 2022.

42

Bibliography

[50] Xi Zhao, Yao Tian, Kai Huang, Bolong Zheng, and Xiaofang Zhou. Towards efficient
index construction and approximate nearest neighbor search in high-dimensional spaces.
Proc. VLDB Endow., 16(8):1979-1991, jun 2023.

[51] Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compres-
sion for large language models, 2023.

43

Appendix A

Detailed HoVer Experiments
Measurements

This chapter provides step-by-step measurement tables (refer to Section 4.4) for each step of
the pipeline on the HoVer claim dataset. It’s organized into three sections based on index and
retrieval settings. Within each section, tables depict the baseline, reranking, and ablation setups

for data corpus indexing (see Chapter 3).

A.1 Sparse retrieval setup with Reranking

results

Rule-based Document Retrieval
create embeddings and index documents
retrieve similar documents for train (batched)
retrieve similar documents for dev (sequentially)

Neural-based Document Retrieval:
prepare train data for doc retrieval
prepare dev data for doc retrieval

train BERT document retrieval

evaluate doc retrieval for train data

evaluate doc retrieval for dev data

Sentence Retrieval:
prepare dev doc retrieval data for sentence retrieval
prepare train doe retrieval data for sentence retrieval

train BERT sentence retrieval
evaluate sentence retrieval for train data

evaluate sentence retrieval for dev data

Claim Verification:
prepare train sentence retrieval data for claim verification
prepare dev sentence retrieval data for claim verification

train BERT claim verification

evaluate claim verificaiton on dev data

8 GiB, 94,616,543 sentences

hit10: 36.948,
exact: 17.632,

f1: 63.381
hitd: 23,323,
hit8: 23.6.

hit10: 26,373,

exact: 1.573,
f1:28.672
exact: 11,335,
f1: 57.527
exact: 4 623,
f1: 48.0129
results

ace: 51.05

acc: §4.75

CPU Retrieval GPU Retrieval

2Tm:40s
13m:23s
28m:23s
Run time
20s
s

6h:30m:20s

20m:33s

4m:3ds

Run time
41m:13s
8m:33s

Shi33m:9s

6m:48s

Im:33s
Run time
45
>1s

22m2%s

3tis

acc: 67.79%,

disk 10 writes

BM23 index size: 11.59 GiB

datasplit: 69.38 MiB
datasphit: 15.26 MiB
disk 10 writes
datasplit: 1.82 GiB
datasplit: 416.72 MiB

dataspht: 10.57 GB
model data: 2512 GiB

model data: 54.73 MiB

disk 10 writes
datasplit: 580,59 MiB
datasplit: 123.71 MiB
datasplit: 7.77 GiB,
model data: 167.18 GiB

model data: 31.48 MiB

disk 10 writes
datasplit: 2.58 MiB
datasplit: 2.1% MiB
datasplit: 173.13 MiB.
model data: 37.16 GiB

f1_weighted: 67.59%,

8

[Py
[N
Er

™

=

("
=

552

374%

43%

11%

fl_macr

RAM
73541 MiB
124 25 MiB
7161 MiB

RAM

J41GE
508.0 MiB

35391GB

385 GE

RAM
12GB
247.89 MiB

2826 GiB

1743 GB

331GE

RAM
33.0 MiB
21.3 MiB

326 GiB
223 GiB

67.63%,

GPU utility & memory

GPU utility & memory

100.0% 1349 GB

100,0% 342 GB

99.0% 114 GB

GPU utility & memory

97.0% 439GB

940% 30804 MIB

940% 30804 MIB

GPU utility & memory

94.00% 31GE

§3.0% 34804 MIB

_weighted: 68.45%,

prec_macro: 68.39%, rec

eighted: 67.79%,

Figure A.1: BM2S5 retrieval on the original HoVer data corpus.

44

rec_macro: 67.93%

A.1. Sparse retrieval setup with Reranking

Pre-trained claim detection

CPU RAM GPU utility & memory

Rule-based Document Retrieval
create embeddings and index documents
retrieve similar documents for train (batched)
retrieve similar documents for dev (sequentially)

Neural-based Document Retrieval:
prepare train data for doc retrieval
prepare dev data for doc retrieval

train BERT document retrieval

evaluate doc retrieval for train data

evaluate doc retrieval for dev data

Claim Verification:
prepare train sentence retrieval data for claim verification
prepare dev sentence retrieval data for claim verification

train BERT claim venfication
evaluate claim verificaiton on dev data

results CPU Retrieval GPU Retrieval

results
hit3: 7.83,
hit8: 9523,
hit10: 10.33,
exact: 0.0,
f1:0.0
hit3: 16.857,
hit8: 18.643,
hit10: 19236,
exact: 3.637,
f1: 34353
hit3: 9.1,
hith: 11,123,
hit10: 11.573,
exact: 2.03,
1:24.939
results

acc: 30.373
acc: 60.10

20m:32s
Tm:32s
17m:6s
Run time
26s
is

Sh:3lm:40s

2lm:13s

4m:43s

disk 10 writes
BM23 index: 5.94 GIB
datasplit: 70.33 MiB
datasphit: 15.47 MiB
disk 10 writes
datasphit: 1.47 GiB
datasplit: 326.56 MiB

datasphit: 504.06 MiB,
model data: 23.12 GiB

model data: 3408 MiB

disk IO writes
datasplit: 402.30 MiB
dataspht: 84.42 MiB
datasplit: 1.77 GiB,
model data: 37.16 GiB

33%
3,1%
0.7%
CPU
0.1%
0,1%

343%

43%

10%

8137 MiB
106.41 MiB
16.0 MiB

4208 GB

2823 GiB

173 GB

RAM
247GEB
32048 MiB

10.7GiB

GPU utility & memory
100,0% 13.49 GiB
100.0% 342GB
90.0% 1.14 GB

GPU utility & memory
96,0% 31GB

63.0% 348 04 MiB

Figure A.2: BM2S5 retrieval on the claim-detected HoVer data corpus.

Rule-based Document Retrieval
create embeddings and index documents
retrieve similar documents for train (batched)
retrieve similar documents for dev (sequentialty)

Neural based Document Retrieval:
prepare train data for doc retrieval
prepare dev data for doc retrieval

train BERT document retrieval

evaluate doc retrieval for train data

evaluate doc retrieval for dev data

Claim Verification:
prepare train sentence retrieval data for claim verification
prepare dev sentence retrieval data for claim verification

train BERT claim verification

evaluate claim verificaiton on dev data

prec_weighted:

results

hit5: 7.700,
hit8: 9.900,
hit10: 10.83,
exact: 0.0,
f1:0.0
hit3: 16.840,
hit: 18.6,

hit10: 19.135,

exact: 4.876,
f1:34373
hit3: 9.75,
hit8: 11.6,

hitl0: 12.23,

exact: 1975,
f1:23.637

results

ace: 50.175
acc: 6023

Extr
results 'CPU Retrieval GPU Retrieval

ed cit:

17m:34s
Sm:48s
16m22s
Run time
23s
is

4h:33m:16s

21m:20s

4m:40s

Run time
s
3s

1h:31m:10s

disk 10 writes

BM25 index size: 5.15 GB

datasplit: 68.71 MiB
datasplit: 15.14 MiB
disk 10 writes
datasplit: 1.13 GiB
datasplit: 243.88 MiB

datasplit: 747 GiB,
model data: 23.12 GiB

model data: 33.64 MiB

disk 10 writes
datasplit: 363.86 MiB
datasplit: 76.76 MiB
datasplit: 1.62 GiB,
model data: 37.16 GiB

3,1%
04%
0,1%
0,1%
0,0%

40.5%

12%

44%

09%
0,7%

6,0%

RAM
797.61 MiB
203.0 MiB
2625 MiB

38.54 GiB

2338 GiB

7.02GB

GPU utility & memory
GPU utility & memory
100,0% 1307 GB
90.0% 114 GB
99.0% L14GB
GPU utility & memory
93.0% 31GE

60.0% 34804 MiB

Figure A.3: BM2S5 retrieval on citation extracted HoVer data corpus.

45

A.2. Dense retrieval setup

Fusion: Extracted citations + Pre-trained claim detection

Rule-based Document Retrieval results CPU Retrieval GPU Retrieval disk 10 writes CPU RAM GPU utility & memory
create embeddings and index documents - 18m:3s EM2iindexsize: 541 GEB 32% 788.14 MiB - -
retrieve similar documents for train (batched) - Om:31s - datasplit: 69.51 MiB 3.1% 20125 MiB - -
retrieve similar documents for dev (sequentially) - 17m:38s - datasplit: 15.31 MiB 1.7% 26.73 MiB - -

Neural-based Document Retrieval: results Run time disk 10 writes CPU RAM GPU utility & memory
prepare train data for doc retrieval - 26s datasphit: 1.03 GiB 22% 195GEB - -
prepare dev data for doc refrieval - s datasplit: 224.58 MiB 1,5% 423.06 MiB - -

hit3: 8.073,
hit8: 10.900,

datasplit: 7.09 GiB.

train BERT document retrieval hit10: 12,025, 4h:30m:43s model data- 25,12 GE 373% 3699GEB 1000% 1396GEB
exact: 0.0,
f1:0.0
hit3: 17.517,
hit8: 12.388,
evaluate doc retrieval for train data hit10: 19988, 20m4ls model data: 53.97 MiB 43% 2461GB o0 (0 1.14 GiB
exact: 3437,
f1:36.314
hit3: 10.323,
hit8: 12,373,
evaluate doc retrieval for dev data hitl0: 12.873, 4m:36s - 38% 633GE 90.0% 114 GB
exact: 2.03,
1:27.3535
Claim Verification: results Run time disk 10 writes CPU RAM GPU utility & memory
prepare train sentence retrieval data for claim verification - s datasplit: 339.52 MiB 0,9% 96364 MiB - -
prepare dev sentence retrieval data for claim verification - s datasphit: 71.33 MiB 0.8% 308.06 MiB - -
train BERT claim venfication acc: 30123 1h:17m:42s m:‘zlt;sg;;a:lj?lgm(ié 3.0% 10.05GiB 93.0% 31GEB

evaluate claim verificaiton on dev data ace: 61.675 44z - 43% 327GEB 60.0% 848 04 NGB
i fl_macro: 62.18%,

prec_weighted: 62.60%, prec_macro: 62. . - Wel J 2.28%, rec_macro: 62.39%

Figure A.4: BM25 retrieval on the fusion (citations + claim-detected) HoVer data corpus.
A.2 Dense retrieval setup

Original Hover + Sentence Selection
Dense Document Retrieval results 'CPU Retrieval GPU Retrieval disk IO writes CPU RAM GPU utility & memory
FAISS index size: 7.83 GiB.

create embeddings and index documents - Th:9m:23s N . 703% 43548GB 30,0% 118 GiB
Vector size: 1. §KiB

retrieve similar documents for train (batched) - 2m4is jls datasplit: 209.24 MiB 479% 52001MiB 46,0% 502.0 MiB

retrieve similar documents for dev (sequentially) - 34m:18s 2m:5s datasplit: 62.23 MiB 73% 865 MiB 1.0% 008
Sentence Retrieval: results Run time disk IO writes CPU RAM GPU utility & memory

" exact: 0.223, datasplit: 6.58 GiB,
train BERT sentence retrieval - 4h:30m:51s model data: 167,08 GIB 642% 2125GB 97.0% 439 GiB
17

evaluate sentence retrieval for train data exlelc,il.b.élf._ 6m:33s model data: 28.3 MiE 42% 1333 GB 40% 39304 MiB

evaluate sentence retrieval for dev data E’;:Cg ;g{ﬂ' 1m:31s R 41% 44GB 940% 89304 MiB
Claim Verification: results Run time disk 10 writes CPU RAM GPU utility & memory

prepare train sentence retrieval data for claim verification - 3s datasplit: 6 42 MiB 0,0% 00B - -

prepare dev sentence retrieval data for claim verification - s datasplit: 1.43 MiB 0.0% 00B - -

datasplit: 154 32 MiB,
model data: 37.16 GiB
evaluate claim verificaiton on dev data acc: 64.100 37s - 43% 226 GiB 61.0% 848.04 MiB

acc: 64.60%, f1

train BERT claim venfication ace: 32.173 22m:38s 44% 285GEB 93.0% 31GE

sentences

prec_weighted: 64.86%, prec_macro: 64.86%, rec_weighted: 64.60%, rec_macro: 64.60%

Figure A.5: FAISS retrieval with Sentence-Selection stage on the original HoVer data corpus.

Dense Document Retrieval results CPU Retrieval GPU Retrieval disk 10 writes CPU RAM GPU utility & memory
FAISS index size: 7.85 GiB,

create embeddings and index documents - 1Th%m:23s) 70.3% 43548GB 30.0% 118 GiB
Vector size: 1.3 KiB
retrieve similar documents for train (batched) - 2mdds 14s datasplit: 288 88 MiB 48.1% O9316MEB 64.0% 00B
retrieve similar documents for dev (sequentially) - 34m:54s 1m:34s datasplit: 60.0 MiB 8.0% 1031ME 4.0% 0.0B
Claim Verification: results Run time disk 10 writes CPU RAM GPU utility & memory
train BERT claim verification ace: 52,775 1hTm21s datasplit: 1.31 GiB. 5.6% S63GB 930% 3.1GB

model data: 37.16 GB
evaluate claim verificaiton on dev data acc: 62.73 4ls - 33% 301GE 60.0% 848 04 NGB

: 62.90%, f1 weighted: 62.72%, f1 : 62.76%,
Corpus size: 11.28 GiB, 94,616,543 sentences ace = —Welg = _macro =

prec_weighted: 63.33%, prec_macro: 63.28%, rec_weighted: 62.90%, rec_macro: 63.02%

Figure A.6: FAISS retrieval on the original HoVer data corpus.

46

A.2. Dense retrieval setup

Pre-trained claim detection
Dense Document Retrieval results 'CPU Retrieval GPU Retrieval disk 10 writes CPU RAM GPU utility & memory
FAISS index size: 7.83 GiB,

create embeddings and index documents - 43m27s Vector size- 1.3 Ki 712% 313GB 31.0% 118 GiB
retrieve similar documents for train (batched) - 2mi3ls 13s datasplit: 134.02 MiB 470% 9396MEE 46.0% 502.0 MiB
retrieve similar documents for dev (sequentially) - 34m:10s 1m:32s datasplit: 30.32 MiB 28% SOMB 1.0% 008
Claim Verification: results Run time disk 10 writes CPU RAM GPU utility & memory
train BERT claim verification ace: 40.973 46m:3s iitzz}];:at?gi?llé\g; 93.0% 31GE

evaluate claim verificaiton on dev data acc: 61273 38s - 3 A $3,0% 24804 NGB

prec_macro: - we 3 rec_macro: 61.

Figure A.7: FAISS retrieval on the claim-detected HoVer data corpus.

Extracted citations
Dense Document Retrieval results 'CPU Retrieval GPU Retrieval disk 10 writes CPU RAM GPU utility & memory
FAISS index size: 7.83 GiB,

create embeddings and index documents - 41m:5s Vector size- 1.3 Kib 41.1% 5248GB 100.0% 832 GiB
retrieve similar documents for train (batched) - 2m:33s 11s datasplit: 133.36 MiB 469% 9801MiIB 43.0% 502.0 MiB
retrieve similar documents for dev (sequentially) - 31m:37s 1m:32s datasplit: 30.31 MiB 21% 1019MB 1.0% 00B
Claim Verification: results Run time disk 10 writes CPU RAM GPU utility & memory
train BERT claim verification ace: 50.775 43m:30s datasplit: 714.0 MiB, 18% 4839GB 1000% 3.1GB

model data: 37.16 GB
evaluate claim verificaiton on dev data acc: 39.173 41s - 4350% 265GB 3.0% 848 94 NGB
acc: 59.67%, f1_weighted: 59.40%, fl_macro: 59.46%,

r s size: 5.07 GiB, 36,886,889 sentences . ., . o - ,
e SR Ul (B8, SR AR e erees prec_weighted: 60.13%, prec_macro: 60.09%, rec weighted: 59.67%, rec_macro: 59.82%

Figure A.8: FAISS retrieval on citation extracted HoVer data corpus.

Fusion: Extracted citations + Pre-trained claim detection
Dense Document Retrieval results 'CPU Retrieval GPU Retrieval disk 10 writes CPU RAM GPU utility & memory
FAISS index size: 7.83 GiB,

create embeddings and index documents - Th:lm:52s Vector size: 1.5 KiB 400% 3271GB 100,0% 13.72GiB
retrieve similar documents for train (batched) - 1m:33s 13s datasplit: 123.49 MiB 470% 922 MNiB 43.0% 502.0 MiB
retrieve similar documents for dev (sequentially) - 33m:20s 1m:32s datasphit: 28.70 MiB 0.1% 00B 1.0% 0B
Claim Verification: results Run time disk 10 writes CPU RAM GPU utility & memory
train BERT claim verification ace: 40.3 4Tm:19s iitzgit:};ﬁ:g; 10.7% 427GB 24.0% 31GE
evaluate claim verificaiton on dev data acc: 338 425 - 41% 271GB 630% 34894 NGB
acc: 59.51%, fl1_weighted: 59.32%, 9

Corpus size: 5.45 GiB, 39,842,574 sentences

prec_weighted: 59.85%, prec_macro: 59.81%,

Figure A.9: FAISS retrieval on the fusion (citations + claim-detected) HoVer data corpus.

47

A.3. Index compression setup

A.3 Index compression setup

Original Hov Sentence Selection
Dense Document Retrieval results CPU Retrieval GPU Retrieval disk 10 writes CPU RAM GPU utility & memory
Total size: 544 89 MiB_

create embeddings and index documents - 11h:23m:23s . ; 512% 1222GB 100.0% 33GE
Vector size: 104.14B

retrieve similar documents for train (batched) - 9m21s 1m:24s datasplit: 371.22 MiB 49.1% 316430MiB 89.00% 153GB

retrieve similar documents for dev (sequentially) - 3m:3ds jls datasplit: 81.85 MiB 48.1% 131.1TMiB 84.0% 0.0B
Sentence Retrieval: results Run time disk 10 writes CPU RAM GPU utility & memory

N . exact: 0.33, datasplit: 6.92 GiB,
train BERT sent trieval SheGm:20: : 164% 228GB 97.0% 459 GiB
senence ey £1:21.260 : model data: 16714GB i

evaluate sentence refrieval for train data ex;‘f‘,lj:lsj.‘?él Gmd6s model data: 30.03 MiB 42% 1454 GB 9L0% 39894 NGB

evaluate sentence refrieval for dev data ex;c;jﬂgﬁ. 1m:32s - 472% 47GB 9L0% 39894 NGB
Claim Verification: results Run time disk IO writes CPU RAM GPU utility & memory

prepare train sentence retrieval data for claim verification - 3s datasplit: 6.93 MiB 0,0% 00B - -

prepare dev sentence retrieval data for claim verification - »1s datasplit: 1.3 MiB 0,0% 00B - -

train BERT claim verification ace: 51.675 datasphit ISTI9MB. g0, 23768 si0% 31GB

model data: 37.16 GiB
evaluate claim verificaiton on dev data acc 63.073 - 7.3% 219GB 63.0% 848 04 MiB

Corpus size: 11.28 GiB, 94,616,543 sentences

prec_weighted: 64. - wei rec_macro:

Figure A.10: JPQ retrieval with Sentence-Selection stage on the original HoVer data corpus.

Dense Document Retrieval results CPU Retrieval GPU Retrieval disk 10 writes CPU RAM GPU utility & memory
create embeddings and index documents N 11h23m23s Totalsize: J4LEIMB. 5 50, pGE 1000% 83GB
Vector size: 104.14B
retrieve similar documents for train (batched) - 12m:3s Im:1ls datasplit: 339.96 MiB 469% 397TMEE 84.0% 145 GB
retrieve similar documents for dev (sequentialty) - 3m:Als 50s datasplit: 792 MiB 45,6% 2312TMiB - 20.0% 16.0 MiB
Claim Verification: results Run time disk 10 writes CPU RAM GPU utility & memory
train BERT claim verification ace: 51125 1h:08m27s datasptit: 1 61 GiB. 74% 1L07GE 1000% 692GB

model data: 37.16 GE
evaluate claim verificaiton on dev data acc: §3.723 32s - 47% 347GEB 60.0% 848.94 MiB
acc: 63.02%, fl1_weighted: 62.08%, fl_macro: 62.08%,
prec_weighted: 64.46%, prec_macro: 64.46%,

Corpus size: 11.28 GiB, 94,616,543 sentences

Figure A.11: JPQ retrieval on the original HoVer data corpus.

Pre-trained claim detection
Dense Document Retrieval results 'CPU Retrieval GPU Retrieval disk 10 writes CPU RAM GPU utility & memory
Total size: 344.89 MiE,

create embeddings and index documents - 06h:44m:51s Vector size: 104148 484% 1152GB 100,0% 6.7 GiB
retrieve similar documents for train (batched) - 12m:36s 1m:8s datasplit: 204.03 MiB 46.9% T234TMiB 100.0% 5.58GB
retrieve similar documents for dev (sequentially) - 3m:3s 48s datasplit: 43.82 MiB 46.7% 62765 MiB 100,0% 216 GiB
Claim Verification: results Run time disk 10 writes CPU RAM GPU utility & memory
train BERT claim verification ace: 50.025 om:3s datasplit: 93TMB, 550, 6s3GB 990% 341GB

model data: 37.16 GE
evaluate claim verificaiton on dev data acc: 61.723 43z - 40% 204 GE 95.0% 34304 NGB
acc: 61.92%, fl1_weighted: 61.71%, fl1_macro: 61.71%,
prec_weighted: 62.19%, prec_macro: 62.19%, rec_weighted: 61.92%, rec_macro: 61.

Corpus size: 6.19 GiB, 44,208,597 sentences

Figure A.12: JPQ retrieval on the claim-detected HoVer data corpus.

48

A.3. Index compression setup

Extracted citations

Dense Document Retrieval results CPU Retrieval GPU Retrieval disk 10 writes CPU RAM GPU utility & memory
create embeddings and index documents R 6h:Tm:14s T:i:f;:‘:o?ﬂﬁ: 469% 1027GB 1000% 483GB
retrieve similar documents for train (batched) - 1lm:13s 34s datasplit: 190.04 MiB 470% 28327MiB 84.0% 149 GiB
retrieve similar documents for dev (sequentially) - 3m:ds 42s datasplit: 40.26 MiB 46.8% 11423MiB 33.0% 00B

Claim Verification: results Run time disk 10 writes CPU RAM GPU utility & memory

datasplit: $33.91 MiB,
model data: 37.16 GiB
evaluate claim verificaiton on dev data acc: 59.92 425 - 43% 239GE 64.0% 848.04 MHB

train BERT claim verification ace: 40.823 33m:22s 54% 633GEB 100.0% 3.12GB

disk 10 writes CPU RAM GPU utility & memory
create embeddings and index documents R 6n:26m:28s T“":;:f:u j:ﬁf ﬁ' 470% 1096GB 1000% 3.13GiB
retrieve similar documents for train (batched) - 12m:18s 1m4s datasplit: 223 08 MiB 470% 102GB 100,0% 215GB
retrieve similar documents for dev (sequentially) - 3m:2s 47s datasplit: 48.2 MiE 470% 663.36MiB 100.0% 216 GiB
Claim Verification: results Run time disk 10 writes CPU RAM GPU utility & memory

datasplit: 1.05 GiB,
model data: 37.16 GB
evaluate claim verificaiton on dev data acc: 61273 33s - T.7% 29GEB 510% 34804 NGB

acc: 61.58%, f1_weighted: 61.43%, fl_macro: 61.43%,

train BERT claim venfication acc: 30.173 Th:3m:29s 15,7% 649GEB 100.0% 447GiB

C s size: 5.45 GiB, 39,842,574 sentences . = = . =
Orpus stre: 3.45 e prec_weighted: 61.75%, prec_macro: 61.75%. rec_weighted: 61.58%,

Figure A.14: JPQ retrieval on the fusion (citations + claim-detected) HoVer data corpus.

49

Appendix B

Detailed WiCE Experiments
Measurements

Similar section structure as Appendix A, however the experiments here are conducted on the

WIiCE dataset instead of the HoVer dataset.

B.1 Sparse retrieval setup with Reranking

Original H:
Rule-based Document Retrieval results CPU Retrieval GPU Retrieval
create embeddings and index documents - 33m:39s
retrieve similar documents for train (batched) - Im:3%s
retrieve similar documents for dev (sequentially) - 3m:l3s
Document Retrieval: results Run time
prepare train data for doc retrieval - 4s
prepare dev data for doc retrieval - is
hit3: 54.728
train BERT document retrieval htS: 61 0_3 13, 1Th:3m:39s
exact: §.304,
£1:8.596
hit3: 74.524,
hit8: 74.603
evaluate doc retrieval for train data hit10: 74.603, Im:43s
exact: 63.968,
1: 66.364
hit3: 55.301
hit8: 60.438
evaluate doe retrieval for dev data hit10: 61.89 ils
exact: 26.361,
1: 28.303
Sentence Retrieval: results Run time
prepare dev doc retrieval data for sentence retrieval (top 5) - 3m:31s
prepare train doc retrieval data for sentence retrieval (top 3) - Im:3s
. . exact: §.306.
train BERT sentence retrieval 18596 12m:44ds
. . exact: 12.063. <
evaluate sentence retrieval for train data £1- 15460 33s
exact: 8.596,
evaluate sentence retrieval for dev data - 14s
f1: 8.596
Claim Verification: results Run time
prepare train sentence retrieval data for claim verification - >ls
prepare dev sentence retrieval data for claim venfication - >1s
train BERT claim verification acc: 66.762 Tm:28s
evaluate claim verificaiton on dev data acc: 63.037 Os

63.69%,

1 sentences

disk 10 writes
BM23 index size: 14.41 GiB
datasplit: 4.99 MiB
datasplit: 1.38 MiB
disk 10 writes
datasplit: 183.87 MiB
datasplit: 32.8 MiB

datasplit: 1007.14 MiB,
model data: 24.91 GiB

model data: 3.83 MiB

disk 10 writes
datasplit: 45 83 MiB
datasplit: 13.92 MiB
datasplit: 607.43 MiB
model data: 11.3% GiB

model data: 2.0 MiB

disk 10 writes
datasplit: 203 41 KiB
datasplit: 73.56 KiB
datasplit: 10.42 MiB,
model data: 37.13 GiB

E

-

RAM
133 GiB
00B
00B
RAM
209.0 MiB
00B

487GiB

208 GiB

RAM

111.76 MiB

303 MiB
382GiB

319 GiB

231GB

GPU utility & memory

GPU utility & memory

100,0% 10.63 GiB

08.0% 1.14 GiB

08.0% 114 GB

GPU utility & memory

96.0% 457 GiB
03.0% 808.04 MiB

99.0% 898.04 MiB
GPU utility & memory

100,00% 31GB
34.0% 848.04 MiB

61.12%, prec_macr

Figure B.1: BM2S5 retrieval on the original WiCE data corpus.

50

B.1. Sparse retrieval setup with Reranking

Pre-trained claim detection

Rule-based Document Retrieval results CPU Retrieval GPU Retrieval disk 10 writes CPU RAM GPU wrility & memory
create embeddings and index documents - 25m:27s BM2J index size: 823 GIB =~ 3.1% 14GB - -
retrieve similar documents for train (batched) - 1m:3s - datasplit: 5.05 MiB 0.4% 00B - -
retrieve similar documents for dev (sequentially) - 2m:10s - datasplit: 1.39 MiB 0.1% 0.0E - -

Neural-hased Document Retrieval: results Run time disk 10 writes CPU RAM GPU utility & memory
prepare train data for doc retrieval - 3s datasplit: 134.87 MiB 13% 169.75 MiB - -
prepare dev data for doc retrieval - is datasplit: 38.55 MiB 0.0% 0B - -

hit3: 36.676,
hit8: 38.968, y
train BERT document retrieval hit10: 41.833, 1h:02m32s datasphit TO7IOME. g i 4sGB w000% 12.86 GiB
model data: 24.91 GiB
exact: 8.396, f1:
8.396
hit3: 37.302,
hit8: 37.381,
evaluate doc retrieval for train data hit10: 57381, 2m:54s model data: 3.83 MiB 4.6% 424 GiB 470% 114 GB
exact: 40.021, f1:
34332
hit3: 40.974,
hit8: 44.126,
evaluate doc retrieval for dev data hit10: 48.138, 34s - 3.9% 28GE 38,00% 114 GB
exact: 18.625, f1:
19236
Claim Verification: results Run time disk 10 writes CPU RAM GPU utility & memory
prepare train sentence retrieval data for claim verification - Is datasplit: 33.88 MiB 0.0% 00B - -
prepare dev sentence retrieval data for claim verification - >1s datasplit: 10.57 MiB 0.0% 00B - -
. s . y datasplit: 162.25 MiB,
train BERT claim verification acc: 66.049 21m:53s model data: 3713 GiB 357GB 38,00% 31GB
evaluate claim verificaiton on dev data acc: 60.324 14s - 2.71 GiB 430% $43.04 MIB

Rule-based Document Retrieval disk 10 writes CPU RAM GPU utility & memory
create embeddings and index documents - 23m47s EM2J index size: 659 GB =~ 3.2% 142GiB - -
retrieve similar documents for train (batched) - 39s - datasplit: 4.91 MiB 0.3% 00B - -
retrieve similar documents for dev (sequentially) - 1m:53s - datasplit: 1.36 MiB 0,1% 00B - -
Neural-based Document Retrieval: results Run time disk 1O writes CPU RAM GPU utility & memory
prepare train data for doc retrieval - is datasplit: 20.74 MiB 0.0% 00B - -
prepare dev data for doc retrieval - >ls datasplit: 2628 MiB 0,0% 00B - -
hit3: 33.868,
hit8: 57.830, y
train BERT document retrieval hit10: 58739, 16m datasphit S72TME. o, 3greE w000% 1145GB
maodel data: 24.91 GiB
exact: §.396, fl:
8.306
hit3: 74444
hit8: 74.683,
evaluate doc retrieval for train data hit10: 74.841, 1m:33s model data: 3.78 MiB 40% 363 GB 20.0% 114 GB
exact: 65238, f1:
63.379
hit3: 38166,
hit8: 60.172,
evaluate doc retrieval for dev data hitl0: 61.603, 30s - 43% 238GB 99.0% 114 GB
exact: 20226, f1:
31.1318
Claim Verification: results Run time disk 10 writes CPU RAM GPU wrility & memory
prepare train sentence retrieval data for claim verification - »ls datasplit: 23.02 MiB 0,0% 00B - -
prepare dev sentence retrieval data for claim verification - >ls datasplit: 741 MiB 0,0% 00B - -
train BERT claim verification ace: 66.04% 11m:43s datasplit: I44EMB, 0l 319GB os0% 31GB
model data: 37.13 GiB :

evaluate claim verificaiton on dev data acc: 59 883 13s - 41% 264 GiB 610% 84804 NLB

Figure B.3: BM25 retrieval on citation extracted WiCE data corpus.

51

B.1. Sparse retrieval setup with Reranking

Fusion: Extracted citations + Pre-trained claim detection

Rule-based Document Retrieval results CPU Retrieval GPU Retrieval disk 10 writes CPU RAM GPU wrility & memory
create embeddings and index documents - 25m43s BMIJindex size: TO6 GIB~ 3.1% 142GiB - -
retrieve similar documents for train (batched) - 39%s - datasplit: 4.95 MiB 0.8% 00B - -
retrieve similar documents for dev (sequentially) - 2m:ls - datasplit: 1.38 MiB 0.1% 00B - -

Neural-based Document Retrieval: results Run time disk 10 writes CPU RAM GPU utility & memory
prepare train data for doc retrieval - 3s datasplit: 86.21 MiB 0.0% 00B - -
prepare dev data for doc retrieval - >1s datasplit: 24.81 MiB 0.0% 0B - -

hit3: 33.382,
hitB: 56.734, .
train BERT document retrieval hitl0: 57.020, 43m:8s datasplit: 5?6 96 M, 435% 379GE 100.0% 1145 GiB
model data: 24.91 GiB
exact: §.596, f1:
8.396
hit3: 74.206,
hit8: 74.324,
evaluate doc retrieval for train data hit10: 74.603, Im:33s model data: 3.81 MiB 4.0% 364 GB 00 % 1.14 GiB
exact: 66.032, fl:
67.783
hit3: 54153,
hit8: 36.160,
evaluate doc retrieval for dev data hit10: 58.739, 30s - 40% 2.36 GiB 90.00% 1.14 GiB
exact: 27.307, f1:
29174
Claim Verification: results Run time disk 10 writes CPU RAM GPU utility & memory
prepare train sentence retrieval data for claim verification - >ls datasplit: 22.05 MiB 0.0% 00B - -
prepare dev sentence retrieval data for claim verification - >1s datasplit: 6.77 MiB 0.0% 00B - -
train BERT claim verification ace: 66.049 11m42s datasplit: 108.92 4B, 040% 31GB

model data: 37.13 GiB

evaluate claim verificaiton on dev data 62.0% §48.04 MIB

,070,295 sentences

Figure B.4: BM25 retrieval on the fusion (citations + claim-detected) WiCE data corpus.

52

B.2. Dense retrieval setup

B.2 Dense retrieval setup

Original Hov

ntence Selection

Dense Document Retrieval results CPU Retrieval GPU Retrieval
create embeddings and index documents - 1h:4Tm:07s
retrieve similar documents for train (batched) - 16s Os
retrieve similar documents for dev (sequentially) - 3m:5%s 125

Sentence Retrieval: results Run time
exact: §.396,
i iev: Om:1
train BERT sentence retrieval £1- 8,506 s
exact: 12,143,
7 iev: i : 33
evaluate sentence retrieval for train data £l 12,143 5
exac: §.396,
. jev - 14;
evaluate sentence retrieval for dev data £1- 8 506 s
Claim Verification: results Run time
prepare train sentence retrieval data for claim verification - > 1s
prepare dev sentence retrieval data for claim verification - > 1s
train BERT claim venfication acc: 66.763 Tm:23s
evaluate claim verificaiton on dev data acc: 62464

41 sentences

disk 10 writes
Total size: 9.7 GiB,
Vector size: LIKiB

datasplit: 24.98 MiB

datasplit: 7.62 MiB
disk 10 writes
datasplit: 311.59 MiB,
model data: 11.3% GB

model data: 1.88 MiB

disk 10 writes
datasplit: 265 44 KiB
datasplit: 72.92 KiB
datasplit: 10.26 MiB,
model data: 37.13 GB

CPU RAM GPU utility & memory

70.3%

16,5%
9.6%
CPU

17%
14%

42%

CPU
0,0%
0,0%

46.48 GiB

6841 MiB
5.5 MiB
RAM

333 GB

292 GiB

242GB

RAM
00B
00B

36,0% 118 GiB
11.0% 3920 MiB
96,0% 2.1% GiB
GPU utility & memory
97.0% 331 GiB
95.0% 132GiB
96.0% 89304 MiB
GPU utility & memory
98.0% 312GiB
64.0% 84804 MiE

Figure B.5: FAISS retrieval without Sentence-Selection stage on the original WiCE data corpus.

CPU RAM GPU utility & memory

Dense Document Retrieval results CPU Retrieval GPU Retrieval
create embeddings and index documents - 1h:4Tm:07s
retrieve similar documents for train (batched) - 13s Os
retrieve similar documents for dev (sequentially) - 3m:33s 125
Claim Verification: results Run time
train BERT claim verification acc: 66.049 11m:36s
evaluate claim verificaiton on dev data acc: 58453 Os

ace: 60.42%,
.00%,

Corpus size: 15.28 GiB, 126,533,841 sentences

prec_weighted: 5

Dense Document Retrieval

fl_weight
prec_macro:

disk 10 writes
Total size: 9.7 GiB,
Vector size: LIKiB
datasplit: 24.15 MiB
datasplit: 7.37 MiB
disk 10 writes
datasplit: 118.18 MiB,
model data: 37.13 GiB

58.80%,

70.3%

16.9%
10.9%
CPU

18%
14%

46.48 GiB

31.62 MiB
768.0 KiB
RAM

323GB
2.66 GiB.

f1_macro: 51.96%,
rec_weighted: 60.42%, rec_macro: 52.19%

36,0% 118 GiB
300% 392.0MiB
1.0% 00B
GPU utility & memory
93.0% 413 GiB
61,0% 84804 MiB

CPU RAM GPU utility & memory

create embeddings and index documents

retrieve similar documents for train (batched) - 14s Ts
retrieve similar documents for dev (sequentially) - 3m:37s 125
Claim Verification: results Run time
train BERT claim verification acc: 66.049 Sm:3%s
evaluate claim verificaiton on dev data acc: 62464 9s

acc: 61.01%,
Corpus size: 8.56 GiB, 61,040,380 sentences ace °

prec_weighted: 57.96%,

prec_macro: 52.70%,

Total size: 8.7 GiB,
Vector size: 1.3 KiB
datasplit: 12.42 MiB
datasplit: 3.6 MiB
disk 10 writes
datasplit: 63.34 MiB,
model data: 37.13 GiB

fl_weighted: 58.94%,
rec_weighted: 61.01%, r

57.1%

16.8%
9,1%

30.84 GiB

3242 MiB
768.0 KiB
RAM

337GB

263 GiB

fl_macro: 51.78%,

33.0% 1.18 GiB
3,0% 392.0 MiB
1.0% 00B
GPU utility & memory
100.0% 31GB
63.0% 34804 MiB

ec_macro: 52.17%

Figure B.7: FAISS retrieval on the claim-detected WiCE data corpus.

53

B.3. Index compression setup

Extracted citations

create embeddings and index documents - 35m:22s
retrieve similar documents for train (batched) - 13s bs
retrieve similar documents for dev (sequentially) - 3m:33s 11s
Claim Verification: results Run time
train BERT claim verification acc: 66.049 Sm:13s
evaluate claim verificaiton on dev data acc: 61.801 9s

Dense Document Retrieval results CPU Retrieval GPU Retrieval
create embeddings and index documents - 30m:3ds
retrieve similar documents for train (batched) - 14s LH
retrieve similar documents for dev (sequentially) - 3m:36s 11s
Claim Verification: results Run time
train BERT claim venfication acc: 66.762 Om:bs
evaluate claim verificaiton on dev data acc: 60464 9s

ace: 61.31%,
prec_weighted: 58.40%, prec_macro: 53.23

Corpus size: 6.85 GiB, 54,070,295 sentences

disk 10 writes
Total size: 8.7 GiB,
Vector size: 1.3 KiB
datasplit: 2.89 MiB
datasplit: 2.99 MiB
disk 10 writes
datasplit: 54.60 MiB,
model data: 37.13 GiB

8.48%,
rec_weighted: 58.63%,

disk 10 writes
Total size: 9.7 GiB,
Vector size: LI KiB
datasplit: 9.30 MiB
datasplit: 2.8 MiB
disk 10 writes
datasplit: 52.42 MiB,
model data: 37.13 GiB

fl_weighted: 59.34%,

CPU RAM GPU wtility & memory
571% 3082GEB @ B30% 118 GiB

473% T2IMEB 440% 452.0MiB
134% T680KB 62.0% 00B
CPU RAM GPU wtility & memory
4.5% 315GiB 95.0% 31GB

42% 266 GB 690% S4304 NHB

rec_macro: 3.

CPU RAM GPU wtility & memory
64.1% 3241GE 8L0% 1.18GiB

473% T2IMiB 440% 432.0MiB
$4% TESOKB 39.0% 00B
CPU RAM GPU wtility & memory
43% 3 4GB 04.0% 31GE

41% 26%GB 39.0% 84894 MiB

f1_macro: 52.30%,
rec_weighted: 61.31%, rec_macro: 52.62%

Figure B.9: FAISS retrieval on the fusion (citations + claim-detected) WiCE data corpus.

B.3 Index compression setup

Dense Document Retrieval
create embeddings and index documents

retrieve similar documents for train (batched)
retrieve similar documents for dev (sequentially)

Sentence Retrieval: results Run time

train BERT sentence retrieval exact:s 35;696 fL: 1lm:42s
exact: 12,143,

evaluate sentence retrieval for train data 112143 : 34s
evaluate sentence retrieval for dev data exact:g 353696 fL: 14s

Claim Verification: results Run time
prepare train sentence retrieval data for claim verification - >1s
prepare dev sentence retrieval data for claim verification - =1s
train BERT claim verification acc: 66.049 Tm:32s
evaluate claim verificaiton on dev data acc: 60464 Os

ace: 62.46%,

Corpus size: 15.28 GiB, 126.533,841 sentences

disk 10 writes

Total size: §72.93 MiE,

Vector size: 104.12B
datasplit: 41.72 MiB
datasplit: 1221 MiB
disk 10 writes
datasplit: 387.09 MiB,
model data: 11.3% GiB

model data: 1.97 MiB

disk 10 writes
datasplit: 26544 KiB
datasplit: 7292 KiB
datasplit: 10.26 MiB,
model data: 37.13 GiB

fl_weighted: 61.38%,

CPU RAM GPU wtility & memory

470% 2861GE 100.0% 958 GiB
23% T3384MIB 96.0% 146 GiB
1.1% 39466MB 03.0% 2.17GB

CPU RAM GPU utility & memory

16% 3GB 970% 437GB
38% 314GB 940% 898.04MiB
11% 248GE 040% $08.04MB
CPU RAM GPU utility & memory
00% 00B - -
00% 00B - _

43% 307GB 84.0% 31GE

4.2% 2.55 GiB 620% 84304 NIB

f1_macro: 55.27%,

prec_weighted: 60.74%, prec_macro:

.84%, rec_weighted: 62.46%, rec_macro:

Figure B.10: JPQ retrieval without Sentence-Selection stage on the original WiCE data corpus.

54

B.3. Index compression setup

Dense Document Retrieval results CPU Retrieval GPU Retrieval disk 10 writes CPU RAM GPU wrility & memory

Total size: §72.95 MIB,

create embeddings and index documents - 13:42:44 . 5 470% 2861GEB = 100,0% 9358
Vector size: 104.12B
retrieve similar documents for train (batched) - 1m:40s 23s datasplit: 47.95 MiB 02% 398930ME 93.0% 227GB
retrieve similar documents for dev (sequentially) - 33s 135 datasplit: 14.03 MiB 01% B87835MiB 020% 151GB
Claim Verification: results Run time disk 10 writes CPU RAM GPU utility & memory
train BERT claim verification ace: 66.049 14m:36s :::;p;;i'];i?’g; 43% 322GB 940% 3.1GB
evaluate claim verificaiton on dev data acc: §0.751 10s - 34% 2.73 GiB 620% 84804 MNIB

lences

prec_weighted: 60.81

rec_macro

Figure B.11: JPQ retrieval on the original WiCE data corpus.

Pre-trained claim detection

Dense Document Retrieval results CPU Retrieval GPU Retrieval disk 10 writes CPU RAM GPU utility & memory
create embeddings and index documents . Sh25m58s Total size: 61203MB, j7on0. 153068 1000% S13GB
Vector size: 104.12B
retrieve similar documents for train (batched) - 1m:3%s 19s datasplit: 25 44 MiB 04% 45582MIB 95.0% 252 GiB
retrieve similar documents for dev (sequentially) - 32s 13s datasplit: 7.6 MiB 0.1% 61107MB 69.0% 1351 GiB
Claim Verification: results Run time disk 10 writes CPU RAM GPU utility & memory
. IR . y datasplit: 123.33 MiB,
train BERT claim verification acc: 66.049 11m:39s model data: 3713 GiE 4.3% 32GB 93.0% 31GB
evaluate claim verificaiton on dev data acc: 38432 10s - 42% 2.74GB 61.0% 8483.94 MiB

ace: 59.31%,

Corpus size: 8.56 GiB, 61,040,380 sentences

fl_weighted: 59.02%,

f1_macro: 53.32%,

prec_weighted: 58.77%,

prec_macro: 53.39%,

rec_weighted: 59.31%,

rec_macro: 53.30%

Figure B.12: JPQ retrieval on the claim-detected WiCE data corpus.

Dense Document Retrieval disk 10 writes CPU RAM GPU utilityGPU memory
create embeddings and index documents 7 Th:20m:37s Totel size: 61223MB. o y3pGE 1000% 633GB
Vector size: 104.12B
retrieve similar documents for train (batched) - 1m:26s 19s datasplit: 22.14 MiB 47.0% 43633MB 100.0% 2352GB
retrieve similar documents for dev (sequentially) - 3ls 13s datasplit: .21 MiB 469% 878T2MB 32.0% 151GB
Claim Verification: results Run time disk 10 writes CPU RAM GPU utilityGPU memory
- . . . datasplit: 107.48 MiB,
train BERT claim verificati - 66.049 1im41 4.5% 321GB 94 0% 31GB
verfication ace s model data: 37.13 GiB =70 °
evaluate claim verificaiton on dev data acc: 50.318 9s - 3.8% 273 GB 62,0% 84804 MIB

acc: 60.74%,

Corpus size: 6.56 GiB, 51,735,961 sentences

fl_weighted: 59.21%,

fl1_macro: 52.42%,

prec_weighted: 58.34%,

prec_macro: 53.04%,

rec_weighted: 60.74%,

rec_macro: 52.60%

Figure B.13: JPQ retrieval on citation extracted WiCE data corpus.

Dense Document Retrieval disk 10 writes CPU RAM GPU utilityGPU memory
create embeddings and index documents - Th:43m23s Totalsizes6T2O5MB, 47 10, 1356GE 1000% 5.13GiB
Vector size: 104.12B
retrieve similar documents for train (batched) - 1m:26s 19s datasplit: 21.86 MiB 470% 3408MiB 100.0% 2352GB
retrieve similar documents for dev (sequentially) - 3ls 13s datasplit: 6.25 MiB 47.0% 9822MiB 32.0% 131 GB
Claim Verification: results Run time disk 10 writes CPU RAM GPU utilityGPU memory
. IR . . datasplit: 106.71 MiB,
train BERT claim verification acc: §6.04% 11m:19s model data: 3713 GB 4.6% 32GE 04.0% 31GE
evaluate claim verificaiton on dev data acc 61.605 Os - 4.2% 27GB 620% S4304NHB

acc: 63.04%,
prec_weighted: 58.94%,

Corpus size: 6.85 GiB, 54,070,295 sentences

prec_macro: 53.97%,

fl_weighted: 59.79%,
rec_weighted: 63.04%,

f1_macro: 51.89%,

rec_macro: 52.7

Figure B.14: JPQ retrieval on the fusion (citations + claim-detected) WiCE data corpus.

55

Appendix C

Experiment Results Graphs

This chapter illustrates part of the tabular data results detailed in Chapter 5 into a simplified
perspective by employing graph visualization. This with the aim to offer a clearer understanding
of the comparisons between various settings.

C.1 Document Retrieval Latency

HoVer Document Retrieval Latency (ms)

500
515 523 51 0

00 4
@
& 400
2 .
= 316 334
< 300
>
2
@ 200
['q
[
]
© 10 53 55 &1 =5

31 30 23 23 23 13 13 12 11 12
0
Sparse Retrieval Dense Retrieval (CPU) Dense Retrieval (GPU) Index Compression (CPU) Index Compression (GPU)
+ Re-ranking
RETRIEVAL METHODS
Original (+ Sent. Select Original ~ mClaim detection ~ ®Citation Extraction Fusion

Figure C.1: Document retrieval latency comparison between all the HoVer experiments.

WIiCE Document Retrieval Latency (ms)

800
685
- 610 519
446 X
z g 416
< 400
< 300
a
['4
= 200
m
‘]
100 i o
31 31 31 4343 37 37 37
0
Sparse Retrieval Dense Retrieval (CPU) Dense Retrieval (GPU) Index Compression (CPU) Index Compression (GPU)
+ Re-ranking
RETRIEVAL METHODS
Original (+ Sent. Select. Original Claim detection Citation Extraction

Figure C.2: Document retrieval latency comparison between all the WiCE experiments.

56

C.2. Pipeline Inference Latency

HoVer Total Latency (ms)

[
o
o

~
o
o

659

o
o
o

C.2 Pipeline Inference Latency

676
il II

Dense Retrieval (CPU)

g 509

£ (4]
o o
o o

w
o
o

192 214

TOTAL LANTECY (MS)

o
o

o
o

39 31 32 32
-
Dense Retrieval (GPU)

o

Sparse Retrieval
+ Re-ranking
RETRIEVAL METHODS

mOriginal (+ Sent. Select.) mOriginal ®Claim detection

WICE Total Latency (ms)
1000 T
900 +
800 +
700 £
600
500 +
400 +
300 £
200 T
100 T

831

TOTAL LANTECY (MS)

Figure C.3: Overall pipeline latency comparison between
619 631 619 628
43404040

878
468 436
227
.

Dense Retrieval (CPU) Dense Retrieval (GPU)

Sparse Retrieval
+ Re-ranking
RETRIEVAL METHODS
@ Claim detection

mOriginal (+ Sent. Select.) mOriginal

Index Compression (CPU)

m Citation Extraction

Index Compression (CPU)

@ Citation Extraction

174

67 60 51 63

HEm

25 21 20 24
e —

Index Compression (GPU)

Fusion

all the HoVer experiments.

238

106 103 98 98

N

54 48 46 46
10
Index Compression (GPU)

Fusion

Figure C.4: Overall pipeline latency comparison between all the WiCE experiments.

57

C.3. Performance Accuracy Evaluation

C.3 Performance Accuracy Evaluation

63

ACCURACY (%)

[=)
0 o

65
64
63
62

ACCURACY (%)
tmotn @
[=x] w = -

57,79

6233

Isn@n
pa I

Sparse Retrieval
+ Re-ranking

mOriginal (+Sent. Select.)

62,28

HoVer Performance

64,60

RETRIEVAL METHODS

62,90

61,50

Dense Retrieval

59,67 5951

6330 63,02

61,92 61,58
I 59,98

Index Compression

mOriginal mClaimdetection wCitation Extraction Fusion

Figure C.5: Accuracy comparison between all the HoVer experiments.

63,69

£1,90
I51u1
i3 I

Sparse Retrieval
+ Re-ranking

mOriginal (+Sent. Select)

63,39

WIiCE Performance

61,61

61,31

61,01
G042

58,63

Dense Retrieval

RETRIEVAL METHODS

63,04
6246

60.46 60,74
I5931 I

Index Compression

mOriginal mClaimdetection = Ciation Extraction Fusion

Figure C.6: Accuracy comparison between all the WiCE experiments.

58

	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Research Motivation
	Scientific Contributions
	Thesis Outline

	Related Work
	Fact-checking
	Efficient Retrieval Mechanisms
	Factual Consistency in LLMs
	Related work relevancy

	 Methodology
	Problem Statement
	Improving efficiency

	Experiments
	Datasets
	Experimental design
	Experiment Setup
	Assessment and Metrics

	Results and Discussion
	RQ 1: How does indexing supporting facts improve information retrieval efficiency?
	RQ 2: How does indexing supporting facts affect overall pipeline efficiency and downstream fact-checking performance?
	RQ 3: In what ways does index compression enhance the efficiency of dense retrieval and fact-checking systems?

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	 Detailed HoVer Experiments Measurements
	Sparse retrieval setup with Reranking
	Dense retrieval setup
	Index compression setup

	Detailed WiCE Experiments Measurements
	Sparse retrieval setup with Reranking
	Dense retrieval setup
	Index compression setup

	Experiment Results Graphs
	Document Retrieval Latency
	Pipeline Inference Latency
	 Performance Accuracy Evaluation

