
Behavior Driven

Platform-Independent Testing

for Mobile Apps
Bachelor Thesis

by

R. J. Vennik & W. F. de With

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Coach: Dr. ir. F. Palomba, TU Delft
Supervisor: Ir. W. Van, bunq

Abstract

Software testing is widely recognised as a crucial activity for the development of modern software
systems, since it points out defects and errors that were made during the development. Testing also
improves the reliability and consistency of an application.

However, testing behaviour on mobile devices is not easy because of a number of reasons: (i) manual
testing of behaviour requires a lot of valuable time of developers, (ii) the problem of covering all possible
operating systems, (iii) covering all possible mobile devices, (iv) and frequently releasing new versions
of apps is the industry standard. In addition bugs in mobile apps can cause the reputation of the app
on the store to decrease and thereby the the number of downloads. Hence the following question is
central to our research: can we automate user interface testing for mobile apps and multiple platforms
without human interaction?

To overcome the limitation of multi-platform testing, as well as to help non-developers in the creation
of tests, we introduce a novel tool that is able to test behaviour on mobile devices by defining expected
scenarios. These scenarios consist of simple human readable instructions that are easy to write and
understand by non-developers. These scenarios can then be tested against multiple operating systems
and devices by simply connecting a device and pressing a button.

iii

Preface

In front of you is the Bachelor Thesis on behaviour driven platform-independent testing for mobile apps.
It is written as part of the Bachelor Project at the end of the Computer Science Bachelor at the Delft
University of Technology. This is the result of 10 weeks of hard work and dedication.

We would like to thank everyone who has helped and supported us during our project. Especially
Wessel Van for supervising us at bunq, Fabio Palomba for coaching us, Peter Jansen for giving us
valuable feedback on the testing framework, Ali Niknam for reviewing our code, and finally everyone
at bunq who supported us.

R. J. Vennik & W. F. de With
Amsterdam, June 2017

v

Contents

1 Introduction 1

2 Problem Definition 3

3 Requirements 5
3.1 Functional requirements . 5
3.2 Non-functional requirements . 6

4 Analysis of Existing Tools and Selection of the Solution 9
4.1 Full testing solutions . 9
4.2 Partial testing solutions. 10
4.3 Test language. 11
4.4 Chosen solutions . 11

5 Product Features 13
5.1 Structure . 13
5.2 Tests . 13
5.3 Autocomplete . 14
5.4 Config . 14
5.5 Runner . 14
5.6 User flow . 14
5.7 Routines . 15

6 Architecture of the System 17
6.1 Front-end . 17
6.2 Back-end . 18
6.3 Platform specific design . 20
6.4 Adjustments to initial solution . 22

7 Implementation 25
7.1 Step autocompletion . 25
7.2 Reactive test runner . 26
7.3 Android platform connection . 27

8 Software Development Process 29
8.1 Methodology . 29
8.2 Testing . 29
8.3 Tools . 30
8.4 Software Improvement Group feedback. 31

9 Conclusion and Recommendation 33
9.1 Conclusion . 33
9.2 Recommendations . 35

vii

viii Contents

Bibliography 37

A Original Project Description 39

B Post Update Basic Features Check 41

C Software Improvement Group Evaluation 43

D Initial Solution 45
D.1 Back-end server . 46
D.2 Mobile device . 46
D.3 Tests . 47

E Device API Reference 49
E.1 General . 49
E.2 Instructions . 49

F Implemented Instructions 53

G Project Infosheet 55

H Screenshots 57

1
Introduction

Software testing is widely recognised as a crucial activity for the development of modern software
systems, since it points out defects and errors that were made during the development. Testing also
improves the reliability and consistency of an application.

However, testing behaviour on mobile devices is not easy because of a number of reasons: (i) manual
testing of behaviour requires a lot of valuable time of developers, (ii) the problem of covering all possible
operating systems, (iii) covering all possible mobile devices, (iv) and frequently releasing new versions
of apps is the industry standard. In addition bugs in mobile apps can cause the reputation of the app
on the store to decrease and thereby there the number of downloads. Hence the following question is
central to our research: can we automate user interface testing for mobile apps and multiple platforms
without human interaction?

To overcome the limitation of multi-platform testing, as well as to help non-developers in the creation
of tests, we introduce a novel tool that is able to test behaviour on mobile devices by defining expected
scenarios. These scenarios consist of simple human readable instructions that are easy to write and
understand by non-developers. These scenarios can then be tested against multiple operating systems
and devices by simply connecting a device and pressing a button.

The proposed tool was born in collaboration with bunq, a Dutch FinTech bank that provides financial
services exclusively through their mobile apps.

This thesis is organised as follow: First, in chapter 2, we define the problem that bunq gave us to
solve. Then, in chapter 3, we analyse the given requirements and chapter 4 looks into known (partial)
solutions to the problem for which we explain whether they are applicable. The resulting product with
its features is shown in chapter 5. In chapter 6 and 7 the actual design and implementation of the
final product are described. And in the same chapter some interesting parts of the implementation are
highlighted. Chapter 8 reflects on the software development process. Finally, in chapter 9 we reflect
on how the problem was solved and we do some recommendations to extend the project even further.

1

2
Problem Definition

Currently when an automated behavioural mobile testing for non-developers is needed, there are no
good tools that facilitate this. Some companies even started to rely on manual testing. To automate
mobile testing while still covering multiple operating systems and devices a testing framework is re-
quired.

Since the testing should be usable by non-developers it should not require programming knowledge.
In addition, when the structure of the app on multiple operating systems are mostly the same, tests
should be easily reusable between systems. Only when the structure is different multiple tests should
be needed.

To support multiple operating systems and devices the framework should be extendable for new oper-
ating systems. Since apps are frequently released and tested, automated testing for multiple platforms
and devices should not be slower than manual testing.

The current checklist that bunq uses to verify correct behaviour after an update can be found in appendix
B. See appendix A as well for the original project description.

3

3
Requirements

This chapter describes the functional and non-functional requirements of the project.

3.1. Functional requirements
The functional requirements are listed according to the MoSCoW model.

3.1.1. Must have

1. The user shall be able to specify tests by creating sequences of test instructions.
2. The system shall be able to perform user interface actions on mobile apps.
3. The system shall be able to verify the user interface state of a mobile app.
4. The system shall test behaviour (black-box testing), not implementation (white-box testing).
5. The system shall be usable for non-developers, which means that the tests should be readable

for and writable by non-developers.
6. The user shall be able to test apps on the Android operating system.
7. Tests shall be repeatable and deterministic.
8. The system shall be extensible to support multiple platforms.
9. The system shall not require changes to existing apps.

3.1.2. Should have

1. The user shall be able to write test instructions in a browser application.
2. The current manual testing checklist (see appendix B) items shall be testable by the system.
3. The user shall be able to execute tests on multiple devices concurrently.
4. The system shall autocomplete test instruction input fields in the browser application.
5. The user shall be able to reuse sequences of test instructions in multiple tests.
6. The user shall be able to run a subset of the written tests.

5

6 3. Requirements

7. The user shall be able to add comments to tests.

3.1.3. Could have

1. The user shall be able to test apps on the iOS operating system.
2. The user shall be able to involve multiple devices in one test.
3. The system shall support multiple users adding tests and executing them at the same time.
4. The system shall support running tests from the command line.

3.1.4. Won’t have

1. The system shall support verifying behaviour in external (non-mobile) applications, for example:
the back-end the app under test communicates with.

2. The user shall be able to record user interface actions and convert those to tests.
3. The user shall be able to select user interface elements for tests using a visual representation.

3.2. Non-functional requirements
The following section will describe and explain the non-functional requirements of the project.

1. The code shall be tracked with Git.
2. The provided GitLab server shall be used to host the project.
3. The provided Jenkins server shall be used for continuous integration.
4. Cloud-based services shall not be used for this project.
5. A pull based development model shall be used, where a feature shall be developed in a feature

branch and a merge request shall be made when the feature is completed.
6. Merge requests will be build and tested by the CI server.
7. The back-end shall be written in Java.
8. The front-end shall be written in JavaScript using the React library.
9. The Android implementation shall be written in Java.

10. The iOS implementation shall be written in Swift.
11. Gradle shall be used as build tool for both the back-end and the Android implementation.
12. The project shall be tested with at least 80% coverage.
13. The project shall be completed in 11 weeks.
14. A working sample shall be produced each week.

3.2.1. Motivation

bunq prefers PHP as a language for the project, but we will need to write parts in Java and Objective-C
or Swift for the Android and iOS integration respectively. bunq allowed us to choose Java, because we
are more experienced with it, and it eliminates the need to introduce another language. Besides, the
whole project will be maintained by Android and iOS developers when it is completed, and they do not
use PHP anyway.

During our research, Java was the only supported language on the Android platform, so we had no

3.2. Non-functional requirements 7

choice but to use it. It is possible to use other JVM compatible languages on Android, but not only
subtle incompatibilities may occur, they are not supported officially, and bunq would preferably not
depend on a third party for support. Besides the apps are written in Java anyway, so that’s what bunq
is already familiar with. However, during the development phase of the project, Kotlin became an
officially supported language on the Android platform. We both like the language and have experience
with it, and bunq was enthousiastic about it as well. Unfortunately, this announcement came too late, as
we had already written quite some code. We would probably have chosen Kotlin for both the main part,
and the Android integration if the announcement had come earlier. bunq even allowed us to rewrite
the project in Kotlin (which is not that work-intensive, because it’s possible to convert most Java code
automatically) but we decided against it because it would still consume too much of our time. Especially
since the bachelor project timeframe isn’t that long, this time was better spent elsewhere. As for iOS,
the options are Swift and Objective-C, but seeing that Swift is meant to succeed Objective-C, even
though the apps are written in Objective-C, we chose Swift.

Git will be used as version control, to track changes to the software. Git was the logical choice, because
we have experience with it, and bunq provided us with a GitLab server. We will also use a pull based
development model, where one team member will push their changes to a branch and make a pull
request, which the other team member has to verify and approve. The merge requests will be tested
by a CI server that builds the code and runs the test code.

A build tool like Gradle[14] or Maven[16] is necessary for reproducing builds. We chose Maven for the
project because we were familiar with it, and it’s a proven tool. For Android, we needed to use Gradle
because only Gradle is supported there.

The project should also be tested. We aim for 80% coverage, because more test coverage doesn’t
necessarily mean that the test suite is better[29].

The timeframe for the project is 11 weeks, as that is the length of the Bachelor Project.

We will apply the agile software development methodology to this project, which means that a working
sample will be produced each week, and we plan for each week in order to be able to react to changes
and setbacks or breakthroughs. bunq requires a status update about what we did each day to keep
track of our progress. Every few days we will have a meeting with the project supervisor to discuss
progress and functionality, and the other stakeholders, for example the test owner, are updated when
relevant. This is possible because we will be in the office every day. For our TU Delft coach, we will
have a meeting every two weeks, unless problems occur, and send as much as possible beforehand
to review.

Since bunq is a bank, and everything is under strict non-disclosure agreements, we cannot use cloud
services for our project files.

4
Analysis of Existing Tools and Selection

of the Solution

We analysed various existing solutions to the problem of automated UI testing. In the following section
we will outline a few full solutions and why those do not satisfy our requirements, and some solutions
to parts of the problem, and if those are suitable for the project.

4.1. Full testing solutions
This section focuses on solution that will either solve the entire problem or parts of it.

4.1.1. Espresso

Espresso[11] is Google’s own white box Android UI testing framework. Tests are written in Java, and
compiled in the Android package, and it uses JUnit to run those tests. Espresso does not cover the
requirement of being cross platform, and the Java code isn’t easy to use for non-developers. It’s also
white box testing, because it’s integrated in a specific app, which makes it not usable for general app
testing.

4.1.2. EarlGrey

EarlGrey[10] can be defined as ’Espresso for iOS’. It is also made by Google, it uses Apple’s XCTest
and XCUITest as testing framework. It has the same shortcomings as Espresso, tests are defined in
either Objective-C or Swift, it is not cross platform, and it’s also white box testing.

9

10 4. Analysis of Existing Tools and Selection of the Solution

4.1.3. Calabash

Calabash[7] is a cross platform UI testing framework written in Ruby that uses Cucumber[9] to specify
tests. This came the closest to what we needed, but it is no longer under active development[8].
Furthermore, bunq prefers working with a language stack they already have experience with and the
architectural choices regarding the Android and iOS modules in Calabash aren’t up to date, so it would
probably need a large scale rewrite, at which point it is more productive to write a new solution to
reevaluate various architectural choices, and maintaining code we don’t need and use is not desirable.

4.1.4. Appium

Appium[6] is another cross platform framework for UI testing. It uses the WebDriver[26] specification
for specifying tests for both Android and iOS. While the cross platform functionality does cover our
requirements, WebDriver is designed for testing web applications, and Appium will therefore have to
adapt to the protocol, instead of adapting the protocol to the use case. To implement Appium tests,
it’s necessary to use a WebDriver implementation in a programming language, which violates the re-
quirement of being easy to use for non-developers. It may also require major refactoring in the tests
if the apps are refactored, as it’s not fully black box testing because it requires to specify parts of the
implementation of the apps.

4.2. Partial testing solutions
This sections shows frameworks that can be used to test Android or iOS. These frameworks will not
result in a standalone solution and need implementation.

4.2.1. UI Automation

UI Automation was Apple’s UI automation framework. It can be used to automate UI interactions in
iOS apps. It is now deprecated in favor of XCUITest (see below), so it is not relevant for our solution
anymore.

4.2.2. XCUITest

XCUITest[28] is the successor of UI Automation. It is the only way to automate UI interactions in iOS
apps, and every full solution mentioned above uses it one way or another. We will need XCUITest to
satisfy the requirement of being able to run the tests on on the iOS apps, so there is no choice here.

4.2.3. UI Automator

UI Automator[25] is Android’s equivalent of XCUITest. It can be used to automate UI interactions in
Android apps. Although it would be possible to use the internal Android API’s for sending events to
apps, UI Automator conveniently wraps those API’s for us, especially because they may be different
between Android versions.

4.3. Test language 11

4.3. Test language
To test, you have to define tests. These tests should be defined in language writable en readable for
non-developers. In this section we show the possible solutions.

4.3.1. Define a custom domain specific language

It is quite easy these days to define a new domain specific language with tools like ANTLR[5]. It provides
a generator for a lexer and a parser for the defined grammar. The parser produces an Abstract Syntax
Tree, and ANTLR provides tools to interpret this AST based on the visitor pattern. Defining your own
language is very flexible, but costs also a lot of time to implement and maintain.

4.3.2. Cucumber

Cucumber[9] is a framework that uses Gherkin[13] to define tests in a natural language. This allows
describing the behaviour of tests without detailing how that behaviour is implemented. Gherkin unifies
the tests with the test documentation, because the tests are written in a natural language, which means
there is no need to keep the test scenarios documented separately.

4.4. Chosen solutions
We have chosen to base our framework on UI Automator and XCUITest.

Cucumber was considered because it will make it possible to define tests in a natural language. This
fits our requirement of making tests easily readable and writable by non-developers. It also makes
converting existing test checklists easier. That it also can be used as documentation of tests is a
bonus. Cucumber supports both Java and PHP, so that was not a problem.

However, we decided that we didn’t really need a library for defining our tests, because tests will consist
of sequences of steps to execute. While Cucumber does use sequences of steps for testing, a lot of the
functionality of Cucumber consists of running these step files as JUnit tests for a specific project, and
that’s not necessary for this project. Implementing the step matching ourselves won’t be more work
than adapting Cucumber for our use case.

UI Automator and XCUITest will make it possible to interact with the testable app on a high level without
changing or adding any code to the testable app. These are also the least likely components that will
be changed, since they are part of their respective platform toolkit. Our hands are more or less forced
here, because there are no alternatives.

5
Product Features

This chapter shows what the user can do with the product. The description is given from the front-
end, because that is what the user will see and use. The front-end is high performant Single Page
Application (SPA) and feels like a native application. Also local changes can be saved or discarded.
The descriptive text is supported by the screenshots in appendix H.

5.1. Structure
As seen in figure D.4 a tests consists of a feature. The feature contains scenarios, and the scenarios
contain steps. When the user first starts the program a category has to be created. Categories are
used to organise all the features. Figure H.1 shows how this looks from a user perspective.

After the user has created at least one category the user can create new features in each category, or
navigate to existing features as shown in figure H.2. Also features can be moved to other categories
by using the select dropdown.

5.2. Tests
After you click on a feature (or click the button create feature) you can edit the feature as shown in
figure H.3. The following things can be done on the feature page:

• Create and remove scenarios
• Create and remove steps
• Add and remove routines
• Duplicate a scenario
• Drag and drop the order of steps
• Edit the title of feature, the feature context, and scenario titles
• Remove the feature

13

14 5. Product Features

5.3. Autocomplete
To provide the tester with valuable information about what steps and arguments are available an auto-
complete is provided. This auto complete detects what steps and what arguments are available, see
figure H.4 and H.5. The possible arguments are provided by the keyswords of the mappers defined in
the configuration.

5.4. Config
Since the steps can use keywords for Apps, Screens, and Elements that are unknown for the de-
vices. It is possible to create mappers on the config page as shown in figure H.6. These mappers will
replace keywords with identifiers and can be configured for Android. It is written with extensibility to
iOS in mind. Ideally the tests can run on iOS by only adding iOS identifiers.

5.5. Runner
After the tests are created, it is possible to run the tests on connected devices. Figure H.7 shows the
runner. The features of runner are:

• The phone is automatically detected when plugged in by USB.
• Select device
• Select features by category or individual features
• Run multiple test instances asynchronously (on different devices)
• See progress by percentage of steps ran

When the tests are running it looks like figure H.8. Tests can be canceled and live progress can be
shown by clicking on a feature. After the feature is done running you can view the results as shown in
figure H.9. Results are displayed per individual step. The use of a routine is also indicated.

If the user wants to know more about a certain step, he can click on the step. Then the user will see
something like H.10. The step result includes:

• Result: successful, error or skipped
• Arguments parsed from the action
• Message given by the device
• Screenshot of state after the step
• Duration in seconds of the step

When a tests fails the user will see red headers and a red step as shown in figure H.11. The steps after
the failed step are skipped, since the state of the device is now unknown.

5.6. User flow
The designers of bunq like to have insights in the user flows. Since the features are used to test the
user flows, the screenshots that are retrieved from the tests can be used to document the user flows.
After a feature is done running a button ’Show user flow’ becomes available. When the user selects

5.7. Routines 15

the button he can navigate through the user flow as shown in figure H.12. To make navigation easier
the previous and next actions also listen to the scroll-wheel of the mouse.

5.7. Routines
Routines are available to help the user with reusable parts of scenarios. If the user want to reuse steps
he can define a routine. Routines are created (and removed) on the page shown in H.13. After creating
or clicking on an existing routine the user can edit the routine as if it it an scenario. This is shown in
figure H.14.

6
Architecture of the System

This chapter gives insight into the architecture of the system. The product is divided into 3 projects:
the front-end, the back-end, and the device implementation. In the sections bellow the projects are
discussed.

6.1. Front-end
The front-end is responsible for creating the tests, instructing the server to run the tests and to show the
tests results. For creating a Single Page Application (SPA) for the web we chose Facebook’s React[17]
framework for it’s excellent scaling and use of the shadow DOM. Figure 6.1 shows the design of the
front-end. This design is based on the Flux[12] architecture.

Figure 6.1: Design of the front-end

For the connections with de backend server we chose socket.io[21] for it’s performance, reliability and
implementation in multiple programming languages.

17

18 6. Architecture of the System

6.2. Back-end
The back-end is responsible for interaction with the database, the front-end, and the devices. With the
main purpose of running and executing the tests. The back-end contains 4 modules: webserver, (test)
runner, (test) executor, and device connector. See figure 6.2 for a dependency graph. The back-end
uses the Spring Framework[23] for Dependency Injection and Spring Boot[24] to start the application.

Figure 6.2: Dependency graph of back-end modules

6.2.1. Test runner

The test runner receives instructions from the webserver on what tests to run. The test runner works
with observable streams from RxJava[20] and keeps track of running tests and results. Only the exe-
cutions of the steps are delegated to the test executor.

The test runner is based on the Spring Framework[23] architecture with controllers, services, and repos-
itories. The controllers are the runner components and webserver. The controllers use the services to
make use of repositories without having to interact with the database themselves. An overview of this
architecture is found in figure 6.3.

Figure 6.3: Architecture of test runner

6.2. Back-end 19

6.2.2. Webserver

The webserver handles socket.io[21] events and is the only access point for the front-end. To interact
with the persistence layer the webserver uses the services from the test runner. Also the payloads
used for the socket.io events are defined here. Spring Boot[24] is used to start the webserver and all
of its dependencies.

6.2.3. Test executor

The test executor receives the individual steps from the test runner. The test runner also instructs the
test executor when to start and stop a scenario. The steps it receives look like: Given I start

the <app> app or When I type <text>. The parts between <> are wildcards, i.e. they can be
anything. Those wildcards can also be assigned a preconfigured value that will be replaced with the
specific value. These specific values can even be configured per supported platform. For example: in
Given I start the bunq app, bunq may be mapped to com.bunq.android on Android. This
allows abstracting the actual identifiers away, to make tests more user friendly and readable. After this
the executor looks up the right step and tries to replace possible mappings. The result is send to the
predefined API service (with device url included). Finally the result is processed into a step response
and given back to the test runner. The common data flow through this module is shown in figure 6.4

Figure 6.4: Data flow in text executor

6.2.4. Device connection

The device connection module consists of an interface that represents a device, and an interface that
represents a connection to a platform. The platform connection interface is then used to get all avail-
able devices for that platform, and the device interface to get information from devices and to start
and stop the test executor on the device. RxJava is used to provide a constant stream of currently
available devices. This allows easy extension for other platforms like iOS, because it’s only necessary
to implement two interfaces. See figure 6.5 for the class diagram with the Android implementations.

Android

For Android we used the Android Debug Bridge[2] (ADB) to communicate with the devices. Every
method in the device interface is implemented using ADB commands. Those ADB commands are
sent using the adb command line tool, even though it would have been possible to implement the

20 6. Architecture of the System

Figure 6.5: Platform and device connection class diagram

ADB protocol in Java. This decision was made because the ADB protocol isn’t documented, and not
guaranteed stable either. Unfortunately, this requires the Android Platform Tools to be installed on the
server where the back-end runs, and executing an external process.

6.3. Platform specific design
This section will discuss the design of sending instructions to a device. Because this was only imple-
mented for the Android platform, it will also discuss the Android specific design choices.

6.3.1. General

For communication with the devices, a simple HTTP API, with the server on the device and the client
in the backend, is used. The HTTP server on the devices listens on port 9229, simply because that
number is not assigned by IANA[15]. Executing an instruction consists of making a POST call to the
path /instruction/<name of instruction>, for example: /instruction/start_app, with
an instruction specific JSON object containing required parameters. A general JSON object with the
result of the instruction will then be returned. See appendix E for details.

6.3.2. Android

The architecture of the application on Android is rather simple. It consists of three parts: an HTTP API
endpoint, a foreground service, an instrumentation test entry point and a UI Automator worker thread
that executes the test instructions. How these parts work together is best explained with the sequence
diagram in figure 6.6. In the following sections, each part will be elaborated upon.

6.3. Platform specific design 21

Figure 6.6: Device sequence diagram

HTTP server

To execute an instruction, the backend will send an HTTP POST request with a JSON object (as ex-
plained in section 6.3.1) to the HTTP server. The HTTP server will then start a separate thread to
handle this response, in which it will schedule a job on the UI Automator worker thread, and wait for
a result. This keeps the connection open, until the UI Automator worker thread returns a result, which
will then be send back to the backend as response.

Foreground service

The Android threading is a bit different from the standard Java threading, because it is a mobile platform
with performance and battery life constraints. On an Android phone, background threads can be killed
at any given moment by the Out of Memory (OOM) killer[3], and that is not desirable for the HTTP
server. However, by binding the service containing the thread to a notification, the OOM killer will only
kill it as a last ditch effort. This technique is used to keep the HTTP server alive.

Instrumentation test entry point

Android apps can have two test sets, one standard unit test set and an instrumentation test set[4].
Standard unit tests are run on the developer PC (or CI server), while instrumentation tests are run
on the Android device itself. The use case for these tests is testing everything that doesn’t touch the
Android API with standard unit tests, and testing the Android interactions with instrumentation tests.

The UI Automator library can only be used in the context of an instrumentation test, it cannot be used
directly in the main app code. This means that we must provide an entry point for an instrumentation

22 6. Architecture of the System

test, that does not test anything, but starts a worker thread with a reference to the instrumentation
instead.

UI Automator worker thread

The worker thread is the part that actually executes test instructions. It keeps a reference of the in-
strumentation and passes it to every instruction class. These instruction classes then actually call the
relevant Android API methods to perform actions on the device. See the class diagram in figure 6.7 to
see how instructions are designed. The InstructionExecutor contains the actual worker thread.

Figure 6.7: Instruction class diagram

6.4. Adjustments to initial solution
In this section we describe the major adjustments we did to the initial solution in appendix D. The front-
end and back-end are discussed, because of the amount of changes and movement of responsibilities.
We also highlight why we implemented the device specific parts for Android only.

6.4.1. Back-end

The biggest part that changed from the initial solution is the design of the main application. This design
evolved over time and was adjusted to our needs. Figure D.2 shows the initial design of the main
application and 6.2 shows how the back-end looks now (also note the renaming). While modules are
still based on their responsibility some things have changes:

6.4. Adjustments to initial solution 23

• Core is renamed to runner for clarity
• Monitoring is now done in the runner with the use of an observable
• Test creation is moved to the front-end
• The runner does the instruction (executor) instead of the front-end
• The front-end communicates only with the webserver module

6.4.2. Front-end

While the front-end was not defined in depth in the initial solution the front-end gained some responsi-
bilities. Beside test creation the front-end contains almost all code for monitoring the test results.

A lot of business logic takes place in the front-end since it became an SPA. A local copy of the back-end
data is kept and updated while the user changes the tests.

6.4.3. Device specific implementation

In our initial solution, we assumed that we were going to implement the device specific parts for both
Android and iOS. However, we realised after one week that this would take a lot of time, since we did
not have any experience with developing on iOS. Besides, bunq indicated that they would rather have
one complete implementation than two half working implementations. In the end we decided to only
implement the Android part, and leave a recommendation for the technologies and architecture to use
for iOS. We still superficially checked for every feature we implemented whether it was possible to also
implement it on iOS.

6.4.4. User flow

In week 6 a meeting was requested by two bunq employees about possible documentation of the apps
user flows. These are paths the users have to take in the app to achieve what they want to do. For
example: signing up or requesting money. Since these are also actions that need to be tested the
question was dropped if it was possible to use the test definitions to document user flows.

Since we already made screenshots on failing tests, it was quite easy to implement screenshots on
every step. The test are defined by behaviour and thereby self-documenting. The documentation
can also be used to document the user flow illustrated by screenshots. For now tests results output
screenshots and give insight into to user flow, but this would be very useful for documentation in the
future.

7
Implementation

In this the chapter we discuss some elements that don’t have an obvious implementation or might stand
out otherwise.

7.1. Step autocompletion
To improve the user experience when writing tests we introduced an autocomplete for test steps. The
autocomplete is generated from the original step definition. Since steps are defined by using regular
expressions and mappers the autocomplete should be generated from those. We start with the steps
defined in figure 7.1.

@Step(”I type (.+)”)
public Type.Request type(String text) {

return new Type.Request(text);
}

@Step(value = ”I start the (.+) app”, mappers = {Mapper.APPS})
public StartApp.Request startApp(String packageName) {

return new StartApp.Request(packageName);
}

Figure 7.1: Step definition in Java

7.1.1. Step detection

To detect if a user is currently typing a step we generate a new regular expression. First we make
the matching groups of the regular expression lazy so the given arguments are captures as small as
possible. This can be done by adding a ’?’ behind all quantifiers in the original regular expression, see
figure 7.2.

25

26 7. Implementation

I type (.+?)

I start the (.+?) app

Figure 7.2: Result of creating lazy capturing groups

While typing all the characters at the end are optional. Starting with the last character we can wrap every
character and the characters wrapped behind that in a non-capturing optional groups. The original
groups are treated as characters in this case. This will result in regular expressions that will detect
every possible typing position, see figure 7.3.

^(?:I(?: (?:t(?:y(?:p(?:e(?: (?:(.+?))?)?)?)?)?)?)?)?$

^(?:I(?: (?:s(?:t(?:a(?:r(?:t(?: (?:t(?:h(?:e(?: (?:(.+?)(?: (?:a(?:p(?:p)?)?)?)?)?)?)?)?)?)
?)?)?)?)?)?)?)?$

Figure 7.3: Regular expressions for matching every typing position

The matching regular expressions from figure 7.3 can be created by using the code in figure 7.4.

lazyMatchGroups.split(/(\(.*?\)|.)/g)
.filter(part => part !== ””)
.reduceRight((acc, item) => ”(?:” + item + acc + ”)?”, ””);

Figure 7.4: Creating regular expressions for matching every typing position

7.1.2. Step completion

If a step matched smart autocomplete suggestions should be given. Building forward on the regular
expressions from figure 7.3 we can retrieve the arguments from the capture groups. And by splitting
the original regular expressions from figure 7.1 on the capture groups we can retrieve the static parts.
The result of typing ”I start the bu” is shown in figure 7.5.

These results can now be used to show the user the best matches. Also the arguments can be mapped
by the mapper specified in the step definition for a more targeted autocomplete. If an argument is
undefined we can choose to show a placeholder (for example: three dots) and autocomplete until the
first unknown argument.

7.2. Reactive test runner
The test runner is responsible for instructing the test executer in the right order and to provide the
client with observable results. For this RxJava[20], an implementation of ReactiveX[18], is used. This
enables us to program asynchronous with observable streams. Figure 7.6 shows the design of the
runner.

Every entity is responsible for generating it’s template so the client knows what tests results to expect.
After that the client can subscribe to the observable step results and place them in the template when

7.3. Android platform connection 27

arguments = [”bu”]
static = [”I start the ”, ” app”]

Figure 7.5: Result of typing a step

Figure 7.6: Entities of the runner

received. The step result indicates in what template it belongs. A typical run method for an entity of
the runner now looks like figure 7.7. The method run in scenario will combine the observable results
of its routines and steps and then sort them by their index so they are executed in the right order.

Observable<StepResult> run() {
return Observable.concat(Observable.fromIterable(runnerSteps), Observable.fromIterable(

runnerRoutines))
.sorted(Comparator.comparingInt(RunnerScenarioElement::getIndex))
.flatMap(RunnerScenarioElement::run);

}

Figure 7.7: Run method of the scenario runner

7.3. Android platform connection
The Android platform connection implements the interfaces as described in figure 6.5. These classes
then use ADB commands to get the required information. For every ADB command needed, a class
exists that defines the ADB command and a parse function to parse its output.

For example: to get a list of devices we use the adb devices command. This command will return
the list of devices currently connected as shown in figure 7.8.

As stated in section 6.2.4, we used the adb command line tool instead of implementing the protocol
in Java. For this, we needed to be able to execute external commands from our application. We
solved it by starting an external process from the Java application and supplied it with the right param-

28 7. Implementation

$ adb devices
List of devices attached
00abf49d65d229e8 device

Figure 7.8: adb devices output

eters. These parameters were static with the exception of commands targeting a specific device, which
needed an identifier for the device. To solve this, we differentiated between platform wide commands
(like get all devices), and device specific commands (like get name), and passed the device serial to
device specific commands.

Another problem we encountered was that some ADB commands need to be run in the background,
while for others the output was relevant so they needed to wait and parse the output. We solved this by
adding a boolean that specified whether the executor should wait for the process to terminate or not.

8
Software Development Process

8.1. Methodology
Our software development methodology was agile, as we made a plan at the start of every week. We
worked full time in the office, which allowed us to write down everything we wanted to do for the week
on a whiteboard, and cross items off when they were finished. Because we only planned for one week
in advance, we were able to react to unexpected changes, although nothing major happened. We
communicated every few days with our project supervisor about the status and progress of the project.
After we had a minimum viable product, we started asking the test owner at bunq for feedback. We
clarified and documented his issues and added requested features.

8.2. Testing

8.2.1. Back-end

The back-end is tested with unit tests using JUnit. See figure 8.1 for the coverage report. The
com.bunq.komkommer.executor.client.rest.instruction package coverage is low because
it contains a lot of holder classes which all have a private constructor to prevent initialisation. The cov-
erage report does not take into account that these do not need to be tested.

We used Mockito to inject mocks of dependencies to test specific classes. Because we used Spring
for dependency injection, it was relatively easy to inject different dependencies during testing.

8.2.2. Android

Testing the Android app posed more of a challenge, because how do you test something that tests
something? The Android application does nothing else but transforming HTTP requests in UI Automator
calls, so unit testing this did not seem useful. In addition, since the app touches a lot of Android APIs,

29

30 8. Software Development Process

Figure 8.1: Coverage report for the back-end

testing was only possible using instrumented tests (see section 6.3.2).

Ultimately, we decided to test the Android app with a sample app. This sample app is a simple app that
has reproducible actions and reactions; for example: display some text if a certain button is pressed.
In our tests, which are run on the device, we start this sample app and make an HTTP request to
localhost. Since the actions and reactions were rather specific, we could test for failing behaviour as
well. You can still think of these tests as unit tests, because they test a functional unit of the application,
even though the unit consists of an HTTP request and an executed UI Automator procedure, which is
more than one unit with regards to the code. See figure 8.2 for the coverage report.

8.3. Tools

8.3.1. Build tool

During the research phase, we decided to use Maven as our build tool. However, seeing that we had
to use Gradle anyway for Android, we realised using one build tool for both projects would be easier to
maintain, so we decided to use Gradle for the back-end as well.

8.3.2. Version control

Following the non-functional requirements, we used Git to manage changes to the product. We were
provided with a GitLab instance by bunq. For every feature, we created a branch and made a merge

8.4. Software Improvement Group feedback 31

Figure 8.2: Coverage report for the Android app

request when it was ready to be merged. Because we were working full time in the same office, and
we are only a group of two, most communication about those merge requests was verbal. If there
was a problem with a merge request, one of us would just ask the other for clarification. However any
unclarity worth documenting was still put in writing. This worked pretty well, because this way we were
both able to understand the whole code base.

8.3.3. Continuous integration

bunq gave us access to a Jenkins[1] server to use for continuous integration (CI). Since we used Gradle
as build tool, it was quite easy to set up CI. The CI server would just compile the project and run the tests
on every merge request. This saved us from some simple mistakes that could have slipped through
during code review otherwise.

8.3.4. Static analysis

We used a local instance of SonarQube[22] to ensure code quality. It showed us potential vulnerabili-
ties, bugs and code smells and gave us an indication of the quality of the code. We also used it to verify
test coverage. During the research phase, static analysis was not really considered, but we decided
to use it during the project after experimenting with it, because we realised using it would improve the
quality of the code.

8.4. Software Improvement Group feedback
During the project, the code was submitted to the Software Improvement Group (SIG). SIG evaluated
the code and provided us with feedback, which can be found in appendix C.

Since we value maintainability for this code base, especially because it is not going to be maintained
by us, but by someone else, we were not disappointed with the score of 4 out of 5. However, we of

32 8. Software Development Process

course wanted to achieve 5 out of 5, we refactored the code according to the feedback.

For the Unit Size part, those problems only really existed in the Android application, so we split up the
long methods there. This was not hard and did not take much time, maybe an hour including testing
and verifying.

Fixing the Unit Complexity was a little bit harder, but it still only took a day. When we inspected the
part of the code ourselves, we realised that in some places, we connected the data persistence layer
directly to the controller layer, without services in-between, like figure 6.3. To fix this we introduced a
service layer that bundled the necessary parameters, which reduced unit complexity significantly.

9
Conclusion and Recommendation

In this chapter we conclude if we reached the specified goals or not. Recommendations for extending
the product are given.

9.1. Conclusion
This section shows the reflection on the goals. Mainly the functional requirements are highlighted, but
also the non-functional requirements are reflected upon.

9.1.1. Functional requirements

All of the must haves and should haves are implemented in the final product. In chapter 5, 6, and 7,
details about the actual implementation can be found.

Automatically testing the mobile app has been achieved. After the tests have been specified by cre-
ating a sequence of simple steps, the user can run the tests by connecting a phone and pressing a
button. Most app functionality can be tested, with the exception of scrolling and some non-deterministic
behaviour (for the non-deterministic behaviour in the bunq apps a temporary solution was added), for
example: dialogs sometimes, depending on external factors, interrupting a step.

If there are any instructions that the framework is not supporting it is very easy to add new instructions
to the existing implementation. To add an instruction to the framework, one class and one method have
to be implemented in the back-end, and two classes in the Android implementation.

The framework is universal, every app can be tested using it and does not require changes to existing
applications.

Tests are defined by either specifying what kind of action should be performed, or verifying what should
be displayed on the screen.

33

34 9. Conclusion and Recommendation

The testing framework is easily usable by non-developers. Available steps are autocompleted, which
makes it easier to learn how to use the framework and what kind of instructions are supported. Mapping
the identifiers as described in section 6.2.3 will probably require reading some (layout) code, or at least
some input from the app developers. However, these identifiers won’t change often and will for the
most part only need to be configured once.

Currently the testing framework only supports Android, but it is written with extensibility in mind. Other
platforms like iOS and Windows Phone can be easily integrated by implementing the interfaces in the
platform connector and by adding extra columns in the configuration tables.

Implementation is not tested, only identifiers of elements in the app are used. The tests are purely
defined by behaviour and consist of atomic steps that do not carry state.

The existing apps are not modified. Testing only requires an extra app on the phone that provides the
endpoint for test instructions.

Regarding the could haves, they can all be implemented without requiring changes to existing parts,
except for supporting multi-device tests, because that would require some small changes in the test
executor. For simultaneously editing tests, a multi-user module should be added to prevent multiple
users from overriding the saved tests.

The command line runner is not implemented, see recommendations.

9.1.2. Improvements

If we have to start the project again with what we learned, we would have made the platform connection
module separate from the back-end, and let them communicate with a standardised API. This way, the
back-end could have been run in the cloud, while the platform connection module could have been run
on so-called ’slaves’, which would be separate computers. This would have allowed easier support for
running the tests from a continuous integration server as part of a deploy routine. Due to the limited
time frame and the fact that we did not realise this during the research phase, it was not implemented.

In general, the project timeframe was rather short. We would have wanted to implement more features,
but as time was limited, we had to prioritise. While we did not implement many test instructions (as can
be seen in appendix F), we tried to make it as easy as possible to add more instructions.

9.1.3. Ethical implications

There are very few ethical implications as result of this project, however since it is always good to think
about the ethical results of a project we list the ethical implications.

The main implication is that the testing framework is automating a lot of manual work and can result
in the loss of jobs on the market. Which may result in the need of alternate income models or an
other system that results in social stability. This is of course a standard consequence of any kind of
automating, and it is not really specific to this product. Bugs in the framework can also cause a false
confidence in the quality of mobile app releases with no one directly responsible. Untested app releases
will in most cases only lead to a loss of user satisfaction because ’something doesn’t work’, but can
also lead to for example data loss or data leakage. One of the more unexpected results is that it is

9.2. Recommendations 35

possible to take over control of someone phone when USB debugging is enabled and the owner of the
phone accepts an incoming connection, however these chances are very low (usually, only developers
have the USB debugging option enabled, and they probably know about the risks accepting random
incoming connections).

9.2. Recommendations
Since the product will be used and extended by bunq, we will list some recommendations for the product
in this section.

9.2.1. Unexpected popups

For the bunq app, unexpected popups posed a problem. We thought of the possible solutions to this
problem and came up with two solutions. Both solutions work with optional routines, which will be
bound to a step. The optional routines can be specified just like the normal routines and should only
run if necessary. It is necessary for the user to specify the conditions in the optional routine to keep it
from starting by default (for example: Given I should see an element with Confirm), which
will increase the probability of the user making mistakes.

The first solution would be to implement these optional routines with the platform specific asynchronous
facilities, for example UiWatchers in the UI Automator library for Android. The advantage of this is that
it’s relatively easy to get the optional routines by running instructions asynchronously while waiting
for confirmation. More advantages are that it’s not hard to get a confirmation that an asynchronous
routine has run and an asynchronous routine can even run during another instruction. However, the
disadvantage is that it requires calling the HTTPmethods on the device itself, which will add quite some
code to the device specific implementation, which we kept as small as possible. Another disadvantage
is that it requires asynchronous facilities to be available on every future platform for which the product
might be used.

In the second solution the back-end is responsible for executing the step and the optional routine
simultaneously. If the step fails and optional routine succeeds the step can be ran after the optional
routine. The biggest advantage is that the code would only need to be written once, and can then be
used on every possible platform. The disadvantage is that it might be more work to implement properly
because it would require some rewriting in the test executor code. We suggest this solution.

9.2.2. iOS implementation

For the iOS implementation, we recommend mostly the same structure as the Android implementation.
XCUITest can be used instead of UI Automator, and Xcode[27] will be needed to communicate with the
devices. As for the HTTP server, RestKit[19] seems a great fit, because it explicitly supports iOS.

9.2.3. Independent device connector

We suggest to create a individual application of device connector module, so the user can run the
device connector on his local machine instead of the whole back-end.

36 9. Conclusion and Recommendation

9.2.4. Command line runner

To instruct the tests without using the front-end or socket.io, it would be useful to have a command
line runner. The way to do this would be to create a module similar to the webserver that makes use
of the the Spring Boot Command Line Runner. The Spring application properties can now be reused
and passed through the command line. Collecting the test results is done by subscribing on the test
observer.

9.2.5. Test reporter

Since tests are done on a weekly basis before the release of a new version of the app we suggest to
build a test reporter that uses the command line runner or the socket.io web interface. This test report
should run automatically against the latest staging build or triggered manually. The main purpose of
the test runner would be to show tests results.

9.2.6. User flows

To fully utilise the user flow functionality we recommend extending the test reporter with automatic user
flow documentation. When the tests have ran the tests results can be used to document the user flow.
The existing structures of categories, features and scenarios can be reused to make the user flows
browsable.

By detecting changes in tests, in case the app changes, it would be very nice to show the difference
between different user flows between app versions. User flow documentation can be kept up-to-date
with the app and create insights for the employees. This will also resolve the problem of employees
having to make lots of manual taken screenshots, because they can just look up the screenshots from
the existing work flows.

Bibliography

[1] Jenkins. https://jenkins.io/. (Accessed on 06/22/2017).

[2] Android Debug Bridge. https://developer.android.com/studio/command-line/

adb.html. (Accessed on 06/21/2017).

[3] Processes and Application Life Cycle | Android Developers. https://developer.android.
com/guide/topics/processes/process-lifecycle.html, . (Accessed on 06/21/2017).

[4] Getting Started with Testing | Android Developers. https://developer.android.com/

training/testing/start/index.html#test-types, . (Accessed on 06/21/2017).

[5] ANTLR. http://www.antlr.org/. (Accessed on 05/02/2017).

[6] Appium: Mobile App Automation Made Awesome. http://appium.io/. (Accessed on
05/02/2017).

[7] Calaba.sh - Automated Acceptance Testing for iOS and Android Apps. http://calaba.sh/, .
(Accessed on 05/02/2017).

[8] Introduction to Calabash. https://developer.xamarin.com/guides/testcloud/

calabash/introduction-to-calabash/, . (Accessed on 05/02/2017).

[9] Cucumber. https://cucumber.io/. (Accessed on 05/02/2017).

[10] EarlGrey. http://google.github.io/EarlGrey/. (Accessed on 05/02/2017).

[11] Espresso. https://google.github.io/android-testing-support-library/docs/
espresso/. (Accessed on 05/01/2017).

[12] Flux | Application Architecture for Building User Interfaces. https://facebook.github.io/
flux/docs/in-depth-overview.html. (Accessed on 06/15/2017).

[13] Gherkin · cucumber/cucumber Wiki. https://github.com/cucumber/cucumber/wiki/
Gherkin. (Accessed on 05/02/2017).

[14] Gradle Build Tool. https://gradle.org/. (Accessed on 06/22/2017).

[15] Service Name and Transport Protocol Port Number Registry. https://www.iana.org/

assignments/service-names-port-numbers/service-names-port-numbers.

xhtml. (Accessed on 06/21/2017).

[16] Maven – Welcome to Apache Maven. https://maven.apache.org/. (Accessed on
06/22/2017).

[17] React - a JavaScript library for building user interfaces. https://facebook.github.io/

react/, . (Accessed on 06/15/2017).

37

https://jenkins.io/
https://developer.android.com/studio/command-line/adb.html
https://developer.android.com/studio/command-line/adb.html
https://developer.android.com/guide/topics/processes/process-lifecycle.html
https://developer.android.com/guide/topics/processes/process-lifecycle.html
https://developer.android.com/training/testing/start/index.html#test-types
https://developer.android.com/training/testing/start/index.html#test-types
http://www.antlr.org/
http://appium.io/
http://calaba.sh/
https://developer.xamarin.com/guides/testcloud/calabash/introduction-to-calabash/
https://developer.xamarin.com/guides/testcloud/calabash/introduction-to-calabash/
https://cucumber.io/
http://google.github.io/EarlGrey/
https://google.github.io/android-testing-support-library/docs/espresso/
https://google.github.io/android-testing-support-library/docs/espresso/
https://facebook.github.io/flux/docs/in-depth-overview.html
https://facebook.github.io/flux/docs/in-depth-overview.html
https://github.com/cucumber/cucumber/wiki/Gherkin
https://github.com/cucumber/cucumber/wiki/Gherkin
https://gradle.org/
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://maven.apache.org/
https://facebook.github.io/react/
https://facebook.github.io/react/

38 Bibliography

[18] ReactiveX. http://reactivex.io/, . (Accessed on 06/15/2017).

[19] Github - RestKit/RestKit: RestKit is a framework for consuming and modeling RESTful web
resources on iOS and OS X. https://github.com/RestKit/RestKit. (Accessed on
06/21/2017).

[20] Home · ReactiveX/RxJava Wiki. https://github.com/ReactiveX/RxJava/wiki. (Ac-
cessed on 06/15/2017).

[21] Socket.IO. https://socket.io/. (Accessed on 06/15/2017).

[22] Continuous Code Quality | SonarQube. https://www.sonarqube.org/. (Accessed on
06/22/2017).

[23] Spring. https://spring.io/, . (Accessed on 06/19/2017).

[24] Spring Boot. https://projects.spring.io/spring-boot/, . (Accessed on 06/19/2017).

[25] Testing Support Library. https://developer.android.com/topic/libraries/

testing-support-library/index.html#UIAutomator. (Accessed on 05/01/2017).

[26] WebDriver. https://www.w3.org/TR/webdriver/. (Accessed on 05/02/2017).

[27] Xcode - Apple Developer. https://developer.apple.com/xcode/. (Accessed on
06/21/2017).

[28] User Interface Testing. https://developer.apple.com/library/content/

documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/

09-ui_testing.html. (Accessed on 05/01/2017).

[29] Laura Inozemtseva and Reid Holmes. Coverage is not strongly correlated with test suite ef-
fectiveness. In Proceedings of the 36th International Conference on Software Engineering,
ICSE 2014, pages 435–445, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2756-5. doi:
10.1145/2568225.2568271. URL http://doi.acm.org/10.1145/2568225.2568271.

http://reactivex.io/
https://github.com/RestKit/RestKit
https://github.com/ReactiveX/RxJava/wiki
https://socket.io/
https://www.sonarqube.org/
https://spring.io/
https://projects.spring.io/spring-boot/
https://developer.android.com/topic/libraries/testing-support-library/index.html#UIAutomator
https://developer.android.com/topic/libraries/testing-support-library/index.html#UIAutomator
https://www.w3.org/TR/webdriver/
https://developer.apple.com/xcode/
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/09-ui_testing.html
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/09-ui_testing.html
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/09-ui_testing.html
http://doi.acm.org/10.1145/2568225.2568271

A
Original Project Description

bunq might be a bank, but we’re an IT-company first, founded and run by coders. That means automa-
tion is our game! Our systems are subject to regular deploys. We’d like to automate parts of our (code)
testing on a larger scale than we have done until now. This setup needs to keep our extreme security
demands in mind, since we are a bank. That’s where you come in! You’ll find a way to automatically
test parts of our setup.

We would like to see a complete system of scripts to automate (a large part of) our testing. More
importantly, the solution needs to be scalable to make it future-proof. We aim for a working prototype
at the end of the project.

39

B
Post Update Basic Features Check

What is this part of the testrun about?

The checks below are all used to ensure basic functionality is working correctly, these checks are
always ran before we start company wide testing and before we start TestFlight (iOS) or Alpha (Android)
releases.

Signup

• Signup UserSuperLight in Slice
• Upgrade UserSuperLight to UserLight in bunq
• Upgrade UserLight to UserPerson in bunq
• Signup UserCompany in bunq

Payments

• Send a normal bunq-to-bunq Payment picking someone from suggestions
• Send a normal bunq-to-bunq Request picking someone from the contact picker
• Make an iDEAL deposit
• Make a SOFORT deposit
• Trigger a card payment card payment
• Make an online iDEAL payment
• Create and pay bunq.me requests through SMS
• Create and claim a bunq.to payment through email

Slice

• Create a group
• Send a chat message and a chat attachment in a group
• Add a custom expense
• Add an expense from a payment
• Settle the group

41

42 B. Post Update Basic Features Check

Other

• Setup a Connect
• Order a Card
• Event overview shows up correctly
• Check push messages
• Send a chat message and a chat attachment in Payment or Request
• Support chat
• Open admin

C
Software Improvement Group Evaluation

The code scores 4 out of 5 stars on our maintainability model, which means that the maintainability of
the code is above average. The highest score wasn’t achieved due to lower scores for Unit Size and
Unit Complexity.

Note: because your score is already quite high, all the recommendations are small points of improve-
ment.

For Unit Size, the percentage of methods of which the length is above average is considered. Splitting
thesemethods up in smaller pieces causes every part to be easier to understand and test, and therefore
easier to maintain.

In your project, the method Fling.call is a good candidate to split up further. The part between line
31 and 43 is actually a separate method, getDirection(). At this moment, it’s not yet a problem to
do everything in one method, but when the functionality keeps growing, these kinds of refactors benefit
the readability greatly. Similar problems occur in other subclasses of Instruction.

For Unit Facing, the percentage of units with an above average amount of parameters is considered.
Usually, an above average amount of parameters indicates a lack of abstraction. Furthermore, a large
number of parameters can lead to confusion in calling the method, and usually also mean longer meth-
ods.

In your case, the constructor of Runner has remarkably many parameters. Besides, four of these
parameters are lists. If you look at what happens with these parameters, it’s not too bad: most of them
are only used to create a RunnerContext object. It would be better to pass the RunnerContext object
to the Runner directly, that way you prevent the Runner depending on large amounts of data that aren’t
its direct responsibility.

The presence of test code is promising, hopefully the amount will increase when new functionality is
added.

Generally, the code scores above average, hopefully this level will be maintained during the rest of the

43

44 C. Software Improvement Group Evaluation

development phase.

D
Initial Solution

We propose the following modular design, see figure D.1. First we introduce a server app that can be
installed on the mobile device that can do actions and assertions through the UI automation libraries
for Android and iOS: UI Automator[25] for Android and XCUITest[28] for iOS. This server app gets its
instructions from the main application.

We also introduce an application that will be run on a continuous integration host. This application will
serve a web interface for creating and editing tests, and showing test run results. It also connects to
the server app to send instructions and receive results.

Figure D.1: Proposed design of the system

45

46 D. Initial Solution

D.1. Back-end server
Themain responsibility of the back-end server is to run the created test against the staging environment.
It is also responsible for handling user instructions, monitoring and hosting the test creation toolkit.

D.1.1. Web interface

The web interface is what the testers will interact with. The core system can be instructed, tests can
be monitored and new tests can be created or adjusted.

D.1.2. Main application

The main application is the core functionality of the framework. The core will interpret tests and send
instructions to the server apps that are installed on the mobile devices. These instructions are part
of the core protocol. It also checks whether actions and assertions on the testable app succeeded or
failed through the server app.

It also has the possibility to handle user instructions like redoing certain tests or pausing the system.
The core is continuously monitored and reports to a web interface. To help non-developers creating
tests a test creation toolkit will optionally be offered to the user.

Figure D.2: Proposed design of the main appliction

D.2. Mobile device
The mobile device can be any testing device, emulator (Android) or simulator (iOS).

D.3. Tests 47

D.2.1. Testable app

The testable app remains exactly the same, so the testing framework can run without adding any code
or dependencies.

D.2.2. Server app

The server app functions as an adapter. It is the talking point for the back-end server and receives
instructions from the main application, the client. After receiving instructions it will pass trough those
instructions to the UI Automator or XCUITest and thereby leaving the testable app unchanged.

This part of the testing framework is the only platform dependent part and therefore the codebase and
complexity need to be minimised. When functionality is shared between Android and iOS in terms of
testing the client should be responsible for handling the platform specific differences. The final result
is shown in figure D.3.

Figure D.3: Proposed design of the server app

D.3. Tests
Tests are going to be implemented as simple steps with blanks to fill in. This also makes it possible to
define the tests for both Android and iOS with the same code.

Converting the current test definitions is relatively easy. The first test from appendix B can now be
converted to a test like figure D.4.

If there are substantial architectural differences for certain scenarios between the Android and iOS
apps, we will support writing separate tests for both platforms.

48 D. Initial Solution

Feature: Account creation
As a user I want to have an amazing experience when creating an account. I should be able

to create and upgrade Slice and bunq accounts.

Scenario: Successful signup UserSuperLight in Slice
Given I start the slice app
When I press the button with text JOIN US
Then I see the slice phone number screen
When I type 612345678
And I click on next
Then I see the slice verification screen
And I receive an SMS
When I type 123456
Then I see the slice profile creation screen
When I type Firstname Lastname
And I press the checkbox with I accept all terms and conditions
And I click on next
Then I see the slice permission screen
When I press the button with text skip
And I press the button with text skip
Then I see the slice main screen

Scenario: ...

Figure D.4: Example of a successful signup test

E
Device API Reference

E.1. General

E.1.1. Request

A request must be a POST request with MIME-type application/json.

It must contain the following:

name type description when
screenshot boolean whether a screenshot must be created for every step or only on

failure
always

E.1.2. Response

A response must have MIME-type application/json.

It must contain the following:

name type description when
failed boolean indicates whether the instruction was successful or not always
message string a message describing the success or failure always
screenshot string a base64-encoded screenshot on failure

E.2. Instructions

E.2.1. /instruction/press_element_by_id

Press an element by its ID.

49

50 E. Device API Reference

Request

name type description required
viewId string the id of the element to press yes

E.2.2. /instruction/press_element_by_text

Press an element by its text. The specified text may also be a substring. It’s case sensitive.

Request

name type description required
text string the text of the element to press yes

E.2.3. /instruction/press_back

Press the back button.

Request

No specific request.

E.2.4. /instruction/register_dialog_watcher

Register a watcher that automatically accepts all dialogs conform a specified format. Only one watcher
can be registered at the same time.

Request

name type description required
layoutElements list[string] if and only if all of these IDs are visible, the dialog should

be accepted
yes

okButton string the ID of the button to press to accept the dialog yes

E.2.5. /instruction/start_app

Start a specific application.

Android

It will start the activity with the android.intent.category.LAUNCHER category.

E.2. Instructions 51

Request

name type description required
appName string the package name of the application yes

E.2.6. /instruction/type

Type a string.

Android

The available characters are limited to what is typable with a standard ANSI or ISO US International
keyboard.

Request

name type description required
text string the text to type yes

E.2.7. /instruction/unregister_dialog_watcher

Deregister the watcher that is registered with /instruction/register_dialog_watcher. If no
dialog watcher is registered, nothing will happen.

Request

No specific request.

E.2.8. /instruction/verify_screen

Verify if a layout ID is currently visible on the screen.

Request

name type description required
screenName string the ID of the layout to verify yes

E.2.9. /instruction/verify_text

Verify if the specified text is currently visible on the screen. May also be a substring.

52 E. Device API Reference

Request

name type description required
text string the text to verify yes

E.2.10. /instruction/fling

Swipe in the specified direction.

Request

name type description required
direction string the direction to swipe to (can only be left or right) yes

F
Implemented Instructions

The parts in-between <> are dynamic parameters, and the italicised parts are optional parameters.

I type <text>: Type <text> on the device.

I possibly press the element with <text>: Press an element containing <text>. Will not fail if no
such element is found when possibly is specified.

I possibly press the <id> element: Press an element with that can be identified with <id>. Will not
fail if no such element is found when possibly is specified.

I press the back button: Press the back button on the device. I start the <app> app: Start the <app>
application.

I should see the <id> screen: Verify whether a layout element exists that can be identified with <id>.

I should see an element with <text>: Verify whether <text> is visible.

I fling <direction>: Swipe in the <direction> direction. <direction> should be one of left
or right.

I wait for <seconds> seconds: Do nothing for <seconds> seconds.

53

G
Project Infosheet

See next page.

55

General Information
Title of the project: Automated Testing
Name of the client organisation: bunq
Date of the final presentation: July 3rd, 2017

Client
Name: Ir. W. Van
Affiliation: bunq

Coach
Name: Dr. ir. F. Palomba
Affiliation: Software Engineering Research Group

Description
Every week bunq loses a lot of time with manual testing the weekly releases of their Android and iOS apps. This work
is also done by non-developers. Ideally bunq wants a solution that makes automated testing of their apps possible by
non-developers. Defining tests once for iOS and Android is considered a big bonus. Since bunq has more than one app
the solution should be app-independent.

Challenge
The main challenges were handling all the asynchronous
data actions that had to be performed combined with I/O op-
erations. We resolved these problems by using RxJava and
by abstracting the I/O-layer. The workload was heavy for
two persons.

Research
During the research phase we mainly learned about the al-
ready available tooling for testing Android and iOS apps. We
learned that the available tools were not sufficient for what
we were trying to do, but that some aspects of tools could
be reused. Also some frameworks could be used as partial
solution for subproblems.

Process
Since we both had our area of expertise one of us started
working on the back-end and the other one on the android
app. By defining the API early we could work towards a
working product. Later the person that was working on the

back-end started building the front-end and attached it to
the back-end. The person that created the android app inte-
grated it even further by creating a device connector. In the
end we worked on all the parts together. All code has gone
trough pull requests and in the end we both understand all
components.

Product
The product resulted in a behaviour driven testing applica-
tion for Android with extensibility for iOS in mind (interfaces
left to implement for iOS). Non-developers can define the
behaviour they want to see from their application and run
the tests. Tests can be done on multiple devices simultane-
ously. The testing framework is also app-independent. The
code is tested by both unit tests and implementation tests.

Outlook
The framework is already in use and will be further extended
by the client. Recommendations in terms of how to proceed
were made.

Members of the project team
Name: René Vennik
Interests: High performance scalable systems, problem solving, programming concepts
Contribution and role: Architecture Design; Front-end; Back-end runner, executor and webserver

Name: Wim de With
Interests: System administration, low level architecture
Contribution and role: DevOps; Back-end device connector; Android implementation

H
Screenshots

Figure H.1: Create and modify categories

57

Figure H.2: View, move and navigate to tests (features)

Figure H.3: Change a feature

Figure H.4: Autocomplete of step

Figure H.5: Autocomplete of arguments

Figure H.6: Configure mappings

Figure H.7: Run selected features

Figure H.8: Running runner

Figure H.9: Result of runner

Figure H.10: Step result of runner

Figure H.11: Failed step result of runner

Figure H.12: User flow of feature

Figure H.13: Overview of routines

Figure H.14: Change a routine

	Introduction
	Problem Definition
	Requirements
	Functional requirements
	Non-functional requirements

	Analysis of Existing Tools and Selection of the Solution
	Full testing solutions
	Partial testing solutions
	Test language
	Chosen solutions

	Product Features
	Structure
	Tests
	Autocomplete
	Config
	Runner
	User flow
	Routines

	Architecture of the System
	Front-end
	Back-end
	Platform specific design
	Adjustments to initial solution

	Implementation
	Step autocompletion
	Reactive test runner
	Android platform connection

	Software Development Process
	Methodology
	Testing
	Tools
	Software Improvement Group feedback

	Conclusion and Recommendation
	Conclusion
	Recommendations

	Bibliography
	Original Project Description
	Post Update Basic Features Check
	Software Improvement Group Evaluation
	Initial Solution
	Back-end server
	Mobile device
	Tests

	Device API Reference
	General
	Instructions

	Implemented Instructions
	Project Infosheet
	Screenshots

