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A B S T R A C T

We propose several enhancements to improve the accuracy and performance of the digital filter turbulent
inflow generation technique and assess their efficacy in the context of wall-resolved large-eddy simulations of a
compressible turbulent boundary layer. Improvements of accuracy include a more realistic correlation function
for the transversal directions, target length scales that vary with wall-distance, and a counter-intuitive approach
that involves the suppression of streamwise velocity fluctuations at the inflow. For improving the computational
performance, we propose to generate the inflow data in parallel in single precision and at a prescribed time
interval based on the turbulence time scale, and not at every time-step of the simulation. Based on the results
of 7 wall-resolved large-eddy simulations, we find that the new correlation functions and the considered
performance improvements are beneficial and therefore desired. Suppressing streamwise velocity fluctuations
at the inflow leads to the fastest relaxation of the pressure fluctuations; however, this approach increases the
adaptation length defined in terms of compliance with the von Kármán integral equation. The adaptation length
can be shortened by artificially increasing the wall-normal Reynolds stresses, thereby preserving the desired
turbulence kinetic energy level. A detailed inspection of the Reynolds stress transport budgets reveals that
the observed spurious spatial transients are largely driven by pressure-related terms. For instance, increased
values of 𝑢′𝑝′ are found throughout the computational domain when a physical Reynolds stress distribution is
prescribed at the inflow. Therefore, efforts to enhance digital filter techniques should aim at modeling pressure
fluctuations as well as their correlation with the velocity components.
1. Introduction

Turbulence-resolving simulations, such as direct and large-eddy
simulations (DNS and LES) provide the highest accuracy for the study of
complex phenomena in wall-bounded turbulence and associated flow-
control applications. However, quality and reliability of the resulting
data strongly depends on the accuracy of the employed boundary
conditions. Of particular relevance is the inflow boundary condition,
which dictates the downstream flow evolution. Inappropriate inflow
data can lead to excessively long spatial transients until the turbulent
flow is fully developed. This naturally increases the computational
domain size required for a given flow problem, which, in the worst case,
can become intractable in combination with the high spatio-temporal
resolution requirements of LES and DNS.

For these reasons, a vast variety of turbulence generation method-
ologies have emerged in the past decades [1–3]. Besides data-driven
approaches, where the inflow condition stems from a detailed data
base, a reduced-order model of the same flow [4] or, more recently,
from deep learning models [5], turbulence generation techniques are
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classified into recycling methods and synthetic methods. Recycling
methods extract the required inflow state from an auxiliary simulation
or directly from a downstream plane with appropriate re-scaling [6,7].
Synthetic inflow methods, on the other hand, are based on constraining
random fluctuations to satisfy prescribed statistics and recover a target
coherence or energy spectrum [8–10]. Comprehensive reviews of the
available techniques within these two categories are provided by Tabor
and Baba-Ahmadi [1], Wu [2] and Dhamankar et al. [3].

An example for synthetic turbulence generation methods is the so-
called digital filter technique [9,11]. This method is essentially based
on imposing target spatial and temporal correlations on random fields
via explicit filtering. The appropriately correlated and scaled random
fields are then added to given target mean fields to generate the
instantaneous inflow data. The required knowledge of the target flow is
therefore limited to mean flow quantities, auto and cross correlations
of their fluctuations, and approximate integral spatio-temporal scales
for a given auto-correlation function. Contrary to recycling/re-scaling
vailable online 8 November 2023
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methods, digital-filter techniques do not introduce any undesired low-
frequency or long-wavelength structures. This is an attractive feature
of the digital filter that combined with its straightforward integration
in numerical solvers have made the technique a common choice for the
simulation of several flows of practical interest [12–16].

Despite being widely adopted, however, the digital filter is still far
from being the ideal turbulence generator [3]. An important drawback
is the lack of proper phase information of realistic turbulent eddies,
which inevitably leads to a finite spatial transient during which physi-
cal flow structures develop [17]. The resulting adaptation or induction
length, that is, the distance required for turbulence to recover from
the modeling errors, depends also on the metric of interest, that is,
whether one is primarily interested in realistic mean profiles, or also
in pressure fluctuations, Reynolds stresses, etc. [18]. In wall-bounded
turbulence, this transient typically manifests as a significant dip in
the skin-friction distribution [16], which extends over approximately
5 boundary layer thicknesses and is followed by a spatial transient of
approximately 10-20 boundary layer thicknesses until agreement with
most reference correlations is attained. As indicated by Wenzel et al.
[15] and confirmed by Huang et al. [19], the induction length can
be even longer when defined based on the compliance with the von
Kármán integral equation. In compressible flows, the spatial transient
additionally results in strong pressure disturbances that substantially
contaminate the downstream acoustic field [16,20].

In an attempt to mitigate some of the aforementioned deficien-
cies, different improvements of the digital filter technique have been
considered [3]. For instance, Di Mare et al. [21] and Veloudis et al.
[22] investigated the effect of spatially varying scales at the inflow
plane, instead of constant scales throughout, which led to a better
prediction of downstream turbulence profiles. Other strategies involve
sponge zones located after the digital filter boundary as means to damp
spurious acoustic noise from the non-equilibrium flow [16] or directly
forcing the solution towards the expected developed state [23]. More
recently, Ceci et al. [18] investigated the effect of suppressing stream-
wise velocity fluctuations at the inflow plane, which led to a faster
relaxation of pressure fluctuations. Interestingly, this counter-intuitive
approach did not incur additional penalties in the development of the
Reynolds stresses, at least in the low supersonic regime.

Therefore, much potential exists for improving the capabilities of
the digital filter method. However, proposed improvements have not
been investigated systematically and they appear scattered over dif-
ferent studies (which involve different applications, flow conditions
and numerical strategies). This makes it hard for researchers to assess,
based on an acceptable level of accuracy, whether any additional
modifications of the digital filter technique are worth the extra effort.
Furthermore, few studies attempt to explain the observed deficiencies
from a flow physics perspective, which, in our opinion, is key for
further refinement of the method.

The purpose of this paper is thus to systematically assess the efficacy
of several methods that can improve the accuracy and performance of
the digital filter technique based on a compressible turbulent boundary
layer benchmark and to explain the observed differences upon inspec-
tion of the dominant terms in the transport equations for the Reynolds
stresses. Improvements of accuracy motivated by flow physics include
a novel filter kernel function for the transversal directions and varying
target length scales with wall-distance. Following a recent suggestion
of Ceci et al. [18], we also consider suppressing streamwise velocity
fluctuations at the inflow plane. To further improve the latter method,
we assess the potential benefits of preserving the inflow turbulence
kinetic energy by amplifying one of the cross-stream Reynolds stresses.
In addition, we present selected details of our implementation for
massively parallel simulations that reduce the computational cost of
digital filter turbulent inflow generation methods.

The paper is organized as follows. In Section 2 we briefly describe
the baseline digital filter method as well as the considered modifica-
2

tions. Details of the numerical method and the study case are then
provided in Section 3. In Section 4 we present and analyze the results
of seven wall-resolved LES with the investigated inflow settings and
explain the observed differences based on Reynolds stress budgets. The
paper is finally concluded in Section 5 along with further remarks.

2. The digital filter method

2.1. Baseline method

The baseline digital filter method considered in this paper is based
on the method proposed by Xie and Castro [11] for incompressible
flows, which is an extension of the original work of Klein et al. [9]
and proceeds as follows:

1. At every time step, three slices of uncorrelated Gaussian random
numbers 𝑖, with 𝑖 = {1, 2, 3}, are generated. Each slice has zero
mean and unit variance, and is uncorrelated from the others.

2. A two-dimensional spatial filter is then applied to each random
slice in order to impose spatial coherence. The two-dimensional
filter kernel is defined as the tensor product of two one-dimens-
ional kernels that are based on the following exponential corre-
lation function

𝑅(𝑟) = exp
(

− 𝜋𝑟
2𝐼𝐿

)

, (1)

where 𝐼𝐿 is the target integral length scale, which can have dif-
ferent values for each random field, direction, and wall distance.
In discrete form, and for a constant grid spacing ℎ with 𝐼𝐿 = 𝑛ℎ
and 𝑟 = 𝑘ℎ, Eq. (1) becomes

𝑅(𝑘ℎ) = exp (−𝜋|𝑘|∕(2𝑛)). (2)

To approximate the discrete filter coefficients, namely 𝑏𝑘, Xie
and Castro [11] propose the following relations

𝑏𝑘 = �̃�𝑘

( 𝑁
∑

𝑗=−𝑁
�̃�2𝑗

)−1∕2

, and �̃�𝑘 ≈ exp
(

−
𝜋|𝑘|
𝑛

)

, (3)

where 𝑁 is the filter support, taken as 𝑁 ≥ 2𝑛. The spatially
filtered fields are denoted as ̃𝑖.

3. Temporal coherence is also assumed of exponential form, and is
achieved via

G𝑖(𝑡) = G𝑖(𝑡 − 𝛥𝑡) exp
(

−𝜋𝛥𝑡
2𝐼𝑇

)

+ ̃𝑖(𝑡)
[

1 − exp
(

−𝜋𝛥𝑡
𝐼𝑇

)]1∕2
, (4)

where 𝐼𝑇 is the target time scale and G𝑖 are the space–time
correlated random fields.

4. The inflow data �̃�𝑖(𝑡) = 𝑈𝑖 + 𝑢′′𝑖 (𝑡) is composed of target mean
velocity 𝑈𝑖 and instantaneous fluctuations 𝑢′′𝑖 (𝑡) = 𝑎𝑖𝑗G𝑗 (𝑡), where
𝑎𝑖𝑗 is the Cholesky decomposition of the target Reynolds stress
tensor. This transformation, originally proposed by Lund et al.
[6], scales the slice variance (originally unity) to provide the
target second-order statistics.

We refer the reader to the original publications [9,11] for additional
details.

2.2. Implementation for compressible flows

For compressible simulations, thermodynamic fluctuations are also
required at the inflow boundary. As commonly done in previous
works [12], we use the strong Reynolds analogy (SRA) to relate velocity
and temperature fluctuations of a perfect gas

𝑇 ′′ = −
𝑈1
𝑐𝑝

𝑢′′1 , (5)

where 𝑢′′1 is the streamwise velocity fluctuation given by the digital fil-
ter. The mean streamwise velocity 𝑈 and the specific heat at constant
1
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Fig. 1. (𝑎) Exponential correlation suggested by Xie and Castro [11], and (𝑏) proposed correlation function for transversal directions. Black lines target correlation; blue lines:
orrelation provided by the approximated digital filter kernel; red markers: spanwise 𝑢′ auto-correlation function computed from DNS data of a supersonic TBL at Mach 2.0 and
𝑦∕𝛿 = 0.5 (from Pirozzoli and Bernardini [25]).
pressure 𝑐𝑝 are inputs. Density and temperature fluctuations are then
related through the perfect gas law at constant pressure

𝜌′ = −
𝜌
𝑇
𝑇 ′′ . (6)

he mean density 𝜌 and the mean temperature 𝑇 are also provided as
nput. Note that this method approximates an inflow state with zero
ressure fluctuations.

All inflow conditions generated by the digital filter are then pre-
cribed at the inflow plane via a characteristic-based method in order
o minimize spurious noise [24].

.3. Improvements of accuracy

Xie and Castro [11] propose the exponential form (1) for the ve-
ocity correlation function. However, an exponential function is a very
oor approximation for the transversal velocity correlation functions in
urbulent boundary layers [25], even when optimized length scales are
mployed. For this reason, we consider a correlation function of the
orm

(𝑟) =
(

1 − 𝑟
𝐼𝐿

)

exp
(

− 𝑟
𝐼𝐿

)

, (7)

which includes negative values and thus much better resembles trans-
versal correlation functions. We propose the following relation

𝑏𝑘 ≈

(

1 −
(

|𝑘|
𝑛

)0.3
)

exp
(

−
|𝑘|
𝑛

)

, (8)

for the calculation of the discrete filter coefficients in the transversal
directions (e.g. for the spanwise coherence of 𝑢′′), which approximates
the target transversal correlation function (7) well. In normal directions
(e.g., for the spanwise coherence of 𝑤′′), the exponential correlation
function proposed by Xie and Castro [11] is still employed since it is a
good approximation of the target spatial coherence [26].

Fig. 1 compares the exponential correlation suggested by Xie and
Castro [11], in Fig. 1(a), with the correlation function that we propose
for the transversal directions, see Fig. 1(b). Black lines denote the cor-
responding target correlation functions whereas the actual correlations
provided by the digital filter with approximated filter coefficients is
indicated with a blue line. The length scale is set to 𝐼𝑧 = 0.25𝛿, which
is the value reported by Pirozzoli and Bernardini [25] for the auto-
correlation of 𝑢′ in spanwise direction at 𝑦∕𝛿 = 0.5 (see figure 26(𝑏)
in their publication). The auto-correlation function that Pirozzoli and
Bernardini [25] obtain is also included for reference in Fig. 1, which
shows that our model correlation (7) for tangential directions as well as
the actual correlation provided by digital filter with the approximated
filter kernels (8) are in much better agreement with the reference data
3

than the purely exponential relations suggested by Xie and Castro [11].
As means to further increase the accuracy of the inflow data, we
employ the zonal approach proposed by Veloudis et al. [22] whereby
the digital filter inflow plane is divided in multiple zones with different
target scales. The considered zones and their corresponding scales are
presented in Section 3.

In addition to modifications that are directly motivated by improv-
ing the physical realism of the imposed velocity fluctuations, we also
analyze a modification recently proposed by Ceci et al. [18], who found
that suppressing streamwise velocity fluctuations at the inflow plane
effectively reduces spurious pressure perturbations. Since the inflow
turbulence kinetic energy 𝑘𝑖𝑛 = 𝑢′′𝑖 𝑢

′′
𝑖 ∕2 would be highly reduced by

setting 𝑢′′1 = 0, the potential benefits of preserving 𝑘𝑖𝑛 by amplifying
one of the cross-stream Reynolds stresses is also assessed; that is, we
prescribe for the wall-normal stress 𝑢′′22 (𝑦) = 2𝑘𝑖𝑛(𝑦) − 𝑢′′23 (𝑦) while the
spanwise stress 𝑢′′23 (𝑦) remains unaltered, and vice-versa.

Lastly, since pressure fluctuations are an important element in tur-
bulent flows [27,28], we also considered generating both pressure and
density fluctuations from the temperature field under the assumption
of isentropic flow. For a calorically perfect gas, the isentropic condition
implies that 𝜌 ∝ 𝑇 1∕(𝛾−1) which leads to

𝜌′

𝜌
=
(

1 + 𝑇 ′′

𝑇

)

1
𝛾 − 1 − 1, (9)

and the corresponding pressure fluctuation then follows from the ideal
gas law. Results for this approach, however, are not reported in this pa-
per since no significant changes of the results were observed compared
to the SRA-based method, where pressure fluctuations are neglected.
This comes as no surprise considering the non-isentropic nature of the
thermodynamic fluctuations in compressible turbulent boundary layer
flows [26].

2.4. Improvements of performance

We refer the reader to Kempf et al. [29] for an efficient baseline
implementation of the digital filter method. In this section, we briefly
discuss additional performance improvements.

The generation of high-quality random fields can be a major con-
tribution to the computational cost. We have therefore implemented
a highly optimized, parallel version of the Mersenne Twister MT19937
of Matsumoto and Nishimura [30] for the generation of single-precision
Gaussian random numbers. The compute load is equally distributed
over all processes, and each process initializes its random stream at
a different position along the sequence. The very long period of the
stream avoids unwanted correlations for all practical purposes. Partic-
ular attention was put on optimizing memory alignment and vectoriza-
tion. All operations on the random fields and velocity fluctuations are
performed in single precision and only the final inflow data is stored
in double precision.
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Table 1
Details of the investigated digital filter modifications.
Case #Zones 𝑅𝑡 update interval 𝑢′′𝑖𝑛 suppressed 𝑘𝑖𝑛 preserved 𝑅𝑒𝜏 at 𝑥∗ = 40. Legend

R0 3 exp (−𝜋𝑟∕(2𝐼𝐿)) Every step No Yes 1310
A1 3 (1 − 𝑟∕𝐼𝐿) exp (−𝑟∕𝐼𝐿) Every step No Yes 1301
A2 3 (1 − 𝑟∕𝐼𝐿) exp (−𝑟∕𝐼𝐿) Every 25 steps No Yes 1292
A3 1 (1 − 𝑟∕𝐼𝐿) exp (−𝑟∕𝐼𝐿) Every step No Yes 1329
B1 3 (1 − 𝑟∕𝐼𝐿) exp (−𝑟∕𝐼𝐿) Every step Yes Yes, via 𝑣′′2 1300
B2 3 (1 − 𝑟∕𝐼𝐿) exp (−𝑟∕𝐼𝐿) Every step Yes Yes, via 𝑤′′2 1298
B3 3 (1 − 𝑟∕𝐼𝐿) exp (−𝑟∕𝐼𝐿) Every step Yes No 1218
Table 2
Target length scales per zone, velocity component and spatial direction.
Zone Range 𝐿𝑟𝑒𝑓 𝐼𝑥∕𝐿𝑟𝑒𝑓 𝐼𝑦∕𝐿𝑟𝑒𝑓 𝐼𝑧∕𝐿𝑟𝑒𝑓

𝑢 𝑣 𝑤 𝑢 𝑣 𝑤 𝑢 𝑣 𝑤

1 0 to 𝑦+ = 100 𝑙+𝑖𝑛 400 100 60 75 100 50 100 50 100
2 𝑦+ = 100 to 0.2𝛿0,𝑖𝑛 𝛿0,𝑖𝑛 1.2 0.2 0.3 0.2 0.2 0.15 0.2 0.15 0.3
3 Above 0.2𝛿0,𝑖𝑛 𝛿0,𝑖𝑛 0.9 0.3 0.3 0.3 0.3 0.25 0.35 0.25 0.35
t
R
m

In order to further reduce the computational costs incurred by the
ethod, we update the inflow data at a prescribed time interval instead

f every time step. We propose to choose the update interval as 1∕20𝑡ℎ

f the smallest time scale of the input dataset, which for the con-
idered benchmark case corresponds to approximately 25 time-steps.
t the intermediate time-steps, linear interpolation is used between

he corresponding digital filter solutions. With these measures, the
omputational cost of the digital filter boundary condition does not
ignificantly affect the load balance of massively parallel simulations
nd amounts to about 1% of the total wall-clock time.

. Benchmark case and numerical setup

The benchmark case is a zero-pressure-gradient turbulent boundary
ayer at Mach 2.0 [26]. Stagnation temperature and pressure are set
o 𝑇0 = 288 K and 𝑝0 = 356 kPa respectively, and the free-stream
low velocity is 𝑢∞ = 507 m∕s. At the inflow plane, the 99% velocity-
ased boundary layer thickness 𝛿0,𝑖𝑛 is 5.2 mm and the corresponding
riction Reynolds number is 𝑅𝑒𝜏,𝑖𝑛 = 935. The fluid is air with a specific

heat capacity ratio of 𝛾 = 1.4 and the specific gas constant  =
287.05 J(kgK)−1. The temperature dependency of the dynamic viscosity
is modeled through Sutherland’s law and the heat flux is given by
Fourier’s law. The thermal conductivity is proportional to the dynamic
viscosity with a molecular Prandtl number of 𝑃𝑟 = 0.72.

Table 1 includes a summary of the performed simulations and their
corresponding digital filter settings. The reference case R0, correspond-
ing to the standard digital filter implementation for compressible flows,
considers exponential correlations in all directions. All cases except for
A3 consider three different zones at the inflow plane, corresponding
to the inner region, the overlap region, and the outer region of the
boundary layer. The target length scales, which differ for each zone,
are given in Table 2. Case A3, on the other hand, only includes one
zone with target length scales corresponding to the largest values in
Table 2 per direction and velocity component. Table 1 also states the
employed correlation function in tangential directions (𝑅𝑡) and the
time-step interval at which new inflow data is generated. For cases
B1 to B3 streamwise velocity fluctuations are suppressed at the inflow
plane, and additional information is provided regarding the treatment
of the turbulence kinetic energy at the inflow 𝑘𝑖𝑛. For later reference,
the employed line legend in the upcoming figures is also included in
Table 1.

The computational domain is a rectangular box with dimensions
𝐿𝑥 = 45𝛿0,𝑖𝑛 (streamwise), 𝐿𝑦 = 16.5𝛿0,𝑖𝑛 (wall-normal), and 𝐿𝑧 =
4𝛿0,𝑖𝑛 (spanwise). The domain is discretized with 56 × 106 cells, and
the grid spacing in viscous units at the wall is 𝛥𝑥+ = 39, 𝛥𝑦+ =
0.94 and 𝛥𝑧+ = 9.74. Non-reflecting boundary conditions are used
at the top and outflow boundaries [24], and periodicity is enforced
4

in the spanwise direction. The wall is modeled as isothermal at the
stagnation temperature, i.e., 𝑇𝑤𝑎𝑙𝑙 = 𝑇0, and inflow data is generated
via the different digital filter methods explained above. For this work,
prescribed mean profiles and Reynolds stresses at the inflow plane are
adapted from the reference DNS data of Pirozzoli and Bernardini [25].

All simulations are performed with the finite volume solver INCA
(https://www.inca-cfd.com), which employs the adaptive local decon-
volution method (ALDM) for implicit LES of the compressible Navier–
Stokes equations [31]. ALDM is a nonlinear solution-adaptive finite
volume method that exploits the discretization of the convective fluxes
to introduce a physically consistent sub-grid scale turbulence model.
Since unresolved turbulence and shock waves require fundamentally
different modeling, ALDM relies on a shock sensor to control model
parameters. This guarantees the accurate propagation of smooth waves
and turbulence without excessive numerical dissipation while pro-
viding essentially non-oscillatory solutions at strong discontinuities.
Diffusive fluxes are approximated by second-order schemes and a third-
order total variation diminishing Runge–Kutta scheme is employed
for time integration. The reader is referred to Hickel et al. [31] for
implementation details of the method and validation results.

Each simulation proceeded as follows: First, an initial transient of
10 flow-through times (FTT) of the full domain length was simulated to
ensure a fully developed turbulent flow in statistical equilibrium. This
solution interval was discarded from the analysis. After this transient,
simulations were integrated for another 12 FTT of the full domain
length. During this second interval, statistics samples were collected
at a sampling interval of 𝛥𝑡𝑢∞∕𝛿0,𝑖𝑛 ≈ 0.013 and averaged in the
homogeneous spanwise direction and in time.

4. Results and discussion

In wall-bounded flows, a primary metric to assess the performance
of inflow turbulence generators is the evolution of the skin-friction
coefficient. This is shown in Fig. 2(𝑎) against the streamwise coordinate
𝑥∗ = (𝑥 − 𝑥𝑖𝑛)∕𝛿0,𝑖𝑛, where 𝑥𝑖𝑛 is the location of the inflow plane. As
observed, all cases exhibit a characteristic dip in ⟨𝑐𝑓 ⟩ right after the
inflow that is recovered within approximately 5𝛿0,𝑖𝑛. The strength of
the dip clearly depends on the digital filter settings; for instance case
B1 additionally exhibits an initial overshoot. See Table 1 for details on
the employed digital filter settings per simulation as well as the line
legend.

While an apparent equilibrium behavior is observed after the tran-
sient region of 5𝛿0,𝑖𝑛, differences between the skin-friction distributions
remain visible for the investigated cases. For instance, the ⟨𝑐𝑓 ⟩ distribu-
ions for cases A1 and A2 are very similar to that for the baseline case
0, while case A3 shows discrepancies that include larger skin-friction
agnitudes. This suggests a non-negligible effect of the excessively

https://www.inca-cfd.com
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Fig. 2. (a) Streamwise evolution of the time- and spanwise-averaged skin-friction, and
(b) equivalent incompressible skin-friction as a function of the transformed momentum-
thickness Reynolds number. The gray area in (b) is bounded by the correlation of
Kármán-Schoenherr [32] (KS) and the correlation of Smits et al. [33] (S). See Table 1
for the line legend and details on the employed digital filter settings per simulation.

Fig. 3. Compliance with the von Kármán integral equation. Dotted lines indicate ±5%
eviation.

arge scales at the wall, which is retained throughout the computational
omain. Suppressing streamwise velocity fluctuations at the inflow also
nfluences the solution noticeably, with case B3 exhibiting the lowest
𝑐𝑓 ⟩ values. Note that 𝑘𝑖𝑛 is not preserved for case B3.

The van Driest II transformation [34] is employed to remove Mach
umber effects and enable comparison with reference incompressible
orrelations. Skin-friction and momentum thickness Reynolds number
𝑒𝜃 are thus reduced to their incompressible counterparts by applying

he following transformation

𝑓,𝑖 = 𝐹𝑐𝑐𝑓 , 𝑅𝑒𝜃,𝑖 =
𝜇∞
𝜇𝑤

𝑅𝑒𝜃 . (10)

where 𝐹𝑐 is a function of the wall temperature 𝑇𝑤 and nominal adi-
abatic wall temperature [35]. Resulting distributions are shown in
Fig. 2(𝑏) together with the empirical correlation functions of Kármán-
Schoenherr [32] (denoted by KS) and of Smits et al. [33] (denoted by
S). Combined, these correlations indicate a range of plausible solutions,
which appears shaded in gray in the figure. In agreement with the pre-
vious discussion, cases A3 and B3 noticeably deviate from the expected
behavior. The same can be said for case B2, which only recovers the
expected skin-friction distribution at high values of 𝑅𝑒𝜃,𝑖, i.e., in the
vicinity of the outflow plane. On the other hand, cases R0, A1, A2
5

and B1 seem to recover the modeling errors faster and exhibit quasi-
equilibrium behavior from 𝑅𝑒𝜃,𝑖 ≈ 3400 onward. The fact that case B1
is in very good agreement with the reference correlations, while cases
B2 and particularly B3 deviate substantially from them, highlights the
beneficial effect of preserving the target 𝑘𝑖𝑛 by amplifying 𝑣′′2. This is
expected since the wall-normal stress, as opposed to 𝑤′′2, plays a key
role in the turbulence regeneration cycle [36]. We also note that the
marginal differences between cases A1 and A2 suggest that spurious
interpolation errors do not seem to meaningfully alter the near-wall
turbulence development.

In order to better identify the fraction of the computational domain
where turbulence is fully established, we also inspect the compliance
with the von Kármán integral equation [15,37], i.e.,

⟨𝑐𝑓 ⟩ = 2 𝑑𝜃
𝑑𝑥

(11)

which relates the growth of the momentum thickness to the local
skin-friction coefficient. Note that the above formulation neglects the
integral contribution of the Reynolds stresses, as their streamwise
derivatives are supposed to contribute negligibly in a fully developed
equilibrium boundary layer. This approximation naturally does not
hold in the initial transient region, where turbulence is rapidly recov-
ering from modeling errors. An effective compliance evaluator is thus
the ratio ⟨𝑐𝑓 ⟩∕(2𝑑𝜃∕𝑑𝑥), which should approach unity as the boundary
ayer returns to an equilibrium state.

The streamwise evolution of this parameter is shown for all cases in
ig. 3 together with a ±5% tolerance band. Despite the residual noise,
wo clear trends can be observed. On the one hand, the baseline case
0 and cases A1 to A3 satisfy Eq. (11) within 5% accuracy after a

ransient of about 5𝛿0,𝑖𝑛 from the inflow plane. On the other hand, cases
1 to B3 (in which 𝑢′′ is suppressed at the inflow) reach the same level

of accuracy only ∼10𝛿0,𝑖𝑛 from the inflow plane, which is effectively
double the distance. Therefore, based on the compliance with the von
Kármán integral equation, the nonphysical suppression of streamwise
velocity fluctuations at the inflow plane results in a longer adaptation
length.

Next, we assess the effect of the considered digital filter modi-
fications on the wall-pressure fluctuations. As these fluctuations are
influenced by inner and outer layer eddies [38], they provide a good
indication of the overall boundary layer development. The spanwise
evolution of the wall-pressure fluctuations is shown in Fig. 4(a). It is
evident that all cases systematically over-predict the pressure fluctu-
ations near the inflow. Suppressing streamwise velocity fluctuations
has a clear benefit according to this metric. Cases B1 to B3 exhibit
the fastest relaxation of the wall-pressure fluctuations. The method
proposed by Ceci et al. [18], employed in case B3, predicts the lowest
fluctuation intensities. The baseline case R0 and cases A1 to A3, on the
other hand, show a slower recovery from the increased wall-pressure
fluctuations at the inflow plane. Also note that case A3, the only
case that considers exponential correlation functions in all directions
and velocity components, results in the largest fluctuation intensities
throughout the computational domain.

Empirical evidence suggests a logarithmic 𝑅𝑒𝜏 -dependence of the
wall-pressure fluctuations when normalized using inner variables, i.e.,
the wall shear stress 𝜏𝑤 [28,38]. To verify whether that is also the
case in our LES data, we compare the corresponding inner-scaled wall-
pressure fluctuations against the empirical correlation of Farabee and
Casarella [39]. This comparison is shown in Fig. 4(b). In agreement
with the observations discussed above, cases B1 and B3 closely follow
the expected behavior after the initial transient. This is not the case for
the baseline case R0 and cases A1 to A3, which seem to asymptotically
approach the reference correlation but exhibit larger fluctuations in-
tensities throughout the computational domain. Nevertheless, cases A1
and A2 with our custom transversal correlation function perform better
than the baseline case R0 and case A3. The very close agreement of the
results for A1 and A2 further justifies updating inflow data at prescribed
time intervals to reduce computational costs.
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Fig. 4. (a) Streamwise evolution of the time- and spanwise-averaged wall-pressure
fluctuations, and (b) inner-scaled wall-pressure fluctuations as a function of the friction
Reynolds number. The dotted line indicates the semi-empirical correlation of Farabee
and Casarella [39].

We now turn our attention to the evaluation of the Reynolds
stresses. First, the evolution of the peak values for the streamwise and
shear stresses are considered. The former is indicative of the near-
wall streaks, which make up the stress-producing cycle that sustains
turbulence [36]. The peak shear stress, on the other hand, is asso-
ciated with quasi-logarithmic behavior of the mean velocity profile
and reflects a multi-scale momentum transfer [40,41]. The stream-
wise evolution of the inner-scaled streamwise stress peak is shown in
Fig. 5(a) for all cases. As observed, the corresponding distributions for
the baseline case R0 as well as cases A1, A2, B1 and B2 effectively
yield identical values after 10𝛿0,𝑖𝑛 from the inflow plane. Furthermore,
these distributions closely follow the empirical relation of Ceci et al.
[18] derived from their DNS data, which relates the peak streamwise
stress magnitude with the friction Reynolds number (not shown here).
The peak streamwise stress for case B3, in turn, shows a much slower
recovery as indicated by the dashed orange line in Fig. 5(a). This further
highlights the importance of preserving the turbulence kinetic energy
at the inflow plane, which did not happen for this case. Therefore, our
results indicate that suppressing 𝑢′′ can meaningfully hamper the near-

all turbulence development when the inflow turbulence is energy
eficient. Fig. 5(b) shows that the evolution of the inner-scaled peak
agnitude of the Reynolds shear stress is less affected by the inflow

onditions than the peak magnitude of 𝑢′′𝑢′′. As observed, all cases
exhibit a constant peak value close to unity after approximately 10-
15𝛿0,𝑖𝑛 from the inflow plane. However, cases A1, A2 and B1 exhibit a
faster development than the other cases, with an adaptation length of
approximately 7𝛿0,𝑖𝑛 for this metric.

To this end, conclusions can be drawn about the analysis of the
results so far. By comparing the data for cases A1 and A2, it is clear
that updating the inflow data at a prescribed time interval does not
incur additional penalties, and is therefore desired performance-wise.
The addition of multiple inflow zones with varying length scales per
zone, as done for all cases except for case A3, is also recommended
as it leads to a faster relaxation of the local skin-friction and peak
magnitudes of the inner-scaled Reynolds stresses, see Fig. 2 and Fig. 5
respectively. The alternative correlation function for the transversal
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directions defined in Eq. (7) leads to a substantial reduction of the
Fig. 5. Streamwise evolution of normalized Reynolds stresses: (a) streamwise stress,
and (b) shear stress.

spurious acoustic radiation of the non-equilibrium boundary layer and
small improvements for the other metrics. However, if the downstream
acoustic field is a priority, suppressing streamwise velocity fluctuations
at the inflow plane becomes appealing as it leads to the fastest relax-
ation of the wall-pressure fluctuation intensity, see Fig. 4. Provided that
sufficient energy is supplied by amplifying the wall-normal Reynolds
stress 𝑣′′2, our results indicate that the only deficiency of this approach,
t least in a qualitative sense, is the poor compliance with the von
ármán integral equation within the first 10𝛿0,𝑖𝑛 from the inflow plane.

The question now remains as to what physical mechanisms con-
tribute to a longer adaptation length, and why suppressing streamwise
velocity fluctuations at the inflow plane leads to a rapid turbulence
development and a quieter downstream flow. To shed some light
on these matters, the two-dimensional distributions of the primary
Reynolds stresses (i.e., streamwise, wall-normal and shear) and their
transport budgets are examined. The former are shown in Fig. 6 for
cases A1 and B1 near the digital filter boundary to highlight the near-
inflow behavior. The streamwise stress fields shown in Figs. 6(a) and
6(d) exhibit the expected differences, i.e., the stress is mostly convected
downstream from the inflow plane for case A1 while it is rapidly
generated for case B1. As indicated in Fig. 5(a), both distributions
converge to the same peak 𝑢′′2 magnitude within ∼ 10𝛿0,𝑖𝑛 from the
digital filter boundary. With respect to the other stresses, −𝑢′′𝑣′′ and
𝑣′′2, interesting observations can be made for case A1. As observed
in Figs. 6(b) and 6(c), both stresses initially fall noticeably below the
target magnitude for this case, and they progressively recover within
∼3𝛿0,𝑖𝑛 from the inflow plane. The baseline case R0 as well as cases
A2 and A3 also exhibit the exact same behavior near the inflow (not
shown here), indicating that this is a characteristic drawback associated
with the baseline digital filter implementation for compressible flows.
The wall-normal stress for case B1, on the other hand, initially decays
but does not significantly undershoot the target value, see Fig. 6(f).
Therefore, the deliberate amplification of this stress at the digital filter
boundary gives superior results during the initial transient. In addition,
and similarly to the streamwise stress, the shear stress for this case is

also rapidly generated, see Fig. 6(e).



Computers and Fluids 268 (2024) 106105L. Laguarda and S. Hickel
Fig. 6. Streamwise stress, shear stress and wall-normal stress distributions for (a)–(c) case A1, and (d)–(f) case B1.
Fig. 7. Pressure-gradient/velocity correlation terms 𝛷22 and −𝛷12, and shear stress production −12 for (a)–(c) case A1, and (d)–(f) case B1. All terms are normalized with 𝑢3∞∕𝛿0,𝑖𝑛.
The observed behavior near the inflow can be explained by inspect-
ing the dominant terms in the transport equations for the 𝑢′′𝑣′′ and 𝑣′′2
Reynolds stresses. In convective form, the transport equation for 𝑢′′𝑖 𝑢

′′
𝑗

reads

𝜕𝑢′′𝑖 𝑢
′′
𝑗

𝜕𝑡
+ �̃�𝑘

𝜕𝑢′′𝑖 𝑢
′′
𝑗

𝜕𝑥𝑘
= 𝑖𝑗 +𝑖𝑗 +𝛱𝑖𝑗 +𝑖𝑗 − 𝜖𝑖𝑗 (12)

where 𝑖𝑗 is production (−𝜏𝑖𝑘𝜕𝑥𝑘 �̃�𝑗−𝜏𝑗𝑘𝜕𝑥𝑘 �̃�𝑖), 𝑖𝑗 = 𝜈
𝑖𝑗+𝑇

𝑖𝑗+𝑝
𝑖𝑗 is the

transport term that comprises viscous diffusion 𝜌𝜈
𝑖𝑗 (𝜕𝑥𝑘 [𝜎

′
𝑖𝑘𝑢

′
𝑗 + 𝜎′𝑗𝑘𝑢

′
𝑖]),

turbulent convection 𝜌𝑇
𝑖𝑗 (−𝜕𝑥𝑘 [𝜌𝑢

′′
𝑖 𝑢

′′
𝑗 𝑢

′′
𝑘 ]) and pressure transport 𝜌𝑝

𝑖𝑗

(−𝜕𝑥𝑘 [𝑝
′𝑢′𝑖𝛿𝑗𝑘 + 𝑝′𝑢′𝑗𝛿𝑖𝑘]), 𝜌𝛱𝑖𝑗 is the pressure-strain correlation

( 𝑝′(𝑢′𝑗,𝑖 + 𝑢′𝑖,𝑗 ) ), 𝜌𝜖𝑖𝑗 is dissipation ( 𝜎′𝑖𝑘𝑢
′
𝑗,𝑘 + 𝜎′𝑗𝑘𝑢

′
𝑖,𝑘 ) and 𝜌𝑖𝑗 the

turbulent mass flux (𝑢′′𝑖 (𝜕𝑥𝑘𝜎𝑗𝑘 − 𝜕𝑥𝑗 𝑝) + 𝑢′′𝑗 (𝜕𝑥𝑘𝜎𝑖𝑘 − 𝜕𝑥𝑖𝑝)) [42].
Starting with the wall-normal stress, we find that the terms that

contribute most to its initial decay are those involving the pressure, that
is, the pressure transport and pressure-strain correlation terms. For the
sake of simplicity, we consider their aggregate effect via the pressure-
gradient/velocity correlation term 𝛷𝑖𝑗 = 𝑝

𝑖𝑗 +𝛱𝑖𝑗 . The corresponding
contribution to the balance of 𝑣′′2, i.e., 𝛷22, is thus shown for cases A1
and B1 in Figs. 7(a) and 7(d), respectively. As observed, 𝛷22 constitutes
a sink near the inflow plane in both cases, whereas this term is supposed
to be the major source of energy for 𝑣′′2 in an equilibrium boundary
7

layer (there is no direct contribution from production, [42]). This could
be expected for case B1, since the pressure-strain correlation may be
redistributing the energy from the deliberately amplified 𝑣′′2 to the
other stresses. However, 𝛷22 becoming a sink for case A1 represents an
important weakness of the digital filter technique; it fails to realistically
account for this term.

Since the production term for −𝑢′′𝑣′′, namely 12, is directly pro-
portional to 𝑣′′2, variations in the latter directly impact the shear stress
balance. The production term for the shear stress is shown in Figs. 7(b)
and 7(e) for cases A1 and B1, and confirms this correspondence. For
case A1, a decay in −12 near the inflow is clearly visible. For case B1,
on the other hand, the amplification of 𝑣′′2 leads to a large −12 close
to the digital filter boundary that promotes the generation of −𝑢′′𝑣′′

instead, see Fig. 7(e). Since the main energy sink for the shear stress
is −𝛷12, we also show the contributions of this term in Figs. 7(c) and
7(f) for the two cases considered. As observed, −𝛷12 is very strong in
magnitude near the inflow in both cases, and this negative contribution
extends throughout most of the boundary layer thickness for case A1.
Since −𝛷12 exceeds −12 at the digital filter boundary for this case,
−𝑢′′𝑣′′ is effectively damped as shown in Fig. 6(b). The same cannot be
said for case B1, which exhibits a net production of shear stress near
the wall. It is also important to note that, while the production term for
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Fig. 8. Normalized pressure–velocity correlation 𝑢′𝑝′ for (a) case A1, and (b) case B3.
the streamwise stress is directly proportional to −𝑢′′𝑣′′, this stress does
not exhibit an initial decay at the inflow plane for case A1. In fact, as
shown in Fig. 5(a), it is initially amplified and then decays towards
the expected value. The reason is that the dissipation and pressure-
gradient/velocity correlation terms, which are important in balancing
production in the buffer and quasi-logarithmic layers [43], also exhibit
reduced values near the inflow. For instance, 𝛷11, which is not shown
here, is positive near the wall.

Therefore, it is clear that the inability of the digital filter to re-
alistically account for different terms in the Reynolds-stress transport
equation, and in particular those involving the pressure, contributes
greatly to the spatial transient. By considering zero pressure fluctua-
tions and the SRA in the digital filter implementation for compressible
flows, nonphysical pressure fluctuations are only generated inside the
computational domain, and fluctuations observed directly at the inflow
are due to the non-reflecting nature of the boundary scheme. These
spurious fluctuations disrupt the pressure-related mechanisms in the
Reynolds stress transport equation, and consequently, the turbulence
regeneration cycle. A further confirmation of this is the fact that em-
ploying the above mentioned isentropic assumption to impose non-zero
𝑝′ at the inflow does not improve the results, since the fluctuations are
still nonphysical. Additionally, we find that the pressure fluctuations
that develop near the inflow are directly correlated with 𝑢′′, which
generally exhibits very large integral scales in streamwise direction. As
a consequence, increased fluctuation intensities are retained for a long
distance within the computational domain as illustrated in Fig. 4(a) for
the baseline case R0 and cases A1–A3. The suppression of the stream-
wise velocity fluctuations, in turn, effectively eliminates the correlation
between 𝑢′′ and the thermodynamic fluctuations, which leads to a faster
relaxation of the latter. The pressure velocity correlation 𝑢′𝑝′ is shown
in Fig. 8 for cases A1 and B3 to illustrate the above-mentioned.

5. Conclusions

We have discussed several methods for improving the accuracy and
performance of the digital filter turbulent inflow generation technique
based on a compressible turbulent boundary layer benchmark and
corresponding metrics. A total of 7 wall-resolved large-eddy simulations
were carried out to evaluate the efficacy of these methods. We believe
that the conclusions reached based on these data equally hold for
wall-modeled large-eddy simulations as well as for direct numerical
simulations.

Regarding improvements of performance, we propose to update
the inflow data at a prescribed time interval based on a turbulent
time scale rather than every time-step and to interpolate instantaneous
solutions at intermediate time-steps. Results show that this does not
incur any penalties, and is therefore a desired modification with strong
cost benefits. The studied improvements of accuracy include a novel
filter kernel for the transversal directions, varying target length scales
with wall-distance, and suppressing streamwise velocity fluctuations at
the inflow plane. The proposed correlation function for the transversal
directions reduces the nonphysical acoustic radiation during the tran-
sient phase and yields small improvements for other metrics. Employing
different scales at the inflow plane leads to a reduced adaptation length
8

in most of the metrics considered, and is also desired. Suppressing
streamwise velocity fluctuations at the inflow unambiguously leads to
the fastest relaxation of the pressure fluctuations, but also to a longer
transient of non-compliance with the von Kármán integral equation. We
highlight the benefits of preserving the target turbulence kinetic energy
by amplifying the wall-normal Reynolds stresses when the streamwise
velocity fluctuations are suppressed.

Our inspection of the compressible Reynolds stress transport equa-
tion revealed that the main deficiencies of the digital filter technique
are rooted in the pressure-related terms. Nonphysical pressure fluc-
tuation amplitudes and pressure–velocity correlations disrupt the tur-
bulence redistribution and regeneration cycle. Additionally, we find
that pressure fluctuations generated near the inflow are spuriously
correlated with 𝑢′′, and are therefore retained for a long distance down-
stream of the inflow plane. This explains why an artificial suppression
of the streamwise velocity fluctuations, which effectively eliminates
this correlation, leads to a faster relaxation of the pressure variance.
In view of these results, future attempts towards improving the digital
filter technique should aim at modeling pressure fluctuations as well as
their correlation with the velocity components.
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