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Transparent AI by Design:
Search Algorithms for Supervised Learning,
Control Policies, and Combinatorial Certification

Emir Demirovi¢

Delft University of Technology, The Netherlands

Abstract. Al methods—such as those used in supervised learning,
controller synthesis, and combinatorial optimisation—have demon-
strated immense value across many domains. However, their prac-
tical adoption is hindered by reliability concerns, particularly when
these systems are designed as black boxes. Two key challenges arise
for black-box AI: (1) lack of performance guarantees—when Al
fails, it is unclear whether the task is infeasible or the underlying
algorithm is simply inadequate; and (2) lack of confidence—results
may be difficult to interpret or trust. While post-hoc interpretabil-
ity techniques offer partial remedies, we advocate for a different
paradigm: building Al systems that are transparent by design. Rather
than explaining opaque decisions after the fact, we synthesise out-
puts that are intrinsically understandable and verifiable. This shifts
the focus from doubting Al to questioning whether we are solving the
right problem. We apply this approach across three distinct domains:
supervised learning, controller synthesis, and infeasibility certifica-
tion for combinatorial optimisation problems. Although these tasks
involve exponentially large search spaces, recent advances demon-
strate that designing for transparency is increasingly practical—often
without sacrificing performance—making it a compelling alternative
to opaque Al systems.

1 Introduction

Al is widely applied across a broad range of domains, including
scheduling, hardware verification, healthcare, criminal justice, and
protein engineering. The societal impact of Al is profound.

Despite the success of Al, there is a natural scepticism towards
its practical use due to the sheer complexity of the underlying algo-
rithms and the problems being addressed. Across many domains, two
common concerns arise from a lack of:

1. Performance guarantees: Al may fail to achieve a desirable out-
come, even though the desirable outcome is theoretically possible.

e Consider training a machine learning model that reflects his-
torical data while addressing potential discrimination against
marginalised groups. When Al produces a model that falls short
of our expectations—such as an unsatisfactory balance between
faithfulness to historical data and fairness—it can be unclear
whether a better model truly does not exist or if current tech-
niques are simply unable to discover it.

2. Confidence: We may doubt whether Al outputs are sensible.

e A complex policy that is difficult to interpret can be risky to
deploy, even if it performs well in the training environment.
The policy may rely on spurious correlations in the training
data, leading to correct outcomes for the wrong reasons.

o Al may claim that meeting the expected service requirements is
infeasible; however, this conclusion could stem from a software
bug, even if the underlying techniques are conceptually sound.

These issues pose major barriers to the adoption of Al

Numerous efforts have been made to address the aforementioned
issues. Increased research into better algorithmic heuristics to im-
prove Al, software testing, and post-hoc explanations all contribute
to mitigating the issues. Note, however, that such approaches do not
fully eliminate the concerns. Unless we fundamentally resolve the
problems, there will always be room for concern.

There is a common belief that using black-box Al is necessary
because we need complex functions to capture the intricate interac-
tions of our real world. The unfortunate consequence of this view is
that it leaves out modern transparent Al approaches from the start,
even though such approaches may very well be the most appropriate
choice for the given application.

In contrast, this paper advocates an alternative approach: focus-
ing on Al algorithms that synthesise outputs we can truly under-
stand—achieving transparency by design. The core idea is to pre-
cisely specify the properties that we believe lead to transparent out-
puts, and then employ search algorithms to systematically explore
the space of all possible transparent outputs and identify the best one.

By employing search over interpretable outputs, we make our
goals explicit and enable provable performance guarantees. This
shifts our focus from doubting Al to critically evaluating whether
we are addressing the right problems.

This process is inherently iterative, functioning as a feedback loop.
In each iteration, we may revise the specification based on insights
gained from examining the current output. Upon receiving a solution,
we either accept it if it meets our expectations or identify flaws in the
specification, make necessary adjustments, and repeat the process.

The process outlined above is a general framework that needs to
be tailored to the particular domain. The specification of a desirable
output may differ significantly across applications, and we may need
to leverage domain-specific algorithmic ideas to enhance the perfor-
mance of the search algorithm. This brings its own challenges.

In the following, we show instantiations of these ideas across three
very different domains:
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1. Supervised learning, where we summarise historical data using
models represented as decision trees—hierarchical models that la-
bel data through simple decision rules—taking into account a va-
riety of objectives and constraints. For interpretability reasons, we
focus on small decision trees, which typically require only three
or four questions to label a single data point.

2. Controller synthesis, where we construct policies also in the form
of small decision trees to control deterministic black-box systems.

3. Certificates that prove the infeasibility of a combinatorial optimi-
sation problem, which can be independently verified to validate
these claims, regardless of the algorithm that generated them.

We review recent success in these areas, reflect on common con-
cerns and misunderstandings, and highlight the key ideas that enable
these algorithms to work in practice.

The main message is that, although synthesising transparent Al
is challenging—and may seem implausible due to the exponentially
large search space—carefully designed techniques have made it prac-
tical to solve problems while addressing concerns about performance
and confidence. While not all problems are yet amenable to transpar-
ent approaches, the significant benefits underscore the importance of
pursuing approaches that are inherently transparent.

For the cases discussed in this paper, tremendous progress has
been made in recent years—advancements that would have been
unimaginable just a few years ago. This highlights the critical im-
portance of pursuing approaches that are inherently transparent.

2 Search for Supervised Machine Learning with
Optimal Decision Trees

The goal of supervised machine learning is to synthesise ("learn")
a prediction function that estimates a quantity of interest by ob-
serving a dataset of labelled input-output pairs. For high-stakes do-
mains, such as health care and criminal justice, interpretable predic-
tion functions are crucial.

It has been shown that for many applications—in particular those
involving well-structured data—‘simpler’ models that are easily in-
terpretable can represent the data equally well [24, 13, 6] and in some
cases even outperform more complex models (such as neural net-
works or ensembles) by incorporating additional objectives and con-
straints during training.

Surprisingly, despite substantial evidence supporting interpretable
models—particularly decision trees—such models are often met with
scepticism and not considered by default.

In the following, we start off by illustrating the value of decision
trees for a cancer treatment application, show the broad range of ob-
jectives and constraints that may be considered when training deci-
sion trees, discuss common concerns, and explain the main ideas for
synthesising small decision trees in practice that offer superior per-
formance whilst maintaining interpretability.

2.1 Illustrative example: oncology (cancer treatment)

Consider a supervised machine learning task related to oncology
(cancer treatment), where the goal is to predict whether a mutation
in a human protein is considered oncogenic (dangerous) or benign.

Following the substantial effort of data collection and data pro-
cessing [26], researchers trained a complex boosted tree ensemble
[27] to make these predictions, resulting in a success story given the
high performance of the final model.

They also explored decision trees as an interpretable model, but the
performance was unsatisfactory—Ilargely due to the use of a widely

adopted heuristic based on CART, an algorithm developed in the
1980s. In contrast, recent algorithms based on search have shown
significantly better performance.

For demonstration purposes, we used a modern search-based algo-
rithm—STreeD' [30]—to compute a decision tree optimised for per-
formance (F1-score in this case). Unlike typical heuristic approaches
employed in machine learning (e.g., CART), STreeD exhaustively
searches for the best-performing small decision tree amongst all
small decision trees. The model was trained and evaluated using the
same dataset and folds as the black-box model.

And the result: our decision tree had comparative performance
to the black-box model (both models achieving an F1-score around
93%), whilst only requiring three predicate nodes (Figure 1a)! It is
evident that our decision tree is the more desirable model. In this
case, we did not have to choose a trade-off between accuracy and
interpretability: we could have both.

It is worth noting that achieving high performance does not nec-
essarily imply that the model is good, regardless of the form of the
model. An expert is required to validate the model and conclude that
the model is indeed making predictions based on sensible features.
The interpretable nature of decision trees allows us to understand
how the predictions are made and further iteratively refine the data if
needed, eventually leading to a model that we can trust. This is much
harder to achieve using opaque models such as neural networks.

The above example is not an isolated case. Similar situations have
been observed by many researchers on a wide range of datasets [24,
13, 6]. When considering well-structured datasets—such as tabular
datasets as in the oncology example—interpretable models such as
small decision trees can match the performance of more complex
models whilst offering the advantage of greater interpretability.

2.2 Optimal decision trees

If we accept that small decision trees—defined here as those with
a depth of three or four, or consisting of only a few nodes—are in-
terpretable, it is natural to ask for the tree that best represents the
dataset amongst all possible decision trees. In other words, we seek
the optimal decision tree.

It is crucial to recognise that no decision tree is universally op-
timal. Instead, optimality is to be understood given a specification,
which consists of:

1. Constraints, which implicitly define the (exponentially large) fea-
sible set of decision trees. Examples include imposing restrictions
on the number of nodes in the tree or fairness considerations.

2. An objective function, which defines the quality of the tree, typ-
ically with respect to a training dataset. Examples of objective
functions are accuracy, sparsity (a trade-off between accuracy and
the number of nodes of the tree), the F1-score, the average deci-
sion length of a query, and may even consider optimising multiple
objectives simultaneously.

We may observe that decision trees are not necessarily ‘simple’:
these are nonlinear functions that may consider a variety of require-
ments as part of training, and they also happen to be interpretable!

Optimal decision trees have recently received significant attention,
e.g., see the recent survey from 2023 [11], with the caveat that many
papers have been published since.

A key advantage over traditional heuristic-based approaches (e.g.,
CART, C4.5) is that optimal approaches are guaranteed to find the

L https://github.com/AlgTUDelft/pystreed
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best representation of the data and support constraints, which can
be notoriously difficult to include in heuristic algorithms, e.g., con-
straints regarding fairness. Since such trees are typically also small,
we obtain the best of both worlds for many real-world datasets:
highly performant models and interpretability.

2.2.1 Flexibility of decision trees

Before discussing algorithms for optimal decision trees, we first pro-
vide a non-exhaustive list of different applications for decision trees
that take into account a variety of constraints and objectives. This
demonstrates the flexibility of decision trees as nonlinear functions
that offer considerable power in capturing complex relationships in
data in a fairly interpretable manner.

Classification [13] (Figure 1a) This is the classic application of de-
cision trees, used to discriminate data points between a set of dis-
crete classes based on input features.

Regression [28] (Figure 1b) These trees generalise classical linear
regression by adding a nonlinear layer: given an instance, the re-
gression tree uses a set of rules, organised in a tree-like manner, to
determine which internal linear regression model to consider. This
is particularly suitable for data that can be explained by linear re-
gression after performing data partitioning.

Demographic Parity (Group Fairness) [29] We may seek the de-
cision tree that best reflects historical data while ensuring similar
outcomes across different groups. Fairness, in this case, is quan-
tified as a numerical measure of violation, with a strict limit im-
posed on acceptable disparity. Rather than producing a single tree
based on a fixed, potentially arbitrary fairness threshold, we may
instead generate a set of trees representing the full trade-off spec-
trum between faithfulness to historical data (accuracy) and fair-
ness—the Pareto front (see Figure 1c)—allowing experts to select
the appropriate balance.

Survival analysis [19] (Figure 1d) In applications where the goal
is to predict a singular, non-repeating event—such as death or me-
chanical failure—the data may be (right-)censored, i.e., the data
only records the time of the event up to a certain point, beyond
which the exact time of occurrence is unknown. Using nonlinear
functions that model the probability of the event occurring at each
time point can be appropriate, which can be directly incorporated
into decision trees to enhance predictive accuracy.

Imbalanced data [12] For datasets where one class significantly
outweighs the others, accuracy alone may not be appropriate.
High accuracy can be achieved simply by predicting the major-
ity class in every case, which is especially problematic in applica-
tions where detecting the minority (e.g., a defect or illness) class
is crucial. In such scenarios, it is more appropriate to optimise
for nonlinear objectives that better capture the trade-off between
detecting true positives and avoiding false alarms, such as the F1-
score. We may then seek a tree that maximises such metrics.

Cost-sensitive classification [30] In some applications, it may be
desirable to simultaneously optimise accuracy and the cost of eval-
uating features, e.g., performing a medical test may incur a cost.
Optimal decision trees can optimise over both of these criteria.

These are just some examples of applications for which we have
algorithms that can effectively synthesise small optimal decision
trees in practice. Other applications can be supported by adapting
existing techniques or by leveraging our general decision tree frame-
work, STreeD [30], which can be customised to meet diverse require-
ments without additional research efforts.

(a) A classification tree predict-
ing whether a mutation is benign

or oncogenic; trained on oncol-
ogy data [26] using STreeD [30].
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(b) Graphical representation of
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Figure 1: Examples of decision tree use cases from Section 2.2.1.

2.3 Concerns and limitations

Decision trees offer clear value but are not suitable for every appli-
cation. In our experience, we observed many situations where con-
cerns surrounding decision trees were based on misunderstandings
of optimal decision trees, apples-to-oranges comparisons, or deeper
questions that go beyond decision trees and relate broadly to machine
learning. We address a subset of these concerns to shed light on these
common issues and provide a more nuanced perspective on the role
and value of decision trees.

Why do we need decision trees when we can use opaque mod-
els and rely on explainable Al? The problem with explainable Al is
the lack of guarantees: no method can reliably explain the behaviour
of opaque models. This is by definition, otherwise we could replace
the opaque model with its explanations, which would lead to an in-
terpretable model! For high-stakes domains, interpretative models
should be the primary choice (see [24] for more discussion).

Are decision trees are too simple, do we not need more complex
models? This is a common concern; however, there are two main
points. First, small decision trees are interpretable, but not neces-
sarily simple, as illustrated in Section 2.2.1. Given that we may di-
rectly optimise for a variety of objectives and constraints, this may
make small decision trees more appealing than other models in prac-
tice. Second, while decision trees may be less suitable for unstruc-
tured data—such as image-based vision tasks—there are many docu-
mented cases where decision trees perform comparably to complex,
opaque models [24] on well-structured data (e.g., tabular datasets),
which is common in applications requiring interpretability.

Does synthesising the best decision tree for the training dataset
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lead to overfitting? First, small decision trees have less opportunity
for overfitting. Second, this is a deeper problem that spans across
machine learning. For example, we have also observed in our work
[29] that a model that is fair on the training data may exhibit different
fairness performance on the test set. However, given that we consider
learning predictive models as an optimisation problem for which we
use search algorithms to compute the best model according to the
formulated problem, we have a unique advantage: If the outcome is
not desirable, then this prompts us to revise the way we formulated
our optimisation problem. In other words, rather than worrying about
how we will compute our model, we can direct our attention to defin-
ing what we need to solve.

Is training optimal decision trees too costly? This is a concern that
largely depends on the application. In many cases, we can afford to
spend more computational time offline, but when this is not the case,
then indeed heuristics may be a better option. We note that this con-
cern may also come from a time when optimal decision tree methods
were much slower; nowadays, computing optimal decision trees for
datasets that took hours a few years ago takes seconds.

Are decision trees too brittle? Owing to the interpretability of de-
cision trees, we can indeed understand how the model operates and
identify exactly the conditions under which the model is brittle. This
can be seen as an advantage, since opaque models may also be brit-
tle, but we simply may not be aware of it, which is a more dangerous
situation. A recent promising idea related to robustness has been to
consider all decision trees that exhibit optimal or close-to-optimal
performance [34], which provides a more comprehensive view of the
data compared to a single decision tree.

Do decision tree methods require binarising features, does this
lead to lower accuracy? First, even with binarisation, optimal de-
cision tree methods may still offer greater accuracy and additional
functionality compared to heuristics. Second, recently we have seen
methods that do not require binarisation, e.g., [8, 22].

[ tried optimal decision trees, and they do not work! This con-
cern is common; for instance, it arose in the oncology application
discussed in Section 2.1. The standard approach to decision tree in-
duction still relies on heuristic algorithms developed in the 1980s,
such as CART. While these methods remain useful, modern optimal
decision tree algorithms can achieve superior performance—but are
not yet widely adopted. Unlike conventional machine learning meth-
ods, optimal decision tree algorithms explore an exponentially large
search space exhaustively. This shift introduces new challenges in
understanding and working with such models. For example, it may
come as a surprise that training an optimal depth-four tree with seven
nodes can take longer than training a tree with fifteen nodes, due
to the expanded search space. Similarly, much larger heuristic trees
may sometimes outperform small optimal trees in terms of accuracy,
but such trees offer little in terms of interpretability. Adapting to
these differences requires a mindset shift in how such models are
developed and used. Over time, as tooling improves, optimal deci-
sion trees may become accessible to practitioners without requiring
deep knowledge of the underlying algorithms. For a detailed compar-
ison of heuristic and optimal trees—focusing on accuracy and model
size—see our recent study [31].

2.4 How to compute optimised decision trees?

Computing an optimal decision is an NP-hard problem [20]. Never-
theless, owing to many recent advances, we can compute small opti-
mal decision trees in practice reasonably quickly, which are precisely
the decision trees we are interested in from an interpretability per-

spective. These are decision trees up to depth four, which could be
understood as our definition of decision tree interpretability, but in
some cases, larger trees may also be computed.

The key insight is to exploit the unique decision tree structure as
part of the synthesis algorithm. When searching for an optimal deci-
sion tree, in many use cases, there is a divide-and-conquer structure
that can be applied recursively. Once a node has been assigned a
particular predicate, each child node gives rise to a smaller optimal
decision tree problem, and crucially, these two subproblems can be
solved independently from one another.

This high-level algorithmic idea may be formulated in a single re-
cursive formula [13]. For simplicity, consider binary classification.
Let T(D, d) be the misclassification score of the optimal decision
tree of depth d on the dataset D, F be the set of considered pred-
icates (binary features), |D"| and |D~| be the number of positive
and negative instances (binary classification), and Dy and 1)7 be the
datasets that contain instances from dataset D that satisfies and does
not satisfy predicate f, then we may compute the minimum number
of misclassifications by using the following formula:

min{|D*|,|D~|} d=0
minger { T(Dy,d—1) + T(Df,d— 1)} d>0
M

The state-of-the-art makes use of a range of techniques to speed up
the computation of the above formula, e.g., specialised subroutines
for small depths [13], lower bounding techniques to avoid recursive
calls [13, 21], and caching techniques [13] for binary features.

A generalised version of the above equation covers more objec-
tives and constraints, but we omit details for simplicity [30]. Not all
decision tree problems are amenable to the above formulation. For-
mally, it is important to ensure that subtrees may be optimised inde-
pendently by checking a separability property [30], but this property
holds for all supervised learning examples discussed in this paper.

We note that optimal decision tree algorithms relied on the user
restricting the pool of allowed predicates (datasets with binary fea-
tures) to maintain performance, but recently there have been several
works that lift this requirement and allow optimising directly with
continuous features [8, 22].

We stress the importance of designing specialised algorithms that
leverage the unique structure of decision trees. This structural lever-
age is the key reason state-of-the-art optimal decision tree algorithms
achieve orders-of-magnitude runtime improvements over generic ap-
proaches based on mixed-integer programming, constraint program-
ming, and SAT-based methods, making optimal decision trees a valu-
able asset in our machine learning toolbox.

T(D,d) = {

3 Search for Controller Synthesis with Optimal
Decision Trees

We now discuss how the same high-level idea of searching for in-
terpretable models may be transferred to a very different setting,
namely, controlling (deterministic black-box) dynamical systems.

As an example, consider cart-pole, a classical control problem.
The task is to balance an upright pole standing on a cart for as long
as possible while only being able to control the cart by nudging it to
the left or to the right. The mechanics of the system are governed by
nonlinear physical equations, see Figure 2.

The key difference compared to the supervised machine learning
setting is that, by default, there is no ground truth that could be used



6 E. Demirovi¢ / Transparent Al by Design

. 9.8SIN(H) — COS(0)1)»
=1 = ——
i)— ‘ YT 23+ 5/11co80)?
v 100+ 0.05* SIN(4)

w=a v=

b= - scosn)
22

(6 <—0.014]
=y [
Figure 2: Cart-pole, a classical control problem, equations describing

the evolution of the system as a function of the control action u, and
an example decision tree controller.

to train the controller. Instead, the controller must be constructed di-
rectly based on the evolution of the dynamical system over time.

In the following, we take a step further and consider the dynamical
system a deterministic black-box. This captures the scenario where
the system is either inconvenient to represent as a set of equations
(e.g., given by a procedural algorithm) or otherwise too complex.

Although there may be many valid controllers (policies), we may
be interested in a subset of those controllers that we can understand.
Given the black-box nature of the system, having an interpretable
controller is paramount to understand system behaviour.

Unfortunately, interpretable controllers are comparatively under-
explored in the literature when compared to opaque options, e.g.,
reinforcement learning. Decision trees are a good alternative.

The surprising observation is that even though the system dynam-
ics are black-box, we can still compute interpretable controllers that
are, in a sense, optimal. This requires specialised techniques, and al-
though the techniques are in an early stage, the results are promising.

3.1 Optimal Decision Tree Controllers

The first step is to determine which controllers are considered in-
terpretable. Following our approach of using search to find the best
output (controllers) amongst outputs that we can understand, we first
need to define the setting we are considering, since only then may we
talk about interpretability and optimality.

A black-box dynamical system takes as input the current state (a d-
dimensional real-value vector) and a discrete action (typically given
by the controller or policy given a state), and computes the next state.
Note that how the black-box performs its computation is abstracted
away; we merely assume that it is possible to compute.

In the cart-pole example, after applying force to nudge the cart to
the left or right side (an action), the system returns the new position
and velocity of the cart and pole (the state).

Given an initial state, a controller, and a black-box dynamical sys-
tem, we may compute the trajectory of the system by repeatedly ap-
plying the controller to the system. The goal is to keep the system
in a safe state for as long as possible. We may also be interested in
reaching a goal state as quickly as possible.

In the cart-pole example, a state is considered safe if the angle of
the pole with respect to the cart is within a small range.

For interpretability reasons, we restrict our attention to controllers
that take the form of a decision tree. We then seek to compute an
optimal tree controller, i.e., a controller that keeps the system in a
safe state for as long as possible given an initial state. In other words,
there is no other controller that maintains the safe state for longer.

Multiple initial states may be simultaneously considered, in which
case we seek a single controller that maximises the minimum per-
formance amongst all initial states. The minimisation problem may
be analogously defined, i.e., find the controller that leads the system
towards a target state as quickly as possible.

To make the search procedure manageable, we restrict the defini-
tion of our controller to use a discrete set of actions (e.g., two actions)
and a set of predicates defined a priori. We consider predicates of the
form [z; > c], where x is a component of the state vector and c is a
constant. The predicates may be chosen to uniformly cover the state.

‘We may now observe that the search space of all decision tree con-
trollers, as defined above, is finite but exponentially large. We may
proceed to search for the optimal tree controller, despite the system
being represented as a black-box. In fact, the black-box representa-
tion is a powerful abstraction that allows for easy incorporation of
constraints and other requirements without needing to develop spe-
cialised algorithms, apart from the general search procedure.

As a result, we obtain decision tree controllers with the best per-
formance that is possible to achieve amongst the defined set of fea-
sible decision tree controllers, and their small size make it easier to
understand the decision making process of the controller.

3.2  Concerns and limitations

Decision tree controllers offer a novel approach to automated control.
However, tree controllers are a relatively new concept, the research
is in its early phases, and tree controllers are not applicable in every
situation, so it is natural that there are many concerns regarding their
applicability. We discuss common issues below.

Can small decision tree controllers capture high-dimensional en-
vironments? This is a fundamental limitation of small trees: if the
system is highly-dimensional, and all dimensions must be taken into
account for decision making, then indeed a small tree may not be ap-
propriate. However, when the system is controllable by a small tree,
then training a small and optimal tree controller is highly beneficial.

Are decision tree controllers too simple? Similar points hold as
discussed in Section 2.3. On the one hand, small tree controllers are
interpretable and, in that sense, simple. On the other hand, we may
synthesise tree controllers to support black-box environments, which
may encode a variety of complex behaviours that other approaches
would have difficulties dealing with. A more holistic view is required
when assessing tree controllers for a given application.

Is the runtime to train optimal tree controllers too high? This
largely depends on the size of the tree and the application. We be-
lieve this will become less of an issue as techniques advance.

3.3 How to synthesise optimal tree controllers?

Algorithms to synthesise optimal decision tree controllers for black-
box systems are a recent invention [14]. Given the definition of the
tree controller from the previous section, the idea is to exhaustively
explore the set of such controllers, evaluate each tree with respect to
the black-box system, and take the best tree.

There are two key insights that make the approach possible in prac-
tice. First, given that the systems considered are deterministic, the se-
quence of states obtained by applying a decision tree controller to an
initial state is a sufficient representation of the behaviour of the sys-
tem, which allows us to reason about the system even though it is a
black-box. Second, when enumerating decision trees, by analysing
previously encountered states, we may determine sets of decision
trees that have identical performance, which leads to pruning a large
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portion of the search space. This makes it possible to synthesise op-
timal small trees in practice for certain problems, despite the expo-
nentially large search space.

Beyond the setting considered here, small tree controllers have
seen increasing interest, e.g., optimal [33] and heuristic controllers
[2, 3] for stochastic white-box systems, heuristic tree controllers
based on an explicit representation of all state-action pairs [4, 5],
and verification of tree policies in continuous time [25].

Optimising small tree controllers is a promising research direction
for interpretable Al. As the techniques mature, we believe tree con-
trollers will become standard in automated control, offering unique
advantages in interpretability compared to classical approaches.

4 Search for Certificates of Combinatorial
Optimisation Problems

When we discussed using search to synthesise interpretable models
(decision trees), we were mainly focused on being able to understand
the output, i.e., the resulting decision tree model.

However, if we push the interpretability idea further, we may not
settle for only obtaining a model, but we may also be interested in
understanding why the generated model is indeed the best. In other
words, how can we be sure that a better model does not exist?

This is a general question that relates to all search algorithms that
deal with combinatorial problems. There are two interconnected rea-
sons to address this question. First, for interpretability reasons, we
may be interested in understanding the main bottleneck of the un-
derlying problem. Second, given that search algorithms require both
conceptual advancements and well-executed engineering efforts to
work in practice, it is reasonable to suspect that there could be an er-
ror in some part of the algorithm or its implementation. Considering
search broadly, there have been many documented cases where even
well-established tools reported incorrect results [10, 9, 16, 1].

The answer to this problem is to follow the idea of synthesising an
interpretable output: we want a certificate that can be used to explain
that no better solution exists in the defined search space. Ideally, the
certificate is something that we can easily understand, so that we can
easily convince ourselves that the final conclusion is indeed correct.

Certificates effectively removes any doubts regarding the perfor-
mance limits of the search algorithm, both conceptual and imple-
mentation mistakes. Since a certificate is a mathematical proof with
respect to the problem definition, after validating the certificate, we
may be certain about the certified claims, even if the algorithm pro-
ducing the certificate may have unsoundness issues.

We discuss constraint programming as a paradigm for modelling
and solving combinatorial optimisation problems, the form of certifi-
cates that could be used to explain the inexistence of better solutions
for constraint programming, common criticisms and open research
questions, and give a high-level idea of certificate generation.

4.1 Constraint Programming

To facilitate trust, it is important to have a modelling language that
defines problems using high-level concepts: the higher the level, the
better. Certificates may then operate over this high-level definition.

Constraint Programming is a paradigm for modelling and solv-
ing combinatorial optimisation problems matching precisely this re-
quirement. The feasible space is defined implicitly through a set of
constraints, which are defined as predicates over discrete variables.
For optimisation problems, we may specify an objective function that
allows discriminating between feasible solutions.

A key feature of constraint programming is that the form of the
constraints is not predefined by the paradigm; essentially, arbitrary
relations over variables may be defined. Examples of common con-
straints include the all-different constraint, which imposes that no
two integer variables may take the same value, and the disjunctive
constraint, which defines that tasks must be scheduled in time such
that no overlap appears. There are over 400 constraints, with new
constraints being introduced to suit particular application needs.

Constraint programming not only allows for an expressive
paradigm for specifying combinatorial problems, but also includes
solving algorithms that directly exploit the high-level structure to
prune the search space (propagators). This makes constraint pro-
gramming an appealing paradigm for modelling and solving, and
provides opportunities from an interpretability perspective.

4.2 Certificates

The certificates [15] we discuss for constraint programming leverage
the high-level description of the combinatorial problem and corre-
sponding algorithms that exploit this explicit structure.

As an example, consider the following infeasible problem and its
certificate of infeasibility. The certificate has been designed to be
intuitive and easy to follow—regardless of how it was generated.

z,z € {0,1}

y € {0,1,2}
ci: 2x+y+222>2
c2: 2x+y—222>0
c3: 20—y+222>0
ca: 2x—y—2z2> -2

s —204+y+222>2
cg: —2x+y—222>0
Step # Implied by Reasoning

1| Constraintcs | [t <O0JA[y>2] — [z>1]
2 | Constraint ¢4 [ <O0]A[y>2] — [z <0]
3 Steps 1 & 2 [x<0Aly>2] — L
4 | Constraint ¢y [z<O0]A[y<1] — [z >1]
5| Constraint ¢z [ <0]A[y<1] — [z < 0]
6| Stepsd &S [ <OAly<1]— 1
7 Step 6 [z <0] — [y > 2]

8 Step 3 [ <0] — [y < 1]

9 Steps 7 & 8 [x<0] — L
10 | Constraintes | [z > 1Ay <2] — [z > 1]
11 Constraint cg [x> 1Ay <2] — [z <0]
12 | Steps 10 and 11 [>1Aly<2]— L
13 Step 9 T — [z >1]
14 | Steps 13 and 12 [y<2] — L
15 Step 14 T —[y >3]
16 | Initial domain T—[y<2]
17 Steps 15 & 16 T — 1L (Infeasible)

A key point, which aids interpretability, is that the certificate is
designed to break down the final statement (e.g., ‘infeasible’) into
smaller parts that could be understood independently (separated by
horizontal lines in the example). Steps that reason over individual
constraints (e.g., Steps 1 and 2) are interleaved with deriving im-
plied constraints, which are obtained by reasoning over multiple con-
straints (e.g., Step 3).

In the end, we obtain a trivially implied constraint that asserts that
the problem indeed has no feasible solutions, or a bound on the objec-
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tive function (for optimisation problems, not shown in the example).
Since each step of the certificate is kept simple, we may easily con-
vince ourselves of its correctness. We may even conclude additional
information, e.g., based on the certificate, the domain of the variable
z plays no role in the infeasibility of the problem.

In the example, we used linear inequalities, but any arbitrary con-
straints may also be used. This could influence the interpretability
of the certificate, e.g., using high-level constraints specialised for a
particular domain may make the certificate easier to understand.

For any solvable constraint programming instance, we can, in prin-
ciple, generate a certificate. In this sense, the certificate is precisely
the interpretable output that helps us understand why the problem is
infeasible or why no better solution exists.

4.3 Concerns

Certificates for combinatorial problems have a long history [32, 18,
17], but using high-level constraints as part of the certificates is only
recent [15]. This opens new opportunities, but also raises questions.

Are certificates too detailed to be interpreted by a human? Hu-
mans may reason differently than solving algorithms. On the one
hand, high-level certificates precisely capture the reasoning used in
the solving algorithm in a mathematically correct manner without
direct redundancies, given current solving techniques. In this sense,
this matches our notion of interpretability, since we can inspect the
certificate to understand the reasoning process. On the other hand,
it is true that a large certificate may be difficult to grasp. In these
cases, devising even higher-level constraints or adding another layer
of abstraction (e.g., minimal unsatisfiable subsets of constraints [7])
on top could support human interpretability.

Does using high-level constraints make it more complicated to
check the correctness of the certificates, compared to using low-level
constraints? Encoding combinatorial problems using simpler con-
straints has the advantage of a simpler formalism, relevant for im-
plementation reasons. However, this comes with the downsides that
modelling of the combinatorial problem is more complicated, which
is a serious barrier in practice, and we may lose computational and
interpretability benefits of high-level constraints.

4.4 How to generate certificates?

The discussed certificates [15] have been designed to trace the be-
haviour of solvers. In this sense, solving algorithms may directly
produce the certificate by recording their internal reasoning steps.

However, solving algorithms perform a large number of opera-
tions, and due to NP-hardness of the problems, many such opera-
tions may be redundant. This can result in prohibitive runtime and
memory overhead for real-world problems.

To avoid the overhead, the core idea is to only record a proof sketch
at runtime, and as a post-processing step, remove redundant parts and
expand the remaining sketch into a certificate. In this manner, many
of the redundancies inherent to NP-hard problems may be avoided.

The sketch may be obtained directly from the search algorithm.
In short, constraint programming solvers use backtracking search to
exhaustively explore all possible assignments to the problem. This is
complemented by propagation, which removes variable assignments
that cannot be part of a feasible assignment given the current par-
tial assignment. Each time an infeasible assignment is detected be-
cause of propagation (i.e., propagation removes all possible options),
prior to backtracking, the solver performs a conflict analysis proce-
dure [23] to extract a nogood, i.e., a conjunction of atomic statements

that logically imply the conflict. A nogood may also be seen as a rule
that has been derived by jointly reasoning over multiple constraints,
e.g., in the example certificate, Step 3 is a nogood.

Nogoods encountered during the search compose the sketch of the
certificate, based on which a full certificate may be obtained as a
post-processing step. Determining which nogoods to include in the
certificate is a core challenge, which is handled by the search algo-
rithm, but once the nogoods have been successfully determined, it is
easy to reconstruct a derivation of individual nogoods, e.g., the no-
good in Step 3 may be derived by assuming its left-hand side and
then following the propagations that lead to a conflict (Steps 1 and
2). We defer the interested reader to the paper for more details [15].

5 Discussion and Conclusion

Al has been establishing itself as a core part of society. Although this
has clear benefits, there are fundamental concerns about AI when it
comes to performance guarantees and our confidence in the technol-
ogy, in particular when the underlying Al algorithm is black-box.

To address these issues, in this paper, we advocated for an ap-
proach that achieves transparency by design: we precisely define
what we consider interpretable, and then use search algorithms to
find the best possible output. This allows us to focus on understand-
ing the problem that needs to be solved, rather than doubting the Al

We discussed this idea in three very different contexts with vastly
different solving algorithms: supervised machine learning, control
policies, and certificates for combinatorial problems. Although in
each of these cases, the proposed approach leads to an exponentially
large search space, specialised search algorithms could be designed
that make this feasible in practice, addressing the aforementioned
concerns of performance and confidence in a principled way.

The focus was on the algorithmic aspects of interpretable AI. How-
ever, it is important to recognise that algorithms represent only one
part of the solution when addressing real-world problems.

Interpretability is a central concept in many applications of Al, but
it remains an elusive term—its meaning depends heavily on both the
domain and the context, with no universally accepted definition of
interpretability exists. Applying interpretable Al requires close col-
laboration with domain experts to validate and refine the approach.

However, within the AI community, this human-centred aspect has
received significantly less attention compared to algorithmic devel-
opment. For example, research on understanding what makes deci-
sion trees interpretable for particular applications is scarce. Similarly,
it remains unclear how to best explain that no better solution exists
for a combinatorial problem. To fully realise the potential of inter-
pretability, we must obtain a better understanding of effectively inte-
grate them into practical workflows.

We must also be mindful not to over-interpret interpretable Al
models. For example, while a small decision tree may be easy to un-
derstand, it can still capture spurious correlations in the data. More-
over, a single decision tree represents just one of potentially many
possible perspectives on the dataset. A more nuanced approach—one
involving multiple models and actively challenging their conclu-
sions—is necessary, even when the models are interpretable.

Lastly, we considered a static scenario. However, we acknowledge
that the environment in which we use Al is constantly changing. For
example, a model that is considered fair today may no longer be fair
in a year. As another example, our problem definitions are merely ap-
proximation of reality; we cannot hope to capture every aspect of the
problem. It is therefore essentially that we remain vigilant in moni-
toring (interpretable) Al models after they have been deployed.
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