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1. Introduction

This master’s thesis investigates the equivalence of streams as presented by [EHK11,
Ste08]. In the process some morphic properties of the Toeplitz words as first de-
scribed by [JK69] are discovered. The terminology of theoretical computer science
and mathematics shows some discrepancies: In theoretical computer science words
of infinite length are usually called streams and referred to as symbolic sequences
in mathematics. Similarly, morphisms are what mathematicians usually refer to
as substitutions. Notation is formally introduced starting in section 2 but will be
informally used in the introduction.
The first part of this section is a proper introduction into the subject. The two
subsections will be used to describe two original results: The first has to do with
prime degrees, the second one has to do with arithmetic subsequences.
Finite state machines were first described by neurophysiologists Warren McCul-
loch and Walter Pitts in the 1943 paper “A Logical Calculus Immanent in Nervous
Activity”. Their pioneering work made significant contributions to the neural net-
work theory, theory of automata, theory of computation and cybernetics. Later,
two computer scientists, G.H. Mealy and E.F. Moore, generalized the theory to
much more powerful machines in separate papers, published in 1955-56. The finite-
state machines, Mealy machine and the Moore machine, are named in recognition
of their work.1

Date: May 2, 2011.
1“The Intellectual Excitement of Computer Science”, Eric Roberts, Stanford University
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2 FRITS GERRIT WILLEM DANNENBERG

Automata theory emerged to be important in the field of compiler design. It is
closely tied to the notion of regular languages. One focus of this thesis is the
ordering obtained by applying tranducers, a special type of finite state machine, to
steams. The type of transducer considered in this document has been called pure
sequential transducer in [Sak09], simply finite-state transducer in [AS03] and also
sequential transducer in other literature. Denote Σ∗ the collection of all words over
some finite alphabet Σ. In this thesis the term transducer will refer to:

Definition 1.1. A finite state transducer (which will be abbreviated to FST or
transducer) is a sextuple A = (Q,Σ, δ, q0,∆, λ) where

• Q is a finite set of states
• Σ is a finite set, the input alphabet
• δ ⊆ Q× Σ×∆∗ ×Q is a transition relation
• q0 ∈ Q is the initial state
• ∆ is a finite set, the output alphabet
• λ : Q× Σ → ∆∗ is the output function

Suppose q1, q2 ∈ Q, a ∈ Σ, b ∈ ∆∗ then

(q1, a, b, q2) ∈ δ

describes the edge from state q1 to state q2 that takes input a and generates output
b. Assume the transition relation to be deterministic: For all q1 ∈ Q, a ∈ Σ there
is exactly one q2 ∈ Q, b ∈ ∆∗ such that

(q1, a, b, q2) ∈ δ

An elementary example of a transducer that performs the shift operator σ on a
infinite word (stream) is given in Figure 1. Transitions between states are made by
following the arrow, where a|a′ takes input a and gives output a′. Let a, b ∈ Σ∞ be

q0 q1

0|ǫ

1|ǫ

1|1

0|0

Figure 1. Example of a transducer. It follows that a ⊲ σ(a) for
any stream a.

single-sided streams over some alphabet Σ. Suppose that there is some transducer
A such that A(a) = b, then this is indicated by the notation:

a ⊲ b

Suppose there are some transducers A,B such that A(a) = b and B(b) = a. Then
a, b are equal under transducers and share the same degree. This is indicated by:

a ⋄ b

Then ⊲ induces a partial ordering on streams, where ⋄ indicates equivalence between
streams. Note that the alphabets Σ,∆ will be restricted to {0, 1}, as higher order
alphabets do not change the partial ordering as mentioned by [EHK11]. The degree
of stream a includes the sequences that a can both transduce to and which can
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be transduced back to a as well. There are countable many different transducers,
but there are uncountable many infinite words. So there are uncountably many
degrees. Some classes of streams are closed under transducers:

• morphic streams, [AS03]
• eventually recurrent streams, [EHK11]

A special notion is reserved for degrees that include every transduction of every
sequence in the degree, excluding any periodic sequences. A degree is called prime
if for every sequence in the degree the output under a transducer (the transduct)
can be transduced back to the original sequence, or is a periodic sequence. Finite
sequences are counted as periodic. One of the main results in [EHK11] is the fact
that the degree of Π is prime:

Π = 10100100010000100000 . . .

A proof is given in section 9 of this document. Eventually periodic and periodic
sequences are transducer equivalent because transducers can add and remove arbi-
trarily long prefixes. The degree of (eventually) periodic sequences is also prime,
as every sequence can be transduced to a periodic sequence. The degree of periodic
sequences will be considered the zero or trivial degree.
Two other known structures exists in the transducer ordering of streams: A collec-
tion of streams {Ai}

i∈N is called an infinite ascending chain if for every i:

Ai+1 ⊲ Ai

Ai ⋫ Ai+1

Opposed to this is the notion of an infinite descending chain for a collection {Di}
i∈N

holds:

Di ⊲ Di+1

Di+1 ⋫ Di

Examples of such chains are given in [EHK11]. In Section 10 an infinite descending
chain based on the classic Fibonacci sequence is constructed, which has not been
mentioned before. The degree of the Thue-Morse sequence includes the period-
doubling sequence v2, and is conjectured to be prime by [EHK11]. The Thue-Morse
word (TM) is the fixed point of substitution g, starting on zero:

g(0) → 01

g(1) → 10

TM = g∞(0)

= 0110100110010110 . . .

The n-th letter of Thue-Morse is equal to the parity of the number of ones in the
binary expansion of n, with even giving zero and odd a one. See lemma 3.3 for a
proof. The degree of Thue-Morse includes the period doubling word v2:

TM ⋄ v2

The period doubling word v2 is the fixed point of the following substitution k:

k(0) → 01

k(1) → 00

v2 = k∞(0)

= {max
b

2b|n}n∈N

= {v2(n)}
n∈N

= 0100010101000100 . . .
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The n-th letter of the period doubling sequence is given by the parity of the number
of leading zeros in the binary expansion of n. A proof is given in lemma 3.4. The
notation for v2 is ambiguous: v2 refers to the period doubling sequence but also to
the function v2(n) which determines the 2-adic valuation of n .

1.1. Prime streams. It is shown in [Ste08] that the degree of the Thue-Morse
sequence includes all of its arithmetic subsequences. That is, for any integers a, b >
0 holds:

TM ⋄ {TM(a+ bn)}n∈N

For a proof see theorem 7.7. One would expect a similar result for the period
doubling sequence, but this turns out to be difficult. For the period doubling
sequence it is shown as an original result that for integers a, b > 1 with b odd:

v2 ⊲ {v2(a+ bn)}n∈N

{v2(a+ bn)}n∈N ⋄ {v2(2a+ bn)}n∈N

The first line however, is true for any stream. The second line is proven in section
8. For b even, {v2(a + bn)}n∈N is either periodic or is transducer equivalent to b
odd. At this moment it is not known if

{v2(a+ bn)}n∈N ⊲ v2

holds in general. If this were not to be the case, then the degree of Thue-Morse
would not be prime. If the affirmative would be the case, then this does not assert
the prime property of Thue-Morse.

1.2. Arithmetic subsequences. Suppose Thue-Morse would be prime. One of
the least implications would be that Thue-Morse, the period doubling sequence and
all of the arithmetic subsequences would be transducer equivalent. To get a feeling
of the objects involved, I tried making a (counter) example to the stated claims.
I conjured that perhaps the morphisms associated with these sequences could be
indicators for transducer equivalence. As little was known regarding the morphic
structure of the mentioned sequences, I decided describing these morphisms would
be a first step.
The arithmetic subsequences of the period doubling word v2 exhibit a property
that has not been mentioned in literature before. To understand the property, the
following definition is necessary:

Definition 1.2. The rotated Toeplitz substitution ρa,km is a substitution created
by taking the iterated substitution km and rotating it by a

km(c) = d0d1 . . . dn

ρ1,km(c) = dnd0 . . . dn−1

ρa,km(c) = dn−a+1 . . . dnd0 . . . dn−a

where c ∈ {0, 1}.

The rotated Toeplitz substitution is a substitution in its own right, as opposed to
being an operator on the Toeplitz substitution. For example:

k3(0) = 01000101

k3(1) = 01000100

ρ1,k3(0) = 10100010

ρ1,k3(1) = 00100010

ρ2,k3(0) = 01010001

ρ2,k3(1) = 00010001
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Now fix some m ∈ N>0 and an integer 0 < q < 2m − 1. Then by theorem 3.8
{v2(q + (2m − 1)n)}n∈N is the fixed point of

ρq+1,km

starting on v2(q). In other notation:

ρ∞q+1,km(v2(q)) = {v2(q + (2m − 1)n)}n∈N

= {v2(
q

(2m − 1)
+ n)}n∈N

For example, {v2(
1
3 + n)}n∈N is the fixed point of the substitution ρ2,k2 :

k2(0) = 0100

k2(1) = 0101

ρ2,22(0) = 0001

ρ2,22(1) = 0101

{v2(1 + 3n)}n∈N = 0001000100010101000100010001010100010001000101010 . . .

A 2-adic rational number other from zero may be associated with an arithmetic
subsequence of the period doubling word. Zero is not included because v2(0) is not
properly defined. Any non-zero 2-adic rational number

r

2l − 1

has an associated Toepliz sequence:

{v2(
r

2l − 1
+ n)}n∈N

The number 1 is associated with the period doubling sequence itself:

{v2(1 + n)}n∈N = {v2(n)}
n∈N>0

= k∞(0)

For r ≥ 2l − 1, the associated sequence is a suffix of

{v2(
r′

(2l − 1)
+ n)}n∈N

where r′ ∈ {1, 2, . . . , 2l − 1} such that r′ = r mod 2l − 1. Applying a rotated
Toeplitz substitution to an arithmetic subsequence of the period doubling word
yields another arithmetic subsequence of the period doubling word. Theorem 4.1
shows that:

ρq+1,2m({v2(
r

2l − 1
+ n)}n∈N) = {v2(

2mr

2l − 1
− q + n)}n∈N

The rotated Toeplitz substitution theorems also apply to a generalization of v2. Let
p be a prime, then:

kp(0) = 0p−11

kp(1) = 0p−10

vp = k∞p (0)

= {max
b

pb|n mod 2}n∈N>0

For more details see section 3, section 4 and appendix A.
A more general connection between streams and morphisms is provided by a theo-
rem of Cobham. It connects the notion of k-automatic sequences with fixed points
of morphisms. Thue-Morse, the period doubling word and their arithmetic subse-
quences are themselves 2-automatic sequences:
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Theorem 1.3 (Cobham). Let k ≥ 2. Then a sequence is k−automatic if and only
if it is the image, under a 1-uniform substitution, of a fixed point of a k-uniform
substitution.

For a proof see section 5. The morphisms usually run over higher-order alphabets
and a coding on the fixed point of said morphism is needed to construct the au-
tomatic sequence. The arithmetic subsequences of vp can be described as proper
fixed points of rotated morphisms: No coding is needed. This specific property has
not been described before. The connection between operations on p-adic numbers
and applying morphisms on streams as described in theorem 4.1 is novel.
The arithmetic subsequences of Thue-Morse can also be described elegantly as
proper fixed points of morphisms. I have not found the time to include this result
in my thesis.
Further research on morphisms could consider general subsequences of streams.
Morphic streams different from Thue-Morse and the period doubling sequence
should also been considered. One problem would be: characterize streams that
are transducer equivalent to all their arithmetic substreams.

2. On words

Let Σ be a finite collection of distinct objects, a so called set. Let Σm be the set
of all finite sequences a1 . . . am with aj ∈ Σ for 1 ≤ i ≤ m. Elements of Σ are
called letters, and elements of Σm are called words over Σ of length m. Note: m
is a natural number; Σ0 = ǫ, where ǫ is the empty word having no letters, and
Σ1 can be identified with Σ. The set Σm can be identified with the cartesian
product Σ × Σ × . . . × Σ, but its elements are written without the usual commas
and parentheses. Taken from [Chi09].

Definition 2.1. Write

Σ+ = ∪m≥1Σ
m

Σ∗ = ∪m≥0Σ
m

= Σ+ ∪ ǫ

If a = a1 . . . am, b = b1 . . . bn ∈ Σ∗, define ab ∈ Σm+n to be a1 . . . amb1 . . . bm.
This gives a (closed) binary operation on Σ∗ and Σ+ called concatenation. It is
associative: a(bc) = (ab)c and aǫ = ǫa = a. Thus Σ+ is a semigroup called the free
semigroup on Σ. A semigroup with an identity element (word ǫ) is called a monoid.
Σ∗ is a monoid and is called the free monoid over Σ. Recall that a monoid such
that every element has a inverse is called a group. Denote the length of a word a
by |a|. Define an with n ∈ N by: a0 = ǫ, an+1 = ana.
If a is a word over the set Σ (Σ is also called the alphabet), a factor of a is a word
c ∈ Σ∗ such that a = bcd for some b, d ∈ Σ∗. If b = ǫ, then c is called a prefix of a.
If d = ǫ, then c is called a suffix of a. If c 6= a then c is called a pure factor.
A language is any subset L ⊆ Σ∗. L is a collection of words over the alphabet Σ .
For example, we may denote L = {1n0n|n ∈ N}. Then L is the language over the
alphabet {0, 1} containing all words that are constructed by taking ones followed
by an equal amount of zeros.
Words may also be of infinite length: Suppose a ∈ Σ∞. Then a is a (single sided)
infinite word or stream and note a = a0a1a2 . . . with ai ∈ Σ for ∀i ∈ N.
Denote sk(n) the expansion of integer n over base k, with the most significant bit
to the left. Each sk(n) starts with an 1 except for sk(0) = ǫ.
Suppose a ∈ {0, 1}∗ then a denotes the conjugate of a, given by interchanging every
1 with 0 and vice versa.
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3. On Toeplitz substitutions

Definition 3.1. A substitution is a map h : Σ+ → ∆∗ such that

h(ab) = h(a)h(b)

for all a, b ∈ Σ+.

In computer science, substitutions are usually referred to as morphisms. For exam-
ple see [AS03]. Suppose that for all a ∈ Σ the length of the substitution is constant:
|h(a)| = k for some k ∈ N. Then the substitution h is of uniform length k.

Definition 3.2. A substitution is prolongable on symbol a ∈ Σ if h : Σ+ → Σ∗

for some alphabet Σ and if for some a ∈ Σ it holds that h(a) = ab for some b ∈ Σ∗

such that hn(b) 6= ǫ for all n ∈ N.

Denote the limit of a prolongable substitution by

lim
n→∞

hn(a) = abh(b)h2(b) . . . .

Note that limn→∞ hn(a) is a fixed point of prolongable substitution h, because

h( lim
n→∞

hn(a)) = h(abh(b)h2(b) . . . .)

= h(a)h(b)h2(b)h3(b) . . . .

= abh(b)h2(b)h3(b) . . . .

= lim
n→∞

hn(a)

Denote the Thue-Morse substitution g : {0, 1}+ → {0, 1}∗ :

g(0) → 01

g(1) → 10

Then iterate the substitution on starting word w = 0 in the following fashion:

g(0) = 01

g2(0) = 0110

g3(0) = 01101001

g4(0) = 0110100110010110

. . . . . .

The Thue-Morse substitution is prolongable on zero2 and by taking the limit the
infamous Thue-Morse stream is obtained:

lim
n→∞

gn(0) = 011010011001011010010110011010011001011001101001 . . .

The Thue-Morse stream was first implicitly described in a 1851 paper of Prouhet,
and was later independently discovered most notably by Thue (1906) and Morse
(1921) [AS99]. For historical reasons it is often called the Thue-Morse word. The
Thue-Morse word has some amazing properties and shows up in seemingly unrelated
subjects. It is an infinite non-periodic word that is strongly cubefree: There is no
factor in Thue-Morse of the form x2a where a is the first letter of the non-empty
word x. For every factor that does occur in the Thue-Morse sequence however,
it occurs infinitely often. There are several ways to construct the Thue-Morse
word. For the sake of future discussion, we will exhibit one other way to construct
the Thue-Morse sequence. For a more complete overview of the Thue-Morse word
see [AS99,Ste08,Klo02].

2It is also prolongable on 1. The limit is equal to the conjugate of Thue-Morse.
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Lemma 3.3. Denote s2(n) the base-2 expansion of integer n. Let

TM(n) = {number of occurrences of 1 in s2(n)} mod 2

Then {TM(n)}n∈N0 equals the Thue-Morse word.

Proof. Proof by induction. It is clear that

gm(0) = TM(0), TM(1), . . . , TM(2m − 1)

is true for m = 2. Assume that for a given m the equation holds. It is to be shown
the equation also holds for m+1. From the definition of the function TM() follows
that

TM(2n) = TM(n)

TM(2n+ 1) = 1− TM(n)

Compute gm+1(0) by using the induction hypothesis, expanding the substitution
using the above equations:

gm+1(0) = g(gm(0))

= g(TM(0), TM(1), . . . , TM(2m − 1))

= TM(0), 1− TM(0), TM(1), 1− TM(1), . . . , TM(2m − 1)), 1− TM(2m − 1))

= TM(0), TM(1), TM(2), TM(3), . . . , TM(2m+1 − 2), TM(2m+1 − 1)

�

It follows from a deep result of [Mah29] that ξ =
∑∞

n=0 TM(n)2−n is a transcen-
dental number. Later, this fact was proven in a more concise way by [Dek77].
It should be noted that the works of Mahler initially attracted the attention of a
small group of specialists. Only relatively recently has his work become more pop-
ular. Currently, some of Mahler’s results and conjectures are the focus of intense
research.3

There is another substitution of uniform length 2 that shows similar properties to
Thue-Morse, the Toeplitz substitution k:

k(0) = 01

k(1) = 00

Then call limn→∞ kn(0) the Toeplitz word :

lim
n→∞

kn(0) = 01000101010001000100010101000101010001010100010001 . . .

The Toeplitz word is also known as the period doubling sequence.

Lemma 3.4. Define for n ∈ N>0 :

ord2(n) = max{b : 2b|n}

v2(n) = {ord2(n)} mod 2

Then {v2(n)}
n∈N>0 denotes the period doubling word.

Proof. Proof by formal induction. It is clear that

km(0) = v2(1), v2(1), . . . , v2(2
m)

3“... Mahler regretted that, apart from his own work, little interest had been shown by 20th

century mathematicians in the study of arithmetical properties of decimal expansions.”, A J van
der Poorten, Obituary of Kurt Mahler. The Mahler Lectureship for a visiting lectureship by the
Australian Mathematical Society has since been awarded to Zagier, Hilton, Conway, Lenstra and

Tao amongst others.
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holds for m = 2 and m = 1. Assume the above holds for m and m− 1. It shall be
shown the equation also holds for m+1. From the definition of v2(n) follows that:

v2(4n) = v2(n)

v2(1 + 4n) = v2(1) = 0

v2(2 + 4n) = v2(2) = 1

v2(3 + 4n) = v2(3) = 0

In particular:

k2(0) = 0100

k2(1) = 0101

Compute km+1(0) by using the induction hypothesis and expanding the substitu-
tion. The final step follows from the relations v2(n) = v2(4n) ect. as above.

km+1(0) = k2(km−1(0))

= k2(v2(1), . . . , v2(2
m−1))

= 0, 1, 0, v2(1), . . . , 0, 1, 0, v2(2
m−1)

= v2(1), v2(2), v2(3), v2(4), . . . , v2(2
m+1 − 3), v2(2

m+1 − 2), v2(2
m+1 − 1), v2(2

m+1)

�

The here mentioned constructions of the Thue-Morse and the period doubling word
have long been known in literature. A first generalization of the period doubling
word was given by [JK69], who used a construction originally conceived by O.
Toeplitz. The period doubling morphism can be generalized in two ways. The
first way generalizes v2 to vp with p a prime. It is described at the end of this
section and also in Appendix A. The second generalization gives rise to the rotated
Toeplitz substitutions and I think this is a new result.4 For starters, define the
rotated substitution:

Definition 3.5 (rotated substitution). Let h be a prolongable substitution over
alphabet Σ. For all c ∈ Σ,m ∈ N there is n ∈ N and d ∈ Σ∗ so that

hm(c) = d

= d0d1 . . . dn

The rotated substitution ρi,hm is a substitution created by taking substitution hm

and rotating it by i:

ρ1,hm(c) = dnd0 . . . dn−1

ρi,hm(c) = dn−i+1 . . . dnd0 . . . dn−i

For example:

k3(0) = 01000101

k3(1) = 01000100

ρ1,k3(0) = 10100010

ρ1,k3(1) = 00100010

ρ2,k3(0) = 01010001

ρ2,k3(1) = 00010001

It should be stressed that ρ2,k3 is a substitution in its own right as opposed to being
an operator on another substitution.

4The mixed generalization, the rotated Toeplitz substitution for p prime, is also covered in

Appendix A.
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A theorem that shows a relation between the fixed point of a rotated Toeplitz
substitution and the v2 function can now be stated.

Lemma 3.6. Then for any non-zero integer a such that −2m < a < 2m and
n ∈ N>0 it holds that:

v2(n2
m + a) = v2(n2

m − a)

= v2(|a|)

Proof. Immediate. �

Lemma 3.7. Let k denote the Toeplitz substitution over the {0, 1} alphabet. Let
0 < a < 2m − 1 with a,m ∈ N>0 fixed. Then

ρ∞a+1,km(v2(a)) = {v2(a+ n(2m − 1))}n∈N

Proof. First it is shown that the first 2m symbols of both sides match. Secondly
a recurrence relation will be proven to hold for both sides. Together with the first
step this completes the proof.
Note that ρa+1,km is a substitution prolongable on v2(a). The following holds:

km(0) = v2(1), v2(2), . . . , v2(2
m)

km(1) = v2(2
m + 1), v2(2

m + 2), . . . , v2(2
m+1)

It follows from lemma 3.6:

km(0) = v2(1), v2(2), . . . , v2(2
m − 1), v2(2

m)

km(1) = v2(2
m + 1), v2(2

m + 2), . . . , v2(2
m+1 − 1), v2(2

m+1)

= v2(1), v2(2), . . . , v2(2
m − 1), v2(2

m+1)

km(v2(a)) = v2(1), v2(2), . . . , v2(2
m − 1), v2(a2

m)

Note that km(v2(a)) only depends on a in the 2m-th (final) entry. It is important for
the second step of the proof to see that ifm is even it holds v2(a2

m) = v2(a) and like-
wise when m odd v2(a2

m) = 1− v2(a). Rotate km(v2(a)) to obtain ρa+1,km(v2(a))
and use lemma 3.6 to rewrite:

ρa+1,km(v2(a)) = v2(2
m − a), . . . , v2(a2

m), v2(1), . . . , v2(2
m − a− 1)

= v2(a), . . . , v2(a+ a(2m − 1)), v2(a+ (a+ 1)(2m − 1)), . . . , v2(a+ (2m − 1)(2m − 1))

This completes the first step of the proof. Suppose m is even. Let 0 ≤ c < 2m − 1
with c 6= a and substitute n = c+ r2m for r ∈ N, then it follows by lemma 3.6 that:

v2(a+ (2m − 1)n) = v2(a+ (2m − 1)(c+ r2m))

= v2(a+ c(2m − 1) + (2m − 1)r2m)

= v2(a+ c(2m − 1))

Which shows that for c 6= a, the c+2mr-th entry is actually equal to the c-th entry
of the sequence. Now suppose m is even and c = a:

v2(a+ (2m − 1)n) = v2(a+ (2m − 1)(c+ r2m))

= v2(a+ (2m − 1)(a+ r2m))

= v2(2
m(a+ (2m − 1)r))

= v2(a+ (2m − 1)r))

So for c = a, the a + 2mr-th entry of {v2(a + n(2m − 1))}n∈N is actually equal to
the r-th entry of the sequence. Using m even the rotated substitution is given by:

ρa+1,km(0) = v2(2
m − a), . . . , v2(2

m − 1), 0, v2(1), . . . , v2(2
m − a− 1)

ρa+1,km(1) = v2(2
m − a), . . . , v2(2

m − 1), 1, v2(1), . . . , v2(2
m − a− 1)
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Conclude that indeed the r-th entry of the fixed point of the substitution is equal
to its a+ 2mr-th entry. Both sequences have the same recurrence rules when m is
even. Now consider m odd. As before with c 6= a :

v2(a+ (2m − 1)n) = v2(a+ c(2m − 1))

However for c = a it follows:

v2(a+ (2m − 1)n) = v2(a+ (2m − 1)(c+ r2m))

= v2(a+ (2m − 1)(a+ r2m))

= v2(2
m(a+ (2m − 1)r))

= 1− v2(a+ (2m − 1)r))

For m odd the rotated substitution is given by:

ρa+1,km(0) = v2(2
m − a), . . . , v2(2

m − 1), 1, v2(1), . . . , v2(2
m − a− 1)

ρa+1,km(1) = v2(2
m − a), . . . , v2(2

m − 1), 0, v2(1), . . . , v2(2
m − a− 1)

The result follows. �

Theorem 3.8. Let a, b ∈ N>0 such that 0 < a < b and b odd. Then there are some
c,m ∈ N>0 such that

{v2(a+ bn)}n∈N = lim
n→∞

ρnac+1,km(v2(ac))

Proof. Suppose c,m are such that cb = 2m − 1. Then c is odd and by lemma 3.7
write:

{v2(a+ bn)}n∈N = {v2(ca+ cbn)}n∈N

= ρ∞ac+1,km(v2(ac))

So now we show that there are some c,m such that cb = 2m − 1. Suppose that
b ∤ 2m − 1 for all m ∈ N>0. Then by the pigeon hole principle there must be some
r, s, v ∈ N>0 such that

2r − 1 ≡ v mod b

2r+s − 1 ≡ v mod b

It follows that:

b | 2r+s − 2r

b | 2r(2s − 1)

b | 2s − 1

So then b does divide 2s − 1, which is a contradiction. �

There is an obvious generalization to Theorem 3.8. Define for p a prime:

kp(0) = 0p−11

kp(1) = 0p−10

vp(n) = {max
b

pb|n} mod 2

Then it follows in a very similar way that

{vp(n)}
n∈N>0 = k∞p (0)

Equally, if a, b ∈ N>0 are such that 0 < a < b and p ∤ b, then there are some
c,m ∈ N>0 such that

{vp(a+ bn)}n∈N = ρ∞ac+1,km
p
(vp(ac))
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The proof can be found the in appendix A, and has the same structure as the non-
generalized version. As a corollary to theorem 3.8 and the deep results of [Mah29]
and [Dek77] we find

Corollary 3.9. Let a, b ∈ N>0 such that 0 < a < b, p ∤ b and p a prime. Then
ξ =

∑∞
n=0 vp(a+ bn)p−n is a transcendental number.

Proof. This is a direct result by applying theorem A.5 and theorem 13.5.4 from
p.393 [AS03]. �

4. On p-adic rationals

Consider the non-zero rational numbers of the 2-adic numbering system. Without
loss of generality, such a rational number can be written as

q

2m − 1

for some q ∈ Z\{0} and m ∈ N>0. Every non-zero rational can be associated with
a Toeplitz stream in the following fashion:

{v2(
q

2m − 1
+ n)}n∈N := {v2(q + n(2m − 1))}n∈N

For example, the number 1 is associated with the period doubling sequence:

{v2(1 + n)}n∈N = {v2(n)}
n∈N>0

The 2-adic rational 1
3 is associated with the following arithmetic subsequence of the

period doubling sequence:

{v2(
1

3
+ n)}n∈N = {v2(1 + 3n)}n∈N

It follows from section 3 that {v2(
1
3 + n)}n∈N is the fixed point of the substitution

ρ2,k2 . For 0 < q < (2m − 1) it holds that {v2(
q

2m−1 + n)}n∈N is the fixed point of
ρq+1,km as proved in theorem 3.7. What happens if ρq+1,km is applied once to an
arbitrarily arithmetic subsequence of v2? It turns out that:

ρq+1,km({v2(
r

2l − 1
+ n)}n∈N) = {v2(

2mr

2l − 1
− q + n)}n∈N

Note that applying ρq+1,km to the fixed point ρ∞q+1,km yields again the fixed point.
The following theorem summarizes and extends the discussion up to this point.

Theorem 4.1. Let ρq+1,km be a rotated Toeplitz substitution as noted in Section
3 with 0 < q < (2m − 1) and m ∈ N>0. Then for every r ∈ Z\{0} and l ∈ N>0 it
holds

ρq+1,km({v2(
r

2l − 1
+ n)}n∈N) = {v2(

2mr

2l − 1
− q + n)}n∈N

Proof. It will be shown that both sides of the equation have the same recurrence
rules. From the recurrence rules follows that the first 2m letters of both sides are
the same, completing the proof. But first recall from section 3 the construction of
the rotated substitution ρq+1,km :

km(0) = v2(1), v2(2), v2(3), . . . v2(2
m − 1), v2(2

m)

km(1) = v2(1), v2(2), v2(3), . . . v2(2
m − 1), 1− v2(2

m)

ρq+1,km(0) = v2(2
m − q), v2(2

m − q + 1), . . . , v2(2
m), v2(1), . . . , v2(2

m − q − 1)

ρq+1,km(1) = v2(2
m − q), v2(2

m − q + 1), . . . , 1− v2(2
m), v2(1), . . . , v2(2

m − q − 1)
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Suppose m is even and consider n = q + i2m with i ∈ N. It holds:

v2(
2mr

2l − 1
− q + n) = v2(

2mr

2l − 1
− q + q + i2m)

= v2(2
m(r + i(2l − 1)))

= v2(r + i(2l − 1))

= v2(
r

2l − 1
+ i)

Now consider the left hand side of the statement and denote

ρq+1,km(v2(
r

2l − 1
+ i)) = ρ0, ρ1, . . . , ρ2m−1

then ρq = v2(
r

2l−1
+ i). Now if m were odd, then ρq = 1− v2(

r
2l−1

+ i) and:

v2(
2mr

2l − 1
− q + n) = 1− v2(

r

2l − 1
+ i)

So for n = q+i2m with i ∈ N the equation-to-prove holds. Now consider n = s+i2m

with s 6= q and 0 ≤ s < 2m. It follows that |s− q| < 2m − 1, which is to be used in
the second to final step of the derivation below:

v2(
2mr

2l − 1
− q + n) = v2(

2mr

2l − 1
− q + s+ i2m)

= v2(2
mr + (2l − 1)(s− q + i2m))

= v2(2
m(r + (2l − 1)i) + (2l − 1)(s− q))

= v2(|s− q|)

It is clear that for n = s + i2m with s 6= q and 0 ≤ s < 2m the expression is
dependent on s and independent of i. In fact, the expansion of ρq+1,km given at the
start of the proof now shows the two sides are equal. �

5. On automata

Definition 5.1. An automaton (also called a deterministic finite automaton with
output (DFAO) by [AS03] ) is a sextuple A = (Q,Σ, δ, q0,∆, τ) where

• Q is a finite set of states
• Σ is a finite set, the input alphabet
• δ ⊆ Q× Σ×Q is a transition function
• q0 ∈ Q is the initial state
• ∆ is a finite set, the output alphabet
• τ : Q → ∆ is the output function

Assume the transition relation to be deterministic: For all q ∈ Q, a ∈ Σ there exists
a unique q′ ∈ Q such that

δ(q, a) = q′

Also assume the output function to be deterministic: For all q ∈ Q, there is a
unique d ∈ ∆ such that

τ(q) = d

Suppose q, q′ ∈ Q, a ∈ Σ. Then

δ(q, a) = q′

describes the edge from state q to state q′ that takes input a. The automaton
starts in the initial state and receives a word as input. The symbols of the word
are processed one at a time, such that the state of the machine shifts according to
the δ function. For instance, let the word 101 be used as input for the automaton
depicted in Figure 2. The sequence of the traversed states starts with initial state
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q0 and subsequent states visited would be q1, q1, q0. Because τ(q0) = 0, the output
would be 0. This is denoted by A(101) = 0.

q0/0 q1/1
1

1

0 0

Figure 2. An automaton counting modulo 2 the number of ones

Definition 5.2. Let sk(n) be the expansion of integer n in base k with the most
significant digit first. A sequence {an}

n∈N is called a k-automatic sequence if there
is some automaton A such that for all n ∈ N we have an = A(sk(n)).

Using the automaton from Figure 2, the Thue-Morse sequence may be constructed.
So the Thue-Morse sequence is an 2-automatic sequence. The automaton gener-
ating the Toeplitz word is depicted in Figure 3. It is known that if instead sk(n)
would start with the least significant digit first, this would not change the class of
automatic sequences [AS03].

q0/0 q1/1

0

0, 1

1
Figure 3. An automaton calculating v2(n) from s2(n).

Theorem 5.3 (Cobham). Let k ≥ 2. Then a sequence u is k-automatic if and only
if it is the image, under a 1-uniform substitution, of a fixed point of a k-uniform
substitution.

Proof. Proof using the same construction as [AS03], p 175.
⇒ Suppose u = τ(w) with τ : Σ → Σ′ a coding and w = w0w1 . . . a fixed point of a
k-uniform morphism h : Σ+ → Σ∗. Let sk(n) be as before. The claim is that some
automaton A = (Q,Σ, δ, q0,Σ

′, τ) exists such that:

A(sk(n)) = τ(wn) = un

Let q0 = w0 and let Q = Σ. Define the transition function for every q ∈ Σ and
0 ≤ b < k:

δ(q, b) = the b-th letter of h(q)

Use induction on the length |sk(n)|. For |sk(n)| = 0 the claim holds because
q0 = w0. Suppose the claim holds for |sk(n)| = i, then it will be shown to hold for
|sk(n)| = i + 1. Denote for some n the base-k expansion sk(n) = s0s1 . . . si+1. In
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particular, n = kn′+ si+1 where sk(n
′) = s0s1 . . . si. By the induction step it holds

that

δ(q0, s0s1 . . . si) = wn′

Because h is k-uniform, it holds that wn is the si+1-th letter of h(wn′). Then there
follows:

A(sk(n)) = τ(δ(q0, sk(n)))

= τ(δ(q0, s0s1 . . . si+1))

= τ(δ(δ(q0, s0s1 . . . si), si+1))

= τ(δ(wn′ , si+1))

= τ(the si+1-th symbol of h(wn′))

= un

⇒ Assume that u is a k-automatic sequence, so that un = τ(wn) = τ(δ(q0, sk(n)))
for some automaton A = (Q,Σk, δ, q0,Σ

′, τ). Assume δ(q0, 0) = q0. Define the
morphism h : Q+ → Q∗ in the following fashion:

h(q) = δ(q, 0)δ(q, 1) . . . δ(q, k − 1)

Then morphisms h is prolongable on q0 with some fixed point w′. Then it is clear
that w′

n = δ(q0, sk(n)) holds for |sk(n)| ≤ 1. Assume w′
n = δ(q0, sk(n)) holds for

|sk(n)| ≤ i. Then showing it also holds for |sk(n)| ≤ i + 1 completes the proof.
Denote for some n the base-k expansion sk(n) = s0s1 . . . si+1. In particular there
holds n = kn′ + si+1 where sk(n

′) = s0s1 . . . si. So it follows:

δ(q0, sk(n)) = δ(q0, s0s1 . . . si+1)

= δ(w′
n′ , si+1(n))

= the si+1-th letter of h(w′
n′)

= wkn′+si+1

= wn

�

Theorem 5.4. Let h be a k-uniform substitution over alphabet Σr = {0, 1, . . . , r−1}
prolongable on 0. Denote

h∞(0) = w

= w0w1w2 . . .

Then for any a, b ∈ N {wa+bn}
n∈N is a k-automatic sequence.

Proof. This is a direct result from the definition of automatic sequences and lemma
6.6. An alternative using Cobhams theorem is:
Let Σb

r = {0, 1, . . . , r − 1}b be an alphabet consisting of all words of length b over
Σr. Construct the substitution h∗ : {Σb

r}
+ → {Σb

r}
+ of uniform length k in the

following fashion: Let d ∈ Σb
r, then

h∗(d) = h(d)

Then h∗ is prolongable on w0w1 . . . wb−1 ∈ Σb
r with fixed point w. Let the 1-uniform

substitution (coding) c : Σb
r → {0, 1, . . . , r} be:

c(d) = { the a-th letter of d}

Then applying the coding to w indeed yields {wa+bn}
n∈N. �
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An example of the above theorem is given: The 2-uniform prolongable substitution
that has as fixed point {TM(1 + 3n}n∈N is given by:

g∗(A) = AB

g∗(B) = AC

g∗(C) = BD

g∗(D) = EC

g∗(E) = FD

g∗(F ) = FE

c(A) = 1, c(B) = 1, c(C) = 0

c(D) = 1, c(E) = 0, c(F ) = 0

g∞(A) = ABACABBDABACACEC . . .

TM(1 + 3n) = 1110111111101000 . . .

The above substitution can be derived by expanding the Thue-Morse word in blocks
of three digits: The 2-uniform substitution for Thue-Morse is:

g(0) = 01

g(1) = 10

From this the substitution g∗() over the alphabet of words of length 3 and coding
c() follows:

g∗( 011 ) = 011 010

g∗( 010 ) = 011 001

g∗( 001 ) = 010 110

g∗( 110 ) = 101 001

g∗( 101 ) = 100 110

g∗( 100 ) = 100 101

c( 011 ) = 1, c( 010 ) = 1, c( 001 ) = 0

c( 110 ) = 1, c( 101 ) = 0, c( 100 ) = 0

Substitution g∗ is prolongable on 011 and has fixed point TM :

TM : 011 010 011 001 011 010 010 110 011 010 011 001 011 001 101 001 . . .

TM(1 + 3n) : 1 1 1 0 1 1 1 1 1 1 1 0 1 0 0 1 . . .

6. On transducers

Definition 6.1. A finite state transducer (which will be abbreviated to FST or
transducer) is a sextuple T = (Q,Σ, δ, q0,∆, λ) where

• Q is a finite set of states
• Σ is a finite set, the input alphabet
• δ ⊆ Q× Σ×∆∗ ×Q is a transition relation
• q0 ∈ Q is the initial state
• ∆ is a finite set, the output alphabet
• λ : Q× Σ → ∆∗ is the output function

Suppose q1, q2 ∈ Q, a ∈ Σ, b ∈ ∆∗ then

(q1, a, b, q2) ∈ δ
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describes the edge from state q1 to state q2 that takes input a and generates output
b. Assume the transition relation to be deterministic: For all q1 ∈ Q, a ∈ Σ there
is exactly one q2 ∈ Q, b ∈ ∆∗ such that

(q1, a, b, q2) ∈ δ

Now define the extended transition relation δ∗ ⊆ Q×∆∗×Γ∗×Q to be the closure
of δ:

• δ ⊆ δ∗

• (q, ǫ, ǫ, q) ∈ δ∗ for all q ∈ Q
• If (q1, a, b, q2) ∈ δ∗ and (q2, c, d, q3) ∈ δ then (q1, ac, bd, q3) ∈ δ∗.

Then it is clear that δ∗ contains all the possible paths on the graph of A. Also define
the transition function δ : Q× Σ → Q and the output function λ : Q× Σ → ∆∗:

δ(q1, a) = q2 and λ(q1, a) = b if and only if (q1, a, b, q2) ∈ δ∗

It should be clear from the notation that δ(.) denotes the function and δ, δ∗ the
sets. For transducer T note that T (a) = b if λ(q0, a) = b.
Let L be a language. Then

T (L) = {T (a)|a ∈ L}

T−1(L) = {a ∈ Σ∗|T (a) ∈ L}

Lemma 6.2. There are countably many finite state transducers.

Proof. The transducer is entirely determined by the transition relation δ. In other
notation, denote

F : Q× Σ×Q → ∆∗

such that F (q1, a, q2) = b if and only if:

(q1, a, b, q2) ∈ δ

Then the number of such functions F is countable. �

Lemma 6.3. Let a, b ∈ Σ+ and T a finite state transducer. Then T(a) is a prefix
of T(ab).

Proof. By the deterministic property it follows that the path defined by input ab
on T is unique: There is no other path on T that takes input ab. Then it should
be clear that T (a) is a prefix of T (ab). �

Definition 6.4. Denote a, b ∈ Σ∞ and T a finite state transducer. Denote T (a) = b
if and only if for every prefix b′ of b there is a prefix a′ of a such that b′ is a prefix
of T (a′).

Lemma 6.5. Suppose T is a transducer with output language Σ′ and R a transducer
with input language Σ′, and let w ⊆ Σ∗ be a word. Then there exists a transducer
T ′ such that R(T (w)) = T ′(w).

Proof. Let

T = (Q, q0,Σ,Σ
′, δ, λ)

R = (Q′, q′0,Σ
′,Σ′′, δ′, λ′)

T ′ = (Q′′, q′′0 ,Σ,Σ
′′, δ′′, λ′′)

with Q′′ = Q×Q′ and q′′0 = [qo, q
′
0]. Define for all a ∈ Σ, [q, q′] ∈ Q′′:

([q, q′], a, λ′(q, λ(q′, a)), [δ(q, a), δ(q′, λ(a))]) ∈ δ′′

This shows T ′ is a properly defined deterministic FST. Take a ∈ Σ and note that:

R(T (a)) = R(λ(q0, a)) = λ′(q′0, λ(q0, a)) = T ′(a)
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By induction on the length of w it can be shown that for all w ∈ Σ∗ it holds
R(T (w)) = T ′(w). �

The construction used in the proof of lemma 6.5 is called wreath product in [AS03].

Lemma 6.6. Let T be a FST with input and output language Σk = {0, 1, . . . , k−1}.
Let A be an automaton with input language Σk. Then there is an automaton A′

such that for all w ∈ Σ∗
k it holds that A(T (w)) = A′(w).

Proof. The idea here is to create a automaton A′ that has state space Q×Q′ and
emulates the path of both T and A at the same time. Let

T = (Q,Σk, δ, q0,Σk, λ)

A = (Q′,Σk, δ
′, q′0,∆, τ)

A′ = (Q×Q′,Σk, δ
′′, [q0, q

′
0], δ

′′, τ ′)

be an automaton such that for all a ∈ Σk and [q, q′] ∈ Q×Q′ we have

([q, q′], a, [δ(a), δ′(T (a)) ∈ δ′′

τ ′([q, q′]) = τ(δ′(q′))

On input w the automaton A′ emulates the FST T and automaton A simultane-
ously:

A′(w) = τ ′([q0, q
′
0], T (w))

= τ(δ′(q′0, T (w)))

= A(T (w))

�

7. Equivalence of sequences under transducers

Definition 7.1. Let a, b be streams. Then

a ⊲ b

if there exists a transducer such that A(a) = b. Clearly, this defines a partial
ordering. Denote

a ⋄ b

if and only if a ⊲ b and b ⊲ a.

Lemma 7.2 (Transitivity). Let a, b, c ∈ Σ∞ and suppose a ⊲ b, b ⊲ c. Then a ⊲ c.
Alternatively, suppose a ⋄ b, b ⋄ c. Then a ⋄ c.

Proof. Follows from lemma 6.5 �

Lemma 7.3. : ⋄ defines an equivalence relation.

Proof. By using the identity transducer for any stream a there holds a ⋄ a, so
reflexivity is satisfied. Symmetry is also satisfied: for any streams a, b by definition
a ⋄ b implies b ⊲ a and a ⊲ b. By the previous lemma there is also transitivity. �

Theorem 7.4. There is an uncountable number of degrees of streams.

Proof. There are uncountable many infinite sequences over {0, 1}. There are count-
ably many transducers. Therefore, the number of degrees is uncountable. �

Lemma 7.5. Let a ∈ Σ∞ and let σ be the shift operator: If a = a0a1a2 . . . then
σa = a1a2a3 . . .. For all n ∈ N there holds:

σna ⋄ a
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Proof. ⊲ : For some w ∈ Σn we have that a = wσna. Build a transducer such the
output for the first letter is w followed by the letter itself. For every subsequent
letter read as input, the transducer outputs the same letter. ⊳ : We may build an
transducer that outputs ǫ for the first n symbols read. For every subsequent letter
read as input, the transducer outputs the same letter. �

Lemma 7.6. Let a, b ∈ {0, 1, . . . , k}∞ be streams, with b purely periodic. Let
c = {an + bn mod k}n∈N. Then

a ⋄ c

Proof. Let the period of b be p ∈ N>0. Then a transducer with exactly p states
can be constructed such that the value of an+ bn mod k is computed correctly. In
particular for 0 ≤ i < p and j ∈ {0, 1, . . . k − 1}:

T = (Q, {0, 1, . . . k − 1}, δ, q0, {0, 1, . . . k − 1}, λ)

Q = {q0, q1, . . . , qp−1}

(qi, j, bi + j mod k, qi+1) ∈ δ

(qp−1, j, bp−1 + j mod k, q0) ∈ δ

This shows that T (a) = c. In a similar fashion a transducer R can be constructed
such that R(c) = a. �

Some examples of transducers now follow. Figure 4 and 5 show that TM ⋄ v2.

q0 q1 q2
0|01

0|0

0|1

1|ǫ 1|1 1|0

Figure 4. v2 ⊲ TM

q0 q1 q2
0|ǫ

1|0

0|0

1|ǫ 0|1 1|1

Figure 5. TM ⊲ v2

Denote {fi|fi ∈ N>0}
i∈N0 a positive integer-valued sequence. From Figure 6 and

7 it is clear that:

1f00f11f20f31f4 · · · ⋄ 10f010f110f210f310f4 · · ·
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q0 q1 q2
1|ǫ

1|ǫ

1|ǫ

0|ǫ 0|1 0|0

Figure 6. 10f010f110f210f3 ⊲ 1f00f11f20f3

q0

q1

q2

1|10

0|10

0|10
1|10

1|0

0|0

Figure 7. 10f010f110f210f3 ⊳ 1f00f11f20f3

This illustrates that the sequence f0f1f2 . . . is more significant than the words

wf0
0 wf1

1 wf2
2 . . .. A transducer can also do simple arithmetic. For example: denote

by fi mod 3 the remainder of fi after devision by 3. Figure 8 shows how an
transducer can do this calculation. It is a result first published in [Ste08] that

q0 q1 q2

q3

1|ǫ 0|ǫ

0|ǫ0|ǫ

1|10

1|100

1|10|ǫ

Figure 8. 10f010f110f210f3 ⊲ 10f0 mod 310f1 mod 310f2 mod 310f3 mod 3
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every subsequence of TM is equivalent to the TM. Recall one of the definitions of
the Thue-Morse sequence:

TM = { number of occurrences of 1 in s2(n)}
n∈N

Theorem 7.7. Suppose a, b ∈ N>0 and 0 ≤ a < b. Then:

{TM(a+ bn)}n∈N ⋄ TM

Proof. The ⊳ implication can be shown by a transducer that outputs every b th
input, and omits everything else. The ⊲ implication can be shown using another
transducer. First note that the Thue-Morse sequence is the fixed point of substitu-
tion g:

g(0) = 01

g(1) = 10

It is also the fixed point of gm for any m ∈ N>0. Note that gm(0) is the conjugate
of gm(1):

gm(0) = gm(1)

The Thue-Morse sequence may be written in the following fashion:

TM = gm(TM(0))gm(TM(1))gm(TM(2)) . . .

In other words, the Thue-Morse word is a concatenation of the words gm(0) and
gm(1). Suppose there is a mystery word x that can either be gm(0) or gm(1).
Suppose the qth letter of mystery word x is known. Then the mystery word x
is known: Because gm(0) = gm(1), there is only one candidate that will have a
matching letter in the q-th position. Choose m such that there is a letter known for
every block of length 2m. Because a+ bn is periodic modulo 2m, a finite transducer
can be build that reconstructs the Thue-Morse sequence from one of its arithmetic
subsequences:
Fix m ∈ N>0 to be the smallest m such that b ≤ 2m. Define

cn = a+ bn mod 2m

so that 0 ≤ cn < 2m for all n ∈ N. Then {cn}
n∈N is periodic with period p, say.

Let the transducer T = (Q,Σ, δ, q0,∆, λ) have p states: q0, q1, . . . , qp−1. The initial
state is q0. The transducer reads one letter of input at a time, and then moves
to the next state regardless of output. For all j such that cj ≥ cj+1 define the
transition

(qj , a, x, qj+1) ∈ δ

x =











gm(0) if the cj-th letter of gm(0) is equal to a

gm(1) if the cj-th letter of gm(0) is not equal to a

Now suppose that cj < cj+1 for some j. Then this would mean that the same block
would be outputted twice. So for this case define the transition:

(qj , a, ǫ, qj+1) ∈ δ

Regardless of the input, with period p the transducer returns to state q0. �
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8. On Toeplitz equivalence classes

The purpose of this section is to investigate the equivalence under transducers of
the arithmetic subsequences of the Toeplitz word. In other words, the equivalence
of sequences given by {v2(a+ bn)}n∈N is explored. As a final result the results are
generalized to {vp(a+ bn)}n∈N with p a prime.

Lemma 8.1. Let b ∈ N>0. Then

{v2(bn)}
n∈N>0 ⋄ v2

Proof. By the base-2 expansion of bn it follows that:

{v2(bn)}
n∈N>0 = {v2(b) + v2(n) mod 2}n∈N>0

The result follows by lemma 7.6. �

Lemma 8.2. Let a, b ∈ N>0 such that 0 < a < b with a odd and b even. There
holds:

{v2(a+ bn)}n∈N = 0∞

= 00000000000..

Proof. For the given a, b it follows that a+ bn is odd for all n ∈ N. �

Suppose a, b ∈ N>0 such that 0 < a < b with a even and b even. Then there is
some r ∈ N>0 such that

a = 2ra∗

b = 2rb∗

with a∗, b∗ ∈ N appropriately. There holds:

{v2(a+ bn)}n∈N = {v2(2
r) + v2(a

∗ + b∗n)}n∈N

So there follows {v2(a+ bn)}n∈N ⋄ {v2(a
∗ + b∗n)}n∈N.

Theorem 8.3. Let a, b ∈ N>0 with a > 0 and b odd. It holds:

{v2(a+ bn)}n∈N ⋄ {v2(2a+ bn)}n∈N

Proof. ⊳ : The first step below follows from creating a transducer that skips every
second letter. The second step follows from the definition of v2:

{v2(2a+ bn)}n∈N ⊲ {v2(2a+ 2bn)}n∈N

⊲ {v2(a+ bn)}n∈N

⊲ : Because b is odd, there is some c, k ∈ N such that cb = 2k − 1 (see proof of
theorem 3.8). It holds:

{v2(a+ bn)}n∈N ⊲ {v2(a+ cba+ bn)}n∈N

⊲ {v2(2
ka+ bn)}n∈N

⊲ {v2(2a+ bn)}n∈N

�

Theorem 8.4. Let a, b ∈ N>0 with 0 < a < b. Let p be a prime and p ∤ b, then:

{vp(a+ bn)}n∈N ⋄ {vp(pa+ bn)}n∈N

Proof. The proof of theorem 8.3 may be generalized to p prime in an obvious
way. �
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9. A prime sequence

The goal of this section is to show that

Π = 10102103104105106 . . .

is a prime sequence, which is one of the main results by [EHK11]. By theorem 9.7
it holds that for any transducer T

T (Π) = w

∞
∏

i=0

n
∏

j=0

cjd
i
j

where w, cj , dj are transducer-specific words and n a transducer-specific integer. To
show that Π is a prime sequence, it has to be shown that either

w
∞
∏

i=0

n
∏

j=0

cjd
i
j ⊲Π

or the left-hand side of the above equation is periodic. Lemma 9.9 and lemma 9.10
show that in fact for any transducer T with non-eventually periodic output

T (Π) = w
∞
∏

i=0

n
∏

j=0

cjd
i
j

theorem 9.8 can be applied. So Π is indeed prime.

Definition 9.1. A sequence {fi}
i∈N with fi ∈ N is called periodic if there exists a

p ∈ N such that ∀i, n ∈ N it holds fi+np = fi. A sequence is eventually periodic if
some suffix of the sequence is periodic. A sequence f is said to be periodic modulo
every positive integer if {fi mod n}i∈N is periodic for every n ∈ N>0.

Lemma 9.2. For any a, b ∈ N the sequences f = {a+ bi}i∈N and g = {abi}i∈N are
eventually periodic modulo every integer.

Proof. Periodicity modulo m will be demonstrated. Denote:

f0 = a

G(x) = x+ b mod m

fi+1 = G(fi)

Then fi is just an iteration of map G on a finite set. There exists an I ∈ N>0 and
a p ∈ N>0 such that fI ≡ fI+p mod m. So f is eventually periodic. The same
argument can also be given for g. �

It can be shown that f is purely periodic modulo every integer: Fix I > 0, then
there follows:

fI ≡ fI+p mod m

fI − bI ≡ fI+p − bI mod m

f0 ≡ fp mod m

This property is in contrast with g, which is not necessarily purely periodic. A
similar argument shows that the Fibonacci sequence is also periodic modulo every
positive integer, due to [Wal60]. The problem of classifying all sequences that are
periodic modulo every integer has been studied in [DP08,PZ82].

Definition 9.3 (zero-loop). For any state qi ∈ Q of a finite state transducer define
its zero-loop. The zero-loop is the path traversed when starting in state qi and
feeding only zeros as input. Because there are only finitely many states, such a path
will return to a previously visited state eventually. In other words, the sequence
{δ(qi, 0

j)}j∈N is eventually periodic with period n ∈ N. Denote the first state to
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be visited twice as state q. The sequence {q, δ(q, 0), . . . , δ(q, 0n−1)} is the zero-loop
belonging to qi.

Lemma 9.4 (Pumping lemma for transducers). Denote |Q| the number of states in
given transducer T = (Q, {0, 1}, δ, q0,∆, λ). Denote Z the least common multiple of
the periods of all zero-loops in T . Let {fi}

i∈N be a sequence that is periodic modulo
Z with period p such that for all i, j ∈ N fi+jp ≥ fi. Let there be a N ∈ N such that
for all m > N it holds fm > |Q|. Then for every m and q ∈ Q fixed there exists
another fixed state q′ ∈ Q and words c, d ∈ ∆∗ so that for every i ∈ N holds:

(q, 10fm+ip , cdai , q′) ∈ δ∗

with

ai =
fm+ip − fm

Z

Proof. Consider the statement-to-prove for i = 0 at first. State q accepts input
10fm , so there must be q′ ∈ Q, c ∈ ∆∗ such that

(q, 10fm , c, q′) ∈ δ∗.

By the pigeonhole principle it holds that there must occur a zero-loop for the input
10fm , because fm > |Q|. The state q′ as defined above must be part of this zero-
loop. Then there must be some d ∈ ∆∗ such that

(q′, 0Z , d, q′) ∈ δ∗

Then it is clear that

(q, 10fm+ip , cdai , q′) ∈ δ∗

�

Lemma 9.5. Denote |Q| the number of states in given transducer T = (Q, {0, 1}, δ, q0,∆, λ).
Let Z be the least common multiple of the periods of all zero-loops in T . Let {fi}

i∈N

be a sequence that is periodic modulo Z with period p such that for all i, j ∈ N
fi+jp ≥ fi. Let there be an N ∈ N such that for all m > N it holds fm > |Q|.
Then for every m and q ∈ Q fixed there is another fixed state q′ ∈ Q and words
cj , dj ∈ ∆∗ so that for all i ∈ N

(q, 10fm+ip+110fm+ip+2 · · · 10fm+(i+1)p ,

p
∏

j=1

cjd
ai,j

j , q′) ∈ δ∗

where

ai,j =
fm+j+ip − fm+j

Z

Proof. Begin by applying lemma 9.4 for state q and input 10fm+ip+1 . We now have

(q, 10fm+1+ip , c1d
ai,1

1 , q1) ∈ δ∗

Equally for state q1 there will be some state q2 so that there holds:

(q1, 10
fm+2+ip , c2d

ai,2

2 , q2) ∈ δ∗

Combining these findings it follows that:

(q, 10fm+1+ip10fm+2+ip , c1d
ai,1

1 c2d
ai,2

2 , q2) ∈ δ∗

Or one more term:

(q, 10fm+1+ip10fm+2+ip10fm+3+ip , c1d
ai,1

1 c2d
ai,2

2 c3d
ai,3

3 , q3) ∈ δ∗
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Continue all up to 1, 2, 3, . . . , p such that for a certain q′ there holds:

(q, 10fm+ip+110fm+ip+2 · · · 10fm+(i+1)p ,

p
∏

j=1

cjd
ai,j

j , q′) ∈ δ∗

This proves the lemma. �

Lemma 9.6. Denote |Q| the number of states in a given transducer T = (Q, {0, 1}, δ, q0,∆, λ).
Let Z be the least common multiple of the periods of all zero-loops in T . Let {fi}

i∈N

be a sequence that is eventually periodic modulo Z with period p such that for all
i, j ∈ N fi+jp ≥ fi. Let there be an N ∈ N such that for all m > N it holds
fm > |Q| and {fn}

n≥m periodic. Then there must be some m and q ∈ Q with
words w, cj , dj ∈ ∆∗ and k ∈ N>0 such that there holds for all i ∈ N

(q0, 10
f010f110f2 · · · 10fm , w, q) ∈ δ∗

(q, 10fm+1+ikp10fm+2+ikp · · · 10fm+(i+1)kp ,

kp
∏

j=1

cjd
ai,j

j , q) ∈ δ∗

with

ai,j =
fm+j+ip − fm+j

Z

Proof. Fix some m as described above. There is some q∗ ∈ Q such that:

(q0, 10
f010f110f2 · · · 10fm , w, q∗) ∈ δ∗

Define a function t : Q → Q such that t(q) = q′ if and only if:

(q, 10fm+1+ip10fm+2+ip · · · 10fm+(i+1)p ,

p
∏

j=1

cjd
ai,j

j , q′) ∈ δ∗

Then by Lemma 9.5, t(q) is defined for every q ∈ Q. By the same lemma t is
invariant in i. Consider the sequence:

q∗, t(q∗), t2(q∗), t3(q∗), t4(q∗), . . .

Then let state q denote the first state that reoccurs in the above sequence. This
means that there is some k ∈ N such that:

tk(q) = q

In other words, q is the fixed point of the function tk. There holds:

(q, 10fm+1+ikp10fm+2+ikp · · · 10fm+(i+1)kp ,

kp
∏

j=1

cjd
ai,j

j , q) ∈ δ∗

Denote r to be the smallest integer such that tr(q∗) = q. There holds:

(q0, 10
f010f110f2 · · · 10fm+rp , w, q) ∈ δ∗

Renaming the constants completes the proof. �

Theorem 9.7. Let {fi}
i∈N be a sequence that is eventually periodic modulo Z with

period p such that for all i, j ∈ N fi+jp ≥ fi. Denote T = (Q,Σ, δ, q0,∆, λ) a finite
state transducer. Then there are some k ∈ N and w, cj , dj ∈ Σ∗ such that

T (

∞
∏

i=0

10fi) = w

∞
∏

i=0

kp
∏

j=1

cjd
ai,j

j

with

ai,j =
fm+j+ip − fm+j

Z
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where Z is the least common multiple of all zero-loops in T.

Proof. By lemma 9.6 the theorem holds. �

Theorem 9.8. Let w
∏∞

i=0

∏n

j=0 cjd
i
j be a non-eventually periodic word for n ≥ 1

and some w, cj , dj ∈ {0, 1}∗. Assume there is for all 0 ≤ j ≤ n the following holds:

• dj 6= ǫ
• d∞j 6= cj+1d

∞
j+1

Equally assume d∞n 6= c0d
∞
0 . Then there holds:

w

∞
∏

i=0

n
∏

j=0

cjd
i
j ⊲Π

Proof. A transducer R can be constructed that transforms the left-hand side into
the right-hand side. The starting word w may be transducer to a suitable prefix
of Π. The transducer may detect every transition from . . . djdj to cj+1dj+1dj+1 . . .
as the two words are not equal at some position. Upon detecting a switch in the
input a “1” may be given as output and for each subsequent d a “0”. �

The subsequent lemmas will show that Theorem 9.8 can be applied to any non-
periodic transduct of Π.

Lemma 9.9. Let w
∏∞

i=0

∏n

j=0 cjd
i
j be a non-eventually periodic word for n ≥ 0

and some w, cj , dj ∈ {0, 1}∗. Then it may be assumed that dj 6= ǫ for 0 ≤ j ≤ n.

Proof. Suppose there is some k such that dk = ǫ. Suppose n = 0, then the word
would be periodic, so assume n ≥ 1. Then replace ck+1 with ckck+1 and the word
may be written as

w

∞
∏

i=0

n
∏

j=0,j 6=k

cjd
i
j = w

∞
∏

i=0

n−1
∏

j=0

c′jd
′
j
i

for appropriate c′j , d
′
j ∈ {0, 1}∗. �

The subsequent lemma has been called the “removing confusion lemma” in [EHK11].

Lemma 9.10. Let w
∏∞

i=0

∏n

j=0 cjd
i
j be a non-eventually periodic word for n ≥ 0

and some w, cj ∈ {0, 1}∗ and dj ∈ {0, 1}+. Then it may be assumed that for all
0 ≤ j < n it holds that:

d∞j 6= cj+1d
∞
j+1

Equally it holds that d∞n 6= c0d
∞
0 .

Proof. Suppose that for a certain j it holds:

d∞j = cj+1d
∞
j+1

Suppose n = 0, then the above would read:

d∞0 = c0d
∞
0

This would suggest:

c0d
∞
0 = d0c0d

∞
0

So surely c0d0 = d0c0. Then

w
∞
∏

i=0

c0d
i
0
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would be periodic, so assume n ≥ 1. Let r be the largest r ∈ N>0 such that for
some x ∈ Σ+:

dj = xr

There is some v ∈ N such that

cj+1 = xvc∗j+1

where c∗j+1 is the appropriate suffix of cj+1 such that x is no prefix of c∗j+1. Conclude
that c∗j+1 is a prefix of x: x = c∗j+1b holds for some b ∈ Σ∗. But then it is clear
that b is a prefix of dj+1. Summarizing this yields:

c∗j+1b = x

dj+1 = bd∗j+1

where d∗j+1 is the appropriate suffix of dj+1. Then it holds that:

d∞j = cj+1d
∞
j+1

x∞ = cj+1(bd
∗
j+1)

∞

= xvc∗j+1b(d
∗
j+1b)

∞

= xv+1(d∗j+1b)
∞

= (d∗j+1b)
∞

Recall that c∗j+1b = x and conclude that dj+1 = bxsc∗j+1 for some s ∈ N. Combining
the above yields:

cjd
k
j cj+1d

k
j+1cj+2 = cjx

krxvc∗j+1bx
k(s+1)−1c∗j+1cj+2

= cjx
kr+vxk(s+1)c∗j+1cj+2

= cjx
k(s+r+1)+vc∗j+1cj+2

Renaming appropriately shows that the word can be written as

T (Π) = w

∞
∏

i=0

n−1
∏

j=0

cjd
i
j

with n ≥ 1. �

10. On the Fibonacci sequence

Denote a ⋫ b to be the negation of a ⊲ b. The following construction has been
introduced by [EHK11] and has appropriately been called an infinite descending
chain:

. . .

⋫ 102
0

102
4

102
8

102
12

102
16

102
20

102
24

. . .

⋫ 102
0

102
2

102
4

102
6

102
8

102
10

102
12

. . .

⋫ 102
0

102
1

102
2

102
3

102
4

102
5

102
6

. . .

More formally define:

Ii =

∞
∏

k=0

10(2
k2i )

It holds that for i ≥ 0

Ii ⊲ Ii+1

Ii+1 ⋫ Ii
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This section will now go on to introduce a second infinite descending chain. The
construction involves using the Fibonacci sequence:

Fn+2 = Fn + Fn+1

F0 = 0

F1 = 1

Lemma 10.1. Fix i ∈ N>0, then there holds:
∞
∏

k=0

10Fik ⊲
∞
∏

k=0

10F2ik

Proof. Figure 9 shows the appropriate transducer. It removes every second instance
of 10n and leaves the others untouched. �

q0 q1

1|ǫ

1|1

0|ǫ0|0

Figure 9.
∏∞

k=0 10
Fik ⊲

∏∞
k=0 10

F2ik

Theorem 10.2. Fix i ∈ N>0, then there holds:
∞
∏

k=0

10F2ik ⋫
∞
∏

k=0

10Fik

Proof. The Fibonacci sequence {Fk}
k∈N is period modulo any positive integer, as

shown in [Wal60]. Then the sequences {Fik}
k∈N and {F2ik}

k∈N will also be periodic
modulo every integer. From Theorem 9.7 follows that for any transducer T =
(Q, {0, 1}, δ, q0,∆, λ) there are some cj , dj ∈ ∆∗ and n,m ∈ N such that

T (

∞
∏

k=0

10F2ik) = w

∞
∏

i=0

n
∏

j=0

cjd
ai,j

j

with

ai,j =
F2k(m+j+ip) − F2k(m+j)

Z

where Z is the least common multiple of all zero-loops in T and p the period of {F2ik

mod Z}k∈N. In accordance with the proof in Theorem 9.8, assume that dj 6= ǫ for
0 ≤ j ≤ n. Suppose that:

w
∞
∏

i=0

n
∏

j=0

cjd
ai,j

j =
∞
∏

k=0

10Fik

Then for the right hand side every factor 10n1 occurs at most once for every n ∈ N.
This implies that every dj contains only zeros. It also implies that every cj contains
at most one one. The claim now is that there can be no dj that satisfy the above
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equation. If this were true, then the theorem would hold. The proof of the claim
follows from the fact that for 0 ≤ j ≤ n:

lim
k→∞

ai,j
Fik

= lim
k→∞

F2k(m+j+ip) − F2k(m+j)

ZFik

= lim
k→∞

F2k(m+j+ip)

Fik

= ∞

This shows that the growth of F2ki in terms of Fik is more than linear. The word
length of cjd

F2ik
j is a linear function for argument F2ik, so it cannot adjust for the

more-than-linear growth of F2ik over Fik.
5

�

So then
∏∞

k=0 10
Fik is an infinite descending chain:

∞
∏

k=0

10Fik ⊲
∞
∏

k=0

10F2ik

∞
∏

k=0

10F2ik ⋫

∞
∏

k=0

10Fik
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Appendix A. Period doubling sequence

Let the generalization of Toeplitz substitution k and v2 be with p a prime:

Definition A.1.

kp(0) = 0p−11

kp(1) = 0p−10

vp(n) = {max
b

pb|n} mod 2

Lemma A.2. For n ∈ N>0 and p prime holds that:

{vp(n)}
n∈N>0 = k∞p (0)

Proof. We shall prove this claim by showing the recurrence relations are the same
for both the substitution and the function. From the definition of vp(n) follows
that for all 0 < c < p2

vp(p
2n) = vp(n)

vp(c+ p2n) = vp(c)

It is clear that

kmp (0) = vp(1), vp(2), . . . , vp(p
m)

holds for m = 2 and m = 1. We note that

k2p(0) = vp(1), vp(2), . . . , vp(p
2 − 1), 0

k2p(1) = vp(1), vp(2), . . . , vp(p
2 − 1), 1

and it follows that both sequences have the same recurrence relations. �

Lemma A.3. Let p be a prime. Then for −pm < a < pm with a′ 6= 0 and all
n ∈ N>0 holds that:

vp(n2
m + a) = vp(n2

m − a)

= vp(|a|)

Proof. Follows from the base-p expansion of a+ n2m. �

Lemma A.4. Let kp denote the Toeplitz substitution with prime p over the {0, 1}
alphabet. Let 0 < a < pm − 1 with a,m ∈ N>0 fixed. Then it holds:

ρ∞a+1,km
p
(vp(a)) = {vp(a+ n(2m − 1))}n∈N

Proof. First we will show that the first pm symbols of both sides are matching.
After that, we will show a recurrence relation that holds for both sides. Together
with the first step this will complete the proof.
Note that ρa+1,km

p
is a substitution prolongable on vp(a). The following holds:

km(0) = vp(1), vp(2), . . . , vp(2
m)

km(1) = vp(2
m + 1), vp(2

m + 2), . . . , vp(2
m+1)

It follows from lemma A.3:

km(0) = vp(1), vp(2), . . . , vp(p
m − 1), vp(p

m)

km(1) = vp(2
m + 1), vp(2

m + 2), . . . , vp(p
m+1 − 1), vp(p

m+1)

= vp(1), vp(2), . . . , vp(p
m − 1), vp(p

m+1)

km(vp(a)) = vp(1), vp(2), . . . , vp(p
m − 1), vp(ap

m)

We note that kmp (vp(a)) only depends on a in the pm-th (final) entry. It is important
for the second step of the proof to see that if m is even it holds vp(ap

m) = vp(a)
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and likewise when m odd vp(ap
m) = 1− vp(a). We may rotate kmp (vp(a)) to obtain

ρa+1,km
p
(vp(a)) and use lemma 3.6 to rewrite:

ρa+1,km
p
(vP (a)) = vp(p

m − a), . . . , vp(ap
m), vp(1), . . . , vp(p

m − a− 1)

= vp(a), . . . , vp(a+ a(pm − 1)), vp(a+ (a+ 1)(pm − 1)), . . . , vp(a+ (pm − 1)(pm − 1))

This completes the first step of the proof. Suppose m is even. Let 0 ≤ c < pm − 1
with c 6= a and substitute n = c + rpm for r ∈ N, then it follows by lemma A.3
that:

vp(a+ (pm − 1)n) = vp(a+ (pm − 1)(c+ rpm))

= vp(a+ c(pm − 1) + (pm − 1)rpm)

= vp(a+ c(pm − 1))

Which shows that for c 6= a, the c+pmr-th entry is actually equal to the c-th entry
of the sequence. Now suppose m is even and c = a. Then we find:

vp(a+ (pm − 1)n) = vp(a+ (pm − 1)(c+ rpm))

= vp(a+ (pm − 1)(a+ rpm))

= vp(p
m(a+ (pm − 1)r))

= vp(a+ (pm − 1)r))

So for c = a, we find that the a+pmr-th entry of {vp(a+n(pm−1))}n∈N is actually
equal to the r-th entry of the sequence. Using m even we find

ρa+1,km
p
(0) = vp(p

m − a), . . . , vp(p
m − 1), 0, vp(1), . . . , vp(p

m − a− 1)

ρa+1,km
p
(1) = vp(p

m − a), . . . , vp(p
m − 1), 1, vp(1), . . . , vp(p

m − a− 1)

and we conclude that indeed the r-th entry of the fixed point of the substitution is
equal to its a+ pmr-th entry. Both sequences have the same recurrence rules for m
is even. Now consider m odd. We still find that for c 6= a:

vp(a+ (pm − 1)n) = vp(a+ c(pm − 1))

However for c = a it follows:

vp(a+ (pm − 1)n) = vp(a+ (pm − 1)(c+ rpm))

= vp(a+ (pm − 1)(a+ rpm))

= vp(p
m(a+ (pm − 1)r))

= 1− vp(a+ (pm − 1)r))

Equally we find

ρa+1,km
p
(0) = vp(p

m − a), . . . , vp(p
m − 1), 1, vp(1), . . . , vp(p

m − a− 1)

ρa+1,km
p
(1) = vp(p

m − a), . . . , vp(p
m − 1), 0, vp(1), . . . , vp(p

m − a− 1)

and the result follows. �

Theorem A.5. Let a, b ∈ N>0 be such that 0 < a < b, p ∤ b and p a prime, then
there are some c,m ∈ N>0 such that

{vp(a+ bn)}n∈N = ρ∞ac+1,km
p
(vp(ac))

Proof. Suppose c,m are such that cb = pm − 1. Then we know p ∤ c and invoke
lemma A.4 to write:

{vp(a+ bn)}n∈N = {vp(ca+ cbn)}n∈N

= (ρac+1,km
p
)∞(vp(ac))
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So now we need to show that there are some c,m such that cb = pm − 1. Suppose
that b ∤ pm − 1 for all m ∈ N>0. Then by pigeon hole principle there must be some
r, s, v ∈ N>0 such that

pr − 1 ≡ v mod b

pr+s − 1 ≡ v mod b

It follows that:

b | pr+s − pr

b | pr(ps − 1)

b | ps − 1

So then b does divide ps − 1, which is an contradiction. �

Theorem A.6. Let ρq+1,km
p

be a rotated Toeplitz substitution as noted in section

3 with 0 < q < (pm − 1), m ∈ N>0 and p a prime. Then for every r ∈ Z\{0} and
l ∈ N>0 it holds

ρq+1,km
p
({vp(

r

pl − 1
+ n)}n∈N) = {vp(

pmr

pl − 1
− q + n)}n∈N

Proof. It will be shown that both sides of the equation have the same recurrence
rules. From the recurrence rules follows that the first 2m letters of both sides are
the same, completing the proof. But first recall from section 3 the construction of
the rotated substitution ρq+1,km

p
:

kmp (0) = vp(1), vp(2), vp(3), . . . vp(p
m − 1), vp(p

m)

kmp (1) = vp(1), vp(2), vp(3), . . . vp(p
m − 1), 1− vp(p

m)

ρq+1,km
p
(0) = vp(p

m − q), vp(p
m − q + 1), . . . , vp(p

m), vp(1), . . . , vp(p
m − q − 1)

ρq+1,km
p
(1) = vp(p

m − q), vp(p
m − q + 1), . . . , 1− vp(p

m), vp(1), . . . , vp(p
m − q − 1)

Suppose m is even and consider n = q + ipm with i ∈ N. It holds:

vp(
pmr

pl − 1
− q + n) = vp(

pmr

pl − 1
− q + q + ipm)

= vp(p
m(r + i(pl − 1)))

= vp(r + i(pl − 1))

= vp(
r

pl − 1
+ i)

Now consider the left hand side of the statement and denote

ρq+1,km
p
(vp(

r

pl − 1
+ i)) = ρ0, ρ1, . . . , ρpm−1

then ρq = vp(
r

pl−1
+ i). Now if m were odd, then ρq = 1− vp(

r
pl−1

+ i) and:

vp(
pmr

pl − 1
− q + n) = 1− vp(

r

pl − 1
+ i)

So for n = q+ipm with i ∈ N the equation-to-prove holds. Now consider n = s+ipm

with s 6= q and 0 ≤ s < pm. It follows that |s− q| < pm − 1, which is to be used in
the second to final step of the derivation below:

vp(
pmr

pl − 1
− q + n) = vp(

pmr

pl − 1
− q + s+ ipm)

= vp(p
mr + (pl − 1)(s− q + ipm))

= vp(p
m(r + (pl − 1)i) + (pl − 1)(s− q))

= vp(|s− q|)
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It is clear that for n = s + ipm with s 6= q and 0 ≤ s < pm the expression is
dependent on s and independent of i. In fact, the expansion of ρq+1,km

p
given at the

start of the proof now shows the two sides are equal. �


