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Abstract
We present an optimization model which is able to generate feasible periodic timetables for
networks given the line structure and the requested line frequencies, taking into account in-
frastructure constraints and train overtake locations. As the model uses the minimum cycle
time as the objective function, the stability of the timetable is also simultaneously expressed.
Dimension reduction techniques are presented taking advantage of the symmetries of peri-
odic timetables. The model is applied to a case study of a dense corridor with heterogeneous
traffic.
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1 Introduction

Periodic, regular interval passenger timetables offer consistent service and high frequencies
throughout the day, result in a high utilization of existing infrastructure, vehicles and staff,
and simplify planning and operations due to the repeating patterns. Furthermore, in rail-
ways, providing differentiated supply, following fluctuations in demand, is possible even
within a regular interval timetable, by using different train lengths. For these reasons, many
railway operators follow a regular, in most cases hourly timetable.

Liebchen [11] describes different ways to model periodic timetables. Borndorfer and
Liebchen [1] provides a particular short-term example when a regular-interval timetable is
suboptimal with respect to the number of vehicles required. In the following we consider a
regular interval timetable.

On many railway networks passenger demand is so high that trains run at the highest
frequency possible given the infrastructure. This means a realistic timetabling model has
to explicitly take into account the infrastructure capacity. Assuming sufficient amounts of
vehicles and staff, the possible train frequencies are still limited by the available station
platforms, station area capacity determined by the layout of the switch areas, minimum
headway time possible on the open track based on the signalling blocks, and the capacity at
junctions. All these capacities are futhermore dependent on signalling and automatic train
protection (ATP) systems, the characteristics of the rolling stock, driver behaviour etc.

In the macroscopic model in this paper the infrastructure is described as a graph of sta-
tions, junctions, bottlenecks such as moveable bridges and connecting open track segments,
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and limited infrastructure capacity is represented by required minimum headway times be-
tween two trains at given locations.

The nominal cycle time of a timetable is the period according to which all events re-
peat, typically the full hour. We also use the minimum cycle time which is the shortest time
duration in which all the events scheduled in the nominal cycle time are feasible if all depen-
dency constraints such as minimum running times and minimum headway times required
by the infrastructure are respected.

The relationship between the nominal and the minimum cycle time describes the capac-
ity utilization of the timetable [7]: the timetable is stable exactly if the minimum cycle time
T is less than the nominal cycle time T0, i.e. T < T0, and the larger T0−T is, the more time
reserve there is available. This ratio T/T0 is defined in Goverde [4] as network throughput.
Therefore there is a strong relationship between the capacity of the physical network and the
stability of the timetable: infrastructure capacity determines the pace at which the timetable
can be executed, therefore the minimum cycle time T, and the stability of the timetable can
be described as the relationship between T and T0. See also Goverde [5] for a discussion on
timetable stability.

In this paper, the optimization model uses the minimum cycle time as the objective
function, which then represents the feasibility and the stability of the timetable.

The complete optimization of a railway timetable of realistic size is an extraordinarily
large mathematical problem. Smaller instances or smaller subproblems of the timetable op-
timization have been successfully solved before. The Periodic Event Scheduling Problem
(PESP) was defined by Serafini and Ukovich [16]. Kroon et al. [9] developed a set of opti-
mization tools which can find feasible solutions to the railway network of the Netherlands
if it exists under the given initial parameters, or points to the critical constraints if a feasible
solution does not exist. Goverde [3] defines an optimization problem with buffer times as
decision variables and exploiting the graph structure of the network to reduce the number
of variables. Liebchen and Mohring [12] optimized a homogeneous, high-frequency metro
network. Liebchen et al. [13] define an opimization problem focusing on delay resistance,
with predefined running times.

This paper presents an optimization approach for the generation of periodic timetables
with flexible running times with timetable stability represented directly in the objective
function. Therefore the method can be used both to generate timetable variants with dif-
ferent frequencies and the stability evaluation of these timetables. The new contribution of
this paper is that the minimum cycle time is used as the optimization objective, with flexible
running times for faster trains to allow for flexibility in case of dense following of trains of
different speeds. The model ensures that train overtakings only happen at allowed locations
whether at stations or on the open track. Furthermore, dimension reduction techniques are
presented to speed up the optimization.

In the following, Section 2 describes how to model the railway network as an event-
activity graph. Section 3 introduces the optimization model including the proposed dimen-
sion reduction techniques. Section 4 applies the optimization model on a case study based
on a real-life railway corridor with dense and heterogeneous traffic. Finally, Section 5 con-
cludes the paper.
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2 Modelling the railway network

2.1 Events and activities

The railway network is modelled on a macroscopic level including stations and junctions
but not directly modelling signalling blocks. The line structure and the minimum headway
times caused by limited infrastructure capacity can be modelled by a event-activity graph
[4], also called an event-activity network [2]. Lef this network beN = (E ,A), where events
can be arrivals and departures at stations and junctions. If the train does not stop at a node
in the physical network, the arrival and departure events are classified arr.thr and dep.thr:

E = Edep ∪ Earr ∪ Edep.thr ∪ Earr.thr.

The activities can be dwell activities Adwell connecting an event in Earr to an event
in Edep, run activities Arun connecting an event in Edep or Edep.thr to an event in Earr
or Earr.thr, through activitiesAthr connecting an event in Earr.thr to an event in Edep.thr,
infrastructure activitiesAinfra between any two activities of different vehicle journeys sym-
bolizing the minimum headway time between those events using the same physical infras-
tructure and regularity activities Areg taking into account different train lines offering a
regular-interval service on their shared sections:

A = Adwell ∪ Arun ∪ Athr ∪ Ainfra ∪ Areg.

We only consider a subnetwork for which the border nodes of this subnetwork can be
considered to have sufficient capacity for turning. We assume therefore that the existing
timetable is operated outside this subnetwork, and any train of the existing timetable which
is cancelled inside the subnetwork, and any new train within the subnetwork, can turn at
these border nodes. This means that there is no need to define turn activities.

2.2 Graph definition

We define T0 as the nominal period length of the regular interval timetable to be designed,
in most cases the full hour. The generated timetables can have a cycle time different from
T0, denoted by T .

The train lines to be included are defined by their stop patterns as one chain of events in
E per direction connected by activites in Adwell ∪ Arun ∪ Athr. For every line, a required
frequency F is defined. If F > 1 then the event chain is duplicated into further runs with
time offsets 1

F T , 2
F T ... F−1

F T and between every identical event of consecutive runs, a
regularity activity a ∈ Areg is added with process time 1

F T . Furthermore, if a common
infrastructure resource means a required minimum headway time between certain events,
then an infrastructure activity a ∈ Ainfra is added between all these event pairs.

3 The optimization model

This section presents a Mixed-Integer Linear Programming (MILP) model which takes the
event-activity graph of a train network with given line structures and frequencies and calcu-
lates the event times that minimizes the cycle time of the timetable.
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3.1 Variables

Unlike most timetabling models, in this optimization model the period length of the regular
interval timetable, the cycle time, is variable, denoted as T . This means that when event
timestamps and process durations are constrained within the interval [0, T ), the upper bound
of this interval becomes an additional constraint in the MILP formulation including two
variables.

The variable xi represents the planned event time for every event i ∈ E and 0 ≤
xi < T ∀i ∈ E .

The variable wij denotes the planned process duration, for every process (i, j) ∈ A ⊂
E × E and therefore

wij = xj − xi (mod T ). (1)

As wij represents a process duration, it is necessary that for every process 0 ≤ wij . Fur-
thermore, from (1) it follows that wij < T . In case there is a process for which the duration
can be larger than the cycle time, this process can be divided into multiple shorter processes
inserting additional events to ensure that the new process durations are less than the cycle
time.

By introducing the binary variables zij , (1) can be rewritten as the following equation:

wij = xj − xi + zijT ∀ (i, j) ∈ A, zij ∈ {0, 1} . (2)

3.2 Process duration bounds

The parameters contained in the first instance of the optimization model are the process
duration lower and upper bounds. These constants lij , uij for a process (i, j) can be defined
as follows.

Dwell activities The minimum dwell time should be an estimate of the minimum duration
required for the boarding and alighting of passengers, taking into account the estimated
demand based on station type and train type. The maximum dwell time is the highest
acceptable duration a train can stay at a platform on an intermediate stop.

Run activities The minimum running time of a train on a given segment between two
geographical points, stations, junctions or other imporant locations, is the shortest running
time possible, i.e. excluding time reserve, on the segment in moderate weather conditions
taking into account the stop pattern of the line and the expected rolling stock dynamics. It
can be an output of measurements or a simulation model. The maximum running time is
the minimum running time plus the maximum acceptable time reserve on the segment.

Through activities Through activities connect the arrival and the departure events of a
train at a location where the train does not stop, therefore these activities have a constant
minimum and maximum process time lij = uij = 0.

Infrastructure activities Minimum headway times represent the constraints when events
of two trains have to be separated in time because of a shared infrastructure resource. In a
macroscopic model including stations and also junctions and other important infrastructure
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locations, however, not modelling signalling blocks and station areas in detail, these infras-
tructure restrictions can be modelled by adding a headway process between all train event
pairs using a shared resource. Because infrastructure constraints are defined in pairs such
as (i, j) and (j, i), it is not necessary to define upper bounds.

Regularity activities If a train line is planned with a regular interval timetable with a
headway time lower than the cycle time, then this headway time can be expressed by adding
regularity constraints between the identical events of multiple runs of the same line. In a
timetable with a period length T0 and a line with a frequency F > 1, these regularity activ-
ities have a constant value T0/F . However, as T is a variable, the duration of the regularity
processes also becomes variable T/F .

3.3 Handling train overtakings

Because of the way infrastructure constraints are represented in the above model, with head-
way constraints between event times without fixed train order, in case of certain parameters,
it is possible that a solution is generated including train overtakings at locations where this
is not physically possible. The current model formulation, however, is able to implicitly
respect also these constraints, if the following observations are followed.

The constraints of limited infrastructure on the railway network can be classified as
follows:

Headway times when entering or exiting stations or junctions These can be natively
modelled by two infrastructure activities (i, j) , (j, i) ∈ Ainfra between departure or arrival
events i and j at the same station or junction.

Headway times of following trains on the open track Kroon and Peeters [10] have
shown that in case of flexible running times with lower and upper bounds, it is possible to
ensure that no prohibited overtaking takes place by introducing further through events if
necessary. We furthermore show that it is sufficient to split the segment into

n =

⌈
u1 − l2

2min
(
ld12, l

a
21

)⌉ (3)

shorter segments to prevent train 2 to overtake train 1, where u1 is the upper bound of
the running time of train 1, l2 is the lower bound of the running time of train 2, ld12 is the
departure headway between train 1 and train 2 at the beginning of the segment and la21 is the
arrival headway between train 2 and train 1 at the end of the segment. This is true because
a forbidden overtake can take place if

u1 ≥ l2 + ld12 + la21, (4)

or in words, if the slower train is allowed to have such a long running time that allows for the
minimum departure headway, the minimum run time of the overtaking train and the mini-
mum arrival headway. If we split the segment into n shorter segments with each segment the
updated runing times l′2 = l2/n, u′1 = u1/n and headway times l′d12 = l′a21 = min

(
ld12, l

a
21

)
,

then if n is chosen according to (3) then (4) becomes false for all new segments. Note that
in practice, if the running time upper bounds are not much larger than the lower bounds,
then most often n = 1, i.e. there is no need for splitting the segment.
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Headway times of following trains through stations Analogous to the previous para-
graph, it can be shown that train 2 cannot overtake train 1 at a station if the dwell processes
are split into n equal processes according to (3) where in this case u1 and l2 are the dwell
time bounds. n is in most cases zero again if the dwell time buffers are not too large.

Headway times of following trains on the open track Similarly for train overtakings
through stations, it can be shown that the boundary values can reasonably be set in a way
that prohibited overtakings on the open track do not happen, or else adding intermediate
dummy through events to both trains with infrastructure activities between them. See Kroon
and Peeters [10] for dealing with train overtakings using variable trip times in the PESP
formulation.

3.4 The MILP formulation

In the following, we introduce a basic formulation of the optimization model that we trans-
form into a true MILP model in a second step.

minT (5)

such that
wij = xj − xi + zijT ∀ (i, j) ∈ A, (6)

xi < T ∀i ∈ E , (7)

wij < T ∀ (i, j) ∈ A, (8)

lij ≤ wij ≤ uij ∀ (i, j) ∈ Arun ∪ Adwell, (9)

lij ≤ wij ∀ (i, j) ∈ Ainfra, (10)

0 = wij ∀ (i, j) ∈ Athr, (11)

wij =
1

Fij
T ∀ (i, j) ∈ Areg, (12)

zij ∈ {0, 1} ∀ (i, j) ∈ A. (13)

0 ≤ xi ∀i ∈ E , (14)

0 ≤ wij ∀ (i, j) ∈ A, (15)

The objective function (5) minimizes the cycle time of the timetable. Therefore if a
solution is found, it represents a timetable that is feasible if and only if T ≤ T0 where T0 is
the nominal cycle time. A measure of timetable stability is the T0 − T difference between
the scheduled and the minimums cycle time: the larger, the more time reserve the timetable
contains.

Constraints (6) and (13) define the relationships between process durations and event
times identical to the earlier (2). The range of event times and process durations, dependent
on the variable cycle time, are defined in (7), (8), (14) and (15). The lower and upper bounds
of run, dwell and infrastructure processes, as well as the cycle time-dependent value of the
regularity process durations, are given in equations (9)–(12).

In the following, modifications of the above model definition are explained in order to
conform with the requirements of an MILP model.
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Because the cycle time is a variable in this model, constraint (6) contains the product
zijT of two variables, which violates the MILP conditions. Let u be an upper bound for the
objective value T , if this leads to infeasibility the upper bound can be increased. u = T0
would be a suitable upper bound restricting the model to only return feasible timetables,
but one might prefer to choose a larger value to retrieve solutions with T0 < T which,
even though being infeasible, can describe the limits of the requested timetable plan, for
example by showing the critical headways. A product of the binary variable z and a bounded
continuous variable 0 ≤ T ≤ u can be reformulated as the following four linear constraints
using the new variable y = zT [15, 17]:

y ≤ uz, (16)

y ≤ T, (17)

y ≥ T − u (1− z) , (18)

y ≥ 0. (19)

Constraints (7) and (15) include a strict inequality relating to cycle time T . This can be
replaced by a non-strict inequality with T − δ where δ is a suitably small value, such as 1
second.

In order to write constraints (9)-(11) and (15) more concisely, we define

uij = u ∀ (i, j) ∈ Ainfra ,

uij = lij = 0 ∀ (i, j) ∈ Athr

and ensure that lij ≥ 0 ∀ (i, j) ∈ A .
Consequently, the rewritten MILP formulation is as follows:

minT (20)

such that
xi ≤ T − δ ∀i ∈ E , (21)

wij ≤ T − δ ∀ (i, j) ∈ A, (22)

wij = xj − xi + yij ∀ (i, j) ∈ A, (23)

yij ≤ uzij ∀ (i, j) ∈ A, (24)

yij ≤ T ∀ (i, j) ∈ A, (25)

yij ≥ T − u (1− zij) ∀ (i, j) ∈ A, (26)

0 ≤ T ≤ u, (27)

wij =
1

Fij
T ∀ (i, j) ∈ Areg, (28)

lij ≤ wij ≤ uij ∀ (i, j) ∈ Arun ∪ Adwell ∪ Ainfra ∪ Athr, (29)
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and

0 ≤ xi ∀i ∈ E , (30)

zij ∈ {0, 1} ∀ (i, j) ∈ A, (31)

0 ≤ yij ∀ (i, j) ∈ A. (32)

The differences in (21)-(32) compared to (5)-(13) are as follows. In (21)-(22) the strict
inequalities of (7)-(8) are replaced by non-strict ones. In (23), the new variables yij replace
the product of variables zijT in (6). yij = zijT is ensured by (24)-(27) and (31)-(32).
Constraint (29) sums up previous constraints (9)-(11).

3.5 Interpreting the optimization model results

The goal of the above optimization model is to calculate the minimum cycle time of all
timetables following a predefined line structure, nominal cycle time T0, stop patterns, fre-
quencies and constraints regarding running times, dwell times and infrastructure capacity.

If a solver finds an optimal solution for the model with calculated cycle time T , for
which T ≤ T0, that means that feasible timetables exist given the parameters and one such
timetable, with optimal minimum cycle time, is x =

[
x1 . . . x|E|

]
. If, however T > T0,

then no such feasible timetable exists.
If a solver results in infeasibility, then no feasible timetable exists with a cycle time

T ≤ u.
If within a given time frame only a feasible, possibly non-optimal solution is found, then

this solution represents a feasible timetable within cycle time t and the calculated cycle time
serves as an upper bound to the minimum cycle time of all timetables given the parameters.

Finally, if a solver does not return either a solution or a message of infeasibility within
a time frame, no such conclusions can be made. In this case, the following dimension
reduction techniques are helpful.

3.6 Dimension reduction techniques

The following additional steps aim ad reducing the search space of the MILP model.

Connected components
In the graph representation, different train lines are connected to each other because of the
infrastucture constraints. However, it can still be that the graph is separable to multiple
connected components, for example if a train line is operated independently of other lines
or if the two directions of a double-track railway line have no shared resources. As one
connected component has no effect on the others, the optimization model could be executed
separately for each connected component.

Greatest common divisor of frequencies
In case of regular-interval timetables, often many train services have a headway time of less
than the full hour, namely 30, 20, 15 or sometimes even 10 minutes. If the greatest common
divisor g of all line frequencies is larger than 1, the timetable can be calculated with updated
frequencies F ′ = F/g. This reduces the number of events by a factor of 1/g and reduces the
number of processes even to a larger extent, because of the structure of the infrastructure

8



processes connecting all events related to a given resource. The new calculated timetable
with cycle time t can then be simply scaled back to the original frequencies by duplicating
the events at times xi to new times xi + 1

gT , xi + 2
gT ... xi + g−1

g T and the re-scaled
timetable has a minimum cycle time g · T .

Identical timetables
Two constraints are added to avoid multiple identical solutions. Firstly, if two solutions
are identical except a uniform shift in time for all event times, they also represent timetables
with identical characteristics and minimum cycle time. Therefore, it is possible without loss
of generality to choose a single event and fix its event time. Therefore if I = {einit}denotes
the set containing this one initial event,

xinit = 0. (33)

The other constraint considers train lines with frequencies larger than one. In this case, a
new timetable created by shifting the event times of this line with a multiple of the headway
time T/F is identical to the original timetable. Therefore if F is a set containing one event
for each train line and Fi is the frequency of the line of event i,

xi <
T
Fi
∀i ∈ F . (34)

Similarly to constraint (21), the strict inequality can be replaced by a non-strict one by
replacing T with T −δ. Note that there is no need to restrict constraint (34) to the lines with
frequencies larger than one: if Fi = 1 then this constraint degenerates to the existing (21).

Infrastructure constraint pairs
As train orders are flexible during optimization, infrastructure constraints are defined be-
tween all pairs of events sharing the same resource. This means that infrastructure con-
straints exist in pairs, such as

lij ≤ wij

lji ≤ wji

}
∀ (i, j) | {(i, j) , (j, i)} ⊆ Ainfra

where wij + wji = T. Therefore for each pair, it is possible to eliminate variables wji and
yji to turn the lower bound of wji into an upper bound of wij :

lij ≤ wij ≤ T − lji.

Note that this is very similar to the classical PESP constraint, except that in our case T is a
variable. More formally, aligning variables on the left side and parameters on the right side:

wij ≥ lij
T − wij ≥ lji

}
∀ (i, j) | (i, j) ∈ Ainfra ∩ i < j ,

where i < j ensures that exactly one of each infrastructure event pair is taken into account.

4 Case Study

An example of the above model is shown for an approximately 60 km rail corridor between
Den Haag CS and Utrecht railway stations in the Netherlands. This line is a double-track
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Table 1: Train line frequencies in scenarios S1-S5
train hourly frequency
nr. orig. S1 S2 S3 S4 S5

Den Haag CS–Utrecht 150 4 4 - 1 2 4Intercity
Den Haag CS–Utrecht 640/ 2 4 6 6 4+2 2Local train 6400
(Rotterdam–)Gouda–Utrecht 137 4 - - - - 4Intercity
(Leiden–)Woerden–Utrecht 310 2 - - - - 2Intercity
(R’dam–)Gouda–Woerden(–Amsterdam) 632 2 - - - - 2Local train
(Rotterdam–)Gouda–Gouda Goverwelle 635 2 - - - - 2Local train
Den Haag CS–Gouda Goverwelle 645 2 - - - - 2Local train

line with a dedicated track in each direction with overtaking possibilities at the four track
sections between stations Gouda and Gouda Goverwelle and between stations Woerden and
Vleuten. The schematic track layout in one direction is shown in Figures 1–3. In this
case, diverging and merging railway tracks are not further modelled, but in the last scenario,
relevant sections of merging and diverging train lines are included.

4.1 Line structure

Based on the actual 2007 timetable of the line, the lines used in the defined scenarios are
listed in Table 1. The notation “4+2” means that 6 trains per hour are defined as two regular
interval services with frequencies 4 and 2 with no restrictions for regularity times between
the two groups.

Scenario S1 is an example for a "balanced" timetable with 4 intercity and 4 local trains
per hour. Scenarios S2-S4 all include a local train frequency increased to 6 per hour, with
0, 1 and 2 intercity trains per hour respectively, and for S4, relaxing the regularity for the
local trains. Finally, Scenario S5 has the same train lines and frequencies as the original
timetable.

4.2 Defining activity duration bounds

Timetable data including minimum process times is used from the timetable stability anal-
ysis tool PETER (see Goverde and Odijk [6]), including pre-processed data based on the
timetable planning system DONS (see Hooghiemstra et al. [8]) and the simulation tool SI-
MONE (see Middelkoop [14]). As DONS models the railway network not only as stations
and track segments connecting stations, but also including junctions, bridges and other loca-
tions that can be infrastructure bottlenecks, this makes it possible to model the infrastructure
constraints more realistically than station-only models, without the need for microscopic
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simulation.

Dwell activities The lower and upper bound of dwell activity durations are defined as the
minimum and the scheduled dwell times, respectively, from the DONS model. Note that in
many cases then lij = uij .

Run activities Similar to dwell times, the lower bounds of run processes are defined as
the minimum run times given from the DONS model. The upper bounds of run processes
are equal to the lower bound for local trains and are 25% larger than the lower bound for
Intercity trains to allow for more dense following of local and Intercity trains. Therefore by
allowing a flexibility in some run times, this model is an extension to DONS.

Through activities Through activities have a constant minimum and maximum process
time lij = uij = 0.

Infrastructure activities Minimum headway times are defined between all activity pairs
which use the same resource on the train paths. No upper bound is defined for headway
times.

Regularity activities For lines with frequencies larger than one, regularity activities are
defined as described in Section 2.2.

4.3 Results

The MILP models were solved by CPLEX version 12.4 on an IBM PC with 12 GB RAM and
a six-core 3.47 GHz CPU. The time needed to find the optimal solution, the time needed to
prove its optimality, and the calculated minimum cycle time with nominal cycle time T0 =
1h is shown in Table 2. To give an example of the effectiveness of the dimension reduction
methods, computational times are also given without processing the infrastructure constraint
pairs as described in Section 3.6. The time-distance diagram of scenarios S1, S4 and S5 in
one direction are shown in Figures 1–3: local trains are shown with continuous lines and
intercity trains with dashed lines with one color per line number, displayed along the lines.
The time axis shows one cycle of the length of the minimum cycle time. displayed at the
maximum of the time axis. Finally, where the trains are only separated by the minimum
infrastructure constraints, this is shown with horizontal black dotted lines.

For these case study instances, the solver was able to find the optimal solutions typically
in seconds and in less than 10 minutes for the most complex case. Proving optimality,
however, can take much more time than finding the optimal solution. We note that for larger
instances, even if the solver cannot prove optimality or infeasibility, the intermediate solver
state with a solution with a cycle time less than nominal cycle time, or with an LP bound
larger than the nominal cycle time, already proves that a feasible timetable exists or does
not exist, respectively.

While optimality proves that no timetable with a lower cycle time exists for the given
parameters, it is the relation of the cycle time to the nominal cycle time which describes the
feasibility and the stability of the timetable. In our case study, all scenarios but S3 have a
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Table 2: Computational results (h:mm:ss)
S1 S2 S3 S4 S5

Cycle time 45:12 48:00 1:07:48 57:12 57:12
Time to solution 00:01 <00:01 00:03 00:06 09:55
Time to prove opt. 00:01 <00:01 00:03 00:48 39:29

Without preprocessing infrasctructure constraint pairs:
Time to solution 00:03 <00:01 00:10 00:45 22:41
Time to prove opt. 00:03 <00:01 00:10 01:39 >60:00

cycle time less than one hour, this means that feasible timetables exist for all scenarios but
S3, and one with minimal cycle time is calculated by the solver.

The minimum cycle time can be seen as a measure of timetable stability: the lower
the cycle time, the faster the timetable can recover from disturbances. This means that
S1 is substantially more stable than the rest, at the cost of not using full capacity. On the
other hand, as S4 and S5 have the same minimum cycle time, this implies that although S5
contains many more train services per hour, its stability is still comparable to that of S4.

From these examples we can conclude that our approach can decide whether a feasible
timetable exists for given line patterns, and calculate a timetable optimized for stability,
with favorable computational times. Furthermore, we suggest that the approach could help
decide the timetable feasibility also for much larger instances, even when finding or proving
an optimal timetable might not be possible in acceptable time.
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Figure 2: Time-distance diagram of scenario S4
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5 Conclusion

In this paper we presented an optimization model for the design of a regular interval rail-
way timetable for given line patterns and frequencies and with the minimum cycle time as
objective function. This makes it possible to simultaneously decide if there exists a feasi-
ble timetable under current conditions and evaluate the stability of the timetable using the
minimum cycle time.

A few techniques are presented to reduce the size of the problem. The performance of
the model is presented in a case study of a heavily utilized railway corridor with hetero-
geneous, merging and diverging traffic. The solver was unable to prove optimality for all
defined scenarios but a feasible timetable and therefore also an upper bound for the mini-
mum cycle time was calculated for the cases without an optimal solution.

Future research shall focus on further dimension reduction techniques to enable the
approach to perform successfully on larger instances.
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