
Delft University of Technology

Master Thesis

Explanatory Techniques for Machine
Learning Models

Author:
Klest Dedja

Supervisor:
Dr. Pasquale Cirillo

Committee:
Prof. C.W. Oosterlee

Dr. Den Iseger
Dr. F. Vermolen

6th November, 2019

http://www.pasqualecirillo.eu

iii

If knowledge can create problems, it is not through ignorance that we can solve them.
Isaac Asimov

v

DELFT UNIVERSITY OF TECHNOLOGY

Abstract
Faculty of Applied Mathematics

Master Thesis

Explanatory Techniques for Machine Learning Models

by Klest Dedja

Since the last decade, we are assisting a widespread use of “black box” Machine Learning algorithms,
these are algorithms with excellent performance but whose outcomes are hard to understand to a human
agent. However, there are some situation when it is important to understand why a certain output is given,
and the field of explanability in Machine Learning has flourished in the last decade.

In this work, we will go through some of these techniques. We will focus on model agnostic visualisation
techniques introduced by Friedman (2001) and developed by Goldstein et al. (2015). Starting from the
Partial Dependence plotting technique, we then analyse the Individual Conditional Expectation plot and
its variants. Among them, we suggest the introduction of the so called “d-log-ICE” and we try identify
scenarios where this techniques can bring better interpretability. We test our techniques on two models,
the first one is based on the Boston Housing Dataset,the second is an internal model at ABN Amro.

https://www.tudelft.nl/en/eemcs/the-faculty/departments/applied-mathematics/education/

vii

Contents

Abstract iv

Contents vii

1 Introduction 1
1.1 Importance of explainability . 2
1.2 Plan of the Thesis . 5

2 Methodology 7
2.1 Loss functions . 9
2.2 True error and empirical error . 12
2.3 Preventing under and overfitting . 14

2.3.1 Tentative definition of underfitting and overfitting 15
2.3.2 PAC Learnability . 18
2.3.3 Agnostic PAC learnability . 21
2.3.4 Comparison with real-world example . 22

2.4 Spotting under and overfitting . 24
2.4.1 K-fold cross-validation . 24
2.4.2 ABN validation procedure . 25

2.5 Machine Learning algorithms . 26
2.5.1 Weak Learning . 28
2.5.2 AdaBoost algorithm . 28

From ADABoost to Gradient Boosting . 30
2.5.3 (Stochastic) Gradient Boosting . 31

Stochastic Gradient Boosting . 33
2.6 Interpetability of models . 34

2.6.1 The Power vs Interpretability trade-off . 35
2.7 (Model agnostic) Visualisation Techniques . 36

2.7.1 Partial Dependency Plot . 37
Proof . 39

2.7.2 Accumulated Local Effects (ALE) . 42
2.7.3 Individual Conditional Expectation . 46

viii

Centred-ICE . 48
2.7.4 Derivative-ICE . 51
2.7.5 d-ICE Flatness Detector . 52

3 Applications 55
3.1 The Boston Housing Dataset . 55

3.1.1 Resulting PD and ICE plots . 59
Racial bias in Machine Learning . 61

3.1.2 Dispersion . 62
3.1.3 d-ICE in the Boston Housing Data . 63
3.1.4 d-log-ICE plots . 65

3.2 The FLAG model . 66
3.2.1 The model . 66
3.2.2 PD and ICE plots on FLAG . 69
3.2.3 d-log-ICE plots on FLAG . 70

4 Conclusions 73
4.1 Methodology studies . 73
4.2 Findings in the applications . 74
4.3 Further work . 75

A Additional material 77
A.1 Known inequalities . 77
A.2 Mathematical Tools . 78
A.3 Statistical Tools . 79

B Related Content 81
B.1 Extra Tables . 81
B.2 Extra Figures . 81

Bibliography 83

1

Chapter 1

Introduction

Notes
This is the public version of the Thesis, some of the data from the host institution might be subject
to non-disclosure agreements, we will therefore omit them in this version of the Thesis.

“Machine Learning is a set of methods that computers use to make and improve pre-
dictions or behaviours based on data. For example, to predict the value of a house, the
computer would learn patterns from past house sales following the steps of an algorithm.”

This definition by Molnar (2019, pg. 10) is, among many others, a good definition of Machine
Learning. In recent years this topic has been a lively field of research because of the applications
which nowadays are possible, especially on the business side. Machine Learning is often considered
as a sub-field of Artificial Intelligence (see for example Marr (2016)) as machines seem to behave
in an intelligent way: they perform tasks which are considered “smart”, and their predictive power
comes from exploiting patterns in data rather than on a specified fixed algorithm. This kind of
non-explicit programming is often called “indirect programming” and it takes place by providing
data to the machine.

The field of Machine Learning (ML) has developed throughout the decades, the first mentions
of it dating back to Samuel (1959), and it has been trending in the past few years thanks to the
increased machines’ computational power and to the enormous availability of data. Nowadays it
is possible to run ML algorithms in a laptop for a personal project with very good results. This
widespread availability of the technology has led many companies to base an increasing share of their
decision-making processes based on ML algorithms and ABN Amro Bank, where I am performing
my research work, is of course one of them. With such increased popularity ML-based models are
being involved in more and more decision process, and a field which started by learning how to play

2 Chapter 1. Introduction

the games of checkers (Samuel, 1959) is now involved in all sorts of fields of knowledge: handwriting
recognition, medical diagnosis, chess playing engines, YouTube’s classification algorithm, search
engines, or as in my case credit-risk modelling.

Such different applications lead to new needs and challenges for the modellers. In particular since
the rise of highly performing “black box” models such as (Deep) Neural Networks, we are assisting a
widespread use of algorithms with excellent performance but whose outcomes are hard to understand
to a human agent. These new algorithms are thus enforcing a so called interpretability vs. accuracy
trade-off, that is, they are enforcing a trend where the more performing the algorithm is, the
higher the chances that their explainability is compromised, mainly due to the high complexity of
interactions between the data and the output. Given such trend, finding a good balance between
the two is the biggest challenge is this developmental stage of Artificial Intelligence, The question
naturally rises: when are we willing to sacrifice clarity for performance in our tasks, delegating
all responsibility to machines, and where should we try to reach a compromise with models whose
outputs can be grasped by a human agent? The balance within the spectrum is found according
to the context where the algorithm is used. In the next Section we will identify situations where
explainability is highly desirable and where it is not. We will also end up identifying two factors
that are taken into account to assess this.

1.1 Importance of explainability
The importance of explainability depends on the context and we will identify a couple of factors
which influence where on the trade-off spectrum one is willing to land. We show four representative
examples where explainability is little, somewhat desirable or very important for the scope of
project.

In hand-writing recognition for example, there is no need for clarification as long as ML techniques
have been successfully used for decades and there is historical evidence that they perform well.
Moreover, a personal handwriting recognition algorithm does not involve big stakes and the price
to pay in case of an error is small. Such tasks can therefore be accomplished by algorithms where
clarity is not important and Neural Networks, a typically hard to explain technique, can be used
without issues.

A different case is Google Deepmind’s Alpha Zero chess engine. This engine represents today the
benchmark for playing chess and outsmarts any human or traditional chess engines by a margin1.
It is the end-result of a 3-year long project with hundreds of the smartest minds of the planet and
one can imagine that the stakes on the performance of this algorithm are very high. However,
this project does not represent an example of explainability importance. This is mainly due to
the fact that the performance assessment can easily be made without the need for explanation:
there is historical evidence (that is, hundreds of thousands of played games that the algorithm is
performing well and playing close-to-prefect games in any position. Moreover, the quest for better
understanding such a “magical algorithms” interests a community limited to the elite scientific

1Alpha Zero’s Elo rating is estimated to be around 3400, compared to top Grandmasters’ Elo of 2800

1.1. Importance of explainability 3

intellectuals and the chess fan-base. Additionally, since such failures are not happening, we are
witnessing a vibrant chess community where amateur fans and masters are happy to interact with
such chess-playing engines and are happy to discover unpredictable (but correct) reactions of the
algorithm: it does not matter if that engine’s choice will be understood only a couple of moves
later. We conclude that an explanation of the outcomes of the algorithm would be desirable but is
not necessary.

As a third example we can cite YouTube’s newest automatic filter algorithm against hate speech
(YouTube R©, 2019). Again, it is an algorithm based on ML techniques which classifies and flags
videos which do not respect the platform’s policy. The true performance of this algorithm cannot
proven by any “historical” data and it is prone to spectacular errors2. However such losses are
acceptable from YouTube’s own perspective as a private company, as what is most important to
them is that the algorithm’s predicting power is above a certain threshold. Although such example
raises extremely important ethical issues, it has little impact on the revenues of the U.S. tech giant
and not-explainable ML algorithms can be used since at the moment they are the best available
option.

It is worth mentioning that in both last two examples, explainability is not achievable at present
state. In the game of chess for example, there are criteria such as “value” and “activity” of the
pieces which are important for good human chess players to evaluate a game’s position and the best
move to make next. However, these factors are not measurable objectively, nor unanimously, and
they are developed in a personal fashion through studying and (lots of) experience from past games.
Machine Learning algorithms also learn from a huge database of games, however the patterns they
make use of in the data can be very different from the human ones. Human-friendly notions such
as “activity” or “value” might have no Machine Learning counterpart, making the explainability of
the algorithms at the current state not feasible.

On the other hand, a Credit-Risk model has both ingredients to boost the importance of ex-
planatory techniques: it has no guaranteed historical evidence on its performance and the stakes
are high in case of unexpected behaviour. The reason behind the lack of historical evidence lies on
the fact that the format of collected data in credit institutions can vary in time: market behaviour
changes a lot in periods of time as short as five years, new regulations appear and data formats
and collection change, either to fulfil the new requirements or for organisational purposes. More-
over, some variables which are important in the final result can be hidden to human understanding
and current models, either because of being too complex to grasp, or because they have not been
observed historically yet. Such variables are usually called unknown unknowns as in Jorion (2009).

These four examples are resumed in Table 1.1. As we can see the banking side is a perfect example
to show the importance of explainability. Stakes are high and there is no lasting experience with the
application of such techniques to the field to guarantee the robustness of the algorithms under the
ever-changing economy or under a cracking crisis. We conclude that for such models explainability
is important and techniques like Neural Networks cannot be safely adopted at the present state.
Instead, more accessible techniques such as Decision Trees, Gradient Boosting or Random Forests

2One example which caught the attention of the media is: https://www.buzzfeednews.com/article/ryanhatesthis/
history-teacher-scott-allsop-youtube-channel-banned-nazi

4 Chapter 1. Introduction

can be implemented provided that the explanatory techniques in use are good enough and are able
to bridge the gap between the engineering and the business side of the corporation.

Low stakes High stakes

Historical data
on performance Handwriting Recognition Chess engines

No historical data
on performance Video classification Credit Risk modelling

Table 1.1: Importance of explainability of models, based on the presence or
absence of historical data and on the stakes in case of failure. In green: little need
for explainability. In yellow: explainability is desirable. In orange: explainability

is extremely important.

For this reason, ABN Amro is currently trying to improve the explanability of its Machine
Learning-based models, and the motivations are described in the internal documentation (Gem-
mell, 2018). The main points can be summarised as the following:

• Building trust in Machine Learning models: models should be trusted by the department they
are used in, once a business experts understand how a model makes a prediction, then they
are able to make an informed decision and used the model at its best and full potential. We
shall aim to make tools which are useful and controllable by humans, rather than the other
way round.

• Improve Machine Learning models: if business experts understand the models developed by
the Machine Learning Team, then they might be able to suggest improvements. For example,
they can suggest using new variables which are believed to have a strong influence on the
outcome, or they can recover more useful data via their own network and contacts.

• Identify risks and limits of Machine Learning models: one the main issue for such algorithms
consists in overestimating their performance and predicting power. This latter issue cannot be
tackled directly by the project developers, but if modellers can explain the operations within
their “black boxes” to a business expert, the latter can identify whether some data has been
used inappropriately or whether the outputs are unreasonable in certain situations.

A credit risk modelling framework best shows the importance of explainability, however its im-
portance is appreciated well beyond a corporation’s interest: it reached the academia decades ago
already, and still is a flourishing field for publications with articles such as Ribeiro et al. (2016)
proving that explainability enhances trust from the user’s side. The European Commission (2019)
is also pushing for a similar direction by publishing a set of guidelines from a high-level expert group
on AI set up by the Commission, which identified four ethical principles for an AI to be trustwor-
thy. Among the principles we cite fairness and explicability, and according to the guidelines these

1.2. Plan of the Thesis 5

principles can be pursued by seven key requirements, among which we cite transparency and non-
discrimination. These requirements are particularly sensible and we will test the ML algorithms we
use in this work to check whether they fulfil these principles.

1.2 Plan of the Thesis
To achieve the purpose, we will implement the Partial Dependency (PD) Plot technique introduced
by Friedman (2001) and its refinement called Individual Conditional Expectation (ICE) Plots by
Goldstein et al. (2015). These are some of the many tools which have been developed in recent years
to help human users understand the outcomes of machine-learning algorithm, we will apply and
further refine these techniques in two ML models, the first one being a result of individual initiative
based on the Boston Housing Dataset, the second one being the FR&R Loss Assessment Grade
(FLAG) model, currently in use at ABN Amro. The accumulated on-field experience will suggest
the creation of new variants of these tools, namely the d-ICE flatness detector in Section 2.7.5 and
the log-d-ICE in Section 3.1.4. We will also link the latter concept with the statistical concept of
dispersion.

7

Chapter 2

Methodology

As we mentioned before, the process of “learning” for such algorithms begins with observations or
data in order to look for patterns and make better decisions withe the future examples and data
that are provided. The primary goal for machine-learning is to allow the computers learn such
patterns without human intervention, and make their predictions based on future data accordingly
to what has been learned in the past.

The data usually consists in a set of observations or examples, each containing one or more entries.
The set of entries representing the actual data and knowledge we have concerning an observation is
called domain set and is indicated with the letter X , while those entries which the machine learning
algorithm is supposed to learn how to predict in the future samples is called label set and is indicated
with Y. All such entries may contain numerical values (e.g. physical measurements of an object),
strings of text, or they can be empty. These entries can be either continuous, discrete or categorical.
Each of these entries is called feature. We will indicate with p the number of features in the domain
set and with q the number of features in the label set. Without loss of generalisation we can assume
all features lie in R: if they don’t, we can extend the domain (in the case of the categorical and
discrete features), or map the features to the real numbers (as in the case of strings of text) so
that they are included. To be more formal we can follow the definitions from Shalev-Shwartz and
S. Ben-David (2014, pg. 13) and say:

Definition (Training Data). The training data, usually denoted as S, is a finite sequence of pairs of
vectors in Rd ×Rq 3 X ×Y : {(x1,y1), . . . , (xm,ym)}. It represents a sequence of labelled domain
points. This is the input that the learner has access to.

We denote vectors in bold, therefore xi ∈ Rd stands for the i-th observed datapoint, and the
notation xi,j indicates the j-th component of the i-th observation. In case of the feature space, in
this work we will consider the case q = 1 alone, hence we assume Y = R and the yi-s will we refer
to value of the i-th observed label, the bold notation for yi will be dropped from now on.

The key principle pf Machine Learning is to build models of a real-world situation based on data.
Models are a simplified description of reality, and a good model ought to be structured enough to
satisfactorily replicate reality but simple enough to be replicable. In our context, we will consider

8 Chapter 2. Methodology

models as elements of the set YX , that is the set of functions from X to Y. By doing so, we We
can split machine learning models in two groups according to the structure of the label set Y:

Definition (Regression model). Given the domain set X and a label set Y a regression model
consists in a function f : X → Y = R.

Any regression model f can be seen as a mapping between a d-dimensional feature space X ∈ Rd
and and a prediction scale ŷ ∈ R. ŷ = fr(X) where X represents the infinite set of points in the
feature space. Possible regression algorithms are Linear Regression, Logistic Regression, Polynomial
Regression, Lasso Regression and Random Forest. Regression tasks include models such as house
pricing, risk assessment and so on.

Other problems are not suitable for a regression model. This happens where the set of possible
outcomes (labels) is small and there is no underlying structure between such labels. That is where
there is no notion of “closeness” (or distance) between labels, nor mathematical operations among
them make sense. For example in classification problems with 5 possible labels, a datapoint labelled
as “type 2” does not necessarily have anything to do with the average between item “ type 1” and
item “type 3”; nor item “type 1” necessarily shares more features in common with a “type 2” one
rather than with a “type 5”. Whee this kind of situation happens, the labelling problem is part of
the so called classification tasks, and classification models are developed for this scope. Formally a
classification model is:

Definition (Classification model). Given a model space X and a set of labels C = {c1, ..., ck}
classification model consists in a function f : X → C.

Note that we can easily map C to R, but we stress again the fact that no structure underlying R
such as the notion of distance and order should be inherited to C unless also C has it. Classification
algorithms take care of this aspect, and a few examples are: Logistic Regression, Nearest Neighbour,
Decision Trees and Random Forest. Once the data is collected and the learner uses them to build
an output function, we can say we have obtained a:

Definition (Learner’s output). It consists in a prediction rule h : X → Y. Such function is also
called a predictor, a hypothesis, or a classifier. Given a sample S, we will denote the set of predicted
labels {ŷ1, . . . , ŷn} by Ŷ. The learner’s output can be used to predict the label of new domain points.

It is worth noting that Ŷ does not need to be the same set as Y, but since all their elements in
real-world models will be represented in floating-point arithmetic we shall assume Ŷ = Y. Also
worth noting is that the choice of the learner can be any function of the set YX , but in practice the
set can be much smaller (and finite) for implementation constraints. This leads us to define:

Definition (Hypothesis class). Is denoted by H and consists in a predetermined class of predictors
H 3 hi : X → Y. In a machine learning setting the algorithm terminates by selecting a predictor
hi after “learning” from the data. It holds that H ⊆ YX .

Given the set H, we need a mean of comparison so that the algorithm can choose the best learner
according to some metric. In order to do this we introduce the concept of loss associated to a

2.1. Loss functions 9

prediction rule. That is, we define a function mapping events, or outputs, onto a real number.
Such number intuitively represents the “cost” associated with the event happening, and the related
function is the loss function.

2.1 Loss functions
The mathematical definition of loss function can vary a lot depending on the type of machine
learning algorithm, and since an all-embracing definition would be vague and inconclusive, we
prefer to build such definition within a narrower scope where an intuitive definition can be given.
Our choice falls on a definition for loss function applicable to supervised learning algorithms only.
Such choice is dictated by the fact that all algorithms we will be using in this chapter and the
following one will all be supervised learning algorithms. The definition of supervised learning, if
not already known to the reader because of his/her background, will be given later on.

Definition (Loss function). A loss function is a function that maps the algorithms output onto a
real number. In case of supervised learning algorithm we define it as a function ` : Y×Y → R. Given
a prediction ŷi and the true output yi, the loss function is written as `(yi, ŷi). The loss function
intuitively represents a cost associated with the event of being predicted the value ŷi instead of its
true value yi.

Usually loss functions are defined so that `(yi, yi) = 0, in other terms the loss incurred with an
exact prediction is usually zero. Examples of loss functions are:

• p-norm Loss: these are loss functions of the kind `(yi, ŷi) = α|yi − ŷi|p, with k > 0 and
p ∈ N \ 0. The most common ones have k = 1 and are the absolute-difference loss function
(p = 1) and the squared-loss function (p = 2). These losses are suitable for regression problems
and we will refer to them as L1 and L2 respectively.

• Huber Loss: it is a piece-wise defined function. Given a threshold δ, the Huber loss is
defined as:

Lδ(ŷi, yi) =
{

1
2 (yi − ŷi)2 if |yi − ŷi| ≤ δ,
δ |yi − ŷi| − 1

2δ
2 otherwise.

The Huber loss has a mixed nature: it behaves like a L2 norm for small values of |yi − ŷi|
but linearly for large values. This mixed behaviour allows the Huber loss to combine the
sensitivity of the minimum-variance estimator of the mean (from the quadratic loss function)
with the robustness of the absolute value function. Because of these desirable properties, we
will use the Huber loss in our application in the Boston Housing Dataset in Chapter 3. The
main drawback of the Huber loss is that it is continuously differentiable, but its derivative
is not (that is, Huber loss functions lies in C1 but not C2). Since some machine learning
algorithms need the second derivative of the loss, a twice-differentiable loss function can be
preferred.

10 Chapter 2. Methodology

• 0-1 loss: it is defined as Lp(yi, ŷi) = 1{ŷi 6= yi}, and is typically used in classification
problems. Note that unlike the previous losses, the 0−1 loss is not differentiable, nor convex.

These losses are defined over a single prediction ŷi opposed to the true value yi, but we can extend
the definition to the whole dataset. Given a sample S and a predictor h, we have an associated Ŷ
from which we can define the set of residuals {r1, . . . , rn} defined as {y1 − ŷ1, . . . yn − ŷn}. This
corresponds to the set of differences between the true and the predicted value. The accumulated (or
more commonly, the average) loss over the sample S is an indicator of performance of the learned
model and is also used during the learning phase of the ML algorithm. Choosing suitable loss
functions for machine learning algorithms is also important, and here we introduce some commonly
used ones:

• Mean Squared Error Loss: referred as MSE, is linked to the the L2 loss, is defined as the
average 2-squared-norm loss incurred in the analysed dataset {(x1, y1), . . . , (xn, yn)} when
predicting {ŷ1, . . . , ŷn} instead:

MSE(S) = 1
n

n∑
i=1

(ŷi − yi)2
. (2.1)

• Mean Absolute Error Loss: over a sample S is a close relative of the L1 loss. It is defined
as:

MAE(S) = 1
n

n∑
i=1
|ŷi − yi|2. (2.2)

• Huber Loss: for a dataset S is defined as the average of the incurred Huber losses over the
observations:

HUBδ(S) = 1
n

n∑
i=1

{
1
2 (yi − ŷi)2 if |yi − ŷi| ≤ δ,
δ |yi − ŷi| − 1

2δ
2 otherwise.

The δ parameter is tuned according to the available dataset. Usually the goal is to make most
of the data fall within the quadratic behaviour interval in [−δ,+δ], and outliers outside. In
order to achieve this, the value of δ is usually set as a top percentile (e.g. 5%) of the absolute
value of the residuals ri := yi − ŷi. An alternative approach leading to the same result is to
scale the residuals so that the absolute value of the (5th) top percentile is equal to 1, and
then use the Huber loss with δ = 1. This approach can be applied to a wider context, and we
will see that is also works with the next loss function.

• Log-cosh loss: is a function used in regression tasks, similar but smoother than HUB. Log-
cosh is the logarithm of the hyperbolic cosine of the prediction error and the loss is defined
as:

Lcosh(S) = 1
n

n∑
i=1

log (cosh(ri)) = 1
n

n∑
i=1

log
(
eri + e−ri

2

)
(2.3)

2.1. Loss functions 11

We can easily verify that as a residual ri → ∞, the log-cosh loss asymptotically tends to
ri − log(2). As ri → 0, Taylor expansion shows a behaviour like r2

i /2. This means that
such loss function has a L1 behaviour for large residuals, and a quadratic one for small ones,
just like the Huber loss. We can appreciate how these losses compare to each other through
Figure 2.1.

Figure 2.1: Comparison of the introduced losses. Both the Huber with δ = 1
and the log cosh loss have a similar behaviour compared to the L2 loss multiplied
by a factor 0.5. The latter still has stands out as the biggest incurring loss when

ri > 2.

The advantage of this loss over the Huber loss is that the Lcosh is an analytic function and
therefore twice differentiable. This is a remarkable advantage as some ML algorithms may
use the second derivative of the loss functions in the learning process, and are not able to
do so when using Huber loss. A drawback of the the log-cosh consists in its tuning, being
less intuitive than the Huber one. This is reason why the alternative tuning for the Huber
loss was suggested: we can use the same normalising principle for the log cosh-loss. To see in
details how, we make the following quantitative remark:

Remark. If we compare asymptotic behaviour of Log-cosh and Huber loss, we realise that:

|HUB1(yi − ŷi)− Lc(yi − ŷi)| is bounded by log(2)− 0.5 ≈ 0.2 (2.4)

This, added to the fact that they tend to have the same values in a neighbourhood of zero,
leads us to conclude that we can bound the difference with a (small) constant ≈ 0.2.

12 Chapter 2. Methodology

This suggests that, multiplying the residuals by a factor α such most of the new {αr1, . . . αrn}
lie in the [−1,+1] interval is an effective way to use the log-cosh loss function. It follows that
α = 1/δ from the way we tuned δ in the Huber loss.

The comparison of the most used loss functions is now complete. We intentionally spent some
pages (and time) on this topic because of the importance of loss functions in machine learning.
These loss functions indeed play two important roles in the process of learning:

• Firstly, evaluating the loss incurred by a learned model gives a mean of comparison between
models: those which at the end of the training process incurs in lower losses are expected
to be more accurate than trained models incurring in greater loss. Losses are the basis for
performance metrics in machine learning.

• Secondly, machine learning algorithms are structured in such a way that after every iteration
the loss of the learner is calculated. The following step, modification to the prediction rule
are made so that the loss can be decreased. Loss functions therefore play a key role during
the training phase of ML algorithms as well.

2.2 True error and empirical error
Once we have chosen a loss function, we shall use it to assess the performance of a learner. To do
so, we assume that each pair in the training data is generated by first sampling a point xi from and
underlying distribution D and then labelling it via the labelling function f . We keep following the
notation from Shalev-Shwartz and S. Ben-David (2014), and we now define the error of a prediction
rule h : X → Y as:

LD(h) = ED[`(y, h(x))]. (2.5)

Where the error of h is the average loss incurred when randomly choosing an example x from the
distribution D. Such L(D)(h) has several synonymous names such as generalisation error, risk, or
true error of h.

A problem arises when the learning algorithm does not know the underlying distribution D, nor
the labelling rule f . In this case, the true error is not directly available to the learner ad no
minimisation is therefore possible. To overcome this, a useful approximation can be used, the so
called training error. This training error, also called empirical error or empirical risk measures the
average loss incurred by the learner in the available sample S. In formulas:

LS(h) = ES [`(y, h(x))]. (2.6)

When the algorithm/learner has to make the choice, the most natural one will be the one minimising
the empirical risk over the sample S. We call such optimal learner the Empirical Risk Minimiser
(ERM):

ERMH(S) ∈ arg min
h∈H

LS(h). (2.7)

2.2. True error and empirical error 13

Introducing this estimate of the true error is not always a good idea as there are cases when LS(h)
is arbitrarily small but the true risk LD(h) is not. This phenomenon is called overfitting. The
opposite problem can also occur when the model has poor predictive performance with respect to
a benchmark because of being too simple and failing to capture the underlying trend of the data.
In this case we have ERMH(S) > ε , where epsilon is our benchmark, and we call this phenomenon
underfitting.

A simple explanatory example
To better explain the issue we provide an example with a regression problem. Despite being a
simple problem which requires nothing more than a polynomial fit, it is complex enough to raise
some issues and give ideas about how to tackle the problem. The example consists on the following
set up. Consider 25 observations uniformly drawn from X = [0, 1] ∈ R and let the observed yi be
generated following the rule:

Y = (X3 + 3X2 − 4X + 3) + E , X
iid∼ Unif(−1, 1) (2.8)

E iid∼ N (0, 0.12)

that is, the underlying labelling function is a cubic polynomial f(x) with some added noise E
is distributed as N (0, 0.12)1. However, the true underlying polynomial function is unknown to
the learner, thus various polynomial fits of degree 1, 4 and 10 are comapred in Figure 2.2. The
outcomes are shown in red, the true underlying pattern y = f(x) cleared of noise is plotted with a
dashed green line, and the true observed datapoints (with noise) are shown in blue. To assess the
performance of the fits, the MSE loss will be used, and the performance on a sample S is defined
as 1−MSE(S).

To the left in Figure 2.2 it is shown what underfitting looks like in a regression problem. An
underfitted learner is not able to capture the complexity of the data: the approximately parabolic
behaviour is seen as a decreasing linear trend. As a consequence the predictive performance of the
algorithm is “low” (1−MSE(S) = 0.874) for observed data and one does not expect the algorithm
to perform well for future data either.

The rightmost picture shows the opposite problem, that is overfitting. The degree of the fitted
polynomial is too high, as a result the model closely fits the observed data, but also fits the added
noise when doing so. As a result, we obtain a predictor with wobbling behaviour which does not
match the true underlying model, especially in regions such as the border of the domain. If we
were to judge the performance of the fit based on present data we would get very good results
(1 −MSE(S) = 0.993), but if we were to measure the performance on new data we would not be
able to achieve the same performance. The reason for this happening lies on the fact that when
we raise the degree of the polynomial fit, we are giving a higher number of degrees of freedom to
the learner, and we expect the model to better fit the given data. However we cannot achieve the

1We use the N (µ, σ2) notation throughout this work

14 Chapter 2. Methodology

Figure 2.2: Regression problem case with polynomial fitting. To the left: example
of underfitting. In the middle: good fit. To the right: overfitted model.

same increase with respect to the future data: new xi-s and related yi-s will have independent
noise from the previous observations, and the the model will not be fitting this noise anymore. The
performance will sensibly drop for future data and we will be far from the one attained during the
training process, this problem is commonly referred as lack of generalisation. Overfitted models are
not desirable because of their unexpected behaviour and overestimated performance.

The middle picture shows a good compromise between the previous models. The fitting poly-
nomial has degree 4 (comparable to the true underlying model) and the predictive power is good
(1−MSE(S) = 0.984) mainly limited by the presence of noise, with the latter not being wrongfully
fitted by the polynomial. The red and green curves lie close to each other in the whole domain,
that is the model’s predictive power will be good for future data sampled from the same (X ,Y).
We therefore expect the future performance of the model to be comparable to the one attained
during the training phase, that is, we expect the model to be able to generalise. This is a very
important requirement for a model, as the true indicator of performance of Machine Learning lies
in its predictive power.

2.3 Preventing under and overfitting
From the previous example we discovered that empirical loss LS,f can significantly differ from the
“true” loss LD,f , and problematic is the case when the former is small but the latter is not. In
particular, we are worried that future data might not fit with the predicted model especially if such

2.3. Preventing under and overfitting 15

data is slightly perturbed with respect to the original one, as it can be the case of time-depend data
in many real-world problems.

A solution to these issues is presented in this Section, and a connection with the theoretical
framework introduced between pages 7 and 12 is found. First of all, a useful tip is to split the
available dataset S into a train set S and a test set T . That is, we only use the fist set to train data
(even if this means losing some performance because of the smaller amount amount of data), and
then we calculate the incurred loss on the train set. Typically the train set includes 80%− 90% of
the data, and the remaining represents the test set. The test set will be an imitation of the “future
data” we were being worried about in our example. While loss on the train set corresponds to the
empirical loss LS,h, the loss incurred on the test set LT,h is a proxy for the true loss LD,h. Thanks
to this trick, we can now tell whether a model overfits simply by comparing the performance on
the training and testing set: if the latter is sensibly lower, then the model is overfitting. Deciding
how “big” the difference should be is up to the user, to the context, and depends on the adopted
algorithm. In order to face this, we generate 1000 new datapoints from X̄ = [−1.025,+1.025] ∈ R, a
slightly perturbed version of the original X and we use these points as a test set. The incurred loss
LT,h is calculated. In this example the test set will be larger than the train one but this anomaly is
justified by the fact that more testing datapoints lead to a more accurate estimate of the accuracy,
and LT,h, will be a more accurate estimator for LD,h. Usually, data cannot be generated at will as
in this case and the precision for the performance of the training and testing set is limited by the
amount of data. Moreover train and test performance metric can be sensitive to how the splitting
between train and test data is made. To mitigate this issue, K-fold cross-validation is used, but we
will describe this technique in more detail later in this work (see Section 2.4.1).

Thanks to this train-test split procedure, we are now able to find which polynomila fit is best for
the data from the process in (2.8). We do this by applying the procedure to all possible polynomial
fits of a given degree, up to 19. That is, we calculate the incurred loss for the train and test set
for every polynomial fitting with degree varying between 1 and 19. Let k be the degree of the
polynomial, the algorithm searches for the best polynomial fit of degree (at most) k and calculates
the incurred loss in both the training and testing set, and the results are shown in Figure 2.3:

2.3.1 Tentative definition of underfitting and overfitting
In the following paragraphs, we give some mathematical foundations to the intuition of underfitting
and overfitting shown in Figure 2.2. Let us set a lower benchmark LB and an upper benchmark
LU , and call ε̄ their difference. We say the algorithm is:

• underfitting when both the train and test performances fall below the lower benchmark LB

• good fit when both the train and test performances are above the lower benchmark LB , and
their difference is less than ε̄.

• overfitting when the train performance is above LU and the diference between train and test
score is above ε̄.

16 Chapter 2. Methodology

Setting LB is a somewhat arbitrary choice and we decide to set it to LB = 0.975. Setting the
upper benchmark on the other side, can be done based on the fact that any model scoring better
than the true underlying model f is overfitting. We can then calculate the performance for f and
set its performance as the upper bound LU . Calculating he loss of f is straightforward:

LD,f (f) =ED,f [`(Y, f(X)] = ED,f
[
(Y − f(X))2] = (2.9)

=ED,f
[
(f(X) + E − f(X))2] = ED,f

[
E2] = 0.01.

Which means that the performance is 0.99. We set LU = 0.99, and show it in Figure 2.3 with the
dotted red line.

Figure 2.3: Train and test score as the maximum degree of the polynomial fit
varies. The “sweet spot” for fitting is between 2 and 6 as these are the values
for which the test score is higher. A 7th-degree fit also meets the benchmark but

already shows some overfitting.

Starting from the rightmost side of Figure 2.3, we see that the performance of a linear regression
is poor as it does not capture the parabolic-like trend of the data. Both train and test score are
below the threshold, meaning there is underfitting. A fit of degree 2 is already good enough for this
purpose even if the underlying f(x) has degree 3, and a similar performance level is maintained for
all fits up to k = 6. Starting from k = 7 the test score starts decreasing as the train score keeps
increasing and we witness overfitting: the trained polynomial are fitting the 25 datapoints “too
well” and the undesired wobbling behaviour shown in the rightmost picture of Figure 2.2 appears
if we investigate the output of the model. In the extreme case of a polynomial fitting of degree 24,
we would witness a perfect fit with the training data, and a poor performance on the testing.

2.3. Preventing under and overfitting 17

We conclude that for our case good polynomial fits are those with degree k ∈ {2, 3, 4, 5, 6}. Having
to choose among these, a good rule is to choose the simplest model, that is the parabolic fitting.
But how an we put this into practice for a true machine learning model, where no polynomial fits
are present (and maybe not even effective in capturing the underlying patterns)? The answer is
relatively simple if we interpret the research of the best polynomial fit k as a parameter tuning
process:

Remark. This idea applies more generally when fitting model hyper-parameters, and choosing the
degree of the polynomial fitting can be considered a particular case of hyper-parameter tuning.
When a parameter of a ML algorithm needs to be tuned, a GridSearchCV can be done, command
available in Python within the sklearn library.

The polynomial degree fitting is also related to an interesting theoretical turn, we can indeed
interpret the degree tuning as a hypothesis class restriction, and restricting the learner to choosing
a predictor from a smallerH, is equivalent to biasing towards a particular set of predictors according
to Shalev-Shwartz and S. Ben-David (2014). Since the choice of such a restriction is determined
before the learner sees the training data, it should ideally be based on some prior knowledge about
the problem to be learned. On the opposing side, restricting the hypothesis class too much leads to
underfitting. In our example, the three stages of fitting can be represented as different hypothesis
classes of increasing size. In particular:

H1 = {a0 + a1 x : a0, a1 ∈ R} (2.10)

is the smallest class, and leads to underfitting. The middle case is represented by:

H4 =
{ 4∑
i=0

ai x
i : ai ∈ R, ∀i ≤ 4

}
, (2.11)

while overfitting happens when the a-priori selected class is too big, such as in:

H10 =
{ 10∑
i=0

ai x
i : ai ∈ R, ∀i ≤ 10

}
. (2.12)

Now, the formerly introduced classes are infinite and isomorphic to R2,R5 and R11 respectively.
Yet, in practical applications, these classes are finite as the floating-point representation of each
coefficient is limited to 264 possible values2. Limiting the learner to prediction rules within some
finite hypothesis class can therefore be considered as a mild restriction, and leads to interesting
results as we will see in the following paragraphs. In particular, theory about the so called PAC
learnability gives interesting bounds and insight about overfitting. We think is worth introducing
these concepts in the following Section.

2This means that Hk has cardinality 264(k+1), for k positive integer.

18 Chapter 2. Methodology

2.3.2 PAC Learnability
The section is made of two parts: firstly we show that if H is a finite class, then the ERMH rule
will not overfit provided it is based on a sufficiently large training sample; finally, we introduce
the concept of Probably Almost Correct (PAC) learnability in machine learning. Throughout this
Section we largely rely (and keep the notation3) from Shalev-Shwartz and S. Ben-David (2014,
p.17-27).

To start with, we analyse the performance of the ERMH learning rule assuming that H is a finite
class. For a training sample S, labelled according to some f : X → Y , we denote by hS the result
of applying ERMH to S, namely,

hS ∈ arg min
h∈H

LS(h). (2.13)

Now we make the following simplifying assumption, which will be relaxed soon:

Definition (The Realisability Assumption). . There exists h∗ ∈ H s.t. LD(h∗) = 0. Note that
this assumption implies that with probability 1 over random samples S, where the instances of S
are sampled according to D and are labelled by f, we have LS(h∗) = 0.

The realisability assumption implies that for every ERM hypothesis we have that LS(hS) = 0
with probability 1. However, we are interested in the true risk of hS , LD(hS), rather than its
empirical risk. Clearly, any guarantee on the error with respect to the underlying distribution D
for an algorithm that has access only to a sample S should depend on the relationship between D
and S. The common assumption in statistical machine learning is that the training sample S is
generated by sampling points from the distribution D independently of each other. Formally: the
examples in the training set are independently and identically distributed (i.i.d.) according to the
distribution D.

Now, since LD(hS) depends on the training set S and that training set is picked by a random
process, there is randomness in the choice of the predictor hS and consequently LD(hS) is a random
variable. It is not therefore realistic to expect that with full certainty that S will suffice to direct the
learner toward a good classifier (from the point of view of D), as there is always some probability
that the sampled training data happens to be non-representative of the underlying distribution
D. We will therefore address the probability to sample a training set for which LD(hS) is not too
large. Usually, we denote the probability of getting a non-representative sample by δ, and call
(1− δ) the confidence parameter of our prediction. Moreover, the parameter ε introduced in page
as benchmark to beat, will be called accuracy parameter. We interpret the event {LD(hS) > ε} as
a failure of the learner, and we are interested in upper bounding the probability to sample m-tuple
of instances that leads to failure of the learner. Let by Dm denote the (probability) distribution
over m-tuples induced by applying D to pick each element of the tuple independently of the other
members of the tuple. S = {(x1,y1), . . . , (xm,ym)} be the instances of the training set. We would
like to upper bound:

Dm({S : L(D,f)(hS) > ε). (2.14)
3From now on, we drop the labelling function f when referring to the losses LS and LD

2.3. Preventing under and overfitting 19

Now, let HB be the set of “bad” hypotheses, that is the set of learners that incur in a loss greater
than ε:

HB = {h ∈ H : L(D,f)(h) > ε}. (2.15)

In addition, let
M = {S : ∃h ∈ HB , LS(h) = 0} (2.16)

be the set of misleading samples: namely, for every S ∈ M , there is a “bad” hypothesis h ∈ HB
that looks like a “good” hypothesis on S. Now, recall that we would like to bound the probability
of the event L(D,f)(hS) > ε. But, since the realisability assumption implies that LS(hS) = 0, it
follows that the event L(D,f)(hS) > ε can only happen if for some h ∈ HB we have LS(h) = 0.
In other words, this event will only happen if our sample is in the set of misleading samples M .
Formally, we have shown that:

{S : L(D,f)(hS) > ε} ⊆M. (2.17)

Now, note that we can rewrite M as

M =
⋃

h∈HB

{S|x : LS(h) = 0}. (2.18)

Hence,

Dm ({S : LD(hS) > ε}) ≤Dm(M) =

= Dm
(⋃
h∈HB

≤ {S : LS(h) = 0}
)
≤
∑
h∈HB

Dm(S : LS(h) = 0). (2.19)

Where the last inequality follows from applying the union bound Lemma (see Theorem A.2.1). This
inequality bounds the probability of incurring in a loss greater then ε (following the ERM rule) by
the sum of probabilities that a learner incurs in no empirical loss, over all possible elements of the
bad hypotheses set HB . Next, let us bound each summation of the right-hand side of the preceding
inequality. Fix some “bad” hypothesis h ∈ HB . The event LS(h) = 0 is equivalent to the event
{∀i, h(xi) = f(xi)}. Since the examples in the training set are sampled i.i.d. we get that

Dm(S|x : LS(h) = 0) = Dm({S|x : ∀i, h(xi) = f(xi)}) =
m∏
i=1
D({xi : h(xi) = f(xi)}). (2.20)

For each individual sampling of an element of the training set we have

D(xi : h(xi) = yi) = 1− L(D)(h) ≤ 1− ε, (2.21)

20 Chapter 2. Methodology

where the last inequality follows from the fact that h ∈ HB . Combining the previous equation with
Equation (2.20) and using the inequality4 1− ε ≤ e−ε we obtain that for every h ∈ HB ,

Dm({S|x : LS(h) = 0}) ≤ (1− ε)m ≤ e−εm (2.22)

Combining this equation with Equation (2.19) we conclude that

Dm({S|x : LD(hS) > ε}) ≤ |HB |e−εm ≤ |H|e−εm. (2.23)

We successfully bounded the probability of a learner to fail with this inequality. As the intuition
says, the bound is decreasing (and therefore giving more theoretical guarantees) as both m ε in-
crease. The former suggests to increase the sample size to avoid overfitting, while the latter is an
example of how slackening constraints are easier to meet. We are interested to see under which
conditions the Equation (2.23) upper bounds the probability to fail by a (small) positive constant δ,
in particular we want to focus on the minimal amount of datapoints that guarantees a probability
of failure of at most δ. This can be achieved by setting the right hand side of the Equation to δ
and isolating the m term in the inequality. The result is the following Theorem:

Theorem 2.3.1. Let H be a finite hypothesis class. Let δ ∈ (0, 1), ε > 0, and let m be an integer
that satisfies m ≥ ε−1 log(|H|/δ).

Then, for any labelling function f , and for any distribution D for which the realisability assump-
tion holds, with probability of at least 1− δ over the choice of an i.i.d. sample S of size m, we have
that for every ERM hypothesis hS it holds that

LD(hS) ≤ ε. (2.24)

Proof. Simply inverting the relationship and isolating the m term, the proof follows.

The preceding Theorem tells us that for a sufficiently large m, the ERMH rule over a finite
hypothesis class will be probably (with probability at least 1− δ) approximately (up to an error of
ε) correct. This leads to the definition of sample complexity of a hypothesis class:

Definition (Sample Complexity). The sample complexity of a hypothesis class H is defined as the
minimal function mH : (0, 1)2 → N such that for any ε, δ,, mH(ε, δ) is the minimal integer that
satisfies the requirements of PAC learning with accuracy ε and confidence δ. That is, it determines
how many examples are required to guarantee a probably approximately correct solution with the
given parameters.

Remark. We observe that the lower bound is most sensible to the value of ε, and increases loga-
rithmically as δ and H increase. As hypothesis classes usually increase exponentially in size with
the number of parameters, the relationship between mH and the (parameters of) H is de facto
linear. We conclude that the parameter with which we can use more flexibility is δ.

4valid since ε is ≤ 1

2.3. Preventing under and overfitting 21

We conclude that that for a finite hypothesis class, if the ERM rule with respect to that class is
applied on a sufficiently large training sample (whose size is independent of the underlying distri-
bution or labelling function) then the output hypothesis will be probably approximately correct.
We summarise this by the following Definition:

Definition (PAC Learnability). A hypothesis class H is probably almost correct (PAC) learnable if
there exist a function mH : (0, 1)2 → N and a learning algorithm A with the following property: For
every ε, δ ∈ (0, 1), and for every distribution D over X , and for every labelling function f : X → Y,
if the realisable assumption holds then when running the learning algorithm on m ≥ mH(ε, δ) i.i.d.
examples the algorithm returns a hypothesis h such that, with probability of at least 1 − δ (over
the choice of the examples)

LD(h) ≤ ε. (2.25)

Finally, combining Theorem 2.3.1 with the new definition we have the following Corollary:

Corollary 2.3.1. Every finite hypothesis class H is PAC learnable with sample complexity

mH(ε, δ) ≤ d ε−1 log(|H|/δ) e (2.26)

Which means that an algorithm will probably almost correctly learn a good model for the data
with an amount of datapoints at most equal to the right hand side of Equation (2.7),

The next step is to drop the realisability assumption. When doing so a new learnability definition
arises and we refer to it as agnostic PAC learnability.

2.3.3 Agnostic PAC learnability
Recall that the realisability assumption in page 18 requires that there exists a h∗ ∈ H such that
the LD(h∗) = 0. This implies that PD[h∗(x) = f(x)] = 1, that is, that the labelling is almost surely
correct for all samples. In many practical problems this assumption does not hold.

Moreover we shall not assume that the labels are fully determined by the features we measure
on input elements. We therefore drop the such assumption and aim for a more realistic model for
the data-generating distribution. Formally from now on, we will call D the probability distribution
over X × Y; that is, D is a joint distribution over both domain points and labels. Shalev-Shwartz
and S. Ben-David (2014) suggest viewing such a distribution as being composed of two parts: a
distribution Dx over unlabelled domain points (sometimes called the marginal distribution) and a
conditional probability over labels for each domain point, D((x, y)|x). In this framework a learning
algorithm does not assign a label to a datapoint in a deterministic fashion, but rather assigns a
probability distribution of labels. We call such models probabilistic models.

Now that the realisability assumption is dropped, a minimal (non-negative) possible error LD.f (h)
exists, and we cannot hope that the learning algorithm will find a hypothesis whose error is smaller
than the minimal possible error. Instead, we require that the learning algorithm will find a pre-
dictor whose error is not much larger than the best possible error of a predictor in the hypothesis

22 Chapter 2. Methodology

class. When the realisability assumption is dropped we talk about agnostic learning5, and the the
definition of agnostic PAC Learnability follows:

Definition 2.3.1 (Agnostic PAC Learnability). A hypothesis class H is agnostic PAC learnable if
there exist a function mH : (0, 1)2 → N and a learning algorithm A with the following property:
For every ε, δ ∈ (0, 1) and for every distribution D over X ×Y, when running the learning algorithm
on m ≥ mH(ε, δ) i.i.d. examples generated by D, the algorithm returns a hypothesis h such that,
with probability of at least 1− δ:

LD(h) ≤ min
h′∈H

LD(h′) + ε. (2.27)

It is common practice to define PAC learnability with respect to a given loss function `. A
hypothesis class is PAC learnable wit respect to a loss function ` when Equation (2.27) holds, with
LD(h) defined as ED[`(h, z)]. and LD(h′) accordingly is ED[`(h′, z)].

Remark. When the realisability assumption holds we have

min
h′∈H

LD(h′) = LD(h∗) = 0

for some h∗ ∈ H and agnostic PAC learning provides the same guarantee as PAC learning. In
this sense, agnostic PAC learning generalises the definition of PAC learning. When the realisability
assumption does not hold, no learner can guarantee an arbitrarily small error but can declare success
if its error is not much larger than the best error achievable by a predictor from the class H.

2.3.4 Comparison with real-world example
With theoretical bounds being set, we can compare them with the results from Equation (2.8) and
Figure 2.2. The example, despite being simple, has the advantage of being easily controllable, and
allows us to verify if the lower bounds for mH as stated in Corollary 2.3.1 are consistent with our
findings In order to do this, we need set the parameters δ and ε and calculate the remaining values.
The parameter δ is the least influential one and it is common practice to set it equal to 0.05. ε
can be fixed to 0.015, a choice we will see being consistent with the benchmark set in the Example.
It is worth noting that setting ε = 0.015 we are guaranteeing a performance at most 0.015 worse
than the best available learner in the hypothesis class, by Definition 2.3.1. Finally, we can easily
verify that H1,H4,H10, have cardinality 264·2, 264·5 and 264·11 respectively (see page 17). With
such values, we are guaranteed PAC learnability of our regression problem for the values of mHk

shown in Table 2.1. The values are the lower bounds guaranteeing agnostic PAC learnability, or
alternatively they upper bound the sample size which do not guarantees that. As we can see, the
theoretical bounds are much higher than the actual number of points we used to build the model.
However we can verify whether the model has “learned” already from the given 25 datapoints by
comparing its performance with the bound given by (2.27).

5Note that the term “agnostic” will have a different meaning in Section 2.7

2.3. Preventing under and overfitting 23

Hyp. Class class size mH bound
H1 264·2 mH1(.015, .05) = 5716
H4 264·5 mH4(.015, .05) = 14588
H10 264·11 mH10(.015, .05) = 32333

Table 2.1: Sample size guaranteeing agnostic PAC learnability for the three hy-
pothesis classes H1, HHH4, HHH10.

• The cases H4 and H10 are straightforward: the “true” underlying function f is included in
the sets (up to machine-precision related representation errors, which are negligible), therefore
minh′∈H LD(h′) = LD(f) = 0.01 as proved in (2.9). From Equation (2.27) we have that the
model has learned a successful h when:

LD(h) ≤ min
h′∈H,H10

LD(h′) + ε = 0.01 + 0.015 = 0.025 (2.28)

Recovering the lower benchmark performance of 0.975. From Figure 2.3 we can see how
the model has learned at its best when we set H = H4 but not when H = H10 because of
overfitting.

• For H1 more calculations are needed. Finding the loss incurred by the best linear corresponds
to the following:

min
h′∈H1

LD(h′) = min
a0,a1∈R

E [`(f(x) + E , (a0 + a1 x))] = (2.29)

= min
a0,a1∈R

E
[
(f(x) + E − (a0 + a1 x))2] =

= min
a0,a1∈R

E
[
(f(x)− (a0 + a1 x))2 + E2 + 2E(f(x)− (a0 + a1 x))

]
=

= min
a0,a1∈R

E
[
(f(x)− (a0 + a1 x))2]+ E[E2] + 2E[E] · E[f(x)− (a0 + a1 x)]

= min
a0,a1∈R

∫ 1

0
[x3 + 3x2 − 4x+ 3− ax− b]2dx+ 0.01 + 0

= 79/700 + 0.01 ≈ 0.123. (2.30)

Plugging this value to Equation (2.27) leads to a successful (PAC agnostic) learning when:

LD(h) ≤ 0.123 + 0.015 = 0.138. (2.31)

That is, when the performance is above 1− 0.138 = 0.862. Comparing this benchmark with
the performance obtained in Figure 2.3 (around 0.88), we conclude that the model has learned
successfully, but being the class is too small for our purposes we are incurring in underfitting.

24 Chapter 2. Methodology

The results from the former experiment are non contradicting with the bounds set by Equa-
tion (2.27), these bound are indeed lower bounds guaranteeing PAC learnability, and they are way
higher than the number of datapoints we are using. Nevertheless the fitting algorithm worked wuth
the hypothesis classes H1 and H4.

An explanation to this comes from the fact that the given model is extremely simple: the data is
1-dimensional and the labelling function is a (continuous) polynomial: no surprise that less points
were needed to obtain results. The theoretical bounds make indeed no assumption on the complexity
of the underlying model, and are valid for any labelling function f : X → Y, this is normally a
strong point for theoretical models but in this case it appear more like a limitation. Another
fundamental weakness of such bounds lies on the chain of inequalities between Equation (2.20) and
Equation (2.23) used to prove them, specifically in Equation (2.23) it is possible that |HB | << |H|.

We conclude that the theoretical bounds from Shalev-Shwartz and S. Ben-David (2014) are non
contradicting our findings, but have limitations in real world applications. We therefore need
to introduce and develop other techniques to spot overfitting, rather than trying to predict the
probability of this happening.

2.4 Spotting under and overfitting
In the previous Sections, we discovered how overfitting looks like and showed the most immediate
technique to spot and prevent it. We also showed the theoretical proof that, the larger the cardinal-
ity of the class of learners H, the more samples are needed for effective learning. In this Section, we
will introduce more advanced techniques. The first of them is the so called K-fold cross-validation.

2.4.1 K-fold cross-validation
Cross-validation can be seen as a repeated train-test data split. The data is first shuffled randomly
and split into K groups. The procedure goes then as the following:

• For each of the K groups, hold out one group as a test set, and train the algorithm on the
other K − 1.

• Evaluate the performance of the trained algorithm on the test data. Retain the score after
the model is discarded for the next iteration.

• Iterate the previous steps K times until all sub-group have been used once as a test set and
K−1 times as a training set. It is important to understand that each observation in the data
is assigned to an individual group and stays in that group for the duration of the procedure.

The final output consists of K evaluation metrics based on the K generated test sets. The mean
and the standard deviation of such measurements give an idea of the performance of the machine
learning algorithm and of the confidence interval of such estimate. The procedure can be visualised
in Figure 2.4. The value of K is a parameter whose value is up to the user. The choice of a

2.4. Spotting under and overfitting 25

Figure 2.4: Example where a 4-fold cross validation is performed. Approximately
25 % of the data is left out during each training phase and used to evaluate the per-
formance. Picture adapted from https://scikit-learn.org/stable/modules/

cross_validation.html

small K creates a higher selection bias on the performance metric but low variance. A large K
induces little bias but increases the variance on the measured performances. A typical value for K
is 10, which results in ten 90% − 10% splits during the procedure. Cross validation not only has
the advantage of giving a clear overview of the algorithm’s performance through the average and
standard deviation of the metrics, but also guarantees better robustness to outliers than a simple
train-test split. Unlike the latter, where outliers can end up being under or over-represented in the
train set (and the performance metric being therefore over or under-estimated), the cross-validation
procedure guarantees the averaging-out of such effects by the end of the cycle.

We conclude that K-fold cross validation makes use of the data more efficiently than a simple
train-test split, and together with its variants such as stratified K-Fold and group K-Fold is a state
of art technique when it comes to performance assessment in scientific publications.

2.4.2 ABN validation procedure
Given the big societal responsibilities that a bank like ABN Amro has, the performance assessment
of its own models and tools, including machine learning models, needs to comply to the highest
standards. It is extremely important to avoid overfitting and performance overestimation, and the
reasons are the same mentioned in the importance of explainability in the Introduction.

In this Section we describe how ABN Amro manages the dataset and what techniques are used to
prevent overfitting. The details of the methods might be sensitive information and are commented
out.

 https://scikit-learn.org/stable/modules/cross_validation.html
 https://scikit-learn.org/stable/modules/cross_validation.html

26 Chapter 2. Methodology

2.5 Machine Learning algorithms
We mentioned Machine Learning algorithms throughout this work and we described them as algo-
rithms who improve their guesses based on the data they receive. A well-tuned machine learning
algorithm will get better as more data is fed in and the resulting process reminds what humans
would call “learning”. The process of learning in ML is inherently different from how humans and
animals learn, but the word has entered the community’s vocabulary and gives a good intuition.
It is a common (see Molnar (2019) and Murphy (2012)) to split the field of ML in three sub-fields.
Namely we talk about supervised learning, unsupervised learning and reinforcement learning.

Supervised learning algorithms build models based on a set of data where both X and Y are non-
empty. The algorithm predicts the output of new data and its performance is measured through a
penalty function. The algorithm aims at minimising the loss given by such function while making
its guesses, and to do so it goes first through the so called “training process” with the known data.
Examples of supervised learning algorithms include regression and classification algorithms. The
first type is used when the predicted output lies within a numerical range in the continuum, the
second one when the outputs are restricted to a limited set of values, numerical or not. When not
all output values are available in the data set, and the goal is to predict (usually, to classify) the
data with no y-value, in these cases we talk about semi-supervised learning. Figure 2.5 shows an
example of supervised learning, where the algorithm learns to classify emails into “spam” and “not
spam”.

Figure 2.5: Visualisation of the supervised learning process: 1) Labelled data
is given to the machine. 2) The algorithm learns patterns from the data and
elaborates its own classification rules. 3) These rules are applied to new unlabelled
data and the classification is done. Adaptation of https://towardsdatascience.

com/what-are-the-types-of-machine-learning-e2b9e5d1756f

https://towardsdatascience.com/what-are-the-types-of-machine-learning-e2b9e5d1756f
https://towardsdatascience.com/what-are-the-types-of-machine-learning-e2b9e5d1756f

2.5. Machine Learning algorithms 27

The second category consists of unsupervised learning algorithms. These algorithms are used
when no output data is available, that is when Y = ∅ and the challenge is to find structure in the
data even if no distinction between training and test data is possible. A common setup consist in
a input set X , and a distance or similarity function over it. The algorithm then returns a partition
of the domain set X into subsets (C1, . . . , Ck) called clusters. In other words, clustering algorithms
assign a label to each data point so that data points falling in the same cluster are similar according
to some criteria, while data points in different clusters are not.

Figure 2.6: In unsupervised learning the original data has no labels. A K-Means
algorithm is separating the data in three clusters by proximity. Example taken

from http://pypr.sourceforge.net/kmeans.html#k-means-example

Finally, there are the so called reinforcement Learning algorithms. According to Shalev-Shwartz
and S. Ben-David (2014), this kind of learning can be seen as an intermediate setting where training
examples contain more information than the test examples. The learner, usually called “agent”, is
required to predict even more information for the test examples, and it does so in an interactive
environment by trial and error using feedback from its own actions and experiences. In reinforcement
learning the goal is to find a suitable action model that would maximise the total cumulative reward
of the agent.

In this work, we focus on the supervised learning algorithms. Both applications shown in Chap-
ter 3 will involve an algorithm for supervised learning called Stochastic Gradient Boosting (SGB).
We link this algorithm to the previously introduced theoretical framework of Sections 2.3.2 - 2.3.3,
and we do this by introducing the concept of weak learning, and linking this to a ML algorithm
called Adaptive Boosting (AdaBoost) algorithm.

http://pypr.sourceforge.net/kmeans.html#k-means-example

28 Chapter 2. Methodology

2.5.1 Weak Learning
The concept of weak learnability arises as a contrast to the concept of (strong) PAC learnability
introduced in page 21. We saw that strong learners are able to find an arbitrarily good classifier:
for any given ε they can learn a function whose error is ≤ ε. Weak learners on the other side
are classifiers that are only slightly correlated with the true classification, that is they can label
examples slightly better than random guessing. How “slightly” better than random guessing should
the labelling be is regulated by the parameter γ. Shalev-Shwartz and S. Ben-David (2014) chooses
to define weak learnability in case of a binary classification first, but the notion is easily extendable
to multi-class and regression problems.

Definition (Weak Learner). A learning algorithm A is called a γ-weak learner for a class H if
there exists a function mH : (0, 1)→ N such that for every δ ∈ (0, 1), for every distribution D over
X , and for every labelling function f : X → {±1}, if the realisable assumption holds with respect
to H,D and f , then when running the learning algorithm on m ≥ mH(δ) i.i.d. examples generated
by D and labelled by f , the algorithm returns a hypothesis h such that, with probability of at
least 1− δ:

LD(h) ≤ 1
2 − γ. (2.32)

A hypothesis class H is called γ-weak-learnable if there exists a γ weak learner for that class.
At this point we might ask ourselves what is the point of introducing weak learners since strong

ones are already available. Moreover, strong and weak-learners are equivalent from the statistical
perspective: a hypothesis classH is strong learnable if and only if is weak-learnable (Shalev-Shwartz
and S. Ben-David, 2014, p.103). In a purely theoretical framework these remarks are true, however
there are two main (practical) drawbacks of strong learning that we wish to overcome:

• Firstly, implementing an algorithm to search for the best strong learner using the ERMH rule
is computationally expensive (NP-hard according to Ben-David, Eiron, Long, et al. (2003)).

• The theoretical framework in of Sections 2.3.2 - 2.3.3 has not been applicable to our work so
far.

We are now motivated in the choice of using weak-learners, and we wish to replicate the performance
guaranteed by strong learners. The AdaBoost algorithm successfully implements a combination of
weak learners to obtain a performance equivalent to a strong learner. Informally speaking, the
principle behind this is that “the performance of an average of weak learners is better than the
average of the performance of the single weak learners”.

2.5.2 AdaBoost algorithm
The AdaBoost algorithm was first proposed Schapire and Freund in 1995 (Shalev-Shwartz and S.
Ben-David, 2014). This algorithm is the first truly practical implementation of boosting, that is of
the concept that efficient weak learners can be combined to form a strong one. AdaBoost became

2.5. Machine Learning algorithms 29

hugely popular and Freund and Schapire’s work has been recognised by prestigious awards such as
the Gödel Prize. The AdaBoost algorithm can be started by receiving as input:

• A training set of examples S = {(x1, y1), . . . , (xm, ym)} where a labelling function f such
that f(xi) = yi ∀i ≤ m is assumed to exists6.

• A distribution vector over the samples S denoted by D(1) = (D(t)
1 , . . . , D

(t)
m). Usually D(1) is

the uniform distribution over the m samples.

• Lastly, a maximum number rounds T (or alternatively a stopping criterion) is given.

The boosting proceeds in a sequence of consecutive rounds, and for each round t ≤ T :

• A weak learner returns a “weak hypothesis” ht. This learner incurs in an error:

εt = LD(t)(ht) :=
m∑
i=1

D
(t)
i 1[ht(xi)6=yi], (2.33)

which by definition is at most 1
2 − γ with probability at least (1− δ).

• AdaBoost assigns a weight for the learner ht according to the formula:

wt(εt) = 1
2 log

(
1
εt
− 1
)
. (2.34)

This weight is decreasing with respect to the error.

• Finally the distributionD(t) is updated and normalised toD(t+1) for the next step. Component-
wise:

D
(t+1)
i = D

(t)
i exp(−wt yi ht(xi))∑m

j=1D
(t)
j exp(−wt yj ht(xj))

, ∀i ≤ m. (2.35)

This operation is called exponential weighting, and it is forcing the weak learner to focus
on the problematic examples in the next round. As a result, by adding more weight to the
misclassified samples, a weak learner is forced to perform much better in the examples with
bigger weight D(t) in order to incur in a loss smaller than 1

2 − γ.

After T rounds, the AdaBoost algorithm for binary classification outputs the hypothesis:

f̂S(x) = sign
(

T∑
t=1

wtht(x)
)
. (2.36)

6In our deterministic binary classification example, f exists indeed.

30 Chapter 2. Methodology

Remark. Each weak learner et incurs in an error ≤ 1
2 − γ with probability (1 − δ). This means

that the probability that every weak learner does so is:

(1− δ)T > (1− δT). (2.37)

Meaning that, on the other side, the probability of the algorithm failing at some round is upper
bounded by δT . As we have seen in the Remark of page 20 that we can easily play with the δ
parameter.

From ADABoost to Gradient Boosting

As we have seen, AdaBoost changes the sample distribution by modifying the weights attached to
each of the instances at each iteration.The weights of the wrongly predicted instances are increased
and the ones of the correctly predicted instances are decreased. The weak learner thus focuses more
on the difficult instances and the higher it performs, the more it contributes to the strong learner.
An explanatory image to how the error εt influences the weight is shown in Figure 2.7.

Figure 2.7: Weighting function as a function of the error εt, good learners get a
positive weight, tending to infinity as the error approaches to zero. Symmetrically,

bad learners have a negative weight, and wt(0.5) = 0.

An alternative approach come from Gradient Boosting. Gradient Boosting is another supervised
ML algorithm which has many traits in common to AdaBoost. Gradient Boosting does not modify
the sample (weights of the) distribution but trains the weak learner on the remaining errors (so-
called pseudo-residuals) instead. This is another way to give more importance to the difficult

2.5. Machine Learning algorithms 31

instances. In the next Section we see in details how Gradient Boosting and its Stochastic variation
works.

2.5.3 (Stochastic) Gradient Boosting
The Gradient Boosting algorithm was first proposed by Friedman in 1999 and it is used in supervised
learning problems. To describe how the algorithm works we refer to the 2001 version of the paper
(Friedman, 2001).

The supervised learning setting is the usual one: we are given a training set S consisting of m
datapoints {(x1, y1), . . . , (xm, ym)} and a loss function ` : Y × Y → R. Our aim is to find an
approximation function f̂(x) to the model such that it minimises the expected loss:

f̂ = arg min
f

E[`(y, f(x))]. (2.38)

Like other boosting methods, Gradient Boosting does so by combining weak learners hi ∈ H into a
strong one in an iterative fashion. The algorithm seeks such approximation in the form of weighted
sums of functions, a principle we have seen in AdaBoost. At every step t ≤ T a new weak learner
is added to the previous learned function. Running a Gradient Boosting algorithm after T steps
leads to the predictor:

f̂T (x) =
T∑
t=1

γtht(x). (2.39)

Where ht stands for the learner added at the t-th iteration step, and γt refers to the weight associated
to it. We are not using the same notation as AdaBoost for the weights because the construction in
Gradient Descent is inherently different. For the first step (t = 0), Gradient Boosting searches for
the best possible constant predictor:

f̂0(x) = arg min
γ

m∑
i=1

`(yi, γ), (2.40)

Then, for 1 ≤ t ≤ T the method the algorithms applies a steepest descent step to this minimisation
problem. The resulting step is described by the following equations:

f̂t(x) = f̂t−1(x)− γt
m∑
i=1
∇`(yi, f̂t−1(xi)), (2.41)

γt = arg min
γ

m∑
i=1

`
(
yi, f̂t−1(xi)− γ∇`(yi, f̂t−1(xi))

)
. (2.42)

Where the nabla (∇) operators stand for the derivatives with respect to the second argument of `,
that are the functions f̂t, i ≤ m. It is worth noting that such derivatives may not be elements of

32 Chapter 2. Methodology

H. In such cases, the closest candidate function ht to the gradient of ` is chosen. The coefficient γt
is heuristically found by solving a 1-dimensional optimisation problem.

Remark. This approach is a heuristic one for two reasons. Firstly, Equation (2.41) gives an
approximated value to the greedy increment from step t− 1 to step t. Such step would ideally be:

f̂t(x) = f̂t−1(x) + arg min
ht∈H

[
m∑
i=1

`(yi, f̂t−1(xi) + ht(xi))
]
. (2.43)

Unfortunately a searching algorithm within a possibly large H makes this step computationally
expensive, especially if it needs to be done at every step t of the algorithm. Secondly, only an
approximated value for the γt coefficient on the optimisation problem is found at every step, as
finding the exact solution to equation would be too expensive.

Remark. In a later paper by Hastie, Tibishirani, and Friedman (2009) a regularising shrinking
parameter ν is suggested for the gradient boosting method. This modifies Equation (2.41) into the
following:

f̂t(x) = f̂t−1(x)− ν γt
m∑
i=1
∇`(yi, f̂t−1(xi)), . (2.44)

With ν < 0.1 a better generalisation power is reported, alhough it increases computational time (a
larger T is needed).

We now show how Gradient Boosting works with a simple example taken from Grover (2017).
The underlying process to be learned is a function f : N→ R defined as the following:

Y ∼ Unif(10, 15) for 0 ≤ X < 10
Y ∼ Unif(20, 25) for 10 ≤ X < 20
Y ∼ Unif (0, 5) for 20 ≤ X < 30
Y ∼ Unif(30, 32) for 30 ≤ X < 40
Y ∼ Unif(13, 17) for 40 ≤ X < 50

(2.45)

The weak learners ht are picked from the class of decision trees, and the L2 loss is being used.
The behaviour of the Gradient Boosting algorithm under this setting is shown in a controlled
step-by-step fashion in Figure 2.8.

The top left picture shows how the constant predictor f̂0(x) ≈ 17 is being improved with the
learner h1. The learner in this case behaves similarly to a step function which, given the one-
dimensional nature of the data, is not a surprise.

Two rounds later we reach the situation in the top right picture. Three weak learners have been
added to the initial guess and the algorithm is capturing some trend in the data. In particular, the
datapoints indexed between 0 and 9, and between 40 and 49 are being predicted with a satisfactory
accuracy. Outside these intervals the performance is still low and presents underfitting.

2.5. Machine Learning algorithms 33

Figure 2.8: Gradient Boosting at work, where rounds t = 1, 3, 18, 50 are shown.
The values of the residuals are plotted on the right. Credits to Grover (2017) for

the Figure

The bottom left picture shows how f̂18 looks like. The algorithm is capturing the structure of
the data: the five different clusters of data have been identified and the prediction is close to the
actual values. There is limited wobbling behaviour, showing that the algorithm is not fitting the
noise yet and the plot of the residuals shows that they are well distributed around zero (small bias).
We conclude that the model has a good fit at this stage.

Finally, the bottom right picture shows what this Gradient Boosting algorithm does when learning
for 50 rounds. The predictor follows the data well, but some wobbling appears within the clusters
of data. This suggests that f̂50 is capturing and modelling some noise as well, leading to overfitting.

This example shows that setting T too high can lead to overfitting. One way to avoid this is
to insert an alternative stopping criterion, for example one can tell the Gradient Boosting to stop
when the performance increase on the train test increases by less than a small margin, or when
the empirical risk evaluated on the test set starts to rise. However, there also exists a variant of
Gradient Boosting which is more robust to overfitting. The same caveats apply, but the overfitting
is expected to be less severe.

Stochastic Gradient Boosting

The stochastic variant of the algorithm was introduced by the same Friedman (Friedman, 2001) and
it consists in a very simple concept. At each iteration of the algorithm, the base learner candidates
fit from a sub-sample of the training set instead of the whole one, with 50% to 80% of the datapoints
being sampled at every iteration. This way, the accuracy of the algorithm is reported to improve,
variance to be reduced and overfitting to be somewhat prevented. Even computational time is
decreased as at each step as the fitting is done on a smaller sample.

34 Chapter 2. Methodology

Thanks to its robustness and effectiveness Stochastic Gradient Boosting (SGB) has become a
very popular ML algorithm and we will see two applications of it in Chapter 3. On the other side,
the outputs of the SGB algorithm an be hard to explain especially with complex datasets. Already
in the previous, simple example, some questions are left unanswered: why are exactly learners
{h1, h2, . . . , h50} picked? When does the model start overfitting, precisely? How do we define a
stopping criterion over another to prevent overfitting? It is clear that, although a well-tuned SGB
algorithm performs well, it is not well explainable in the current state.

2.6 Interpetability of models
In the previous Sections we focused on the theoretical background of some ML algorithms and
we introduced valuable techniques to assess their performance. However, the Introduction of this
work highlighted that in certain contexts interpretability (or explainability) alongside performance is
determining whether a ML algorithm can be implemented. From now on, we should therefore focus
on this other aspect, define what interpretability is and introduce techniques whose aim to make
hardly-interpretable model more approachable for their end-users. We start by giving a definition
of interpretability:

Definition (Interpretability). Interpretability of a ML algorithm is the degree to which the user
can understand the cause of a decision and consistently predict the algorithm’s result.

The reader might notice that this definition is subjective: there is no mathematical measure for
interpretability, but it rather depends on the background of the model’s user. We will therefore
limit ourselves into classifying ML algorithms into “high”, “medium” and “low” interpretability,
assuming the user has a quantitative background on the field but can not be called an expert of the
field, just like the writer of this Thesis. We end up with the following classification:

• ML algorithms such as Logistic Regression, Linear Regression, Decision Trees are considered
to be highly interpretable.

• Algorithm such as K-Nearest Neighbours and Random Forest lie somewhere in the middle of
the spectrum.

• Methods involving (Stochastic) Gradient Boosting, Support Vector Machines (SVM) and
Neural Networks (NN) are usually hard to explain.

In the next Section we investigate whether there is a connection between interpretability and pre-
dictive power of an algorithm. We will see that a trade-off arises when balancing these two features.
That is, an increase in predictive power usually comes at a cost of worse interpretability; vice-versa,
highly interpretable models tend to be outperformed by less-explinabe counterparts.

2.6. Interpetability of models 35

2.6.1 The Power vs Interpretability trade-off
Intuition suggests that more complex models can be more accurate, but are less understandable
and controllable. This concept can be applied in any ML algorithms, from simple linear regressions
to Stochastic Gradient Boosting to Neural Networks.

The interpretability of a simple linear regression is straightforward when a limited amount of
variables is included, but can become challenging when variables add up to thousands many. Unsur-
prisingly, such mega-dimensional regressions are rare, they present overfitting issues and correlated
features jeopardise the explainability of the model. For this reason, we consider linear regressions
with a limited amount of variables. This technique is highly explainable, but works only in a limited
context where no interactions among the given variables occurs. We conclude that linear regression
is a highly-explainable technique but has limited predictive power.

Similarly, Decision Trees is a highly explainable technique: finding the splitting rules is sufficient
to understand the algorithm’s outcome. The predictive power of Decision Trees is limited, mainly
due to overfitting, but a development called Random Forest increases its predictive power at the
price of some interpretability. A Random Forest method operates by constructing a multitude of
Decision Trees during the training phase time and outputs the average prediction of the individual
trees. We conclude that Random Forests have a “medium” interpretability and an average predictive
power.

In the class of medium interpretability and average predictive power we place an unsupervised
learning technique such as the K-means-clustering algorithm. The construction of the algorithm is
straightforward, but the outputs can be counter intuitive in high dimensional cases. The predictive
power is hard to assess ad is highly dependent on the quality of the data, we therefroe place it in
the “average” side of the spectrum.

Finally, the most highly praised models such as Stochastic Gradient Boosting and Neural Net-
works are hard to explain. The human user cannot follow the rationale behind the choice of the
weak learners at every step in case of SGB, nor can follow how signal is propagated in NN and how
thousands of parameters are tuned in the meantime. We conclude that SGB and NN have a highly
predictive power but a low interpretability. Similarly, the top performing algorithms in the Kaggle
Data Science challenges result in a blend of several predictors, making them complex and lacking
of interpretability. The situation is summarised in Table 2.2:

The Table shows a clear trend: the more predictive power the algorithms have, the less explainable
they tend to be. This impression is not only a personal remark, but also mentioned throughout
papers interested in explainable ML and AI (Rodriguez, 2018).

For this reason, efforts are being made to make the more complex model more interpretable,
especially the ones appearing in the bottom right corner of the Table. There are many ways to do
so, we will group them in three categories:

• Feature selection: consists in explaining how features are selected for a specific input.
Feature selection can both be made on a global level, where the most significant features are
included in the model, or at the local level. In this case we talk about feature importance,

36 Chapter 2. Methodology

Table 2.2: Rise of the Power vs. Interpretability trade-off: the most performing
models tend to be the least explainable ones.

and consists of showing to the user which features are the most determining one for the final
prediction of a specific datapoint.

• Local Interpretability: aims at understanding the relationship between each feature and
the output on a section of the network. Local interpretability aims at building a smaller more
interpretable model around the analysed datapoint(s), an ensemble of such local models can
be used as a global interpretation.

• Global Interpetability: How well can we understand the relationship between each feature
and the output value across the network. This is usually obtained by perturbing the input
across the domain and observing the change of the output values.

Our choice falls in techniques focusing on global interpretability. This choice can be less effective
than an ensemble of locally interpretable models, but it is less sensitive to errors and outliers.
Given the high stakes and risks for a corporation like ABN Amro a more conservative approach is
needed, and globally explainable techniques shall be used a this stage. In particular, we will focus
our attention in two visualisation techniques, who ot only are “global” but also “agnostic”, that is,
model independent.

2.7 (Model agnostic) Visualisation Techniques
A model-agnostic interpretation consists in a set of techniques used to explain the outcome of a
black-box model independently from the underlying model. As the name suggests (agnostic = form
ancient Greek “no knowledge”) such techniques do not use any previous knowledge about the the
underlying learned model and can therefore be used under very general assumptions. As a result,
these techniques can potentially also explain all those “black box” models which lie on the bottom
right of the interpretability spectrum in Table 2.2. These model-agnostic interpretation methods
are opposed to model-specific ones, and they are getting popular due to the increase in use of models
of difficult interpretation such as Neural Networks.

2.7. (Model agnostic) Visualisation Techniques 37

In this Section, we will span through different visualisation techniques developed though the
years meant for explaining black-box models. The first technique of this kind can be attributed to
Friedman (2001) and is the Partial Dependency Plot.

2.7.1 Partial Dependency Plot
The first technique we show in this work is the so called Partial Dependence (PD) plot. This
technique generates plots who grasp the functional relationship between a variable annd the overall
output. Friedman’s Partial Dependency plot (PD plot) is well explained and developed by Goldstein
et al. (2015), we follow the explanation and the reasoning from his article from now on.

The technique plots the change of the average predicted value of the response of a model as some
of the features vary over their marginal distribution while the others are kept fixed. More formally
let X = Rd and let x = (x1, . . . , xd) be an element of the training7 dataset. We fix the value of the
inputs for a given set of indexes S ⊂ {1, ..., d}, and we calculate the value of the output given the
inputs within the complement set C. The average response is registered as fS . In formulas:

fS(xS) = E [f(xS ,xC)]
∫
f(xS ,xC)dP (xC |xS = xS), (2.46)

where dP (xC |xS = xS) indicates the marginal distribution of the xC coordinates given the observed
xS and fS indicates the restriction of f given fixed values xS . Usually though, such marginal
distribution given observations is not known, nor is the true model f available but its ML-retrieved
approximation f̂ . The success of the PD Plot relies on the following series of approximations:

fS(xS) =
∫
f(xS ,xC)dP (xC |xS = xS) ≈

∫
f(xS ,xC)dP (xC) ≈ (2.47)

≈
∫
f(xS ,xC)dP (xC) ≈

∫
f̂(xS ,xC)dP (xC) ≈ (2.48)

≈ 1
N

N∑
i=1

f̂(xS ,xCi) =: f̂S . (2.49)

Now, equation (2.47) assumes that the covariates are independently distributed, Equation (2.48)
approximates the true model with the ML learned one, and (2.49) calculates the numerical discreti-
sation of the integral. The xCi in the last line stand for the observed values of xC in the training
data. The equation on which the PD Plot techniques relies is therefore:

f̂S = 1
N

N∑
i=1

f̂(xS ,xCi
), (2.50)

7we follow the paper, but using the testing data also works.

38 Chapter 2. Methodology

And the PD Plot is created by varying the values of xS within given intervals. Usually the interval
lies between the minimum and maximum observed value of xS . The hope is that the estimator f̂S
is a good approximation of the true fS . However, this is not always the case and we will see how
this technique fails to perform well in at least two situations.

Firstly PD plots can fail to spot interactions among variables of a model. An interaction between
variables is defined to happen when the effect of these on the outcome is not additive. In real-world
scenarios the change in value of a variable can trigger different outcomes, but the averaging effect of
the PD plot can fail to detect such sub-trends, especially when they tend to cancel-out each other.
We show an easy example where an interaction between variables is present but such information
is not captured by the PD plot, irregardless of whether f̂S is a good approximation of fS or not.

Let us generate N = 10000 independent observations driven by the following process:

Y = X1 − 5X2 + 10X21{X3≥0} + E , Xi
iid∼ Unif(−1, 1) (2.51)

E iid∼ N (0, 1/4)

We can see how there is an interaction between the X2 and X3 variable, in particular X2 is in-
teracting with the sign of X3 through a product. If X3 is positive, increasing values of X2 have
a positive effect on the response Y, while negative values for X3 trigger a decreasing trend for Y
when increasing X2. If we run a Stochastic Gradient Boosting algorithm and build a PD Plot on
the response while varying x2 though, we get something like Figure 2.10 :

Figure 2.9: The SGB
model is performing well.

Figure 2.10: But the
Partial Dependency Plot
of x2 is misleadingly flat.

As we can see, the response is quite flat and suggests there is no contribution given by X2 to the
prediction of the outcome Y. This is clearly a wrong conclusion as we know that X2 has a significant
contribution to the response. What is happening here is that positive and negative contributions

2.7. (Model agnostic) Visualisation Techniques 39

from X2 tend to cancel out due to the averaging effect of PD plot. In the coming paragraphs we
prove that this failure is intrinsic to the nature of the PD plot’s rather than inaccuracies of the
Machine Learning model. We do this by proving that even for an ideal model perfectly replicating
the process in Equation 2.51, the resulting PD plot will be close to flat with a high probability.

Proof

The proof consists in showing that, given a model replicating the process in Equation (2.51), the
PD Plot of the responses Y over X2 will be flat. We do this by proving that the average of the Y -s
is clsoe to zero for independently from the value of X2. TO do this, we first of rewrite Y as the
following:

Y = X1 + 5X2W + E (2.52)

where W is a Rademacher-distributed random variable: its outcomes are in {±1} and happen with
probability 1/2 each. Our aim is to study the distribution of the average of a sample Yj ∼ Y, j ∈
{1, ..., N}. In particular, for a given ε we want find an upper bound for:

P

[∣∣∣∣∣
∑N
j=1 Yj

N

∣∣∣∣∣ > ε

]
(2.53)

That is, the probability that the average over N sample of Y will vary from zero by more than ε.
Our aim is to show that this probability is arbitrarily small as N increases, given any fixed ε. First
of all we rewrite the content of the absolute value as the following:

1
N

N∑
j=1

Yj = 1
N

N∑
j=1

X1,j︸ ︷︷ ︸
=A

+ 1
N

N∑
j=1

5X2,jWj︸ ︷︷ ︸
=B

+ 1
N

N∑
j=1
Ej︸ ︷︷ ︸

=C

(2.54)

We now bound the probability from above:

P

[∣∣∣∣∣
∑N
j=1 Yj

N

∣∣∣∣∣ > ε

]
= P[|A+B + C| > ε] ≤ (2.55)

≤ P[|A| > ε/3] + P[|B| > ε/3] + P[|C| > ε/3]

Where we used the triangular inequality in the second line. We now evaluate and upper bound
these three contributions. For the first two ones we note that E[A] = E[B] = 0 and P[−1 ≤ A ≤
1] = P[−5 ≤ B ≤ 5] = 1. We can therefore use Hoeffding’s Lemma as stated in the Appendix to

40 Chapter 2. Methodology

get the following bounds:

P[|A| > ε/3] ≤ 2 exp
(
−N ε2/18

)
(2.56)

P[|B| > ε/3] ≤ 2 exp
(
−N ε2/450

)
(2.57)

The third contribution from C is a mere average over normal random variables with variance
equal to 1/4, therefore C ∼ N (0, 1

4n). We cannot use the boundedness argument here anymore,
but we can easily bound the probability of C being bigger than ε using a result from Theorem A.1.3
in the Appendix. We get:

P[|C| > ε] =2P[C > ε] = 2P[N (0, 1
4N) > ε] = 2P[N (0, 1) > 2 ε

√
N] =

= 2 Φc(2 ε
√
N) < 2√

2π
1

2 ε
√
N
e−2 ε2N = e−2 ε2N

ε
√

2πN
(2.58)

Summing up contributions from (2.56), (2.57), and (2.58) we get the following overall bound:

P

[∣∣∣∣∣
∑N
j=1 Yj

N

∣∣∣∣∣ > ε

]
< 2 exp

(
−N ε2/18

)
+ 2 exp

(
−N ε2/450

)
+ 1
ε
√

2πN
exp

(
−2N ε2) (2.59)

We set N = 10000 and we see how quickly does this probability converge to zero as ε increases.
We do this by explicitly plotting such upper bound in Figure 2.11. Where the thin back horizontal
line represents a probability of 0.05, the crossing with such line happens when ε ≈ 0.41. That is,
at least 95% of the values of the PD plot are expected to lie within the interval [−0.41, 0.41]. If we
want to bound the probability that all N values of the PD plot lie within a certain ε, we can make
use of the fact that points are independent in the PD plot framework. Let p be the probability
of one single point falling outside the interval. The probability that all N points fall within the
interval is, using independence:

(1− p)N . (2.60)

Our goal is to find p such that (1 − p)N > 0.95. We do this by remembering that the converging
series:

Bn =
(

1 + α

n

)n
→ eα. (2.61)

This series converges very fast and the value for N we are using is big enough to hold as a good
approximation. This helps us observing that if we set p to 1/(20N) in Equation (2.60) we obtain:(

1− 1
20N

)N
≈ e− 1

20 > 0.95, (2.62)

that is, if we bound the probability of a single pint to fall out of a given interval by 1/(20 ·N), then
with probability (1 − 1/20N) it falls withini, and with probability > 0.95% all N the points will

2.7. (Model agnostic) Visualisation Techniques 41

Figure 2.11: Upper bound of the probability of a point in the PD Plot curve to
fall outside [−ε,+ε], expressed as a function of ε.

fall within the interval. In our case N = 10000 and the relative ε has to intercept the probability
plot at the value 1/(20 · 10000), and this happens with ε ≈ 0.76. We conclude that in at least 95%
of the cases, all the points of the PD plot will stay within the interval [−0.76, 0.76].

This agrees with the PD Plot shown in Figure 2.10 and proves that the PD plot cannot fluctuate
too much and will therefore not capture any interaction between Y and X2. It is important to
underline that this happens because of the averaging tendency that PD plots have in this situation,
rather than a possibly faulty SGB algorithmic output Ŷ .

Another issue of the PD Plot lies on the fact that this technique assumes independence among xS
and xC variables. This assumption is made in Equation (2.50) when the marginal distribution does
not depend on the on the fixed values xS , but is retrieved from sampling instead. As a consequence,
if there is strong correlation between such subsets of variables, Equation (2.50) might fail to converge
to (2.46) for however big N and the partial dependence plot fail to perform as expected. We
conclude that the Partial Dependence Plots fail in case of strongly dependent variables or in case
of heterogeneity in the feature effect. The second issue can be overcomed by ALE (Accumulated
Local Effects) Plots, while the first one by ICE (Individual Conditional Expectation) plots. Let’s
see these techniques in detail.

42 Chapter 2. Methodology

2.7.2 Accumulated Local Effects (ALE)
In the previous Subsection we mentioned that PD Plot can perform poorly in case of strong de-
pendence between xC and xS variables. As we suggested before, the issue lies on the fact that in
case of strongly dependent variables, the conditional distribution dP (xC |xS = xS) would depend
on the values xS . Therefore the approximation made in Equation (2.47):

dP (xC |xS = xS) ≈ dP (xC) (2.63)

is bad. This step is avoided when building ALE plots. This technique is described in Molnar (2019)
and we quote the Author’s words about this issue:

If features of a machine learning model are correlated, the partial dependence plot
cannot be trusted. The computation of a partial dependence plot for a feature that is
strongly correlated with other features involves averaging predictions of artificial data
instances that are unlikely in reality, and this can greatly bias the estimated feature
effect.

We can see in a practical example the point in Molnar (2019)’s remark. To do so we generate two
correlated variables x1 and x2. We use the np.random.multivariate normal from the numpy library
to generate N = 6000 samples according to:[

X1
X2

]
∼ N

([
2
0

]
,

[
16 3.2
3.2 1

])
(2.64)

Where σ2
1 = 16, σ2

2 = 1, and the correlation coefficient is set to ρ = 0.8. If we compare the marginal
distribution of P(x1) with the conditional distribution P(x1|x2 > 1), we see a lot of differences:

Figure 2.12: On the left the marginal distribution of dP (x1) is shown on the
x-axis. On the right side, only the datapoints such that x2 > 1 are plotted,

highlighting the conditional distribution dP (x1|x2 > 1), in green.

2.7. (Model agnostic) Visualisation Techniques 43

Note the marginal distribution of X1 is a GaussianN (2, 42) by construction, and the sampled data
is enough to converge to the true distribution. When conditioning on x2 > 1 though, the conditional
distribution of x1 has a significantly8 higher expected mean than the marginal distribution. As we
can see, the ecpted value of the conditional distribution is close to 7 and the variance has decreased.

Nevertheless, the PD plot technique will average over the original distribution and as a conse-
quence, in our example, the higher values for x2 will also be paired with the smallest values for
x1 (for example, the x1 < 0) relatively often even if few of such combinations exists in the real
data. The discrepancy in our example is quite large as one can see in Figure 2.13. In case the

Figure 2.13: In green, the sampling distribution which should be used when
x2 > 1 in the PD Plot, in orange the area actually sampled.

reader does not want to rely solely on the (extremely) low value of the p-value and take the risk to
commit a type I error with a strictly positive probability, we show a mathematical proof that the
two distributions are indeed different.

Proof

We can calculate the expected value of X1 given X2 > 1 in our previous example.
We note that for the bi-variate case the X1|X2 = x2 is known and is given by the formula:

X1 | X2 = x2 ∼ N
(
µ1 + σ1

σ2
ρ(x2 − µ2),

√
(1− ρ2)σ1

)
. (2.65)

8The 2-samples-Kolmogorov-Smirnov statistics is around 0.30, and the related p-value is < 10−200.

44 Chapter 2. Methodology

Which in our case leads to:

X1 | X2 = x2 ∼ N (2 + 3.2x2, 1.44) . (2.66)

Now, the distribution of X1 | X2 > 1 can be seen as combination of distributions of the kind
X1 | X2 = x2 for x2 ∈ [1,+∞), where the value for x2, each of these being weighted proportionally
to the likelihood of X2 = x2 in the truncated normal distribution. We say that

dP (X2 = x2) =
1√
2π exp (−x2/2) dx∫∞

1
1√
2π exp (−x2/2) dx

=
1√
2π exp (−x2/2) dx

1− Φ(1)

And the expected value for our distribution can be calculated through:

E[X1 | X2 > 1] = E[(X1 | X2 = x2) dP (X2 = x2)] = (2.67)

= E [N (2 + 3.2x2, 1.44)] dP (X2 = x2) = E
[∫ ∞

1
N (2 + 3.2x2, 1.44) dP (X2 = x2)

]
= (2.68)

=
∫ ∞

1
E [N (2 + 3.2x2, 1.44) dP (X2 = x2)] =

∫∞
1 (2 + 3.2x2) exp(−x2/2)/

√
2π dx∫∞

1 exp(−x2/2)/
√

2π
= (2.69)

=
√

2π erf(x/
√

2)− 3.2 exp(−x2/2) |∞1
1− Φ(1) =

[
2πerfc

(
1√
2

)
+ 3.2 e−1/2

]
1√
2π

1− Φ(1) ≈ 6.8785 (2.70)

And the value ≈ 6.8785 is consistent with Figure 2.13 and it is sensibly different from the original
expected value of E[X1] = 2 and this concludes the proof.

For a more quantitative approach on the difference between the two distributions, we need a
couple of new ingredients:

• First, we need an estimate of the standard deviation of the distribution N2. Running the
.std() buil-it Python function, we obtain a value of 2.8± 0.06

• Second, we need a measure for how much do these distributions differ. We will use the
Kullback-Leibler divergence measure. Numerical methods are available for any pair of distri-
butions, but since the analytical solution for the KL divergence between two normal distribu-
tion is available, we wil assume that N2 ∼ N (6.88, 2.82)

The advantage of the approximated approach is that we can easily compare two normal distribu-
tions and we can exploit the relation in (2.65) to evaluate the KL divergence as a function of the
correlation coeffiient ρ. Given two normal distributions N (µ1,Σ1) and N (µ2,Σ2) the divergence
is given by the formula in Duchi (2017):

DKL(N1‖N2) = 1
2

{
tr
(
Σ−1

2 Σ1
)

+ (µ2 − µ1)T Σ−1
2 (µ2 − µ1)− 1 + ln

(
det Σ1

det Σ2

)}
. (2.71)

2.7. (Model agnostic) Visualisation Techniques 45

In our case N1 is the X1 covariate, and we pick the conditional expectation X1 | X2 = x2 for N2.
Plugging in the expected distribution of the latter using Equation (2.65), and keeping ρ as a free
parameter we get:

1
2

[
4ρ2 + 1√

1− ρ2
− 1 + 1

2 ln(1− ρ2)
]

(2.72)

In our specific case we chose to set x2 = 1. This case is interesting because such conditional sampling
is made on observation whose values for x2 are one standard deviation higher than average. This
represents events significantly above average, but still not rare (approximately 16% of the events).
For such x2 it is interesting to see ow the Kullback-Leibler divergence varies as the correlation with
x1 increases:

correlation value K-L measure
ρ = 0.05 KL = 0.005
ρ = 0.2 KL = 0.082
ρ = 0.35 KL = 0.263
ρ = 0.5 KL = 0.583
ρ = 0.65 KL = 1.133
ρ = 0.8 KL = 2.211
ρ = 0.9 KL = 3.945

Table 2.3: KL divergence for different correlation coefficients of normally dis-
tributed random variables.

The results are not surprising: for low correlation values between X1 and X2, the original and
the conditioned distribution do not to differ substantially and their KL divergence is low. As their
correlation increases, the conditional distribution X1 | X2 = 1 differs more and more from the
original X1 and the KL divergence increases. Given the results from this two-dimensional and
Guassian setting, we concluide that:

• Weakly correlated variables lead to a KL-divergence below 0.1.

• Average correlations lead to a KL between 0.1 and 1

• Strongly correlated variables lead to a KL above 1.

We can therefore use KL divergence as a proxy for identifying “bad sampling” in our PD Plots
procedure. The advantage of this method is that it does not need to be visually plotted, and the
calculation is computationally fast thanks to the stats.entropy function in the scipy Python library.
Thresholds for classifying “good” vs. “average” vs. “bad” sampling in Table 2.3 are set for an
explanatory purpose. We conclude that checking the KL divergence between the conditional and
the unconditional distribution highlights potential failures of a PD plot. The advantage of the KL
divergence lies on the fact that it does not rely on any assumption over the distributions. In order
to overcome this, Molnar (2019) suggests using the Accumuated Local Effects (ALE) technique.

46 Chapter 2. Methodology

The ALE plots are an interesting alternative to PD Plots, the main advantage of this technique
being the fact that they inference is based on a more realistic conditional distribution of the variable.
On the other side, ALE plots does not focus on extrapolating predictions in case of extreme sampled
events. This aspect is not desired in ABN Amro’s scope, as there is need to predict extreme events
as well. We therefore do not out further effort on implementing ALE plots for the FLAG model
and focus on the PD Plots instead.

We conclude that when the correlation (or equivalently the KL divergence) between two variables
is high, the PD Plot mis-samples the distribution and can give misleading outputs. To tackle
this issue we suggest dropping on the highly correlated variables. Identifying which variables are
“dependent” and correlated and which ones are the independent, is the task of the data scientist
or the on-field expert.

2.7.3 Individual Conditional Expectation
The ICE plot extends the idea of the PD plots by disaggregating the average and showing the
estimated functional relationship for each observation of the dataset. The concept is very simple
(indeed, it is sufficient not to take the average while building a PD plot) but it has many advantages.

The most relevant progress of ICE plot is visible when plotting the relationship between Y and
X2 of the usual model in Equation (2.51). From the ICE plot it is indeed clear that the fitted values
for Y are related to X2, even thought the PD Plot (plotted for comparison in yellow) is flat. The
results are shown in Figure 2.14.

2.7. (Model agnostic) Visualisation Techniques 47

Figure 2.14: Response of the SGB while varying X2 over the domain. The PD
Plot, average of the ICE trajectories, is shown in yellow. Two sub-trends, one

increasing and one decreasing, are visible.

The Figure shows that the ICE-built trajectories over X2 can be split in two response groups:
one group increases the Y−response by roughly 5 units for every unit increase of X2 and the other
decreases at the same pace. This suggests that the response from X2 is influenced by some external
factor, usually due to a variable interaction. As a comparison the PD plot is flat because of the
averaging effect described in page 39.

Let us now generate the ICE plots related to the other variables, the results are shown in Fig-
ure 2.15.

48 Chapter 2. Methodology

Figure 2.15: To the left, ICE plot along X1, all trajectories are approximately
parallel. To the right the ICE plot along X3 shows increasing and decreasing steps

around zero, suggesting an interaction.

From these plots, we can appreciate how:

• The trajectories of ICE plots over X1 all have an increasing trend. In particular to a unit
increase of X1 corresponds a roughly unit increase of the response Y . This is consistent with
the true underlying relationship. Moreover, the trajectories are roughly parallel, suggesting
no interaction with other variables are occurring. In such cases the PD Plot is able to spot
the same trend.

• Also in this case the PD Plot is flat, suggesting no role for X3 in the computation of the
response Y . This is misleading, and we can see though the ICE plots a sudden jump at
X3 = 0. However, the trajectories overlap a lot around X3 = 0 and it is not clear whether the
jumps are going towards the same direction or not. We will overcome this readability issue
in the next Section.

The latter comparison suggests that when the ICE trajectories are roughly parallel, no interactions
are occurring with the plotted variable. On the other side, Figure 2.14 and the rightmost plot of
Figure 2.15 show that when interaction incur, the ICE trajectories tend to differ from each other.
In order to investigate whther this intuition is correct, Goldstein et al. (2015) suggests plotting the
so called centred Indiviual Conditional Expectation (c-ICE).

Centred-ICE

In general, when trajectories of the ICE plots intersect and have different shapes, an interaction is
being spotted by the algorithm. Goldstein et al. (2015) notices that the heterogeneity of the curves
is sometimes difficult to discern, especially when the trajectories are very much stacked into each
other and have a wide range of intercepts (see the rightmost plot in Figure 2.15). For this reason,

2.7. (Model agnostic) Visualisation Techniques 49

it is often a good idea to centre all these trajectories starting from a common intercept (usually
zero) from some value x∗ for their xS , then plot the ICE and see how much do trajectories differ
from each other.

Mathematically speaking, with C represents the set of variables of which we keep the original
value fixed, and S representing the set of spanning variables, given a curve f̂ (i) in the ICE plot, we
define the corresponding c-ICE curve as the following:

f̂
(i)
cent(x∗S) = f̂ (i) − 1T · f̂(x∗, xCi) (2.73)

Where the 1 vector has the dimension q of the output Y (normally equal to 1) and x∗ is usually
the minimum observed value for the variable xS . For simplicity we assume |S| = 1. With this of of
x∗ all c-ICE curves start from the same intercept and the response at the maximum xS value x̄S
for each of the curves reflects the cumulative effect of xS on f̂ relative to the base case. The result
is a plot that better isolates the combined effect of xS on f̂S . With such centred curves, it is easy
to assess whether the shape of the curve is similar or interaction between variables are present and
relevant. In the first case indeed, the response curves will overlap and have more or less the same
cumulative effect when setting xS to its maximum value. On the other hand when xS interacts
with other variables, a wider range of cumulative responses will appear, and the differences in shape
will be spotted easily. The most relevant c-ICE plot is shown in Figure 2.16, where the relationship
between Y and X3 (that is S = {3}) is highlighted.

Figure 2.16: Caption

Unlike the ICE plots, it is clear from Figure 2.16 that the X3 variable is interacting with another
one. After centring the ICE trajectories we realise that roughly half of the jumps are positive and

50 Chapter 2. Methodology

the other half is negative (consistently with the flat PD plot). Comparing this Figure with the
plot in Figure 2.15, we conclude that yhose instances where X3 contributes negatively for X3 < 0
start to contribute positively for X3 > 0. Symmetrically, positive contributions for negative values
of X3 become (equally) negative contributions when X3 changes sign. This suggests that X3 is
interacting with another variable (and we know it can only be X2), and the interaction happens in
a neighbourhood of X3 changing sign. This is confirmed since the underlying model contains the
10X21{X3≥0} term. Hadn’t we centred the initial values, the interpretation of Figure 2.16 would
ahve been more difficult. The other variabels are shown here in Figure 2.17.

Figure 2.17: Centred ICE plot for X1 Figure 2.18: Centred ICE plot for X2

As we expected, for X1 the centred ICE plot reveals overlapping trajectories, and no interaction
arises from the plot. For X2 two sub-trends can be spotted, the cumulative effect of one of them
is positive and adds up to 10 units to the prediction; the cumulative effect of the other group is
negative and for X3 = 1 the prediction is on average 10 units lower than for X3 = −1. It is rather
easy to assess to total variation of the cumulative effect of a variable on the prediction, and the
bigger the variation is, the higher the effect of the interactions. We suggest a measure relate to
such variability to assess the magnitude of these interactions. There is room for imagination, we
propose three straightforward measures and we discuss which one is best:

• The first statistics S1 is defined as S1 = Var[f̂ (i)
cent(x̄S)− f̂ (i)

cent(x∗)], that is the variance over
the dataset of the cumulative effects.

• The second candidate is S2, defined as S1 = range[f̂ (i)
cent(x̄S)− f̂ (i)

cent(x∗)], that is the difference
of the maximum and minimum cumulative effect on the dataset.

• The last candidate is S3, defined as the difference over the top and bottom 5th percentile of
the cumulative effects of xS .

Now S2 is sensible to outliers, and S1 somewhat also is. We will use S3 in our future work.

2.7. (Model agnostic) Visualisation Techniques 51

2.7.4 Derivative-ICE
Goldstein et al. (2015) realise that “it can be difficult to visually assess derivatives from ICE plots”,
and points out how it can be useful to plot an estimate of the partial derivative directly. We call
this a “derivative ICE” plot, in short d-ICE. Assessing derivatives of ICE curves is a helpful tool to
assess the existence of interactions. In fact, when no interactions are present in the fitted model,
all curves in the d-ICE plot should be equivalent and the plot roughly shows a single line. When
interactions do exist, the ICE trajectories will show different shapes and the derivative lines will be
therefore heterogeneous. The reasoning behind this is justified by the following: let us consider a
scenario in which xS does not interact with the other predictors. This implies that f̂ can be written
as:

f̂(x) = f̂(xS ,xC) = g(xS) + h(xC), (2.74)

So that:
∂f̂(x)
∂xS

= g′(xS). (2.75)

This means that in case of no interaction the d-ICE plot does not depend on the sampled values xC ,
and the curves are supposed to overlap. On the other hand, when interactions happen the curves
will be heterogeneous and the bigger the interaction the more trajectories will differ from each other.
This suggests that the standard deviation of the values of the d-ICE curves is a good indicator for
interaction strength. Goldstein et al. (2015) include the value of the standard deviation of the
d-ICE along the same x-axis. We think this is a sensible idea and can be a helpful tool to enhance
interpretability of the plots. We therefore follow the same idea and replicate the results in the next
Figure. We show the d-ICE curves obtained by the Stochastic Gradient Boosting algorithm when
run over the dataset generated through (2.51).

Figure 2.19: d-ICE plot for
X1

Figure 2.20: centred ICE plot
for X2

Figure 2.21: centred ICE plot
for X3

The plots are built by taking the numerical derivative of the ICE curves, the standard deviation
of the values is taken at every discretisation point xS , and the plot is added below. The resulting
plots show that X1 has the lowest standard deviation within the d-ICE trajectories, while the d-ICE

52 Chapter 2. Methodology

standard deviation for X3 peaks at X3 = 0, consistent with the underlying interaction. Finally, X2
has on average the highest deviation, consistent with the fact that it strongly interacts with X3 all
over its domain. In this toy model we also have a higher deviation for regions at the edge of the
domain border because of scarcity of data and subsequent extrapolation. We therefore suggest to
take into consideration the following statistics for every variable to spot interactions:

• The maximum value of the standard deviation of the d-ICE plot. Some smoothing should
be applied to make this statistic discretisation-grid independent, at least partially. In our
example X3 the ideal d-ICE plot for the true underlying model would look like a two-sided-
Dirac delta function with infinite standard deviation.

• The average value of the standard deviation plot. It is better to first normalise the domain
and then take the numerical integral of the function. Higher averages mean the variable is
interacting a lot, and the explanation of its behaviour can be more complex. Also, the edge of
the domain should not be included in this calculation as the lack of data leads to extrapolation
and higher variance.

• The previous point suggests that local maxima and their neighbourhoods can be either points
of interaction with other variables, regions where little data is available and bad extrapolation
is being made by the model. Depending on the underlying process, a peak of the standard
deviation can also be a proxy for a non-linear change of the response. . In any case, it is good
to spot these local maxima.

Remark. If the model response was perfect, I would expect the ICE plots of X1 to scale with the
coefficient in front of X1. This implies that the σ is proportional to the linear coefficient, suggesting
to normalise such statistic by dividing by the average value of the derivatives plot, readily derivable
from the PD Plots. In practice this does not happen because of the noise, so we have to abandon
this hypotesis.

2.7.5 d-ICE Flatness Detector
In this Section we propose an improvement of the d-ICE plotting technique, which we think improves
readability in certain situations.

The toy model in Equation (2.51) is extremely simple, and its inputs come from the same common
distribution Unif(−1, 1). This is not the case of the models we will encounter in Chapter 3. Variabels
including tax-rates or house age in Section 3.1, or cash flows in Section 3.2 can span over many
orders of magnitude and some regions can have little data in them. These sparse regions also become
more common as the number of input dimension increases because of the curse of dimensionality.
As a result (we anticipate it here) the response of the SGB can be flat for large subsets of the
domain. We believe that identifying these regions is another step toward better interpretability for
various reasons:

2.7. (Model agnostic) Visualisation Techniques 53

• First, a tool which outputs the flat regions along a variable can easily be interpreted by an
expert on the business side. No analytical background is needed to understand the concept
of “flat response of the model” in a given subset, and evaluations about whether the model is
performing sensibly can be made. This enhances transparency and evaluations about the ro-
bustess of the implemented method, two key requirements given by the European Commission
(2019).

• Second, if the model is not supposed to output such a flat response, it must be because of the
lack of data in the region under scrutiny. This encourages awareness on the true performance
of the algorithm, enhancing transparency one more time.

• Finally, shall the extremes of the axes have a flat response, they can be ignored during the
plotting procedure. Eliminating non-meaningful tails leads to higher resolution plotting in
the rest of the domain. For this reason, we developed a tool who aims at identifying flat
regions on the tails.

We give the following definition of “flat-tail regions” in a d-ICE plot:

Definition (Flat-Tail Region). Consider the d-ICE plot over a set S = {i}, Let xS be such variable
and let [a, b] ∈ R be the range of such variable in the dataset. Let M be the top 1st percentile of
the absolute value of all d-ICE in the discretisation points. A flat-tail region is a subset [a, ā]∪ [b̄, b]
such that at least 99% of the d-ICE values are pointwise < 0.05M . That is, at least 99% of the
calculated derivatives are less a 1/20 of the top-1% derivative.

The definition might seem arbitrary. It is, but given threshold have shown to behave correctly in
the scenarios in Chapter 3. The value M is selected in such a way to exclude extreme outliers but
at the same time not to hide remarkable changes in the derivatives. The pointwise threshold is set
to be 0.05 of M, in an attempt to mimic a human agent who is likely to ignore spikes lower than
5 mm in a plot of height 10 cm.

55

Chapter 3

Applications

In this chapter, we will apply the presented techniques form the previous chapter real world datasets:
the Boston Housing Dataset, and the FLAG model from ABN Amro. It is important to test our
findings in different scenarios, and the two we are using are complementary: the first one consists
in a clean but small dataset and the SGB algorithm in use is part of an individual effort and quite
straightforward; the second model consists in a real world application, built by a big corporation,
and different challenges arise: the amount of data is larger but its quality is lower.

3.1 The Boston Housing Dataset
The first dataset we consider is the Boston Housing Dataset (BDH), an open source dataset available
in Python’s scikit-learn library. It contains information about different houses in Boston and their
price. The dataset consist of 506 samples with 14 features each, and it derived from information
collected by the U.S. Census Service concerning housing in the area of Boston. Massachusetts (The
Boston Housing Dataset (2018)).

Our objective is to predict the house price using thirteen given features to predict the medv
variable, that is the median value of the house. We train a SGB model to do this, and we comment
the results using the explanatory techniques introduced in Section 2.7. Before moving any further,
we dataset looks like, and what do its variables mean. The fact that the explanatory techniques
are “agnostic” does not mean we can ignore how the original dataset looks like, even if no previous
knowledge is assumed on the machine learning model in use.

The collected variables include socio-economical, geographical, environmental and financial fac-
tors which are expected to contribute to determine the house values. The variables are mostly con-
tinuous, the only exception being the boolean chas variable, and they have quite different ranges.
Some of them have a exponential behaviour, some tend to distribute normally, others present a
ceiling effect. The distribution of the house values is shown in Figure 3.1.

56 Chapter 3. Applications

name description avg. value std. dev.
CRIM per capita crime rate by town 3.61 8.59
ZN prop. of residential land zoned for lots over 2.5 104 sq. ft. 11.36 23.30
INDUS proportion of non-retail business acres per town. 11.14 6.85
CHAS Charles River dummy variable 0.07 0.25
NOX nitric oxides concentration (pp10m) 0.25 0.55
RM avg number of rooms per dwelling 6.28 0.70
AGE proportion of owner-occupied units built prior to 1940 68.57 28.12
DIS weighted distances to five Boston employment centres 3.80 2.10
RAD index of accessibility to radial highways 9.55 8.70
TAX full-value property-tax rate per $10,000 408.23 168.37
PTRATIO pupil-teacher ratio by town 18.46 2.16
BLACK 1000(Bk− 0.63)2 where Bk is the proportion of blacks 356.67 91.20
LSTAT % lower status of the population 12.65 7.13
MEDV Median value of owner-occupied homes in $1000’s 22.53 9.19

Table 3.1: Short name with description of the variables in the Boston Housing
Dataset. Average values and standard deviations of the observations are given next

to the description.

Figure 3.1: House value in thousand dollars. Most of the values lie between
15,000 and 30,0000 dollars. There is some ceiling effect at 50,000, we assume

values have been capped for safety reasons.

3.1. The Boston Housing Dataset 57

F
ig

ur
e

3.
2:

H
is

to
gr

am
s

of
th

e
in

du
s,

rm
,a

ge
an

d
bl

ac
k

va
ria

bl
es

.
W

e
ca

n
ap

pr
ec

ia
te

ho
w

rm
is

al
m

os
t

no
rm

al
ly

di
st

rib
ut

ed
ar

ou
nd

th
e

va
lu

e
6.

ag
e

sh
ow

s
a

ce
ili

ng
eff

ec
t

at
10

0,
an

d
bl

ac
k

ha
s

a
tr

un
ca

te
d

re
ve

rs
e

ex
po

ne
nt

ia
ld

is
tr

ib
ut

io
n.

58 Chapter 3. Applications

Despite the relatively small size, the SGB algorithm performs well and the data quality is good.
In fact, there is no need for outlier cleaning or normalising as the average performance level already
reaches 0.8. In the Figure 3.3 we compare the performance before and after normalisation for
different test and train sizes, and we do not spot relevant differences.

Figure 3.3: SGB performed prior (left) and after normalisation (right). The
optimal average performance is around 0.80 in both cases and we do not see a
significative difference between the two plots. Also, there is a moderate degree of

overfitting which is not being mitigated by the normalisation process.

The lack of significant differences suggests that the SGB algorithm is robust under variables with
different distributions, provided that such difference is not too big. In our case, a factor of approx.
1000 is the difference between the variable with the range in the smaller scale nox and the variable
in the largest, black. In case of greater magnitude differences, we observed that a warning is shown
by the sklearn package.

We notice that the performance levels are good, however the training and test performance do
not converge perfectly around a common asymptote and show instead a discrepancy of about one σ.
This shows that there is a moderate degree of overfitting. Despite tuning the parameters multiple
times using a grid search the discrepancy is still there. This suggests that collecting more data
would solve the problem but since we can not do this, we rather reduce the dimension of the feature
space to speed up the learning process. The process of reducing the number of features is called
feature selection and can be performed in different ways. We compare the results from the Least
Absolute Shrinkage and Selection Operator (LASSO) and from the feature importance estimator
given by a Random Forest Regressor. Both tasks are easy to implement in Python through the
sklearn library and are computationally cheap given the small (13) number of features.

Remark. LASSO was introduced in order to select only a subset of covariates in regression models.
Since the set of regressors is fixed in these models, using LASSO in a ML setting can fail to spot
some interactions with the variables.

3.1. The Boston Housing Dataset 59

Remark. The drawback of RF regressor lies in its construction: this regressor splits according to
variance of the response within the range of a variable, and this leads to overestimate the importance
of variables with a wider range. The issue is mitigated by normalised data. Another drawback is
that RF feature importance can’t distinguish correlated data: it splits their importance among
them, and is not able to distinguish the causal relationship between the covariates and ignore the
redundant ones.

Figure 3.4: To the left SGB is performed after two variables have been dropped
using RF’s feature importance method on normalised data. To the right, SGB

performance after three features are dropped using LASSO

With LASSO we eliminated indus chas nox, while with the RF method the chas, zn and rad
variables had the smaller impact. However, we observe no significant increase of performance after
feature selection procedures; on the other hand, we do not need to dig deeper into this issue since
the problem does not affect the ABN Amro model on which we base our research.

3.1.1 Resulting PD and ICE plots
In this Subsection we show some PD plots and the ICE in action in a real world example. We
introduce the so called all-inclusive plots where both the PD plot and the ICE plots are merged in
one; in addition the projection of the datapoints on their xS coordinates is included. This leads to
better interpretability: the reader with sufficient background can see the underlying distribution,
and the extrapolating power of the algorithm in regions with little data can be assessed. For readers
and end-users who lack the technical knowledge, a simple PD and ICE plot should be preferred.
Figures 3.5-3.8 collect for of the most interesting plots out of the Boston Housing Dataset.

60 Chapter 3. Applications

Figure 3.5: ICE and PD plot along the
nox variable, an indicator of air pollution.

Figure 3.6: ICE and PD plot along the
dis variable, indicating the distance from

the major employment centres.

Figure 3.7: ICE and PD plot along
the black variable, where smaller values

stand for larger black community.

Figure 3.8: ICE and PD plot along the
lstat variable. The higher the value, the

poorer the district.

These plots show some interesting insights. Starting from the top left, we plot the expected
median value of a house versus the concentration nitric oxides in the air. Nitric oxides are a relevant
indicator of air pollution and we would expect a negative correlation between this variable and the
output. However, there seems to little effect of this variable according to the SGB algorithm, even
if a small dip can be spotted for values around 0.7 pp10m (0.7 parts per 10 million). The fact that
feature selection with LASSO would drop the nox is consistent with such a flat Partial Dependency
Plot. This result can be at first surprising, but an explanation to this is that such substances are

3.1. The Boston Housing Dataset 61

considered harmful only when the concentration values are above 10 pp10m1, and the values in our
dataset are all considered “non-harmful”.

The dis variable does not show much: the response decreases slighlty as dis increases from 0 to 2
and stays flat for larger values. While this makes sense, it is surprising to see that the variable is
at the same time positively correlated with the response. We calculated a value of ρ = 0.31, which
shows how correlation coefficients alone are not a trustworthy measure to assess the relationship
between variables.

Racial bias in Machine Learning

The black variable on the other side, is quite interesting form the ethical point of view. This is an
example where the machine is learning the human racial bias and it is including it in its learning
process. We can observe how the predicted house price value drops when black is lower than ≈ 125,
that is when the proportion of black population is greater than 28%. Given that according to
the US Census Bureau (2018), the average proportion of black population in Boston is 25.3 % ,
the algorithm has clearly learned to penalise neighbourhoods where the incidence is greater than
average. This prediction is aligned with the existing human bias during the pricing procedure.

It is important to be aware of such biases whenever we include information related to race,
gender, belief, or any possibly discriminatory attribute. The principle of non-discimination from
the European Commission (2019) is clearly infringed, and any “identifiable and discriminatory bias
should be removed in the collection phase where possible” (European Commission, 2019).

Finally, interesting PD and ICE plot appear when considering the lstat variable, visible in the
bottom right. As we could expect, a rise of the lower status population in the neighbourhood
contributes substantially to the decrease of value of the household. A quick analysis shows two
interesting details:
• House value decreases as lstat increases, but when lstat> 20, no further decrease in the house

value is observed (flooring effect). The flatness detector introduced in Section 2.7.5 can be
used here.

• The decrease seems to follow more of a relative pattern than an additive one. That is, the
house price decrease seems to be proportional to the house price, with most of the houses
losing around 30% of their value when lstat increases from 0 to 20. We verify this finding in
the next paragraph, where we introduce a new tool.

The previous bullet point raises the question whether the decreasing trend in Figure 3.8 can
be modelled in absolute terms (that is, the value of the houses decreases by a certain amount of
dollars), or in relative ones (that is, the house value decreases by an amount proportional to its
original value). Both trends are expected to have some noise caused by the interaction of other
variables, we plot the distribution and compare which one has the less dispersion. The results are
shown in Figure 3.9.

1according to the Italian Ministry of Environment: https://www.minambiente.it/pagina/gli-inquinanti

62 Chapter 3. Applications

Figure 3.9: To the left, distribution of the cumulative effect of the lstat variabele
in absolute terms. To the right, the distribution is shown in relative terms. The
latter has a somewhat smaller dispersion but no further inference can be made.

In this case, we can not draw any definitive conclusion. In general, after generating the histograms
for all 13 variables of the dataset, no significatn difference can be spotted. We think this is the case
because:

cumul. absolute change = cumul. relative change · f̂S(x∗). (3.1)

And in this example all f̂S(x∗) have the same order of magnitude, making it hard to distinguish
the two. This will not be the case in Section 3.2, so we are confident the technique will have better
discriminatory power. The door is now open for further investigation. We wonder if SGB generated
models admit variables whose change sets off a multiplicative change in the output despite being a
linear combination of weak learners. We introduce the concept of dispersion, and we explain how
this can answer to our question.

3.1.2 Dispersion
In statistics, the dispersion of a distribution is the extent to which it is stretched or squeezed,
there are many measures of of dispersion, the most common ones being the variance and standard
deviation. In this work we use another measure of dispersion, the coefficient of variation, which is
defined as:

cv = σ

µ
. (3.2)

That is, the ration between the mean of the distribution and its standard deviation. This measure
has the advantage of being dimensionless and therefore scale invariant. This is an important
advantage in our application since we might be obliged to normalise some data at some stage
of our research.

3.1. The Boston Housing Dataset 63

3.1.3 d-ICE in the Boston Housing Data
Stepping back to the work of Goldstein et al. (2015), we now plot the d-ICE plots of our SGB
algorithm. Goldstein et al. (2015) choose to normalise the range of the xS variables beforehand
so that the the original observations are mapped to the [0, 1] interval. This guarnatees that the
magnitude of the derivative of the individual expectations is linked to the relative change of the
variable and does not penalise variables whose range is very wide. We remember the reader that
we are computing discretised derivatives over N points, and since f̂ ′(x) = ∆y

∆x = ∆y
range(x)/N , our

discretised derivative decreases with the range when considering the same change of the response
∆y in the regression. Plotting now the same variables we showed in Figures 3.5 - 3.8 we obtain the
following plots:

Figure 3.10: d-ICE plot along the nox
variable, an indicator of air pollution.

Figure 3.11: d-ICE plot along the dis
variable.

64 Chapter 3. Applications

Figure 3.12: d-ICE plot along the black
variable.

Figure 3.13: d-ICE plot along the lstat
variable.

The points of interaction along the domain are clear. For example, we can spot two dips at
nox = 0.4 and nox = 0.6 of the normalised x-axis. Using the inverse transformation we see how this
corresponds to the values 0.58 and 0.68 respectively, and the result is consistent with Figure 3.5.
Similarly, the black d-ICE plot shows dips at values corresponding to 125 in the original plots. The
remaining two plots with lstat and dis confirm what we saw in the previous Section: dips, peaks
and flat regions are where they were expected to be, provided that the user inverse-transforms the
domain to compare the peaks of interaction with the All-inclusive plot. However, such comparison
involves calculations which can be difficult to be made on the spot by the average user, and a
comparison by eye is not possible unless both plots are available next to each other (and not even
in this work they are). The whole procedure does not therefore prove to be user-friendly at all.
For this reason we propose to keep the original axis when plotting the standard deviation of the
derivative.

We also would like to plot only the relevant part of the plot. We make use of the flatness detector
of Section 2.7.5 and we (linearly) plot only the non-flat region. In order to maintain the whole
domain, we can consider plotting the remaining part in a logarithmic scale, but it is not relevant
in this particular setting. Results are shown in Figures 3.14 - 3.17.

3.1. The Boston Housing Dataset 65

Figure 3.14: cut d-ICE plot along the
nox variable. The algorithm cut the right

tail.

Figure 3.15: cut d-ICE plot along the
dis variable. The rightmost values have

been cut

Figure 3.16: cut d-ICE plot along the
black variable. No cut is visible

Figure 3.17: cut d-ICE plot along the
lstat variable. All values between 22.5

and 35 have been cut.

3.1.4 d-log-ICE plots
As mentioned in Section 3.1.1, we need to consider the derivatives of the log-response to confirm
or rule-out a multiplicative behaviour of a response corresponding to the peak of the standard
deviation of the original derivatives.

In formulas, we are checking whether the response f̂S cab be modelled as a product of non
interacting sets of variables:

f̂S = g(xC)h(xS). (3.3)

66 Chapter 3. Applications

If this is the case, taking the natural logarithm on both sides leads to:

log f̂S = log g(xC) + log h(xS) (3.4)

And the parallelism between this and Equation 2.74 is clear. Taking the partial derivatives ∂/∂xS
on both sides leads to:

∂ log(f̂S)
∂xS

= (log h(xS))′ = h(xS)
h′(xS) , (3.5)

which is independent from the sampled points xC , and the curves are supposed to overlap. We call
this novel technique the d-log-ICE Plot, and we will use it on the FLAG model. We think indeed
that the potential of this technique is better unlocked when the output’s variable spans through
different orders of magnitude: a log-scale ICE plot can better show the trends and derivatve of this
plot would give the desired results.

3.2 The FLAG model
The The FR & R Loss Assessment Grade (FLAG) model has been developed in order to help the
Financial Restructuring & Recovery (FR & R) department of the bank. This department, stating
the internal documents of the bank Bubberman et al. (2017), is in charge of handling clients who
are not longer able to meet the requirements of their credit agreement with ABN Amro, or thse who
are at risk of not doing so in the near future. The FR & R department therefore undertakes efforts
to either bring back clients to a performing status (whenever possible) or to recover as much of the
outstanding on balance as possible. This latter event is called “write-off”, as in such cases it can be
decided to write-off some part of the outstanding debt on balance. The model aims at helping FR
& R employees in monitoring clients by detecting early signs of risk of a “write-off” taking place, so
that the client can be contacted and helped on time. In particular the model predicts the likelihood
that a write-off will occur in the next six months.

3.2.1 The model
The final version of the FLAG model consists in a SGB algorithm on a dataset where 10 variables
(or “risk drivers”) have been selected. The variables and the relative description can be found
in Table B.1 in Appendix B.1. These variables were selected among hundreds many through a
Gradient Boosting procedure, and we will refer to them as risk drivers from now on.

The data collection includes all ABN Amro clients who are directed to the FR & R department and
for whom there are at least 3 months of transaction data. When this is the case, a screenshot of the
client’s transaction data is taken and the values of the risk drivers are recovered. After a period of 6
months, if the client is still at FR & R, a new screenshot of the client is included. The event “write
off occurred: yes / no” is registered at the same time. As a consequence, more datapoints of the
same client can be available, but the group-K-fold validation technique mentioned in Section 2.4.1
assures no information leakage between the training and the validation set. The resulting data

3.2. The FLAG model 67

Figure 3.18: Distribution of the predicted probabilities of write off. The over-
whelming majority of low-probability clients forced us to plot the y-values on a log

scale. Also the x-axis is plotted on a log-scale.

quality is good, and there are no missing values when running the dataframe.isnull().sum() command
in Python. A summary of the main statistics of the data distribution would help for future work,
but is commented out (omissis)

name average σ min median max

Table 3.2: Summary statistics of the FLAG model risk drivers

We notice that the FIA CODE T10 bring no meaningful information as all of its values are equal
to zero. This is due to that fact that this variable is an outdated indicator for a code used until
2007, and no such data appears anymore in the FLAG model. Consistently with this, any plot
using an implementation of PD plot or ICE fails or does not appear at all, we will therefore ignore
such risk driver from now on.

As for the response value, the SGB predictor shows a wide range of possible outputs. Most of
them, like any healthy portfolio, have a low risk, but outliers with a predicted probability of write-
off > 0.25 are also present. According to the FLAG model, the highest predicted probability is
omissis and the lowest is omissis 1.04 10−4 The distribution is shown in Figure 3.18

Another important remark from this preliminary analysis is that also the BEDRAGMUATIE related
variables and the SALDOHUIDIG last cover a very wide range of values, while the other risk drivers
such have a much smaller range, or are categorical features. This later aspect adds challenge when
plotting wide-range data, but we tackle this issue by applying the Bi-Symmetric Log transformation
by Webber (2012), who has three notable properties:

• Can squeeze large positive and negative values through a logarithmic-like mapping.

• Unlike the classical logarithmic function, it has a bounded derivative around zero.

• it is a smooth operator with a bounded and continuous gradient.

In our preliminary analysis we apply the Bi-Symmetric log-transformation to those variables
whose range is greater than 200. We will follow the same rule when plotting the PD and the ICE
plots of the risk drivers. The choice of 200 as a threshold is arbitrary, but with this setting we guar-
antee that the 5 categorical variables are plotted on a linear scale, while the continuous variables,
having all a range greater than 800, are wisely plotted following the Bi-Symmetric Logarithmic one.

68 Chapter 3. Applications

Figure 3.19: Example of a categorical
feature, the PROV CLASS

Figure 3.20: A variable concentrated in
zero, with some data between 6 and 80.

Figure 3.21: Risk driver with apparently
some data quality issues.

Figure 3.22: A clean bi-modal log-
normal distribution.

The top left corner is an example of categorical feature assuming only values in {0, 1, 2}. To
the top right, we see that many values of the OBERV COUNT 196 3m sum variable are equal to
zero, showing no sign of of money transfer activity, as it can be the case for savings account. The
remaining third of the accounts does such transactions, showing that the account is frequently used.
Most of the values lie between 6 and 80, showing signs of weekly, if not daily, activity. In the bottom
left, we have an example of what appears to be a “bad” risk driver: the zero values make almost 90
percent of the total and the remaining ones are well distributed between −10000 and −1000. We

3.2. The FLAG model 69

wonder whether all such zero values are real observations or merely just a result of the replacement
of missing data. The answer to this question is found when looking at the distribution of the
transaction type among all accounts. We notice that miscellaneous payments (code 502) make less
than 3% of the total transactions. Now, since two thirds of the accounts already don’t register any
transaction at all according to the OBSERV COUNT 196 3m sum risk driver, the BEDRAGMUTATIE
502 3m sum will be forcibly zero for them. For the remaining third, given the scarcity of transactions
with such code, it is perfectly possible that no transfer with the code 502 takes place for most of
the samples, and again a zero value would be assigned. This explains the large percentage of zero
entries, and we will keep it as a valid risk driver.

As a contrast, the bottom-right figure shows a combination of two log-normally distributed values
for the risk driver, letting appreciate us once more a glimpse of mathematical beauty in the real
world. No questions arise this time about the quality of the data.

3.2.2 PD and ICE plots on FLAG
We apply the all-inclusive plot for the FLAG model. Being this a real-world model, unexpected
results may appear, and the need to change or refine the current techniques may rise. We plot those
risk drivers which show the plots we can learn the most from. For this reason, I will include at least
one categorical variable and a continuous one, this will give the chance to test the bi-symmetric log
scale in our plots.

We will omit showing the plots,

Figure 3.23: According to FLAG, the
risk is highest when PROV CLASS= 2 and

lowest when PROV CLASS = 0.

Figure 3.24: Plot of the risk with re-
spect to the OBS COUNT variable.

Figure 3.25: Plot of the risk with re-
spect to BEDRAGMUTATIE 3m min.

Figure 3.26: Probability of write-off
with respect to the SALDOHUIDIG last

risk driver

The plots show some interesting insights, and the behaviour of the model is mostly either increas-
ing or decreasing with respect to each variable. The only exception in this case is the SALDOHUIDIG
last risk driver, where a U-shaped behaviour is spotted.

The analysis of Figure 3.23 is relatively easy: the PROV CLASS risk driver can get values in
{0, 1, 2} so the algorithm splits the decision trees around the intermediate values 0.5 and 1.5 to
distinguish the three cases. Decimal number like 0.8 or 1.3 are therefore treated as their nearest
integer. This does not represent a problem as no such labels exists, while human users should be
aware of the fact that filling the data-set by hand can add occasional typing mistakes and mislabel
these entries. Looking now at the plot, we can see a clear trend: the risk is increasing with increasing

70 Chapter 3. Applications

numeric labels of PROV CLASS, but trajectories with very low risk are compressed and it is not
clear whether the jump happens for the related observations. In order to know whether this results
makes sense from the business point of view we need to be familiar with the meaning of the labels.

The upper right Figure shows a decreasing trend and the scatter of the data suggests that such
trend is mainly due to the higher risk associated to datapoints with BEDRAGMUTATIE 3m min
equal to zero. This makes sense, as such zero observations correspond to savings accounts set up
to repay mortgages, and this category is indeed more likely to incur in a loss. From this and the
following two Figures we also notice how a log-scale for the y-axis would be more suitable, as most
of the observations and ICE trajectories are clustered around zero.

As for Figure 3.25, the trend is quite flat, but we get better insights by plotting the logarithm of
the write-off probability.

Last but not least, Figure 3.26. The trend is decreasing for negative values of the SALDOHUDIG
last and becomes increasing for positive values. The trend is seen more clearly for higher starting
probabilities (such as the uppermost ICE trajectory), but can be spotted on the PD plot as well.
Also, it is worth noting that the pattern would not have been discovered had not we transformed
the domain with a bi-symmetric log transform: the domain spans from −2 · 108 to 1 · 108 and the
locally flat region around zero spans only from 1 · 102 to −1 · 102, making necessary more than
106 discretisation points to be able to spot the dip. We will check whether trajectories appear to
be parallel in a log scale, and whether plotting the d-log-ICE introduced in Section 3.1.4 can give
interesting results.

3.2.3 d-log-ICE plots on FLAG
Diving directly in the d-log-ICE plots can be ambitious, especially when no context is given to the
user. Our approach will be to take an intermediate step and plot the ICE plots on a log scale
first. We call these plots “log-ICE” plots in short. The results of the previous Section translate to
Figures 3.27 - 3.30.

Figure 3.27: Logarithm of the risk with
varying PROV CLASS.

Figure 3.28: Logarithm of the risk with
respect to the OBS COUNT variable.

Figure 3.29: Logarithm of the prob-
ability of write-off with respect to the

BEDRAGMUTATIE 3m min.

Figure 3.30: Log-Probability of write-
off with respect to the SALDOHUIDIG last

risk driver

As predicted, plotting with the logarithmic scale leads to simpler and better interpretation.
Figure 3.27 shows how both the change in label from 0 to 1 and from 1 to 2 lead to a approximately
5-fold increase of the risk, independently from the starting level of risk. Lower-risk related values
behave similarly and their trajectories are more visible here than in the linear plot.

3.2. The FLAG model 71

Figure 3.28 is of a more difficult interpretation. There seems to be an interaction as higher risk
observations seem have decreasing risk as OBS COUNT increases, while lower-risk observations have
a risk increasing with OBS COUNT.

72 Chapter 3. Applications

Similarly, we can appreciate how similarly shaped are trajectories in Figure 3.30. This leads us
into finding a measure of the “depth” of the U shape, and see whether a linear or logarithmic scale
gives lower dispersion. At this point, it is important to realise that these two scales are respectively
linked with the absolute and the relative dispersion of the variable. In order to assess the depth
of the “U”shape, we remember that if xS ∈ [a, b] (the values for a and b can be found in Table
3.2), then we are interested in calculating f̂ iS(0) and f̂ iS(a) for every trajectory. The absolute and
relative differences are taken for all i-s, their distributions are plotted, and their dispersion cv
defined in 3.1.2 is reported.

Figure 3.31: Distribution of accumu-
lated relative change of SALDOHUIDIG
last. There is limited variability in the
data with values clustered around 0 and

-0.45, and cv ≈ −1.76

Figure 3.32: Distribution of the ac-
cumulated abolute change of SALDO-
HUIDIG last. A quick analysis shows that
most of the points are clustered around -
1, and a right tail with outliers is present.

cv ≈ 4.73

We conclude that for the SALDOHUIDIG last variable when we consider the cumulated effect
between the minimum value and zero, there is less dispersion on the relative change that on the
absolute one. Moreover, the distribution of the relative change shows two distinguished clusters, one
around 0 (showing “no change” in the prediction) and one around −0.45, showing that a significative
amount of data has a decreased risk of about 45% when the SALDOHUIDIG last variable changes
from its minimum value omissis to zero. Many improvements can be made on this technique, but
the path is too long to follow for the scope of this work. We provide further proposals in the closing
Chapter 4.

73

Chapter 4

Conclusions

This Thesis has been a journey through the field of Machine Learning and its purpose was to create
a pleasant, readable work. The goal was to include valid mathematical applications accompanied
by the awareness of the ethical challenges that the incoming raise of Artificial Intelligence is posing
in our society. We pursued these two goals by focusing on the explainable side of Machine Learning
techniques. This branch has been of great interest lately, due to the rise of powerful but hard to
explain machine learning models. Among many possible approaches, we chose to focus on the paper
by (Goldstein et al., 2015), where model agnostic visualisation Techniques are proposed. The great
advantage of these techniques lies on the fact that hey do not rely on any previous knowledge of the
model they try to explain, and can therefore be used in a wide range of context. This wide spectrum
makes them very attractive, especially for corporations like ABN Amro which make use of many
(and not necessarily ML based) models. On the other side, applying model agnostic techniques
adds an extra challenge, ground-breaking results are harder to get, but we like challenges.

Concerning the ethical issues and societal stakes of the topic, the guidelines from the Euro-
pean Commission (2019) have been a precious source and the book from Molnar (2019) a great
learning material. We highlighted the importance of explainability in credit risk, and the main
points were summarised in page 4: building trust, improve the methods, identify risks.

4.1 Methodology studies
In Chapter 2 we explored the concept of PAC learnability, a fascinatingly statistical point of view
on Machine Learning. The necessary background was covered in the first part of the Chapter, while
the last part culminated in the introduction of the concept of weak learning and consequently a
proper presentation of the AdaBoost and the Stochastic Gradient Boosting algorithms. Personally,
I feel that the logical flow linking PAC learning to weak learning and eventually to (Stochastic)
Gradient Boosting is worth a mention, but it doesn’t blend well with the first two Sections. This
happened because the theory of PAC learnability didn’t prove to be a useful prevention tool to the
overfitting issue. The reasons were explained at the Section 2.3.4 and can be summarised by saying
that the model used as an example was not complex enough. If we could do something differently,

74 Chapter 4. Conclusions

this would be on the list of things to change, however we are aware of the fact that simplicity is
key when explaining important concepts like underfitting and overfitting.

Section 2.7 was the heart of the Chapter. The PD and the ICE plotting techniques were intro-
duced, and the paper from (Goldstein et al., 2015) was vastly used and cited. The similar ALE
technique is considered at some point, but dropped in favour of the previous two. The last pages
of the Chapter were dedicated to the d-ICE from the same author and the d-ICE flatness detector.
This tool is a novelty introduced in this Thesis, and can be useful in a human-machine interaction
setting, its potential is great in models like FLAG, where input data can have wide ranges and
the flat regions can be very large. The flatness detector limits itself to search for flat region on
the extremes of the input intervals, the reason for this choice is not to jeopardise interpretability
for users with non-analytical background, but it can easily modified to spot all flat regions (above
certain length) in a PD or ICE plot. We suggest using the flatness detector on ICE-related plots
only, as we have proved that flat PD plots are not a guarantee that the model is not “responding”
to the change. For fresher details the reader can check Section 2.7.1 and the proof in page 39.

4.2 Findings in the applications
The application of the visualisation tools took place in real-world examples in Chapter 3. The first
was consisted in applying a SGB method to the Boston Housing Dataset. Given the author’s poor
background on the housing market little inference about the model’s behaviour could be made.
Still, a potentially discriminatory issue was discovered in the data, it concerned the use of the
black variable when predicting the house value. Although the impact of the variable was small, the
example helped us understanding how even the collection of data for Machine Learning should be
done with care. It is indeed well known that human biases can be transmitted to ML algorithms:
ML algorithms learn from the data we provide them. If the data is biased, a well implemented
ML algorithm will capture the same bias and its performance will benefit from it. Again we refer
to the guidelines from European Commission (2019), where it is explicitly discouraged to collect
potentially discriminatory data.

The second part of the Chapter focused on implementing the same techniques to the FLAG
model. Here the interpretation of the model was more difficult and more important and we could
not go into details as much as we wanted. However, from the talks with my colleagues at ABN it
looked like the output of the model was making sense, and some new insights on how to monitor
the model is given.
• First of all, input variable with both very large and very small values (abolute values) cannot

be correctly visualised in a standard PD or ICE plot, and a simple log-scle on the x-axis
inflates the values around zero. We propse to fix this by plotting around the ’symlog’ scale
in Python’s matplotlib. This scale makes use of the “Bi-Symmetric Log transformation” and
tackles the issue very well.

• Secondly, we believe that the d-ICE flatness detector can be a useful tool when combined
with a scatterplot of the underlying datapoints (for example in Figures 3.27 - 3.30. If the

4.3. Further work 75

response is flat (or monotonous) and there is no data around, chances are that the model is
extrapolating the output from the nearest available data and an expert should be called in
order to assess if such extrapolation is correct. If on the other hand there is sufficient data in
a neighbourhood of the domain there is probably not much to check.

Remark. The concept of “data in a neighbourhood of the domain” needs to be improved. The
“size” of these neighbourhood is model-dependent, and analytical inference is difficult because of
the curse of dimensionality. Future work can be done towards this direction, and ALE plots can be
brushed up for the occasion.

4.3 Further work
In every mathematical project, regardless on the amount of work done, there is always room for
more results. There have been many moments where we would have liked to stop by and elaborate
further but was not possible due to time constraints (and progress pace).

One of these was after the Sections about PD plot and ICE plot (2.7.1 and 2.7.3 respectively)
were completed. The idea was to implement a three-dimensional PD plotter, following the similar
work by Cortez and Embrechts (2013). However, despite successful implementation for the Boston
Housing Dataset model, we were not able to scale it for the FLAG model and the output plots from
the first model were not interesting enough to put more effort for the FLAG model. Further work
is possible in this direction.

Since the idea of three-dimensional plotting was not feasible, we also came with the idea of
reducing a 3-d plot into a two-dimensional one. More generally, we could aim at identifying couples
of important variablez for the model’s response, and plot along a convex combination of them.
Mathematically speaking it an be interpreted as identifying the direction xv with the most output’s
variabilility (a sort of principal component) in the input’s space Rd. Then, consider the projection:

Π : Rd → Rq
′
, with q′ ∈ {1, 2}. (4.1)

That is, the projection of xv along its top q′ biggest components. We can the consider building PD
and ICE plots along Π(xv). It si hard to predict whther such plots can lead to more meaningful
results, nor if the average user can really benefit from this.

Other research can be made on the c-ICE related statistics of 2.7.3, the question here is how strong
the correlation is between the statistic and the importance of the interacting variables. The study
can also link to the point-wise standard deviation of the trajectories in the d-ICE plots introduced
in page 51.

77

Appendix A

Additional material

A.1 Known inequalities
Theorem A.1.1 (Hoeffding’s Lemma). Let X be any real-valued random variable with expected
value E[X] = µ and P[a ≤ X ≤ b] = 1. Then, for all λ ∈ R

E[eλX] ≤ exp
(
λ2(b− a)2

8

)
(A.1)

And from the previous it follows (see, cite MLT) that:

Theorem A.1.2 (Hoeffding’s Inequality). Let X1, ..., Xm be a sequence of i.i.d random variables
and assume that E[Xi] = µ and P[a ≤ Xi ≤ b] = 1 ∀i = 1, ...,m. Then for any ε > 0

P

[∣∣∣∣∣ 1
m

m∑
i=1

Xi − µ

∣∣∣∣∣ > ε

]
≤ 2 exp

(
−2mε2/(b− a)2) (A.2)

Theorem A.1.3. Let X be a standard normal random variable. Then the following upper bound
holds for its complementary cumulative distribution function:

Φc(z) = P (Z > z) < 1√
2π

1
z
e−z

2/2

Proof. We right down the definition of the cumulative distribution function first, and then we use
the fact that x/z > 1 for x > z, we get:

78 Appendix A. Additional material

Φc(z) = 1√
2π

∫ ∞
z

e−x
2/2 dx

<
1√
2π

∫ ∞
z

x

z
e−x

2/2 dx

= 1√
2π

1
z
e−z

2/2.

A.2 Mathematical Tools
Definition (Bi-Symmetric Log transformation). Is the following mapping R→ R:

y = sgn(x) · log10(1 + |(x/C)|) (A.3)

Note how for |x| >> C we have:

log10(1 + |(x/C)|) ≈ log10(|x/C|), (A.4)

which means that for large x the mapping is similar to a logarithmic scale. For |x| << C on the
other hand we have

log10(1 + |(x/C)|) ≈ |x/C|/ ln 10, (A.5)

that is, roughly linear. The custom value for C = 1/ ln 10 gives a unity transfer function at zero
and bounds the derivative at 1. Through the LogSymmTransform Python package, it is possible to
introduce a linear threshold, that is, it is possible to set a symmetric region around zero for which
the mapping is linear.

Theorem A.2.1 (Union Bound). For any finite or countable set of events, the probability that
at least one of the events happens is no greater than the sum of the probabilities of the individual
events. In formulas:

P

(⋃
i

Ai

)
≤
∑
i

P(Ai) (A.6)

Proof. The proof follows by induction. The fact that probabilities are non-negative, and associa-
tivity of the union operator are used.

A.3. Statistical Tools 79

A.3 Statistical Tools
Definition. The Coefficient of determination R2 of a model f : X → R is the proportion of the
variance in the dependent variable that can be explained by the fitted model. Let (x1, . . . ,xn) ,
(y1, . . . , yn) be the data and let (f1, . . . , fn) be the prediction made by the model, the coefficient of
determination is defined as:

R2 = 1−
∑n
i (yi − fi)2∑n
i (yi − ȳ)2 = 1− SSres

SStot
, (A.7)

where ȳ = 1
n

∑n
i yi.

Definition (CAP curve). Given a binary classification model f : X → {±1} The Cumulative
Accuracy Profile curve curve is a measure of the discriminatory power of f . The model f first sorts
the data points in increasing (predicted) order. That is, a sequence {−1, ...,−1,+1, ...,+1} = {f1 ≤
f2 ≤ ... ≤ fm} is created and, without loss of generality, the input data indexes are ordered as we
did. Now we define the coordinates xi and zi for every i ≤ m as the following:

xi = rnk(fi)/m = i/m (A.8)
zi =| {j : yj = −1} |, (A.9)

which represents the proportion of true “-1” being selected by the first m datapoints of the model.
The CAP curve S is defined as the piece-wise linear function passing through the set of such ordered
couples {(0, 0), (x1, z1), (x2, z2), . . . , (xm, zm) = (1, 1)}.

The curve, when compared to the curves generated by a perfect model and a random one, can
then be used as a performance indicator. Such performance is called Accuracy Rate (AR) of the
CAP curve.

Definition. The Accuracy Rate (AR) of a CAP curve S is:

CAPR =
∫ 1

0 S dx− 0.5
Area under perfect model− 0.5 (A.10)

Where 0.5 is the area under the random model. Also, note that the area of a CAP curve of a perfect
model for a binary classification, where the cardinality of the classes are k and m − k, is equal to
1−k/2m. Thanks to this definition the AR score is a number between 0 and 1, where 0 corresponds
to the random one and 1 to the perfect model. Negative scores are theoretically possible for models
which perform consistently worse than a random one, but in these cases one can simply force the
model to reverse the outputs and become better than random.

Remark. The CAP curve and its Accuracy Rate can be extended to multi-class or regression
models. In the multi-class case, let N be the number of classes. We can plot N CAP Curves using
the “One vs All” methodology and then take the average value of the resulting N Accuracy Rates.

80 Appendix A. Additional material

It is up to the modeller whether penalising some kinds of mis-classifications over others, and one
can easily do so by applying a weighted average instead.

Definition. The Gini coefficient of a model f : X → R is defined as:

Gini = 2 CAPR − 1 (A.11)

81

Appendix B

Related Content

B.1 Extra Tables
The table with FLAG’s variable description is also omitted.

name description

Table B.1: Short description of the risk drivers, based on the FLAG documenta-
tion.

B.2 Extra Figures
Here we place extra figures from ABN’s model. omissis.

83

Bibliography

Ben-David, Eiron, Long, et al. (2003). “On the difficulty of approximately maximizing agreements”.
In: Journal of Computer and System Sciences 66.3, pp. 496–514.

Bubberman, Bastiaan et al. (2017). “FR& R Loss Assessment Grade Model”. In: Internal document.
Bureau, United States Census (2018). QuickFacts. url: https://www.census.gov/quickfacts/

fact/table/bostoncitymassachusetts,US/PST120218.
Commission (2019). Ethics Guidelines for Trustworthy AI.
Cortez, Paulo and Mark J. Embrechts (Mar. 2013). “Using Sensitivity Analysis and Visualization

Techniques to Open Black Box Data Mining Models”. In: Inf. Sci. 225, pp. 1–17. issn: 0020-0255.
doi: 10.1016/j.ins.2012.10.039.

Duchi, John (2017). “Derivations for Linear Algebra and Optimization”. In: arXiv, p. 13. doi:
1706.07269..

Friedman (2001). “Greedy Function Approximation: A Gradient Boosting Machine”. In: The Annals
of Statistics 29.5, pp. 1189–1232.

Gemmell, Patrick (2018). “Research Proposal: Explaining the FLAG black box model”. In: Internal
document.

Goldstein, Alex et al. (2015). “Peeking Inside the Black Box: Visualizing Statistical Learning
With Plots of Individual Conditional Expectation”. In: Journal of Computational and Graphical
Statistics 24.1, pp. 44–65. doi: 10.1080/10618600.2014.907095.

Grover, Prince (2017). Gradient Boosting from scratch. url: https://medium.com/mlreview/
gradient-boosting-from-scratch-1e317ae4587d (visited on 12/09/2017).

Hastie, Tibishirani, and Friedman (2009). The Elements of Statistical Learning (2nd ed.) Springer,
pp. 337–384.

Jorion, Philippe (2009). “Risk Management Lessons from the Credit Risk”. In: European Financial
Management.

Marr, Bernard (2016). What Is The Difference Between Artificial Intelligence And Machine Learn-
ing? url: https://www.forbes.com/sites/bernardmarr/2016/12/06/what- is- the-
difference-between-artificial-intelligence-and-machine-learning/#5b780de02742.

Molnar, Christoph (2019). Interpretable Machine Learning. A Guide for Making Black Box Models
Explainable. https://christophm.github.io/interpretable-ml-book/.

Murphy, Kevin P. (2012). Machine Learning: A Probabilistic Perspective. The MIT Press.
Ribeiro et al. (2016). “Why Should I Trust You?: Explaining the Predictions of Any Classifier”. In:

ArXiv. doi: 10.1145/2939672.2939778.

https://www.census.gov/quickfacts/fact/table/bostoncitymassachusetts,US/PST120218
https://www.census.gov/quickfacts/fact/table/bostoncitymassachusetts,US/PST120218
https://doi.org/10.1016/j.ins.2012.10.039
https://doi.org/1706.07269.
https://doi.org/10.1080/10618600.2014.907095
https://medium.com/mlreview/gradient-boosting-from-scratch-1e317ae4587d
https://medium.com/mlreview/gradient-boosting-from-scratch-1e317ae4587d
https://www.forbes.com/sites/bernardmarr/2016/12/06/what-is-the-difference-between-artificial-intelligence-and-machine-learning/#5b780de02742
https://www.forbes.com/sites/bernardmarr/2016/12/06/what-is-the-difference-between-artificial-intelligence-and-machine-learning/#5b780de02742
https://christophm.github.io/interpretable-ml-book/
https://doi.org/10.1145/2939672.2939778

84 Bibliography

Rodriguez, Jesus (2018). Interpretability vs. Accuracy: The Friction that Defines Deep Learning.
url: https://towardsdatascience.com/interpretability-vs-accuracy-the-friction-
that-defines-deep-learning-dae16c84db5c (visited on 05/09/2019).

Samuel, Arthur (1959). “Some Studies in Machine Learning Using the Game of Checkers”. In: IBM
Journal of Research and Development 1.3, pp. 210–229. doi: 10.1147/rd.33.0210..

Shalev-Shwartz, Shai and Shai Ben-David (2014). Understanding Machine Learning, from theory
to algorithms. Cambridge University Press. isbn: 978-1-107-05713-5.

The Boston Housing Dataset (2018). url: https://www.kaggle.com/prasadperera/the-boston-
housing-dataset (visited on 06/28/2019).

Webber, J Beau W (2012). “A bi-symmetric log transformation for wide-range data”. In: Measure-
ment Science and Technology 24.2, p. 027001. doi: 10.1088/0957-0233/24/2/027001.

YouTube R© (2019). YouTube hate speech policy. url: https://support.google.com/youtube/
answer/2801939?hl=en (visited on 06/05/2019).

https://towardsdatascience.com/interpretability-vs-accuracy-the-friction-that-defines-deep-learning-dae16c84db5c
https://towardsdatascience.com/interpretability-vs-accuracy-the-friction-that-defines-deep-learning-dae16c84db5c
https://doi.org/10.1147/rd.33.0210.
https://www.kaggle.com/prasadperera/the-boston-housing-dataset
https://www.kaggle.com/prasadperera/the-boston-housing-dataset
https://doi.org/10.1088/0957-0233/24/2/027001
https://support.google.com/youtube/answer/2801939?hl=en
https://support.google.com/youtube/answer/2801939?hl=en

	Abstract
	Contents
	Introduction
	Importance of explainability
	Plan of the Thesis

	Methodology
	Loss functions
	True error and empirical error
	Preventing under and overfitting
	Tentative definition of underfitting and overfitting
	PAC Learnability
	Agnostic PAC learnability
	Comparison with real-world example

	Spotting under and overfitting
	K-fold cross-validation
	ABN validation procedure

	Machine Learning algorithms
	Weak Learning
	AdaBoost algorithm
	From ADABoost to Gradient Boosting

	(Stochastic) Gradient Boosting
	Stochastic Gradient Boosting

	Interpetability of models
	The Power vs Interpretability trade-off

	(Model agnostic) Visualisation Techniques
	Partial Dependency Plot
	Proof

	Accumulated Local Effects (ALE)
	Individual Conditional Expectation
	Centred-ICE

	Derivative-ICE
	d-ICE Flatness Detector

	Applications
	The Boston Housing Dataset
	Resulting PD and ICE plots
	Racial bias in Machine Learning

	Dispersion
	d-ICE in the Boston Housing Data
	d-log-ICE plots

	The FLAG model
	The model
	PD and ICE plots on FLAG
	d-log-ICE plots on FLAG

	Conclusions
	Methodology studies
	Findings in the applications
	Further work

	Additional material
	Known inequalities
	Mathematical Tools
	Statistical Tools

	Related Content
	Extra Tables
	Extra Figures

	Bibliography

