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Abstract

Model predictive control (MPC) is an advanced control technique that offers an elegant frame-
work to solve a wide range of control problems (regulation, tracking, supervision, etc) and
handle constraints on the plant. The control objectives and constraints are usually formulated
as an optimization problem that the MPC controller has to solve (either offline or online) to
return the control command for the plant.

The main contribution of this master thesis is that it proposes a novel primal-dual interior-
point (PDIP) method for solving quadratic programming problems with linear inequality
constraints that typically arise from MPC applications. Convergence of PDIP is studied
both in primal and dual framework. We show that the solver converges quadratically to a
suboptimal solution of the MPC problem. PDIP solvers rely on two phases: the damped
and the pure Newton phases. Compared to state-of-the-art PDIP method, this new solver
replaces the initial (linearly convergent) damped Newton phase (usually used to compute
a medium-accuracy solution) with a dual solver based on Nesterov’s fast gradient scheme
(DFG) that converges super-linearly to a medium-accuracy solution. The switching strategy
to the pure Newton phase, compared to the state of the art, is computed in the dual space to
exploit the dual information provided by the DFG in the first phase. Removing the damped
Newton phase has the additional advantage that this solver saves the computational effort
required by backtracking line search. The effectiveness of the proposed solver is demonstrated
by simulating it on a 2-dimensional discrete-time unstable system.

Master of Science Thesis Xi Zhang





Table of Contents

Acknowledgements v

1 Introduction 1
1-1 Computational Methods for Model Predictive Control . . . . . . . . . . . . . . . 1
1-2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1-3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Model Predictive Control: an Overview 5
2-1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2-2 Model Predictive Control as a Quadratic Programming Problem . . . . . . . . . 7

2-2-1 Non-Condensed Formulation . . . . . . . . . . . . . . . . . . . . . . . . 8
2-2-2 Condensed Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2-3 Basic Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Fast Gradient Methods for Quadratic Programming 13
3-1 Fast Gradient Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3-1-1 Gradient Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3-1-2 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3-2 Dual Fast Gradient Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3-2-1 Dual Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3-2-2 Optimal Step Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3-2-3 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Interior-Point Methods for Quadratic Programming 19
4-1 Primal Barrier Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4-1-1 Central Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4-1-2 Outline of Barrier Method . . . . . . . . . . . . . . . . . . . . . . . . . 20

4-2 Primal-Dual Interior-Point Methods . . . . . . . . . . . . . . . . . . . . . . . . 22

Master of Science Thesis Xi Zhang



iv Table of Contents

4-2-1 Variations of Primal-Dual Interior-Point Methods . . . . . . . . . . . . . 23
4-3 Comparison Between Search Directions for Interior-Point Methods . . . . . . . . 25

4-3-1 Comparison Between Barrier and Primal-Dual Interior-Point Methods . . 25
4-3-2 Comparison of Variations of Primal-Dual Interior-Point Methods . . . . . 26

4-4 Coincidence of Barrier and Primal-Dual Interior-Point Methods . . . . . . . . . . 27
4-5 Convergence Analysis of Primal-Dual Interior-Point Methods . . . . . . . . . . . 28

5 Proposed Solvers in Primal and Dual Space 31
5-1 Soft Constraints Approach in Primal-Dual Interior-Point Methods . . . . . . . . 32

5-1-1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5-1-2 Model Predictive Control Problem Reformulation . . . . . . . . . . . . . 33
5-1-3 Initialization Strategy For Primal-Dual Interior-Point Methods . . . . . . 35
5-1-4 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5-2 Constraint Tightening Approach in Dual Fast Gradient Methods . . . . . . . . . 37
5-2-1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5-2-2 Model Predictive Control Problem Reformulation . . . . . . . . . . . . . 38
5-2-3 Initialization Strategy for Primal-Dual Interior-Point Methods . . . . . . . 38
5-2-4 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5-3 Primal Switching Condition from Dual Fast Gradient to Primal-Dual Interior-Point
Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5-4 Proposed Dual Switching Condition from Dual Fast Gradient to Primal-Dual Interior-
Point Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5-4-1 Characterization of the Dual Hessian . . . . . . . . . . . . . . . . . . . 41
5-4-2 Modification of the Switching Condition . . . . . . . . . . . . . . . . . . 42

5-5 Proposed Solver Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Numerical Results 47
6-1 Results for Primal Switching Condition . . . . . . . . . . . . . . . . . . . . . . . 47

6-1-1 Soft Constraint Approach in Primal-Dual Interior-Point Methods . . . . . 48
6-1-2 Constraint Tightening Approach in Dual Fast Gradient Methods . . . . . 50

6-2 Results for Dual Switching Condition . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Conclusion and Future Work 55

A Appendix 57
A-1 Proof of Theorem 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A-1-1 Newton Increment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
A-1-2 Proof of Quadratic Convergence . . . . . . . . . . . . . . . . . . . . . . 58

Glossary 67
List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
List of Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Xi Zhang Master of Science Thesis



Acknowledgements

First and foremost, I would like express my sincere gratitude to my supervisor Dr. Ir. Tamás
Keviczky for his continuous support during my master thesis project and writing of this the-
sis. He guided me in all the time to solve numerous professional problems with his patience
and immense knowledge. In addition, I really appreciate the opportunities he afforded me to
help me to broaden my eyes in the field related to my thesis project.

Besides, I would like to thank my daily supervisor Laura Ferranti for her assistant during this
thesis work. She supported me in regular meetings and discussions with her kindness and
encouragement. I learned a lot from the meetings and her feedback. She is a dear friend to
me as well.

Last but not the least, I would like to thank my parents for their unconditional love, under-
standing and support during my studies in TU Delft, and my friends for their accompany and
friendship.

Delft, University of Technology Xi Zhang
November 18, 2016

Master of Science Thesis Xi Zhang





“I do not know what I may appear to the world, but to myself I seem to have
been only like a boy playing on the sea-shore, and diverting myself in now and
then finding a smoother pebble or a prettier shell than ordinary, whilst the great
ocean of truth lay all undiscovered before me.”

— Isaac Newton





Chapter 1

Introduction

Model predictive control (MPC) was developed and used in industry for nearly 30 years and
is continuously drawing attention from industry by being able to solve a wide range of control
problems, e.g., regulation, tracking, supervision, etc., taking into account physical system
constraints with optimized closed-loop performance. State and output constraints arise from
practical restrictions on the allowed operating range of the system [9]. As it can never be
excluded that the state and output of the system move outside the constrained range chosen
for the controller design, special provisions must be made to move the state back into the
range. This is difficult is exactly what one wanted to avoid by choosing MPC in the very first
place comparing to classical control methods, for instance, PID control.

The main contribution of this master thesis focuses on fast MPC problems associated with lin-
ear time-invariant (LTI) systems. In these problems, a quadratic programming (QP) problem
is recursively solved over a given prediction horizon and new state information is updated
from measurements of the plant, at each time instant. The presence of this optimization
problem has traditionally limited the use of MPC to slow processes, that is, processes with no
hard real-time constraints. Recently, MPC has received increasing attention in fields, such as
aerospace and automotive, where the real-time aspects are critical and the computation time
for the controller is limited. Hence, offline [4] and online solutions have been investigated to
overcome the computational issue related to the MPC controller. In this work, we focus on
online solutions that allow one to handle a wider range of problems.

1-1 Computational Methods for Model Predictive Control

Efficient methods have been developed to cope desired requirements in embedded MPC. These
methods can be roughly divided into two different categories, offline and online solvers.

Among the techniques proposed to solve MPC problems offline, we have, for example, the
explicit MPC designed in [4] to solve multi-parametric QPs (mp-QP), where the parameters
are the components of the state vector. This approach removes the drawbacks of solving an
optimization problem online to compute the control action. In this approach, the optimal
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2 Introduction

solution for all possible states are computed offline for a given range of operating condition of
interest. Therefore, the MPC law is converted into a continuous and piecewise affine (PWA)
function of the state vector by partitioning the space of the states and inputs into polyhedral
regions and associating with each region a different linear state-update equation [22]. In this
way, the online control computation reduces to the simple evaluation of an explicitly defined
PWA function which maps the MPC control law into a look-up table of linear gains. The
main drawback of explicit MPC is that explicit solution is often limited by memory demand
and restricted to small-scale systems since the look-up table might grow exponentially in the
number of states.

Due to the memory requirement and application restriction of explicit MPC, during the last
years, various researchers have spent considerable efforts on accelerating online QP solvers
that contribute to fast MPC embedded in high-frequency dynamics [10, 27, 37, 39].

The main issue that arises solving the MPC problem online is related to the limited amount of
computational time. Thus, these kinds of applications posed a research challenge for develop-
ing optimization algorithms, and in particular quadratic programming solvers, which enable
the use of MPC in commercial products. Hence, the study of fast solvers to compute their so-
lution online within guaranteed computation time has gained growing attention. Specifically,
an embedded optimization solver is required to:

• provide a sub-optimal solution within the available sampling interval;

• occupy small memory to store the data defining the optimization problem;

• be easy-to-code and software certifiable;

• have predictable worst-case execution time in order to satisfy real-time system require-
ments.

Online optimization solvers can be divided into two main families: first- and second-order
methods. First-order methods, such as gradient or splitting methods and their accelerated
versions like Nestrov’s fast gradient method [20, 29, 31], have simpler theoretical requirements,
such as, Lipschitz continuity only on the first derivative of the cost, and converge to a medium-
accuracy solutions within few iterations. Fast gradient methods appear to be significantly
easy-to-code and software certifiable. In addition, availability of analytical upper bound on
the number of iterations and super-linear convergence rate make these methods stand out
from other classical first-order methods [29]. One short coming of fast gradient methods is
that, when there are constraints to be handled, the problem is related to the projection step
that can be computationally challenging. Moreover, when there are ill-conditioned problems,
that is to say, if the condition number is large, the solvers easily becomes unstable. Many
researchers have explored this field to guarantee primal feasibility while using a dual method
[2, 11, 25].

Second-order algorithms for QP problems, such as, active-set methods [10, 33, 35] and interior-
point methods [8, 23, 37, 40], can be very efficient in speed and provide solutions in high
quality. Among them, interior-point methods appear to be the most appealing. Practical
applications have shown that these methods are able to converge to the optimal solution within
only a few number of iterations [37]. Besides, these methods perform efficiently to guarantee
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1-2 Contribution 3

a primal feasible solution by introducing residual variables according to Karsh-Kuhn-Tucker
(KKT) conditions. Compared to first-order methods, however, interior-point methods usually
require more advanced algebraic operations and, consequently, more computational effort.
Moreover, the analytical upper bound on the number of iterations that guarantees to reach a
desired level of accuracy is too conservative to be used in practice.

Motivated by the studies on fast MPC solvers, this master project aims to develop a novel
algorithm that combines the benefits of interior-point and fast gradient solvers to provide a
certified control law in terms of the level of sub-optimality and worst-case computation time.

1-2 Contribution

The main contribution of this master thesis is a novel primal-dual interior-point solver for
solving inequality-constrained QP problems that commonly arise from MPC applications.
The proposed solver combines the advantages of the Nesterov’s fast gradient method [29] and
of primal-dual interior-point solvers. In this work, we are mainly interested in primal-dual
interior-point solvers presented in [9]. In [5], their convergence can be divided into two phases:

• Damped Newton Phase. The algorithm performs a linear convergence and is used to
reach a medium-accuracy solution.

• Pure Newton Phase. This phase is characterized by a quadratic convergence rate with
unit step size selected in backtracking line search.

In particular, we exploit the ability of the fast gradient method to converge to medium-
accuracy solutions within few iterations, for which the algorithm can be performed efficiently,
and the ability of primal-dual interior-point solvers to converge to high-accuracy solutions
in pure Newton phase. The proposed combination aims to improve the convergence of the
primal-dual interior-point method by replacing damped Newton phase, in which the algorithm
converges linearly, with the fast gradient method, that converges super-linearly. We modify
the classical analysis of the primal-dual interior-point method [5] to take into account the
presence of (active) inequality constraints and allow the switch between the two solvers. This
is done by moving the convergence analysis of the solver and the formulation of the switching
strategy into dual framework. As a consequence, we provide bounds on the level of primal
suboptimality and infeasibility achieved with our proposed algorithm. An additional feature
of the proposed solver is that the computational effort related to the backtracking line search,
which is required in damped Newton phase, is removed, given that pure Newton phase uses
a unit step size. Finally, the solver is validated on an MPC application, the regulation of an
unstable input and output constrained planar system.

We also try to analyze the condition for primal-dual interior-point method in primal space.
In this respect, in primal space, the convergence of primal-dual interior-point method can
be analyzed using its similarity to the barrier method [5]. The main limitation, however,
is that the algorithm has to be initialized with a strictly feasible starting point. And this
condition is essential for deriving the coincidence of barrier and primal-dual interior-point
methods. A strictly feasible starting point can be guaranteed by introducing either softening
constraint approach [19] in the problem solved by primal-dual interior-point solver, or by
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4 Introduction

tightening the constraints [25] in the problem solved by the dual fast gradient method. These
switching condition in primal space, however, becomes undefined when there are constraints
active at the optimum. We do not consider the convergence analysis in [5, Chapter 10] based
on the convergence of residual variable with infeasible start approach since in the presence of
inequality, convergence in [5, Chapter 10] will become too conservative to be used in practice.

This master thesis work is submitted for publication at The 20th World Congress of the
International Federation of Automatic Control (IFAC WC 2017).

1-3 Structure of the Thesis

This master thesis is organized in the following structure: Chapter 2 gives a brief introduction
on model predictive control and describes how a general MPC problem can be reformulated as
a QP. Chapter 3 introduces Nestrov’s fast gradient method. Chapter 4 provides an overview
on interior-point methods, including primal barrier method and primal-dual interior-point
methods. Convergence analysis and relations between two methods are studied. Chapter
5 proposes our novel solvers. Chapter 6 presents the numerical results. Appendix provides
detailed mathematical proofs.
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Chapter 2

Model Predictive Control:
an Overview

Originated in the late seventies, model predictive control is an advanced control methodol-
ogy which has made a significant impact on industrial control engineering for its capability
of optimizing closed-loop performance subject to operating constraints on input and output
variables. The theory of MPC is well developed in nearly all aspects, such as stability, non-
linearity, and robustness in [3], [6] and [24]. It has been mostly applied in the petrochemical
industry, but it is currently being increasingly applied in other sectors of the process industry
[21]. The main reasons for its success in these applications are:

• It handles multi-variable control problems naturally.

• It can take account of actuator limitations.

• It allows operation closer to constraints (compared with conventional control), which
frequently leads to more profitable operation.

Loosely speaking, under some assumptions, MPC allows one to ensure closed-loop perfor-
mance while satisfying the constraints on the plant.

In this chapter, we first provide a brief mathematical description of the MPC problem. After
that, this problem is formulated as a standard QP which can be solved by common optimiza-
tion solvers at present.

2-1 Problem Formulation

In model predictive control, the following discrete, linear, time-invariant plant is usually
considered

x(t+ 1) = Ax(t) +Bu(t) (2-1a)
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6 Model Predictive Control: an Overview

y(t) = Cx(t) +Du(t) (2-1b)

with the state x ∈ X ⊆ Rnx , input u ∈ U ⊆ Rnu and output u ∈ Y ⊆ Rny where t denotes
the sampling instant, and the system matrices A ∈ Rnx×nx , B ∈ Rnx×nu , where (A,B) are
stabilizable.

Typically, the input u, state x and output y should be constrained in each step to closed,
convex sets U , X and Y containing the origin. U , X and Y can also be extended to constraints
set such as boxes, polytopes, etc [29].

In this master thesis project, we consider model predictive control of system (2-1) subject to
polytopic constraints. We consider, over all, prediction horizon of length N ≥ 1, a quadratic
cost criterion. The quadratic cost consists of a stage cost:

Jt(xj , uj) = 1
2 ‖xj‖

2
Q + 1

2 ‖uj‖
2
R + uT

j Sxj + qTxj + rTuj , j = 0, 1, ..., N − 1 (2-2)

where weighting matrices Q � 0, Q ∈ Rnx×nx+ , where (A,
√
Q) is detectable. R � 0, R ∈

Rnu×nu , and S ∈ Rnu×nx has full row rank. We also define terminal cost as:

JN (xN , uN ) = 1
2 ‖xN‖

2
P + pTxN (2-3)

where P � 0, P ∈ Rnx×nx+ is the weight on terminal state. P is associated with the algebraic
Riccati equation (ARE) for the unconstrained problem (A,B,Q,R). P can be easily computed
using MPT3 toolbox with Q, R and S known [15].

The objective function of the quadratic programming problem formed by a model predictive
control problem contains stage and terminal cost in (2-2) and (2-3):

J(x, u) =
N−1∑
j=0

Jt(xj , uj) + JN (xN , uN ) (2-4)

This framework is rather general and contains several special cases. In particular classical
stabilization i.e. the regulation control problem towards the origin yields q = r = p = 0 [20].

In this work, we focus on regulation problem of systems. As usual in MPC, the applied input
is given as the first part of the optimal input sequence resulting from the following QP

min
u∈U , x∈X

J(x, u) =
N−1∑
j=0

Jt(xj , uj) + JN (xN , uN ) (2-5a)

s.t. xj+1 = Axj +Buj (2-5b)
j = 0, ..., N (2-5c)
y ∈ Y, x(t) = x0 (2-5d)

At each time instant, the current plant state is measured or estimated and Problem (2-5)
is solved to obtain the optimal solution of control input sequence over prediction horizon
N . Afterwards, only the first control input is implemented onto the system plant. At next
sampling instant, the system is sampled again and the horizon is shifted towards the future

Xi Zhang Master of Science Thesis



2-2 Model Predictive Control as a Quadratic Programming Problem 7

and the previous procedure is repeated. This principle is called receding horizon control
as shown in Figure 2-1. The system is controlled by MPC controller to track a reference
trajectory (red dotted solid line). At time instant t, the system output is measured (orange
dotted solid line). With this measured output, current dynamic state can be obtained via
an observer and the system dynamic over prediction horizon N can be predicted, as well as
the system output (brown dotted solid line). Afterwards, the QP in (2-5) is solved and the
optimal sequence of control input is obtained (light green solid line). The first control input
is implemented and the sampling time is shifted to t+ 1. Closed-loop stability and dynamic
performance can be guaranteed, meanwhile, constraints on system state, input and output
are satisfied.

Figure 2-1: Receding horizon control principle [9].

2-2 Model Predictive Control as a Quadratic Programming Prob-
lem

We can reformulate Problem (2-5) into a more general way, that is, a standard QP problem
of the following form:

min
z∈Z

1
2z

THz + (hx0)Tz (2-6a)

s.t. g(z) ≤ 0 (2-6b)

f(z) = 0 (2-6c)

where the size of the information matrices and vectors H and h depends on the employed
formulation. Moreover, g(z) and f(z) are affine functions. As explained in the next chapters,
many solvers are available to compute an optimal solution for (2-6).

Master of Science Thesis Xi Zhang



8 Model Predictive Control: an Overview

2-2-1 Non-Condensed Formulation

We use {x(t|j), j = 0, ..., N} to denote the j step prediction at sampling instant t.

The non-condensed approach keeps the future states as decision variables and incorporates
the system dynamics into the problem by enforcing equality constrains [30, 38]. In this case,

z :=



x(t|0)
u(t|0)
x(t|1)
u(t|1)

...
u(t|N − 1)
x(t|N)


. (2-7)

Assume x(t|0) = x0, consider the discrete difference equation in (2-1). We can derive the
following equation for z:

I
−A −B I

−A −B
. . .

I
−A −B I


︸ ︷︷ ︸

A−1
N

z =



x0
0
0
...
0
0


(2-8)

with z defined in (2-7). In this way, h := 0 in (2-6a) and the coefficient matrices in g(z)
obtained from non-condensed formulation is a lower triangular matrix which has sparse and
banded structures to describe the optimal control problem in (2-6) exactly [17]. Tailored QP
solvers can do better than the general QP solvers.

In non-condensed approach, the computational and memory requirements grow linearly with
respect to the prediction horizon lengthN , which suggests that the non-condensed formulation
is preferred by applications that require long prediction horizons [17].

2-2-2 Condensed Formulation

The standard linear MPC approach makes use of (2-6c) to eliminate the states from the
decision variables by expressing them as an explicit function of the current state and future
control inputs [21]. This is usually known as condensed QP formulation, which leads to
compact and dense QPs.

In condensed QP formulation, only the control sequence is considered to be the decision
variable:

z :=


u(t|0)
u(t|1)

...
u(t|N − 1)

 (2-9)

Xi Zhang Master of Science Thesis



2-2 Model Predictive Control as a Quadratic Programming Problem 9

Therefore, there will be no (2-6c) in Problem (2-6) with condensed formulation and Problem
(2-6) only contains inequality constraint (2-6b). Then we obtain a set of inequalities with
dense matrices expressing the decision variables as a function of the current state and input
sequence:

x = ANx0 +BNz (2-10a)

y = CNx0 +DNz (2-10b)

where

x =
[
x(t|0)T x(t|1)T . . . x(t|N)T

]T
, x0 = x(t|0)

AN =



I
A
A2

...
AN−1

AN


, BN =



0
B 0
AB B 0
... . . . . . .

AN−2B B 0
AN−1B AN−2B . . . AB B



CN =



C
CA
CA2

...
CAN−1

CAN


, DN =



D
CB D
CAB CB D

... . . . . . .
CAN−2B CB D
CAN−1B CAN−2B . . . CB D


Compared to non-condensed formulation approach, condensed formulation leads to a less-
dimensional optimization problem.

In this master thesis project, we focus on condense formulation in which the decision variable
contains only the control input sequence over the prediction horizon. Meanwhile, we consider
mainly the regulation problem, but the approach can be easily extended to more practical
tracking problems. Therefore, the coefficient vectors in (2-2) and (2-3) q = r = p = 0. With
condensed formulation approach, the optimization problem in (2-5) can be written in to the
following standard form which only consists of inequality constraints:

min
z∈Z

f0(z) = 1
2z

THz + (hx0)Tz (2-11a)

s.t. g(z) = Gz + Ex0 + g ≤ 0 (2-11b)

where z is defined in (2-9) and

H = BT
N Q̂BN + R̂, h = BT

N Q̂AN

Q̂ =
[
IN ⊗Q 0

0 P

]
, R̂ = IN ⊗R

with H ∈ RNnu×Nnu , h ∈ RNnu×nx and G ∈ Rm×Nnu . For simplicity, denote Nnu = n.

Proof. [21] In condensed formulation, we use the predicted state sequence (2-5b) to eliminate
state variables in the objective function. Therefore, we can get rid of equality constraints.
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10 Model Predictive Control: an Overview

In a regulation problem, we consider the following objective function to be minimized:

J(x, u) = 1
2

N−1∑
j=0

(
‖xj‖2Q + ‖uj‖2R

)
+ 1

2‖xN‖
2
P (2-12)

Due to the space limitation, we use the a short notation in the following parts of this proof.
At sampling time instant t, we use x(j), j = 0, 1, ..., N instead of x(t|j), j = 0, 1, ..., N to
denote the state over prediction horizon N , and u(j), j = 0, 1, ..., N − 1 for input sequence
u(t|j), j = 0, 1, ..., N − 1.

Substituting (2-10a) into (2-12) and obtain the following:

J(x, u) =1
2
[
x(0)T x(1)T . . . x(N − 1)T x(N)T

]

Q

Q
. . .

Q
P




x(0)
x(1)
...

x(N − 1)
x(N)



+ 1
2
[
u(0)T u(1)T . . . u(N − 1)T

]

R

R
. . .

R




u(0)
u(1)
...

u(N − 1)


=1

2x
T
[
IN ⊗Q

P

]
x + 1

2z
T · IN ⊗R · z

=1
2 [ANx0 +BNz]T Q̂ [ANx0 +BNz] + 1

2z
TR̂z

=1
2z

T
(
BT
N Q̂BN + R̂

)
︸ ︷︷ ︸

H

z +
(
xT

0 A
T
N Q̂BN

)T

︸ ︷︷ ︸
(hx0)T

z + 1
2x

T
0 A

T
N Q̂ANx0︸ ︷︷ ︸

constant

In this way, we obtain the optimization problem in (2-11).

2-3 Basic Assumptions

In this master thesis, we assume from here on for Problem (2-11):

Assumption 2.1 (Strong Duality). The Slater’s condition hold for (2-11), i.e., there exist
z̃ ∈ relintZ with g(z̃) < 0.

Assumption 2.2 (Strong Convexity). Function f0(z) is strongly convex on Z, which means
that there exists an mp > 0 such that

mpIn � ∇2f0(z) ≤MpIn

for all z ∈ Z.
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2-3 Basic Assumptions 11

Assumption 2.3 (Lipschitz Continuity). The Hessian of f0(z) is Lipschitz continuous on Z
with constant Lp

‖∇2f0(z)−∇2f0(z̃)‖2 ≤ Lp‖z− z̃‖2
for all z, z̃ ∈ Z.

Assumption 2.4. Matrix G in the function of inequality constraints has full row rank.
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Chapter 3

Fast Gradient Methods
for Quadratic Programming

This chapter focuses on Nesterov’s gradient method and its extensions [27, 28, 29]. Compared
to second-order solvers, fast gradient methods have the advantage of being very simple to im-
plement, as well as division free and matrix-inversion free. Given that the main computational
load lies in a matrix-vector multiplication, these methods are practically very parallelizable.
In addition, the key benefit is that, in fast gradient methods, a tight upper bound can be found
on the number of iterations to reach a desired degree of solution accuracy [26]. The primal
version of fast gradient methods is well suited to implementation using fixed-point arithmetic
[16]. Moreover, further developments to handle constraints with augmented Lagrange multi-
pliers [20, 26] and combination with the alternating direction of multipliers method [32]. The
field of distributed model predictive control are also explored [14], in which a stopping con-
dition that guarantees feasibility and stability is developed for the duality-based distributed
optimization algorithm. Moreover, improvement has been made in this field as well [13], where
a distribute optimization algorithm with super-linear convergence rate is proposed. Online
tools, such as, FiOrDoS [36] and µAO-MPC [41], generate highly portable C code tailored for
embedded applications. These two toolboxes implements provably Nesterov’s fast gradient
method based on Lagrange relaxation. Both toolboxes provide a tailored MEX-interface for
calling the generated solvers in MATLAB/Simulink.
This section starts from a brief introduction of Nesterov’s fast gradient method in primal.
Afterwards, considering more general cases of convex optimization problems with inequality
and equality constraints, the dual fast gradient method is explained.

3-1 Fast Gradient Method

Fast gradient methods were developed by Y. Nesterov in 1983 [27]. It is similar to a gradient
descent method and can be applied to constrained optimization problems. Therefore, we
shortly review fast gradient method as well as the required background information of gradient
projection.
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14 Fast Gradient Methods for Quadratic Programming

3-1-1 Gradient Projection

We start with primal space where we only consider the following optimization problem con-
strained to a convex, close set Z,

min
z∈Z

J(z) (3-1)

with J(z) : Rn → R is a smooth, convex function with a globally Lipschitz continuous gradient
with constant LJ .

The update procedure of sequence {zk} in the well-known gradient descent method is the
following:

G(zk) := zk+1 = zk −
1
LJ
∇J(zk) (3-2)

where 1
LJ

is chosen to be the step size according to [29].

Since the optimization variables are constrained in a convex feasible set Z, Problem (3-1)
can be solved using gradient projection [29]. Therefore, compared with traditional gradient
descent method, Nesterov’s fast gradient method solves the problem via an additional gradient
projection step. Instead of the update law in (3-2), fast gradient method uses the projected
gradient step GZ(zk): GZ(zk+1) := arg min

v∈Z
‖zk+1 − v‖2

zk+1 = G(zk)
(3-3)

Note that, the projected gradient step GZ(zk+1) requires an Euclidean projection into Z. This
projection is generally nontrivial. However, it can be done analytically. Thus, this operation
is central to compute the gradient mapping and defines a simple set as a convex set for which
one can compute the projection easily. Such simple sets are for instance the n-dimensional
Euclidean ball, positive orthant, and box.

Further more, the projected gradient step delivers feasible iterates and converges to the min-
imizer with the rate of convergence which is the best or either a linear or a sub-linear conver-
gence rate [31]. In Nesterov’s fast gradient method, an additional step (Step 2 in Algorithm
1) that leads to faster convergence than the gradient projection method, is used. With this
further step, super-linear convergence in a rate of O(1/k2) can be achieved [29].

3-1-2 Algorithm Description

Algorithm 1 Fast gradient method [29].
Require: z0 ∈ Z, number of iterations kmax, Lipschitz constant LJ , sequence ck.
Set z−1 = ẑ0 = z0
for k = 1, ..., kmax do
1. Compute zk+1 = GZ given (3-3).
2. Compute ẑk+1 = zk+1 + ck(zk+1 − zk).

end for
return zkmax .
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3-2 Dual Fast Gradient Method 15

Algorithm 1 shows the fast gradient method framework. It is always possible to choose
ck = k−1

k+2 [20]. Under Assumption 2.2, ck can also be chosen constant: ck =
√
LJ−

√
mJ√

LJ+√mJ
, where

mJ = σmin(∇2J(z)) is the minimum eigenvalue of the Hessian ∇2J(z). Clearly, mJ is unique
and LJ ≥ mJ . It is advantageous to use a mJ as small as possible.

3-2 Dual Fast Gradient Method

In most cases, the optimization problem involved in a MPC problem is a constrained problem,
e.g., Problem (2-11), where the projection on to the set defined by constraint g(z) ≤ 0 is hard
to compute. Therefore, instead of using fast gradient method in Section 3-1 only, additional
approaches has to be introduced. One approach to deal with optimization problems consisting
of equality or inequality constraints relies on the use of Lagrange multiplier.

3-2-1 Dual Formulation

For Problem (2-11), we assume that the projection onto the set defined by the coupling
constraints g(z) ≤ 0 is hard to compute. Therefore, the complicating constraints are moved
into the cost via Lagrange multipliers by the following Lagrangian function:

L(z, λ) = f0(z) + λT g(z) (3-4)

where λ ∈ Rm+ is the Lagrange multiplier, and we can define the following dual function:

d(λ) = min
z∈Z
L(z, λ) (3-5)

Since f0(z) is strongly convex, the unique optimal solution of the primal (inner) subproblem
can also be denoted as:

z∗(λ) = arg min
z∈Rn

L(z, λ) (3-6)

In our work, the constraints on input, state and output in sets U , X and Y are substituted
into the function g(z) ≤ 0, which leads to an unconstrained least square problem w.r.t λ, e.g.,
Problem (3-6), which can be solved exactly.

We made the following assumption as well.

Assumption 3.1. The inner problem (3-6) can be solved exactly.

By Assumption 2.1, we have for the dual (outer) problem

f0(z∗) = d(λ∗) = max
λ∈Rm+

d(λ) (3-7)

and we use λ∗ to denote the optimal solution of (3-7).
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16 Fast Gradient Methods for Quadratic Programming

3-2-2 Optimal Step Size

Because f0(z) is strongly convex, it can be proved that the gradient of the dual function d(λ)
is given by the following:

∇d(λ) = g(z(λ)) = Gz(λ) + Ex0 + g (3-8)

and it is Lipschitz continuous with constant Ld =
∥∥∥GH−1GT

∥∥∥
2
[12].

This Lipschitz constant is tighter than that provided in [26] and [29].

3-2-3 Algorithm Description

Applying the fast gradient scheme (Algorithm 1) to the dual of Problem (2-11) leads to
Algorithm 2 [25].

Algorithm 2 Dual fast gradient method [25].

Require: H, h, x0, G, E, g, λ0 = λ̂ and Ld.
for k = 1, ..., kmax do
1. Compute zk = arg minz∈Rn L(z, λ).
2. Compute λ̂k =

[
λk + 1

Ld
∇d(λk)

]
+
.

3. Compute λk+1 = k+1
k+3 λ̂k + 2

Ld(k+3)

[∑k
j=0

j+1
2 ∇d(λj)

]
+
.

end for
return zkmax .

In particular, the initial Lagrange multiplier λ can be set to any value greater or equal than
zero, i.e., λ0 ≥ 0. A complete analysis for Algorithm 2 starting from λ0 6= 0 can be found in
[26]. For simplicity of exposition, we start Algorithm 2 here with λ0 = 0. At every iteration,
the algorithm first computes a minimizer of (3-6) (Step 1). Then, it performs a linear update
of the dual variables (Step 2-3).

Define the following average sequence for the primal variables:

ẑk =
k∑
j=0

2(j + 1)
(k + 1)(k + 2)zj (3-9)

then the following theorem on estimation of primal feasibility violation and suboptimality can
be derived.

Theorem 3.1. [25] Let f0(z) be strongly convex the sequence
(
zk, λ̂k, λk

)
be generated by

Algorithm 2, and ẑk be given by (3-9). Then, an estimate on primal feasibility violation for
the original problem (2-11) is given by the following:

∥∥∥[Gẑk + Ex0 + g]+
∥∥∥

2
≤ 8LdRd

(k + 1)2 (3-10)
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3-2 Dual Fast Gradient Method 17

where Rd = ‖λ∗‖. Moreover, an estimate on primal suboptimality is given by the following:

− 8LdRd
(k + 1)2 ≤ f0(ẑk)− f0(z∗) ≤ 0 (3-11)

From Theorem 3.1, it is easy to see that, dual fast gradient method converges in a rate of
O( 1

k2 ), and if we take kmax =
⌊
2
√

2LdRd
ε

⌋
, the following estimates on feasibility violation and

primal suboptimality hold:∥∥∥[Gẑk + Ex0 + g]+
∥∥∥ ≤ ε and −Rdε ≤ f0(ẑk)− f0(z∗) ≤ 0 (3-12)

Therefore, after kmax iterations, Algorithm 2 is able to find an ε-solution of MPC problem
(2-11).
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Chapter 4

Interior-Point Methods
for Quadratic Programming

Today interior-point (IP) methods are among the most widely used numerical second-order
methods for solving medium- and large-scale convex optimization problems [9]. This approach
was developed by Karmarkar in his seminal paper in 1984 on solving linear programming
problems [18], and it was generalized to nonlinear convex problems afterwards. Compared
with other second-order solvers, such as, active set methods, interior-point methods have a
particular advantage given that they are largely insensitive to the number of active constraints
[1]. Moreover, with interior-point methods, one pays a fixed price for the factorization of
the KKT matrix regardless of the number of active constraints. Hence, as the number of
constraints increases, the interior-point solver becomes more competitive.

Consider the QP formed in (2-11) that arises from MPC applications. Interior-point methods
solve it by applying Newton’s method to a sequence of equality constrained problems, or to
a sequence of modified (relaxed) versions of the KKT conditions.

In this chapter, first we summarize different variations of interior-point methods, i.e., primal
barrier and primal-dual interior-point methods, based on [5, 9]. Loosely speaking, interior-
point methods can be divided into a large number of different categories. In this thesis, we
focus on primal barrier method and feasible starting primal-dual interior-point method in
[5, Chapter 11], and infeasible starting primal-dual interior-point method in [9, Chapter 4].
In Sections 4-1 and 4-2, the basic knowledges of interior-point methods are summarized. In
Section 4-3, we focus on the application of interior-point method solving QPs, e.g., Problem
(2-11), in MPC problems. And specifically, we present an analysis of relations between search
directions in each variations when solving the QP involved in a MPC problem. With these
analysis, in Section 4-4, we are able to draw the conclusion that, when the parameters required
in interior-point methods are selected according to some guidances (which is the common
setting as well), the search directions of these variations coincide. Finally, convergence analysis
is given for interior-point method solving QPs in MPC problems with inequality constraints.
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20 Interior-Point Methods for Quadratic Programming

4-1 Primal Barrier Method

The main idea of the barrier method is to handle the inequality constraints in Problem (2-11)
by using a barrier function. Since we use condensed formulation to form the QP problem in
MPC scheme, the re-formulated optimization problem is an unconstrained problem in barrier
method.

min
z∈Rn

Fb(z) = θf0(z) + φ(z) (4-1)

where θ is called barrier parameter, and φ(z) is the logarithmic barrier function:

φ(z) = −
m∑
i=1

log (−gi(z)) (4-2)

which is convex and twice differentiable. For future reference, the gradient and Hessian of
the logarithmic barrier function φ(z) are given by the following:

∇φ(z) = −
m∑
i=1

1
gi(z)∇gi(z) (4-3a)

∇2φ(z) =
m∑
i=1

1
gi(z)2∇gi(z)∇gi(z)T −

m∑
i=1

1
gi(z)∇

2gi(z) (4-3b)

Since in condensed formulation, the equality constraints on state dynamics are eliminated, at
the optimum, the following first-order optimality condition has to be satisfied:

θ∇f0(z) +∇φ(z) = 0 (4-4)

4-1-1 Central Path

The solution z∗(θ) of (4-4) is called central point and is located on a curve called central
path. Figure 4-1 shows the central path of a QP problem. As a result, z∗(θ) if feasible for
Problem (4-1), but it differs from z∗ since we have perturbed the objective function by the
barrier term. The purpose of the barrier function φ(z) is to "trap" an optimal solution of
problem (4-1) in the feasible set [9]. The barrier function in (4-2) takes on the value +∞
whenever gi(z) > 0 for some i. Therefore, when the objective function Fb(z) in Problem (4-1)
is minimized, the inequality constraints are guaranteed to be satisfied.

4-1-2 Outline of Barrier Method

The barrier method starts from a sufficiently large θ0. In QPs that arise from a MPC problem,
the objective function in (4-1) is strongly convex and twice continuously differentiable. In
this way, a primal solution z∗(θ0) corresponding to θ0 can be computed via Newton’s method.
After z0 has been computed, the barrier parameter θ is increased by a constant factor, i.e.,
θ1 = δθ0, δ > 1 and z∗(θ1) is computed. This procedure is repeated until θ has been
sufficiently increased. Moreover, it can be shown that, under mild conditions, z∗(θ)→ z∗ for
θ →∞.
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4-1 Primal Barrier Method 21

(a) Level curves of θf0(z) + φ(z) for θ =
0.2.

(b) Level curves of θf0(z)+φ(z) for θ = 4.

(c) Level curves of θf0(z)+φ(z) for θ = 8. (d) Central path starting at analytic center
and moving towards the optimal solution as
θ increases.

Figure 4-1: Central path of a QP [9].

For each θ > 0, the first-order optimality condition (4-4) of Problem (4-1) has a unique
solution. The central points z∗(θ) must satisfy the following modified KKT conditions derived
from Problem (2-11) [5, § 11.3.4]:

∇f0(z) +Dg(z)Tλ = 0 (4-5a)

− diag (g(z))λ = 1
θ
1m (4-5b)

g(z) ≤ 0 (4-5c)

λ ≥ 0 (4-5d)

where λi = − 1
θgi(z) denotes the dual points on the central path, , and Dg(z) is the derivative

matrix of the inequality constraint function g(z)

Dg(z) =

∇g1(z)T

...
∇gm(z)T


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22 Interior-Point Methods for Quadratic Programming

Therefore, solving nonlinear system (4-4) can be interpreted as solving the linear equations
obtained by linearizing (4-4):

Hbar∆zbar = −∇Fb(z) (4-6)
where ∆zbar is the search direction computed by Newton’s method. Subscript (·)bar stands
for barrier methods and

Hbar = θ∇2f0(z) +
m∑
i=1

1
gi(z)2∇gi(z)∇gi(z)T (4-7a)

∇Fb(z) = θ∇f0(z)−
m∑
i=1

1
gi(z)∇gi(z) (4-7b)

where we use the fact that
∑m
i=1

1
gi(z)∇

2gi(z) = 0 since g(z) is affine.
In barrier method, the primal variable z is updated by the following sequence:

zk+1 = zk + ρk∆zbar, k = 0, ... (4-8)

where ρk is the step size which can be obtained by backtracking line search approach. The
search direction is obtained by solving the linearized system (4-6). A basic version of the
method is described in Algorithm 3.

Algorithm 3 Primal Barrier Method for QPs.
Require: H, h, x0, G, E, g, strictly feasible initial iterate z0, i.e., g(z0) < 0, θ0, δ > 1,
tolerance ε > 0.
repeat
1. Compute Newton direction ∆zk,bar by solving (4-6).
3. Backtracking line search ρk := 1.
while f0(z + ρk∆zk,bar) > f0(z) + αρk∇f0(z)∆zk,bar do
ρk := βρk.

end while3. Update zk+1 = zk + ρk∆zk,bar.
4. Increase barrier parameter θk+1 = δθk.

until stopping criterion m/θk ≤ ε
return point close to the optimal solution z∗.

The barrier method is a feasible method, which means that it starts with a feasible point and
all iterates remain feasible.

4-2 Primal-Dual Interior-Point Methods

The general idea of primal-dual interior-point methods is to solve the KKT conditions by using
a modified version of Newton’s method. The nonlinear KKT equations represent necessary
and sufficient conditions for optimality for convex problems [9].
In primal-dual interior-point methods, we handle the inequality constraints by Lagrange mul-
tipliers. Recall the Lagrangian defined in (3-4), the primal-dual interior-point methods solve
the following relaxed KKT conditions:

∇f0(z) +Dg(z)Tλ = 0 (4-9a)
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4-2 Primal-Dual Interior-Point Methods 23

g(z) + s = 0 (4-9b)

Sλ = τ1m (4-9c)

(s, λ) > 0 (4-9d)

where λ is the Lagrange multiplier and s ∈ Rm is the slackness variable and S = diag(s).
The variables z and s are from the primal, the variable λ from the dual space. If a primal-dual
pair of variables (z∗, λ∗, s∗) is found that satisfies these conditions, the corresponding primal
variables (z∗, s∗) are optimal for Problem (2-11).

We introduce the slackness variable s since primal-dual interior-point methods accept infea-
sible iterates by updating this variable at the same time. The difference between feasible and
infeasible iterates will be discussed afterwards.

The parameter τ in (4-9c) modifies the search direction by balancing two extremes [9]:

• Affine scaling direction. τ = 0. The search direction is the pure Newton direction that
aims at satisfying the original KKT condition based on a linearization. No centering
behavior is performed.

• Centering direction. τ = µ. A centering step does not decrease the average value, so no
progress towards the solution is made. And

µ = sTλ

m
(4-10)

denotes the average duality gap. Therefore, µ→ 0 implies τ → 0.

At each iteration in primal-dual interior-point method, a trade-off between the two directions
is achieved by setting

τ = κµ (4-11)

which means at iteration k, we set
τk+1 = κµk (4-12)

with centering parameter κ ∈ (0, 1), which allows the algorithm to process towards the optimal
solution.

4-2-1 Variations of Primal-Dual Interior-Point Methods

Different variations exist among all kinds of widely-used primal-dual interior-point methods.
In this work, we mainly discuss two variations of this method. The first variation is presented
in [5, §11.7]. It is a basic version of primal-dual interior-point method. Although the proof
of convergence of this variation is not provided in [5], we can derive the detailed convergence
proof given the convergence analysis of standard Newton method in [5, Chapter 9] for QP
problems in MPC. We do not use this variation in our research. It is mentioned here because
based on [5] we will make comparison between this variation and the one we rely on to obtain
the convergence results for our solver.

• Feasible Start Primal-Dual Interior-Point Method [5]
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24 Interior-Point Methods for Quadratic Programming

Define the residual based on the modified KKT condition in (4-9):

rτ (z, λ) =
[
∇f0(z) +Dg(z)Tλ
−Λg(z)− τ1m

]
=
[
rdual
rcent,f

]
(4-13)

where Λ = diag(λ) and we use the following relation obtained from (4-9b):

s = −g(z)

Our goal is to drive this residual variable rτ (z, λ) to zero. Consider the Newton step for
solving the nonlinear equations rτ (z, λ) = 0 for fixed τ and denote the current point and
Newton step as

ϕ = (z, λ), ∆ϕ = (∆z,∆λ)

then the Newton step can be characterized by

rτ (ϕ+ ∆ϕ) ≈ rτ (ϕ) +Drτ (ϕ)∆ϕ = 0 (4-14)

Therefore, the primal-dual search direction can be computed by the following equation:[
∇2f0(z) Dg(z)T

−ΛDg(z) −diag(g(z))

]
︸ ︷︷ ︸

Drτ (ϕ)

[
∆zpd
∆λpd

]
︸ ︷︷ ︸

∆ϕpd

= −
[
rdual
rcent,f

]
(4-15)

where we use
∑m
i=1 λi∇2gi(z) = 0 since g(z) is affine.

• Infeasible Start Primal-Dual Interior-Point Method [9]

Instead of substituting (4-9b) into (4-9c) and defining the primal-dual search direction by
(4-15), we keep (4-9b) and define the residual variable in the following way:

rτ (z, λ, s) =

∇f0(z) +Dg(z)Tλ
g(z) + s
Sλ− τ1m

 =

rdual
rpri
rcent

 (4-16)

Linearizing (4-16) at current iterate ζ = (z, λ, s) to obtain the equation for search direction:∇2f0(z) Dg(z)T 0
Dg(z) 0 Im

0 S Λ


︸ ︷︷ ︸

Drτ (ζ)

∆zpd
∆λpd
∆spd


︸ ︷︷ ︸

∆ζpd

= −

rdual
rpri
rcent

 (4-17)

It is obvious that in both primal-dual search directions ∆ϕpd and ∆ζpd, the primal and dual
search direction are coupled through the coefficient matrix and the residuals. In this way,
we can derive a relation between primal and dual search direction and make a comparison
between search directions in the two mentioned interior-point methods.
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Algorithm 4 Infeasible Start Primal-Dual Interior Method for QPs.
Require: H, h, x0, G, E, g, initial iterate z0, λ0 > 0 and s0 > 0, centering parameter
κ ∈ (0, 1), backtracking line search parameters α ∈ (0, 0.5), β ∈ (0, 1), tolerance ε > 0.
repeat
1. Determine τk+1 = µk+1 = κµk.
2. Compute primal-dual search direction ∆ζk,pd = (∆zk,pd,∆λk,pd,∆sk,pd) solving
(4-17).
3. Backtracking line search ρk := 1.
while f0(z + ρk∆zk,pd) > f0(z) + αρk∇f0(z)∆zk,pd do
ρk := βρk.

end while
4. Update ζk+1 = ζk + ρk∆ζk,pd where ρk > 0 is the step size.

until stopping criterion µ ≤ ε.
return point close to the optimal solution z∗.

4-3 Comparison Between Search Directions for Interior-Point Meth-
ods

In [5, §11.7.1], the authors have proved that for general convex optimization problem with
equality constraints, as long as the equality constraints are satisfied, the Newton step in
barrier method, e.g., as shown in (4-6), coincide with the feasible Newton step. Therefore,
with condensed formulation, the search direction in primal-dual interior method used to solve
the QP problem derived from a general MPC problem coincides with the search direction in
standard Newton step when initialized in a proper way, e.g., with a strictly feasible starting
point, and the parameters required, e.g., barrier and centering parameter, are reasonably
selected. Hence, it is important to analyze the relation between search directions in primal-
dual interior-point methods and in Newton’s method in order to derive our convergence
analysis for primal-dual interior-point methods solving QP problems that arise from MPC
scheme.

First of all, a proof to show the coincidence of primal-dual search direction and barrier search
direction is given considering the situation without equality constraints based on the variation
of primal-dual interior-point method given in Boyd’s book [5, Chap. 11]. Latter, the relation
between search directions obtained from two variations of primal-dual interior-point is pro-
posed. Based on these analysis, in next section, a two-phase convergence result of primal-dual
interior-point method is drawn.

4-3-1 Comparison Between Barrier and Primal-Dual Interior-Point Methods

The primal-dual search directions are closely related to the search directions used in loga-
rithmic barrier method. Considering the linear equations (4-15), we can eliminate the dual
search direction variable ∆λpd using the following equation coming from the second block of
(4-15):

∆λpd = −diag(g(z))−1ΛDg(z)∆zpd + diag(g(z))−1rcent (4-18)
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Substituting this into the first block of equations gives

Hpd∆zpd = −
[
rdual +Dg(z)Tdiag(g(z))−1rcent

]
= −

[
∇f0(z)− τ

m∑
i=1

1
gi(z)∇gi(z)

] (4-19)

where

Hpd = ∇2f0(z)−
m∑
i=1

λi
gi(z)∇gi(z)∇gi(z)T (4-20)

If we compare the two systems of equations (4-6) and (4-19), we can see that they are similar.
And the coefficient matrices (4-20) and (4-7a) have the same structure. If we divide the
system of equations (4-6) by θ, we can obtain

1
θ
Hbar∆zbar = −

[
∇f0(z)− 1

θ

m∑
i=1

1
gi(z)∇gi(z)

]
(4-21)

where
1
θ
Hbar = ∇2f0(z) +

m∑
i=1

1
θgi(z)2∇gi(z)∇gi(z)T (4-22)

Therefore, when z and λ satisfy

− gi(z)λi = 1
θ

(4-23)

the coefficient matrices and also the search directions coincide.

4-3-2 Comparison of Variations of Primal-Dual Interior-Point Methods

From the third block in (4-17), we can find the following coupled relationship between ∆spd
and ∆λpd:

∆spd = Λ−1 (−rcent − S∆λpd) (4-24)

By substituting this relation into the second block of (4-17), the relation between primal
search direction ∆zpd and dual search direction ∆λpd can be found:

Dg(z)∆zpd + Im∆spd = Dg(z)∆zpd + Im · Λ−1 (−rcent − S∆λpd)
= Dg(z)∆zpd − Λ−1 (rcent + S∆λpd)
= −rpri

Thus,
∆λpd = S−1Λ

(
Dg(z)∆zpd − Λ−1rcent + rpri

)
(4-25)
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Then, using the first block, we can derive the following equation for primal search direction
∆zpd:

∇2f0(z)∆zpd = −rdual −Dg(z)T∆λpd

= −rdual −Dg(z)T · S−1Λ
(
Dg(z)∆zpd − Λ−1rcent + rpri

)
⇓

Ĥpd∆zpd = −
[
rdual −Dg(z)TS−1 (rcent − Λrpri)

]
= −

[
rdual +Dg(z)TS−1 (Λ(g(z) + s)− (Sλ− τ1m))

]
= −

[
rdual −Dg(z)TS−1 (−τ1m − Λg(z))

]
= −

[
rdual −Dg(z)TS−1rcent,f

]

(4-26)

where
Ĥpd = ∇2f0(z) +Dg(z)TS−1ΛDg(z) (4-27)

If we compare systems (4-19) with (4-26) and the Hessian matrix (4-20) and (4-27), we can
conclude that when g(z) = −s, that is, when the iterates are feasible, these two variations
are exactly the same.

4-4 Coincidence of Barrier and Primal-Dual Interior-Point Meth-
ods

Theorem 4.1. Consider Problem (2-11) derived from MPC problem, indeed the primal-dual
interior-point method coincides the logarithmic barrier method with a strictly feasible starting
point by selecting

θ = 1
µ

and κ = 1
δ

(4-28)

Proof. In order to prove the coincidence of search directions in these two methods, we have
to prove that the primal variable z and dual variable λ satisfy (4-23) at each iteration.

Look into details at iteration k:

Suppose that, in barrier method, we increase θ by a constant factor κ > 1 to guarantee that
the inequality constraint g(z) ≤ 0 is satisfied recursively.

And in primal-dual interior-point method, at iteration k, the complementarity slackness con-
dition (4-9c) can be denoted as

sk,iλk,i = τk, i = 1, ...,m (4-29)

Set τk = µk, then at each iteration, in order to guarantee centering and convergence, we
decrease µk by the centering parameter δ ∈ (0, 1). Thus,

µk+1 = δµk < µk (4-30)
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By setting θ = 1
µ , at iteration k,

θk = 1
µk

(4-31)

then at next iteration,
θk+1 = 1

µk+1
= 1
σµk

= 1
σ
θk = κθk (4-32)

Thus, if we choose κ = 1
δ ∈ (1,∞), we can derive the following equality from (4-9c) and (4-31)

− gi(zk)λk,i = τk = µk = 1
θk

(4-33)

Therefore, the search direction of primal-dual interior-point method and logarithmic barrier
method coincides.

4-5 Convergence Analysis of Primal-Dual Interior-Point Methods

From the proofs in Subsection 4-3-2 and Section 4-4, we can conclude that, the search direction
of primal-dual interior-point method in Algorithm 4 when solving Problem (2-11) coincides
with search direction in Newton’s method solving Problem (4-1) if Algorithm 4 is started with
a strictly feasible initial point and Theorem 4.1 satisfied. Therefore, the convergence analysis
of primal-dual interior-point method can be done in primal space based on the convergence
of standard Newton’s method.

Recall the optimization problem in barrier method in (4-1):

min
z∈Rn

Fb(z) = θf0(z) + φ(z)

Since the search directions of logarithmic barrier method and primal-dual interior-point
method coincide, according to convergence analysis in [5, §11.3.3], under some basic assump-
tions, the convergence of primal-dual interior-point method in Algorithm 4 can be analyzed
using the convergence result of logarithmic barrier method, which is equivalent to the con-
vergence of standard Newton’s method when no equality constraints are involved.

We need the following assumptions:

Assumption 4.1 (Closed Sub-Level Set). The sub-level set S = {z|z ∈ dom(Fb), Fb(z) ≤
Fb(z0)} is closed, where z0 ∈ dom(Fb).

Assumption 4.2 (Strong Convexity). On the set S, we have

mFbI � ∇
2Fb(z) ≤MFbI

Assumption 4.3 (Lipschitz Continuity). For z, z̃ ∈ S, ∇2Fb(z) satisfies the Lipschitz con-
dition ∥∥∥∇2Fb(z)−∇2Fb(z̃)

∥∥∥
2
≤ LFbH ‖z− z̃‖2
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4-5 Convergence Analysis of Primal-Dual Interior-Point Methods 29

Under Assumptions 4.1-4.3, the convergence of primal-dual interior-point method can be given
in the following theorem referring to the convergence of logarithmic barrier method.

Theorem 4.2 (Convergence in Primal Space [5]). Under Assumptions 4.1-4.3, there exist
numbers ηp and γp with 0 < ηp ≤

m2
Fb

LFbH
and γp > 0 such that the following hold.

• Damped Newton Phase. If ‖∇Fb(z)‖2 > ηp, then for all k ≥ 0

Fb(zk+1)− Fb(zk) ≤ −γp (4-34)

• Pure Newton Phase. If ‖∇Fb(z)‖2 ≤ ηp, then backtracking line search selects the step
size ρk̄ = 1. For all k̄ > 0

LFbH
2m2

Fb

∥∥∥∇Fb(zk̄+1)
∥∥∥

2
≤
(
LFbH
2m2

Fb

‖∇Fb(zk̄)‖2

)2

(4-35)

and hence

Fb(zk̄)− f0(z∗) ≤ 1
2mFb

‖∇Fb(zk̄)‖
2
2 ≤

3mFb

LFbH

(1
2

)2k̄+1

(4-36)

Proof. The proof of Theorem 4.2 can be found in [5, §9.5.3].

Note that (4-36) shows that, in pure Newton phase quadratic convergence can be achieved
from Theorem 4.1 and if (4-23) are satisfied, the search direction of primal-dual interior-point
method coincide with the search direction in standard Newton’s method when the iterates
satisfy (4-9b), that is, Algorithm 4 has to be initialized with a strictly feasible solution.
However, a strictly feasible solution is hard to find when initializing the solver without using
terminal set, especially when we have active constraints. In the following chapter, we will show
that, we can overcome the problem caused by the strictly feasible starting point requirement,
and we are able to propose novel initialization strategies for primal-dual interior-point method
that allows one to find a better starting point for primal-dual interior-point method compared
to warm-starting techniques.
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Chapter 5

Proposed Solvers
in Primal and Dual Space

As stated in previous chapters, when the primal and dual variables in primal-dual interior-
point methods are initialized appropriately, and when the centering parameter is chosen
properly, the search direction of primal-dual interior-point methods coincides with the search
direction of standard Newton’s method. Therefore, the convergence procedure can be divided
into two phases, damped and pure Newton phase. In the second phase, i.e., pure Newton
phase, the algorithm converges quadratically with step size equal to one. Considering the con-
vergence characteristic in the two phases, we can derive an outline to propose an initialization
strategy for primal-dual interior-point methods.
As detailed in the remainder of the chapter, by relying on dual fast gradient (DFG) method
which converges super-linearly, we show how to initialize primal-dual interior-point (PDIP)
methods to remove the damped Newton phase, in which the algorithm converges linearly.
Moreover, we derive a switching condition, which is the stopping criterion for dual fast gradient
method, and an initialization strategy for PDIP to help us enter quadratic convergence phase
directly. In this way, computational effort required by backtracking line search can also be
saved.
This chapter is organized as follows: in Section 5-1 and 5-2, we proposed two novel primal-
dual interior-point algorithms with a switching condition defined in primal space according
to analysis in Chapter 4. Generally, we use the following notations:

• Fb(·) = θJ(·)+φ(·): the cost function formed with barrier function φ(·) corresponding to
a QP with only inequality constraints. For example, Fb(P(z)) denotes the cost function
formed in barrier method to solve a QP called P(z) with decision variable z.

• ηp(·): a constant related to condition numbers (refer to Theorem 4.2) corresponding to
a QP with only inequality constraints.

Based on the analysis derived in Chapter 4 (in primal space) the following outline to derive
our novel algorithm can be given:
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32 Proposed Solvers in Primal and Dual Space

• DFG Phase. If ‖∇Fb(P(z))‖2 ≥ ηp(P(z)), dual fast gradient solver runs until the
ηp(P(z))-solution (zDFG, λDFG) is achieved (after kmax) iterations.

• Pure Newton Phase. If ∥∥∥∇Fb(P(zk̄+1))
∥∥∥

2
≤ ηp(P(zk̄)), (5-1)

for all k̄ ≥ 0, with ρk̄ = 1 and ηp(P(zk̄))-solution (zDFG, λDFG), the primal-dual interior-
point solver starts by directly entering pure Newton phase and converges quadratically.

The key for our novel algorithm to work successfully lies in deriving a simple switching
condition and an efficient initialization strategy between DFG and pure Newton phase. From
Chapter 4, in primal space, a strictly feasible starting point for primal-dual interior-point
method in the second phase, is required. In this way, we can use the condition in (5-1)
derived from primal barrier method to determine the connecting point between damped and
pure Newton phase in primal-dual interior-point method. In order to have a strictly feasible
starting point for the primal-dual interior-point solver, soft constraint approach [19] in PDIP
phase (Section 5-1) and tightening constraint approach [25] in DFG phase (Section 5-2) are
investigated. An initialization strategy for the PDIP phase are proposed for each approach.
These two approaches works in most situations. However, the primal switching condition in
(5-1) causes issues (undefined structures) when there are constraints active at the optimum.

To overcome this problem, in Section 5-4, we propose a new convergence analysis of primal-
dual interior-point method in dual space based on one assumption which can be made on
the solution (zDFG, λDFG) returned by dual fast gradient solver according to Theorem 3.1.
Afterwards, the optimization problem in (2-11) is re-formulated, which leads to a simplified
condition for primal-dual interior-point method to enter pure Newton phase. Further more,
the proposed strategy does not require any tightening or softening in the MPC formulation.

5-1 Soft Constraints Approach in Primal-Dual Interior-Point Meth-
ods

In Chapter 4, we have proved that the coincidence condition of barrier and primal-dual
interior-point method requires (4-9b) from KKT condition:

g(z) + s = 0, s > 0

which means that primal-dual interior-point method has to be initialized with a strictly
feasible starting point. When it is initialized by dual fast gradient method, feasible start
cannot be guaranteed without tightening [25]. If we are ”lucky” to obtain a primal feasible
solution by dual fast gradient method and the condition of pure Newton phase in Theorem
4.2 is active, we can directly enter the second phase of primal-dual interior-point method by
initializing it with this primal feasible solution. In another situations, where the solution
returned by dual fast gradient is infeasible, then some computational effort is still required
by damped Newton phase before primal-dual interior-point method can enter the quadratic
convergence phase, reducing the benefits of the initialization.

One way to deal with this problem is introducing soft constraints in primal-dual interior-point
method. With soft constraints, primal-dual interior-point method can easily be initialized
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5-1 Soft Constraints Approach in Primal-Dual Interior-Point Methods 33

using a strictly feasible starting point returned by the solution of dual fast gradient method.
Further, with this approach, we are still able to obtain the same optimal solution obtained
without softening, using exact penalty functions in the MPC cost.

5-1-1 Overview

Usually, soft constraints are used when we do not know whether a feasible solution exists, that
is, to avoid infeasible solutions. In this approach, the constraints in (2-11b) are softened by
adding slack variables corresponding to violated or active constraints [7]. The slack variables
are added to the MPC cost function and the optimizer searches for a solution which minimizes
the original cost function augmented with exact penalty functions while keeping the constraint
violation as small as possible [19]. As the value of slack variable converges to zero, the
solution obtained with soft constraint approach converges to the optimal solution of the
original problem.
Consider the QP problem in (2-11), the soft constraint approach uses slack variables which are
defined such that they are non-zero if the corresponding constraints are violated or active.
Since in primal-dual interior-point methods, we expect a strictly feasible starting point to
satisfied the switching condition in Theorem 4.2, we need to introduce slack variable to soft
the active constraints as well. Therefore, the optimization problem can be recast into the
following equivalent constrained problem:

min
z∈Rn,εs∈Rm̃

f0(z) + ω‖εs‖ (5-2a)

s.t. g(z) ≤ εs (5-2b)
εs ≥ 0 (5-2c)

where ω > 0 is the penalty weight and m̃ denotes the number of violated and active con-
straints.
The weight on the slack variables in the cost function has to be selected large enough to keep
the slack variables at zero, if possible. The following theorem states the condition needed to
be satisfied for the objective function in Problem (5-2) being an exact penalty function, and
the condition for Problem (5-2) and (2-11) to have the same solution.

Theorem 5.1 ([19]). If λ∗ denotes the optimal Lagrange multiplier for Problem (2-11), the
penalty weight satisfies ω > ‖λ∗‖D leads to exact penalty function in Problem (5-2). In
addition, if strong duality (Assumption 2.1) holds, the optimal solution of Problem (5-2) is
equal to the solution of Problem (2-11).

In Theorem 5.1, the concept of dual norm ‖ · ‖D is used. The dual norm of ‖ · ‖1 is ‖ · ‖∞ and
vice versa, and the dual norm of ‖ · ‖2 is itself. Note that, using the quadratic norm ‖ · ‖22
one can express Problem (5-2) as a QP. However, using quadratic norm only does not result
in an exact penalty function [19].

5-1-2 Model Predictive Control Problem Reformulation

Recall that our strategy is to initialize the primal-dual interior-point method using the dual
fast gradient method. In order to select the initialization of softening parameter, we at first
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re-arrange the functions of inequality constraints by defining the following sets:

G1 := {i, i ∈ Rm1 | ik+1 = ik + 1, i0 = 0 if gj(z) = δ1, δ1 > 0, j = 1, ...,m}
G2 := {i, i ∈ Rm2 | ik+1 = ik + 1, i0 = 0 if gj(z) = δ2, δ2 = 0, j = 1, ...,m}
G3 := {i, i ∈ Rm3 | ik+1 = ik + 1, i0 = 0 if gj(z) = δ3, δ3 < 0, j = 1, ...,m}

(5-3)

and define the re-arranged inequality functions as
g(G1) = G1z + E1x0 + g1

g(G2) = G2z + E2x0 + g2

g(G3) = G3z + E3x0 + g3

(5-4)

We can reformulate the optimization problem using the soft constraint approach in the fol-
lowing way:

min
z∈Rn,εs∈Rm̃

f0(z) + ω1||εs||1 + ω2||εs||22

s.t. G1z + E1x0 + g1 ≤ ε1
G2z + E2x0 + g2 ≤ ε2
G3z + E3x0 + g3 ≤ 0

εs ≥ 0

(5-5)

where εs = [εT1 εT2 ]T > 0, ω1 > ||λ∗||∞ with λ∗ being the optimal Lagrange multiplier cor-
responding to inequality constraints in (2-11), ω2 > 0, G ∈ Rm×n, E ∈ Rm×nx , g ∈ Rm,
εs ∈ Rm̃ and m̃ denotes the number of violated and active constraints.
Problem (5-5) can be written into the standard form of a quadratic programming problem:

min
z∈Rn,εs∈Rm̃

Fs(z, εs) = f0(z) + ω1||εs||1 + ω2||εs||22

s.t. g(z, εs) =

G1
G2
G3


︸ ︷︷ ︸
Ḡ

z +

E1
E2
E3


︸ ︷︷ ︸
Ē

x0 −

I 0
0 I
0 0


︸ ︷︷ ︸

F̄

εs +

g1
g2
g3


︸ ︷︷ ︸
ḡ

≤ 0 (Psoft)

Define a new variable z̄ = [zT εTs ]T ∈ Rn+m̃, then Problem (Psoft) can be easily written into

min
z̄

Fs(z̄) = 1
2 z̄

THzz̄ + hT
z z̄ (5-6a)

s.t. G(z̄) = Gzz̄ + Ezx0 + gz ≤ 0 (5-6b)

where
Hz =

[
H 0
0 ω2I

]
, hz =

[
hx0
ω11

]

Gz =


G1
G2

−I

G3 0
0 −I

 , Ez =


E1
E2
E3
0

 , gz =


g1
g2
g3
0


This QP problem with soft constraint approaching in (5-6) can be solved using Algorithm 4.
Note that in (5-5) we introduce both 1- and 2-norm in order to guarantee exactness of the
penalty function and strong convexity of objective function of Problem (5-6), i.e., Hz � 0.
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5-1-3 Initialization Strategy For Primal-Dual Interior-Point Methods

Define λ̄ = [λT
r λ

T
εs ]

T ∈ Rm+m̃
+ for Problem (5-6), where λr denotes the re-arranged Lagrange

multiplier corresponding to the re-arranged constraint sets in (5-3) for Problem (2-11).
Define the following Lagrangian:

L(z̄, λ̄) = Fs(z̄) + λ̄TG(z̄)

Then we can derive the following relaxed KKT conditions:

∇z̄Fs(z̄) +∇z̄G(z̄)Tλ̄ = 0 (5-7a)

G(z̄) + s̄ = 0 (5-7b)

S̄λ̄ = τ̄1m+m̃ (5-7c)

(s̄, λ̄) > 0 (5-7d)

where s̄ = [sT
r sT

εs ], S̄ = diag(s̄) and sr denotes the re-arranged slackness variable corre-
sponding to the re-arranged constraint sets in (5-3) for Problem (2-11).

In practic, (5-7b) can be written into the following form:
g(G1)− ε1 + s1 = 0
g(G2)− ε2 + s2 = 0

g(G3) + s3 = 0
−εs + sεs = 0

(5-8)

where sr = [sT
1 sT

2 sT
3 ]T.

Therefore, to initialize PDIP with a strictly feasibly starting point to solve Problem (5-6),
variables in KKT conditions in (5-7) can be initialized in the following way according to (5-3):

z0,PDIP = zDFG, εs,0,PDIP =
[
δ1 + δ̃1m1

δ̃1m2

]
(5-9a)

s̄0,PDIP =


δ̃1m1

δ̃1m2

−δ31m3

δ1 + δ̃1m1

δ̃1m2

 , λ̄0,PDIP =


λ(G1)
λ(G2)
λ(G3)
λ(G1)
λ(G2)

 (5-9b)

with δ̃ > 0 being efficiently small. Note that the information on the duality gap is fully fed
into the PDIP phase by (5-9b) according to the following:

(s̄0,PDIP)Tλ̄0,PDIP = (δ̃1m1)Tλ(G1) + (δ̃1m2)Tλ(G2)− (δ31m3)Tλ(G3)
+ [(δ1 + δ̃)1m1 ]Tλ(G1) + (δ̃1m2)Tλ(G2)

≈ (δ11m1)Tλ(G1)
= sT

r λr

(5-10)

where we use the fact that δ̃ is efficiently small and λ(G3) = 0.
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5-1-4 Algorithm Description

The nonlinear system we have to solve to obtain the primal-dual search direction consists
of (5-7a) - (5-7c). Since the algorithm is initialized with a strictly feasible starting point,
linearizing the nonlinear system, we can eliminate the equation

G(z̄) + s̄ = 0 (5-11)

Thus the final nonlinear system is:[
∇z̄Fs(z̄) +∇z̄G(z̄)Tλ̄

−diag (G(z̄)) λ̄− τ̄1

]
=
[
rdual,s
rcent,f,s

]
(5-12)

Linearize the nonlinear system above: ∇2
zzFs(z, εs) + Λ̄∇2

zzG(z, εs) ∇2
zεsFs(z, εs) + Λ̄∇2

zεsG(z, εs) ∇zG(z, εs)
∇2

zεsFs(z, εs) + Λ̄∇2
zεsG(z, εs) ∇2

εsεsFs(z, εs) + Λ̄∇2
εsεsG(z, εs) ∇εsG(z, εs)

−Λ̄∇zG(z, εs) −Λ̄∇εsG(z, εs) −diag (G(z, εs))


∆zpd

∆εs,pd
∆λ̄pd

 = −

 rdual,s,z
rdual,s,εs
rcent,f,s


(5-13)

with diag(λ̄) = Λ̄. Thus,∇2f0(z) + ω2In 0 ḠT

0 0 −F̄T

−Λ̄Ḡ −Λ̄(−F̄ ) −diag (g(z, εs))


∆zpd

∆εs,pd
∆λ̄pd

 = −

 ∇f0(z) + ḠTλ̄

ω11m̃ − F̄Tλ̄

−diag (g(z, εs)) λ̄− τ̄1m+m̃


(5-14)

Besides (5-14), one can also take the slackness variable s̄ in to consideration when computing
the primal-dual search direction. Therefore, the following linear system that is similar to
(4-17) is solved.

∇2
z̄Fs(z̄) DG(z̄)T 0
DG(z̄) 0 Im+m̃

0 S̄ Λ̄


∆z̄pd

∆λ̄pd
∆s̄pd

 = −

∇z̄Fs(z̄) +DG(z̄)Tλ̄
G(z̄) + s̄

S̄λ̄− τ̄1m+m̃


Hz GT

z 0
Gz 0 Im+m̃
0 S̄ Λ̄


︸ ︷︷ ︸

Drτ̄ (ζ̄)

∆z̄pd
∆λ̄pd
∆s̄pd


︸ ︷︷ ︸

∆ζ̄pd

= −

 Hzz̄ + hz +GT
z λ̄

Gzz̄ + Ezx0 + gz + s̄

S̄λ̄− τ̄1m+m̃

 (5-15)

where DG(z̄) denotes the first derivative of G(z̄) in (5-6b)

DG(z̄) =

 ∇G1(z̄)T

...
∇Gm+m̃(z̄)T


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5-2 Constraint Tightening Approach in Dual Fast Gradient Methods 37

Hence, Problem (5-6) can be solved by primal-dual interior-point methods in Subsection 4-2-
1. Further, the convergence of primal-dual interior-point solver can be analyzed via standard
Newton’s method solving the following corresponding optimization problem involving barrier
function:

min
z̄∈Rn+m̃

Fb,s(z̄) = Fs(z̄) + φ(z̄) (5-16)

where φ(z̄) = −
∑m+m̃
i=1 log (−Gi(z̄)). Therefore, the primal-dual interior-point method can

enter directly into pure Newton phase when initialized by dual fast gradient method and the
condition

‖∇Fb,s(z̄k)‖2 := ‖∇Fb(Psoft)‖2 ≤ ηp(Psoft) (5-17)

is satisfied, which is derived based on Theorem 4.2 and (5-16). Further, the following combined
algorithm can be derived.

The detailed algorithm, in which primal-dual interior-point method with soft constraint ap-
proach starts from a medium-accuracy solution returned by dual fast gradient method, is
described in Algorithm 5.

Algorithm 5 Combined Algorithm: Dual Fast Gradient Method Initializing Primal-Dual
Interior-Point Method with Soft Constraint Approach.

1: Given H, h, g, E, G, x0, λ̂, Ld, ηp, ε < ηp.
2: Initialize λ0 = λ̂, k = 0.
3: repeat
4: Compute zk = arg minz L(z, λk).
5: Compute λ̂k =

[
λk + 1

Ld
∇d(λk)

]
+
.

6: Compute λk+1 = k+1
k+3 λ̂k + 2

Ld(k+3)

[∑k
j=0

j+1
2 ∇d(λj)

]
+
.

7: k = k + 1.
8: until (5-17) is satisfied.
9: return (zDFG, λDFG)

10: Reformulate the QP with soft constraint approach in (5-6) according to (5-3), and initialize
ζ̄0 according to (5-9) and k = 0.

11: repeat
12: Determine τ̄k+1 = µ̄k+1 = κµ̄k = (s̄k)Tλ̄k/m.
13: Compute search direction ∆ζ̄k,pd = (∆z̄k,pd,∆λ̄k,pd,∆s̄k,pd) by solving (5-15).
14: Update ζ̄k+1 = ζ̄k + ∆ζ̄k,pd.
15: k = k + 1.
16: until stopping criterion µ̄k ≤ ε.
17: return Point close to z∗

5-2 Constraint Tightening Approach in Dual Fast Gradient Meth-
ods

One main drawback of dual methods is that they can only ensure primal feasibility asymp-
totically. This short-coming can be solved by using a constraint tightening approach. Dual
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first-order methods with tightening constraint approach has been proposed in [14, 34]. An
extended approach with adaptively chosen tightening parameters is presented in [25].

5-2-1 Overview

When solving a QP problem, such as, Problem (2-11), with constraint tightening approach,
instead of solving the problem directly, the following one is solved:

min
z

f0(z)

s.t. g(z) + εc1 ≤ 0
(5-18)

where εc > 0 is the tightening parameter and decides the amount of relative constraint tight-
ening. We assume here that the Slater’s condition also holds for the tightened problem (5-18).

5-2-2 Model Predictive Control Problem Reformulation

Considering Problem (2-11) arises from MPC scheme, the following problem with tightened
constraints is solved:

min
z∈Rn

f0(z) = 1
2z

THz + (hx0)Tz

s.t. gc(z) = Gz + Ex0 + g + εc1m ≤ 0
(Ptight)

If εc is selected as
1
2εc = max [Gz + Ex0 + g]+ (5-19)

a strictly feasible solution can be obtained [25].

According to Problem (Ptight), we define the following Lagrangian,

L(z, λc) = f0(z) + λT
c gc(z) (5-20)

the dual function
d(λc) = min

z∈Rn
L(z, λc) (5-21)

and the inner problem
z∗(λc) = arg min

z∈Rn
L(z, λc) (5-22)

Therefore, Problem (Ptight) can be solved using a dual method, e.g., dual fast gradient method.

5-2-3 Initialization Strategy for Primal-Dual Interior-Point Methods

By constraint tightening approach in dual fast gradient phase, a strictly feasible solution can
be obtained. Thus, the solution returned by dual fast gradient can be directly fed into primal-
dual interior-point method. Therefore, the initialization strategy of primal-dual interior-point
method can be given as follows:

z0,PDIP = zDFG, λ0,PDIP = λDFG

s0,PDIP = −(GzDFG + Ex0 + g)
(5-23)
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5-2-4 Algorithm Description

In primal space, according to (5-1), with a strictly feasible solution returned by dual fast
gradient method, the condition in primal space for primal-dual interior-point method to enter
pure Newton phase can be derived based the the barrier function associate with Problem
(2-11), that is:

‖∇Fb,t(zk)‖2 := ‖∇Fb(Ptight)‖2 ≤ ηp(Ptight) (5-24)

where Fb,t(z) = f0(z) + φ(z), and φ(z) = −
∑m
i=1 log (gc,i(z)) is the barrier function.

The detailed algorithm, in which primal-dual interior-point method starting from a medium-
accuracy solution returned by dual fast gradient method with constraint tightening approach,
is described in Algorithm 6.

Algorithm 6 Combined Algorithm: Dual Fast Gradient Method with Constraint Tightening
Approach Initializing Primal-Dual Interior-Point Method.

1: Given H, h, g, E, G, x0, λ̂c, Ld, ηp, ε < ηp.
2: Initialize λc,0 = λ̂c, k = 0.
3: repeat
4: Compute zk = arg minz L(z, λc,k).
5: Compute λ̂c,k =

[
λc,k + 1

Ld
∇d(λc,k)

]
+
.

6: Compute λc,k+1 = k+1
k+3 λ̂c,k + 2

Ld(k+3)

[∑k
j=0

j+1
2 ∇d(λc,j)

]
+
.

7: k = k + 1.
8: until (5-24) is satisfied.
9: return (zDFG, λDFG)

10: Initialize ζ0 according to (5-23) and k = 0.
11: repeat
12: Determine τk+1 = µk+1 = κµk = (sk)Tλk/m.
13: Compute search direction ∆ζk,pd by solving (4-17).
14: Update ζk+1 = ζk + ∆ζk,pd.
15: k = k + 1.
16: until stopping criterion µk ≤ ε.
17: return Point close to z∗

5-3 Primal Switching Condition from Dual Fast Gradient to Primal-
Dual Interior-Point Methods

One drawback of applying the switching condition (5-1) defined using barrier function is
that the condition involves the inverse of g(z) which will become undefined when there are
constraints active at the optimum. However, the main reason why MPC are preferred for
solving control problem in dynamic system with constraints is that MPC can exploit the full
range of the actuators, states and outputs.

Figure 5-1 shows how the primal condition in (5-1) drifts when the feasible starting primal-
dual interior-point solver converges to the optimum. The optimization problem P(z) in this
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case is the mp-QP in Problem (2-11) with current state

x0 =
[
−0.3010 −1.5380

]T
This current state x0 leads to constraints on output ‖y‖∞ ≤ 1 active at the optimum.

In Figure 5-1, the left axis shows the value of ‖∇Fb(P(z))‖2 that plays an important role
when determining the switching between damped and pure Newton phase in primal-dual
interior-point methods. The right axis shows the difference between the current and optimal
cost. The optimal cost f0(z∗) is computed by MATLAB function quadprog. Both axises are
in logarithmic scale. From Figure 5-1 we can see that the value of ‖∇Fb(P(z))‖2 decreases
and after 12 iterations, the switching condition of primal-dual interior-point method entering
the pure Newton phase is satisfied with ‖∇Fb(P(z))‖2 ≤ ηp = 0.0093. However, after 30
iterations, the value of ‖∇Fb(P(z))‖2 begins to increase while the difference between the
current and optimal cost is still decreasing, which means that the solution converges to an
active set, on which gi(z) = 0 for some i. With 30 iterations, the algorithm reaches the
accuracy around 10−8. Afterwards, the algorithm continues converging to higher accuracy
while the value of ‖∇Fb(P(z))‖2 flows back the greater values. Around 50 iterations the value
of ‖∇Fb(P(z))‖2 exceeds ηp, however, the algorithm has already converged to the optimum.
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Figure 5-1: Primal switching condition in (5-1) for primal-dual interior-point methods.

Another convergence analysis based on the convergence of the residual variable rτ defined in
(4-16) has been given in [5, Chapter 10]. By this scenario, the 2-norm of the residual variable
has to satisfy the following condition in order to enter pure Newton phase:

‖rτ (z, λ, s)‖ ≤ ηDr (5-25)
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where 0 < ηDr ≤
m2
Dr

LDr
with mDr the lower bound on Drτ (ζ) and LDr denotes the Lipschitz

constant of Drτ (ζ). Compared to convergence analysis presented in [5, Chapter 10] we want
to account for inequality constraints. In the presence of inequality, the condition in (5-25)
becomes too conservative to be used in practice because the condition numbers of Drτ (ζ) are
hard to derive, due to asymmetry and variance of Drτ (ζ). Therefore, we can conclude by now
that by the author’s knowledge, the switching condition between damped and pure Newton
phase in primal space of primal-dual interior-point method, e.g., Theorem 4.2 ((5-17) and
(5-24) are its extensions) and (5-25), will not work out in practice, even theoretically, when
inequality constraints are involved in system dynamics.

Loosely speaking, the conditions above state that if the algorithm is far from the optimal so-
lution, it converges more slowly (damped Newton phase), while when it is close to the optimal
solution, it converges faster (pure Newton phase). We rely on this observation to propose,
in the next section, a new switching condition (in dual space) to enter pure Newton phase.
Moreover, we design an improved primal-dual interior-point algorithm that fully replace the
damped Newton phase with the dual fast gradient method.

5-4 Proposed Dual Switching Condition from Dual Fast Gradient
to Primal-Dual Interior-Point Methods

Recall the QP problem obtained via condensed formulation for a MPC problem in (2-11):

min
z∈Rn

f0(z) = 1
2z

THz + (hx0)Tz

s.t. g(z) = Gz + Ex0 + g ≤ 0

in which we substituting all constraints on z into g(z) ≤ 0. In this way, Z := Rn.

5-4-1 Characterization of the Dual Hessian

Recall the dual function d(λ) defined in (3-5). Then we can derive the following expression
for dual Hessian:

∇2d(λ) = −∇g(z(λ))
[
∇2f0(z)

]−1
∇g(z(λ))T = −GH−1GT (5-26)

for QP problems derived from a MPC problem. A proof based on the proof of Theorem 2.1
in [26] can be derived.

Proof. Since f0(z) is strongly convex, it follows that for any λ ≥ 0, z(λ) is unique, and thus
d(λ) is a differentiable function having the gradient given by:

∇d(λ) = g(z(λ)) (5-27)

Give the optimality condition,

∇f0(z(λ)) +∇g(z(λ))Tλ = 0, λ ≥ 0 (5-28)
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and differentiate it w.r.t λ we can obtain the following equation:

∇z(λ)T∇2f0(z(λ)) +∇g(z(λ)) +∇z(λ)T
m∑
i=1

λi∇2gi(z(λ)) = 0 (5-29)

from which we can obtain:

z(λ)T = −∇g(z(λ))
[
∇2f0(z(λ)) +

m∑
i=1

λi∇2gi(z(λ))
]−1

(5-30)

We also assume that g(z) are twice differentiable, and by differentiating (5-27) we have

∇2d(λ) = ∇g(z(λ))∇z(λ) (5-31)

Substituting (5-30) into (5-31) and obtain:

∇2d(λ) = −∇g(z(λ))
[
∇2f0(z(λ)) +

m∑
i=1

λi∇2gi(z(λ))
]−1

∇g(z(λ))T

= −∇g(z(λ))
[
∇2f0(z)

]−1
∇g(z(λ))T

= −GH−1GT

(5-32)

where in the second equation we use that
∑m
i=1 λi∇2gi(z(λ)) = 0 since g(z) is affine.

Therefore, we can derive the following upper and lower bound on the norm of ∇2d(λ)

md = ‖G‖22
σmax(H) ≤ ‖∇

2d(λ)‖2 ≤
‖G‖22

σmin(H) = Md (5-33)

where σmax(H) and σmin(H) denote the maximum and minimum eigenvalue of H. And from
(5-32), it is obvious that ∇2d(λ) is Lipschitz continuous with any LdH ≥ 0.

5-4-2 Modification of the Switching Condition

Mainly, we care about the pure Newton phase in the convergence of primal-dual interior-point
method. Since it is hard to analyze the characteristic of convergence in primal space and dual
fast gradient method operates in dual space, we transfer our convergence analysis into the
dual space as well. We also make the following assumption on the solution obtained by dual
fast gradient method.

Assumption 5.1. After kmax iterations, dual fast gradient method returns a ηd-suboptimal
solution zkmax which provide the following estimation on feasibility violation:∥∥∥[g(ẑkmax)]+

∥∥∥
2
≤ ηd

where ẑk denotes the average sequence for the primal variable

ẑk =
k∑
j=0

2(j + 1)
(k + 1)(k + 2)zj
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Based on the convergence analysis in [5, §9.5.3] of standard Newton’s method, we can derive
a similar outline of convergence analysis in dual space.

Theorem 5.2. There exist numbers ηd and γd with 0 < ηd ≤
m2
d

LdH
and γd > 0 such that the

following hold.

• Damped Newton Phase. If ‖∇d(λ)‖2 > ηd, then for all k ≥ 0

d(λk+1)− d(λk) ≤ γd (5-34)

• Pure Newton Phase. If ‖∇d(λ)‖2 ≤ ηd, the the backtracking line search in dual space
will select ρk̄ = 1 and for k̄ > 0

LdH
2m2

d

∥∥∥∇d(λk̄+1)
∥∥∥

2
≤
(
LdH
2m2

d

‖∇d(λk̄)‖2

)2

(5-35)

and an upper bound on the duality gap can be derived as

f0(z∗)− d(λk̄) ≤ 1
2md

∥∥∥∇d(λk̄)
∥∥∥2

2
≤ 2m3

d

L2
dH

(1
2

)2k̄+1

(5-36)

which shows that we achieve quadratic convergence.

Proof. Here we provide an outline of the proof. For those readers who are interested, the
detailed proof can be found in Appendix A-1.

We must take into account that the dual function (3-5) is a concave function that must be
maximized. Hence, the search direction in dual space is an ascent direction, compared to the
one in primal space which is a descent one. Similar considerations hold to define the Newton
increment for dual problem. Following the convergence proof in [5, Chapter 9], first we show
that the following condition leads to a unit step size in backtracking line search in dual space:

‖∇d(λk)‖2 ≤ ηd. (5-37)

Second, by relying on the Lipschitz continuity of the dual Hessian in (5-26) and strong con-
vexity property of function −d(λ) (which follow from the assumptions of the theorem), a
crucial result on the duality gap can be obtained:

f0(z∗)− f(zk̄) ≤ f0(z∗)− d(λk̄) ≤
1

2md
‖∇d(λk̄)‖

2
2 (5-38)

Finally, using the definition of ηd and substituting (5-37) into (5-38) concludes the proof.

Therefore, under Assumption 5.1, (3-5) is can be modified as follows:

d(λ) = min
z∈Rn

f0(z) + λTg(z)

= min
z∈Rn

f0(z) + λT [g(z)]+
(5-39)
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since in the Lagrange multiplier λ, the entries corresponding to inactive constraints equal to
zero. Therefore, the first-order derivative of the dual function d(λ) for Problem (5-39) is:

∇d(λ) = [g(z)]+ (5-40)

Thus, the switching condition in Theorem 5.2 can be transfered into:

‖∇d(λ)‖2 =
∥∥∥[g(z)]+

∥∥∥
2
≤ ηd (5-41)

5-5 Proposed Solver Description

Algorithm 7 Proposed Solver.

1: Given H, h, g, E, G, x0, λ̂, Ld, ηd, ε < ηd.
2: Initialize λ0 = λ̂, k = 0.
3: repeat
4: Compute zk = arg minz L(z, λk).
5: Compute λ̂k =

[
λk + 1

Ld
∇d(λk)

]
+
.

6: Compute λk+1 = k+1
k+3 λ̂k + 2

Ld(k+3)

[∑k
j=0

j+1
2 ∇d(λj)

]
+
.

7: k = k + 1.
8: until (5-41) is satisfied.
9: return (zDFG, λDFG)

10: Initialize ζ0 according to (5-42) and k = 0.
11: repeat
12: Determine τk+1 = µk+1 = κµk = (sk)Tλk/m.
13: Compute search direction ∆ζk,pd by solving (4-17).
14: Update ζk+1 = ζk + ∆ζk,pd.
15: k = k + 1.
16: until stopping criterion µk ≤ ε.
17: return Point close to z∗

Algorithm 7 summarizes the proposed strategy to compute a solution for the MPC problem
in (2-11), in which the DFG (Steps 3-9) is used to compute an ηd-solution that allows the
PDIP (Steps 10-17) to enter directly in the pure Newton phase and converge quadratically to
the optimal solution of the MPC problem. When Algorithm 7 switches from the DFG phase
to the pure Newton phase (Step 5), we have to make sure that we preserve the information
already computed by the DFG. Hence, the initialization strategy for the PDIP is important
to have a successful switch. In this respect, Step 5 of Algorihtm 7 relies on the solution
(zDFG, λDFG) returned by DFG as follows:

ζ0 = (zDFG, λDFG, s0,PDIP), (5-42a)
s0,PDIP = − [g(zDFG)]− + [g(zDFG)]+ . (5-42b)

Equation (5-42b) provides an initialization for s that guarantees s > 0. Note that the infor-
mation on the duality gap is fully fed into the pure Newton phase by (5-42b), according to
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the following
(s0,PDIP)Tλ0,PDIP =

[
− [g(zDFG)]−+ [g(zDFG)]+

]T
λ0,PDIP

= [g(zDFG)]T+ λ0,PDIP,

where we use the fact that [g(zDFG)]T− λ0,PDIP = 0.
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Chapter 6

Numerical Results

The proposed solver in Algorithm 5, 6 and 7 are tested on the planar discrete-time linear
unstable system in [34] with the following system matrices:

A =
[
1.09 0.22
0.49 0.02

]
, B =

[
1.22 0.88
−0.78 −0.34

]

C =
[

1.34 −0.16
−3.19 −0.56

]
, D =

[
1.60 1.01
−0.68 0.77

]

The input and output of the system are subjected to the following constraints: ‖u‖∞ ≤
1, ‖y‖∞ ≤ 1. Furthermore, Q and R are defined as follows according to [34]:

Q =
[
5.44 5.80
5.80 7.01

]
, R =

[
1.14 0.68
0.68 0.62

]

We initialize the system at the following initial condition:

x0 =
[
−0.3010 −1.5480

]T
that causes active output constraints at the optimum.

We tested the algorithm on a Windows OS, using an Intel(R) Core(TM) i7-4550 CPU (1.50-
2.10 GHz) and RAM 8.00GB. The algorithms are implemented in MATLAB.

6-1 Results for Primal Switching Condition

As shown in Section 5-3, the switching condition in (5-1) between damped and pure Newton
phase for primal-dual interior-point methods in primal space encounters invalidation when
there are constraints active at the optimum. Therefore, the condition (5-1) cannot be used in
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practice due to its conservativeness. However, the idea that removing damped Newton phase
in primal-dual interior-point methods by dual fast gradient methods can still be verified.

In order to present numerical results for Algorithm 5 and 6, we use a stopping criterion
on duality gap (µ ≤ εDFG) for dual fast gradient method instead of condition (5-1) ((5-17)
for Algorithm 5 and (5-24) for Algorithm 6). And we use condition (5-25) to evaluate the
iterations in damped and pure Newton phase.

6-1-1 Soft Constraint Approach in Primal-Dual Interior-Point Methods

For Algorithm 5, we compare the following five scenarios:

Scenario 1. Algorithm 4 is warm-started with z̄0,PDIP := [zT
LS εs(zLS)T]T, where zLS is the

optimal solution of the unconstrained problem, that is, a least-squares (LS) problem,
associated with Problem (2-11), and εc(zLS) is the softening parameter associated with
solution zLS. Slack variable s̄0,PDIP related to Problem (5-6) is initialized according to
(5-9) related to z̄0,PDIP and λ̄0,PDIP = 1m+m̃.

Scenario 2. Algorithm 4 is warm-started with z̄0,PDIP := [zT
LS εs(zLS)T]T as described in

Scenario 1 and (s̄0,PDIP, λ̄0,PDIP) related to z̄0,PDIP in (5-9).

Scenario 3. Algorithm 5 with Step 8 replaced by1

f0(zDFG)− d(λDFG) ≤ εDFG = 10−2/−3

Scenario 4. Algorithm 5 with Step 8 replaced by2

f0(zDFG)− d(λDFG) ≤ εDFG = 10−4/−5

Scenario 5. Algorithm 5 with Step 8 replaced by

f0(zDFG)− d(λDFG) ≤ εDFG = 10−6

Remark. Scenarios 1 and 2 rely on two different initializations of the dual variables to show
the impacts that their initialization have on the behavior of the solver. To the best of our
knowledge, many off-the-shelf interior-point solvers do not allow the user to access the dual
variables for their initialization (e.g., MATLAB’s quadprog). A default choice is the one
proposed in Scenario 1 in which the dual variables are initialized to 1. The warm-starting
strategy proposed in Scenario 2 considers λ̄0,PDIP corresponding to the violated (and active)
constraints with solution z̄0,PDIP := [zT

LS εs(zLS)T]T, in order to enable Algorithm 4 to main-
tain information on duality gap at zLS with softening parameter εs(zLS), detailed in (5-10).

1With accuracy εDFG = 10−2 or 10−3, dual fast gradient solver in Algorithm 2 returns the same result when
solving Problem (2-11).

2With accuracy εDFG = 10−4 or 10−5, dual fast gradient solver in Algorithm 2 returns the same result when
solving Problem (2-11).
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Table 6-1 compares Algorithm 5 (Scenario 3, 4 and 5) with Algorithm 4 (Scenarios 1 and 2)
in terms of Newton iterations. Considering warm-starting approach applied in Scenario 1 and
2, Algorithm 4 requires fewer Newton iterations with λ̄0,PDIP initialized by (5-9). The reason
is that, with soft constraint approach, the primal feasibility violation is introduced in the cost
function, i.e., (5-6a). Therefore, compared to initialization strategy of λ̄0,PDIP in Scenario 1
when solving Problem (5-6), Scenario 2 has a starting point that is closer to the optimum.
From columns 3-4 in Table 6-1 we can see that as DFG solvers is terminated at a higher
accuracy, fewer iterations in damped Newton phase is required. As DFG is terminated at
the accuracy εDFG = 10−6, the damped Newton phase can be completely removed. Figure 6-
1 shows the computational time of Scenario 1-5. In Figure 6-1, f0(z∗) is the optimal cost
corresponding to z∗, computed by MATLAB’s quadprog. PDIP terminates when the duality
gap satisfies µ̄ ≤ 10−12. The blue dash-dot line shows the computational time of Algorithm
4 in Scenario 1. The red dash-dot line shows the computational time of Algorithm 4 in
Scenario 2. The orange solid line shows the computational time of Algorithm 2 reaching a
high accuracy (≈ 10−12) by 5155 iterations. The purple solid line shows the computational
time of Algorithm 5 in Scenario 3. The green line shows the computational time of Algorithm
5 in Scenario 4. The light-blue bold solid line shows the computational time of Algorithm 5
in Scenario 5. Note that Scenario 5 requires 591 DFG iterations to eliminate damped Newton
phase in PDIP phase. Compared to Scenario 1 and 2, Scenario 5 shows improvement on
time efficiency since damped Newton phase is replaced by DFG iterations and therefore no
backtracking line search is needed.
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Figure 6-1: Time required for online optimization using Algorithms 2, 4, and 5 in Scenarios 1-5.
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Table 6-1: Iterations of Scenarios 1-5.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
DFG – – 35 108 591

PDIP
Damped

Newton Phase 19 16 9 5 –

Pure
Newton Phase 23 23 22 22 18

6-1-2 Constraint Tightening Approach in Dual Fast Gradient Methods

For Algorithm 6, we compare the following five scenarios:

Scenario 6. Algorithm 4 is warm-started with z0,PDIP := zLS, which is the optimal solution
of the unconstrained problem, that is, a least-squares (LS) problem, associated with
Problem (2-11), and λ0,PDIP = 1m.

Scenario 7. Algorithm 4 is warm-started with z0,PDIP := zLS as in Scenario 6 and λ0,PDIP =
10−61m.

Scenario 8. Algorithm 6 with εc = 0.0589 and Step 8 replaced by3

f0(zDFG)− d(λc,DFG) ≤ εDFG = 10−2/−3

Scenario 9. Algorithm 6 with εc = 0.0025 and Step 8 replaced by4

f0(zDFG)− d(λc,DFG) ≤ εDFG = 10−4/−5

Scenario 10. Algorithm 6 with εc = 1.4008× 10−6 and Step 8 replaced by

f0(zDFG)− d(λc,DFG) ≤ εDFG = 10−6

Remark. Scenarios 6 and 7 rely on two different initializations of the dual variables to show
the impacts that their initialization have on the behavior of the solver. A default choice is the
one proposed in Scenario 6 in which the dual variables are initialized to 1. The warm-starting
strategy proposed in Scenario 7 considers λ0,PDIP close to zero, which is the optimal value of
the multipliers associated with the unconstrained LS problem.

Table 6-2 compares Algorithm 6 (Scenario 8, 9 and 10) with Algorithm 4 (Scenarios 6 and
7) in terms of Newton iterations. Algorithm 4 requires 45 iterations in Scenario 6, while it
requires 43 iterations in Scenario 7. Notice, however, that, while the total number of iterations
in Scenario 7 is reduced, Algorithm 4 requires more damped-Newton-phase iterations. The
main reason is that the initialization in Scenario 7 is farther from the optimal value, given
that it is initialized with the pair (zLS, λ0 ≈ 0), which assumes no active constraints (while

3With accuracy εDFG = 10−2 or 10−3, dual fast gradient solver in Algorithm 2 returns the same result when
solving Problem (2-11).

4With accuracy εDFG = 10−4 or 10−5, dual fast gradient solver in Algorithm 2 returns the same result when
solving Problem (2-11).
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constraints are active at the optimum). If we compare the results in Table 6-1 and 6-2, they
are similar. Columns 3-4 in Table 6-2 shows that when DFG solvers is terminated at a higher
accuracy, fewer iterations in damped Newton phase is required. As DFG is terminated at
the accuracy εDFG = 10−6, the damped Newton phase can be completely removed. PDIP
terminates when the duality gap satisfies µ ≤ 10−12. Figure 6-2 shows the computational
time of Scenario 6-10. The blue dash-dot line shows the computational time of Algorithm
4 in Scenario 6. The red dash-dot line shows the computational time of Algorithm 4 in
Scenario 7. The orange solid line shows the computational time of Algorithm 2 reaching
a high accuracy (≈ 10−12) by 5155 iterations without tightening constraint approach. The
purple solid line shows the computational time of Algorithm 6 in Scenario 8. The green line
shows the computational time of Algorithm 6 in Scenario 9. The light-blue bold solid line
shows the computational time of Algorithm 6 in Scenario 10. Note that Scenario 10 requires
590 DFG iterations to eliminate damped Newton phase in PDIP phase. Compared to Scenario
6 and 7, Scenario 10 shows similar improvement on time efficiency with constraint tightening
approach to Figure 6-1.

Remark. Note that, compared to Figure 6-1, there are gaps in DFG phase between the plots
of different scenarios in Figure 6-2, while in Figure 6-1 the computational time of DFG phase
in each scenarios matches almost completely. The reason is that in Figure 6-2, Scenario
8-10 solve QP problem with tightened constraints, i.e., Problem (5-18), and the tightening
parameters are different for different terminating accuracy of DFG. Thus, in each scenario,
the DFG algorithm solves a different QP problem, which leads to difference in computational
time.
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Figure 6-2: Time required for online optimization using Algorithms 2, 4, and 6 in Scenarios 6-10.
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Table 6-2: Iterations of Scenarios 6-10.

Scenario 6 Scenario 7 Scenario 8 Scenario 9 Scenario 10
DFG – – 68 79 590

PDIP
Damped

Newton Phase 6 16 13 7 –

Pure
Newton Phase 39 27 21 21 17

6-2 Results for Dual Switching Condition

As mentioned in Section 5-4, LdH can be selected as any real number greater than zero. In
this respect, we chose LdH = 150. Furthermore, md = 1.4529 and, consequently ηd = 0.0097.
Finally, the backtracking line search parameters for Algorithm 4 are chosen as α = 1

3 , β = 0.5.

We compared the Scenario 6, 7 and Algorithm 7.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

t [seconds]

-12

-10

-8

-6

-4

-2

0

lo
g
1
0
(‖
f
(z
)
−
f
0
(z

∗
)‖

2
)

Algorithm 2

Scenario 6

Scenario 7

Algorithm 7

Switching point

Figure 6-3: Time required for online optimization using Algorithms 2, 4, and 7.

Table 6-3 compares Algorithm 7 with Algorithm 4 (Scenarios 6 and 7) in terms of Newton
iterations. As Table 6-3 shows, Algorithm 7 reduces the number of iterations to 28 and com-
pletely eliminates the damped Newton phase, thanks to the use of the DFG to initialize the
interior-point iterates. This leads to significant improvements also from the computation point
of view as Figure 6-3 depicts. In particular, Figure 6-3 shows the computation time required
to solve Problem (2-11) online using the proposed algorithm, i.e., Algorithm 7. In Figure 6-3,
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Table 6-3: Iterations of Algorithms 4 (columns 1-2) and 7 (column 3).

Scenario 6 Scenario 7 Algorithm 7
Damped Newton Phase 6 16 –
Pure Newton Phase 39 27 28

f0(z∗) is the optimal cost corresponding to z∗, computed by MATLAB’s quadprog. PDIP
terminates when the duality gap satisfies µ ≤ ε = 10−12. The blue solid line shows the com-
putation time of Algorithm 4 in Scenario 6. The light-blue solid line is the computation time
of Algorithm 4 in Scenario 7. The red solid line shows the computation time of Algorithm 2.
The black bold line shows our proposed solver, Algorithm 7. The green star indicates the
switching point when the solution returned by DFG satisfies condition (5-41) (µ ≈ 10−3 ).
Note that, Algorithm 2 requires 5155 iterations to reach a high accuracy (≈ 10−12), while
DFG phase only requires 65 DFG iterates to reach the medium accuracy needed and enter
the pure Newton phase in Algorithm 7. Furthermore, note that the improvements in terms
of computation time compared to Scenarios 6 and 7 are related to the following facts: (i)
our algorithm does not require backtracking line search (computationally costly), and (ii) the
damped Newton phase is replaced by DFG iterates.
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Figure 6-4: Time required for online optimization using Algorithms 2, 4, Algorithm 5, Algorithm
6 and 7.

Finally, we make a comparison on computational time in Figure 6-4 between Algorithm 2,
4 (Scenario 6 and 7), 5 (Scenario 5), 6 (Scenario 10) and Algorithm 7. From Figure 6-4,
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we can see that without constraint softening or tightening approach, Algorithm 7 is more
computationally efficient by allowing primal infeasible iterations in PDIP phase, and thanks
to the switching strategy in (5-41) derived in dual space which can be checked easily in each
DFG iteration.
Remark. Figure 6-2, 6-3 and 6-4 monitor ‖f0(zk) − f0(z∗)‖2 (in logarithmic scale). When
Algorithm 4 is initialized with the optimal solution z0 := zLS (Scenarios 6 and 7), f0(z0) <
f0(z∗), given that it does not account for the presence of (active) constraints at the optimum.
This leads to the nonmonotonic behavior at 0.02 sec (blue line) and 0.08 sec (light-blue line)
in Figure 6-3, when PDIP enters the feasible region (and in pure Newton phase).
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Chapter 7

Conclusion and Future Work

The most significant contribution of this master thesis is that it proposes a novel primal-dual
interior-point method for optimization problems that typically arise from model predictive
control applications, i.e., quadratic programming problems with linear inequality constraints.
The proposed solver improves the convergence of state-of-the-art primal-dual interior-point
methods by replacing the damped Newton phase, which converges linearly, with a dual fast
method, that converges, instead, super-linearly. This result is obtained by working in the
dual space and modifying the condition to enter the pure Newton phase. Being able to start
primal-dual interior-point method directly from pure Newton phase, the computational effort
required by backtracking line search can also be saved. Finally, we show the benefits of the
proposed algorithm on a discrete unstable planar system. This work has been submitted for
publication at IFAC WC 2017.
In addition, the studies on the convergence of primal-dual interior-point method in primal
space are explained in details. Although the switching condition for primal-dual interior-point
methods remains conservative in primal space, the methods proposed in Section 5-1 and 5-2
can also earn benefits by reducing number of iterations in damped Newton phase. These two
methods can be applied by setting the stopping criterion of DFG as

f0(z∗)− d(λ) ≤ εDFG (7-1)

usually, 10−6 is a reasonable choice for εDFG. These two method would be preferred in the
following situations:

• DFG + PDIP with soft constraint approach (Section 5-1): one does not know whether
a feasible solution exists.

• DFG with constraint tightening approach + PDIP (Section 5-2): more strict executional
time limitation which leads to high possibility that the algorithm would end prematurely.

We aim to extend the initialization strategy to active set methods, where the dual fast gradient
can be used to determine the set of active constraints more efficiently. Furthermore, we aim
to test the proposed algorithm on a more realistic (large scale) application.
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Appendix

A-1 Proof of Theorem 5.2

Before we prove the theorem, some important definitions and conclusions are presented be-
forehand.

A-1-1 Newton Increment

For Newton’s method in primal space, the search direction is the inverse of the primal Hessian
times the first derivative. With step size properly chosen, this search direction will lead to a
decrease in the cost function. Therefore, the search direction of Newton’s method in primal
space is a descent direction.

In dual space, the following dual function corresponding to the primal problem is maximized
with Newton’s method:

max
λ∈Rm+

d(λ) = L(z∗(λ), λ) (A-1)

and we assume that the inner problem

z∗(λ) = arg min
z∈Rn

L(z, λ)

can be solved exactly.

According to the strategy followed in [5, Chapter 9], the first-order approximation of dual
function d(λ) is used.

d(λ+ ∆λnt) = d(λ) +∇d(λ)T∆λnt (A-2)

At the optimum, the first-order optimality condition shows that

∇d(λ+ ∆λnt) = ∇d(λ) +∇2d(λ)∆λnt = 0 (A-3)
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From the optimality condition in (A-3), the Newton search direction in dual space can be
computed:

∆λnt = −∇2d(λ)−1∇d(λ)
≥ 0

(A-4)

Since dual function is a concave function, the dual Hessian −∇2d(λ) is negative definite.
Therefore, ∆λnt is an ascent direction in dual space.

Definition A.1. The Newton increment of dual function d(λ) can be defined as:

ν(λ) =
[
−∇d(λ)T∇2d(λ)−1∇d(λ)

] 1
2

=
[
−∆λTnt∇2d(λ)∆λnt

] 1
2

(A-5)

Thus, the following holds:

ν(λ)2 = −∇d(λ)T∇2d(λ)−1∇d(λ)
= −∆λTnt∇2d(λ)∆λnt

(A-6)

and
ν(λ)2 = ∇d(λ)T∆λnt (A-7)

Another important conclusion used in the proof afterwards is derived based on the assumption
of strong convexity (5-33) and (A-6):

− ν(λ)2 ≤ −md ‖∆λnt‖22 (A-8)

Define the second-order Taylor approximation d̂(λ) of d(λ) at λ as:

d̂(λ+ ∆λnt) = d(λ) +∇d(λ)T∆λnt + 1
2∆λTnt∇2d(λ)∆λnt (A-9)

Since strong duality holds (Assumption 2.1), sup d̂(λ) is the optimum of original problem
(5-4). Then, Newton increment can be related to the quantity:

d(λ)− sup d̂(λ+ ∆λnt) = 1
2∆λTnt∇2d(λ)∆λnt = −1

2ν(λ)2 ≤ 0 (A-10)

Therefore, the Newton increment can serve as an estimation of suboptimality.

A-1-2 Proof of Quadratic Convergence

• Step Size Selected by Backtracking Line Search

In this part, we prove that, if

‖∇d(λ)‖2 ≤
m2
d

LdH
(A-11)
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the step size of backtracking line search in dual space will select the step size as one, i.e.,
ρ = 1.
By Lipschitz condition on the dual Hessian ∇2d(λ), then for ρ ≥ 0, the following relation
holds: ∥∥∥∇2d(λ+ ρ∆λnt)−∇2d(λ)

∥∥∥
2
≤ ρLdH ‖∆λnt‖2 (A-12)

Multiply (A-12) by ∆λnt on both sides and obtain:∣∣∣∆λTnt

[
∇2d(λ+ ρ∆λnt)−∇2d(λ)

]
∆λnt

∣∣∣ ≤ ρLdH ‖∆λnt‖32 (A-13)

Define a function w.r.t step size variable ρ as d̃(ρ) = d(λ+ρ∆λnt) and then we have ∇2
ρd̃(ρ) =

∆λTnt∇2d(λ+ ρ∆λnt)∆λnt. Therefore, (A-13) can be written as:∣∣∣∇2
ρd̃(ρ)−∇2

ρd̃(0)
∣∣∣ ≤ ρLdH ‖∆λnt‖32 (A-14)

In order to prove the conclusion on backtracking line search, the following inequality is used
to find an lower bound on d̃(ρ):

0 = ∇2
ρd̃(ρ)−∇2

ρd̃(0) ≥ −ρLdH ‖∆λnt‖32

≥ −ρ LdH
m

3/2
d

ν(λ)3 (A-15)

and this will leads to
∇2
ρd̃(ρ) ≥ −ν(λ)2 − ρ LdH

m
3/2
d

ν(λ)3 (A-16)

From (A-15) to (A-15), we use ∇2
ρd̃(0) = −ν(λ)2 according to (A-6) and (A-8).

Since ∇ρd̃(0) = ∇d(λ)T∆λnt = ν(λ)2 according to (A-7), we integrate this equation over ρ to
obtain

∇ρd̃(ρ) ≥ ∇ρd̃(0)− ρν(λ)2 − ρ2 LdH

m
3/2
d

ν(λ3)

= ν(λ)2 − ρν(λ)2 − ρ2 LdH

m
3/2
d

ν(λ3)
(A-17)

Integrate the equation above once more and get

d̃(ρ) ≥ d̃(0) + ρν(λ)2 − ρ2

2 ν(λ)2 − ρ3 LdH

6m3/2
d

ν(λ)3 (A-18)

Now suppose the switching condition to entering pure Newton phase is satisfied

‖∇d(λ)‖2 ≤ ηd ≤
3(1− 2α)m2

d

LdH
(A-19)

in which with the backtracking line search parameter α = 1
3 yields the condition in (A-11).

Moreover, by strong convexity, we can derive the following relation:

ν(λ) ≤ 3(1− 2α)m3/2
d

LdH
(A-20)
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If the step size ρ is set to one, (A-18) becomes:

d(λ+ ∆λnt) ≥ d(λ) + 1
2ν(λ)2 − L

6m3/2
d

ν(λ)3

≥ d(λ) + 1
2ν(λ)2 + L

6m3/2
d

ν(λ)2
[

3(2α− 1)m3/2
d

LdH

]

= d(λ) + ν(λ)2
[

1
2 + L

6m3/2
d

3(2α− 1)m3/2
d

LdH

]
= d(λ) + αν(λ)2

= d(λ) + α∇2d(λ)T∆λnt

(A-21)

which shows that the unit step ρ = 1 is accepted by the backtracking line search in dual
space.

• Quadratic Convergence in Dual Space

Since with condition in (A-11) the backtracking line search will select unit step, by Lipschitz
continuity, we can derive the following relation of the first-order derivative of the dual function
between two iterations:

‖∇d(λ+)‖2 =
∥∥∥∥∫ 1

0

[
∇2d(λ+ ρ∆λnt)−∇2d(λ)

]
∆λntdρ

∥∥∥∥
2

≤ LdH
2 ‖∆λnt‖22

= LdH
2

∥∥∥∇2d(λ)−1∇d(λ)
∥∥∥2

2

≤ LdH
2m2

d

‖∇d(λ)‖22

(A-22)

Therefore, for k̄ > 0, recursively we can have

LdH
2m2

d

‖∇d(λk̄)‖2 ≤
(
LdH
2m2

d

‖∇d(λ)‖2

)2

≤
(
LdH
2m2

d

· m
2
d

LdH

)2k̄

=
(1

2

)2k̄

(A-23)

From the property of concave function:

d(µ) ≤ d(λ) +∇d(λ)T (µ− λ)− m

2 ‖µ− λ‖
2
2 (A-24)

we can have
d(µ) ≤ d(λ) + ‖∇d(λ)‖2 ‖µ− λ‖2 −

md

2 ‖µ− λ‖
2
2 (A-25)

Thus,

d(λ+)− d(λ) ≤ ‖∇d(λ)‖2 ‖λ+ − λ‖2 −
md

2 ‖λ+ − λ‖2

≤ ‖∇d(λ)‖2
∥∥∥∇2d(λ)−1∇d(λ)

∥∥∥
2
− md

2

∥∥∥∇2d(λ)−1∇d(λ)
∥∥∥

2

≤ 1
2md

‖∇d(λ)‖2

(A-26)
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Combining (A-23) and (A-26), the following convergence result can be obtained:

f0(z∗)− d(λk̄) = d(λ∗)− d(λk̄) ≤
1

2md
‖∇d(λ)‖2 ≤

m3
d

L2
dH

(1
2

)2k̄

=
(
md

4LdH

)k̄
(A-27)

which shows that we can achieve quadratic convergence.
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Glossary

List of Acronyms

3mE Mechanical, Maritime and Materials Engineering

ARE Algebraic Riccati Equation

DCSC Delft Center for Systems and Control

DFG Dual Fast Gradient Method

IP Interior-Point Methods

KKT Karush-Kuhn-Tucker Conditions

LTI Linear Time-Invariant

LS Least-Squares

MPC Model Predictive Control

mp-QP Multi-Parametric Quadratic Programming

PID Proportional-Integral-Derivative Controller

PDIP Primal-Dual Interior-Point Method

PWA Piecewise Affine Function

QP Quadratic Programming

List of Notations

‖ · ‖1 1-Euclidean norm

‖ · ‖2 2-Euclidean norm
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68 Glossary

‖ · ‖∞ Infinity norm

‖ · ‖D Dual norm

‖ · ‖2Q Quadratic norm with weight matrix Q, e.g., ‖z‖2Q = zTQz

[ · ]+/− Projection on nonnegative or negative orthant

⊗ Tensor product

∇n(·) nth derivative of a function

diag(·) Matrix built from a vector with entries on its main diagonal

relint(·) Relative interior of a set

bαc Largest integer which is less than or equal to α which is a real number

List of Symbols

t Sampling instant

x(t) System state

u(t) System input

y(t) System output

A, B, C, D
System matrices

X , U , Y Feasible sets for system state, input and output

N Prediction horizon

Jt(xj , uj) Stage cost

JN (xN , uN ) Terminal cost

J(x, u) Cost function

Q, R Weight matrices on system state and input in state cost

P Weight matrix on terminal state

x0 Current state, x0 := x(t)

z Decision variable in the QP problem formulate from MPC problem, primal vari-
able

Z Feasible set for decision variable z
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AN , BN , CN , DN

System matrices over prediction horizon

H Primal Hessian

h Coefficient vector in primal cost function

g(·) Function of inequality constraints w.r.t decision variable, affine.

f(·) Function of equality constraints w.r.t decision variable, affine.

G, E, g Coefficient matrices or vectors in function g(·)

f0(z∗) Primal optimum

n Dimension of decision variable

m Number of independent inequality constraints

mp, Mp Condition numbers associated with strong convexity of the primal optimization
problem

Lp Lipschitz constant of the primal Hessian

σ(·)max /min Maximal and minimal eigenvalue of a matrix

L(·) Lagrangian

λ Lagrange multiplier

d(λ) Dual function

Hd Dual Hessian

d(λ∗) Dual optimum

md, Md Condition numbers of dual Hessian

Ld Lipschitz constant of the first derivative of dual function, i.e., ∇d(λ)

LdH Lipschitz constant of dual Hessian

ẑk Average sequence for primal variables

Rd Variable in dual fast gradient method, defined as Rd = ‖λ∗ − λ0‖

ε Tolerance

i Number of iterations

θ Barrier parameter

φ(·) Barrier function

Fb(·) Cost function of unconstrained QP formulated in barrier method

Master of Science Thesis Xi Zhang



70 Glossary

z∗(θ) Point on central path

δ Constant factor

ρ Step size

∆z Primal search direction

∆ϕ, ∆ζ Primal-dual search directions

s Slackness variable

µ Duality gap

κ Centering parameter

rτ (·) Residual variable

rdual Stationary residual

rpri Primal residual

rcent Centering residual with infeasible start approach

rcent,f Centering residual with feasible start approach

Hbar Primal Hessian in barrier method

Ĥpd, Hpd Primal Hessian in primal-dual interior point method

mFb(·), MFb(·)
Condition numbers associated with strong convexity of the QP problem formu-
lated in barrier method

LFb(·) Lipschitz constant of the Hessian of function Fb(·)

γp(·), ηp(·) Constants related to condition numbers in primal space

Psoft QP problem with soft constraint approach

εs Softening parameter

ω Weight on primal feasibility violation

m̃ Number of constraints that need to be softened

G Re-arranged feasible set

z̄ Decision variable consists of primal variable z and softening parameter εs

Hz, hz Coefficient matrix and vector in cost function of QP problem with soft constraint
approach

Gz, Ez, gz Coefficient matrix and vector in function of inequality constraints in QP problem
with soft constraint approach
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λ̄ Lagrange multiplier corresponding to constraints in QP with soft constraint
approach

s̄ Slackness variable corresponding to constraints in QP with soft constraint ap-
proach

δ1 [g(z)]+

δ3 [g(z)]−

δ̃ Efficiently small constant

Ptight QP problem with tightening constraint approach

εc Tightening parameter

ν(·) Newton increment

α, β Backtracking line search parameters

Master of Science Thesis Xi Zhang




	Front Matter
	Cover Page
	Title Page
	Signatures
	Table of Contents
	Acknowledgements

	Main Matter
	Introduction
	Computational Methods for Model Predictive Control
	Contribution
	Structure of the Thesis

	Model Predictive Control: an Overview
	Problem Formulation
	Model Predictive Control as a Quadratic Programming Problem
	Non-Condensed Formulation
	Condensed Formulation

	Basic Assumptions

	Fast Gradient Methods for Quadratic Programming
	Fast Gradient Method
	Gradient Projection
	Algorithm Description

	Dual Fast Gradient Method
	Dual Formulation
	Optimal Step Size
	Algorithm Description


	Interior-Point Methods for Quadratic Programming
	Primal Barrier Method
	Central Path
	Outline of Barrier Method

	Primal-Dual Interior-Point Methods
	Variations of Primal-Dual Interior-Point Methods

	Comparison Between Search Directions for Interior-Point Methods
	Comparison Between Barrier and Primal-Dual Interior-Point Methods
	Comparison of Variations of Primal-Dual Interior-Point Methods

	Coincidence of Barrier and Primal-Dual Interior-Point Methods
	Convergence Analysis of Primal-Dual Interior-Point Methods

	Proposed Solvers in Primal and Dual Space
	Soft Constraints Approach in Primal-Dual Interior-Point Methods
	Overview
	Model Predictive Control Problem Reformulation
	Initialization Strategy For Primal-Dual Interior-Point Methods
	Algorithm Description

	Constraint Tightening Approach in Dual Fast Gradient Methods
	Overview
	Model Predictive Control Problem Reformulation
	Initialization Strategy for Primal-Dual Interior-Point Methods
	Algorithm Description

	Primal Switching Condition from Dual Fast Gradient to Primal-Dual Interior-Point Methods
	Proposed Dual Switching Condition from Dual Fast Gradient to Primal-Dual Interior-Point Methods
	Characterization of the Dual Hessian 
	Modification of the Switching Condition

	Proposed Solver Description

	Numerical Results
	Results for Primal Switching Condition
	Soft Constraint Approach in Primal-Dual Interior-Point Methods
	Constraint Tightening Approach in Dual Fast Gradient Methods

	Results for Dual Switching Condition

	Conclusion and Future Work

	Appendices
	Appendix
	Proof of Theorem 5.2
	Newton Increment
	Proof of Quadratic Convergence



	Back Matter
	Glossary
	List of Acronyms
	List of Notations
	List of Symbols



