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ABSTRACT 

Three theoretical models of plane flames burning on a 

cooled porous-plug type of flame-holder are reviewed and compared 

with experimentally observed relationships between stand-off 

distance, flame speed and temperature. 

It is shown that for most practical burners their 

conductance is large and that for near adiabatic conditions, 

the order of the non-dimensional stand-off distance ceases to 

be 0 ( 1 ) ' t'̂ t is 0(^*^^) where ^ is the non-dimensional 

activation energy. 
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1. INTRODUCTION 

The theoretical understanding of the behaviour of 

premixed flames with heat loss is a subject now receiving quite 

a lot of attention (Buckmaster and Ludford 1982) particularly 

in the light of recent advances in the use of large activation 

energy asymptotic theory (Sivashinsky 1983). One of the most 

practical ways of observing flat flames in a laboratory is to 

anchor such flames to a porous-plug flame-holder the 

characteristics of which were first described by Hirschfelder, 

Curtiss and Cambell (1953) . Such a flame-holder was designed 

and used in experimental tests by Botha and Spalding (1954) and 

more recently by Ferguson and Keck (1979). The heat loss of 

such flames is due to conduction to the holder and can have a 

marked affect on flame speed and flame temperature. 

Various theories have recently been put forward to model 

burner anchored flames under steady conditions, the implications 

of which are not always the same. Theoretical analyses differ 

in particular in the way heat losses have been modelled. 

Carrier, Bush and Fendell (1978) use a Dirac- a function heat 

sink in the preheat zone whereas the model used by Clarke and 

Mcintosh (1980) adopts the flame-holder description advocated 

by Hirschfelder. Essentially these two models are shown to be 

in close agreement except in the resolution of the so-called 

'cold boundary difficulty' (Williams 1965; p. 109). However the 

modifications made to the Dirac- o function model by Matkowsky 

and Olagunju (1981) are shown to produce results which are 

different in some important respects. Therefore it is the 

purpose of this review to briefly summarise all these theories 

and then compare them with the empirically derived 

relationships between stand-off distance, flame speed and flame 

temperature. In that theories of the behaviour of flames under 

unsteady conditions are being built upon these basic steady 

solutions, it is vital that a realistic model is chosen. 

This paper is meant to serve as a review and consequently 

only the main results of the theories considered are shown. For 

the detailed derivation of these results the reader is referred 

to the original papers (Carrier, Bush and Fendell 1978, 
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Ferguson and Keck 1979, Clarke and Mcintosh 1980, Matkowsky 
and Olagunju 1981). 
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2. NOTATION AND BASIC ASSUMPTIONS 

To avoid confusion, the following set of symbols is 

used throughout to define the major quantities involved in this 

review. 

Cp overall coefficient of specific heat 

O mixture density 

\ thermal conductivity of mixture 

^ diffusion coefficient 

/ — c'£)'r' 

/ ̂  Lewis Number = v̂  ̂ P 

V' mixture velocity 

fV\' Mass flux •= £V' = ̂ o'Vo' (Inlet Mass Flux) 

NAft Adiabatic mass flux 
-T- ' 

|. Non-adiabatic flame temperature 

*"[" Adiabatic flame temperature 

DCf Flame stand-off distance 

£_ Overall Activation Energy 

R' Universal Gas Constant 

Non dimensional activation energy (based onT^ ) = E^ 

e l 

Non dimensional activation energy (based on 1̂  ) •- £i>i 

O * Non dimensional activation energy (based on T̂ —T̂ ĵ ') 

"f^ Upstream holder temperature 

-r- ' . 
•o Downstream holder temperature 



\Q. Pedet number =• fJ[ CÓ 

S f 

Ka 

- 4 -

a-' 
\e> "-p 3 (chap, 3) 

<-̂,, Non dimensional flame stand-off distance ~ ^t,Cp 

n ' Heat loss to flame-holder per unit area 

per unit time (chap. 4) 

\^ Conductance of flame-holder (i.e. thermal 

conductivity of holder divided by the width) 

»N Non dimensional conductance S |<' (chap. 4) 

Non dimensional flame stand-off 

distance =: M̂ 'Cp' j ̂ ot' (chap. 5) 

e'oU' 

T^cl Far upstream temperature (chap. 5) 

"^^ Mixture temperature at holder (chap. 5) 

_ ( 

T̂ J 'Characteristic' temperature of holder 
in heat loss term added to energy equation (chap. 5) 

Heat transfer coefficient of holder in 

heat loss term added to energy equation (chap. 5) 

[̂'j Non dimensional heat transfer number ^ VCJI (chap. 5) 

Dashed ( ' ) symbols always represent dimensional 

quantities. The subscripts (*ö') and ( * t>*) denote that the 

relevant quantity is evaluated immediately downstream of the 

holder and in the burnt stream respectively. 

In this brief review, the assumption is made that mixture 

strength is far from stoichiometric and constant throughout. 

Neither assumption is vital but they help to focus attention on the 

differences in the models used by current authors. A schematic 

of the flame/flame-holder system is given in Fig. 1. 



- 5 -

3. EMPIRICAL RELATIONSHIPS FOR STAND-OFF DISTANCE, FLAME SPPJICD 

AND FLAME TEMPERATURE 

In practical experiments, one specifies mixture strength 

and mass flux (̂ Ae ) at the flame-holder. The flame-holder 

will have certain characteristics which, given an upstream 

temperature ("T̂  ) will determine the downstream face 

temperature (T^') of the porous plug through which the gas 

mixture flows. Given these inlet conditions, there will be a 

stand-off distance (^oc/) and flame temperature ("^y^') 

Ferguson and Keck (1979) use the empirical relationship of 

Kaskan (1957), 

^ ^^.xp [ - ^ (^'-TJ)' 
M,' L 2 R V T ; ' Q lb 

(3.i; 

to link flame temperature C 'b / arid inlet mass flux (MoJ-

Using the energy equation, they then derive a result for the 

Peclet number \^-e) , 
/ 

• ^ 

Pe-Mo'Cp' U s ' ̂ C o f li:=:if.] , (3.2a,b) 
a - 'b 

*The mass flux PA^, is given by Clarke and Mcintosh (1980) in 

the form 

where 1̂ , is the burnt temperature under non-adiabatic conditions, 

It is not difficult to calculate a burnt, or final, temperature 

value under adiabatic conditions and quite independently of any 

flow/flame geometry or of the presence of a flame-holder. This 

value is ~T^ . When 1̂^ is substituted into the above 

equation ̂  M̂ » is equal to Ma / and this is what we mean here 

by the adiabatic mass flux Ma • 

However Mj, is a fiction in the case of the present flame/ 

flamc-liolder configuration, albeit a useful one, since there is no 

theoretical limit to the input mass flux at the holder. It has 

been shown by Clarke (1983) that significant structural changes 

occur when M.' approaches and exceeds M Q 
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which links stand-off distance (=>C,') to flame temperature (T^') 

assuming a constant value of '~\~^ . They found that in their 

particular experiments, variations in \ ^ were small, and 

that these two relationships matched experimental results to 

a high degree of accuracy. They also define a modified Peclet 

number (̂'''j based on adiabatic flame speed, 

and, as will be seen below, this is used to compute actual stand

off distances. Differentiation of (3.3) with ^^k/kv' ^^^ ^° 

zero yields an approximation to the distance of closest approach 

of the flame to the holder for a given composition. For this 

particular condition, 1^ is very close to "TH -

(3.3) 
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4. HIRSCHFELDER MODEL OF FLAME-HOLDER; SUMMARY OF MAIN 

RELATIONSHIPS OBTAINED 

The reader is referred to the earlier paper by Clarke and 

Mcintosh (1980) for a full derivation of the main relationships 

obtained for flame-speed, flame temperature and stand-off distance. 

The theory uses the tool of matched asymptotic expansions based 

on large activation energy (0, = ^^^ /R-''^J *-° deî lve the 

connection between mass flux (constant ^ M^ ) and flame 

temperature. Under far from stoichiometric conditions, one 

obtains 

^ A : (4.1) 

One immediately sees the similarity between (4.1) and 

(3.1). The experimental measurements can easily miss the 

comparitively mild algebraic factor in the face of the strong 

exponential dependence on "T^ (particuarly for £q /R'TW' > ? 1 

as is generally the case). 

A non dimensional stand-off distance is defined as, 

r̂ f-

eM=c' ) (^-2) 

and it is assumed in this theory that, 

((?'\') = constant . (4.3) 

This assumption is in fact close to reality. Density ^ 

is inversely proportional to temperature ( for these 

essentially isobaric flames and it has been observed that thermal 

conductivity \ is proportional to HT' with OJ^<:r\ < C'^^ 

(Hirschfelder, Curtiss and Bird (1954), Kanury (1975)). Use of 

this further assumption shows that ^ Mr defined in (4.2) is 
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identical to the Peclet number defined in (3.2a). 

At the holder it is assumed no product species diffuse 

back upstream (Hirschfelder condition), and the heat loss is 

linked directly to the temperature gradient at the holder. Thus 

= K'(rJ_-r,') , (4.4a,b) 

where K is the conductance of the holder, and the theory 

allows for the temperature il on the downstream side of the 

holder to vary whilst keeping the temperature Ty^ on the 

upstream side fixed. It is found that 

U^^ =- Vf̂  k -I 
I _ _ I 

Ü'-Th' .̂  
= ?n HiWi f (4.5a,b) 

with 

K = ^ ( T ; ' - T , ' ) ^ ( - T ; ' - T ^ ' ) 

Cc'Mc' 

Another form of equation (4.5a) eliminates K to give, 

(4.6a,b) 

Uu, = 2c •if, 
(T-.'-T,') 

(T„'-rt') + (T:'-T,')J 
(4.7) 

This general result for stand-off distance becomes the 

result (3.2b) for the case when I ^ =̂  Tu (i.e. !< =. cx>j Q, 

finitej see (4.4b)j. 

The dimensional stand-off distance can be obtained by 

reversing the definition (4.2). Thus, 

ocf' = \t> LQ 

' ̂  ' 

1̂  
T'A. (4.8) 
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where I in the pre-heat zone is given by, 

-r'=-r'- /T.'-v \ ( u 
) . 

Equation (4.8) then yields, 

which with (4.1), (4.7) and for •r' -T-' 
I © — *K yields: 

•+ T.'C-r.'-T,') -X^fTo'J-y.') 

L iX-X) 

a'-r;) 

(4.9) 

(4.10) 

(4.11) 

The results obtained from (4,11) are very similar in 

form to those obtained by using (3.3). The essential functional 

form comes from the exponential and logarithmic term. The other 

algebraic terms only slightly alter the curves. The minimum 

stand-off distance is predicted to occur for quite small heat 

losses, and with T b close to T^ . This is in 

agreement with the findings of Ferguson and Keck in their 

experiments. Note however that though -^^ is at a minimum, yr 

need not be small. (cf. te. and re respectively in Chap. 3). 

The reader is referred to Fig. 1 in Ferguson and Keck (1979), 

Figs. 7a,b in Clarke and Mcintosh (1980), and Fig. 2 (P.30) of 

Buckmaster and Ludford (1982). 

The two basic results are (4.1) and (4.7), which except for 

the algebraic dependence in flame speed are identical to the 

empirical relationships (3.1) and (3.2b) for T^ assumed constant, 

Such close agreemont underscores the essential correctness of the 

Hirschfelder model of the flame/flame-holder system and the 

valuable insight a proper application of this model can give to 

the understanding of flame behaviour. 
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;- § 5. DIRAC- Ö MODEL OF FLAME-HOLDER; SUMMARY OF MAIN 

RELATIONSHIPS OBTAINED 

In this section, the reader is referred to Fig. 2 which 

illustrates the approach used by Carrier, Bush and Fendell (1978) 

to model the flame-holder. The holder is represented by a 

<r -function heat sink situated within the inert pre-heat domain, 

with stand-off distance defined as the distance between the flame 

sheet and the heat sink. 

For an order 2 reaction and far from stoichiometric conditions, 

using matched asymptotic expansions based on the largeness of 

0**'B ^ft'//R'(T^'-TAI ' *'̂ ® following relationship for mass 
flux is derived: 

M.' = I-r^'--ra \ fi^ P 
-Ë.'(T.'--r,') 

This relationship resembles (3.1) and (4.1) except 

that all temperatures are lowered by ~TZ^ , the upstream 

temperature. This ad hoc addition to strict Arrhenius kinetics 

is necessary in this model in order to overcome the cold boundary 

difficulty at the far upstream boundary. The altered Arrhenius 

term is found in Equation (2.6) of Carrier et al (1978), and 

carries all the way through their analysis. Nevertheless as the 

authors point out, since "T^ ."Q'»"ü.<l,(5.1) approximates well to 

(3.1) (Kaskan's observed relationship). 

In deriving relationships for stand-off distance, the 

authors of this o -function model, use a non dimensional stand

off distance variable defined (in our notation, and with the 

distance origin at the heat sink) as: 

(5.1) 

S , ~ Mc'Cp' 
r̂ ^ 

V; 
i^ 

è.x_' , (5.2) 
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In this theory, (̂ 'X') is not assumed constant. One can in 

fact integrate the species and energy equations as long as 

Ln •=:_ 6'5t)Cp/x' is treated as a constant. However, in order 

to make comparisons with the Hirschfelder model one can assume 

{̂ 'X'\ is constant with little loss of generality (see note 

in Chap. 4) which in (5.2) implies (see (4.2)), 

S-t = af 
The energy loss at the holder is modelled by putting 

an additional term into the energy equation such that, in 

volumetric units, 

(5.3) 

' • ' V 

Energy loss at holder ^^ l̂ J (ITA ^T",1 ) 
per unit area per unit time 

(5.4) 

where )<(^ is a heat transfer coefficient; the ratio 

is termed a heat-transfer number for the holder, and i cj 

is a characteristic temperature for the holder. For any 

apparatus, this model regards ^^ and TcJl as given values. 

Here we have purposely given a subscript cH to K̂  , K̂  i "To 

and T^ in order to make it clear that it is the o -function 

that is being referred to. 

(5.5) 

It is found that the non dimensional stand off distance 

"̂  is given by, (see equation (4.7a,b) of Carrier et al (1978)), 

U%,^ (-^^%) =5n (T.'-Xi') 

_(V-Tt')-rN'"^"i'\ 

(5.6) 

and that (equation (2.20) in the same reference), K'Ji can be 

related to the temperatures as follows: 
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(5.7) 

Integrating the original energy equation yields a link 

between the jump in gradients across the heat sink and the 

temperature at the heat sink. One obtains, 

Ĵ 'l,̂  sic' 
= ^ci'("rJ-Tey) , (5.8) 

o-
where e»̂  ' , o-' refer to just downstream and just 

upstream of the heat sink respectively. 

If one now compares results (5.6-5.8) with (4.7), 

(4.6b) and (4.4b) of the Hirschfelder model, it becomes clear 

that to make proper comparisons, one should regard the following 

temperatures as equivalent: 

"r;^' = T e ' , (5.9a) 

T^ej'^T, , (5.9b) 

TJ' =T;' . (5.9c) 

Thus the theory of Carrier et al (1978) allows some 

extra flexibility (in general) by having TZi "^ ~Qdi 

Using (5.9a-c), it becomes clear that the 1^ (conductance) of 

the previous theory is linked to the present l^j (heat transfer 

number) (see equations (4.6b) and (5.7) above) by, 

If one now assumes that Aô ^ wT/di>c'/̂ '̂.̂ ^ in (4.4b) is 

the same as X© ('̂ ''''/̂ a')?e'-ö ^^ (5.8), then 

Al'l = <VM,'(Tl'-Th') . <5.ii) 
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Equations (5.1) and (5.6) are now consistent with the 

empirical formulae referred to in chapter 3. When ^^ -^oa ^^—^-J". 

for a finite rate of heat loss (see (5.8)). In particular 

('^'^'/^x.'} remains finite, but (̂ "̂ /cl-./) is zero (see (5.11)). 

The non dimensional stand-off distance from (5.6) then takes on 

the simple form (as in (3.2b)), 

-Uy, = C^C 'ft — 'd 

(5.12) 

One can invert the definition (5.2), as done in Chapter 4 

to obtain the dimensional stand-off distance. A similar 

relationship to (4.11) materialises and as stated previously, the 

essential functional form for dimensional stand-off distance is 

given by (3.3). 
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6. NEAR ADIABATIC CONDITIONS 

In the previous chapters we have shown that the two 

significant relationships linking flame speed, stand-off 

distance and flame temperature are, in non dimensional terms, 

(see (4.1) and (4.7)) , 

L ZTy, 
(6.1) 

.̂•-ĵ , = Va 
(I-TK) 

(i-Tv,) -y (-re--rv.)_ 
(6.2) 

where 

_^ ! T ; = -r; 
T" 
•a 

(6.3a,b,c) 

Mc = Mo' G = e. 
R'T^' 

(6.4a,b) 

Note also that, as in (4.6), (5.5) and (5.7)^ K" and HCtJi 

can be expressed as, 

k = ! < ! ^ ^ ^ i ^ ( 1 -Ty 
Cp' Mo' ( T, -X. 

(6.5) 

Kji = i ^ •= ^« = f l ü L ^ - ^ - i ^ 
Cp' M,' Âe o % 

(6.6) 



- 16 -

where we have introduced the definitions, 

KaS ill 
Cp•^^,' 

; Kaa ~ ^ (6.7a,b) 

Cp'Mo' 

Using either (6.5) or (6.6), the term C^©-Ts) in (6.2) can 

be eliminated so one can write (using (6.5) here), 

(6.8) 

(6.9) 

These two equations are boxed since they represent in 

summary the complete description of a real low speed flame/ 

flame-holder system. In practice Mo; K̂ a and T ^ will 

be specified in an experiment (with fixed mixture strength). 

Then, using (6.8) and (6.9), one can predict the temperature 

|. and stand-off distance U, (non dimensional). As 

shown in chapters 3 to 5, these are a close model of reality. 

The essential behaviour of the dimensional stand-off distance 

can be described by the approximation 

LC. 

X ' f^^ 

9C , ̂  l^Qn 
V 

Qxp Ö(I-T;^ 

(6.10a) 

(6.10b) 

We have used non dimensional quantities in (6.8), (6.9) 

since one can more readily understand the salient features of the 

model as we consider near adiabatic conditions. The results 
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(6.8), (6.9) have been shown to be justified by using large 

activation energy asymptotic theory where ©i S E*» /R'Tte 

is considered to be much larger than unity. 

Equation (6.10b) can be used to estimate the variation 

of stand-off distance PCr with final temperature T ^ for 

a given composition, upstream face holder temperature I L 

and conductance Ka . Plots for different values of K'<ĵ  

are shown in Fig. 3. Although Ka is generally large, we 

include for completeness plots of 5Cr near \^ == 1_ for 

a wide range of \<^ . We note there is always a minimum stand-off 

distance for any KA > 1- • ^^ ^a ''̂  J- exactly,one finds 

ZK-r has a limiting value at T ^ s 1. given by, 

oc^,(K,= l,T^=l)=^ ?n[(v~TH)(2-yl.e)] (6.11) 

but if Ka<.i there is theoretically a value of i^ where 

OCt diminishes to zero. However these facts are only of 

passing academic interest since generally KTQ is large for most 

practical burners. As pointed out by Carrier et al (1978;p.45), l̂ J 

(=K(iio/'̂e ̂ K-l^Ko/Mft-l; see Equations (6.5,6)) is in fact large. 

Kci = ID is quite within the bounds of possibility. In the 

above reference. Fig. 2, K<i = 1 is termed "an implausibly small 

value". Thus <̂Ĵ  approaching zero ( K" -• 1 ^ K'a — • 1. with M̂ , 

near j. see (6.5,6))should be discounted as impractical. (Although 

in Clarke and Mcintosh (1980) the case Ko = 1. (corresponding to 

i<':=. K crtt """" that reference) was allowed for, it was acknowledged 

that generally [^g^ is large (see caption to Fig. 2 of that 

paper)). Thus one can conclude that in practical experiments the 

special case KTQ near j_ (i.e. ^sd^ot rî ar zero) is not typical. 

Certainly |<:f̂  greater than 5 would be typical for most experiments 

and we observe in Fig. 3 that the curves for this range of \<^a 

are all very similar to the |^Q = oo curve. Note that at 

K̂ Q •=! oo equation (6.10b) is exactly that of Buckmaster and 

Ludford (1982 ,-p.29). 
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An alternative approach to the investigation of near 

adiabatic conditions is to approximaLe the c]r)seness of '\7 

to unity by the expansion 

T ; = : i - e - ' f ^ ( e ) 

where C? =• ^0 /t5.Ta is now the relevant large 

parameter and the exact order of Q is not yet known other 

than for the restriction 

O, -<i(7) ^ L 

Using such an approach one can approximate (6.8)-(6.10) by 

the following 

M. :̂  e"'̂ '̂ ^ 

( 6 . 1 2 ) 

C6.13) 

( 6 . 1 4 ) 

u y^ 

w i t h , from (6.6) ; 

7/2 

J^n 
. 7 V K.e?/^ 

^/, 

:=s 1 1 -e z 

( 6 . 1 5 ) 

( 6 . 1 6 ) 

which shows that near adiabatic conditions with \^Q » J . ' the 

temperature of the downstream face of the holder (T^} is 

very nearly the same as that of the upstream face (Tü). 

(6.17) 

t 
t 
r 
r 

Equation (6.15) shows that LJf. is OfPnBl for practical K'Q 

values, and that one has therefore moved out of the order classes 

of temperature and distance implicit in the derivation of the 

present, leading order, results. However, this is a technical 

point and careful invc?st i(]ation reveals what one mi>!ht intuitively 

assume, namely that results like (6.14) - (G.1.6) are in fact cjuito 

correct. 
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The result (6.16) can be used in a similar way as 

(6.10b) to yield plots of stand-off distance OCr for a 

given "H (through D ) . These plots are shown 

in Figs. 4 and 5. The essential features of Fig. 3 are 

preserved except that all the distances for a given T^ 

are noticeably reduced due to the approximate nature of (6.16). 

Fig. 6 shows the effect of varying ^ on the plots 

of OCf versus \ ̂  from both equation (6.10b) and equation 

(6.16). These plots are for Ka = OO , but a similar trend 

will be observed for all large \<'Q values. The results 

from the two approximations for :x:̂  only take on similar 

values when T^ is very close to 1. ( "T̂  ^ C>-9 8 ) * 

The main reason for this is that the algebraic term "^"'^ 

is missing in (6.16) as compared with (6.10b). Consider for 

example "^ ~ O'^d > ̂ = - ^0 • Equation (6.10b) gives 

:)Cr = S"-03 1 whereas equation (6.16) yields ^p=-4--5'^0 • The 

factor Ife' ~ I-OSS" multiplied by this latter value 

brings OC^ back up to 4"'9^ ^^'^ therefore accounts for a 

large part of the discrepancy. This indicates that one can only 

make qualitative predictions using these relations. Accurate 

quantitative estimates depend much upon a correct value of © 

and Ii . These simple examples do expose a limitation 

of large activation energy asymptotics, where the numerical 

values of the large parameter are in reality only as large as 

ten or twenty. 

We now consider the order of the quantities involved in 

equations (6.14)- (6.17) around the minimum stand-off distance. 

From the above discussion \^(^ y ^ ^'/Cp' f^a (see (6.5)) 

is a property of the flame-holder and is well above unity in 

value. Consequently one must come to the conclusion from (6.15) 

that '̂ 'dc is in fact of order }^c\ (©) to leading 

order for near adiabatic conditions.and is no longer of order 

unity*. In that the non dimensional heat loss at the holder 

*This result is closely linked with the matters referred to in 

the footnote to equation (3.1). 
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is given by, 

(6.18) 

in near adiabatic conditions one obtains, 

CL :^ U-^ae. ij ^ (6.19) 

Thus as ^^c becomes of order itnC©) ^ ^o 

becomes of order ̂ '̂•') . 

Lastly we consider the order of D near the minimum 

stand-off point. Since in Figs. 4 and 5 the 1^0=5" 

and over curves are so similar to the K Q =: oo curve, 

we approximate (6.16) with \̂ -st oo to highlight the 

main arguments involved and ease the algebraic complication. 

Thus we have, 

O:̂  ^ Xn\ 6^tl-S)|e^'* , (6.20) ^ ^J eCl-Ty,)] 

which yields for stationary points, the condition, 

where, 

7 « " ( ^ ) = - ^ 

N = B ( I -TO 

(6.21) 

(6.22) 

There are two solutions to (6.21). One solution is for O 

large like ü ; by virtue of the restrictions (6.12) and (6.13) 

to near-adiabatic conditions this solution is invalid. The 

other solution yields the minimum point corresponding to that 
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illustrated in Fig. 5 (where for Ö - IC >~'7>= ̂ ''^j 7 .'̂ 0'9l) 
Equation (6.21) can be rewritten as, 

flQfrq - rj 8n(e(i-TK)) =-Z (6.23) 

so that to preserve correct ordering D 

in order than fPn©) • f̂ we write 

cannot be greater 

ffnio 
= 1 ^fr>i<\ 

then (6.23) yields to leading order, 

:6.24) 

Q . '^2 ' -̂"'̂ A 
(6.25) 

For © = I O , (6.25) yields ^mit^ ^ Ci-97-
which is a fair approximation to that obtained numerically 

(Fig. 5 : n CÏLO-^I )• Thus from (6.12), the correct 
(mi o 

ordering? f or "H f-\̂  ̂ M , cinci '̂ c. i"̂  this region are in 

f a c t , 

(6 .26) 

M 1 - ^ 
2Cn8 

(6 .27) 

^ 4 f '^ ^^ t*-"^065oG = PoeH-Pn(Ooe)-^&n/»3U.-. (6 .28) 

^ C r «-̂ x &nr('-rs)ePne "[ '^ I 1-v -2. 
ZCnB 

; (6 .29a) 

u.e 

-̂  X Bo6 + 5n(eo6) .». 2. + on / IjfThj (6 .2 9b) 
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The latter expansion includes up to 0(l) terms and 

highlights the fact that :>C, and '^Mr ^^^ in the 

same order class i.e. <r\© +i2n (ico9) . However X^ has 

the additional O/j. term on the 0(1) scale so that the 

0(1^ terms 

X = ^ ^2of^r]>) ) (6.30) 

have a minimum when Q ='S. , as derived in (6.25). 

So in summary, the fact that the non dimensionalised 

stand-off distance Ac <-̂r must be of order Vn(ö) ir» this 

region does not preclude one from still finding the 

dimensional distance ^^L* of closest approach. The order 

of the difference of \^ from unity is in fact (Övo©) 

in this region. Note that the units of OC^' are AÓ/ï^aCp 

and VC^ is then typically between 0-O|o«and 0\cm. 
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7. MODIFIED DIRAC -S MODEL OF FLAME-HOLDER 

In the paper by Matkowsky and Olagunju (1981), a 

further model of the flame/flame-holder system is 

proposed. It is based on the O -function model used by 

Carrier et al (1978) but modified such that some results 

are altered significantly. 

It is assumed in this model that density is constant 

which further simplifies the analysis of chapter 5 by 

discounting the thermal expansion of the mixture. However 

the main features of the analysis are not affected by such 

an assumption. The only significant effect is to rationalise 

the approximation (6.10a) for dimensional stand-off distance 

3C,' , so that in this model, 

pc^ = Ma^Cp3C<:' -- U^^ (7.1a,b) 

x«' M, 

Matkowsky and Olagunju (1981) further assume near 

adiabatic conditions, so that (as (6.12)) 

= \- 7© - I (7.2) 

but here O is assumed to be 0(lj . The implications 

of this assumption have been considered in chapter 6. One 

obtains relations (6.14)-(6.16) which rewritten in terms of 

Me. = e,'^^^ -i (7.3) 

^ ^ f = 

yir ~ 

- 7 

-L .On 

(l-\-lCaci/He). 

L 7 ( \-\r\<A./Hc) 

(7.4) 

(7.5) 
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As pointed out in chapter 6, equations (7.3)-(7.5) agree 

with the empirical results of Kaskan (1957) and Ferguson 

and Keck (1979) since in practical experiments VCia 

is large and the temperature of the holder does not vary 

a great deal. Equation (7.5) thus becomes, 

:xi, = Qn (7.6) 

which is in agreement with (3.2b) under the constant 

density assumption. 

However, Matkowsky and Olgunju (1981) do not follow 

this reasoning. Instead they make a further assumption 

that K A Ö -'•̂  small; specifically they write (in our 

notation) 

B(i-Tj 
(7.7) 

This reduces (7.3)-(7.5) to, 

Mo = e"'?/^ (7.8) 

^AoX:^ = /c« ) (7.9) 

where the last result here restores dimensional quantities 

through the various definitions of H etc. In order to 

get agreement with (3.2b) they then require 

Cp'MJ ^ Mo / 
(7.10) 

This has a serious implication in (7.7) for, if (7.10) 

holds true, then (7.7) implies. 

W» = (7.11) 
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Since M^, must be 0(1/ one is then forced to conclude that 

W is not 0(i) r which contradicts (7.7). 

The correct approach to burner flame modelling is not 

to force an impractical ordering of the adiabatic heat 

transfer number ( IfCjlcj ) or conductance [ ̂  ] onto the 

problem but to keep these as 0(i) quantities. As shown in 

chapter 6, when this is done and adiabatic conditions are 

approached, the flame stand-off distance then ceases to be 

0(l) but becomes O ( ö n 0 ) ' whilst the heat loss to 

the holder becomes 0(^"') • 

Stability analyses are now being made (Margolis and Kerstein 

1983) on the basis of the modified Dirac- O model of the 

flame-holder described at the beginning of this section. But 

the above analysis shows that the basic steady model is not 

true to the real situation, and doubts must be raised as to 

the validity of the stability predictions. Some further work 

on these matters is necessary. 
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8. CONCLUSIONS 

A review has been presented of three theoretical models 

of plane flames burning on a cooled porous-plug type flame-

holder. It has been shown that the Dirac delta function 

type of holder gives satisfactory agreement with observation 

provided one is prepared to modify the Arrhenius kinetics of 

the burning reaction. Care must be exercised with the 

asymptotic orderings of the several quantities of physical 

significance. In particular small 0(© ) heat loss rates 

give rise to O ( Q n 0 ) flame stand-off distances. It is 

important to note that the minimum stand-off distance of a 

near-adiabatic flame occurs within this order class of quantities. 

The Hirschfelder type of flame-holder model gives excellent 

agreement with observation without the need for modification 

of Arrhenius kinetics. 

ACKNOWLEDGEMENT 

We are grateful to the Science and Engineering Research 

Council for Finanical Support during the course of this 

investigation. 



- 27 -

REFERENCES 

BOTHA, J.P. 

SPALDING, D.B, 

The laminar flame speed of propane/ 

air mixtures with heat extraction from 

the flame. Proc. Roy. Soc. A225, 

71-96 (1954) 

BUCKMASTER, J.D, 

LUDFORD, G.S.S. 

Theory of laminar flames. 

Cambridge University Press (1982) 

CARRIER, G.F, 

FENDELL, F.E, 

BUSH, W.B. 

Stoichiometry and flame-holder effects 

on a one-dimensional flame. 

Comb. Sci. & Tech. 18, 33-46 (1978) 

CLARKE, J.F. On changes in the structure of steady 

plane flames as their speed increases, 

Comb. & Flame, 50, 125-138 (1983) 

CLARKE, J.F. 

MCINTOSH, A.C, 

The influence of a flame-holder on a 

plane flame including its static 

stability. 

Proc. Roy. Soc A372, 367-392 (1980) 

FERGUSON, C.R. 

KECK r J.C. 

Stand-off distances on a flat flame 

burner. 

Comb. & Flame 34, 85-98 (1979) 

HIRSCHFELDER, J.O, 

CURTISS, C F . 

CAMPBELL, D.E. 

The theory of flames and detonations. 

4th Symp. (Int.) on Comb., Baltimore, 

190-211 (1953) 

HIRSCHFELDER, J.O, 

CURTISS, C.F. 

BIRD, R.B. 

Molecular theory of gases and liquids 

Wiley, New York (1954) 

KANURY, A.M. Introduction to combustion phenomena, 

Gordon and Breach, New York (1975) 



- 28 -

KASKAN, W.E, The dependence of flame temperature on 

mass burning velocity. 

6th Symp. (Int.) on Comb., 134-143 (1957) 

MARGOLIS, S.B. 

KERSTEIN, A.R, 

Flame stabilization in a layered medium. 

Sandia National Laboratories Report 

SAND 83-8218 (1983) 

MATKOWSKY, B.J, 

OLAGUNJU, D.0. 

Pulsations in a burner-stabilized 

pre-mixed plane flame. 

SIAM J. Appl. Math. 40 (3), 551-562 (1981) 

SIVASHINSKY, G.I Instabilities, pattern formation, and 

turbulence in flames. 

Ann. Rev. Fluid Mech. 15, 179-199 (1983) 

WILLIAMS, F.A. Combustion Theory. 

Addison Wesley, Reading Mass., U.S.A. 

(1965) 



TtMKPRTuRc 

/ 

POROUS 
FLPKIÊ-HOU-DER 

"^tviptwuRe 

INLET MIXTURE" 
HftSS FLUX N\' 

Vit »-iT LO^<i T o 

OVERRLL S?eÊD 

Vo' 

H6«T Loss T o 

FLflMfc-HOl.ï>tR.,a^ 

PRE -HERT 

ZONE: (P) 

REACTION 
z o NE CR) 

4-

EQUILIBRIUM 

ZONE (E) 

I 

JA* 

Flotne TbitVion 

FiCr 1 SCHEMATIC OF OME-DlMEM^lONRL P^e-MIXETD FLftME" 

WITH rLf\hA£-HOLIER. 



i V' 
~ ^ -

è^ iĥ  
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