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Abstract
Hand landmark detection in infrared (IR) images
is essential for early leprosy diagnosis in develop-
ing countries like Nepal, helping to prevent seri-
ous complications and disability. However, cur-
rent hand landmark detection models, such as
Google’s detection models comprised in the Me-
diaPipe framework, often struggle with this task
due to domain mismatch. While these models are
trained on RGB images, the data for this research
consists of greyscale IR images. This study ad-
dresses this challenge by exploring image trans-
formation and colorization techniques to enhance
MediaPipe’s hand landmark recognition accuracy
on IR images. Preprocessing was chosen over re-
training the existing model due to limited compu-
tational resources and the lack of labeled target do-
main data, which makes the retraining infeasible.
Two preprocessing pipelines were developed to ad-
dress different image characteristics: images with
visible hand edges but varying colors of the hand,
and images where hands blend in with the back-
ground, making the edges difficult to distinguish.
The transformations include turning an image into
its negative, colorization, contrast enhancement us-
ing Contrast Limited Adaptive Histogram Equal-
ization (CLAHE), and masking to remove occlu-
sion.
To evaluate the effectiveness of these techniques,
accuracy has been calculated using Percentage of
Correct Keypoints (PCK) metric and were com-
pared against two baselines: a lower bound (Me-
diaPipe performance on unchanged IR images) and
an upper bound (MediaPipe performance on sim-
ilar RGB images). Preliminary findings indicate
that colorization significantly improves recognition
for hands with sharp color transition, while contrast
enhancement boosts edge definition for hands that
blend into the background. By combining these ap-
proaches, the overall accuracy of hand landmark
detection improved up to 25%, depending on the
threshold value, particularly for the targeted open
palm-up hand position.
These results demonstrate that preprocessing tech-
niques can effectively reduce the input domain mis-
match, enhancing automated leprosy diagnosis and
supporting early detection efforts in low-resource
settings.

1 Introduction
Despite being one of the oldest recorded diseases [1], leprosy,
known as Hansen’s disease, is still a modern problem, espe-
cially in underserved regions such as Nepal. While the treat-
ment process is relatively straightforward, early diagnosis is
crucial to prevent disabilities among those infected.

As proposed in [2], due to reduced blood flow caused by
leprosy, a preliminary classification can be done by infrared

imaging of patients’ hands. By analyzing temperature differ-
ences between areas of interest, as shown in Figure 1a, and
the rest of the hand, it is possible to identify whether a subject
has leprosy. The current approach depends on manual obser-
vation of these differences, however, automating this process
could significantly enhance the speed, accuracy, and overall
effectiveness of diagnosis.

(a) (b)

Figure 1: Overlap between sensory testing areas (a) [3] and Medi-
aPipe landmarks (b) [4] shows that the model’s detected points can
serve as reliable annotations, demonstrating its suitability for this re-
search.

In a previous study [5], the MediaPipe model [6] was uti-
lized to automate landmark detection, as the model’s pre-
dicted landmarks, shown in Figure 1b, align with the ar-
eas of interest. However, challenges arose when analyzing
greyscale infrared images, where the model struggled to de-
tect hands, likely because it was trained exclusively on RGB
images [7]. Moreover in infrared images, hands exhibit sharp
color transitions between hot and cold areas, resulting in a
patchy appearance, as shown in Figure 2a. This contrasts with
the smooth and uniform look typically seen in RGB images.
Additionally, some infrared images suffer from poor edge vis-
ibility around the fingers, as illustrated in Figure 2b, making
it difficult to distinguish the fingertips and finger boundaries
clearly. This visual disparity between RGB and infrared im-
ages represents the domain gap that limits the model’s ability
to recognize hands accurately.

(a) (b)

Figure 2: Infrared greyscale images provide two challenges for hand
landmark detection models: (a) hands with sharp color transition and
(b) edge-obscured fingers, decreasing their performance.

This research investigates colorization techniques and im-
age transformations to bridge the domain gap between in-
frared and RGB images for leprosy diagnosis. The ulti-



mate objective is to evaluate how effectively these techniques
can enhance hand landmark recognition on infrared images,
thereby improving the potential for automated leprosy diag-
nosis in resource-limited settings.

Preprocessing techniques were chosen over retraining the
existing model due to two critical constraints: limited com-
putational resources and the absence of labeled target domain
data. Retraining was deemed infeasible because the original
model was trained on 116,000 images [7], and achieving sim-
ilar high performance would likely require a dataset of com-
parable size, which is unattainable in this context.

The rest of the paper is structured in the following way.
Section 2 introduces a short literature survey of the related
work. Section 3 describes the methodology of the research
with the main hypothesis, dataset collection and proposed
method. Section 4 elaborates on the evaluation metric, base-
lines and the experiments. Section 5 discusses responsible re-
search practices and their relevance to the project. Section 6
engages in a broader discussion of the findings, while Sec-
tion 7 concludes the work and outlines directions for future
research.

2 Related Work
This section reviews relevant literature on hand landmark de-
tection, image colorization, and domain mismatch, providing
context for the current study.

2.1 Hand Landmark Detection
Hand landmark detection has seen significant advancements
in recent years, especially with models like MediaPipe’s Ges-
ture Recognizer [8]. However, this model was trained ex-
clusively on RGB images [7], which likely explains its sub-
optimal performance when applied to infrared greyscale im-
ages. Infrared images differ significantly from RGB images
in terms of color representation, which creates a domain gap
that affects model accuracy.

The MediaPipe Gesture Recognizer operates in two steps:
first, it detects the palm using the BlazePalm Detector [7],
and then it applies a method based on [9] to detect finger
keypoints. This two-step process might cause misclassifi-
cation, as it is possible for only part of the hand to be cor-
rectly detected—such as the palm, but with misplaced finger
keypoints. This issue highlights the challenges of using the
model for infrared hand landmark detection as infrared im-
ages can show hands gradually blending in with the back-
ground.

2.2 Image Colorization
Image colorization is a well-established area of research [10],
[11], [12]. However, most existing techniques focus on the
colorization of near-infrared (NIR) images, which are not di-
rectly applicable to our work with thermal infrared images.
For instance, the method proposed by Limmer and Lensch
[13] colorizes near-infrared images using deep convolutional
networks, but this approach does not address the unique chal-
lenges posed by thermal patterns on hands in infrared.

Furthermore, many existing colorization models are
trained on images that were artificially turned into greyscale

[14], which may limit their ability to perform well on infrared
images. The domain gap between artificial greyscale images
and actual infrared images presents additional challenges for
colorization techniques, as infrared images contain distinct
patterns that do not align well with RGB data.

In contrast, technique proposed by Zhang et al. called
ECCV16 [12] uses class rebalancing to introduce greater
color diversity into colorization tasks. This might be help-
ful in our case, as it could help the model handle the sharp
color transitions and varied appearance of infrared images.
In their study [12], the model was able to produce images
that fooled 30% of participants into thinking the images were
naturally colored. Additionally, Zhang et al.’s newer model
called SIGGRAPH17 [15] outperformed earlier approaches
in classification tasks and may offer insights for improving
colorization accuracy in the context of infrared images.

2.3 Domain Gap and Its Impact
The domain gap between infrared and RGB images is a key
issue for this research. Models trained on RGB images, such
as MediaPipe’s Gesture Recognizer, struggle to adapt to in-
frared images due to differences in visual features, such as the
lack of color and unusual patterns on the hands. Addressing
this domain mismatch is crucial for improving the accuracy
of hand landmark detection.

3 Methodology
3.1 Hypothesis and Problem Statement
The primary hypothesis of this research is that the dispropor-
tion in MediaPipe’s performance on RGB hand images com-
pared to greyscale infrared images arises from a mismatch be-
tween the training data used to develop the MediaPipe model
and the input images provided during detection. This perfor-
mance gap can be reduced by transforming infrared images
through a series of processing steps to resemble RGB images
as closely as possible in appearance, including color inversion
and colorization.

3.2 Data Collection
To evaluate the accuracy and performance of hand landmark
detection on transformed images, a dataset of annotated im-
ages was created. The images were designed to replicate the
diagnostic setup used in Nepal, where patients presented their
hands in an open palm-up gesture. The dataset includes im-
ages of both male and female hands to introduce variability
in hand size and shape.

To simulate the temperature differences observed in pa-
tients with leprosy, where the palms are typically warmer
(whiter tone on the image) than the fingers (darker tone), par-
ticipants dipped their fingers in water maintained at approxi-
mately 11 °C before imaging. This setup mimics the charac-
teristic thermal patterns of the diagnostic process.

The images were captured using an infrared camera
UTi721M [16] in the grayscale mode ”White Hot”, replicat-
ing the technology currently employed in Nepal. The corre-
sponding RGB images were also captured using a smartphone
camera for comparison purposes.



Challenge Proposed Solution Example Images

Hands with
Sharp Color
Transition

• Remove occlusion.
• Transform into negative.
• Use the SIGGRAPH17 model for col-

orization.

Edge-
Obscured
Hands

• Remove occlusion.
• Use CLAHE to enhance edge defini-

tion.

Table 1: The dataset presents two main challenges: hands with sharp color transition and edge-obscured hands which should be treated
separately.

After data acquisition, each image (both RGB and infrared)
was annotated manually. A total of 21 hand landmarks were
annotated for each hand, based on the landmark definitions
provided by the MediaPipe framework, as illustrated in Fig-
ure 1b.

Dataset Characteristics and Challenges
Analysis of the dataset revealed distinct subsets of images,
each presenting unique challenges. The summary of these
challenges, along with proposed solutions and example im-
ages, can be seen in Table 1.

Subset 1: Hands with Sharp Color Transition
For most participants in the data collection process, the

hands exhibit two extreme color tones: the palm typically
appears significantly brighter, sometimes even white, while
the fingers are much darker. This contrast is characterized
by a sharp color transition rather than a gradiental transition,
with distinctly defined edges. For this subset of images, the
hypothesis is that inverting the colors, followed by an appli-
cation of a colorization model, could enhance MediaPipe’s
performance. Examples of this subset can be found in the
upper row of Table 1.

Subset 2: Edge-Obscured Hands
In this subset, fingers subjected to cold temperatures ap-

pear significantly darker, with the background also being
dark. This results in confluent colors and poorly defined
edges, making it difficult even for human observers to de-
tect the edges. The primary objective for this subset is to
enhance edge definition to improve both human and algorith-
mic recognition. Examples of this subset can be found in the
lower row of Table 1.

3.3 Proposed Method
Pipelines to Address Dataset Challenges
The final setup consists of two transformation pipelines, fol-
lowed by a comparison and assessment process to determine
which landmarks and coordinates should be kept.

First Pipeline: Optimized for Hands with Sharp Color
Transition

The first pipeline is designed for images where the hands
are distinctly visible with a brighter tone against a darker
background and a sharp color transition.

• Object Removal: Unnecessary objects, such as tem-
perature indicators (displaying the highest and lowest
recorded temperatures), are removed from the image.
These objects often overlap with the palm or finger re-
gions, obstructing visibility. Object removal is achieved
by filtering out red and green colors and replacing the
affected pixel values with those of surrounding pixels.

• Smoothing: The image is slightly smoothed using
Gaussian smoothing to eliminate residual artifacts intro-
duced during object removal.

• Color Inversion: The processed image is converted to
its negative, aligning its appearance more closely with
the training data used for the colorization model.

• Colorization: The transformed image is colorized us-
ing the SIGGRAPH17 colorization model proposed by
Zhang et al. [15].

An example of transformation process for this pipeline can be
seen in Figure 3.

Second Pipeline: Optimized for Edge-Obscured Hands
The second pipeline was specifically designed to address

challenges in images where the fingers blend into the sur-
rounding background, making them difficult to distinguish.

• Object Removal: Similar to the first pipeline, irrelevant
objects are removed to ensure unobstructed hand visibil-
ity.

• Contrast Enhancement: The Contrast Limited Adap-
tive Histogram Equalization (CLAHE) method is ap-
plied to enhance image contrast, effectively highlight-
ing finger edges. It already has been proven to improve



Figure 3: The first pipeline enhances infrared images by removing occlusion, turning the image into a negative, and applying colorization to
improve landmark detection accuracy.

Figure 4: The second pipeline enhances images with blended fingers by removing occlusion and using CLAHE to improve contrast, making
finger edges more distinguishable for accurate landmark detection.

the detectability of face features on black-and-white im-
ages [17] and has been proposed as a way to lighten the
dark areas of images.

An example of transformation process for this pipeline can be
seen in Figure 4.

Landmark Selection
Assessing the correctness of results is a critical aspect of this
research. Correctness is defined as the accurate detection of
all 21 hand landmarks for both hands in the image, assum-
ing a standard palm-up position. A common challenge is that
certain transformations may enable the accurate recognition
of landmarks for one hand while failing on the other. This in-
consistency requires a methodology to combine results from
different processing pipelines.

Combining Results from Multiple Pipelines
The Gesture Recognizer [8] operates in two steps [7], which
could lead to only partially correct hand recognition, e.g.,
with the palm accurately detected but with misplaced fin-
gers. Due to this, the results can not be combined based on
whether the model detected the hand. Instead, another fea-
ture of Gesture Recognizer is utilized. Namely, the detected
gesture based on the location of landmarks. During the di-
agnostic process, patients are typically asked to present their
hands in an open palm-up position. This characteristic is used
to evaluate the preliminary accuracy of the recognized land-
marks. If the detected landmarks correspond to an ”Open

Palm” gesture as identified by the Gesture Recognizer, it in-
dicates a higher likelihood that the results are accurate. By
focusing on results where the ”Open Palm” gesture is recog-
nized, it becomes possible to filter out incorrect detections
and merge results from multiple pipelines more effectively.

Currently, both pipelines are executed, and their outputs
are fed into the Gesture Recognizer. The results are then com-
bined based on the following rules:

• Both Pipelines Detect Both Hands, Labeled as ”Open
Palm”: In this scenario, the landmarks are combined
based on the following criteria. For the index, middle,
ring, and little fingers, the landmarks corresponding to
the longest detected fingers are selected. For the thumb,
the landmark farthest to the right is chosen for the right
hand, while the farthest left is used for the left hand.

• Both Pipelines Detect Both Hands, Some Labeled as
”None”: If only one left or right hand is labeled as
”Open Palm,” the landmarks from that result are chosen,
and the corresponding ”None” labels are disregarded.
If both (e.g., left) hands are labeled as ”None,” the land-
marks with the lower confidence score for ”None” are
selected, assuming that lower confidence in the ”None”
label indicates that the landmarks may more closely re-
semble an ”Open Palm” gesture.

• Not All Hands Are Detected: If the pipelines detect
opposite hands (e.g., one detects the right hand and the



other detects the left), the results are combined to in-
clude both hands.
If both pipelines detect the same hand, the landmarks are
selected based on the criteria outlined above.
If one pipeline detects both hands and the other only de-
tects one, the results are compared as described above to
determine if a substitution is needed for one hand.

• No Hands Are Detected: In this case, an empty list is
returned.

This approach ensures a systematic and confidence-based
combination of results, optimizing the accuracy and reliabil-
ity of landmark detection.

4 Experiments
4.1 Software Details
A Python 3.10 environment was developed to facilitate the
implementation of the transformation pipelines, landmark de-
tection, accuracy measurement, and result evaluation. The
transformation pipelines incorporate methods and functions
from the OpenCV library [18], as well as two colorization
models proposed by Zhang et al. [12], [15], sourced from
the corresponding GitHub repository [19]. For landmark de-
tection and gesture analysis, the MediaPipe model known
as Gesture Recognizer [8] was utilized. Accuracy calcula-
tions and result visualizations were performed using standard
Python libraries, including Matplotlib for generating charts
and graphs.

4.2 Evaluation Metric
The evaluation of landmark detection accuracy in this re-
search is carried out using the Percentage of Correct Key-
points (PCK) metric. PCK is commonly used in human pose
estimation tasks [20] to assess the accuracy of predicted key-
points in relation to ground truth keypoints. The standard ap-
proach in PCK evaluation involves comparing the Euclidean
distance between predicted and ground truth landmarks.

In this study, an adaptive version of PCK is employed,
where the acceptable distance is scaled relative to the size of
the hand. Specifically, the hand size is determined by measur-
ing the distance from the wrist (point 0 in Figure 1b) to the tip
of the middle finger (point 12 in Figure 1b), denoted as Lhand,
ensuring that the evaluation treats every hand equally regard-
less of its size. The distance threshold for each landmark is
calculated as the length of the hand multiplied by a specified
threshold δ, such that:

τ = Lhand × δ (1)

where δ is a predefined threshold value, and τ represents
the acceptable distance for the landmark.

The landmarks are normalized to a 0-1 range based on the
image dimensions, with coordinates scaled relative to the im-
age width and height. The Euclidean distance between pre-
dicted and ground truth landmarks is then computed in this
normalized space. The normalized Euclidean distance for
each landmark is given by:

dnorm,i =
√
(xpred,i − xgt,i)2 + (ypred,i − ygt,i)2 (2)

where (xpred,i, ypred,i) are the predicted coordinates of the
i-th landmark, and (xgt,i, ygt,i) are the ground truth coordi-
nates of the i-th landmark, both normalized with respect to
the image dimensions.

To determine whether a landmark is considered correct, the
distance is compared to the threshold τ , also computed with
the use of normalized ground truth landmarks. If the distance
dnorm,i is smaller than or equal to the threshold τ , the predic-
tion is considered correct. The PCK at a given threshold is
defined as:

PCK(δ) =
1

N

N∑
i=0

1(dnorm,i ≤ τ) (3)

where N is the total number of landmarks, 1(·) is the in-
dicator function, which is 1 if the condition holds and 0 oth-
erwise, and dnorm,i is the normalized Euclidean distance for
the i-th landmark and τ corresponds to acceptable distance
computed from Equation 1.

This approach ensures that the PCK metric is invariant to
variations in hand size, allowing for fair comparisons across
different hand sizes and image conditions.

4.3 Baselines
To assess the effectiveness of the transformation pipelines,
two baseline performance measures were established:

Lower Baseline: This represents the accuracy of the Ges-
ture Recognizer on the unaltered greyscale infrared images.

Upper Baseline: This was derived from RGB images of
hands captured in positions resembling those in the infrared
dataset as closely as possible. While these RGB images
could not be captured under identical conditions due to tech-
nical limitations of the infrared camera, they closely resemble
them. The RGB images were acquired using a different de-
vice and lacked the temperature scale and temperature indica-
tors present in the infrared images. Despite these differences,
the RGB images provide an upper bound for assessing the
potential performance of transformed infrared images.

By comparing the accuracy of transformed images against
these baselines, it becomes possible to evaluate whether the
transformations significantly improve landmark detection and
how closely they approach the performance observed for
RGB images.

4.4 Results and Analysis
This subsection presents the intermediate results of each
transformation, along with their analysis and proposed im-
provements, which collectively led to the final pipelines.

First Pipeline Steps and Results
Colorization

The first part of the experiment involved applying a col-
orization process to the images. Two models, ECCV16 [12]
and SIGGRAPH17 [15] were chosen for this task. These
models are Convolutional Neural Networks (CNN) designed



with a feed-forward pass. While ECCV16 is a fully auto-
mated approach, SIGGRAPH17 offers a guided option. For
this experiment, both models were used in their automated
setup.

At each threshold value that influenced the acceptable dis-
tance used in PCK, the score for ECCV16 and SIGGRAPH17
was consistently lower than the lower bound, as can be seen
on Figure 6. Upon closer inspection of the images, it was con-
cluded that the models incorrectly colorized the images. Both
models were trained on RGB images artificially converted to
greyscale [12], which differed significantly from the infrared
images in the evaluation dataset. In artificial greyscale im-
ages of hands, the hand typically appears in a uniform dark
grey tone, with certain areas exhibiting darker details. These
darker regions correspond to the natural folds and creases in
the skin. However, in the evaluation dataset, the images often
showed the opposite pattern, with hands appearing brighter
overall and lacking these subtle contrasts. This discrepancy
caused the models to either colorize the hands in unnaturally
bright tones or fail to apply meaningful colorization, leaving
the hands nearly untouched. Therefore, the next step was to
transform the images into their negatives.

Figure 5: Inverted images improved alignment with the models’
training data, enhancing colorization accuracy and hand feature vis-
ibility, as seen in accuracy score with threshold value 0.05.

This adjustment improved the results. ECCV16 achieved
score around the lower bound for each threshold value and
SIGGRAPH17 improved the PCK by 3-12%, depending on
the threshold, in comparison with the lower bound. Notably,

SIGGRAPH17 performed better than ECCV16, even though
the images produced by ECCV16 appeared more colorful and
initially seemed better colored. Those differences in coloriza-
tion can be seen on Figure 5.

The difference in results can be explained by the findings
in [15]. ECCV16 uses class rebalancing to introduce diver-
sity in color, often resulting in overly aggressive colorization.
This causes it to perform poorer on the classification task
as it produces oversaturated colours, whereas SIGGRAPH17
colourization pallet more closely resembles realistic colours
[15]. Consequently, the subsequent steps were performed us-
ing only the SIGGRAPH17 model.

Removing Occlusions
The next step was to eliminate objects occluding the view,

as shown in Figure 3. As mentioned in [21], inter-class par-
tial occlusion reduces the robustness of classifiers compared
to humans and degrades the performance of detectors. There-
fore, temperature indicators (red and green squares) were
masked, and the affected pixels were replaced with neighbor-
ing pixel values. This step resulted in significant raise in the
accuracy, with up to 20% final increase compared to lower
baseline, as seen on Figure 6.

Figure 6: Intermediary PCK results for Pipeline 1 illustrates how
image inversion and colorization improved accuracy by aligning the
dataset with the models’ training conditions.

Figure 7: Comparison of hands detected by each pipeline. CLAHE
improved accuracy for 17.5% of the dataset but reduced overall de-
tection rates when combined with the first pipeline.



Figure 8: Examples of combining landmarks from both pipelines. The annotated images illustrate how the integration of results improves the
detectability and accuracy of hand landmarks.

Overall Results for Pipeline 1
Pipeline 1 significantly improved the overall result. Ap-

proximately 55% of hands were detected with perfect accu-
racy, that is the model detected correctly both the palm and
all the finger landmarks. Moreover, for another 25% it man-
aged to correctly classify the palm landmarks. However, upon
closer inspection, it was determined that the pipeline failed on
images where the hand appeared in a uniform color, with fin-
gers so dark that they blended into the background.

Second Pipeline Steps and Results
To address the problem of poor edge definition, the hypoth-
esis was to improve the visibility of finger boundaries. Con-
trast Limited Adaptive Histogram Equalization (CLAHE)
was applied, as it has been successfully used in enhancing
face and pose detection [22], [23] also with MediaPipe [24].

Upon closer inspection, as shown in Figure 7, the CLAHE
method identified fewer hands than the first pipeline. How-
ever, it achieved a higher accuracy score for 27-34 hands in
each attempt, which represents about 17.5% of the dataset.
For these hands, CLAHE improved the accuracy by at least
10% per hand. Combining CLAHE with the first pipeline,
however, resulted in a lower number of detected hands. While
the first pipeline identified 139-143 hands, depending on the
threshold, the combination with CLAHE detected only ap-
proximately 117-124 hands.

Closer inspection revealed that the addition of CLAHE to
the first pipeline caused the model to stop detecting hands or
to detect them with worse results, especially in cases where
there was a sharp colour transition between the white palm
and black fingers, instead of a gradual gradient. This outcome
aligns with the expectation that CLAHE enhances edge defi-
nition. As mentioned in [25], color plays a crucial role in ob-

ject detection, and it was decided that hands with sharp color
transitions and those with nearly invisible edges should be
treated separately. Consequently, CLAHE became the foun-
dation for the second pipeline.

The next step involved removing occlusions from the im-
ages, following the same procedure as in the first pipeline.
This step slightly improved the result, with the final score
for the second pipeline reaching the lower bound for each at-
tempt, as can be seen on Figure 9c

Although this result did not exceed the lower bound, it is
significant for diagnostic purposes. Some regions of interest
for diagnosis are located on the fingers, and their detectability
was improved by this pipeline.

Combining the Results From the Pipelines
After developing both pipelines and identifying their respec-
tive strengths, the results were combined based on the rec-
ognized gestures. This approach leveraged the advantages of
each pipeline to address the specific challenges in the dataset.
More visual examples of the solutions are shown in Fig-
ure 8, which illustrates the significant improvements achieved
through this combination.

The final setup was tested three times: once on the entire
dataset, once on the subset of images presenting the first chal-
lenge (sharp color transitions), and once on the subset with
the second challenge (edge-obscured views).

For the subset with sharp color transitions, as seen on Fig-
ure 9a, the first pipeline proved the most impactful. The
second pipeline consistently performed much lower than the
lower bound, while the first pipeline achieved results much
closer to the final combined score. Nonetheless, the second
pipeline contributed slightly to improving the overall score.



(a) (b) (c)

Figure 9: Results for different subsets of images show that for sharp color transition (a) first pipeline is the most impactful. While for
obscured-edges (b) the combination of both pipelines is the most promising. For the whole dataset (c) mainly first pipeline contributes to the
result, but combination slightly increases the accuracy.

For the edge-obscured subset, as seen on Figure 9b, the
second pipeline was essential. It outperformed the lower
bound and achieved results close to the first pipeline. How-
ever, only the combination of both pipelines produced sig-
nificantly better results, showing the largest improvement be-
tween the final score and the highest score from any single
pipeline.

For the whole dataset, Figure 9c, the performance graph
resembled that of the sharp color transition subset, indicat-
ing that most images in the dataset faced challenges related
to sharp color transitions. Overall, the combined approach
improved the score by up to 25%.

These results demonstrate that the model effectively in-
creases the detectability of hand landmarks. However, it is
evident that accuracy remains a challenge: while the com-
bination improves detection rates, the precise localization of
keypoints is still suboptimal.

5 Responsible Research
This section outlines the ethical considerations, as well as the
measures taken to ensure the reproducibility and transparency
of the research.

5.1 Data Collection
Informed consent was obtained from all participants before
image collection, allowing the use and sharing of the data for
research purposes. To introduce variability and reduce bias,
images were collected from both male and female partici-
pants. All images were captured under the same conditions,
which are detailed in the document provided with dataset.
Each participant followed a predefined set of instructions in
the same order, ensuring the collection of multiple images for
identical setups—for example, one finger of each hand sub-
merged in cold water, with a rubber mat serving as the back-
ground. Additionally, all collected data were anonymized to
ensure participant privacy.

5.2 Transparency and Reproducibility
To ensure transparency and reproducibility, the evaluation
dataset and research code repository have been made pub-
licly available. Moreover, the Methodology and Experiments

sections provide detailed descriptions of the tools utilized, the
intermediate steps, and the rationale behind the development
of the pipelines. These details ensure that the experimental
setup can be accurately replicated.

5.3 Additional Considerations
All collected data, except for the train set used to select
transformations, was included in the final evaluation of the
pipeline’s performance. Importantly, all test set data were
used to present the results, with no exclusion of images that
yielded poor outcomes. This ensures that the reported results
accurately reflect the method’s performance across the entire
test set, providing a comprehensive and unbiased assessment.

Given the limited size of the dataset, the pipelines were
specifically designed to address the two largest subsets of im-
ages, which represent the most general image categories. This
approach was taken to prevent overfitting and avoid tailoring
the solution too closely to the specific dataset, ensuring the
method’s applicability to broader contexts.

6 Discussion
This research demonstrates the feasibility of reducing the per-
formance gap in hand landmark detection between RGB and
greyscale IR images using colorization and image transfor-
mation techniques. By integrating two pipelines—contrast
enhancement via CLAHE and colorization model—the
method improved detection accuracy by up to 25% across
thresholds. These transformations enhanced hand visibility,
making features more distinguishable for both the model and
human observers.

6.1 Strengths
The primary strength of this approach lies in its ability to
detect hands in challenging conditions, such as when edges
are poorly defined or fingers blend with the background.
Moreover, the dual-pipeline strategy—contrast enhancement
via CLAHE and colorization—addresses diverse scenarios
within the same image, enabling more accurate landmark de-
tection. This flexibility ensures the method adapts well to
different settings, improving overall performance.



6.2 Limitations
The method remains reliant on input image quality, which is
the primary cause of errors. In 15 images, darker fingers led
to inaccurate fingertip landmark predictions, while in 19 im-
ages, poor image quality resulted in missed or severely mis-
aligned landmarks. Despite the overall improvements, further
refinement is needed to enhance accuracy in challenging sce-
narios.

Additionally, the logic for combining pipeline results is
simplistic because it was not the primary focus of this re-
search. Future work could explore more sophisticated meth-
ods for integrating results to further enhance detection accu-
racy and reliability. Expanding the dataset to include more
diverse conditions is also crucial for validating the method’s
generalizability and improving accuracy in varied IR imaging
setups.

7 Conclusions and Future Work
This study investigated the effectiveness of colorization and
image transformations in improving hand landmark detection
in greyscale infrared images. The results demonstrate that
these transformations enhance detection accuracy. The con-
trast enhancement proved to be the most useful for the hands
with obscured edges, while colorization increased the perfor-
mance on the hands with sharp color transition. However,
due to the diverse nature of the images, only a combination
of distinct transformation pipelines proved to yield the high-
est performance, with up to 25% increase above the lower
bound.

The primary application of this research lies in its poten-
tial for early leprosy diagnosis. The transformations devel-
oped in this study could be integrated into a system for auto-
matic hand landmark retrieval. Such a system would capture
infrared images, apply the appropriate transformations, and
leverage existing hand landmark detection models without re-
quiring extensive retraining.

7.1 Future Research Directions
Future work should address the limitations identified in this
study, particularly those related to image quality. Investi-
gating methods to mitigate the impact of low-quality inputs
could further improve detection accuracy. Additionally, de-
veloping more sophisticated logic for combining pipeline out-
puts could enhance performance.

Another critical issue is testing the generalizability of this
approach on datasets collected in varied conditions. Expand-
ing the dataset to include diverse scenarios and settings will
be essential to assess the adaptability of the proposed method
in real-world applications.
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A Appendix
A.1 Use of LLMs
During the research project, ChatGPT was used to check the
grammatical correctness and clarity of the text. The prompts
utilized included: ”Could you fix any grammatical errors?
[TEXT]”, ”Do any phrases sound out of place? Please list
anything that does not seem right [TEXT]”, and ”Could you
summarize the text and say it in your own words? [TEXT]”.

The last prompt was specifically used to ensure that the
thoughts and ideas were clearly communicated.

Moreover, for additional support in grammatical issues
Grammarly was used.
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