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Chapter 1

Introduction

A great deal of our understanding of the structure of matter comes from scat-
tering techniques. This can vary from elementary particles to macro objects.
Small-Angle Neutron Scattering (SANS) is one such scattering technique by
which one can obtain structural information of materials, varying from bac-
teria to steel precipitates. Structural information means the size and the
form of the object. In SANS one obtains data as a function of the momen-
tum transfer which is connected with the angle of scattering. To measure the
structure of large objects which means measuring very small angles, the inci-
dent beam needs to be collimated and the detector is put at large distances
from the sample. This detector is position sensitive: it includes several thou-
sands of pixels illuminated by the beam. At D11 at ILL one can put the
detector at a distance up to 40 m from the sample. The neutron intensity
drops quadratically with the distance. Therefore, it takes a lot of effort and
time to measure small scattering angles which limits the maximum size of
objects to 200 nm. In SESANS one measures depolarization as a function
of the so called spin-echo length which is a real space parameter. Each data
point automatically includes integration over the momentum space and there
is no need to collimate the beam. So, very small scattering angles are in-
cluded as easily as large angles and need not be measured explicitly with
the consequence that with SESANS one measures with high intensity over a
large size range.

In Fig. 1.1 an overview is given to measure different objects by means of
diffraction and microscopic techniques. SANS covers a range from 0.3 nm
to 200 nm whereas USANS (Ultra-SANS) covers a range from 300 nm to 30
µm [1]. However, to measure such a large range with USANS one has to
use perfect Si crystals with mosaicities of arc seconds. This means that the
intensity drops tremendously. One can measure objects with SESANS from
2 nm up to the micron region with a divergent beam where there is no loss of
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neutron intensity. Although the microscopical techniques cover a large range
they are not suited to measure bulk properties.

We said that the beam has to be collimated in SANS measurements,
and this means that the incoming neutron wave vectors are determined pre-
cisely. The sample and the pixel position determine the outgoing wave vector.
Therefore, to get information on the momentum transfer both determinations
are done precisely which leads to intensity loss. If in someway the momen-
tum transfer could be measured directly without collimation there would be
no loss of intensity.

A method to realize this is to use the spin-echo principle. There is a
convenient analogy to understand this principle. Suppose three runners run
a race over a circle. The runners start from the same position on the circle.
After some time, the runners will have run different distances. At that time
the runners are told to stop and turn and run back. By doing so they will
arrive at the same time at the starting position. So the initial and final
situation for the runners is the same and we may say that the final situation
is in echo with the initial one. However, if something happens to the runners
during their run so that they change their speed, the final situation will not
be the same as the initial one and the final situation will not be in echo with
the initial one.

The neutron is a spin-half particle, and this property of the neutron gives
it an extra degree of freedom which can be used in experiments. The neutron
spin precesses in a magnetic field. This precessional motion is called Larmor
precession that can be used as an internal clock in experiments with polarized
neutrons. One can make this clock run say in a clockwise direction and then
make it run in the counterclockwise direction. The initial and final state is
then the same. This is called the spin-echo principle. However, if there is
a scattering process the velocity of the neutrons change. So, the final state
will not be the same as the initial one.

There is a small difference between the analogy and the neutrons. For
the neutron clock to run in the counterclockwise direction, the neutrons do
not travel back, but continue in the same direction.

In 1973 the first inelastic Spin-Echo spectrometer was built in Grenoble
based on Larmor precession of neutrons [2]. The importance of the spin-
echo spectrometer is that it can measure extremely small energy transfers in
inelastic processes.

In 1978 R. Pynn proposed to use magnets tilted with respect to mean
neutron direction in a spin-echo three axis spectrometer to make the preces-
sion depend on the orientation of the incoming neutron beam with respect
to the tilt angle [3]. In this way the neutrons are labelled with the scattering
angle.
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tion and microscopic techniques. SESANS covers a range varying from a few
nanometers up to the micron region.
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In 1993 Lebedev et.al proposed the real space small-angle scattering de-
vice [4]. In their device the intensity of an unpolarized beam is modulated
before and after the scattering process by two grids. The first grid makes a
square modulation whereas the second one makes a sinusoidal modulation.
The detected intensity is proportional to the product of the transmission of
these modulators multiplied by the scattering cross-section. In first order
the intensity is then proportional to the cosine transform of the scattering
cross-section in momentum space if the transmission factors are expanded
in their Fourier series, whereby retaining only the first order coefficients. In
this way it was possible to measure directly the Fourier transform of the the
scattering cross-section which gives the correlation function. They were able
to determine the radius of latex spheres with radii of 710 Å and 2500 Å.
The latex spheres had a concentration of 25 % which means that multiple
scattering effects and structure factor must have played an important role.
However, these considerations are not included in the analysis.

In 1995 Keller et.al applied the method of angle labelling proposed by R.
Pynn on the Neutron Resonance Spin Echo spectrometer (NRSE) at BENSC
[5]. Because of this labelling, the amount of precession in the two arms of the
spectrometer will be different if a small-angle scattering process happens in a
sample placed between the arms. As a consequence, the final polarization is
less than the initial polarization. The difference in precession will have a first
order dependence on the angle of scattering and hence on the momentum
transfer Q. If the scattering power of the sample is S(Q), then the final
polarization is proportional to the Fourier transform of S(Q), i.e. to G(δ),
the density-density correlation function. Keller et.al called δ the spin-echo
length similar to the spin-echo time in inelastic scattering. In their article
the authors present a measurement of the depolarization as a function of the
spin-echo length on porous glass. The spin-echo length covers a range of 25
to 400 nm.

In 1996 Rekveldt [6] proposed triangularly shaped precession areas to
label the neutron precession. In this way only precession in the triangles are
required and no precession is required in the region between the triangles.
There are two advantages of this technique. Firstly, the contribution of elastic
scattering can be amplified by choosing the distance between the triangles
large compared to the size of the triangles. Secondly, there is less precession
required which reduces possible errors. This method is called Spin-Echo
Small-Angle Neutron Scattering or SESANS.
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Figure 1.2: Precession of the spin vector around the magnetic field vector

1.1 Layout of the thesis

In the remainder of this chapter, some basic components used in the SESANS
setup will be explained, and the SESANS theory will be formulated.

In chapter 2 the design parameters for the magnetic components in the
SESANS instrument will be calculated. In this respect two requirements have
to be fulfilled: homogeneity of the magnetic fields in the SESANS magnets
and the line integral homogeneity.

In chapter 3 line integral corrections will be discussed. The line integral
homogeneities cannot be corrected by changing the magnet parameters and
therefore, it is corrected by external coils. This is done in two steps. In
the first step, line integral inhomogeneities are transformed form one of the
perpendicular directions to the neutron beam into the other direction. By
doing so, there is only line integral inhomogeneity in one direction. In the
second step this remaining inhomogeneity is corrected by a parabolically
shaped coil.

In chapter 4 we will discuss some model calculations. These include,
spherical systems, the effect of Gaussian polydispersity, structure factor ef-
fects, multishell model, ellipsoid of revolution and cylindrical model. The
Debye-Lorentz model will be treated analytically.

In chapter 5 SESANS measurements done so far will be shown. This
includes measurements on limestone and spherical particles.

Finally, in chapter 6 the conclusions will be given.
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1.2 Polarization and polarizers

Polarization of a neutron beam is defined as:

P =
I+ − I−
I+ + I−

. (1.1)

Here I± are the spin up and down intensities.
When neutrons are produced, there are as many as spin-up as spin-down

neutrons. In order to select one spin state neutrons are reflected on super-
miror surfaces. This consists of magnetically scattering layers which scatter
one of the spin-states more strongly than the other. A polarizer is then a box
with an entrance and exit window between which a stack of these supermirror
layers are mounted [7].

1.3 Larmor precession

When a neutron enters a magnetic field region as shown in Fig.1.2, its spin
starts to rotate around the direction of the B field. In quantum mechanics
for every operator A in the Schrödinger picture the corresponding operator
AH(t) = U(t)AU †(t) in the Heisenberg picture can be written where U(t) =

e−
i
h̄

Ht is the evolution operator. The Heisenberg equation of motion is given
by [8]:

dAH(t)

dt
= − 1

ih̄
[AH , HH ] +

∂AH

∂t
(1.2)

This equation can be used to write the equation of motion for the Pauli
spin vector �σ(t) after working out the commutator by using H = −γ�σ · B
and the evolution operator. Here γ is the gyromagnetic ratio. This gives:

d�σ(t)

dt
= γ�σ × B. (1.3)

By taking the ensemble average of Eq. 1.3 and noting that P =< �σ > one
obtains:

dP(t)

dt
= γP × B. (1.4)

When this equation is solved, the solution of P(t) appears to be the
Larmor precession of P(t) around B with the Larmor frequency ω = γB.
For a neutron which has interaction in a magnetic field region over a length
l the total rotation angle is:

φ = ωt = γB
mlλ

h
. (1.5)
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Here m is the neutron mass, h the Planck constant, and λ the wavelength.
More generally, when the field is varying:

φ =
γm

h
λ

∫
path

|B|dl = cλ
∫

path
|B|dl (1.6)

where c = 4.63 × 1014 T −1· m −2.

1.4 Flippers

Flippers are used to change the direction of the spin vector so that the two
spin states can be measured. In the top and middle drawing of Fig. 1.3
a flipper used in the SESANS instrument is shown [9]. It consists of two
identical coils. The coils are wound in such a way that they can produce
a magnetic field in the y-direction. In Fig. 1.3 the first part of the flipper
produces a field in the +y direction whereas the second part produces a field
in the ±y direction according to the polarity of the current. In the bottom
figure, the fields inside and outside the flipper are plotted. For x < 150 mm
the dominant field is the stray field of the magnet which is in the z direction
whereas for x > 150 mm the dominant field is due to the stray field of the
analyzer that is in the z direction. In the first part of the flipper the field
is in the y direction. So, the total field turns from the z direction to the y
direction and the neutrons follow this slow change. In the second part of the
flipper, 0 < x < 150 mm, the field can be in the y direction. So, the total
field turns from the y direction to the z direction which is followed by the
neutrons. This results in measurement of the spin up state. However, when
the field in the second part of the flipper is in the −y direction, the neutrons
cannot follow this rapid change in the field direction. So, the neutron spin
will still point in the y direction. Therefore, when the field changes from −y
to z, the spin direction changes from −y to −z direction. In this case the
spin down state can be measured.

1.5 Magnetic foils as polarisation manipula-

tors

Magnetized foils can be used as flippers [10]. To realize this we use a foil
(see Fig. 1.4a) of a soft magnetic material placed between the poles of an
electromagnet which is magnetized to saturation by the applied magnetic
field Bext. This local strong magnetic field is very convenient for manipulation
of the neutron polarization. The neutron in the foil is subject to an effective
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Figure 1.3: Spin flipper with the fields inside and outside the flipper. In the
top and middle figure side and top view of the flipper is shown, respectively.
The flipper is wound in such a way that it produces a field in the ±y direction.
In the bottom figure, the fields inside and outside the flipper are shown. The
fields outside are due to the stray fields of the magnet and the polarizer,
respectively. The final polarization Pf is equal or antiparallel to the initial
polarization P0, dependent on the direction of the field in the y-direction in
the second part of the coil.
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�
O Ms

Figure 1.4: Schematic side views of the single and double foils (a) The effec-

tive induction �Beff is the vector sum of the in-plane local magnetic induction
µ0Ms and the applied external field Bext. Neutrons that traverse the foil will
experience this effective induction �Beff . (b) Definition of the angle θ0, the
thickness of the foil df and the length d of the pole shoes. The length that
the neutrons traverse in the magnetic field after the foil (indicated with the
gray area) depends on their height in the field. (c) A double foil consists of
two foils mounted parallel at a distance ds.

field Beff which is the vector sum of the in-plane local magnetic induction
µ0Ms and the applied external field Bext as shown in Fig. 1.4a where Ms is
the saturation magnetization. The value of the field is:

Beff =
√

(cos(θ0)µ0Ms)2 + (sin(θ0)µ0Ms + Bext)2 (1.7)

and its angle with the horizontal is:

θeff = arctan

(
sin(θ0)µ0Ms + Bext

cos(θ0)µ0Ms

)
. (1.8)

The polarization vector rotates in the foil over an angle:

φf = cλBeffdf/ sin(θ0) (1.9)

around this local induction, in which df/ sin(θ0) is the path length through
the magnetized foil. The rotation matrix Rf for the polarization vector can
be calculated from these parameters.

1.5.1 Single foils to start and stop precession

When we calculate the precession inside the foil with the matrix Rf acting
on the initial polarization in the z-direction, we find that the polarization
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is turned into the horizontal plane, perpendicular to the applied field. As
a consequence, the Larmor precession starts after the foil. The precession
continues until the end of the field between the poles of the electromagnet
which is perpendicular to the neutron beam. Thus a triangular precession
region is created as shown in Fig. 1.4b.

The vertical polarization can be calculated with the zz-element of Rf :

Pzz = sin2(θeff ) (cos(φf ) − 1) + 1 (1.10)

In this way, it is possible to bring the vertical polarization vector to the
horizontal plane by using a foil of an amorphous CoFeNi alloy with a thickness
of df = 30 µm and µ0Ms = 0.55 T mounted under an angle θ0 = 410 on
a flat aluminum frame. The strength of the applied magnetic field has a
noticeable effect on the flipping behavior of the magnetic foil. The foil is
already saturated at a very small applied field.

1.5.2 Double foils as a π rotator

Two parallel foils spaced by a distance ds (Fig. 1.4c) can function as a spin
flipper by rotating the polarization by π radians around the x-axis. The
transformation of the polarization vector is composed of three rotations: a
rotation φf around the magnetization in the first foil, next a rotation in
the space between the foils φs around the vertical magnetic field, and finally
again a rotation φf around the magnetization in the second foil. The rotation
between the foils is over an angle:

φs = cλBds/ sin(θ0) (1.11)

which is described by rotation matrix Rs. So, the matrix due to the double
foil can be calculated:

Rd = RfRsRf . (1.12)

The rotation in the space between the foils can be tuned, for example by
varying B. The double foil is a π flipper when ds = 0.35 mm, λ = 0.245 nm
and B = 53 mT. The importance of the double foil is that it now works as a
mirror for the polarization vector in the xz-plane which leaves the y-direction
of the polarization vector unaffected.

1.6 The SESANS principle

In Fig. 1.5 the complete SESANS setup is shown. First the neutrons are
polarized by the polarizer. By entering the first magnet, the polarization
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vector is turned 900 by the single foil which acts as a π/2 flipper [10]. The
double foil is a π flipper and the single foil in the third magnet stops the
precession. If there is no scattering the total amount of precession in the
precession areas denoted by a + sign will be equal to that with a - sign.
This is the echo situation. The reason for this is simply that the length of
path for unscattered neutrons in the + region is the same as in the - region.
The single foil turns the polarization with 900 from the x − y-plane to the z
direction. The flipper together with the analyzer is used to select the spin
up or spin down state. Finally, the neutrons are counted by the detector.

When there is scattering, the length of the scattered and unscattered
paths after the sample are not the same. This gives rise to a difference
in precession angle ∆ϕ, and therefore the polarization vector will make an
angle ∆ϕ with the z axis when it is rotated over 900 by the single foil from
the x − y plane to the z direction. In order to calculate the difference in
precession we must first calculate the length of these paths. Lets suppose a
right handed coordinate system with the x-axis in the neutron beam direction
on the sample. The unscattered beam is defined by the angles θ1 and φ1 and
the scattered beam by θ2 and φ2. These angles are the usual spherical polar
coordinates with the pole angles defined as the complementary angle to the
z-axis and the azimuthal angles are defined with respect to the x-axis. The
equation of the path for the unscattered beam can be written as:

ru = eut (1.13)

where t is a scalar and eu is the spherical unit vector given by:

eu = (cos(θ1) cos(φ1), cos(θ1) sin(φ1), sin(θ1)) (1.14)

The length of the path is |ru| = t. The equation of the plane of the last foil
is given by:

z = tan(θ0)(x − sx) (1.15)

where sx is the distance from the sample to the last foil, θ0 the angle between
the foils and the horizontal direction as shown in Fig.1.5. The x and z
coordinates in Eq.1.14 and Eq.1.15 are the same when the path intersects
the plane of the foil. By substituting the x and z components of Eq. 1.14 in
Eq. 1.15 we can solve t which is the length from the sample to the point of
intersection of the foil by the path. This length for the unscattered neutrons
tu1 is given by:

tu1 =
sx tan(θ0)

cos(φ1) cos(θ1) tan(θ0) − sin(θ1)
(1.16)
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The length from the sample to the straight part of the precession area in
magnet 3, tu2, can be obtained by Eq. 1.16 by taking the limit θ0 → π/2 and
replacing sx by sx − d/2:

tu2 = (sx − d/2) sec(ϕ1) sec(θ1) (1.17)

The length over which precession takes place for the unscattered beam,
∆tu is the difference between tu1 and tu2: ∆tu = tu1 − tu2. In the same way
we can define the length over which precession takes place for the scattered
beam as ∆ts which is obtained from ∆tu with the following changes: θ1 → θ2

and ϕ1 → ϕ2

The difference in precession is then given by Eq.1.6 for a homogenous
field B as:

∆φ = cλB(∆ts − ∆tu) (1.18)

The scattering angles are defined by θ = θ2 − θ1 and φ = φ2 − φ1. The
divergence of the beam is neglected when θ1 = φ1 = 0. By using this in
Eq. 1.18 and making a Taylor expansion of (θ, φ) around (0, 0) one obtains
up to first order [6]:

∆φ = cλBsx cot(θ0)θ = Qz
cλ2B cot(θ0)sx

2π
= Qzz (1.19)

where we used Qz = k0θ = 2π
λ

θ, the z-component of the wave vector transfer,
θ the scattering angle and

z =
cλ2B cot(θ0)sx

2π
. (1.20)

The sample does not scatter over one angle but over all angles according
to the scattering power of the sample F 2(Q)S(Q) where F (Q) is the form
factor and S(Q) the structure factor. The polarization can be written as:

P (z) = 1 − σt + σG(z)t (1.21)

with:

G(z) =
1

σk2
0

∫ Qzm

−Qzm

∫ Qym

−Qym

dσ(Q)

dΩ
cos(Qzz)dQzdQy. (1.22)

Here σ is the scattering probability per unit length of thickness that
contributes to the detector intensity:

σ =
1

k2
0

∫ Qzm

−Qzm

∫ Qym

−Qym

dσ(Q)

dΩ
dQzdQy. (1.23)
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The integration boundaries are determined by the critical reflection angle
of the polarizer and analyzer mirrors in the y-direction and the acceptance
angle of the detector in the z-direction. This leads to Qym = 0.13 nm −1 and
Qzm = 0.94 nm −1 in the setup used in the Delft reactor [6]. The scattering
cross-section is given by:

dσ(Q)

dΩ
= η(∆ρ)2F 2(Q)S(Q). (1.24)

where η is the volume fraction and ∆ρ the scattering length density difference
between the particle and solvent. In Eq.1.21, σt gives the fraction of scattered
neutrons and (1 − σt) gives the fraction of unscattered neutrons.

1.7 Multiple scattering

If multiple scattering is present the formulae are somewhat more complicated
and (1.21) should be written as [11]:

P (z) = 1 − st + G′(z, t) (1.25)

with st the total cross-section of the sample and G′(z, t) representing the
fraction of the beam modified in polarization by the changed transmission
angle. The scattering in the sample can be thought to be built up of the
scattering processes taking place along an individual path. Let us assume
that n scattering events happen, with the probability for one such event equal
to ρn. The chance is given by [12]:

ρn =
tn

∫ ∫
dQ1ydQ1z

dσ
dΩ

(Q1)
∫ ∫

dQ2ydQ2z
dσ
dΩ

(Q2)...
∫ ∫

dQnydQnz
dσ
dΩ

(Qn)

k2n
0 1 × 2 × ... × n

T

=
(σt)n

n!
T

with:
Q1 + Q2 + ... + Qn = Q (1.26)

and T is the transmission of un-scattered neutrons given by:

T ≡ 1 − st (1.27)

The total scattering is found by summing over all path probabilities ρn:

st =
∞∑

n=1

ρn =
∞∑

n=1

(σt)n

n!
T = T (eσt − 1) = 1 − e−σt (1.28)
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and thus T = exp(−σt). Let us now evaluate the second term G′(z, t) on
the right hand side of (1.25). The total wave vector transfer, Qz, in the
cosine term of this equation is the sum of all individual transfers according
(1.26) occurring during the passage in one path through the sample and in
particular the cosine term, cos(Qz), can be written as:

cos(Qz) = cos(Q1z) cos(Q2z)... cos(Qnz) (1.29)

+ odd terms in Q1, Q2 and Qn. In the integrals over Qi the odd terms in
Qi do not contribute and can be omitted. In a similar way as for the total
scattering derivation in and (1.26) to (1.28) we find:

ρ
′
n =

tn
∫ ∫

dQ1ydQ1z
dσ
dΩ

(Q1) cos(Q1zz)

k2n
0 1 × 2 × ... × n

×
∫ ∫

dQ2ydQ2z
dσ

dΩ
(Q2) cos(Q2zz)

×...
∫ ∫

dQnydQnz
dσ

dΩ
(Qn) cos(Qnzz) × T

=
(σG(z)t)n

n!
T

(1.30)

and:

G′(z, t) =
∑
n

ρ′
n =

∑
n=1

(σG(z)t)n

n!
T = T (eσG(z)t − 1). (1.31)

Substituting this result in (1.25) we find for P (z) in case of multiple scatter-
ing:

P (z) = T + G′(z, t) = TeσG(z)t = eσt(G(z)−1) = T 1−G(z) (1.32)

or:

G(z) = 1 − ln(P (z))

ln(T )
. (1.33)

This equation shows that there is a one to one relation between the mea-
sured polarization and the correlation function G(z) independent of possible
multiple scattering, provided the level st or T can be defined. That means
that one does not need to limit the number of scattering processes of the
neutrons in transmission through the sample, in marked contrast to conven-
tional SANS where the sample thickness must be chosen such as to avoid
multiple scattering. This is a great advantage of the SESANS technique in
view of measuring statistics.



1.8 Different options for SESANS 15

If one does not know the transmission or the total amount of scattering,
it is still possible to scale the depolarization with the thickness to obtain the
shape of the correlation function:

ln(P (z))

t
= σ(G(z) − 1) (1.34)

1.8 Different options for SESANS

There are several possibilities to realize a SESANS instrument. So far we
have discussed extensively the foil option. In Fig. 1.6 four possible options
of SESANS are shown. The first one, Fig. 1.6.a is the SESANS option with
three foils which has already been discussed. The advantage of this option
is that the inclination angle θ0 can be made very small which increases the
spin-echo length tremendously. Another advantage is that the fields are in
the same direction throughout the setup. There are three disadvantages:
Firstly, the foils work for a certain wavelength. Secondly, the line integrals
have to be corrected with external coils. Thirdly, the accuracy for setting θ0

increases with decreasing angle. This can be understood with the following:
By differentiating the spin-echo length, Eq. 1.20, with respect to θ0 we can
write:

∆θ0 = − sin(θ0)
2 2π

cλ2Bsx

∆z (1.35)

This means that an allowable error ∆θ0 in the inclination angle θ0 becomes
small when θ0 is decreased in order to increase the spin-echo length. If
θ0 = 450 is compared with θ0 = 5.50 we obtain:

∆θ0(θ0 = 5.50) =
sin(5.50)2

sin(450)2
∆θ0(θ0 = 450) =

∆θ0(θ0 = 450)

54
. (1.36)

So, with θ0 = 5.50 the angle θ0 must be set 54 times more accurate than with
θ0 = 450 to obtain the same resolution in z.

The wedge option is shown in Fig. 1.6.b. The poles of the magnets are
shaped like wedges which create triangular precession areas as shown in the
figure. The disadvantages of this option are that firstly, the line integral must
be corrected with external coils. Secondly, the magnetic field in the first part
of the setup is opposite to the field in the second part. Thirdly, it is difficult
to change the angle θ0 since this is determined by the magnet poles. A strong
advantage of such an option is that it is applicable to all wavelengths. If the
sample is positioned in the middle of the setup the spin-echo length is given
by:

zwedge,1 =
cλ2B cot(θ0)(d + 2L)

2π
, (1.37)
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Figure 1.6: Different options with which a SESANS instrument can be real-
ized. a) SESANS with three foils. The outer foils work as π/2 flipper whereas
the middle one works as a π flipper. b) SESANS with wedges. The poles of
the magnets are shaped as wedges which create triangular precession regions.
c)SESANS with resonant field option. The poles of the magnets are shaped
as parallelograms. π flippers are placed between the poles. d)SESANS with
four foils which work as π flipper.
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whereas if it is positioned between the third and fourth precession area it is
given by:

zwedge,2 =
2sxcλ

2B cot(θ0)

2π
, (1.38)

An comparison of Eq. 1.20 and Eq. 1.38 shows that with the wedge option
the spin-echo length is two times larger than with the foil option.

In Fig. 1.6.c the resonant field option is shown [13]. The magnet poles
are shaped like parallelograms which create the SESANS effect. π-flippers
are placed between the magnet poles which consist of solenoids with the field
in the neutron beam direction. A sinusoidally changing current is passed
through the solenoids of which the frequency matches the energy of zeeman
splitting of the spin states. The disadvantages are twofold. Firstly, it is
difficult to change θ0. Secondly, the fields are in the opposite direction for
the first and second part of the setup. There are two advantages: Firstly, the
π flippers work for all wavelengths [14]. Secondly, because of the π flipping
in the middle of each precession area the line integral errors at the entrance
and exit of each magnet cancel each other. Therefore, there are no correction
coils needed. The spin-echo length is given by [15]:

zresonantfield =
2Lcλ2B cot(θ0)

2π
. (1.39)

The last option is shown in Fig. 1.6.d. There are four dipole magnets
in which inclined foils are placed which work as π flippers. In this way,
eighth triangular shaped precession regions are created. The advantage of
this option is that the line integral is automatically corrected for each magnet
due to the π flipping in the middle. Additionally, the spin-echo length can
be largely increased by decreasing the inclination angle θ0. A disadvantage
is that the fields are oppositely oriented for the first and second part of the
setup and the foils work for one wavelength. Furthermore, the allowable error
in θ0 becomes small with increasing θ0, Eq.1.35. If the sample is positioned
in the middle of the setup the spin-echo length is given by:

zfoil,1 =
2Lcλ2B cot(θ0)

2π
, (1.40)

whereas if it is positioned between the third and fourth precession area it is
given by:

zfoil,2 =
2sxcλ

2B cot(θ0)

2π
. (1.41)

The spin-echo length is increased by a factor of two in comparison with the
three foil option.
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three foils wedges resonant field four foils
λ one λ all all one λ

spin-echo z∗ 2z∗ 2z∗ 2z∗

length
zero field no yes yes yes
transition

line integral external external automatically automatically
coils coils corrected corrected

adjustment of θ0 easy difficult difficult easy

Table 1.1: Advantages/disadvantages of the four options with which SESANS
can be realized. The zero field transitions has to do with when the magnetic
fields are in the same or opposite direction in the first or second part of the
setup.

In Tabel 1.1, a summary of the advantages/disadvantages of the four
SESANS options is given. When the three and four foil options are compared
the four foils option is better except for the zero field transition. However,
this is not a serious problem. It can be solved with a field stepper placed at
the zero field transition point. A choice between four foils and resonant field
option is choosing between a large z range or high intensity, respectively. The
wedge option compared to resonant field and four foils has the disadvantage
that the line integral must be corrected and that it is difficult to adjust θ0.
However, the line integral can be corrected very well with external coils as
will be shown in chapter 3. So, the only disadvantage of this option is the θ0

adjustment. On the other hand it works for all wave lengths like the resonant
field option.
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Chapter 2

Magnetic design of a Spin-Echo
Small-Angle Neutron
Scattering instrument

The content of this chapter has been accepted for publication in Nuclear in-
struments and methods in physics research A, 2002 as: ”Magnetic Design of
a Spin-Echo Small-Angle Neutron-scattering instrument”, Oktay Uca, Wim
G. Bouwman and M. Theo Rekveldt.

2.1 Introduction

A photo of the SESANS setup with the four foil option is shown in Fig. 2.1. It
can consist of two symmetrical parts containing dipole electromagnets with
inclined foils in it. The amount of precession in each magnet is a linear
function of the height of the neutron path in the magnet. In order to pre-
serve this linearity the fields produced by the magnets must be homogeneous
enough in the magnets around the regions where this linear labelling occurs.
In this paper the design parameters for a homogeneous SESANS magnet will
be calculated. Line integral homogeneity is another important requirement
for the SESANS magnet. The origin of these inhomogeneities is explained.

The magnetic fields in the SESANS instrument are perpendicular to the
neutron direction contrary to conventional spin-echo setups [2] where the
fields are parallel to the neutron direction. In the latter case cylindrical coils
are used with the cylinder axis parallel to the beam axis. The magnetic
field distribution for such coils can be calculated analytically rather than
integrating the Biot-Savart law numerically [16]. In our case we use electro
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magnets containing iron parts which forces us to use numerical calculations.
In the literature there is considerable knowledge on design parameters

for insertion devices for synchrotron radiation and NMR magnets. In the
case of NMR, one is interested in a homogenous field around the sample
volume of approximately 20 × 20 × 20 mm3. By using shim coils one can
obtain 3 parts per billion field homogeneity [17]. One is not interested in the
field distribution outside the sample volume due to these shim coils which is
not homogenous. If in SESANS such shim coils were used around the foils to
homogenize the field, the line integral outside the foil region would be spoiled
due to the inhomogeneities there, created by the shim coils.

In the case of insertion devices such as wigglers and undulators, one is
interested in the integrated homogeneity of the magnetic field vector along
the electron trajectory [18]. However, in SESANS the important quantity is
the integrated homogeneity of the absolute value of the magnetic field along
the neutron trajectory. Moreover, the line integral must be homogenous over
the whole beam cross-section. There are also reports about insertion devices
for homogenizing the field by modifying the pole face. In [19, 20, 21], it is
reported that by putting metal plates with a high µ against the pole faces
the magnetic field can be homogenized. In [19], it is argued that the central
field would decrease if the pole width would be increased. In this paper we
will show that the value of the central field is only dependent on the distance
between the pole faces and the current. Therefore, the pole width will be
increased to homogenize the field.

In the SESANS instrument guide fields have to be used in order to pre-
serve the polarization of the neutrons between the magnets. The necessary
homogenous field can be produced by coils. The required parameters for such
coils will be calculated.

2.2 Calculation of the magnetic fields

The magnetic field calculations were performed with two different programs:
Poisson Superfish code of the Los Alamos National Laboratory [22] and Radia
[23] from the ESRF in Grenoble, France. Poisson is a 2D code that uses
finite element methods to solve the problem. On the other hand, Radia is
a 3D code. It uses finite difference methods to solve the problem. In this
method of solution, only the actual material regions have to be segmented.
Therefore, the space between a point where the field value is required and the
material is not segmented. This saves a lot of computation time in solving
3D geometries. However, in situations where 2D calculations were sufficient
we used the 2D program instead of the 3D program. The reason for this is
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Figure 2.2: 3D picture of a SESANS magnet with skewed pole faces.

twofold. Firstly, it is not possible in Radia to switch to 2D. Secondly, the
required time in order to calculate the magnetic field for geometries with
pole faces as shown in Fig.2.2 increased tremendously in the 3D calculations
in comparison with magnets with no pole faces.

2.3 Magnetic field homogeneity

In the center of the magnet in a volume of 30×30×30 mm3 the magnetic field
homogeneity should be better than 1.3 G to maintain a good polarization
[24]. In Fig. 2.3 one can see the cross-section of a quarter part of the magnet
in Fig.2.2 which is used in the simulations. The short-circuiting yoke is in
the actual set-up in the y-direction but it is drawn in the x−z plane because
the simulations and the calculations are done in two dimensions. Various
parameters in the magnet in Fig. 2.3 are varied to study the effect on the
line integral and field homogeneity.

In Fig. 2.4 the field inhomogeneity ∆B in the x and z directions are
plotted as a function of xp. As a measure for ∆B the difference of the field
values at x = 1.5 cm, z = 1.5 cm and x = 0 cm, z = 0 cm are taken. At
these points, the fields differ the most from each other. The magnet is one



2.4 Saturation effect and thickness of the yoke and core 25

d

d

x

z

x

x
z

L

z
s

s
p

p t

Figure 2.3: Quarter of the cross-section of the magnet in the x − z plane as
used in the simulations. Various parameters are indicated.

with a rectangular pole face, i.e. xs = 0, L = xp, d = 2 cm and zp = 3 cm.
The simulations are done in cylindrical symmetry with B(0, 0) = 2000 G.
Therefore the x axis can also be read as the y axis. We can see from this
figure that with xp = 9 cm the magnet is homogenous enough in the three
directions.

2.4 Saturation effect and thickness of the yoke

and core

In the previous section we concluded that xp had to be at least 9 cm. Having
the same value for the radius of the core L would make this rather heavy.
To save weight one might decrease L. However L cannot be chosen too small
because then the iron saturates.

In decreasing L one should keep in mind that xp should be 9 cm in order
to preserve the homogeneity of the field. Another important point here is
the thickness of the pole face, t. If this is too small the flux in the iron core
cannot be distributed smoothly enough through the pole face in the x − y
direction which leads to inhomogeneities. If L = 5 cm xp = 9 cm, xs = 0 cm
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Figure 2.4: Difference between the magnetic fields at x = 1.5 cm, z = 1.5 cm
and x = z = 0

and t = 1 cm then ∆B = 15.1 G in a volume of 30×30×30 mm3 around the
center of the magnet. When we increase t from 1 cm to 3 the inhomogeneity
becomes 1.9 G which is sufficient.

The purpose of the yoke is to short-circuit the flux. However, if the cross-
section of the yoke perpendicular to the flux lines is too small the yoke gets
saturated. This is a situation which has to be avoided. For an estimate of the
yoke thickness, consider the iron in saturation. The cross-section of the iron
core is π ×L2 and that of the yoke is d, see Fig. 2.3. Here we have taken the
yoke in the y direction. The width in the x direction is l and the flux in the
iron core is φcore = πL2Bcore. The flux in the yoke is φyoke = dlByoke where
Bcore and Byoke are the magnetic induction in the core and yoke, respectively.
From conservation of flux we can write; φcore = 2×φyoke. This gives for Byoke

in order not to be saturated when Bcore approaches saturation:

Byoke,sat ≥ πL2Biron,sat

2dl
(2.1)

where Byoke,sat and Biron,sat are the fields in the yoke and core, respectively,
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Figure 2.5: Difference of the line integral evaluated at z = 1.5 cm and z = 0
cm as a function of the gap distance. The other magnet parameters are:
L = 8 cm, xs = 3 cm, xp + xs = L and zs = 1 cm.

approaching saturation. The minimum thickness of the yoke is then:

d ≥ πL2

2l
(2.2)

From simulation we obtain that the field in the core is 10 kG for a field of
2000 G in the center of the magnet and with L = 6 cm and t = 3 cm. This
can also be reasoned by equating the flux in the core to the flux in the gap.

This gives L ≥ l
√

2000
πBcore

. For l= 18 cm and Bcore = 10 kG, L = 4.5 cm and

a square pole face
So, the minimum thickness of the yoke is from Eq. 2.2, d = 3.1 cm for

L = 6 cm and l = 18 cm.

2.5 Line integral homogeneity

The total amount of precession which a neutron performs when it follows a
path, l, through a magnetic field is given by:

φ = cλ
∫

Bdl, (2.3)
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Figure 2.6: Rectangular box for calculation of the flux through its surface.

where c = 4.63 × 1014 G.cm−2, λ is the wavelength and B the magnetic
field. For a horizontal path through the middle of the magnet, Fig. 2.3, and
the end top part of the magnet the difference in the line integral becomes

∆(
∫

Bdx) =
∆φ

cλ
. (2.4)

If we want the polarization better than 0.98 then ∆φ of the total setup must
be smaller than 0.2 rad., since cos(0.2) = 0.98. Then:

∆(
∫

Bdx) ≤ 2.2 G.cm. (2.5)

for λ=0.2 nm [25].
The difference in the line integral can be written more specifically as:

∆(
∫

Bdx) =
∫ (√

(B′2
x + B′2

z ) − Bz

)
dx. (2.6)

The primes denote the field values at some height z = z1 for a horizontal
path along x. The unprimed fields are those at z = 0. Because of symmetry
at z = 0, Bx = 0. The field in the z direction is much larger than the field
in the x direction. Therefore, we can expand the first term in Eq. 2.6. We
can then write:

∆(
∫

Bdx) =
∫

(B
′
z − Bz)dx +

∫ B
′2
x

2B′
z

dx. (2.7)

Now we will use the conservation of flux to show that the first term in Eq. 2.7
vanishes. The conservation of flux reads as ∇ · −→B = 0. This can also be
written as a surface integral, i.e

∮ −→
B · d−→O = 0 where d

−→
O is an infinitesimal
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Figure 2.7: Field components Bx and Bz at z = 1.5 cm for two half pole
distances. The continuous curves are at zp = 1.6 cm, whereas the dashed
curves are at zp = 10 cm. The negative and positive valued curves are the
x-components and the z-components, respectively.

surface element. We choose as integration area the surface of the rectangular
box in Fig. 2.6 whereby the magnet is not drawn. The bottom face of the
rectangular box, ABCD, is in the x − y plane at z = 0 and the top face,
EFGH is also in the x−y plane but at z = z1. The length of the rectangular
box in the x direction is much larger than the length of the magnet L.
Conservation of flux can now be written as:∮ −→

B ·d−→O =
∫

EFGH
(B

′
z−Bz)dxdy+

∫
FBCG

(B2,x−B1,x)dydz+
∫

DCGH
(B4,y−B3,y)dxdz.

(2.8)
Here B1,x and B2,x are the x components of the fields at the planes EADH,
FBCG, respectively. B3,y and B4,y are the y components of the fields at
the planes ABFE, DCGH, respectively. The last term in Eq. 2.8 vanishes,
because B3,y = B4,y = 0. The second term is also very small if one takes the
rectangular box sufficiently large. Therefore, Eq.2.8 reduces to:∮ −→

B · d−→O = 0 =
∫

EFGH
(B

′
z − Bz)dxdy =

∫
dy

∫
(B

′
z − Bz)dx, (2.9)

because Bz has no y dependency. Combining this with Eq. 2.7 gives:

∫
(B

′
z − Bz)dx = 0, and ∆(

∫
Bdx) =

∫ B
′2
x

2B′
z

dx. (2.10)
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Therefore, inhomogeneities in the z component of the field will not contribute
to the line integral inhomogeneities. Furthermore, the line integral is propor-
tional to the square of the x-component of the magnetic field. This means
that it is important in the design to reduce these x-components.

2.5.1 Dependence on pole gap

In Fig. 2.5 the difference of the line integral
∫ |−→B |dx at z = 1.5 cm and

z = 0 cm is plotted as a function of the half pole distance. Increasing the
pole gap by a factor 8 reduces the line integral difference only by a factor
of 1.8. Therefore increasing the pole gap in order to fulfil the requirement
on the line integral difference will not help much. Increase of the pole gap
distance has also a disadvantage. The field produced by the magnet can be
approximately written by Ampere’s Law as B = I/(2 × zpole). Therefore,
increasing the pole gap distance will lower the produced field. It is also clear
that the magnitude of B is independent of the width of the pole faces.

To get a better understanding of what is happening the field components
for two pole distances are plotted in Fig. 2.7. When the pole distance in-
creases the x component decreases, but as one can see from Fig. 2.7 it gets
extended. So the integral in Eq. 2.10 does not decrease enough to make the
difference in the line integral small.

2.5.2 Dependence on pole angle

The next parameter which has to be determined is the pole angle. This angle
is defined by xs and zs. There will be a strong Bx if the pole angle is 900 i.e.
xs = 0. Therefore, in order to reduce the line integral inhomogeneities there
should be a smooth transition. The situation where xs is small and zs is large
and vice versa leads to the same configuration. So there is an optimum xs,
zs ratio. Indeed, in Fig. 2.8 one can see the variation of the difference of the
line integral as function of the slope zs/xs. For zero and large slope the line
integral is the same. At a slope of 0.49 the line integral is minimal. In these
simulations xs is kept constant at 3 cm while zs is varied and xp + xs = L.

2.5.3 Discussion

By careful design the inhomogeneity of the line integral difference is still
550 G.cm. This value is still far away from the required 2.2 G.cm. It is not
possible to reduce the line integral differences further by choosing the optimal
pole angle. The remaining inhomogeneity will be reduced by two external
coils. Therefore, it is preferable to keep the starting value of the line integral
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Figure 2.8: Dependency of the line integral difference on the slope of the pole
face.

errors as small as possible because then the current for the correction coils
will also be small. The first coil consists of four current carrying bunches
of wires placed along the mean beam trajectory [25]. These wires create a
quadratically changing fields in the perpendicular direction to the neutron
beam over the beam cross-section. This coil actually transforms the line
integral inhomogeneity from one perpendicular direction to the other. The
second coil has a parabolic cross section. This will correct the remaining
inhomogeneity. In this way it is possible to increase the polarization from
0.15 to 0.82 for a beam cross-section of 10 × 15 mm2 [26].

2.6 Measurements

Measurement of the magnetic field B along the x-axis at y = z = 0 in a
SESANS magnet designed according to the calculations is shown in Fig. 2.9.
The various parameters are: t = 3.8 cm, zs = 0.93 cm, xs = 2 cm, xp =
7.5 cm, L = 5 cm and d = 5 cm. Some parameters are somewhat larger
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Figure 2.9: Measurment and simulation of the field with 2-D and 3-D ge-
ometry along the x axis at y = z = 0 . The circles are the measurement,
the triangles are the 2-D simulation and the continuous curve is the 3-D
simulation.

than the minimum required values because of standard material sizes. These
parameters are also used for the simulations of the 3-D geometry. There is a
good agreement between the measured field and the calculated one in 3-D.
The field calculated in 2-D geometry is in agreement with the measurement
in the flanks whereas in the middle the calculations give a larger field. The
reason for this is that in 3-D the flux in the iron core is spread in the x
and y direction in the pole face. However, in 2-D geometry the flux is only
distributed in the x direction which gives rise to a higher field in the middle
of the magnet.

In Fig. 2.10 the middle part of Fig. 2.9 is shown. The calculated fields
are normalized to the measured field at x = 0. The inhomogeneity in the
measurement and the 3-D calculation is 0.85 G and the inhomogeneity in the
2-D calculation is 0.55 × 1900/1670 = 0.63 G. These are all well within the
requirement of 1.3 G.

It seems that upon zooming in, the 2D calculations agree better with the
measurements than those for 3D. The meshes of the pole face for obtaining
the results in Fig. 2.9 and Fig. 2.10 are about a few millimeters. In the case
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Figure 2.10: The normalized middle part of Fig. 2.9. The circles are the
measurement, the triangles are the 2-D simulation and the continuous curve
is the 3-D simulation.

of the results with 2D simulations the meshes were in the order a tenths
of millimeters. So, this can be the reason for the deviation in Fig. 2.10.
However, one should note that we are talking about differences of 0.1 permille.

2.7 Guide field coils

In the present SESANS instrument the magnets will be placed in guide fields,
Fig. 2.11. The purpose of the guide field is to prevent the neutron beam from
depolarization in a nearly zero field region. This field should be homogenous
enough. The criteria is that two neutron paths in the beam should not give
rise to a line integral difference of more than 2.2 G.cm.

A homogenous field can be produced by using a coil system consisting
of four wires as shown in Fig. 2.12. These coils have a finite length in the
x direction, but for simplicity we will consider them as infinite. For the
magnetic field produced by the first wire we can write B(r′) = µ0i×r‘

2π|r′|2 with

i the current through the wire and µ0 = 4π × 10−7 H.m−1 . Furthermore,
r = r0 + r′ with r = (y, z), r′ = (y′, z′) and r0 = (±y0,±z0). Therefore, the
field at a point (y, z) due to the four wires will be:

Bc(y, z) =
j=4∑
j=1

µ0ij × (r − r0,j)

2π|r − r0,j|2 . (2.11)
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Figure 2.11: Guide field coils.

When the summation is carried out Bc(y, z) can be calculated which is given
by:

Bc(y, z) =
2µ0iy0

π
×√√√√ y4 − 2y2(y2

0 − z2 + z2
0) + (y2

0 + z2 + z2
0)

2

[(y − y0)2 + (z − z0)2][(y + y0)2 + (z − z0)2]
×

√
1

[(y − y0)2 + (z + z0)2][(y + y0)2 + (z + z0)2]

(2.12)

If we expand this around (y, z) = (0, 0) we obtain:

B(y, z) = b0,0 + b2,0y
2 + b0,2z

2 + b2,2y
2z2 + b4,4y

4z4... (2.13)

where bi,j = ∂i∂jBc(y,z)
∂iy∂jz

|y=0,z=0. This gives the following coefficients:

b0,0 =
2µ0iy0

π(y2
0 + z2

0)

b0,2 = −2µ0iy0(y
2
0 − 3z2

0)

π(y2
0 + z2

0)
3
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b2,0 =
2µ0iy0(y

2
0 − 3z2

0)

π(y2
0 + z2

0)
3

b0,4 = b4,0 =
2µ0iy0(y

4
0 − 10y2

0z
2
0 + 5z4

0)

π(y2
0 + z2

0)
5

b2,2 = −8µ0iy0(y
4
0 − 12y2

0z
2
0 + 3z2

0)

π(y2
0 + z2

0)
5

(2.14)

In order to have a homogeneous field up to fourth order in y and z,
the coefficients b0,2 and b2,0 in Eq.2.13 should be zero, which is achieved by
choosing y0 =

√
3z0 in Eq.2.14.

In Fig.2.13 the magnetic field distribution in the middle of the guide field
in the x−y plane is shown for which the current in each coil is 540 A, z0 = 15
cm and y0 = 26 cm. The inhomogeneity across a plane of 1.5 × 1.5 cm 2 is
0.003 G. This gives rise to a line integral difference of 0.3 G.cm over a length
of 200 cm which is below the requirement of 2.2 G.cm.

2.8 Conclusions

In the center of a SESANS magnet in a volume of 30 × 30 × 30 mm3 the
magnetic field homogeneity should be better than 1.3 G for a field of 2000
G. In order to achieve this, dipole magnets are used. The requirement on
the homogeneity of the magnetic field is readily achieved. This is mainly
dependent on the width of the pole face. For a half pole distance of zp = 3 cm,
see Fig.2.3 a width of 9 cm is enough, i.e. xp + xs = 9 cm. In order to save
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Figure 2.13: Field of the guide field coils at x = 0 in the y − z plane.

weight one can choose the iron core smaller than 9 cm. However in this case
the width of the core should not be smaller than 6 cm due to the saturation
of iron. So L = 6 cm. For the homogeneous distribution of the flux lines the
thickness of the pole face must be 3 cm, i.e. zs = 3 cm. The saturation of
the yoke must also be taken into consideration. This imposes restrictions on
the minimal thickness of the yoke.

With these design parameters, in order to have 2000 G in the center one
needs a total current of 5000 A through one current package.

Inhomogeneities of the z-component of the magnetic field will not con-
tribute to the line integral inhomogeneities. The line integral is proportional
to the square of the x-component of the magnetic field. This means that it
is important in the design of the magnets to reduce these x-components.

A homogenous guide field can be obtained by using a coil consisting of four
wires in which the distance of the wires to each other are chosen in a special
way. If y0 =

√
3z0 then the coil produces a homogeneous field up to fourth

order. This method of design can also be used when one needs quadratic
increasing fields: the coefficients of the fourth order terms in Eq. 2.14 are
then equated to zero. For correcting the line integrals inhomogeneities, coils
having this property are used [25].

At the moment, the magnets and the guide field coils in the present
SESANS setup are build according to these parameters.
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Chapter 3

Line integral corrections

3.1 Introduction

In Chapter 1 we discussed four possible options for the realization of SESANS.
The line integral of two of these options, three foil and wedge options, is not
corrected automatically. In chapter 2 it was shown that the line integral can-
not be corrected by increasing the pole gap distance of the dipole magnets
used in SESANS. Here we will show that the line integral can be corrected
by using external coils. This chapter consists of three section. In the first
section line integral correction in one dimension will be treated. In the sec-
ond section correction in two dimensions will be discussed. The last section
is an analytical treatment of the applied correction scheme.

3.2 Line integral correction in one dimension

This section has been reprinted from Physica B, Vol. 297; Oktay Uca, Wicher
H. Kraan, Wim G. Bouwman and M. Theo Rekveldt, Line integral correc-
tions in Spin-Echo Small-Angle Neutron Scattering instrument, pp 28-31
Copyright (2001), with permission from Elsevier Science.

3.2.1 Introduction

Spin Echo Small Angle Neutron Scattering (SESANS) instrument is a novel
SANS technique which enables one to characterize distances from a few
nanometers up to the micron range [6], [10]. The most striking difference
between normal SANS and SESANS is that in SESANS one gets information
in real space, whereas in a SANS measurement one obtains data in reciprocal
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space which has to be Fourier transformed. Another important difference is
that a fully divergent beam can be used which means high intensity.

Larmor precession is the basic physical principle for SESANS: When a
neutron enters a magnetic field the spin of the neutron precesses around the
magnetic field. Larmor precession of neutrons is used to make a polarized
beam precess through four precession regions in a symmetrical setup. The
Larmor precession in a magnetic field B over a path l is given by:

φ = cλ
∫
|B|dl, (3.1)

with φ the precession angle, λ the wavelength and c = 4.63×1014 T−1.m−2.
The measured quantity in a SESANS experiment is the depolarization of the
polarized beam. For an initial polarization, P0, the final polarization, P , can
be written as:

P = P0 cos(∆φ) (3.2)

Here ∆φ is the difference in the precession angle between two paths which
is proportional to the line integral difference ∆

∫ |B|dl between those paths
(see Eq. 3.1). For a given dipole magnet there will be a significant line
integral difference due to the fringing of the magnetic field lines near the
magnet edges. We will show that this line integral differences give rise to
unacceptable depolarization. We find, however, a method to correct and to
maintain a good polarization.

3.2.2 Requirement on the homogeneity of the line in-
tegral

In Fig. 3.1 one can see a SESANS magnet and correction coils. For a hori-
zontal path along the x-axis at z = 0 and one at z �= 0 the difference in the
line integral becomes (see Eq. 3.1)

∆(
∫
|B|dx) =

∆φ

cλ
. (3.3)

If we want the polarisation better than 0.98 then ∆φ must be smaller than
0.2 rad., because cos 0.2 = 0.98 (see Eq 3.2). Then

∆(
∫
|B|dx) ≤ 2.2 G.cm (3.4)

with λ = 0.2 nm.
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Figure 3.1: Dipole magnet as used in the SESANS instrument with correction
coils. The coils are in the x− y plane. 2× y0 is the distance between the two
current wires.

3.2.3 Origin of the inhomogeneity of the line integral

The difference of the line integral between two paths can be written more
specifically as:

∆(
∫
|B|dx) =

∫ √
(B′2

x + B′2
z ) −

∫
Bzdx (3.5)

The primes denote the field values at some height z = z1 for a horizontal
path along x. The unprimed fields are those at z = 0. Because of symmetry,
at z = 0 Bx = 0. The magnet is taken infinitely long in the y direction. This
is a good approximation in reality. This means that the magnetic fields are
independent of the y coordinate. The field in the z direction is much larger
than the field in the x direction. Therefore we can expand the first term in
Eq. 3.5. We can write then

∆(
∫
|B|dx) =

∫
(B

′
z − Bz)dx +

∫ B
′2
x

2B′
z

dx =
∫ B

′2
x

2B′
z

dx (3.6)

Conservation of flux, ∇ · −→B = 0, can be used to show that the first term
in Eq. 3.6 vanishes. So the line integral is proportional to the square of the
x-component of the magnetic field.
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3.2.4 Quadratic dependence of the line integral

The z component of the magnetic field in a point (x, z) is in second order:

Bz(x, z) = Bz(x, 0) +
1

2

∂2Bz(x, 0)

∂z2
z2 (3.7)

since Bz is symmetric in z. The Taylor expansion of Bx(x, z) around (x, z)
is given by:

Bx(x, z) = Bx(x, 0) +
∂Bx(x, 0)

∂z
z =

∂Bx(x, 0)

∂z
z (3.8)

since the there are no x components at z = 0. ∇×−→
B = 0 allows us to write

∂Bx

∂z
= ∂Bz

∂x
. So Eq. 3.8 becomes:

Bx(x, z) =
∂Bz(x, 0)

∂x
z (3.9)

From Eq. 3.6, Eq. 3.7 and Eq. 3.9 we obtain up to first order:

∆(
∫
|B|dx) = cz2 (3.10)

where

c =
1

2

∫ (
∂Bz(x,0)

∂x

)2

Bz(x, 0)
dx. (3.11)

So in first order the line integral increases quadratically with z. This means
that if one wants to correct the line integral differences by means of correction
coils the magnetic fields of the correction coils must also be quadratic in
z. Furthermore, the value of the inhomogeneity of the line integral can be
calculated from measured values of Bz(x, 0), as will be done in the next
section.

3.2.5 Correction of the line integral

In Fig. 3.1 the magnet and the correction coils are shown. The correction
coils are placed in the x−y plane. The magnetic field of the coils in the y−z
plane can be approximated by

Bc(y, z) = Bc(0, 0)(1 + (
y

y0

)2 − (
z

y0

)2 − 4
y2z2

y4
0

...) (3.12)

Here 2 × y0 is the distance between the two current wires, see Fig 3.1.
Bc(0, 0) = µ0I

πy0
is the magnetic field of the coil in y = 0, z = 0 with I the
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Figure 3.2: The varying part of the line integral difference of the magnet is
obtained by measuring Bz along the x axis at z = 0. The value of the line
integral at z = 0 has been subtracted from the curve. The line integral of
the correction coils are calculated. The total current is 270 A. The length of
the correction coils in the x direction is 18 cm.

current through the wires and µ0 = 4π×10−7 H m−1. For a sufficiently small
beam in the y direction the fourth term in Eq. 3.12 can be neglected. This
means that the Bc and thus the line integral of the correction coil decreases
quadratically with z in the z direction. This is the opposite of the line
integral of the magnet see Eq. 3.10. In Fig. 3.2 the total line integral of
the correction coil and the varying part of the line integral difference of the
magnet is shown. The line integral difference of the magnet is calculated
according to Eq. 3.10 by measuring Bz(x, 0) along the x axis at z = 0. The
line integral of the correction coils is calculated numerically by making use
of the Biot-Savart law. The line integral of the magnet and the correction
coil are both nearly quadratic in z.

In Fig. 3.3 the sum of the curve of the correction coil with 270 × 1.48 A
and the curve of the magnet is plotted which shows that some higher orders
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Figure 3.3: The sum of the curve of the correction coil with 270×1.48 A and
the curve of the magnet in Fig. 3.2 which determines the final homogeneity
of the line integral. The maximum deviation is 6.6 G.cm.

are present. The maximum deviation in the sum is 6.6 G.cm. This is a
factor of 3 higher than the requirement (see Eq. 3.4). However, it should
be noted that the difference of the line integral is reduced from 192 G.cm
to 6.6 G.cm for z = 1.5 cm, i.e a factor of 29 (see Fig. 3.2). The remaining
inhomogeneity is true for two extreme paths. However, the final polarization
is determined by averaging the line integral of all the neutron paths over the
beam cross-section.

Fig. 3.4 shows the measured polarization for a beam cross-section of 2x10
mm2 as a function of the applied correction current for a SESANS setup using
foils [10]. Without any correction the polarization is 0.46. As the current of
the coils increases the polarization becomes 0.81. This is an improvement of
the polarization with almost a factor of two. The maximal polarization in
the present SESANS setup is 0.872 ± 0.004. This is shown by the straight
line Fig. 3.4. Thus the polarization is nearly completely corrected. However,
the correction that improved the homogeneity in the z-direction created an
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Figure 3.4: improvement of the polarization by applying a correction coil.
y0 = 3 cm. The beam cross-section is 2 × 10 mm2. The lines show the limit
of the polarization in the present SESANS instrument.

inhomogeneity in the y-direction which will be treated in the next section.

3.2.6 Conclusion

In order to realize a SESANS instrument with a good polarization one needs
homogeneous line integral differences. It has been shown that the line integral
difference of a dipole magnet increases quadratically with z. By applying a
correction coil of which the line integral decreases quadratically with z it
is possible to homogenize the line integral differences of the magnet. This
has been shown both theoretically and by measurement. At present this
improvement of the polarization is only in the z direction. In the future we
want to extend this improvement also in the y direction in order to have a
good polarization over a beam cross-section of 30 × 30 mm2
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3.3 Line integral correction in two dimensions

The content of this section has been accepted for publication in Applied
Physics A, 2002 as: ”Line integral corrections in Larmor precession devices”
Oktay Uca, Wim G. Bouwman, Jeroen Plomp, Wicher Kraan, M.Theo Rekveldt.
Copyright by Springer-Verlag GmbH

3.3.1 Introduction

One of the powerful features of SESANS is the ability to use a full divergent
beam to measure directly correlation functions [6, 10]. This means that one
can use large beam cross-sections which lead to short measurement times
and high counting statistics. However, increase of beam size results in an
increase of line integral errors which depolarizes the beam. Fresnel-coils
are used to compensate the line integral errors for a magnetic field parallel
to the neutron beam [2]. Monkenbusch introduced a correction scheme for
zero field precession [27]. The first correction mechanism for magnetic fields
perpendicular to the neutron beam was introduced in [28].

However, the correction mechanism in [28] is only in one direction. As a
consequence, only a beam size of 2 × 15 mm2 is used. The present article
reports line integral corrections in two directions by using a second correction
coil. One can now easily use beams of 10 × 15 mm2.

3.3.2 Problem and method of correction

The SESANS setup with foil option is shown in Fig. 3.5. It consists of three
dipole electro-magnets and inclined magnetized foils. The first and last foil
start and stop the Larmor precession, respectively whereas the middle foil
acts as a π-flipper in order to obtain the spin-echo balance [10]. The magnetic
field in the magnets increases in the ±z-direction with z2. The line integral
along a neutron path is defined as

∫
path |B|dl. Therefore, the line integral

Lm(z) of one magnet which is infinitely long in the y-direction can be written
as [28]:

Lm(z) =
∫
|B|dx = c0 + cmz2 (3.13)

in which cm can be calculated from Bz(x, 0) a measured z-component of the
field along x at z = 0:

cm =
1

2

∫ (
∂Bz(x,0)

∂x

)2

Bz(x, 0)
dx. (3.14)
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Figure 3.5: SESANS setup with foil option and correction coils. lc is the
effective length of the z-correction coil, r and d are two length dimensions of
the pole face, t is the thickness of the pole face, L is the half length of the
setup, g is the gap distance and θ is the inclination angle of the foils. In the
experiments, the magnet parameters were t=1 cm, g=3 cm, r=10 cm, d=16
cm, θ=45 deg, lc=16 cm and L=128 cm.

In order to correct the line integral error in the z-direction we will use two
correction coils; one coil transforms the z-gradient into a y-gradient, which
can be corrected directly by a second coil as shown in Fig. 3.5. The z-
correction coil consists of four bunches of current carrying wires as shown in
Fig. 3.6A. The outer wires are not shown in this figure. A Taylor expansion
up to fourth order of the magnetic field generated by the coils using Biot-
Savart law gives:

Bc(y, z) =
2Iy0µ0

π(y2
0 + z2

0)
(1 +

y2
0 − 3z2

0

(y2
0 + z2

0)
2
y2 − y2

0 − 3z2
0

(y2
0 + z2

0)
2
z2 −

4
y4

0 − 12y2
0z

2
0 + 3z4

0

(y2
0 + z2

0)
4

y2z2),

(3.15)

where µ0 = 0.4π G.cm/A and I is the current through the wires. The
coefficient of the higher order term y2z2 will vanish if we choose z0 = 0.29y0.
If we substitute this ratio of 0.29 in (3.15) the line integral Lcz(y, z) for the
z-correction coil of length lc can be given by :

Lcz(y, z) =
0.59µ0lcI

y0

+
0.37µ0lcI

y3
0

(y2 − z2) + O(y4, z4)

≡ cz,0 + cz(y
2 − z2) + O(y4, z4), (3.16)
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Figure 3.6: A)Front view of the z-correction coil. It consists of four bunches of
current carrying wires. 2y0 and 2z0 are the distances between the bunches of
wires int the z and y-direction respectively. B) top view of the y-correction
coil. It is a parabolic coil in the y-direction and infinitely long in the z
direction. Two neutron beams, 1 and 2, are also indicated in the figure. 2ax

and 2ay are the longest distances between the wires of the coil in the x and
y direction respectively.

in which the y and z dependencies are separated from each other up to fourth
order. To correct the line integral error in the z-direction we must choose
cz = cm see (3.13) and (3.16). Then the total line integral of the magnet and
the z-correction coil will be

Lm(z) + Lcz(y, z) = c0 + cz,0 + cmy2. (3.17)

This equation shows that the line integral is independent of z, but now a y-
dependency has been introduced. This is because the z-correction coil actu-
ally transforms the line integral errors in the z-direction into the y-direction.
To overcome this problem a second correction coil of aluminum wire is used
which transmits the neutrons very well. This is a parabolically wound coil
which produces a homogenous field B in the z-direction. Two neutron paths
are shown in Fig. 3.6B. Path ”2” is shorter than path ”1”. Therefore neu-
trons which follow path ”2” will acquire less line integral than those of path
”1”. As a result, a quadratic decrease of the line integral is obtained: the
path length can be described by 2ax(1 − ( y

ay
)2). So the line integral of the

y-correction coil can be given by

Lcy(y) = 2axB(1 − y2

a2
y

) ≡ cy,0 − cyy
2. (3.18)

To compensate the y dependency in (3.17) we must choose cy = cm. The
total line integral of the magnet, the z-correction coil and the y-correction
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Figure 3.7: Measured value of Bz=0(x) and its derivative dBz=0(x)/dx.

coil is then
Lm(z) + Lcz(y, z) + Lcy(y) = c0 + cy,0 + cz,0. (3.19)

This is independent of y and z and thus, homogenous as is required for
successful SESANS measurements.

3.3.3 Results

In Fig. 3.7 a measurement of Bz(x) at z=0 is shown. The calculated value of
dBz(x)/dx is also plotted. Applying (3.14) yields cm = 93.4 G/cm. However,
in the polarization measurements the field at x = 0 was 533.6 G instead of
620 G see Fig. 3.7. This is due to the different experimental conditions.
Therefore, cm = 93.4× 533.6/620 = 80.4 G/cm. From the condition cz = cm

we can calculate the required current in the z-correction coil with (3.16):

I =
cmy3

0

0.374µ0lc
. (3.20)

This gives a current of I = 586.6 A for y0 = 3.8 cm, lc = 16 cm and cm = 80.4
G/cm. The coils which we used had 200 windings. Therefore, the current
which we need from the power supply is 2.93 A.
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Figure 3.8: Improvement of the polarization as a function of current through
the correction coils. The z correction coil consists of 200 windings. The beam
cross-section is 2 × 15 mm 2 The y-correction coil consists of 157 windings.
The beam cross-section is 10 × 15 mm 2.

The required field in the y-correction coil can be obtained form the con-
dition cy = cz = cm:

B =
cma2

y

2ax

, (3.21)

which for ax = 2.5 cm and ay = 1.7 cm, yields B = 46.46 G.
In Fig. 3.8 the polarization is shown as a function of the current through

the z and y-correction coils for a beam size of 2 × 15 mm2 and 10 × 15
mm2, respectively. The best correction in z-direction occurs for a current of
200 × 3.5 A. The small deviation from the expected value of 200× 2.93 A is
partially due to the finiteness of the z-correction coil. In deriving (3.15) we
neglected the end effects. Furthermore, the coils were placed between two
iron plates acting as a guide field. This will also lower the gradient of the
correction coil.

The optimum current for the y-correction coil is at 157 × 2.5 A. From
a simulation performed with the software package Radia [23], the required
current for producing a field of 46.46 G is 157× 2.40 A. This is in very good
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Figure 3.9: Improvement of the polarization with z- and y-correction coils
switched on. Diaphragm height is 15 mm. The magnetic field in the magnets
is 533.6 G. a) y correction coil and z correction coil are switched off. b) Only
the z-correction coil is switched on. Iz = 200× 3.5 A, Iy = 0 where Iz and Iy

are the currents through the z and y coils, respectively. c)Both z correction
and y-correction coils are switched on. Iz = 200 × 3.5 A, Iy = 157 × 2.25 A.

agreement with the expected value. The working of the y-correction coils is
shown in Fig. 3.9. The diaphragm width is increased for a constant height
of 15 mm. If no correction is applied the polarization P = 0.25 for a 2 mm
width beam. With the z-correction coils switched on P = 0.86. This is also
the maximum achievable polarization level in the present SESANS setup due
to the foils, flippers, polarizer and analyzer as found with a pencil beam. For
large diaphragm widths the polarization decreases, as it is expected. The
y-correction coils improve the polarization. For a beam of 10 × 15 mm2

P = 0.82. The slight decrease of P for large diaphragm widths is due to the
deviation of the magnetic field of the magnet from being quadratic.

3.3.4 Conclusions

Line integral errors can be corrected by using two correction coils. The z-
correction coil transforms the line integral errors from the z-direction to the
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y-direction. In addition, this coil has the advantage that the neutrons are
not passing through the wires of the coil. A second correction coil is used to
correct the errors in the y-direction. This coil has a parabolic shape. For a
beam of 10 × 15 mm2 the polarization improves from P = 0.2 to P = 0.82.
This method of correction is not limited to a beam of 10 × 15 mm2. It can
even be used for larger beam sizes as long as the magnetic field changes
quadratically from the symmetry center. This is always possible by choosing
the magnet dimensions sufficiently large.

3.4 Analytical treatment of correction

In this section we will analyze in more detail the principles of the correction
coils in the SESANS setup. In Fig.3.10 a sketch of the SESANS instrument
is given. An arbitrary neutron path through the diaphragm opening is also
drawn. This path can be given by z = mx + n. Because of the diaphragms
not all values of (m,n) are allowed. If the diagram height is 2zd then ∀ z ∈
[−zd, zd] at x = 0 ↔ z ∈ [−zd, zd] at x = 2L. For x = 0 n ∈ [−zd, zd]. So we
get the condition that for n ∈ [−zd, zd], m ∈ [−zd−n

2L
, zd−n

2L
].

The first and the last magnet are placed symmetrically around the second
magnet at a distance L and the first and second correction coils which have
a length l are placed at a distance a from magnet 1 and 3. The center of
the magnets and the intersection of the foils with the x-axis is at x1, x2, x3,
whereas the path intersects the foils at xf1, xf2, xf3. Thus the precession in
the first magnet starts at x = xf1 and stops at x = x1 + d/2. The foils can
be described by z = tan(θ0)(x − xi) where i = 1, 2, 3. This means that the
path intersects the foils at:

xfi =
tan(θ0)xi + n

tan(θ0) − m
(3.22)

with i = 1, 2, 3.
For the magnetic field in the magnet we can take:

B(z) = B(0)(1 + αiz
2) (3.23)

with i = 1, 2, 3. In principal, the x-component must be modelled, because
it is the origin of the line integral difference. However, for analyzing the
working of the correction coils we can also take a field changing quadratically
in the z direction. Since the correction coils do not make Bx zero, but they
compensate the line integral caused by a quadratically changing field in the
z direction. From the point of view of correction it does not matter whether



3.4 Analytical treatment of correction 53

Figure 3.10: Side view of the SESANS instrument with foils. Two correction
coils are used for correcting the line integral.

this change is caused by the x-component of the field or the z-component.
The side effect of this will be that the value of the correction current will not
be the absolute one. For the correction coils we take, Eq.3.12:

Bc(z) =
µ0I

πy0

(1 − (
z

y0

)2). (3.24)

The total precession in presence of the correction coils is the line integral of
the magnetic field along the neutron path l, i.e φ = cλ(

∫
B(z)dl+

∫
Bc(z)dl).

The path can be parameterized by z = mx + n with x ∈ [0, 2L]. Therefore
the total precession becomes:

φ = cλ

{
B(0)

√
1 + m2

( x1+d/2∫
xf1

(1 + α1z
2)dx +

xf2∫
x2−d/2

(1 + α2z
2)dx

−
x2+d/2∫
xf2

(1 + α2z
2)dx −

xf3∫
x3−d/2

(1 + α3z
2)dx

)
+

µ0I

πy0

( x1+d/2+a+l∫
x1+d/2+a

(1 −
(

z

y0

)2

)dx +

x3−d/2−b∫
x3−d/2−b−l

(1 −
(

z

y0

)2

)dx

)}
(3.25)

Consider the case when α1 = α2 = α3 = 0, and I = 0, corresponding to the
situation when the magnets are homogeneous and there is no correction coil.
Note that θ, the angle between the foils and x axis, is arbitrary. Calculation
of Eq. 3.25 gives φ = 0. Thus each path is in echo.

In the following Eq. 3.25 will not be calculated, because it is to lengthy.
Instead we will look if there is any current, I, for which the precession φ = 0
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is independent of (m,n). If this is true then with one current value each
neutron path is in echo and the line integral inhomogeneities are corrected.
In the following we will consider several cases with regard to the homogeneity
in the magnets and the shape of the precession regions.

3.4.1 Same inhomogeneity in all three magnets and
rectangular precession regions

This corresponds to α1 = α2 = α3 = α and θ0 = π/2. A solution for I with
φ = 0 gives:

I =
αB(0)d(d − 2L)πy3

0

2l(2a + 2d − 2L + l)µ0

, (3.26)

which is independent of (m,n). Therefore it is possible to make the line
integral inhomogeneities vanish if one chooses the current equal to the value
given in Eq.3.26.

3.4.2 Same inhomogeneity in two magnets and rect-
angular precession regions.

Let us now take α1 = α2 = α and θ0 ⇒ π/2. The first and second magnet
have the same inhomogeneity whereas the third is different. We obtain for I
the following:

I = B(0)dπy3
0 ×

{α[k − 12dm(Lm + n)] − [7d2m2 − 18d(2Lm + n)m + 12(2Lm + n)2]α3}
48l(2a + 2d − 2L + l)m(Lm + n)µ0

(3.27)

with k = 7d2m2 + 18dnm + 12n2 and. Because I depends on (m,n) it is
not possible to correct the line integral inhomogeneities for all neutron paths
with one current value.

3.4.3 Same inhomogeneity in all three magnets and
triangular precession regions.

For θ0 → π/4 we have a triangular shaped precession region. If we take the
inhomogeneities in the magnets the same, i.e α1 = α2 = α3 = α we obtain
for I:
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I =
αB(0)πy3

0{(3mr − 2)d2 − 4Ld(2mr − 1) + 4L2mr}
4lµ0(2a + 2d − 2L + l)(m − 1)3

(3.28)

with r = m2 − 3m + 3. This equation depends only weakly on m and not
on n. Therefore only paths with the same slope are completely corrected.
However, if we neglect the weak dependency on m, Eq. 3.28 becomes:

I =
αB(0)πy3

0d{d − 2Ld}
2lµ0(2a + 2d − 2L + l)

(3.29)

This equation is the same as Eq.3.26 and independent of (m,n). So, one
can correct with one current value in approximation all paths.

3.4.4 Conclusions

We have studied the correction scheme analytically for correcting the line in-
tegral inhomogeneities in the z direction for the SESANS setup. The amount
of current needed for the correction coils for each neutron path is expressed
among other things in terms of inhomogeneity of the magnetic field and in-
clination angle θ0 of the foils. If the inhomogeneity in all magnets are the
same and there are rectangular precession regions all paths are corrected with
one current value. If the precession regions are triangularly shaped then the
current for each path is independent of the height of the beam but depends
weakly on the slope of the path which can be neglected. Therefore, it is
possible to correct all paths with one current value.



56 Line integral corrections



Chapter 4

Model calculations for the
Spin-Echo Small-Angle
Neutron Scattering instrument

The content of this chapter has been accepted for publication in Journal
of Applied Crystallography, 2002 as: ”Model calculations for the Spin-Echo
Small-Angle Neutron Scattering correlation function”, Oktay Uca, Wim G.
Bouwman and M. Theo Rekveldt.

Abstract

Spin-Echo Small-Angle neutron scattering (SESANS) is a new kind of SANS
technique enabling measurements to be made directly in real space from a
range of a few nanometers up to microns. In this paper it is shown that
SESANS measures directly correlations by calculations on models. Further-
more, the effect of polydispersity and structure factor has been studied. An
exact expression for the correlation function has been derived in the case of
random systems such as fractal systems.

4.1 Introduction

SESANS extends the range of characteristic length scales which can be
probed by SANS into the micron range. With SESANS, correlation func-
tions like quantities can be measured in real space instead of momentum
space as in normal SANS [6, 10]. We shall call this quantity the SESANS
correlation function or correlation function for shorthand when there is no
ambiguity. The reason for this is that the SESANS correlation function re-
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sembles the real space correlation function. The underlying technique is the
Larmor precession of neutrons in a magnetic field. SESANS can be realized
by a setup which consists of two parts with precession areas. In its simplest
form, each part consists of a parallelogram shaped magnetic field region. The
neutron spin precesses in the two parts in the opposite sense. Because the
path length in the two regions is the same for an unscattered beam, the po-
larization will not change. After passing through the two field regions, the
initial state and the final state of the polarization will be the same. This
is called the echo condition. However, for a scattered beam the path length
in the two parts of the parallelogram may be different. This will lead to
depolarization of the neutron beam.

Thus the measured quantity in SESANS is the change in polarization
which is a function of the correlation function. The correlation function can
be given by [10]:

G(z) =
1

σk2
0

∫ Qzm

−Qzm

∫ Qym

−Qym

dσ(Q)

dΩ
cos(Qzz)dQzdQy. (4.1)

G(z) resembles a Fourier transform between Qz and z, which can be identified
as a probability function for the occurrence of the spin-echo length z. The
latter is a measure for the distances between two scattering volumes in the
sample that is probed. Furthermore, k0 is the wave vector of the initial beam,
Q the momentum transfer and σ the scattering probability per unit length
of thickness:

σ =
1

k2
0

∫ Qzm

−Qzm

∫ Qym

−Qym

dσ(Q)

dΩ
dQzdQy. (4.2)

The integration boundaries are determined by the critical reflection angle
of the polarizer and analyzer mirrors in the y-direction and the acceptance
angle of the detector in the z-direction. This leads to Qym = 0.13 nm −1

and Qzm = 0.94 nm −1 in the setup used in the Delft reactor [6]. These
values will also be used in the subsequent sections unless stated otherwise.
For particles with a radius larger than 10 nm the scattering is mainly in the
low angle regime. Therefore, for particles of 200 nm radius the integration
boundaries are effectively infinite. The scattering cross-section is given with
the local monodisperse approximation by: [29]

dσ(Q)

dΩ
= η(∆ρ)2

∫ ∞

0
D(R′)v(R′)2F 2(Q, R′)S(Q, R′)dR′. (4.3)

In these equations η is the volume fraction, ∆ρ the scattering length density
difference between the particle and solvent , v(R′) the volume of a particle,
F (Q, R′) the form factor, S(Q, R′) the structure factor and D(R′) the number
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size distribution. The relation between the polarization P and correlation
function G(z) in the presence of multiple scattering is [11]:

P (z) = e−σt(1−G(z)) (4.4)

where t is the thickness of the sample. Single scattering is just the first order
expansion of Eq. 4.4. Therefore, the polarization for single scattering is:

P1(z) = 1 − σt + σtG(z). (4.5)

Recently, Zhao [30] proposed a SESANS setup with cylindrical precession
areas. Although this gives rise to symmetrical formulas for calculating the
SESANS signal, it is not applicable for the Delft setup. The reason for this is
that Zhao’s formulas are applicable in a cylindrically symmetrical SESANS
setup whereas SESANS formulas for the Delft setup are valid in general.
Furthermore, one must use a small pinhole in Zhao’s setup in front of the
sample. Otherwise, the non-scattered beam that crosses the symmetry axis
in one of the precession areas is not in echo. However, one of the powerful
features of SESANS is the ability to use a full divergent, large cross-section
beam for measurements which leads to short measurement times and high
counting statistics. For these reasons the Zhao setup is not equivalent to the
SESANS setup in Delft. Therefore, the formulas given by Zhao cannot be
used to calculate the SESANS correlation function in our case.

Our main objective in this paper is to show that the SESANS correlation
function is directly related to the real space structure. Furthermore, since
SESANS is a technique under development we do not know its strong and
weak features. Therefore, we want to explore the possibilities of SESANS
before we decide which real experiments to do first.

In some cases the effect of the structure factor will also be incorporated
in the calculations. Once the correlation function is known, the polarization
can easily be calculated by Eq. 4.4.

The effect of background (incoherent scattering)is in SESANS quite dif-
ferent compared with SANS. The background in SESANS is always orders
of magnitude smaller than the SESANS signal. The reason for this is that
in SANS one has to obtain data as a function of Q whereas; in SESANS we
integrate over the whole Q-range. In SANS the signal to background ratio
becomes particularly important at large Q. In SESANS the contribution of
this region to the signal is small compared to the small Q-range.

4.2 Spherical systems
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Figure 4.1: Correlation functions of three polydisperse spheres. The spheres
have a Gaussian distribution with R=200 nm and a full-width half-maximum
of 0, 50 and 150 nm.

4.2.1 Polydisperse systems

For a sphere with radius R the form factor is [29]:

Fs(Q) =
3(sin(QR) − QR cos(QR))

(QR)3
. (4.6)

The corresponding correlation function has already been calculated by Rekveldt
[6].

Fig. 4.1 shows the effect of polydispersity on a spherical system with a
radius of R = 200 nm. The curves are calculated according to Eq. 4.1. A
Gaussian distribution is taken for D(R′):

D(R′) = 2−4( R′−R
Γ

)2 . (4.7)

where Γ is the full width half maximum. The structure factor is set to 1.
For reasons of comparison, G(z) of a mono disperse sphere is also calculated.
The largest length over which correlations are possible in a sphere of R = 200
nm is 400 nm. Therefore, in Fig. 4.1 the correlation function for the mono
disperse sphere vanishes after 400 nm. As the width of the distribution gets
larger, longer lengths over which correlations are present become available,
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Figure 4.2: Correlation function of spheres interacting with a hard-sphere po-
tential. The hard-sphere radius is R=200 nm with varying volume fractions
of 0, 0.01, 0.1 and 0.2.

thus, the correlation function vanishes at larger length scales. For the curve
for G(z) in which D(R′) is used with a Γ = 150 nm the upper radius at the
value D(R′) = 0.5 is 275 nm. The largest length over which correlations are
possible for spheres of this radii is 550 nm. So, it is to be expected that
the correlation function vanishes at larger length scales. In the figure the
corresponding correlation function indeed becomes zero after 550 nm. The
smaller radius at this value of Γ will contribute to the beginning part of the
correlation function and thus will not matter.

As can be seen from Fig. 4.1 the curve with 150 nm FWHM has the same
shape as the monodisperse curve. So, these curves cannot be distinguished
from each other. Therefore, determination of Gaussian polydispersity cannot
be done by SESANS.

4.2.2 Effect of structure factor; hard-sphere model

In this section we will look at the effects of the structure factor on the cor-
relation function for a system of spherical particles. As form factor we take
Eq.4.6 again. There are only a few cases for which analytical expressions
exist for the structure factor. If the interaction potential is the hard-sphere
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potential the structure factor can be calculated. In this model the particles
interact with a hard-sphere radius of R and have a volume fraction η. The
structure factor is given by [29, 31]:

S(Q) =
1

1 + 24ηH(2RQ)/(2RQ)
(4.8)

where the function H is defined as:

H(A) = α
sin(A) − A cos(A)

A2
+ β

2A sin(A) + (2 − A2) cos(A) − 2

A3
(4.9)

+γ
−A4 cos(A) + 4 [(3A2 − 6) cos(A) + (A3 − 6A) sin(A) + 6]

A5

and:

α =
(1 + 2η)2

(1 − η)4
(4.10)

β =
−6η(1 + η/2)2

(1 − η)2

γ = ηα/2.

The correlation function has been calculated for four volume fractions, i.e.
η = 0, η = 0.01, η = 0.1 and η = 0.2 see Fig. 4.2. For η = 0 the structure fac-
tor evaluates to 1. In this case we have the correlation function corresponding
to mono disperse homogenous spheres with a radius of 200 nm.

For η = 0.2 we see clear oscillations. These are due to interference with
the surrounding particles. Although we have not used regions with negative
scattering lengths, there are negative values of the SESANS correlation func-
tion. To understand this we will write the structure factor in terms of pair
correlation function g(r):

S(Q) = 1 + η
∫

dreiQ.r(g(r) − 1). (4.11)

If we substitute this in Eq.4.1 with D(R′) = δ(R′ − R) we obtain for G(z):

G(z) =
1

σk2
0

[∫
F 2(Q) cos(Qzz)dQ + η

∫
F 2(Q) cos(Qzz)

(∫
dr′eiQ.r′h(r′)

)
dQ

]
(4.12)
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where h(r) = g(r) − 1 is the indirect correlation function. G(z) is now
separated in two parts. The first term is only due to the form factor. It
corresponds with η = 0 in Fig.4.2. The second term is a function of the
form factor and the indirect correlation function. The indirect correlation
function is equal to -1 in the region 0 ≤ r ≤ 2R and for r > 2R it is
oscillating around 0. Therefore, in Eq.4.12 the second term gives a negative
contribution for 0 ≤ r ≤ 400. This means that in Fig. 4.2 we subtract from
the curve corresponding to η = 0 a positive quantity which comes from the
second term in Eq. 4.12. This is the reason why the first minimum in Fig. 4.2
becomes more negative with increasing volume fraction. For R > 400 the first
term in Eq. 4.12 is actually 0. Because the second term is a function which
oscillates around zero, we have positive and negative values of the SESANS
correlation function. The peaks are related to the higher correlation in the
system.

Large polydispersity will smear out the interaction effect. The width of
the minimum at z = 325 nm in Fig. 4.2 is 75 nm. So polydispersities up
to 25 % will not effect the curve. Beyond 25 %, polydispersities will show
smearing out of the interaction effect.

4.2.3 Effect of structure factor; sticky hard-sphere model

Another model for the structure factor is the sticky-hard sphere model. It
consists of particles interacting via very short ranged square well potentials.
It can be applied in colloidal particles, microemulsion systems, and non-
ionic micellar solutions [32]. The parameters of the model are the volume
fraction η, u0/(kBT ) where u0 is the depth of the potential well and T the
temperature and σ/a in which σ is the particle diameter and a is a range
of which is assumed that the correlation function vanishes beyond it. The
structure factor is then written as [32]:

S(Q) =
1

A(Q)2 + B(Q)2
(4.13)

where:

A(Q) = 1 + 12η′
(
α

[
sin(κ) − κ cos(κ)

κ3

]
+ β

[
1 − cos(κ)

κ2

]
− λ

12

sin(κ)

κ

)
(4.14)

B(Q) = 12η′
(
α

[
1

2κ
− sin(κ)

κ2
+

1 − cos(κ)

κ3

]
+ β

[
1

κ
− sin(κ)

κ2

]
− λ

12

[
1 − cos(κ)

κ

])
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Figure 4.3: Correlation function of spheres interaction with a sticky hard-
sphere potential with a diameter of 200 nm. The calculation has been done
for volume fractions of 0 and 0.1 with a potential depth of -0.92 and -3.83.

with κ = Qa. Furthermore,:

ε = 1 − σ

a
(4.15)

η′ = η
(

a

σ

)3

τ =
1

12ε
eu0/(kBT )

λ =
−6(2 + η′)

(η′ − 1)(−η′ + 13η′2 + 12τ − 12η′τ)

µ =
λη′

1 − η′

α =
1 + 2η′ − µ

(1 − η′2)

β =
−3η′ + µ

2(1 − η′)2
.

In Fig. 4.3 the dashed line is calculated with η = 0 and σ = 200 nm. The
structure factor evaluates to 1 and the largest length is 200 nm. The dotted
line is calculated with η = 0.1 and u0/(kBT ) = −0.92, see [32] for the choices
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Figure 4.4: One and three shell systems. For the one shell case R1=200 nm
and R2=140 nm. For the three shell case R1=200 nm, R2=160 nm, R3=120
nm and R4=60 nm.

of the parameters. Due to the interaction with the surrounding particles
we see oscillations. If we increase u0/(kBT ) to -3.83 then the amplitude
of oscillations increase. This is what could be expected, since the stronger
interactions give rise to stronger correlations.

4.3 Multishell model

The spherical multishell model has already been calculated by Bouwman
[33]. This model was chosen in analogy with calculations of the distance
distribution function by Glatter [34]. In this section we will give a quanti-
tative interpretation of the observed maxima and minima in the correlation
function.

The form factor for spherical shells with radii Ri and scattering length
density ρi can be given by [29]:

F (Q) =
1

M

[
ρ1v(R1)Fs(Q,R1) +

N∑
i=2

(ρi − ρi−1)v(Ri)Fs(Q,Ri)

]
(4.16)

M = ρ1v(R1) +
N∑

i=2

v(Ri)(ρi − ρi−1)

where v(R) is the volume of a sphere with radius R, Fs(Q) is the form factor
for a sphere as given in Eq. 4.6 and M the total scattering length. We have
considered the one shell and the three shell case as shown in Fig. 4.4

The following scattering length density was used for the calculations with



66 Model calculations for the Spin-Echo Small-Angle Neutron Scattering instrument

Figure 4.5: Correlation function for multishell model with one and three
shells. The positions for the positive and negative correlations for the three
shell system are denoted by p,n, respectively. The expected positions of the
maxima and minima of the three shell system are shown by full- and dashed-
vertical bars respectively. The expected positions for the minima are 55 nm,
195 nm and 290 nm. The expected positions for the maxima are 96 nm, 275
nm and 360 nm.

one shell:

ρ =

{
1 if 0 ≤ R ≤ 140

−1 if 140 ≤ R ≤ 200.
(4.17)

In case of three shells the scattering length density was:

ρ =




1 if 0 ≤ R ≤ 60
−1 if 60 ≤ R ≤ 120

1 if 120 ≤ R ≤ 160
−1 if 160 ≤ R ≤ 200.

(4.18)

In Fig. 4.5 the multishell model has been calculated with one and three shells.
For both cases there is no correlation after 400 nm. Minima in the graph
indicate regions of opposite scattering length density. In the case of one
shell there is one maximum and one minimum. For the three shell model
one has three maxima and three minima. Further conclusions can be drawn
by considering the most probable distances. These distances are obtained
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Table 4.1: Positive correlations for the three shell case. See the text for the
explanation of the symbols.
++ correlation −− correlation
AC AG AI BE BH DF
90 270 360 140 280 60

by connecting any of the points V to Z and A to I for the one and three
shell case respectively with each other. The points for the shells are at half
distance of the shell thickness. For example, V and A are at 170, 180 nm for
the one shell and three shell case, respectively. There are ++ , −−, −+ and
+− correlations in the systems. ++ and −− are not distinguishable. The
+− and −+ distances are also not distinguishable.

In the one shell system we can easily explain the locations of the min-
imum and maximum. For the one shell case we have a ++ correlation at
|V Z|=340 nm, a +− correlation at |V X|=170 nm and a −− correlation at
140 nm. Therefore, it is to be expected that the ++ correlation will produce
a maximum at 340 nm and the +− correlation a minimum at 170 nm. This
is in good agreement with the observed positions. The −− correlation at 140
nm will be hidden in the positive beginning part of the curve.

The situation is more complicated for the three shell case. In Tab. 4.1 and
Tab. 4.2 all characteristic distances occurring are tabulated. These distances
are also shown in Fig. 4.5. The ++ and −− correlations will give rise to
positive correlations and are denoted by p in the figure whereas the +− and
−+ correlations will lead to negative correlations and are denoted by n. One
can see that some distances form a group. For example, around 200 nm
one has negative correlations of 180 and 210 nm . By averaging these we
obtain the expected position for the minima. All maxima and minima are
denoted as vertical and dashed-vertical bars, respectively. The positions for
the minima and maxima are 55 nm, 195 nm, 290 nm and 96 nm, 275 nm,
360 nm. This is in good agreement with the calculated curve.

It is clear that the length scales over which positive and negative corre-
lations occur can be read out directly from a SESANS measurement.

Again, polydispersity influences the curve. If we consider the last min-
imum in Fig. 4.5, 25 % polydispersity will smear out this structure. That
gives a limit to the interpretation of SESANS measurements on shell systems.
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Table 4.2: Negative correlations for the three shell case. See the text for the
explanation of the symbols.
+− correlation −+ correlation
AB AE AH BC BE EG EI HI
40 210 300 50 280 90 180 40

4.4 Ellipsoid of revolution

For an ellipsoid of revolution with semi axes R, R and εR the square of the
form factor is given by [29]:

F 2
e (Q, ε) =

∫ π/2

0
F 2

s (Qr(R, ε, α)) sin(α)dα (4.19)

where r(R, ε, α) = R(sin(α)2 + ε2 cos(α)2)1/2. The calculations are done for
three values of ε: 0.3, 1 and 3. For each value of ε the radii are chosen
from the value of the volume for R = 200 nm. This is done in order to
have the same amount of scattering from the three ellipsoids. The volume
of the ellipsoid is given by 4/3πR3ε. The corresponding radii for increasing
values of ε are 298.76 nm, 200 nm, 138.67 nm. It can be seen from Fig. 4.6
that the three correlation functions are not the same. For R = 200 nm the
largest length over which correlations occur is 400 nm. As can be seen from
the graph there are no correlation above 400 nm (dotted line). For ε = 0.3
the largest length is 2 × 298.76 = 596 nm. From the graph we see that
the corresponding curve is almost zero above 550 nm. This is because for
increasing lengths the correlations decrease. There is actually one length of
596 nm in the ellipsoid ,i.e the one from one pole to the other of the ellipsoid.
For ε = 3 the largest length is 2 × 139 × 3 = 834 nm. It can be seen from
the graph that the correlation function vanishes at larger distances. Between
50 nm and 200 nm the curve for the sphere is larger than for the oblate an
prolate ellipsoids. This is because for the sphere all distances occur with
the same probability. At very small distances these curves come together
because the probability of finding these small distances is the same for the
three cases. This is comparable to the situation for the distance distribution
function [34].
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Figure 4.6: Correlation function of an ellipsoid of revolution with semi-axis
of R and εR. In each case, the radii are chosen in such a way that the total
volumes of the ellipsoids are the same. For large z the curve for the prolate
sphere is larger than that for the oblate and perfect sphere. In the range of
50 t0 200 nm the the curve for the perfect sphere is larger than the prolate
and oblate sphere. For small z values the correlation curves of the three
spheres come together.

4.5 Cylindrical model

The expression for a cylinder of radius R and length L is given by [29]

F 2
c (Q) =

∫ π/2

0

[
2j1(QR sin(α))

QR sin(α)

sin (QL cos(α)/2)

(qL cos(α))/2

]2

sin(α)dα (4.20)

where j1(x) is the first order Bessel function. In Fig. 4.7 correlation functions
for three cylinders are calculated. The height of the cylinders L is 100 nm
in each case. The largest correlation for a cylinder is at (R2 + L2)1/2. For
the cylinder with R = 15 nm, R = 30 nm and R = 80 nm these are at 101
nm ,104 nm and 188 nm, respectively which is in good agreement with the
graph.

The value of the radii for the cylinders with R = 15 nm and R = 30 nm
at half-height are 16 nm and 29 nm. For the cylinder with R = 80 nm the
half-height value is 60 nm. Therefore, for R ≤ L/2 the half-height value is a
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Figure 4.7: Correlation function for three cylinders with a height of 100 nm
and radii of 15, 30 and 80 nm. The radii at half-height are 16, 29 and 60 nm.

good measure for the radius.

4.6 Debye-Lorentz model

This model can be used in randomly distributed systems such as fractal
systems. The form factor is given by [35]

Fd =
1

(1 + (ξQ)2)p (4.21)

where p depends on the dimensionality of the system and ξ is the correlation
length. Fig. 4.8 shows that for different values of p the G(z) is very different.
In the calculations ξ is taken to be 200 nm. The correlation functions stretch
out over larger distances. This is to be expected, because in momentum
space for large p Eq. 4.21 falls off very rapidly. The opposite is true in real
space.

If one takes the integration boundaries infinite in Eq. 4.1 analytical ex-
pressions can be obtained for G(z) i.e. Qym → ∞ and Qzm → ∞.
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Figure 4.8: Debye-Lorentz model for varying values of p with a correlation
length ξ of 200 nm.

The integral to be evaluated is

I(z) =
∫ ∞

−∞

∫ ∞

−∞
cos(qzz)(

1 + ξ2(q2
y + q2

z)
)p dqydqz (4.22)

=
∫ ∞

−∞
cos(qzz)I1dqz

where I1 is

I1 = ξ−2p
∫ ∞

−∞
1

(k2 + q2
y)

p
dqy (4.23)

with

k2 =
1 + ξ2q2

z

ξ2
. (4.24)

This integral can be evaluated by the following integral: [36]

∫ ∞

0

dx

(x2 + a2)n
=

(2n − 3)!!

2(2n − 2)!!
πa1−2n =

√
πΓ(n − 1/2)a1−2n

2Γ(n)
, (4.25)

where the double factorial is defined as n!! = n(n− 2)(n− 4).... Making use
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of Eq. 4.25 I(z) becomes

I(z) =
ξ−2pk1−2p

√
πΓ(p − 1/2)

Γ(p)
× (4.26)

∫ ∞

−∞
k1−2p cos(qzz)dqz

=

√
πΓ(p − 1/2)

ξΓ(p)

∫ ∞

−∞
(1 + ξ2q2

z)
1−2p cos(qzz)dqz.

This integral can be evaluated by the following integral:[36]

∫ ∞

0
(β2 + q2

z)
ν− 1

2 cos(qzz)dqz (4.27)

=
1√
π

(
2β

z

)ν

cos(πν)Γ(ν +
1

2
)Kν(zβ)

=

(
2β

z

)ν √
πKν(zβ)

Γ(1/2 − ν)

for a > 0, Re(β) > 0 and Re(ν) < 1/2 and where we have used the following
property of the Gamma function: Γ(z)Γ(1 − z) = π/ sin(πz), [37]. In this
equation Kν(zβ) is the modified Bessel function. By using this in Eq.4.26
we obtain

I(z) =
22−pξ−1−pπzp−1K1−p(z/ξ)

Γ(p)
. (4.28)

for Im(z) = 0 and Re(p) > 1/2. To obtain G(z) we have to evaluate I(0).
Due to difficulties in evaluating I(0) by Eq. 4.28, we will evaluate I(0) by
putting z = 0 in Eq.4.26 and carry out the integration over qz by using
Eq.4.25. After doing so we obtain

I(0) =
πΓ(p − 1)

ξ2Γ(p)
. (4.29)

Finally, we have for G(z)

G(z) =
I(z)

I(0)
=

22−p

Γ(p − 1)

(
z

ξ

)p−1

K1−p(z/ξ) (4.30)

for p > 1. We cannot develop this equation for general p. In the next
paragraphs we will investigate G(z) for specific values of p.
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p=3

G(z) =
1

2

(
z

ξ

)2

K2(
z

ξ
). (4.31)

For z � ξ we can develop K2(
z
ξ
). An expansion up to fifth order gives

K2(
z
ξ
) = −1/2 + 2ξ2/z2. Substituting this in Eq. 4.31 gives for G(z)

G(z) = 1 − 1

4

(
z

ξ

)2

+ O(z4). (4.32)

From the constant term of a ln(1−G(z)) vs. ln(z) plot one can determine ξ.

p=2.5

G(z) = (1 +
z

ξ
)e−z/ξ. (4.33)

For small z we can develop Eq. 4.33. We obtain

G(z) = 1 − 1

2

(
z

ξ

)2

+ O(z3). (4.34)

The constant term in a double logarithmic plot will contain ξ.

p=2

G(z) =
z

ξ
K1(

z

ξ
). (4.35)

In this case we have to expand at least up to third order. The expansion
gives for G(z)

G(z) =
z

ξ
− 0.308

(
z

ξ

)3

+ 0.5

(
z

ξ

)3

ln(
z

ξ
). (4.36)

It is not possible from a simple logarithmic plot from this equation to obtain
ξ.

p=1.5

G(z) = e−z/ξ. (4.37)

In this case there are no inflection points. However, if we make a logarithmic
plot then the slope will give us 1/ξ.
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Figure 4.9: ln(G(z)) vs. z2 plot for monodisperse spheres of 200 nm radius.
The radius of gyration and hence the radius are obtained from the slope.

4.7 Small-angle approximation

One important approximation in SANS is the small-angle approximation
or the Guinier approximation. In this section we will investigate the G(z)
for small angle approximation. In some cases the main information in the
scattering process will be contained in the small angle range. Only in this
case we can use the Guinier approximation for SESANS, whereas in SANS
one can always investigate the scattering curve for small Q. The reason for
this is that in SESANS one actually integrates over all the Q range. For the
form factor we will use [7]

Fg(Q) = e−
R2

gQ2

3 . (4.38)

If we substitute this in Eq. 4.1 and carry out the integration with infinite
boundaries we obtain for G(z)

G(z) = e
− 3z2

4R2
g . (4.39)

If we compare Eq. 4.39 with Eq.4.38 we see that Rg appears in the SESANS
case in the denominator. This is because in SESANS one measures in real
space whereas in SANS in momentum space.

The small-angle approximation is valid for small z. It is not valid for the
whole z range. This can be understood as follows: In SESANS, the form
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factor is multiplied with a cosine factor and integrated over Q. The spin-echo
length z, see Eq. 4.1 controls the frequency of the cosine. In the small-
angle approximation for the form factor, only the small Q region contains
the relevant information on the radius of the particles. Large z values mean
that the form factor is multiplied with a highly oscillating cosine. Therefore,
after integration over Q, the small Q region will not contribute much to the
signal for large z values.

The integration in Eq. 4.1 can be carried out because the contribution of
the integrand for large Q is negligible. One can obtain by Eq. 4.39 the radius
of gyration and hence the radius of the particles as in SANS. To illustrate
this we will use the curve for the monodisperse sphere of R=200 nm radius
in Fig. 4.1. If we make a ln(G(z)) vs. z2 plot for small z we obtain from
the slope, according to Eq. 4.39, Rg and hence R. In Fig. 4.9 this plot and

a linear fit is shown. The fit is −3.35 × 10−5z2. Rg =
√

3
4

1
3.35×10−5 = 150

nm. So, R = (5/3)1/2 ×Rg = 193 nm which corresponds well with the actual
value of 200 nm.

4.8 Conclusions

The correlation function that is measured with SESANS gives direct infor-
mation on the structure of a sample as illustrated with different model cal-
culations.

The length scales present in the sample can directly be determined as
illustrated with calculations on spheres, cylinders and ellipsoids. Determi-
nation of Gaussian polydispersity cannot be determined by SESANS. The
Guinier approximation can be applied in SESANS in the same manner as in
conventional SANS and gives thus in the same way information about the
important length scales in the system.

The effect of correlations between particles shows up clearly in SESANS.
One can separate the SESANS correlation function in two parts: One part is
only a function of the shape of the particle and the other part is a function
of the shape and the interference between the particles.

The length scales over which positive and negative correlations are present
is shown by calculations on spherical multishell systems. The positions of
the maxima and minima can be predicted fairly well.

The dimensionality of the studied structure of which the form factor can
be described by a Debye-Lorentz like model can be determined from the
correlation function. An analytical expression is obtained for this kind of
correlation function. The correlation function stretches out over larger dis-
tances when the dimensionality of the system increases. Furthermore, if one



76 Model calculations for the Spin-Echo Small-Angle Neutron Scattering instrument

knows the dimensionally of the system beforehand the correlation length can
ce determined directly.



Chapter 5

Measurements

5.1 Introduction

In this chapter we will show SESANS measurements. These measurements
are performed on the first prototype SESANS instrument at the Interfaculty
Reactor Institute in Delft. The first measurements are done on limestone
which turned out to be a convenient choice, since it gives a lot of scattering.
In the first section we will show the SESANS measurements on limestone and
hence that the SESANS principle works. A drawback of the first SESANS
instrument is that the z range is limited to 250 nm and therefore, it is not
possible to collect a full data set for the limestone measurements. Further,
the limestone measurements are used to show that the multiple scattering
formula derived in chapter 1 is correct.

In section 2 we will show measurements on polystyrene spheres of 100 and
60 nm. Since all characteristics of these particles are known, it is possible to
calculate the expected spectrum without any adjustable parameters. In this
way the first quantitative comparison can be made.

5.2 Limestone

The first SESANS measurements at IRI were obtained from scattering from
BCR-limestone powder (CRM 116) which is a certified laboratory powder
[38]. Limestone is constituted for more than 99.7 % of calcite of which the
chemical formula is CaCO3 [39, 40]. There are no less than three phases of
CaCO3 which are aragonite, vaterite and calcite. Arogonite is orthorombic,
vaterite is hexagonal and calcite is trigonal (R3̄c). The most encountered
phase of these minerals in nature is calcite [41] of which the lattice parameters
are a = b = 4.99 Å, c = 17.06 Å and it has a unit cell volume of 367.85 Å3
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Figure 5.1: SESANS signal of several thicknesses of limestone powder. The
measurements were performed at IRI, Delft with a magnetized foil set–up.
A wavelength of λ = 2.05Å was used. The signal is due to the surface
structure of the powder particles or due to double Bragg scattering.

[42]. The mean particle diameter of BCR-limestone powder is 4 µm [38].
In Fig. 5.1 measurements with different sample thicknesses are shown. The
measurement setup is as shown in Fig. 1.5. The sample position sx is varied
to change the spin-echo length z, Eq.1.20.

The largest spin-echo length in the measurement is 175 nm. So, the origin
of the signal cannot be attributed to the size of powder particles, since these
have a diameter of 4 µm. Therefore, the signal can be due to the surface
structure of the powder particles or due to the holes between the particles.
The surface structure can be described by scattering from fractal systems.
The fractal dimension Df for surface fractals of bodies with sharp interfaces
and spheres is 4 [43]. This means that we can use Eq.4.35 with p = 2
(p = Df/2) for describing the data:

G(z) =
z

ξ
K1(

z

ξ
). (5.1)
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Figure 5.2: Fit of 6 mm thick limestone data. The fit results are T =
5.59 · 10−3 and ξ = 218 nm

The polarization is then given by Eq.1.32:

P (z) = T (1−G(z)). (5.2)

where T is the transmission. In Fig. 5.2 scattering from 6 mm thick limestone
data is fitted with Eq.5.2. The fit and the data are in good agreement. The
fit results are T = 5.59 · 10−3 and ξ = 218 nm. However, it should be noted
that in the measurement the level of T was not measured due to the limited
z range. Therefore, the parameters T and ξ are correlated.

Another possibility for the origin of the signal is double Bragg diffraction.
The Bragg law is given by:

sin(θ/2) =
λ

2d
(5.3)

where d is the lattice spacing. The incoming beam can be scattered double
over large angles so that the beam makes a small angle with respect to the
incoming beam direction. This gives rise to small-angle scattering. However,
there will be no Bragg scattering at all if [44]:

λ > 2dmax (5.4)

since then Eq.5.3 cannot be satisfied. dmax can be calculated by the software
package PowderCell for the above given cell parameters of limestone and
λ = 2.05 Å. This gives dmax = 3.854 Å. This means that the used wavelength
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Figure 5.3: Data in Fig. 5.1 scaled according to Eq.(1.34) with the thickness
to obtain the shape of the correlation function G(z). The curves collapse
on one single curve when they are plotted on the same scale. Only the
counting statistics are taken into account in the error bars. To highlight
the differences in the error bars in the curves, thicker curves have each been
shifted in scale by 0.05 mm−1 with respect to each other.

should be larger than 7.708 Å in order to have no Bragg scattering. There-
fore, it is possible that the signal is due to double Bragg scattering. However,
we are not interested with the limestone measurements in the origin of the
signal but only in obtaining a signal.

5.3 Multiple scattering

Multiple scattering results in peak broadening in conventional SANS. In
SESANS it results therefore in stronger decay of the polarisation as a func-
tion of z as one can see in Fig. 5.1. Not only the amount of depolarisation
changes, but also the shape becomes more narrow for thicker samples. Scal-
ing the polarisation according to (1.34) gives a collapse of all the data on one
single curve which is directly proportional to the correlation function G(z)
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as shown in Fig.5.3. This shows that the formalism works. The error bars in
the logarithmic plot is given by:

∆

(
ln(P/P0)

t

)
=

∆(P/P0)

P/P0

· 1

t
(5.5)

This means that for each curve the larger the depolarization the larger
the error bars in the logarithmic plot, since ∆(P/P0) is constant. This is
clearly seen in the 0.3 mm curve in Fig.5.3. Another point is that there is
an optimum thickness t for which the error bars are the smallest. Thus it is
important to choose t carefully.

5.4 SESANS measurements on colloids

In this section we will show the first quantitative SESANS measurements.
The measurements are done on totally characterized polystyrene spheres.
This allows us to calculate the polarization as a function of the spin-echo
length z which are the measured quantities in a SESANS experiment.

Polystyrene spheres with a radius of 60 and 100 nm were used from Bangs
Laboratories, Inc., Indiana, USA (www.bangslabs.com). The coefficient of
variation is claimed to be ∼ 0.01. The original samples are suspensions with
a concentration of η0 = 10% in H2O. D2O is added to increase the contrast.
The initial volume fraction is:

η0 =
Vps

Vps + VH2O

, (5.6)

where Vps and VH2O are the volumes of polystyrene and H2O, respectively.
The initial mass m can be written as:

m = mps + mH2O = δpsVps + δH2OVH2O. (5.7)

Eq.5.6 and Eq.5.7 is a set of two equations with two unknowns, Vps and VH2O,
which can be solved in terms of η0, m, δps and δH2O. The solutions can then
be substituted in Eq.5.6.

By doing so the volume fraction of polystyrene and similarly that of H2O
and D2O are, respectively,:

ηps = mδD2Oη0v
−1

ηH2O = mδD2O(1 − η0)v
−1

ηD2O = 1 − mδD2Ov−1

(5.8)
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with:
v = mδD2O + mD2O (δH2O(1 − ηo) + δpsη0) . (5.9)

Here m is the total mass of the mixture before addition of D2O. δH2O, δD2O

and δps are the densities of H2O, D2O and polystyrene and have the values
1 g.cm−3, 1.1 g.cm−3 and 1.05 g.cm−3, respectively.

With these equations the contrast is then given by:

∆ρ = ρm − ρps (5.10)

where ρps = 1.42 1014 m−2 is the scattering length density of the polystyrene
spheres and ρm is the scattering length density of the matrix which is given
by:

ρm =
ηH2O

ηH2O + ηD2O

ρH2O +
ηD2O

ηH2O + ηD2O

ρD2O (5.11)

Here, ρH2O = −0.56 1014 m−2 and ρD2O = 6.38 1014 m−2 are the scattering
length densities of H2O and D2O, respectively.

The total scattering probability, σt, can be calculated by integrating
Eq. 1.23 over the whole momentum space with F(Q2) given by Eq.4.6. This
gives [12]:

σt =
3

2
η(∆ρ)2λ2Rt (5.12)

For the measurements, the SESANS instrument has been used in the
setting as described in 1.5 with a wavelength of λ = 0.224 nm. The spin echo
length z was again varied by changing the distance sx between the sample
and the last magnetized foil. Further L = 150 cm, B = 55.0 mT. The
polarization of the beam without any sample was P0 = 0.73. The samples
were contained in quartz cuvettes with a thickness of t = 10 mm. The height
and the width of the diaphragms are respectively 4.5 mm and 7 mm.

In Fig. 5.4, measurement of the polarization as a function of the spin-
echo length is shown for the 100 nm spheres. The mass of the mixture, m,
before addition of D2O was 0.43 g. 1.4 g D2O, mD2O, was added to this
mixture. One can calculate now by Eq.5.8 to Eq.5.11 the volume fraction of
polystyrene and the contrast before and after addition. The volume fraction
decreased from ηps = 0.1 to ηps = 0.0251 whereas the scattering length
density increased from ∆ρ = −1.98 · 1014 m−2 to ∆ρ = 3.35 · 1014 m−2. σt is
then 0.210. With these values the polarization can be numerically calculated
by Eq.1.32, Eq.1.22 and Eq.4.6. The calculated polarization is also shown in
Fig. 5.4. The measurement and the calculation agrees well in shape. Note
that the saturation level is equal to σt. A direct visual interpretation of the
measurement is possible. There are no correlations with a length scale longer
than 200 nm.
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Figure 5.4: Measured and calculated polarization for spheres of 100 nm.

In Fig. 5.5, measurement and calculation of the polarization for spheres of
60 nm radius is shown. In this case m = 0.4 g and mD2O = 1.19 g. As a result
the volume fraction decreases from ηps = 0.1 to ηps = 0.0268 whereas the
scattering length density increased from ∆ρ = −1.98·1014 m−2 to ∆ρ = 3.24·
1014 m−2. σt is 0.127. In this case, the measurement and the calculation do
not agree very well. The total scattering in the measurement is 0.15 whereas
in the calculation it is 0.127. The reason could be the diaphragm opening,
since a too small diaphragm opening gives rise to detection of a smaller
part of the scattered neutrons which means less depolarization. However,
the measurement shows larger depolarization. At the moment, the reason
for this difference in the measured curve and the calculation for the 60 nm
spheres is not understood.

5.5 Conclusions

The SESANS principle has been demonstrated by measurements of limestone.
The scaling formula for multiple scattering has been applied on limestone
measurements of different thicknesses. The measurement of the different
thicknesses scale with the multiple scattering formula as discussed in chapter
1.

The first quantitative SESANS measurements are done on polystyrene
spheres of 100 and 60 nm. The numerical calculation of the expected spec-
trum from first principles and the measurement of it for the 100 nm spheres
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Figure 5.5: Measured and calculated polarization for spheres of R = 60 nm.

Table 5.1: Important parameters of D11 at ILL, LOQ at ISIS and SESANS
at IRI.

D11 LOQ IRI-SESANS

Q/z-range 5 · 10−4 to 0.3Å−1 0.006 to 0.24 Å−1 3-250 nm

incident 4.5 ≤ λ (Å) ≤ 20 2.2-10.0 Å at 25 Hz, 2 Å
wavelength 2.6-6.7 Å or

6.3-10.0 Å at 50 Hz
∆λ/λ 9% 1-2 %
flux at sample 3.2 · 107 cm−2 s−1 2 · 105 cm−2 s−1, pulsed 104

sample-detector 2.5...40.5 m 4.05 m 1.5 m
distance

are in good agreement with each other. In case of the 60 nm spheres, there
is a difference between the measurement and the calculation which is not yet
understood.

To illustrate the power of this technique we will compare whether it is
feasible or not to get similar information at LOQ in ISIS and at D11 in ILL
using conventional SANS.

The accessible Q range for the main detector banks at LOQ is 0.006 Å−1 ≤
Q ≤ 0.24 Å−1, see Table:5.1 [45]. For a momentum transfer Q, the maximum
measurable distance D is D ∼ π/Q [46]. This corresponds in real space with
a range of 1.3 nm ≤ D ≤ 52 nm. So it is impossible to do the measurements
in Fig. 5.4 and Fig. 5.5 at LOQ.
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At D11 in ILL the Q range is 5 · 10−4 Å−1 ≤ Q ≤ 0.3 Å−1, see Table:5.1
[47]. This corresponds with the following range in real space: 1 nm ≤ D ≤
628 nm. So it is just possible to do this kind of measurements at D11.

It should also be noted that it is completely impossible to do SANS on
these particles with the small source at IRI, since it is impossible to do these
measurements at ILL and ISIS.
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Chapter 6

Conclusions

SESANS is a real space technique to measure structures in contrast with
SANS which is an inverse space technique. The measured quantity is the
polarization as a function of spin-echo length which is given for the three foil
option by Eq.1.20

z =
cλ2B cot(θ0)sx

2π
(6.1)

If B = 2000 G, λ = 0.2 nm, θ0 = 450 and sx = 150 cm then the maximum
z range will be zmax = 885 nm. For the other SESANS options this value
will automatically double. However, this is not a fundamental limit. By
increasing θ0, sx, λ and B this range can readily be extended far into the
micron region.

The minimum measurable correlation length zmin depends on the maxi-
mum measurable wave vector transfer Qmax. This transfer depends on the
acceptance angle of the analyzer plus detector which is 3 × 10−2 radians for
the Delft setup. This gives Qmax = 0.94 nm−1. So zmin = π/Qmax = 3.3 nm.

In Fig. 6.1 the form factor for a sphere of 100 nm radius, the cos(Qzz)
factor with z=100 nm and the product of these two functions are plotted.
For the form factor Qy = 0 is chosen. The form factor is a rapidly decreasing
function which is a general feature in SANS. The measured polarization is
proportional to the area under the dashed curve Eq.1.21 and Eq.1.22. This
curve only has a significant contribution over the one and a half period of
the cosine function. In a SESANS experiment by changing z the area under
the product function is calculated. One can also see z as the frequency of
modulation. If z is increased the product function will be more oscillatory
and the product area will decrease. For high z values the main contribution
to the SESANS signal is then from the region around Q = 0. This is the
most difficult part to measure in conventional SANS.

The spin-echo length is proportional to λ2. Therefore, SESANS combined
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Figure 6.1: The continuous curve is the form factor for a sphere of 100 nm
radius. The dotted curve is cos(Qzz) with z = 100 nm. The dashed curve
is the product of the form factor and the cosine term. The area under this
curve is proportional to the polarization.

with TOF techniques can be used very effectively at a pulsed neutron source.
This means that the spin-echo length is changed by the wavelength for fixed
sx and B. However, z is now changing quadratically instead of linearly. If it
will be built, ESS (European Spallation Neutron Source) will be the worlds
most powerful pulsed neutron source. The thermal neutron peak flux from
ESS (2 × 1017 /cm2/s) will exceed the constant flux of existing high flux
reactors by two orders of magnitude [48]. So, the spin-echo length can be
changed very effectively at a source like ESS. Thus in a single shot, whole
P (z) can be measured. Furthermore, the high flux will enable to do time
dependent SESANS measurements.

The major contribution of SESANS to science will be in the micron re-
gion, since the nanometer range is also accessible by conventional SANS. A
lot of research can be done in powder technology [38]. The reason for this
is that the microstructural behavior of the powder particles have a large ef-
fect on the macroscopical behavior. Food science is another field to which
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the SESANS technique can contribute. Caseine micelles are an important
constituent in milk. It plays a major role in cheese making. SANS measure-
ments on these micelles cover a range from 2-200 nm. For measurements
between 200-1000 nm one has to switch to other techniques such as light
scattering. With SESANS one can cover this range in a single experiment.
Furthermore, neutrons have a large penetration depth compared to light.
Additionally, deuterium labelling can be done which is not possible with
light. Nowadays, composite materials are used in an increasing number of
products. Composites are formed by combining two or more quite different
materials to give the composite unique properties. The greatest advantage of
composite materials is strength and stiffness combined with lightness. The
development of these materials will depend on a fundamental understanding
of the microstructure.
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SESANS

Summary

Spin-Echo Small-Angle Neutron Scattering (SESANS) is a SANS technique
which can probe distances in real space from a few nanometers up to mi-
crons. With SESANS one can obtain structural information of materials
which means the size and the form of the object. In SANS one obtains data
as a function of momentum transfer. It is very difficult to measure angles
close to zero since then the scattered beam coincides with the incoming beam
and because of this the two dimensional detector must be put at a large dis-
tance from the sample. However, in SESANS data is obtained as a function
of the spin-echo length which corresponds with real space features of the sam-
ple. Each data point automatically includes integration over the momentum
space. Therefore, small angles are included in an measurement as easy as
large angles. Since one measures with SESANS the integrated intensity there
is no need for collimating the beam which means high counting statistics.

The underlying principle of SESANS is the Larmor precession of polarized
neutrons. The setup consists of two precession arms in which the neutrons
effectively precess in opposite directions. When there is no scattering the
amount of precession in the first arm is equal to the amount of precession in
the second arm. This is the echo situation. However, when there is scattering
from a sample, the amount of precession in the two parts will not be the same
due to the traversed path differences which will lead to depolarization of the
beam. The amount of depolarization depends on the structure of the sample.

There are four possibilities to realize a SESANS setup. These are: the
three foil option, wedge option, resonant field option and four foil option.
In all the options dipole magnets are used which generate a magnetic field
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perpendicular to the neutron beam direction. In this thesis the three foil
option is treated extensively.

In the three foil option single and double foils which are readily mag-
netized are used as π/2 and π flippers. The setup consists of three dipole
magnets. In the first and last magnets single foils and the middle magnet
double foils are mounted. These foils are tilted with respect to the neutron
beam direction and form triangular shaped precession regions. The scatter-
ing angle is encoded with the precession angle which is proportional to the
momentum transfer. The measured quantity is the polarization as a func-
tion of the spin-echo length. This length is proportional to the magnetic
field value of the magnets, the distance between the sample and magnet and
the square of the wavelength. The polarization is proportional to the cosine
transform from momentum space to real space of the scattering power of the
sample.

Multiple scattering can be treated easily in contrast to SANS. In SESANS
multiple scattering results in stronger decay of the polarization as a function
of the spin-echo length.

There are two requirements which have to be fulfilled in a SESANS mag-
net. Firstly, the magnetic fields in the middle of the magnet in a volume of
30 × 30 × 30 mm3 must homogenous within 1.3 G for a field of 2000 G in
the center of the magnet. The reason for this is that the precession angle
must be a linear function of the height in order to realize angle encoding. If
the field is not homogenous then the precession angle will have a non-linear
dependency on the field. The homogeneity of the magnetic field is readily
achieved when the width of the pole face of the dipole magnets is 18 cm.
To save weight, the radius of the core is brought back to 12 cm, keeping the
width of the pole face at 3 cm in order to avoid saturation effects. With
these parameters to have 2000 G in the center, a total current of 5000 A is
needed through one current package that encloses one pole.

Secondly, the line integral must have a homogeneity of 2.2 G.cm over
the beam cross-section which cannot be achieved by increasing the pole gap
distance. This inhomogeneity is caused by the fringing of the field lines at the
entrance and exit opening of the magnets. Inhomogeneities in the vertical
component of the magnetic field will not contribute to the line integral errors
but it is proportional to the square of the perpendicular components of the
field. Two external coil sets are used to homogenize the line integral over the
beam cross-section. The first set consists of four coils. These contain four
current carrying wires parallel to the mean beam axis. The distances between
the wires are chosen in such a way that it gives a quadratically changing field
in both perpendicular directions to the mean beam axis.

This first coil set actually transforms the variation of the line integral
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from one perpendicular direction to the other one. The inhomogeneity in
this new direction is then corrected with a parabolically shaped coil placed
in the neutron beam. For a beam of 15 mm high and 10 mm wide the
polarization is increased from 0.25 to 0.86.

Model calculations are performed in order to calculate the SESANS cor-
relation function. The length scales present in systems such as spheres, cylin-
ders and ellipsoids can directly be determined. On the other hand determina-
tion of Gaussian polydispersity cannot be done with SESANS for spherical
systems. The Guinier approximation can be done in the same manner as
with SANS and gives information on the Guinier radius. Structure factor
effects shows up clearly in the SESANS signal. For hard sphere interaction,
oscillations appear around the zero level of the SESANS correlation function.
An analytical expression is obtained for systems which can be described by
a Debye-Lorentz model. These calculations show that SESANS allows to do
interpretations in real space.

The SESANS principle is demonstrated by measurement of limestone.
The scaling formula for multiple scattering has been applied successfully on
limestone measurements of different thicknesses.

The first quantitative measurements in Delft are done on latex spheres
of 60 and 100 nm. The calculation without any adjustable parameters and
the measurement are in good agreement for the 100 nm particles. In case
of the 60 nm spheres there is a small difference between the measurement
and the calculation which is not yet understood. It would be impossible to
these measurements with conventional SANS machines such as at LOQ in
ISIS and just possible at D11 in ILL.

SESANS can be used very effectively at a pulsed neutron source since the
spin-echo length is proportional to the square of the wavelength. Therefore,
it will be possible to obtain the whole depolarization curve as a function
of the spin-echo length in one single shot. This will make time-dependent
measurements on subsecond timescale possible.
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SESANS

Samenvatting

Spin-Echo Small-Angle Neutron Scattering (SESANS) ofwel Spin-Echo kleine-
hoek Neutronenverstrooiing is een techniek waarmee lengteschalen vanaf een
paar nanometer tot mikrons bepaald kunnen worden. Met SESANS kan in-
formatie over de struktuur van materialen verkregen worden. Strukturele in-
formatie betekent de grootte en de vorm van een object. In een SANS meting
worden de gegevens als functie van de impulsoverdracht verzameld. Hierbij
is het erg moeilijk om bij hoeken in de buurt van nul te meten omdat dan
de verstrooide bundel samen gaat vallen met de invallende bundel en daar-
door de twee dimensionale detector op grote afstanden van het preparaat
geplaatst moet worden. Echter in SESANS worden gegvens verkregen als
functie van de spin-echo lengte die met eigenschappen van het preparaat in
de reële ruimte correspondeert. Elk meetpunt bevat automatisch een inte-
gratie over de impulsoverdrachtsruimte. Hierdoor zijn de effecten bij kleine
hoeken net zo gemakelijk meegenomen in een meting als die bij grote hoeken.
Omdat men met SESANS de gëıntegreerde intensiteit meet is het niet nodig
om de bundel te collimeren wat in een hoge telstatistiek resulteert.

Het onderliggende principe van SESANS is de Larmor precessie van gepo-
lariseerde neutronen. De opstelling bestaat uit twee precessiearmen waarin
de neutronen effectief gezien in tegengestelde richting precederen. Wanneer
er geen verstrooiing plaatsvindt is de hoeveelheid precessie in de eerste arm
gelijk aan die in de tweede arm. Dit is de echosituatie. Echter, als er ver-
stooiing is, is de hoeveelheid precessie in de eerste arm niet gelijk aan die in
de tweede arm vanwege de padlengteverschillen voor het neutron in de eerste
en de tweede arm. Dit zal leiden tot depolarisatie van de bundel. De mate
van depolarisatie hangt af van de struktuur van het preparaat.

Er zijn vier opties om SESANS te realiseren. Deze zijn: de drie-folie
optie, wiggen optie, resonant veld optie en vier-folie optie. In alle opties
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worden er dipool magneten gebruikt die een magnetisch veld loodrecht op
de neutronen richting genereren. In dit proefschrift wordt de drie-folie optie
uitgebreid behandeld.

De drie-folie optie bevat enkel- en dubbelfolies die gemakelijk te magne-
tiseren zijn. Deze worden als respectievelijk π/2 en π flippers gebruikt. De
opstelling bestaat uit drie dipool magneten. In de eerste en laatste mag-
neet zijn enkelfolies en in de middelste magneet is een dubbelfolie opgesteld.
Deze folies maken alle dezelfde hoek met de gemiddelde neutronenrichting en
vormen driehoekige precessiegebieden. De verstrooingshoek wordt gecodeerd
met de precessie die evenredig is met de impulsoverdracht. In een SESANS
meting wordt de polarisatie als functie van de spin-echo lengte gemeten. Deze
lengte is evenredig met het veld in de magneten, de afstand van het preparaat
tot de magneet en het kwadraat van de golflengte. De polarisatie is evenredig
met de cosinus transformatie van impulsruimte naar de reële ruimte van de
hoeveelheid verstrooiing van het preparaat.

Meervoudige verstooiing kan makelijk analytisch behandeld worden in
tegenstelling tot SANS. In SESANS resulteert meervoudige verstooiing in
een snellere afname van de polarisatie als functie van de spin-echo lengte .

Er zijn twee eisen waaraan voldaan moet worden in een SESANS magneet.
Ten eerste moet het magneetveld in het midden van de magneet in een ruimte
van 30 × 30 × 30 mm3 homogeen zijn binnen 1.3 G bij een veldwaarde van
2000 G. De reden hiervoor is dat de precessiehoek een lineaire functie van
de hoogte van het neutronenpad moet zijn om hoek labelling te realiseren.
Als het veld niet homogeen is dan zal de precessiehoek een niet lineaire
afhankelijkheid van het veld hebben. De vereiste homogeniteit van het veld
kan gemakelijk gerealiseerd worden als de breedte van de poolschoenen 18
cm is. Om gewicht te besparen, is de straal van de ijzeren kern van de
pool teruggebracht tot 12 cm waarbij de dikte van de poolschoen op 3 cm is
gehouden om verzadigingseffecten te voorkomen. Met deze parameters, om
een veld van 2000 G te hebben, is een totale stroom van 5000 A nodig door
elk pakket windingen dat één pool omvat.

Ten tweede moet de lijnintegraal een homogenitiet van 2.2 G.cm hebben
over de bundeldoorsnede. Deze homogeniteit kan niet bereikt worden door
de poolafstand te vergroten. De inhomogeniteiten in de lijnintegraal zijn ten
gevolge van de buiging van de veldlijnen bij de ingangs- en uitgangsopening
van de magneten. Inhomogeniteiten in de verticale component van het veld
zullen niet bijdragen tot de fouten in de lijnintegraal. Deze zijn evenredig
met het kwadraat van de loodrechte componenten van het veld. Twee ex-
terne sets spoelen worden gebruikt om de lijnintegraal te homogeniseren.
De eerste set bestaat van vier spoelen. Deze bevatten vier stroom voerende
draden die parallel lopen aan de gemiddelde neutronenrichting. De afstanden
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tussen de draden zijn op een dusdanige manier gekozen dat zij tezamen een
kwadratisch veranderende veld genereren gezien in beide richtingen loodrecht
op de neutronen bundel.

Deze eerste spoelset transformeert eigenlijk de variatie van de lijn in-
tegraal van de ene loodrechte richting naar de andere. De inhomogeniteit
die in deze nieuwe richting is ontstaan wordt gecorrigeerd met een tweede,
parabolische spoel die in de bundel wordt gezet. Voor een bundel van 15 mm
hoog en 10 mm breed wordt de polarisatie verbeterd van 0.25 naar 0.86.

Modelberekeningen zijn uitgevoerd om de SESANS correlatiefunctie uit
te rekenen. Lengteschalen die voorkomen in bollen, cylinders en ellipsoden
kunnen gemakelijk bepaald worden. Anderzijds kan SESANS een Gaussische
polydispersiteit voor spherische deeltjes niet bepalen. De Guinier benadering
kan op dezelfde manier toegepast worden als met SANS om de Guinierstraal
te bepalen. Effekten van de struktuurfactor zijn duidelijk zichtbaar in het
SESANS signaal. Bij harde bollen zijn er oscillaties zichtbaar rondom de
nulniveau van de SESANS correlatiefunctie. Een analytische uitdrukking
is verkregen voor systemen die met het Debye-Lorentz model beschreven
kunnen worden. Deze berekeningen laten zien dat het mogelijk is om met
SESANS interpretaties te doen in reële ruimte.

Het SESANS principe is aangetoond met metingen aan kalksteen. De
schalingsformule voor multiple verstooing is met succesvol toegepast op kalk-
steen metingen aan preparaten van verschillende dikte.

De eerste kwantitative metingen in Delft zijn uitgevoerd op latex bolletjes
van 60 en 100 nm. De berekeningen zonder enige aanpasbare parameters zijn
goed in overstemming met de metingen voor 100 nm deeltjes. In geval van
de 60 nm bolletjes is er een klein verschil tussen de meting en de bereking die
niet is begrepen. Het zou onmogelijk zijn om deze metingen uit te voeren op
conventionele SANS machines zoals LOQ bij ISIS; en het zou net mogelijk
zijn bij D11 in ILL.

SESANS kan zeer efficient toegepast worden bij een gepulseerde neutro-
nen bron omdat de spin-echo lengte evenredig is met het kwadraat van de
golflengte. Daarom is het mogelijk om de gehele depolarisatie curve als func-
tie van de spin-echo lengte te meten in een enkele puls. Dit zal tijdafhanke-
lijke metingen op subseconde tijdschaal mogelijk maken.
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SESANS

Özet

Spin-Echo Small-Angle Neutron Scattering (SESANS) veya Spin-Eko Küçük-
Açı Nötron Saçılım’ı bir SANS tekniği olup reel uzayda bir kaç nanometre-
den mikron seviyesine kadar olan uzunluklari ölçebilmektedir. SESANS’la
malzemeler hakkında yapısal bilgi edinilebilir. Burada yapısal bilgiden mak-
sat cisimlerin şekil ve büyüklüğüdür. SANS’la data momentum transferinin
fonksiyonu olarak ölçülür. Bu teknikle sıfıra yakın açıları ölçmek oldukca
zordur. Çünki bu durumda iki boyutlu dedektörü numuneden oldukca uzağa
koymak gerekiyor. Oysa SESANS’la data spin-eko uzunluğunun bir fonksiy-
onu olarak elde edilmektedir. Her data noktası otamatik olarak momemtum
uzayı üzerinden alınan integrayonu içerir. Bu sebeble küçük açılar büyük
açılar kadar kolay ölçülebilmektedir. SESANS’la entegre edilmiş şiddet ölçüldüğü
için ışınları paralel hale getirmek gerekmez, bu da yüksek sayısal istatistik
manasına gelir.

SESANS’ın temelinde yatan prensip polarize edilmiş nötronların Larmor
presesyon hareketidir. Düzenek iki presesyon kolundan meydana gelmekte
olup her bir kolda nötronlar efektif olarak zıt yönlerde presesyon hareketi
yaparlar. Saçılım olmadığı zaman, birinci koldaki presesyon miktarı ikinci
koldaki presesyon miktarına eşit olur. Bu eko durumudur. Ancak numunede
saçılım meydana gelirse, herbir kolda katedilen mesafe farklı olacağı için
nötronlar depolarize olur. Depolarize miktarı numunenin yapısal özelliklerine
bağlıdır.

SESANS dört yolla gerçekleştirilebilir. Bunlar üç folyo, kama, rezo-
nant alan ve dört folyo seçeneğidir. Herbir seçenekte dipol mıknatıslar kul-
lanılmakta olup bu mıknatıslar nötronların hareket doğrultusuna dik manyetik
alan oluşturular. Bu tezde üç folyo seçeneği detaylı bir şekilde incelendi.



100 Özet

Üç folyo seçeneğinde, kolay mıknatıslanabilir tek ve çift folyolar π/2 ve
π çeviricileri olarak kullanılır. Düzenek üç dipol mıknatısdan oluşmaktadır.
İlk ve son mıknatısta tek, orta mıknatısda ise çift folyolar monte edilmiş
durumdadır. Bu folyolar nötronların hareket doğrultusuna göre eğik du-
rumdadırlar ve üçgensel presesyon bölgesi oluştururlar. Saçılma açısı pre-
sesyon açısıyla kodlanır ki bu da momentum transferiyle doğru orantılıdır.
Ölçülen büyüklük spin-eko uzunluğunun fonksiyonu olarak polarizasyondur.
Bu uzunluk manyetik alan, numune ile mıknatıs arasındaki mesafe ve dalga
boyunun karesi ile doğru orantılıdır. Polarizasyon numunenin saçma gücünün
momentum uzayından reel uzaya olan kosinüs tranformasyonu ile orantılıdır.

SANS’a mukabil katlı saçılım analitik olarak incelenebilir. SESANS’da
katlı saçılım polarizasyonun, spin-eko uzunluğunun fonksiyonu olarak hızlı
bir şekilde azalmasına sebebiyet verir.

SESANS mıknatısında yerine gelmesi gereken iki gereklilik şartı var. Bir-
incisi 30 × 30 × 30 mm3’lik bir hacimde 2000 G’lık bir alan için manyetik
alan 1.3 G içerisinde homojen olamlıdır. Bunun sebebi, açısal kodlamanın
gerçekleşmesi için, presesyon açısının yüksekliğin linier bir fonsiyonu olması
gereğidir. Eğer alan homojen olmazsa, o zaman presesyon açısı alana lin-
ier olmayan bir şekilde bağlı olur. Homojenlik şartı mıknatısın kutupsal
genişliği 18 cm olduğunda kolayca sağlanabilir. Ağırlığı azaltmak için demir
çekirdeğin yarıçapı 12 cm’ye düşürülürken kutupsal yüzlerin genişliği demirin
doyma durumuna gelmesini engellemek için 3 cm’de tutuldu. Bu parametriler
ile merkezde 2000 G’lik bir alan için, bir kutbu kapsayan bir akım paketinden
geçen toplam 5000 A’e ihtiyaç vardır.

İkinci olarak çizgisel integral nötron hüzme kesiti üzerinde 2.2 G.cm’lik
homogjenliğe sahip olmalıdır. Bu ise kutup mesafesini arttırmakla sağlanamaz.
Çizgisel integrayon hatalarının temel sebebi, mıknatısların giriş ve çıkışlarında
manyetik alanın saçaklanmasıdır. Manyetik alanın düşey bileşenleri çizgisel
integrasyon hatalarına sebebiyet vermezken bu hatalar alanın dik bileşenlerinin
karesiyle doğru orantılıdır. Bu hataları düzeltmek için iki harici bobin kul-
lanılır. Birinci bobin dört parça bobinden oluşur. Bunlar nötronların hareket
doğrultusuna paralel akım taşıyan dört tel içerir. Teller arası mesafe nötronların
hareket doğrultusuna dik iki yönde, manyetik alan iki derceden artacak
şekilde ayarlanır.

Birinci bobin aslında çizgisel integrasyondaki değişimi bir dik yönden
diğer dik yöne çevirir. Bu yeni yöndeki hata hüzmeye yerleştirilen parabolik
biçimli ikinci bir bobinle düzeltilir. 15 mm yüksekliğinde, 10 mm açıklığındaki
bir hüzme için polarizasyon 0.25’den 0.86’ya çıkarılabilmektedir.

SESANS korelasyon fonksiyonunu hesaplamak için model hesaplamaları
yapıldı. Küre, silindir, elipsoid gibi sistemlerdeki mevcut karakteristik uzun-
luklar direkt olarak belirlenebilmektedir. Öte yandan küresel sistemler için
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Gauss dağılımına göre olan polydisperslik SESANS’la belirlenemiyor. Guinier
yaklaşımı SANS’da olduğu gibi uygulanmakta olup Guinier yarıçapı belir-
lenebilinir. Strüktür faktör etkileri SESANS sinyalinde belirgin bir biçimde
ortaya çıkıyor. Sert küre etkileşimi SESANS korelasyon fonsiyonunun sıfır
seviyesinde osilasyonlar olarak belirmektedir.

SESANS prensibi kalker ölçümleri ile ispatlandı. Katlı saçılim için olan
ölçekleme formülü başarılı bir biçimde değişik kalınlıkta ki kalker numuneler-
ine uygulandı.

Delft’teki ilk kantitatif ölçümler 60 ve 100 nm’lik lateks küreler ile yapıldı.
Ayarlanabilir parametresiz hesaplamalar ile ölçümler, 100 nm parçacıklar için
birbiriyle uyuşmaktadır. 60 nm kürelerde ise ölçümle hesap arasında ufak
bir fark bulunmaktadır ki bu henüz anlaşılabilmiş değildir. Bu tür ölçümleri
ISIS’deki LOQ gibi konvansiyonel SANS aletiyle yapmak imkansız, ILL’ de
D11 ile yapmak ise ancak mümündür.

Spin-eko uzunlugu dalga boyunun karesiyle orantılı olduğu için, SESANS
vurulu kaynaklarda etkin bir şekilde kullanılabilir. Bu sebele spin-eko uzunluğunun
bir fonksiyonu olarak bütün bir depolarizasyon eğrisi tek bir vuru ile ölçülebilir.
Bu ise zamana bağlı saniye altı ölçümleri mümkün kılmaktadır.



102 Özet



Dankwoord

Het produceren van een proefschrift kan niet alleen worden toegeschreven
aan een enkel persoon. Daarom wil ik alle mensen bedanken die hebben
bijgedragen aan het tot stand komen van dit proefschrift. Zonder hun bij-
drage zou het niet mogelijk geweest zijn om deze dissertatie te schrijven.

Wim Bouwman wil ik bedanken voor al zijn inspanningen. In de afgelopen
vier jaar heb ik nooit het idee gehad dat ik zonder begeleiding zat. Dit in
tegen stelling tot ramp verhalen die je regelmatig hoort wat betreft slechte
begeleiding van promovendi. Hij heeft mijn teksten heel snel gelezen en van
commentaar voorzien. Dit heb ik altijd zeer gewaardeerd. Ook hebben we
vele interessante gesprekken gevoerd over religie in het bijzonder over de
Islam n.a.v. kranten knipsels die ik kreeg van Wim.

Theo Rekveldt wil ik bedanken voor zijn waardevolle ideeën. Vooral de
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