
Dealing with Uncertainty in Operational
Transport Planning

Jonne Zutt, Arjan van Gemund, Mathijs de Weerdt, and Cees Witteveen

Abstract An important problem in transportation is how to ensure efficient oper-
ational route planning when several vehicles share a common road infrastructure
with limited capacity. Examples of such a problem are route planning for auto-
mated guided vehicles in a terminal and route planning for aircraft taxiing at air-
ports. Maintaining efficiency in such transport planning scenarios can be difficult
for at least two reasons. Firstly, when the infrastructure utilization approaches sat-
uration, traffic jams and deadlocks may occur. Secondly, incidents where vehicles
break down may seriously reduce the capacity of the infrastructure and thereby af-
fect the efficiency of transportation. In this chapter we describe a new approach to
deal with congestion as well as incidents using an intelligent infrastructure. In this
approach, infrastructural resources (road sections, crossings) are capable of main-
taining reservations of the use of that resource. Based on this infrastructure, we
present an efficient, context-aware, operational transportation planning approach.
Experimental results show that our context-aware planning approach outperforms a
traditional planning technique and provides robustness in the face of incidents, at a
level that allows application to real-world transportation problems.

Jonne Zutt
Department of Software Technology, Delft University of Technology, PO Box 5031, 2600 GA
Delft, The Netherlands, e-mail: j.zutt@tudelft.nl

Arjan van Gemund
Department of Software Technology, Delft University of Technology, PO Box 5031, 2600 GA
Delft, The Netherlands, e-mail: a.j.c.vangemund@tudelft.nl

Mathijs de Weerdt
Department of Software Technology, Delft University of Technology, PO Box 5031, 2600 GA
Delft, The Netherlands, e-mail: m.m.deweerdt@tudelft.nl

Cees Witteveen
Department of Software Technology, Delft University of Technology, PO Box 5031, 2600 GA
Delft, The Netherlands, e-mail: c.witteveen@tudelft.nl

1

2 Jonne Zutt, Arjan van Gemund, Mathijs de Weerdt, and Cees Witteveen

1 Introduction

Transportation is one of the strongest growing activities in our society, and as a re-
sult, there is an increasing need for improving the transportation process of public as
well as freight transportation. One way to meet these efficiency demands is to auto-
mate significant parts of the transportation process. For example, in 1988, European
Container Terminals realized the first ever robotized container terminal where com-
pletely controlled automated guided vehicles drive around 24 hours a day. Another
initiative is the to be realized fully automated underground logistic system at Ams-
terdam airport, connecting the flower market of Aalsmeer, the airport, and a new rail
terminal to one another. Also in public transportation automation has been applied.
Already in 1939, General Motors presented a vision of “driver-less” vehicles moved
under automated control at that year’s World’s Fair in New York. A fully automated
highway was initially examined by General Motors during the late 1970s. Due to
the advances in computing technologies, microelectronics, and sensors in the 1980s,
the University of California program Partners for Advanced Transit and Highways
has carried out significant research and development efforts in highway automation
since the 1980s. In Europe, automation has been applied in public transportation as
well. For example, in Paris, the underground railway is partly automated. Other ex-
amples of automation are car navigation systems that not only are capable to advise
and assist, but also, maybe in the near future, will be used to monitor and partially
direct human driver behavior.

One of the main promises of automation in public and freight transportation is
to help in detecting and resolving possible conflicts (e.g., collisions) between large
amounts of vehicles moving on a rather restricted infrastructure (highways, rail-
ways, or air corridors). For example, on-board computers help in detecting obsta-
cles, assist the driver if sight is limited, and give advice if accidents are about to
occur.

Another main feature of automation, however, is that it might also assist in pre-
venting such conflicts to occur by careful planning of transportation activities, where
route choices are determined and communicated in advance. One significant prop-
erty of planning in transportation is that it occurs in a distributed way, without cen-
tralized control. Since, usually, every vehicle in a transportation process is planning
its transportation independently from the other, conflicts have to be detected locally
and solved in real-time. The traditional solution to preventing these conflicts be-
tween plans is as taken in our everyday traffic: a set of operational conflict-resolution
rules such as traffic rules (keep right), traffic lights (semaphores), and dynamic traf-
fic guidance systems ensure effective conflict resolution when the plans are exe-
cuted, i.e., when the previously planned route choices are followed.

The problem with this traditional approach is that, first of all, due to the high load
on road section resources, in reality travel times as planned are nearly unpredictable,
even if no incidents occur. This means that, normally, the quality of plans cannot be
guaranteed as vehicles are dependent upon the plans of others. In addition, opera-
tional conflict rules might not always be successful: the high load may easily lead
to deadlocks, where a number of vehicles is waiting for one another without any

Dealing with Uncertainty in Operational Transport Planning 3

progress. This, for example, might happen if four vehicles approach an intersection
at the same time from different directions. Furthermore, as a consequence of this
type of conflict resolution, the infrastructure is often used inefficiently: sometimes
vehicles are waiting, while a short detour could have prevented this.

To solve these problems, we need to deal with conflict resolution not during
the execution of the individual transportation plans, but during the planning phase.
Therefore, a more sophisticated approach would be to split the problem into a first
phase, in which routes are found for each of the vehicles individually, and a sec-
ond phase, in which feasibility of the collection of routes is ensured, before these
individual plans are actually executed. In fact, this form of plan conflict resolution
can be considered as a form of plan repair, modifying individual plans if they are in
conflict. As a representative of this approach, Broadbent et al. [3] employ a simple
shortest path algorithm to find a set of initial routes. In case of catching-up con-
flicts, some vehicles are slowed down; for head-on conflicts, an alternative route is
found that does not make use of the road at which the conflict occurred. Broadbent’s
algorithm can be used both on unidirectional and bidirectional infrastructures, but
in the latter case it need not find the optimal solution. Like Broadbent et al., the
approach proposed by Hatzack and Nebel [8] can also be considered as such a two-
step approach. Compared with earlier approaches, however, Hatzack and Nebel use
a more refined model of the infrastructure by considering parts of the infrastructure
(such as lane segments and intersections) as resources having a limited capacity.
Once the individual routes have been chosen, conflict resolution is then modeled as
a job-shop scheduling problem with blocking to ensure that the capacity constraints
on the resources are not violated.

Instead, however, of using such a two-step approach to distributed transportation
planning, the approach in this chapter aims at a full integration of the route planning
and the conflict-resolution process. To this end, we assume the existence of an auto-
mated, distributed, intelligent infrastructure that can be used by planners to realize a
personal but so-called context-aware traffic plan. The basic idea here is that infras-
tructural resources, like road sections and crossings, maintain a list of reservations
(time windows) of the use of that resource. While making their transportation plans,
vehicles query a resource for its availability during some time interval and make
time-window reservations for the use of that resource. Hence, individual vehicles
are capable of planning a route in such a way that the influence of all plans of other
vehicles have been taken into account, i.e., they are able to construct a context-aware
route plan.

In this chapter, firstly, we elaborate upon the above idea for context-aware plan-
ning, because such a method can guarantee that traffic plans do not suffer from
inherent unpredictability, since context-aware planning methods take into account
conflicts in the planning phase instead of the execution phase. In particular, we not
only review different existing variants of context-aware planning methods that may
be used given such an intelligent infrastructure, we also present an algorithm that
is optimal for one vehicle, given the reservations of the others, and computationally
more efficient than any of its predecessors. We compare the performance of this im-

4 Jonne Zutt, Arjan van Gemund, Mathijs de Weerdt, and Cees Witteveen

proved context-aware planning method to a traditional planning method that solves
conflicts in the plan execution phase.

Secondly, we address the distributed transportation problem when incidents do
occur. In our case, we consider incidents to be events that cannot be anticipated in
advance and that have a negative influence on the planned activities, such as a colli-
sion, or a vehicle with a motor that is malfunctioning. Note that if incidents occur,
even our context-aware route planning algorithm again cannot guarantee conflict-
free execution of individual transportation plans and we are forced, as in the tradi-
tional approach, to resolve conflicts in the execution phase. As we will show, how-
ever, we are able to revise plans to take the consequences of incidents into account
by making some adaptations of the context-aware route planning algorithm. We
show that also under incident conditions, a context-aware route planning approach
performs better than resolving conflicts in the execution phase.

These contributions are presented in this chapter as follows. We first introduce
our model of an infrastructure, vehicles, and requests, and a description of the types
of solutions we expect (Section 2). Then we discuss some existing work on context-
aware approaches, and introduce our improved method in Section 3. In Section 4 we
propose two different ways to extend context-aware methods to deal with incidents.
Thereafter, we evaluate these methods by running a number of simulations in a
synthetic grid infrastructure, as well as in a realistic network of the Dutch national
airport near Amsterdam.

2 A framework for distributed operational transport planning

To discuss the context-aware route planning algorithms that we compare with the
traditional approaches, we first need to specify the building blocks of our ap-
proach to distributed transportation planning. In our framework, we distinguish a
transportation network consisting of resources, transportation requests (tasks), and
transport agents who make transportation plans for vehicles to serve the transporta-
tion requests using the transportation network.

Transportation network A transportation network, or infrastructure is a tuple
(R,E,K,D,S). Here, each of the n (infrastructure) resources r ∈ Rr represents space
that can be occupied by the transport agents, e.g., a road, a road segment, part of an
intersection or a parking space. The directed connectivity relation E ⊆ R×R defines
which infrastructure resources a transport agent can traverse to from a given infras-
tructure resource. The distance function D : R→R+ gives, for each resource r ∈ R,
the positive non-zero distance of traversing r.

For all infrastructure resources r ∈ R, the capacity function K : R→ N specifies
the number K(r) of agents that can use resource r simultaneously, and the speed
function S : R→ R+ specifies the maximum allowed driving speed S(r) at resource
r. Note that this maximum is defined independently from the vehicle using the re-
source.

Dealing with Uncertainty in Operational Transport Planning 5

Transportation requests A transportation request or task j is modeled by a tuple
(f j,s j,τ

s
j ,d j,τ

d
j ,π j) and specifies the request to pick up some amount of freight f j to

a certain source location s j ∈ R within a specified time window τs
j = [ts

j,1, t
s
j,2] and to

deliver it at a specified destination location d j within a time window τd
j = [td

j,1, t
d
j,2].

Associated with each request j there is a reward function π j : W ×W →R, where W
denotes a set of time windows. This reward is maximized if the request is executed
within its time windows, and will typically be (much) smaller if one or both of the
time windows of the transportation request are violated.1

Transport agents The transportation agents A are the transport planners. Each
transport agent owns exactly one vehicle. The task of a transport agent is to com-
pute a plan for the tasks (transportation requests) it accepted and then to execute this
plan. Intuitively, each agent will try to maximize the rewards associated to its trans-
portation requests, while minimizing the (traversal) costs. We assume that similar to
infrastructure resources, for agents A there is a a capacity function K : A→N, spec-
ifying the maximum load capacity. If Jt is the set of transportation requests loaded
by an agent a∈ A at time t, the constraint ∑ j∈Jt f j ≤K(a) (i.e., the sum of all loaded
freight is smaller than the capacity of the vehicle) always holds. Likewise, the speed
function S : A→R specifies the maximum driving speed S(a) of the vehicle of agent
a. Furthermore, at each point t ∈ T in time, each transport agent a ∈ A claims ex-
actly the infrastructure resource r at which agent a resides at time t. If r1 and r2 are
infrastructure resources with (r1,r2) ∈ E, and agent a holds a claim at infrastructure
resource r1, it should claim resource r2 after having traversed resource r1, but before
(or when) releasing its claim on resource r1.

Transportation plans Each agent a ∈ A plans a route to execute the transporta-
tion requests it has been assigned. Such a route Rta = (r1,r2, . . . ,rk) for agent a is
represented as a sequence of resources such that resources ri and ri+1 are connected
to each other, i.e., (ri,ri+1) ∈ E for 1 ≤ i < k. Accompanying this route Rta, the
schedule Sda of agent a provides information on when each of these resources in
Rta are claimed. Schedule Sda = (t1, t2, . . . , tk) is a sequence of time points, where
ti specifies the time at which agent a claims resource ri. This implies that agent a
uses ri during the time window [ti, ti+1) for 1 ≤ i < k and uses resource rk during
time window [tk,∞). Obviously, at any time, the route and schedule have the same
length, i.e., ∀a ∈ A : |Rta|= |Sda|.2

Although every individual agent plan might be feasible, it may be the case that the
set of all agent plans is not feasible, because some of these plans may be in conflict.
Somewhat simplifying3 we say that there is a conflict in the set of all agent plans

1 Allen’s interval algebra [1] defines that a time-interval τ ′ is during time-interval τ if and only if
time window τ ′ does not start before time window τ and does not end at a later time.
2 We use |S| to denote the cardinality of a set S.
3 To define all types of conflicts that might occur is somewhat more involved. The reader is referred
to the PhD thesis of Zutt [20] for a complete overview.

6 Jonne Zutt, Arjan van Gemund, Mathijs de Weerdt, and Cees Witteveen

if there is a subset A′ ⊆ A, a resource r ∈ R, and a time t, such that at time t, every
agent a ∈ A′ has a claim on resource r and K(r) < |A′|. If there is no such conflict,
the set of agent plans is said to be conflict free.

The ultimate goal of solving a distributed transportation planning problem based
upon this framework is to come up with a set of conflict-free route plans before these
plans are executed. We describe such a route planning method in the next section.

3 Operational transport planning methods

In this section, we first briefly discuss some traditional approaches to operational
transport planning. Then, we give the state-of-the art in context-aware routing,
where conflicts between agents are removed during planning and before execution.
At the end of this section, we propose a more efficient context-aware routing algo-
rithm that we will also use in our experiments.

3.1 Conventional transportation planning approaches

The traditional solution to operational transport planning is to leave the planning to
the individual agents, but to constrain plan execution in a way similar to the everyday
traffic regulation approach: use a set of operational conflict-resolution rules, such
as traffic rules (keep right), traffic lights, and dynamic traffic guidance systems, to
ensure effective conflict resolution in the operational stage.

Using such an approach in our framework, the simplest way to determine the
route for an agent, neglecting the presence of other agents on a given infrastructure,
is to have each agent plan a shortest path from its current resource location to its
destination resource. A basic shortest-path algorithm, such as Dijkstra [6], can be
used by the agents to achieve this.

The resolution of operational conflicts is then done by defining resource usage
rules that prioritize vehicles when they enter an intersection at the same time. These
resource usage rules can be based on static aspects related to the importance of
the task, or on dynamic aspects, such as who arrives first. Examples of such static
resource usage rules are:

• task-priority: when the rewards for executing tasks are not constant, agents that
are executing tasks with a high reward should be given priority. For example,
an ambulance, police, or fire brigade in action could precede regular traffic;
• vehicle-priority: each type of vehicle is assigned its own priority level. For ex-

ample, buses and trucks can be assigned higher priority than personal vehicles.

Examples of dynamic resource usage rules are:

• first-come-first-served: for example, in the USA at a four-way-stop road cross-
ing, the vehicle that enters a crossroad first gains the highest priority;

Dealing with Uncertainty in Operational Transport Planning 7

• longest-waiter-first: during plan execution, agents possibly have to wait at sev-
eral occasions. This rule is similar to the previous one, but sums the waiting
times of multiple crossroads;

• urgent-deadline-first: when agents are executing tasks with delivery deadlines,
the agent that has the least slack should go first.

As remarked above, the problem with these traditional approaches is that travel
times become almost unpredictable: an agent must at least have some knowledge
of what the other agents are doing to know how this will affect its own plan. Even
more important is the possibility that deadlocks occur, which means that the agents
will not even be able to execute their plans. Finally, more knowledge about each
others actions can improve the agent’s decision making, which in turn may improve
the performance of all agents.

More in general, the traditional approach can be compared with a pure generate-
and-test approach to solving transportation planning problems: first, the routes are
generated and then a test approach is followed, which detects conflicts during execu-
tion (e.g.,, the resource requested is already occupied) and then finds a solution to the
problem (by using priorities). The resource-usage rules described above are much
more effective, however, if one could push the test approach into the route generator.
This implies that agents should use more conflict information available during the
generation stage and hence make better decisions. This is the essence of the context-
aware routing approach, which we propose as an alternative to the traditional ap-
proach that, from now on, will be used as a baseline approach (UNINFORMED) in
comparison with the context-aware approach.

3.2 Context-aware route planning

Context-aware routing can be viewed as a multi-agent extension to single-agent
shortest-path algorithms such as Dijkstra [6]. Typically, however, shortest-path al-
gorithms do not take into account the plans of other agents while searching for a
shortest time path from a source to a destination location. Taking into account the
effect of other plans has some important consequences. For example, when a path
to a node has been found in Dijkstra’s shortest path algorithm, it is known that the
current path to this node is the shortest, and the algorithm does not need to consider
any other paths leading to this node. In context-aware routing, however, the first
(and shortest) path to reach a resource is not necessarily the one that will result in
the shortest path from the source to the destination, via the current resource. Con-
sider the example in Figure 1. From the first (and only) free time window (a period
without any reservations) on start resource rs, we can reach both free time windows
on resource r1 (which is on a direct path to the destination resource rd). However,
from the first free time window on r1, f1,1 = [0,2], we cannot reach any free time
window on rd , because on the destination resource there is a reservation until time
5. Hence, we must go from rs to r1 at time 4 (assuming travel times of 1 for all
resources, by time 4 we will have had enough time to traverse rs). Then, we can

8 Jonne Zutt, Arjan van Gemund, Mathijs de Weerdt, and Cees Witteveen

[4,∞]

rdr1rs

[0,∞] [0,2]

[5,∞]

[0,5]

[2,4]

Fig. 1 This graph represents the time windows at three resources. The shaded boxes denote time
intervals reserved by other agents. The traversal time for each resource is one. The first arrival at
resource r1, at time 1, will not lead to a shortest path to destination resource rd (in fact, a path to r1
should first return to rs since r1 has been reserved from 2 to 4). Instead, we must consider the path
that visits r1 during its second free time window, which starts from 4.

leave r1 at time five, entering rd at time 5, at the start of the free time window on the
destination resource. This clearly shows that in context-aware routing we sometimes
need to consider more than one visit to a resource due to reservations made by other
agents.

Hence, a context-aware routing algorithm has to take into account not only
whether a next resource is reachable from the current one, but also whether there
is a suitable free time window on it, in which no reservations have been made by
other agents. Consequently, for each location a set of disjoint free time windows is
computed from all known reservations that exactly specifies the time windows at
which the load of the location is smaller than its capacity (see Figures 2 and 3). Fur-
thermore, a reachability relation is defined that specifies which free time windows
at one location can be reached from which free time windows at another location
(similar to arcs in a normal graph). When a shortest-path algorithm is used in this
graph, each individual plan is optimal given that the reservations of all other agents
do not change.

To illustrate this approach, let us look at the example depicted in Figure 2. The
task is to route from source location rs to destination location rd starting at time
t = 0, either by traveling via location r1 or via location r2, while taking into account
the specified reservations of other agents. At first sight, it seems quicker to traverse
via location r1, because location r2 is already reserved up to time t = 6. However,
from location r2 the journey cannot continue because of the reservation [0,5) in
location rd , and the agent is not allowed to wait in location r1 due to the reservation
[2,8) over there. Hence, the agent must wait in resource rs until time t = 8 if it
desires to travel the upper route. The free time-window graph gives somewhat more
information. There is only an arc from location r1 to location rd from the free time
window [8,∞), so one can immediately infer that the upper route has costs 9, and
thus the lower route with costs is quicker with costs 7 (assuming the all locations
have a traversal time of 1).

Dealing with Uncertainty in Operational Transport Planning 9

This single-agent source-destination routing computes a shortest path (in time)
for an agent to traverse from its initial location to a destination location. However, in
transportation planning, agents have to look further. They can be assigned multiple
tasks, and hence have to create a plan to visit multiple locations one after another.
The sequence of loading and unloading locations that an agent has to travel to is
referred to as the visiting sequence of that agent. The route for a visiting sequence
can be found by computing a shortest path between any two locations using context-
aware routing, and by including the loading or unloading time at each location.

Unfortunately, finding a globally optimal plan (minimizing the sum of the costs)
for all visiting sequences of all vehicles is NP-hard [13], so we cannot expect to
find an efficient (polynomial time) algorithm for this problem. We will therefore
restrict ourselves to an efficient algorithm that does not find optimal solutions. The
idea is to apply a context-aware routing method each time an agent takes up a new
transportation request. For a transportation request from a loading to an unloading
location all possible ways of inserting these two locations in a visiting sequence are
considered as long as the loading takes place before the unloading and the capacity
of the vehicle is not exceeded. The agents insert such transportation requests in the
order in which they arrive and without interleaving the planning with other agents.
This causes the resulting plans to be usually sub-optimal. We will illustrate this sub-
optimality by two examples. First, due to the arbitrary ordering: suppose that agent
a1 plans earlier than agent a2 in this ordering of agents, and that agents a1 and a2
share some infrastructure resources in their routes. If an optimal plan requires that
agent a2 precedes agent a1 in at least one of these shared infrastructure resources,
this plan might not be found (in the case that agent a1 reaches the infrastructure
resource earlier than agent a2). Second, due to the absence of interleaved planning:
if agent a1 first has to precede agent a2, but later has to take priority in any optimal
plan, then such a plan also cannot be found, because the agents create a complete
plan for all of their transportation requests at once when it is their turn.

We would like to point out that there are a number of approaches related to this
approach, in which route planning problems consist of finding a free path of re-
sources from the origin to a destination, taking into account reservations that have
been made by other agents using the same infrastructure. For example, the algorithm
proposed by Huang et al. [9] finds a path through the (graph of) free time windows
on the resources, rather than directly through the graph of resources. Huang et al.’s
algorithm assumes unit capacity for all resources and is optimal both for unidirec-
tional and bidirectional networks. Their algorithm runs in O((n+m)2 log(n+m))
for one vehicle, with n being the number of resources, and m the number of con-
nections between the resources. Fujii et al. [7] combine the search through free time
windows with a heuristic that calculates the shortest path from the current resource
to the destination resource, assuming no other traffic. The solution method pro-
posed should result in an optimal, polynomial-time algorithm, but the description
of the algorithm is not entirely correct, and the time complexity of this algorithm is
unknown. The work of Kim and Tanchoco [10] is similar to the work of Fujii et al.,
but their treatment of the problem and the analysis of their algorithm is more com-
prehensive. Kim and Tanchoco’s algorithm finds the (individually) optimal solution

10 Jonne Zutt, Arjan van Gemund, Mathijs de Weerdt, and Cees Witteveen

[0,5)

rs

r1

rd

r2

[2,8)

[0,6)

Fig. 2 Transport network. Arcs represent con-
nections between locations. The time intervals
are reservations of other agents.

[0,∞)

rs

r2

[0,6)

[6,∞)

r1

[0,2)

[2,8)

[8,∞)

rd

[5,∞)

[0,5)

Fig. 3 Free time-window graph. Connections
specify the reachability relation between free
intervals.

for both uni- and bidirectional networks, and they give an O(v4n2) time complex-
ity for their algorithm, where v is the number of vehicles in the system, and n is
the number of resources in the infrastructure. Because of this relatively high run-
time complexity (especially given the limited computational resources of an early
90s PC), Taghaboni-Dutta and Tanchoco [18] developed an approximation algo-
rithm that decides at every intersection to which resource to go next, based on the
estimated traffic density of the resources from the current intersection to the des-
tination. The authors show only a small loss of plan quality, and they claim that
the algorithm consumes significantly fewer computational resources. However, the
run-time complexity of this approximation algorithm is unknown, and we have not
found any quantitative comparisons.

Finally, considering the approach by Hatzack and Nebel [8] in more detail, we
see that their approach consists of two phases. In the first phase each agent computes
a context-unaware shortest path from its current location to its destination location.
In the second phase, the agents schedule their routes sequentially (each agent com-
pletes its reservations before the next agent), while preventing conflicts with of the
other agents. At the end, all agents have a plan and the joint plan is guaranteed to be
free of conflicts.

A drawback of their approach is that their algorithm uses backtracking. Since
they do not make use of the idea that a free time window needs to be considered
at most once, it is possible to construct examples in which the algorithm keeps
backtracking through the same paths of time windows. Figure 4 depicts such an
example in which this worst-case behavior is realized. This figure illustrates the
reservations on the sequence of resources (horizontally from source resource s via

Dealing with Uncertainty in Operational Transport Planning 11

n Algorithm 1 [s] H&N [s] recursive calls
1 0 0 10
2 0 0 26
4 0 0 110
8 0 1.0 1,682
16 0 2.6 426,026
20 0 41.5 6,815,798
24 0 696.3 109,051,970

10,000 2.3 - -
20,000 12.1 - -

Fig. 4 The figure on the left illustrates how these difficult instances for the algorithm of Hatzack
and Nebel are created. The vertical axis represents the progress of time. The horizontal axis repre-
sents the resources on the path from the source (on the left) to the destination (on the right). The
rectangles represent already reserved time windows. The table on the right gives the time required
to find a plan for different problem sizes n, and the number of recursive calls used by the algorithm
of Hatzack and Nebel.

1,2,3, . . . to destination resource d); vertically, the progress of time is shown. Each
resource is assumed to have a traversal time of 1. To create such an instance where
the algorithm needs 2n +1 updates, no more than the following 5n reservations are
needed in a route s,r1,r2, . . . ,r3n,d of 3n+2 resources:

• resources r3i−2 are reserved during [5i−3,5i−2) for 1≤ i≤ n,
• resources r3i are reserved during [5i−3,5i) for 1≤ i≤ n,
• resources ri are reserved during [5n,5n+1) for 1≤ i≤ 3n.

The table shown in Figure 4 shows that if such a structure of reservations occurs,
the algorithm of Hatzack and Nebel will not be able to solve the instance within
acceptable time. In the next section we propose an algorithm (Algorithm 1) that has
no problem with these instances at all.

3.3 A more efficient context-aware routing algorithm

One of the disadvantages of the context-aware planning approach discussed above
is its rather high run-time complexity; especially when the number v of vehicles
is growing, this will prohibit an efficient context-aware route finding process. We
therefore propose an alternative context-aware single-agent routing algorithm that
is more efficient. This algorithm is embedded in the same approach for multiple
agents discussed above, but has a time complexity that is much better than all of the

12 Jonne Zutt, Arjan van Gemund, Mathijs de Weerdt, and Cees Witteveen

Require: start resource s, destination resource d, start time t.
Ensure: exit time from d for the shortest path from s to d.
1: if s is free from t to t +D′(s) then
2: Q←{(s, t +D′(s))}
3: end if
4: while Q 6=∅ do
5: (ri, ti)← pop(Q)
6: if ri = d then
7: return (ri, ti)
8: end if
9: for all neighboring resources r j do

10: for all free time windows [t j, t ′j) of r j do
11: if possible to go to this window from (ri, ti) then
12: Q← insert(Q,(r j,max{ti, t j}+D′(r j)))
13: remove all time windows up to t j from the list of free time windows of r j
14: end if
15: end for
16: end for
17: end while

Algorithm 1: Context-aware routing.

above-mentioned existing methods (cf. [15]). This context-aware routing method is
based on Dijkstra’s shortest path method.

Let us consider Dijkstra’s algorithm for computing a shortest path from a given
source node rs to all other nodes in order of their distance from rs. The nodes for
which the shortest path to s is already known are maintained in a list Rs. In each
iteration one of the neighbors j of the nodes in Rs is added to Rs. The shortest path
to each neighbor j using only nodes in Rs is simply the minimum of the distance to
a node i in Rs plus the length of the edge from i to j. These neighbors are stored in a
priority queue sorted on this distance. For the neighbor with the minimum distance
in this queue, it is known that there is no shorter path using nodes outside of Rs,
because all these nodes are further away. This node is then added to Rs, and the
distances of its neighbors in the priority queue are updated if they can be reached
through this node.

Our context-aware routing algorithm differs from Dijkstra’s shortest path method
in a number of aspects. First, we apply this method on a network in which the
costs are in the resources, not in the connections between the resources. Second, we
apply this method to search for a shortest path in the free time-window graph, and
we make sure that only the relevant part of this time-window graph is represented.
Third, we ensure that all constraints on the neighbor (connectivity) relation of two
infrastructure resources are explicitly checked. Fourth, we sort the priority queue on
the exit time of a certain resource (instead of the shortest distance to a node). Fifth,
for an agent a we use the time distance function D′(r) = D(r)

min(S(a),S(r)) instead of just
the length of the edges between nodes. This then boils down to Algorithm 1.

Let us briefly go over the main steps in this algorithm. In Line 2, we initialize
the priority queue Q of free time windows (with priority on exit time) to the start

Dealing with Uncertainty in Operational Transport Planning 13

resource and the earliest exit time of this resource. In Line 5, we retrieve the time
window (ri, ti) with the lowest cost exit time. To expand the current free time win-
dow, we consider in Line 9 and 10 all (resource, free time window) pairs that are
reachable from (ri, ti). In Line 11, we check whether it is really possible for the
agent to go from ri with earliest exit time ti through resource r j within the interval
[t j, t ′j). This check involves checking whether there is an exit time t ≤ ti from ri that
is later than t j and for which also t +D(r j)≤ t ′j. Furthermore, it is ensured that this
step does not involve a conflict with the reservations of other agents (see Section 2).
If all constraints are met, this option is added to the priority-queue. Finally, we re-
move the free time windows up to t j from resource r j’s set of free time windows,
since we have already found the shortest path to this time window (since the exit
time of ri was the earliest). This is an important step, as it guarantees that we do not
consider any free time window for expansion more than once.

To analyze the run-time complexity of this algorithm, we first place a bound
on the number of time windows, using n for the number of resources in the in-
frastructure, and v for the number of vehicles. Assuming that vehicles visit each
resource only a constant number of times, there are at most O(nv) free time win-
dows, since for each free time window there must be a reservation as well. Based
on this observation, we can now bound the run-time complexity of this algorithm
by O(mv+ nv log(nv)) where m is the number of connections in the infrastructure.
This can be seen as follows. Each free time window is considered at most once in
an iteration of the while loop (Line 4). Because there are O(nv) free time windows
in total, the while loop is executed at most nv times. Since Q is a priority queue, re-
moving the smallest element from the list takes O(lognv) time. Lines 1–7 therefore
contribute O(nv log(nv)) to the complexity of the algorithm. Rather than looking at
lines 9–13 in the context of the while loop, we observe that over the whole run of the
algorithm, these lines will be executed at most once for each time window of each
neighbor in the time window graph, i.e., O(mv). Similarly, regarding line 12, we can
see that this line will be executed at most once per time window, i.e., O(nv). Since
this inserting in a priority queue takes O(log(nv)), the total run-time for this part of
the algorithm is O(mv+nv log(nv)). Hence, Algorithm 1 has a run-time complexity
of O(mv+nv log(nv)).

Thus, compared to earlier work, our approach is more efficient. For example,
the run-time complexity of the (single-agent) free time-window graph routing al-
gorithm of Kim and Tanchoco [10] is O(v4n2), while our algorithm has a run-time
of O(mv+nv log(nv)). The reason for this difference is that their conflict detection
procedure is inefficient. Kim and Tanchoco [10] did not make use of the fact that it is
enough to consider only the direct successor and predecessor to check for catching-
up conflicts (instead, they iterated through all present vehicles). Furthermore, they
used a different framework in which they both had to check for conflicts in the lo-
cations, as well as on lanes. In our framework lanes are also modeled as resources
with the same properties as locations.

14 Jonne Zutt, Arjan van Gemund, Mathijs de Weerdt, and Cees Witteveen

4 Dealing with uncertainty

Thus far we have considered the transportation planning problem as a static prob-
lem. This is, of course, in reality not the case. Several sources of uncertainty can be
distinguished [4]. Uncertainty can be caused by incidents, such as communication
failures between automated guided vehicles and the system maintaining reserva-
tions, break-down of a mobile entity (engine failure), or failures in the transport
network (e.g. due to traffic accidents). Uncertainty can also be caused by a modifi-
cation of the transportation requests. For example, the arrival of a new transportation
request renders a current plan infeasible.

Uncertainty, and especially incidents can be dealt with pro-actively or reactively.
Pro-active methods attempt to create robust schedules, while reactive methods re-
cover from incidents at the moment they occur. A typical pro-active approach is to
insert slack in plans such that for example delays have (almost) no consequences,
and new requests can easily be inserted, see, e.g. [5]. However, in case nothing un-
expected happens, these plans take much longer than strictly required. Therefore, in
the following, we focus on approaches that deal with uncertainty reactively.

In principle, uncertainty does not offer any additional problem to the traditional
approach, since the operational conflict resolution methods are usually sufficient to
handle conflicts due to new arrivals or incidents as well. For context-aware route
planning systems, however, such unexpected changes are a serious threat. Of course
we could add an operational conflict resolution system to context-aware routing to
remove any conflicts during execution. However, then it easily might turn out that
such systems are not better than the traditional route planning approaches regarding
efficiency and predictability. Therefore, we propose to extend context-aware routing
with the ability to deal with such conflicts by reconsidering the plans of the involved
vehicles (and possibly some of the others) each time an unexpected event occurs.

We consider the following two possible improvements. In the revising-priorities
method a number of selected vehicles reconsider only the timing of their reserva-
tions in order of their priority, which is determined by a heuristic function. The
revising-routes method also examines alternative routes for the vehicles. After all, it
might be the case that a vehicle is better off taking a detour if the heuristic function
determines that this vehicle should wait for other vehicles.

4.1 Revising priorities

In context-aware routing, reservations are (in principle) permanent, and later re-
quests take existing reservations into account. Consequently, the performance of the
system depends on the order in which the vehicles request reservations. The idea of
the REVISING-PRIORITIES method is to improve the performance by re-evaluating
reservations at certain moments, for instance, when a vehicle has accepted a new
transportation request, a transportation request has been modified, or when a vehi-
cle is bothered by an incident on its path. This method usually leads to a revised

Dealing with Uncertainty in Operational Transport Planning 15

v2

v1

v3

v4

r3 r4r1 r5

r7

r8

r14r12

r11

r10

r15

r2

r16 r17

r6

r9

r13

Fig. 5 Initially the plan of v1 is (r5, [0,2),r4, [2,4),r3, [4,6),r2, [6,7),r1, [7,∞)). It thus has to wait
at every resource on its route. With REVISING-PRIORITIES vehicle v2 can give way to v1. The plan
of v1 then is much more efficient, while v2 has to wait only one additional time step.

Table 1 List of heuristics used by the REVISING-PRIORITIES and REVISING-ROUTES methods.

heuristic description
random for baseline comparison, chooses a random agent to go first
delays agent with highest sum of expected delays goes first

deadlines agent with least amount of slack before the deadline goes first
profits agent with lowest expected profits goes first
wait agent that waits longest to enter its current location goes first
task agent that is assigned the task that has the highest reward goes first

inv task the reversed ordering of the task heuristic, used to see the effect of bad
versus good heuristics

ordering of the vehicles’ reservations of certain infrastructural resources, hence the
name. Below we describe a centralized version of this method where one scheduler
controls the order in which the vehicles can make new reservations. Typically, the
vehicle requesting rescheduling determines a group of involved vehicles, such as
all vehicles that share at least one infrastructure resource with the requesting vehi-
cle. This set of vehicles can quickly be determined by considering reservations for
infrastructure resources in the plan of the requesting vehicle.

When the request to revise priorities is granted by the scheduler, all of the par-
ticipating vehicles dispose of their current reservations, but maintain their route. In
turn, these vehicles can request new reservations for the first part (block) of their
remaining route. A heuristic function is used to determine the order in which this
should be done. Examples of such heuristic functions are given in Table 1. This
algorithm terminates when each vehicle in the group has a new schedule for each
complete route.

To see that this method cannot only be used in case of incidents, but also has
some potential to improve plans under regular operating conditions, consider the
following example in Figure 5. If all resources traversals take one time step, vehicle
v1 has to wait an additional time step at each resource on its route for another vehicle.

16 Jonne Zutt, Arjan van Gemund, Mathijs de Weerdt, and Cees Witteveen

r9

v1

v2

r1

r8

r2 r3 r4 r5 r6 r7

Fig. 6 When the route of v1 is r2,r3,r4,r5,r6 and the route of v2 exactly the opposite, one of these
vehicles will have to wait until the other one has completed its route. With REVISING-PRIORITIES
one of them can take a small detour instead, resulting in a more efficient global plan.

If v1 is given priority at only one of these resources, there is no need for v1 to wait at
later resources anymore, while it will cost another vehicle only one more time step.

4.2 Revising routes

Besides reconsidering the priorities of vehicles when making reservations, the
REVISING-ROUTES method also allows vehicles to reserve a completely new route.
In principle, this method is very similar to REVISING-PRIORITIES: first a selection
of vehicles dispose of their reservations, and then each vehicle in turn requests new
reservations for a part of their route. The difference is that in REVISING-ROUTES,
a vehicle now also disposes of its route, and plans a new route when it is its turn.
When planning a new route, vehicles do not consider a re-ordering of the visiting
sequence, because finding an optimal visiting sequence is a very hard problem in
itself, and takes too much time to compute.4 However, reconsidering the routes be-
tween each pair of locations in a visiting sequence of a group of vehicles still gives
much more flexibility than only reconsidering the reservations.

For example, when two vehicles plan to use the same sequence of resources, but
in the opposite direction, a context-aware routing method lets one of the vehicles
wait before entering this sequence (see Figure 6). REVISING-PRIORITIES can im-
prove the average efficiency by a heuristic that determines which vehicle should
wait. The REVISING-ROUTES method can further improve the resulting plans by
allowing vehicles to take a detour. Especially when a certain resource is blocked
for some time due to an incident, being able to compute a new route is a great ad-
vantage. We therefore expect this approach to result in better plans than REVISING-
PRIORITIES, but the computation costs (in CPU time) are also higher, since the
context-aware routing algorithm is now called as a subroutine for each pair of loca-
tions of each of the agents’ vehicle sequences. In the next section an experimental
evaluation is presented to indicate under which conditions which method is the best
alternative.

4 This problem is similar to the traveling salesman problem, which is NP-complete.

Dealing with Uncertainty in Operational Transport Planning 17

5 Experimental Evaluation

To evaluate the proposed context-aware routing algorithms, we perform simula-
tions in two settings. First, we compare the context-aware routing (INFORMED)
and its two improvements (REVISING-PRIORITIES and REVISING-ROUTES) to the
baseline approach in which no intelligent infrastructure with reservations is used
(UNINFORMED). This evaluation is done in a synthetic grid infrastructure. In this
setting we also evaluate the effect of incidents on the context-aware methods that we
propose. Second, we study the effect of using our improved context-aware routing
method in a realistic situation, i.e., taxiing at Amsterdam airport. Here we approx-
imate current practice with the reservation-based planning method of Hatzack and
Nebel [8] and compare the resulting plans to the ones produced by our proposed
approach.

5.1 Comparing context-aware methods on a grid network

For these experiments an 8× 8-grid network is used with 32 vehicles and 192 re-
quests. The problem instances are randomly generated in such a way that we know
that an optimal solution exists, i.e., a solution for which all requests are served
within the given deadlines.

In this section we consider the effect of the planning method and several in-
cident settings (these are the independent variables). The dependent variables (or
performance indicators) are the relative system reward and the CPU time required
to finish the particular simulation. The reader is referred to [20] for a study on the
influence of the request load, the size and the topology of the transport network, and
the number of vehicles. The planning methods are divided into four categories: (i)
baseline approach (also called UNINFORMED), (ii) context-ware routing (also called
INFORMED), (iii) revising priorities, and (iv) revising routes.

For each request j, the agents receive a reward defined by the reward function
π j (see Section 2). The relative system reward is the ratio of the realized reward,
divided by the maximum reward for all transportation requests. A relative reward of
1 means that the maximum possible reward is obtained for all of the transportation
requests. This maximum reward cannot always be achieved, especially not if there
are many requests or incidents.

All results presented have been obtained by making use of the transport planning
simulator TRAPLAS, see [20]. The simulations are run on one processor, and a cen-
tral controller was used. However, in this simulator, each vehicle and each resource
has its own separate light-weight thread, which should make it relatively easy to
re-use the source code for a distributed implementation on a real infrastructure. A
free software environment for statistical computing and graphics called R [17] has
been used to combine the output of TRAPLAS, to plot the graphs, and for all further
data analysis. All experiments were done on the Distributed ASCI Supercomputer
(DAS-3 [2]).

18 Jonne Zutt, Arjan van Gemund, Mathijs de Weerdt, and Cees Witteveen

U
ni

nf
or

m
ed

R
ev

is
in

g
pr

io
rit

ie
s

In
fo

rm
ed

R
ev

is
in

g
ro

ut
es

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

R
el

at
iv

e
re

w
ar

d

U
ni

nf
or

m
ed

R
ev

is
in

g
pr

io
rit

ie
s

In
fo

rm
ed

R
ev

is
in

g
ro

ut
es

0
10

20
30

40
50

60
70

C
P

U
 c

os
t [

s]

Fig. 7 The performance of the four methods. With one exception, all methods execute all trans-
portation requests (but not all on time). The UNINFORMED method, however, executes only 48.5%
on average. The ‘+’ symbol indicates the mean (often coinciding with the median in the figure) and
the ‘◦’ symbol is used for outliers.

5.1.1 Comparing the planning methods

Figure 7 shows a box-and-whisker plot [19] for the four different planning-method
categories. The UNINFORMED and INFORMED plots are based on 100 samples (10
simulations and 10 different sets of 192 transportation requests); the REVISING-
PRIORITIES and REVISING-ROUTES categories consist of 7 times more samples to
test each of the 7 different heuristics listed in Table 1.

An analysis-of-variance study shows that the differences in the mean values be-
tween the methods are statistically significant. The first thing to note is that the
UNINFORMED method has a much lower relative reward. This can be explained by
the fact that this is the only method that was not able to execute all transportation
requests. This is due to deadlocks that occur without any coordination between the
agents. On average, the UNINFORMED method executed 48.5% of the transportation
requests.

The INFORMED context-aware planning method makes use of an intelligent in-
frastructure that manages reservations. This method produces much better results.
All transportation requests are executed successfully. The plot on the right-hand side
in Figure 7 shows the sole strength of the UNINFORMED method; it is the cheapest
in terms of CPU cost. In general, it can be seen that the CPU cost required by the
planning methods increases if more information is considered. Although this might
be an advantage for very large transportation instances, the INFORMED method is
usually fast enough for practical instances.

A further observation is that the performance of the INFORMED method is in be-
tween the REVISING-PRIORITIES and REVISING-ROUTES methods. This is a bit sur-

Dealing with Uncertainty in Operational Transport Planning 19

prising, as we introduced REVISING-PRIORITIES as an improvement over the stan-
dard INFORMED context-aware planning method. However, this can be explained
by the results for the seven heuristics (see Figure 8).

Most of the heuristics that we study perform no better than the random heuristic.
The results for these heuristics significantly influence the average relative reward for
REVISING-PRIORITIES in Figure 7. In addition, we can see that both the REVISING-
PRIORITIES and the REVISING-ROUTES method have the best performance when
using the wait heuristic (in this grid network with a relatively small number of re-
quests and no incidents).

The good performance of the wait heuristic can be understood by appreciating the
intuitive resemblance with the first-come-first-served heuristic [11], which works so
well in scheduling. The wait heuristic aims to minimize the waiting time of transport
resources, by giving priority to the longest waiting vehicle. Hence, the wait heuristic
attempts to increase the throughput of transportation requests, which increases the
performance of the agents.

5.1.2 Studying the influence of incidents

As discussed in Section 4, there are many types of uncertainty in operational trans-
port planning. The focus regarding uncertainty in this chapter is on uncertainty
caused by incidents. We model such incidents by a time period (the repair time)
during which a certain resource or vehicle endures a slow-down between 0 (no
slow-down) and 1 (full stop). This model can capture all kinds of real-life situa-
tions ranging from regular traffic jams (delays of infrastructural resources for cer-
tain periods of the day) to unexpected vehicle break-downs (full stop for some time
until repaired). To evaluate the effect of incidents on the proposed context-aware
methods, we generate situations ranging from a few incidents with a low impact to
many incidents with long repair times and a high impact. An incident is generated in
analogy to the concept of mean-time-between-failure, which is in our case based on
an exponential distribution with a failure probability between 0 and 0.2, and the re-
pair time is drawn from a normal distribution with mean 400 and standard deviation
50. We have chosen to create a relatively small number of incidents, but with quite
a significant repair time, because this brings out the differences between planning
methods more explicitly [14].

The impact of all incidents in a generated problem instance is expressed by the
incident level. This incident level is the sum over all incidents of the impact of
that incident times the duration of the incident, and varies in our case between 0 and
323981 seconds (about half a week). For six scenarios within this range we compute
the relative reward of the INFORMED context-aware routing method, REVISING-
PRIORITIES, and REVISING-ROUTES. For the latter two we use the wait heuristic,
since this heuristic performs best according to our earlier experiments.

Figure 10 shows that the two methods that have been superior so far, i.e.,
REVISING-PRIORITIES and REVISING-ROUTES, now clearly outperform the stan-
dard context-aware method when the incident level is high, with a relative reward

20 Jonne Zutt, Arjan van Gemund, Mathijs de Weerdt, and Cees Witteveen

R
P

 d
el

ay
s

R
P

 p
ro

fit
s

R
P

 d
ea

dl
in

es

R
P

 in
v

ta
sk

R
P

 r
an

do
m

R
P

 ta
sk

R
P

 w
ai

t

0.
45

0.
50

0.
55

0.
60

R
el

at
iv

e
re

w
ar

d

R
P

 d
el

ay
s

R
P

 p
ro

fit
s

R
P

 d
ea

dl
in

es

R
P

 in
v

ta
sk

R
P

 r
an

do
m

R
P

 ta
sk

R
P

 w
ai

t

15
20

25
30

35
40

C
P

U
 c

os
t [

s]

Fig. 8 The performance of each of the heuristics in combination with the REVISING-PRIORITIES
method. The ’+’ symbol indicates the mean and the ’◦’ symbol is used for outliers.

R
R

 in
v

ta
sk

R
R

 p
ro

fit
s

R
R

 d
el

ay
s

R
R

 r
an

do
m

R
R

 d
ea

dl
in

es

R
R

 ta
sk

R
R

 w
ai

t

0.
52

0.
54

0.
56

0.
58

0.
60

0.
62

R
el

at
iv

e
re

w
ar

d

R
R

 in
v

ta
sk

R
R

 p
ro

fit
s

R
R

 d
el

ay
s

R
R

 r
an

do
m

R
R

 d
ea

dl
in

es

R
R

 ta
sk

R
R

 w
ai

t

20
30

40
50

60
70

C
P

U
 c

os
t [

s]

Fig. 9 The performance of each of the heuristics in combination with the REVISING-ROUTES
methods. The ’+’ symbol indicates the mean and the ’◦’ symbol is used for outliers.

Dealing with Uncertainty in Operational Transport Planning 21

0 50000 150000 250000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Topology: grid

Incident level

R
e

la
ti
v
e

 r
e

w
a

rd

Informed
RP wait
RR wait

0 123407 217646 323981

S
td

e
v

0
.0

0
0

.0
6

0 150000

0
2

0
6

0
1

0
0

Incident level

0 150000

0
.0

0
.4

0
.8

Incident level

A
v
e

ra
g

e
 n

e
tw

o
rk

 u
ti
liz

a
ti
o

n

Fig. 10 The relative reward for three planning methods on a 8× 8 grid network decreases when
the incident level increases (with a fixed number of 192 requests).

0 50000 150000 250000

0
2

0
4

0
6

0

Topology: grid

Incident level

C
P

U
 t

im
e

 [
s
]

Informed
RP wait
RR wait

0 123407 217646 323981

S
td

e
v

0
1

0

0 150000

1
0

0
0

3
0

0
0

5
0

0
0

Incident level

S
im

u
la

ti
o

n
 t

im
e

 [
s
]

Fig. 11 The CPU costs (in time) required by the selection of planning methods on grid networks;
the incident level is increasing and the request load is fixed to 192 requests.

22 Jonne Zutt, Arjan van Gemund, Mathijs de Weerdt, and Cees Witteveen

that is almost twice as high. The performance of all methods degrades when the
incident level is increased. The differences of the means of the performance of the
INFORMED and the other two methods are statistically significant for all six scenar-
ios.

Next, let us consider the CPU time and the simulation time of these runs (see
Figure 11). As expected, we can again clearly observe that REVISING-ROUTES re-
quires significantly more computation time than REVISING-PRIORITIES, and both
are significantly outperformed in this respect by INFORMED. However, the execu-
tion of the plans takes much longer for INFORMED in cases with a high incident
level, since some vehicles may encounter multiple incidents on their planned route,
without being able to plan around them (either in time or in space).

5.2 Taxiing at Amsterdam airport

Besides these experiments based on a synthetically generated test set, we evaluate
our methods also on a real-life transport network. For this, we conduct experiments
on the Amsterdam airport network (Schiphol) in the Netherlands consisting of 1016
infrastructure resources (see Figure 12 for a map of the center part of this network).5

In this transportation network, the taxiing problem of aircrafts (on the ground) plays
an a crucial role in the performance of the whole airport [15]. The usual sequence
of an airplane after touch-down is to first taxi to a gate, then wait for services,
such as cleaning, boarding, safety checks, and possibly a visit to a de-icing station.
Currently approximately 300 airplanes per day go through this process (a number
that is increasing), and thus efficient and robust routing methods are required.

The goal of the airplane taxiing experiments is to compare the current practice
in a realistic setting to our context-aware routing method. Current practice is com-
parable to the approach of Hatzack and Nebel [8], in which first routes are planned,
and then the use of resources is scheduled in order to prevent conflicts.

To make a fair comparison between these two approaches, the current practice
as well as two of our context-aware routing methods are used to compute a route
for the same start-destination pair, given the same set of prior reservations on the
infrastructure. For each of such a set of reservations, we measure the average time
and the average quality of finding a conflict-free path for 20 randomly chosen start-
destination pairs, one of which is actually reserved for the next round. We repeat
this 3000 times, reserving 3000 routes in the end. First, we study a setting where the
sets of prior reservations are constructed using the algorithm of Hatzack and Nebel
[8]. Then, we do the same measurements for sets of reservations based on the plans
obtained by our context-aware approach.

Running our experiments, we have discovered that the context-aware routing al-
gorithm (Algorithm 1) considered visiting the same part of the infrastructure twice,
for example to step aside to let another airplane pass. This is illustrated in Figure 12.

5 The network model of Amsterdam airport was kindly provided by the National Aerospace Lab-
oratory (NLR).

Dealing with Uncertainty in Operational Transport Planning 23

Buitenveldertbaan

Ka
ag
ba
an A

al
sm

ee
rb
aa
n

Fig. 12 If cycles are allowed and there are many reservations of other agents present in the net-
work, the context-aware algorithm often produces plans with a cycle. An example of a produced
shortest path is highlighted by the thick line, and the side-steps are indicated by the two circles.
Such plans are not considered by the acyclic version of the routing algorithm.

Since this is considered undesirable, we also introduce a simple modification of
the context-aware routing algorithm in which such cycles are not allowed. For this
acyclic variant of the algorithm, in Line 11 of Algorithm 1, the time windows to be
considered do not only need to be possible to go to, but they also may not already
occur in the plan of the agent. This thus requires some additional administration as
well.

In the following experiments, we thus compare not only the context-aware rout-
ing algorithm (INFORMED) to the plans produced by the two-stage method of
Hatzack and Nebel [8], but also the context-aware routing method that excludes
cycles in the plans (“No cycles”).

From Figure 13, it can be concluded that the context-unaware approach of the
algorithm of Hatzack and Nebel is so fast, the context-aware algorithms look slow
by comparison. A closer look reveals that the context-aware algorithms are still
quite fast, as a solution (for one additional request) is found on average within two
tenths of a second. Also, the 95% confidence intervals are reasonably small, so this
performance is reasonably stable. With regard to the different variants of the context-
aware routing methods, it can be seen that the no-cycles variant is significantly faster
than the other, despite the fact that checking for absence of cycles is not a very cheap

24 Jonne Zutt, Arjan van Gemund, Mathijs de Weerdt, and Cees Witteveen

0 10000 30000 50000

0
1

0
0

3
0

0
5

0
0

Number of reservations

A
v
e

ra
g

e
 c

p
u

−
ti
m

e
 [

m
s
]

Context aware routing
No cycles
Hatzack & Nebel

Fig. 13 Planning for one additional request
takes more CPU time when there are more re-
source reservations in case these reservations
have been made using Hatzack and Nebel [8].

0 10000 30000 50000

0
5

0
1

0
0

1
5

0

Number of reservations

A
v
e

ra
g

e
 p

la
n

−
ti
m

e
 [

s
]

Context aware routing
No cycles
Hatzack & Nebel

Fig. 14 The average end-times of plans are
later when there are more resource reserva-
tions, but there is a significant difference be-
tween context-aware routing and Hatzack and
Nebel [8].

0 20000 60000 100000

0
2

0
6

0
1

0
0

Number of reservations

A
v
e

ra
g

e
 c

p
u

−
ti
m

e
 [

m
s
]

Context aware routing
No cycles
Hatzack & Nebel

Fig. 15 Planning for one additional request
takes also more CPU time when there are more
resource reservations in case these reservations
have been made using context-aware routing.

0 20000 60000 100000

2
0

4
0

6
0

8
0

Number of reservations

A
v
e

ra
g

e
 p

la
n

−
ti
m

e
 [

s
]

Context aware routing
No cycles
Hatzack & Nebel

Fig. 16 The average end-times of plans are
later when there are more resource reservations
(confidence intervals too small to display).

operation. This is due to the fact that the no-cycles variant can ignore all routes
where a resource is visited twice.

In Figure 15, a clear notch is visible, just before 80,000 reservations, which shows
the CPU cost (in time) is not growing monotonically for an increasing number of
reservations in the transport network. Intuitively, the more reservations there are,
the more difficult it is to search a path through the transport network. However, after
adding certain reservations, the search might become easier all of a sudden, because
a “difficult” part of the network does not have to be searched through anymore (due
to a reservation now prohibiting this). The exact position of such a notch depends
on the transport network and the order in which agents create the reservations for
traveling to their desired target locations.

Looking at the end-times of the generated plans, the plans generated by the no-
cycles variant are of equal quality as those generated by Algorithm 1. When the set
of reservations is produced by Hatzack and Nebel [8], the context-aware methods
both succeed in finding a much more efficient plan by routing around bottlenecks

Dealing with Uncertainty in Operational Transport Planning 25

(Figure 14). When the set of reservations of all other agents is produced by the
context-aware routing method, however, the plan made by the algorithm of Hatzack
and Nebel [8] for one additional agent is only slightly longer (in time), i.e., about 3
to 4% (Figure 16). In this case, there are apparently much shorter queues for bottle-
necks than in the case when the route for all agents is fixed on forehand (as done by
Hatzack and Nebel).

6 Conclusions and future research

In this chapter we have presented an alternative to the traditional approach to op-
erational transport planning where conflicts are prevented during execution. The
proposed method relies on an infrastructure that maintains reservations of its use at
specific times, and can thereby resolve conflicts during planning. This ensures pre-
dictable travel times and thereby significantly reduces the uncertainty in transporta-
tion. Based on this intelligent infrastructure, we proposed three new context-aware
route planning algorithms that either have a better run-time complexity than earlier
work, or are much more sophisticated in finding alternatives in case of incidents or
bottlenecks. These algorithms have been evaluated in a synthetic grid network (with
and without incidents), and in an airplane taxiing simulation of Amsterdam airport.
We have shown that methods using the reservation information of infrastructure re-
sources outperform local (traffic) coordination rules, and that performance increases
even more when vehicles’ reservations or even parts of their routes are resched-
uled in case of incidents. This latter method can deal with incidents and is still fast
enough (in the airport-taxiing experiments finding an additional route can be done
with less than a second), and gives the best results in terms of plan quality.

Apart from studying the behavior of this method experimentally in other realis-
tic infrastructures and under other incident conditions, there are quite a number of
other interesting directions for future work. For example, in the context of multiple
requests and the possibility of incidents, a method in which all agents optimize the
length of their own plan (by reserving required resources as early as possible) may
not always lead to the best result. Possibly introducing some slack in the plan may
lead to better overall results. This idea can definitely be exploited when agents plan
to arrive too early at their destination. The proposed method does not take this into
account and just lets the agent wait at the last resource until it is the right time to
deliver. Secondly, the context-aware method introduced in this chapter allows for a
distributed implementation to potentially allow for better scalability and reliability.
It would be interesting to evaluate whether these promises can be fulfilled by per-
forming some additional experiments. Another direction is to optimize not just the
length of an agent’s plan, but to allow for multiple objectives. For this, the work
presented could be integrated with a multi-objective routing package called Sam-
cra [12, 16]. Finally, we believe there is still some room for improving the solution
quality of the resulting operational transport plans, since this is an NP-hard prob-
lem and our algorithms are polynomial. Repeatedly (re)running the context-aware

26 Jonne Zutt, Arjan van Gemund, Mathijs de Weerdt, and Cees Witteveen

routing algorithm for a set of agents can thus not always give optimal results, even
though our context-aware routing algorithm for a single agent is both optimal and
very efficient.

References

[1] Allen, J.F.: Maintaining knowledge about temporal intervals. Communications
of the ACM 26(11), 832–843 (1983)

[2] Bal, H., Bhoedjang, R., Hofman, R., Jacobs, C., Kielmann, T., Maassen, J.,
van Nieuwpoort, R., Romein, J., Renambot, L., Rühl, T., et al.: The dis-
tributed ASCI supercomputer project. ACM SIGOPS Operating Systems Re-
view 34(4), 76–96 (2000)

[3] Broadbent, A.J., Besant, C.B., Premi, S.K., Walker, S.P.: Free ranging AGV
systems: Promises, problems and pathways. In: Hollie, R.H. (ed.) Proceedings
of the 2nd International Conference on Automated Guided Vehicle System,
pp. 221–237 (1985)

[4] Davenport, A.J., Beck, J.C.: A survey of techniques for scheduling with uncer-
tainty (2000). Unpublished manuscript

[5] Davenport, A.J., Gefflot, C., Beck, J.C.: Slack-based techniques for robust
schedules. In: Proceedings of the Sixth European Conference on Planning
(ECP-2001), pp. 7–18 (2001)

[6] Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271 (1959)

[7] Fujii, S., Sandoh, H., Hozaki, R.: A routing control method of automated
guided vehicles by the shortest path with time-windows. In: Production Re-
search: Approaching the 21st Century, pp. 489–495 (1989)

[8] Hatzack, W., Nebel, B.: Solving the operational traffic control problem. In:
Cesta, A. (ed.) Proceedings of the 6th European Conference on Planning
(ECP’01) (2001)

[9] Huang, J., Palekar, U., Kapoor, S.: A labelling algorithm for the navigation of
automated guides vehicles. Journal of Engineering for Industry 115(3), 315–
321 (1993)

[10] Kim, C.W., Tanchoco, J.M.A.: Conflict-free shortest-time bidirectional AGV
routeing. International Journal on Production Research 29(12), 2377–2391
(1991)

[11] Kruse, R.L.: Data Structures & Program Design. Prentice-Hall, Inc., Upper
Saddle River, New Jersey (1984)

[12] Kuipers, F., Mieghem, P.V.: Conditions that impact the complexity of qos rout-
ing. IEEE/ACM Transaction on Networking 13(4), 717–730 (2005)

[13] Lenstra, J., Kan, A.: Complexity of vehicle routing and scheduling problems.
Networks 11(2), 221–227 (1981)

Dealing with Uncertainty in Operational Transport Planning 27

[14] Maza, S., Castagna, P.: A performance-based structural policy for conflict-free
routing of bi-directional automated guided vehicles. Computers in Industry
56, 719–733 (2005)

[15] Mors, A.W.T., Zutt, J., Witteveen, C.: Context-aware logistic routing and
scheduling. In: Boddy, M., Fox, M., Thiebaux, S. (eds.) Proceedings of the
17th International Conference on Automated Planning and Scheduling, pp.
328–335. AAAI Press (2007)

[16] P. Van Mieghem, H.D.N., Kuipers, F.: Hop-by-hop quality of service routing.
Computer Networks 37(3-4), 407–423 (2001)

[17] R Development Core Team: R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria (2007).
URL http://www.R-project.org. ISBN 3-900051-07-0

[18] Taghaboni-Dutta, F., Tanchoco, J.: Comparison of dynamic routing techniques
for automated guided vehicle system. International Journal of Production Re-
search 33(10), 2653–2669 (1995)

[19] Tukey, J.W.: Exploratory Data Analysis. Addison Wesley (1977)
[20] Zutt, J.: Operational transport planning in a multi-agent setting. Ph.D. thesis,

Delft University of Technology (2009, forthcoming)

