

Delft University of Technology

Constructing a Consensus Phylogeny from a Leaf-Removal Distance
(Extended Abstract)
Chauve, Cedric; Jones, Mark; Lafond, Manuel; Scornavacca, Celine; Weller, Mathias

Publication date
2017
Document Version
Accepted author manuscript
Citation (APA)
Chauve, C., Jones, M., Lafond, M., Scornavacca, C., & Weller, M. (2017). Constructing a Consensus
Phylogeny from a Leaf-Removal Distance: (Extended Abstract). Abstract from 24th International
Symposium on String Processing and Information Retrieval, Palermo, Italy.

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

Constructing a Consensus Phylogeny from a
Leaf-Removal Distance (Extended Abstract)?

Cedric Chauve1, Mark Jones2, Manuel Lafond3, Céline Scornavacca4, and
Mathias Weller5

1 Department of Mathematics
Simon Fraser University

Burnaby, Canada
cedric.chauve@sfu.ca

2 Delft Institute of Applied Mathematics
Delft University of Technology

P.O. Box 5, 2600 AA, Delft, the Netherlands
M.E.L.Jones@tudelft.nl

3 Department of Mathematics and Statistics
University of Ottawa

Ottawa, Canada
mlafond2@uOttawa.ca

4 Institut des Sciences de l’Evolution
Université de Montpellier, CNRS, IRD, EPHE

Montpellier - France
Celine.Scornavacca@umontpellier.fr

5 Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Université de Montpellier, IBC

Montpellier - France
mathias.weller@lirmm.fr

Abstract. Understanding the evolution of a set of genes or species is
a fundamental problem in evolutionary biology. The problem we study
here takes as input a set of trees describing possibly discordant evolu-
tionary scenarios for a given set of genes or species, and aims at finding
a single tree that minimizes the leaf-removal distance to the input trees.
This problem is a specific instance of the general consensus/supertree
problem, widely used to combine or summarize discordant evolutionary
trees. The problem we introduce is specifically tailored to address the
case of discrepancies between the input trees due to the misplacement of
individual taxa. Most supertree or consensus tree problems are compu-
tationally intractable, and we show that the problem we introduce is also
NP-hard. We provide tractability results in form of a 2-approximation
algorithm and a parameterized algorithm with respect to the number of
removed leaves. We also introduce a variant that minimizes the max-
imum number d of leaves that are removed from any input tree, and
provide a parameterized algorithm for this problem with parameter d.

? All missing proofs are provided in [6].

2 C. Chauve, M. Jones, M. Lafond, C. Scornavacca, and M. Weller

Keywords: Computational biology · Phylogenetics · Parameterized al-
gorithms · Approximation · Consensus trees · Leaf deletion.

1 Introduction

In the present paper, we consider a very generic computational biology prob-
lem: given a collection of trees representing, possibly discordant, evolutionary
scenarios for a set of biological entities (genes or species – also called taxa in
the following), we want to compute a single tree that agrees as much as possible
with the input trees. Several questions in computational biology can be phrased
in this generic framework. For example, for a given set of homologous gene se-
quences that have been aligned, one can sample evolutionary trees for this gene
family according to a well defined posterior distribution and then ask how this
collection of trees can be combined into a single gene tree, a problem known
as tree amalgamation [16]. In phylogenomics, one aims at inferring a species
tree from a collection of input trees obtained from whole-genome sequence data.
A first approach considers gene families and proceeds by computing individual
gene trees from a large set of gene families, and then combining this collection
of gene trees into a unique species tree for the given set of taxa; this requires
handling the discordant signal observed in the gene trees due to evolutionary
processes such as gene duplication and loss [13], lateral gene transfer [17], or in-
complete lineage sorting [15]. Another approach concatenates the sequence data
into a single large multiple sequence alignment, that is then partitioned into
overlapping subsets of taxa for which partial evolutionary trees are computed,
and a unique species tree is then inferred by combining the resulting collection
of partial trees [14].

For example, the Maximum Agreement Subtree (MAST) problem considers
a collection of input trees1, all having the same leaf labels and looks for a tree
of maximum size (number of leaves), which agrees with each of the input trees.
This problem is tractable for trees with bounded degree but NP-hard gener-
ally [2]. The MAST problem is a consensus problem, because the input trees
share the same leaf labels set, and the output tree is called a consensus tree.
In the supertree framework, the input trees might not all have identical label
sets, but the output is a tree on the whole label set, called a supertree. For
example, in the Robinson-Foulds (RF) supertree problem, the goal is to find a
supertree that minimizes the sum of the RF-distances to the individual input
trees [18]. One way to compute consensus trees and supertrees that is closely
related to our work is to modify the collection of input trees minimally in such
a way that the resulting modified trees all agree. For example, in the MAST
problem, modifications of the input trees consist in removing a minimum num-
ber of taxa from the whole label set, while in the Agreement Supertree by Edge
Contraction (AST-EC) problem, one is asked to contract a minimum number
of edges of the input trees such that the resulting (possibly non-binary) trees

1 All trees we consider here are uniquely leaf-labeled, rooted (i.e. are out-trees) and
binary; see next section for formal definitions.

Constructing a Consensus Phylogeny from a Leaf-Removal Distance 3

all agree with at least one supertree [10]; in the case where the input trees are
all triplets (rooted trees on three leaves), this supertree problem is known as
the Minimum Rooted Triplets Inconsistency problem [5]. The SPR Supertree
problem considers a similar problem where the input trees can be modified with
the Subtree-Prune-and-Regraft (SPR) operator [19].

In the present work, we introduce a new consensus problem, called LR-Consensus.
Given a collection of input trees having the same leaf labels set, we want to re-
move a minimum number of leaves – an operation called a Leaf-Removal (LR) –
from the input trees such that the resulting pruned trees all agree. Alternatively,
this can be stated as finding a consensus tree that minimizes the cumulated leaf-
removal distance to the collection of input trees. This problem also applies to
tree amalgamation and to species tree inference from one-to-one orthologous
gene families, where the LR operation aims at correcting the misplacement of a
single taxon in an input tree. This may occur particularly in the case of ‘rogue
taxa’ [1], for example when a sequence from a taxon has mistakenly been put in
a gene family where it does not belong.

In the next section, we formally define the problems we consider, and how
they relate to other supertree problems. Next we show that the LR-Consensus

problem is NP-hard and that in some instances, a large number of leaves need
to be removed to lead to a consensus tree. We then provide a 2-approximation
algorithm, and show that the problem is fixed-parameter tractable (FPT) when
parameterized by the total number of LR. However, these FPT algorithms have
impractical time complexity, and thus, to answer the need for practical algo-
rithms, we introduce a variant of the LR-Consensus problem, where we ask if a
consensus tree can be obtained by removing at most d leaves from each input
tree, and describe an FPT algorithm with parameter d.

2 Preliminary Notions and Problem Statements

Trees. All trees in the rest of the document are assumed to be rooted and binary.
If T is a tree, we denote its root by r(T) and its leaf set by L(T). Each leaf is
labeled by a distinct element from a label set X , and we denote by X (T) the set of
labels of the leaves of T . We may sometimes use L(T) and X (T) interchangeably.
For some X ⊆ X , we denote by lcaT (X) the least common ancestor of X in T .
The subtree rooted at a node u ∈ V (T) is denoted Tu and we may write LT (u)
for L(Tu). If T1 and T2 are two trees and e is an edge of T1, grafting T2 on
e consists of subdividing e and letting the resulting degree 2 node become the
parent of r(T2). Grafting T2 above T1 consists of creating a new node r, then
letting r become the parent of r(T1) and r(T2) (note that grafting T2 above T1 is
equivalent to grafting T1 above T2). Grafting T2 on T1 means grafting T2 either
on an edge of T1 or above T1.

The Leaf Removal Operation. For a subset L ⊆ X , we denote by T −L the tree
obtained from T by removing every leaf labeled by L, contracting the resulting
non-root vertices of degree two, and repeatedly deleting the resulting root vertex

4 C. Chauve, M. Jones, M. Lafond, C. Scornavacca, and M. Weller

while it has degree one. The restriction T |L of T to L is the tree T − (X \L), i.e.
the tree obtained by removing every leaf not in L. A triplet is a rooted tree on
3 leaves. We denote a triplet R with leaf set {a, b, c} by ab|c if c is the leaf that
is a direct child of the root (the parent of a and b being its other child). We say
R = ab|c is a triplet of a tree T if T |{a,b,c} = R. We denote tr(T) = {ab|c : ab|c
is a triplet of T}.

We define a distance function dLR between two trees T1 and T2 on the same
label set X consisting in the minimum number of labels to remove from X so
that the two trees are equal. That is,

dLR(T1, T2) = min{|X| : X ⊆ X and T1 −X = T2 −X}

Note that dLR is closely related to the Maximum Agreement Subtree (MAST)
between two trees on the same label set X , which consists in a subset X ′ ⊆ X
of maximum size such that T1|X′ = T2|X′ : dLR(T1, T2) = |X |− |X ′|. The MAST
of two binary trees on the same label set can be computed in time O(n log n),
where n = |X | [8], and so dLR can be found within the same time complexity.

Problem Statements. In this paper, we are interested in finding a tree T on X
minimizing the sum of dLR distances to a given set of input trees.

LR-Consensus

Given: a set of trees T = {T1, . . . , Tt} with X (T1) = . . . = X (Tt) = X .
Find: a tree T on label set X that minimizes

∑
Ti∈T dLR(T, Ti).

We can reformulate the LR-Consensus problem as the problem of removing
a minimum number of leaves from the input trees so that they are compatible.
Although the equivalence between both formulations is obvious, the later for-
mulation will often be more convenient. We need to introduce more definitions
in order to establish this equivalence.

A set of trees T = {T1, . . . , Tt} is called compatible if there is a tree T such
that X (T) =

⋃
Ti∈T X (Ti) and T |X (Ti) = Ti for every i ∈ [t]. In this case, we say

that T displays T . A list C = (X1, . . . ,Xt) of subsets of X is a leaf-disagreement
for T if {T1 − X1, . . . , Tt − Xt} is compatible. The size of C is

∑
i∈[t] |Xi|. We

denote by ASTLR(T) the minimum size of a leaf-disagreement for T , and may
sometimes write ASTLR(T1, . . . , Tt) instead of ASTLR(T). A subset X ′ ⊆ X
of labels is a label-disagreement for T if {T1 − X ′, . . . , Tt − X ′} is compatible.
Note that if T = {T1, T2}, then the minimum size of a leaf-disagreement and
label-disagreement for T are the same, namely dLR(T1, T2). Note however that
this does not hold in general (see Figure 1 for an example). We may now define
the AST-LR problem.

Agreement Subtrees by Leaf-Removals (AST-LR)
Given: a set of trees T = {T1, . . . , Tt} with X (T1) = . . . = X (Tt) = X .
Find: a leaf-disagreement C for T of minimum size.

Constructing a Consensus Phylogeny from a Leaf-Removal Distance 5

a b c d

T1

a bc d

T2

a bcd

T3

Fig. 1: Example instance T = {T1, T2, T3} of AST-LR with label set X =
{a, b, c, d}. The list (X1 = {d},X2 = {b},X3 = {a}) is a leaf-disagreement for T
of size 3. The set X ′ = {a, b} is a label-disagreement of size 2. Note that there
is no leaf-disagreement for T of size 2.

Lemma 1. Let T = {T1, . . . , Tt} be a set of trees on the same label set X , with
n = |X |. Given a supertree T such that v :=

∑
Ti∈T dLR(T, Ti), one can compute

in time O(tn log(n)) a leaf-disagreement C of size at most v. Conversely, given
a leaf-disagreement C for T of size v, one can compute in time O(tn log2(tn)) a
supertree T such that

∑
Ti∈T dLR(T, Ti) ≤ v.

Proof. In the first direction, for each Ti ∈ T , there is a set Xi ⊆ X of size
dLR(T, Ti) such that Ti − Xi = T − Xi. Moreover, Xi can be found in time
O(n log n). Thus (X1, . . . , Xt) is a leaf-disagreement of the desired size and
can be found in time O(tn log n). Conversely, let C = (X1, . . . , Xt) be a leaf-
disagreement of size v. As T ′ = {T1 −X1, . . . , Tt −Xt} is compatible, there is a
tree T that displays T ′, and it is easy to see that the sum of distances between
T and T ′ is at most the size of C. As for the complexity, it is shown in [9] how
to compute in time O(tn log2(tn)), given a set of trees T ′, a tree T displaying
T ′ if one exists. ut

From Lemma 1, both problems share the same optimality value, the NP-
hardness of one implies the hardness of the other, and approximating one prob-
lem within a factor c implies that the other problem can be approximated within
a factor c. We conclude this subsection with the introduction of a parameterized
variant of the AST-LR problem.

AST-LR-d

Input: a set of trees T = {T1, . . . , Tt} with X (T1) = . . . = X (Tt) = X , and an
integer d.
Question: Are there X1, . . . ,Xt ⊆ X such that |Xi| ≤ d for each i ∈ [t], and
{T1 −X1, . . . , Tt −Xt} is compatible?

We call a tree T ∗ a solution to the AST-LR-d instance if dLR(Ti, T
∗) ≤ d for

each i ∈ [t].

Relation to Other Supertree/Consensus Tree Problems. The most widely stud-
ied supertree problem based on modifying the input trees is the SPR Supertree
problem, where arbitrarily large subtrees can be moved in the input trees to

6 C. Chauve, M. Jones, M. Lafond, C. Scornavacca, and M. Weller

make them all agree (see [19] and references there). The interest of this prob-
lem is that the SPR operation is very general, modelling lateral gene transfer
and introgression. The LR operation we introduce is a limited SPR, where the
displaced subtree is composed of a single leaf. An alternative to the SPR oper-
ation to move subtrees within a tree is the Edge Contraction (EC) operation,
that contracts an edge of an input tree, thus increasing the degree of the parent
node. This operation allows correcting the local misplacement of a full subtree.
AST-EC is NP-complete but can be solved in O((2t)ptn2) time where p is the
number of required EC operations [10].

Compared to the two problems described above, an LR models a very specific
type of error in evolutionary trees, that is the misplacement of a single taxon (a
single leaf) in one of the input trees. This error occurs frequently in reconstruct-
ing evolutionary trees, and can be caused for example by some evolutionary pro-
cess specific to the corresponding input tree (recent incomplete lineage sorting,
or recent lateral transfer for example). Conversely, it is not well adapted to model
errors, due for example to ancient evolutionary events that impact large subtrees.
However, an attractive feature of the LR operation is that computing the LR dis-
tance is equivalent to computing the MAST cost and is thus tractable, unlike the
SPR distance which is hard to compute. This suggests that the LR-Consensus

problem might be easier to solve than the SPR Supertree problem, and we pro-
vide indeed several tractability results. Compared to the AST-EC problem, the
AST-LR problem is naturally more adapted to correct single taxa misplacements
as the EC operation is very local and the number of EC required to correct a
taxon misplacement is linear in the length of the path to its correct location,
while the LR cost of correcting this is unitary. Last, LR-Consensus is more flex-
ible than the MAST problem as it relies on modifications of the input trees, while
with the way MAST corrects a misplaced leaf requires to remove this leaf from all
input trees. This shows that the problems AST-LR and AST-LR-d complement
well the existing corpus of gene tree correction models.

3 Hardness and Approximability of AST-LR

In this section, we show that the AST-LR problem is NP-hard, from which the
LR-Consensus hardness follows. We then describe a simple factor 2 approxima-
tion algorithm. The algorithm turns out to be useful for analyzing the worst case
scenario for AST-LR in terms of the required number of leaves to remove, as we
show that there are AST-LR instances that require removing about n−

√
n leaves

in each input tree.

NP-Hardness of AST-LR

We assume here that we are considering the decision version of AST-LR, i.e. de-
ciding whether there is a leaf-disagreement of size at most ` for a given `. We use
a reduction from the MinRTI problem: given a set R of rooted triplets, find a sub-
set R′ ⊂ R of minimum cardinality such that R\R′ is compatible. The MinRTI

Constructing a Consensus Phylogeny from a Leaf-Removal Distance 7

a b c

X1 X2 X3

TL′

Fig. 2: Construction of the tree T1 for an instance R = {R1, R2, R3} of MinRTI
in which R1 = ab|c.

problem is NP-Hard (and furthermore W [2]-hard) [5], and hard to approximate

within a O(2log
1−ε n) factor [7]. Denote by MINRTI(R) the minimum number

of triplets to remove from R to attain compatibility. We describe the reduction
here.

Let R = {R1, . . . , Rt} be an instance of MinRTI, with the label set L :=⋃t
i=1 X (Ri). For a given integer m, we construct an AST-LR instance T =
{T1, . . . , Tt} such that MINRTI(R) ≤ m if and only if ASTLR(T) ≤ t(|L| −
3) +m.

We first construct a tree Z with additional labels which will serve as our main
gadget. Let {Li}1≤i≤t be a collection of t new label sets, each of size (|L|t)10,
all disjoint from each other and all disjoint from L. Each tree in our AST-LR

instance will be on label set X = L ∪ L1 ∪ . . . ∪ Lt. For each i ∈ [t], let Xi be
any tree with label set Li. Obtain Z by taking any tree on t leaves l1, . . . , lt,
then replacing each leaf li by the Xi tree (i.e. li is replaced by r(Xi)). Denote
by rZ(Xi) the root of the Xi subtree in Z.

Then for each i ∈ [t], we construct Ti from Ri as follows. Let L′ = L \X (Ri)
be the set of labels not appearing in Ri, noting that |L′| = |L| − 3. Let TL′ be
any tree with label set L′, and obtain the tree Zi by grafting TL′ on the edge
between rZ(Xi) and its parent. Finally, Ti is obtained by grafting Ri above Zi.
See Figure 2 for an example. Note that each tree Ti has label set X as desired.
Also, it is not difficult to see that this reduction can be carried out in polynomial
time. This construction can now be used to show the following.

Theorem 2. The AST-LR and LR-Consensus problems are NP-hard.

The idea of the proof is to show that in the constructed AST-LR instance,
we are ”forced” to solve the corresponding MinRTI instance. In more detail, we
show that MINRTI(R) ≤ m if and only if ASTLR(T) ≤ t(|L| − 3) +m. In one
direction, given a set R′ of size m such that R\R′ is compatible, one can show
that the following leaf removals from T make it compatible: remove, from each
Ti, the leaves L′ = L\X (Ri) that were inserted into the Z subtree, then for each
Ri ∈ R′, remove a single leaf in X (Ri) from Ti. This sums up to t(|L| − 3) +m
leaf removals. Conversely, it can be shown that there always exists an optimal
solution for T that removes, for each Ti, all the leaves L′ = L \ X (Ri) inserted

8 C. Chauve, M. Jones, M. Lafond, C. Scornavacca, and M. Weller

in the Z subtree, plus an additional single leaf l from m trees Ti1 , . . . , Tim such
that l ∈ L. The corresponding triplets Ri1 , . . . , Rim can be removed from R so
that it becomes compatible.

Approximating AST-LR and Bounding Worst-Case Scenarios

Given the above result, it is natural to turn to approximation algorithms in order
to solve AST-LR or LR-Consensus instances. It turns out that there is a simple
factor 2 approximation for LR-Consensus which is achieved by interpreting the
problem as finding a median in a metric space. Indeed, it is not hard to see
that dLR is a metric (over the space of trees on the same label set X). A direct
consequence, using an argument akin to the one in [12, p.351], is the following.

Theorem 3. The following is a factor 2 approximation algorithm for LR-Consensus:
return the tree T ∈ T that minimizes

∑
Ti∈T dLR(T, Ti).

Proof. Let T ∗ be an optimal solution for LR-Consensus, i.e. T ∗ is a tree min-
imizing

∑
Ti∈T dLR(Ti, T

∗), and let T be chosen as described in the theorem
statement. Moreover let T ′ be the tree of T minimizing dLR(T ′, T ∗). By the
triangle inequality,∑

Ti∈T
dLR(T ′, Ti) ≤

∑
Ti∈T

(dLR(T ′, T ∗) + dLR(T ∗, Ti)) ≤ 2
∑
Ti∈T

dLR(T ∗, Ti)

where the last inequality is due to the fact that dLR(T ′, T ∗) ≤ dLR(T ∗, Ti)
for all i, by our choice of T ′. Our choice of T implies

∑
Ti∈T dLR(T, Ti) ≤∑

Ti∈T dLR(T ′, Ti) ≤ 2
∑

Ti∈T dLR(Ti, T
∗). ut

Theorem 3 can be used to lower-bound the ‘worst’ possible instance of AST-LR.
We show that in some cases, we can only keep about

√
|X | leaves per tree. That

is, there are instances for which ASTLR(T) = Ω(t(n−
√
n)), where t is the num-

ber of trees and n = |X |. The argument is based on a probabilistic argument,
for which we will make use of the following result [4, Theorem 4.3.iv].

Theorem 4 ([4]). For any constant c > e/
√

2, there is some n0 such that for
all n ≥ n0, the following holds: if T1 and T2 are two binary trees on n leaves
chosen randomly, uniformly and independently, then E[dLR(T1, T2)] ≥ n− c

√
n.

Corollary 5. There are instances of AST-LR in which Ω(t(n−
√
n)) leaves need

to be deleted.

The above is shown by demonstrating that, by picking a set T of t random
trees, the expected optimal sum of distances minT

∑
Ti∈T dLR(T, Ti) is Ω(t(n−√

n). This is not direct though, since the tree T ∗ that minimizes this sum is
not itself random, and so we cannot apply Theorem 4 directly on T ∗. We can
however, show that the tree T ′ ∈ T obtained using the 2-approximation, which is
random, has expected sum of distances Ω(t(n−

√
n)). Since T ∗ requires, at best,

half the leaf deletions of T ′, the result follows. Note that finding a non-trivial
upper bound on ASTLR(T) is open.

Constructing a Consensus Phylogeny from a Leaf-Removal Distance 9

4 Fixed-Parameter Tractability of AST-LR and AST-LR-d.

An alternative way to deal with computational hardness is parameterized com-
plexity. In this section, we first show that AST-LR is fixed-parameter-tractable
with respect to q := ASTLR(T). More precisely, we show that AST-LR can be
solved in O(12qtn3) time, where n := |X |. We then consider an alternative pa-
rameter d, and show that finding a tree T ∗, if it exists, such that dLR(Ti, T

∗) ≤ d
for every input tree Ti, can be done in O(cdd3d(n3 +tn log n)) time for some con-
stant c.

4.1 Parameterization by q

The principle of the algorithm is the following. It is known that a set of trees T =
{T1, . . . , Tt} is compatible if and only if the union of their triplet decomposition
tr(T) =

⋃
Ti∈T tr(Ti) is compatible [3]. In a step-by-step fashion, we identify

a conflicting set of triplets in tr(T), each time branching into the (bounded)
possible leaf-removals that can resolve the conflict. We stop when either tr(T) is
compatible after the performed leaf-removals, or when more than q leaves were
deleted.

We employ a two phase strategy. In the first phase, we eliminate direct con-
flicts in tr(T), i.e. if at least two of ab|c, ac|b and bc|a appear in tr(T), then
we recursively branch into the three ways of choosing one of the 3 triplets, and
remove one leaf in each Ti disagreeing with the chosen triplet (we branch into
the three possible choices, either removing a, b or c). The chosen triplet is locked
in tr(T) and cannot be changed later.

When the first phase is completed, there are no direct conflicts and tr(T)
consists of a full set of triplets on X . That is, for each distinct a, b, c ∈ X , tr(T)
contains exactly one triplet on label set {a, b, c}. Now, a full set of triplets is
not necessarily compatible, and so in the second phase we modify tr(T), again
deleting leaves, in order to make it compatible. Only the triplets that have not
been locked previously can be modified. This second phase is analogous to the
FPT algorithm for dense MinRTI presented in [11]. The dense MinRTI is a variant
of the MinRTI problem, introduced in Section 3, in which the input is a full set
of triplets and one has to decide whether p triplets can be deleted to attain
compatibility.

Theorem 6 ([11]). A full set of triplets R is compatible if and only if for any
set of four labels {a, b, c, d}, R does not contain the subset {ab|c, cd|b, bd|a} nor
the subset {ab|c, cd|b, ad|b}.

One can check, through an exhaustive enumeration of the possibilities, that
given a conflicting set of triplets R1, R2, R3 where R1 = ab|c,R2 = cd|b, R3 ∈
{bd|a, ad|b}, any tree on a set X containing {a, b, c, d} must have at least one
of the following triplets: (1) bc|a; (2)ac|b; (3)bd|c; (4) ab|d. Note that each of
these conflicts with one of R1, R2, R3. This leads to a O(4pn3) algorithm for
solving dense MinRTI: find a conflicting set of four labels, and branch on the
four possibilities, locking the selected triplet each time.

10 C. Chauve, M. Jones, M. Lafond, C. Scornavacca, and M. Weller

For the second phase of AST-LR, we propose a slight variation of this al-
gorithm. Each time a triplet R is chosen and locked, say R = ab|c, the trees
containing ac|b or bc|a must loose a, b or c. We branch into these three possibil-
ities. Thus for each conflicting 4-set, there are four ways of choosing a triplet,
then for each such choice, three possible leaves to delete from a tree. This gives
12 choices to branch into recursively. Algorithm 1 summarises the procedure and
its analysis yields the following.

Theorem 7. AST-LR can be solved in time O(12qtn3).

Data: T is the set of input trees, q is the maximum number of leaves to delete,
F is the set of locked triplets so far.

if q < 0 or F contains conflicting triplets then
return False;

else if there are ab|c ∈ F and Ti ∈ T with ac|b ∈ tr(Ti) or bc|a ∈ tr(Ti) then
Branching: If one of the following calls returns True:
mastrl((T \ {Ti}) ∪ {Ti − {a}}, q − 1, F) ; /* remove a from Ti */

mastrl((T \ {Ti}) ∪ {Ti − {b}}, q − 1, F) ; /* remove b from Ti */

mastrl((T \ {Ti}) ∪ {Ti − {c}}, q − 1, F) ; /* remove c from Ti */

then return True, otherwise return False;

else if there are a, b, c ∈ X such that |{ab|c, ac|b, bc|a} ∩ tr(T)| ≥ 2 then
Branching: If one of the following calls returns True:
mastrl(T , q, F ∪ {ab|c})
mastrl(T , q, F ∪ {ac|b})
mastrl(T , q, F ∪ {bc|a})
then return True, otherwise return False;

else if there is a conflicting set {a, b, c, d} in tr(T) ∪ F then
Branching: If one of the following calls returns True:
mastrl(T , q, F ∪ {ac|b})
mastrl(T , q, F ∪ {bc|a})
mastrl(T , q, F ∪ {bd|c})
mastrl(T , q, F ∪ {ab|d})
then return True, otherwise return False;

else
return True ; /* There are no conflicts ⇒ tr(T) ∪ F is compatible

*/
end

Algorithm 1: mastrl(T , q, F) — Recursive AST-LR FPT algorithm.

Although Theorem 7 is theoretically interesting as it shows that AST-LR is in
FPT with respect to q, the 12q factor might be too high for practical purposes,
motivating the alternative approach below.

Constructing a Consensus Phylogeny from a Leaf-Removal Distance 11

4.2 Parameterization by Maximum Distance d

We now describe an algorithm for the AST-LR-d problem, running in time
O(cdd3d(n3 + tn log n)) that, if it exists, finds a solution (where here c is a
constant not depending on d nor n). We employ a branch-and-bound strategy.
Taking T = T1 as our initial solution, we transform a candidate solution T until
we have dLR(T, Ti) ≤ d for every input tree Ti.

The type of transformations we use are leaf prune-and-regraft (LPR) moves,
which provide another way of characterising the distance function dLR. Infor-
mally speaking, an LPR move prunes a leaf from a tree and then regrafts it
another location. We now give a more formal definition:

Definition 8. Let T be a tree on label set X . A LPR move on T is a pair (`, e)
where ` ∈ X and e ∈ {E(T − {`}),⊥}. Applying (`, e) consists of grafting ` on
the e edge of T − {`} if e 6=⊥, and above T − {`} if e =⊥.

An LPR sequence L = ((`1, e1), . . . , (`k, ek)) is an ordered tuple of LPR
moves, where for each i ∈ [k], (`i, ei) is an LPR move on the tree obtained after
applying the first i− 1 LPR moves of L.

Lemma 9. Given two trees T1 and T2 on label set X , there is a subset X ⊆
X such that T1 − X = T2 − X if and only if there exists an LPR sequence
((x1, e1), . . . , (xk, ek)) turning T1 into T2 such that X = {x1, . . . , xk}. Fur-
thermore, if such a sequence exists then for each i ∈ [k], there also exists
an LPR sequence L′ = ((x′1, e

′
1), . . . , (x′k, e

′
k)) turning T1 into T2 such that

X = {x′1, . . . , x′k} and x′1 = xi.

Lemma 9 implies that in order for our algorithm to find a solution, it is
enough to choose the correct LPR move on T at each stage. In order to get the
desired running time, we need to bound the number of possible transformations
to try on T .

This can be done as follows. Given a tree Ti with dLR(T, Ti) > d, let us call
a leaf x interesting if there is a solution T ∗, and minimal sets X ′, Xi ⊆ X of
size at most d, such that (a) T − X ′ = T ∗ − X ′, (b) Ti − Xi = T ∗ − Xi, and
(c) x ∈ X ′ \Xi. (Roughly speaking, x is in the ‘wrong place’ in T but not Ti.)

The following lemma shows that if a solution T ∗ exists, then T ∗ can always
be reached by moving an interesting leaf at each stage.

Lemma 10. Suppose that d < dLR(T1, T2) ≤ d′ + d with d′ ≤ d, and that
there is a tree T ∗ and subsets X1, X2 ⊆ X such that T1 − X1 = T ∗ − X1,
T2 − X2 = T ∗ − X2 and |X1| ≤ d′, |X2| ≤ d. Then, there is a minimal label-
disagreement X for {T1, T2} with |X| ≤ d+ d′, and there exists x ∈ X such that
x ∈ X1 \X2.

Moreover, we can in polynomial time construct a set S of size O(d2) contain-
ing all interesting leaves:

Lemma 11. Suppose that dLR(T1, T2) ≤ d for some integer d. Then, there is
some S ⊆ X such that |S| ≤ 8d2, and for any minimal label-disagreement X for
{T1, T2} with |X| ≤ d, X ⊆ S. Moreover S can be found in time O(n2).

12 C. Chauve, M. Jones, M. Lafond, C. Scornavacca, and M. Weller

The idea behind the proof of Lemma 11 is as follows: In polynomial time, we
can find a set X ′ ⊆ X for which T1−X ′ = T2−X ′. Letting X1 and X2 be disjoint
copies of X, it is easy to construct a tree TJ with label set (X \X ′) ∪X1 ∪X2,
such that TJ −X2 = T1 and TJ −X1 = T2. Such a tree therefore represents the
structure of T1 and T2 at the same time. Moreover, by letting T ∗ be the subtree
of TJ spanning X1 ∪ X2, we have that TJ can be derived from T ∗ by grafting
trees (on subsets of X \ X ′) onto edges of TJ . We call these subtrees dangling
clades.

It can be shown that for any dangling clade, any minimal label-disagreement
for {T1, T2} either contains all labels from that clade or contains none of them.
Moreover, if there are multiple dangling clades grafted onto the same edge of
T ∗, then a minimal label-disagreement for {T1, T2} either contains the labels of
every such dangling clade, or every such dangling clade except one, or none of
them.

As a result, we can construct our set S by taking X ′ together with any
combination of clades as described above that has total size at most d. It can be
shown that S in fact has at most 2d labels for each edge of T ∗, and as T ∗ has
O(d) edges, we get the desired bound on |S|.

The last ingredient needed for Theorem 13 is Lemma 12, which shows that
if a leaf x of T1 as described in Lemma 10 has to be moved, then there are not
too many ways to regraft it in order to get closer to T ∗. This gives us a bound of
O(d3) on the number of branches at each step of our search tree, which in turn
implies that there are at most O(cdd3d) steps.

Lemma 12. Suppose that d < dLR(T1, T2) ≤ d′ + d with d′ ≤ d, and that there
are X1, X2 ⊆ X , and a tree T ∗ such that T1 − X1 = T ∗ − X1, T2 − X2 =
T ∗−X2, |X1| ≤ d′, |X2| ≤ d, and let x ∈ X1 \X2. Then, there is a set P of trees
on label set X that satisfies the following conditions:

– for any tree T ′ such that dLR(T ′, T ∗) < dLR(T1, T
∗) and T ′ can be obtained

from T1 by pruning a leaf x and regrafting it, T ′ ∈ P ;
– |P | ≤ 18(d+ d′) + 8;
– P can be found in time O(n(log n+ 18(d+ d′) + 8)).

The idea behind the proof of Lemma 12 is as follows: by looking at a subtree
common to T1 and T2, we can identify the location that T2 “wants” x to be
positioned. This may not be the correct position for x, but we can show that if x
is moved too far from this position, we will create a large number of conflicting
triplets between T2 and the solution T ∗. As a result, we can create all trees in
P by removing x from T1 and grafting it on one of a limited number of edges.

Putting everything together, we have the procedure outlined in Algorithm 2.
(In this algorithm, the subroutines disagreement-kernel and candidate-
trees refer to the agorithms described in Lemmas 11 and 12, respectively.)
Analysing this algorithm gives the desired running time.

Theorem 13. AST-LR-d can be solved in time O(cdd3d(n3 + tn log n)), where c
is a constant not depending on d or n.

Constructing a Consensus Phylogeny from a Leaf-Removal Distance 13

Data: T is the set of input trees (represented as a sequence to distinguish
T1 from the other trees), d is the maximum number of leaves we
can remove in a tree, d′ is the maximum number of leaves we can
move in T1, which should be initially set to d.

if dLR(T1, Ti) ≤ d for each Ti ∈ T then
return T1;

else if there is some Ti ∈ T such that dLR(T1, Ti) > d′ + d then
return False ; /* handles the d′ ≤ 0 case */

else
/* Here we ‘guess’ a leaf prune-and-regraft move on T1 */

Choose Ti ∈ T such that dLR(T1, Ti) > d;
Set S = disagreement-kernel(d+ d′, T1, Ti);
for x ∈ S do

/* We are ‘guessing’ that x should go where Ti wants

it. */

Set P = candidate-trees(T1, Ti, x, d, d
′);

T ∗ = False;
for T ∈ P do

T ′ = mastrl−distance((T, T2, . . . , Tt), d, d
′ − 1);

If T ′ is not False, let T ∗ := T ′;

end
return T ∗;

end

end

Algorithm 2: mastrl−distance(T = (T1, T2, . . . , Tt), d, d
′) — FPT al-

gorithm for parameter d.

5 Conclusion

To conclude, we introduced a new supertree/consensus problem, based on a sim-
ple combinatorial operator acting on trees, the Leaf-Removal. We showed that,
although this supertree problem is NP-hard, it admits interesting tractability
results, that compare well with existing algorithms. Future research should ex-
plore if various simple combinatorial operators, that individually define rela-
tively tractable supertree problems (for example LR and EC) can be combined
into a unified supertree problem while maintaining approximability and fixed-
parameter tractability.

Acknowledgements

MJ was partially supported by Labex NUMEV (ANR-10-LABX-20) and Vidi
grant 639.072.602 from The Netherlands Organization for Scientific Research
(NWO). CC was supported by NSERC Discovery Grant 249834. CS was partially

14 C. Chauve, M. Jones, M. Lafond, C. Scornavacca, and M. Weller

supported by the French Agence Nationale de la Recherche Investissements dAv-
enir/Bioinformatique (ANR-10-BINF-01-01, ANR-10-BINF-01-02, Ancestrome).
ML was supported by NSERC PDF Grant. MW was partially supported by the
Institut de Biologie Computationnelle (IBC).

References

1. Aberer, A.J., Krompass, D., Stamatakis, A.: Pruning rogue taxa improves phylo-
genetic accuracy: An efficient algorithm and webservice. Systematic Biology 62(1),
162–166 (2013), + http://dx.doi.org/10.1093/sysbio/sys078

2. Amir, A., Keselman, D.: Maximum agreement subtree in a set of evolutionary
trees: Metrics and efficient algorithms. SIAM J. Comput. 26, 1656–1669 (1997),
http://dx.doi.org/10.1137/S0097539794269461

3. Bryant, D.: Building trees, hunting for trees, and comparing trees. Ph.D. thesis,
Bryant University (1997)

4. Bryant, D., McKenzie, A., Steel, M.: The size of a maximum agreement subtree
for random binary trees. Dimacs Series in Discrete Mathematics and Theoretical
Computer Science 61, 55–66 (2003)

5. Byrka, J., Guillemot, S., Jansson, J.: New results on optimizing rooted
triplets consistency. Discrete Appl. Math. 158, 1136–1147 (2010),
http://dx.doi.org/10.1016/j.dam.2010.03.004

6. Chauve, C., Jones, M., Lafond, M., Scornavacca, C., Weller, M.:
Constructing a consensus phylogeny from a leaf-removal distance.
http://arxiv.org/abs/1705.05295

7. Chester, A., Dondi, R., Wirth, A.: Resolving Rooted Triplet Inconsistency by Dis-
solving Multigraphs, pp. 260–271. Springer Berlin Heidelberg, Berlin, Heidelberg
(2013)

8. Cole, R., Farach-Colton, M., Hariharan, R., Przytycka, T.M., Tho-
rup, M.: An O(nlog n) algorithm for the maximum agreement sub-
tree problem for binary trees. SIAM J. Comput. 30, 1385–1404 (2000),
http://dx.doi.org/10.1137/S0097539796313477

9. Deng, Y., Fernández-Baca, D.: Fast Compatibility Testing for Rooted Phylogenetic
Trees. In: Combinatorial Pattern Matching 2016. LIPIcs. Leibniz Int. Proc. Inform.,
vol. 54, pp. 12:1–12:12 (2016), http://drops.dagstuhl.de/opus/volltexte/2016/6088

10. Fernández-Baca, D., Guillemot, S., Shutters, B., Vakati, S.: Fixed-parameter al-
gorithms for finding agreement supertrees. SIAM J. Comput. 44, 384–410 (2015),
http://dx.doi.org/10.1137/120897559

11. Guillemot, S., Mnich, M.: Kernel and fast algorithm for dense
triplet inconsistency. Theoret. Comput. Sci. 494, 134–143 (2013),
http://dx.doi.org/10.1016/j.tcs.2012.12.032

12. Gusfield, D.: Algorithms on strings, trees and sequences: computer science and
computational biology. Cambridge university press (1997)

13. Hellmuth, M., Wieseke, N., Lechner, M., Lenhof, H.P., Middendorf, M., Stadler,
P.F.: Phylogenomics with paralogs. Proc. Natl. Acad. Sci. USA 112, 2058–2063
(2015), http://dx.doi.org/10.1073/pnas.1412770112

14. Jarvis, E.D., et al.: Whole-genome analyses resolve early branches
in the tree of life of modern birds. Science 346, 1320–1331 (2014),
http://dx.doi.org/10.1126/science.1253451

Constructing a Consensus Phylogeny from a Leaf-Removal Distance 15

15. Scornavacca, C., Galtier, N.: Incomplete lineage sorting in mammalian phyloge-
nomics. Sys. Biol. 66, 112–120 (2017), http://dx.doi.org/10.1093/sysbio/syw082

16. Scornavacca, C., Jacox, E., Szollösi, G.J.: Joint amalgamation of most
parsimonious reconciled gene trees. Bioinformatics 31, 841–848 (2015),
http://dx.doi.org/10.1093/bioinformatics/btu728

17. Szollösi, G.J., Boussau, B., Abby, S.S., Tannier, E., Daubin, V.: Phyloge-
netic modeling of lateral gene transfer reconstructs the pattern and relative
timing of speciations. Proc. Natl. Acad. Sci. USA 109, 17513–17518 (2012),
http://dx.doi.org/10.1073/pnas.1202997109

18. Vachaspati, P., Warnow, T.: FastRFS: fast and accurate robinson-foulds su-
pertrees using constrained exact optimization. Bioinformatics 33, 631–639 (2017),
http://dx.doi.org/10.1093/bioinformatics/btw600

19. Whidden, C., Zeh, N., Beiko, R.G.: Supertrees based on the sub-
tree prune-and-regraft distance. Sys. Biol. 63, 566–581 (2014),
http://dx.doi.org/10.1093/sysbio/syu023

