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 A B S T R A C T

The reliability of solder joints plays an increasingly important role in power electronics. The thermal fatigue 
experienced due to the temperature fluctuations cause catastrophic failures. However, the ability to predict the 
fatigue for different thermal cycles is lacking. Experimental or simulation based approaches are typically too 
expensive to be conducted for a wide range of thermal loading conditions. A physics informed Long Short-Term 
Memory (PI-LSTM) is proposed here for predicting the plastic strain and related fatigue lifetime in solder joints. 
The LSTM model is trained on data generated by FEM simulations, enhanced by incorporating the flow rule 
into the loss function. The PI-LSTM accurately predicts the plastic strain and the stress components, enabling 
efficient reliability predictions. Using different reliability models, the estimated cycles to failure are found to 
be in close agreement with those from conventional FEM simulations, demonstrating the PI-LSTM’s capability 
for reliability assessments.
1. Introduction

The demand for reliable power electronics is increasing, from re-
newable energy sources such as wind and solar to electric vehicles. 
Many of the applications of power electronics are safety critical, e.g.
aerospace, and of high strategic importance, e.g. telecommunications 
and power grids. The reliability and dependability of the critical com-
ponents is paramount. A leading cause of failures of power electronics 
is due to the large amounts of heat generated during operation [1]. 
The thermomechanical effects caused by the temperature fluctuations 
are a result of the differences in the Coefficient of Thermal Expan-
sion (CTE) and Young’s modulus of the different materials present in 
the package. To estimate the lifetime of the component over large 
timescales, experimental techniques such as the Accelerated Thermal 
Cycling Test (ATCT) are commonly used in industry. The ATCT al-
lows for accurate assessments of a products reliability. However, the 
experimental approach of the ATCT is time consuming and costly. A 
more efficient method is found in the use of simulation techniques 
such as the Finite Element Method (FEM). A simulation of the packages 
response to the thermal load can be determined at a reduced cost. 
Nevertheless, an accurate simulations requires an experienced engineer 
to setup the simulations, e.g. building the geometry and mesh, as 
well as computational resources and time for the actual simulation. 
Simulations are therefore used for only a few loading conditions at 
most.

To obtain the reliability of the package to a wider range of thermal 
loading conditions, a more efficient approach needs to be used. This 
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is where the use of Artificial Intelligence (AI) shows a lot of promise, 
and has found its way into the field of microelectronic reliability. A lot 
of recent work has gone into using AI for microelectronic packaging. 
Popular methods include Supported Vector Regression (SVR) in [2–5] 
for its suitability to high dimensional features, Random Forest [3,5,6] 
(RF) because it is good for classification, K-Nearest Neighbors [6,7] 
(KNN) for its ability to handle multiclass classification, Artificial Neural 
Networks [8,9] (ANN) for its flexibility, Convolutional Neural Network 
for handling grid like data structures [10] (CNN), and Recurrent Neural 
Network [11] (RNN) for its ability to handle time series data. A 
more extensive overview of the emergence of AI in the reliability of 
microelectronics we refer to [12]. It is notable that the majority of 
the research in AI for microelectronics is focused on the design of the 
package, but the effect of different loading conditions is lacking. This 
work will therefore use AI for predicting the reliability of package with 
a given geometry under different thermal loads.

The downside to most of these proposed approaches is that in order 
to train a model large amounts of data are required. For example, the 
Insulated Gate Bipolar Transistor (IGBT) is characterized with Bayesian 
machine learning in [13] using 230 datasets. In [14] the health status 
of an IGBT is assessed using adaptive network-based fuzzy inference 
system (ANFIS) algorithm, trained with a dataset of 1257. To estimate 
the Remain Useful Lifetime (RUL) of solder joints [15] used an ANN 
trained with 8000 data points, [16] used 265, while [17] used RF with 
a dataset of 295. The large amount of training data required to train 
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these models has serious disadvantages because larger datasets tend to 
increase the training time, and constructing the datasets takes more 
effort.

To reduce the amount of data required for training the model, first a 
suitable method must be selected. Given the time dependent responses 
of the ATCT, and thus the sequentially generated data, the Long Short-
Term Memory (LSTM) [18] network is a natural choice. The LSTM is 
a Recurrent Neural Network (RNN) designed for training on sequential 
data. The LSTM does not suffer from exploding or vanishing gradients 
common in most RNNs [19]. A typical LSTM network is composed 
of several layers, such as input, output, LSTM, and fully connected 
layers. The LSTM layer processes sequences by passing input sequences 
through a collection of LSTM cells and generating corresponding out-
put sequences. Each LSTM cell has gates that manage information 
flow, memory updates, and output generation, making it effective for 
modeling sequence data. Finally fully connected layers on top, bridge 
LSTM output to the final predictions by generating the required output 
features [20].

Nevertheless, the LSTM still requires large amounts of data for 
training before it can make accurate predictions. This data has to 
come from either experiments or simulations, but that, as previously 
discussed, that a lot resources. In order to reduce the amount of data 
required for training the LSTM a Physics-Informed Neural Network 
(PINN) [21] is used in conjunction with the data driven LSTM. A 
PINN incorporates Partial Differential Equations (PDE) describing the 
physical system into the training process [22]. Including the PDEs in 
the loss function increases the robustness and accuracy of the trained 
model, thereby reducing the amount of necessary training data. More-
over PINNs have demonstrated remarkable generalizability across a 
broad spectrum of physical systems, ranging from fluid dynamics to 
nonlinear structures and elasto-plastic materials [21–26] highlighting 
their versatility in addressing both forward and inverse problems across 
various PDE-governed domains.

2. Methodology

To be able to create a model to predict the plastic strain in BGA 
packages, a number of things need to be done first. The package with 
its dimensions and materials need to be defined, next the necessary data 
has to be created in order to train the model, and lastly the machine 
learning algorithm needs to be set up. This section will provide all 
the preconditions and setups required for training the physics informed 
LSTM model (see Fig.  1).

2.1. Geometry, materials and loading conditions

This paper proposes a PI-LSMT trained on a small dataset, while 
keeping the ability to predict soldier joint fatigue with high accuracy, 
Therefore, the choice was made use a two dimensional FEM simulation, 
to reduce the computational cost of generating the dataset. The package 
can be approximated by a 2D geometry because the failure usually 
occurs in the solder joint farthest from the center [4]. The package 
used in this work is a multi-component package consisting of a PCB, 
Under Bump Metalizations (UBM), copper pads, a Stress Boundary 
Layer (SBL), a silicon chip and the solder balls. The dimensions of 
the package are provided for a two dimensional package in Table  1 
in micrometers.

The solder joint is made from different materials. For this work 
all materials are assumed to be homogeneous and isotropic. For the 
solder ball the widely used SAC305 solder is used, with a temperature 
dependent Young’s Modulus. Furthermore, the Young’s modulus is 
non-linear, that is plasticity is considered in addition to elasticity, in 
accordance with the work from [27]. The other materials in the solder 
joint are assumed to be perfectly elastic. The properties of the materials 
used for each component are provided in Table  2. To examine the 
package resistance to thermal fatigue, the solder joints are subjected 
2 
Table 1
Dimensions of the package.
 Component Dimensions [μm] 
 PCB 3900 × 1000  
 Ball diameter 250  
 Cu pad 220 × 25  
 UBM 190 × 8.6  
 SBL 2000 × 15.5  
 Si chip 2000 × 330  

Table 2
The material properties.
 Material CTE [10−6 1∕K] Young’s modulus [GPa] Poisson ratio [–] 
 PCB 23.9 18.2 0.30  
 SAC305 25 Non-linear 0.35  
 Copper 16.7 68.9 0.34  
 SBL 55 2 0.33  
 Silicon 2.62 129 0.28  

to a range of different temperature cycles. The external temperature is 
periodically changed between a maximum and minimum temperature, 
the rate at which the temperature is changed is defined by the ramp 
rate. Additionally, once reaching either the minimum or maximum tem-
perature, it is kept their for a time defined by the dwell time, in order to 
reach a thermal equilibrium within the package. The thermal cycle used 
is based on the JEDEC standards, widely used in the microelectronics 
industry. The minimum and maximum temperatures are 233.15 K and 
398.15 K respectively. Previous observations of the plastic deformation 
in the solder has shown that the ramp rate has the highest impact on 
the fatigue life. Therefore, the ramp rates are varied between 10 K/min 
and 15 K/min for the temperature cycles in this work.

2.2. Physics informed LSTM

A Physics-Informed Long Short-Term Memory (PI-LSTM) is em-
ployed to predict the plastic deformation in the solder joint at any point 
in time, using only on the transient ambient temperature as an input. To 
normalize the data, a 𝑡𝑎𝑛ℎ layer is used to ensure stability. The temporal 
data, e.g. the plastic strain at each time instance, has to be available to 
the model in order for it to train. The training data is created using an 
FEM simulation to model the response of the package to the thermal 
cycling. To reduce the amount of training data required and to speed up 
the training itself, the ideas from PINN are introduced to the model. In 
order to make the LSTM physics informed a partial differential equation 
(PDE) needs to be injected into the loss function. The PDE is taken from 
the flow rule of plasticity. The yield function 𝑓 is determined by 
𝑓 (𝜎𝑖𝑗 , 𝑇 , 𝜀𝑝𝑒𝑞) = 𝜎𝑣(𝜎𝑖𝑗 ) − 𝜎0𝑦𝑠(𝑇 ) − ℎ(𝜀𝑝𝑒𝑞), (1)

where 𝜎0𝑦𝑠 is the temperature dependent initial yield stress, ℎ the 
hardening function, and 𝜎𝑣 the von Mises stress calculated for the plain 
strain as 
𝜎𝑣 =

√

𝜎2𝑥𝑥 − 𝜎𝑥𝑥𝜎𝑦𝑦 + 𝜎2𝑦𝑦 + 𝜎𝑧𝑧 + 3𝜏2𝑥𝑦, (2)

based on the components of the stress tensor 𝜎𝑖𝑗 . If the change to the 
yield function remains smaller or equal to zero, i.e. 𝑓 + 𝑑𝑓 ≤ 0, no 
plasticity occurs, but if the increment is larger than zero, 𝑓 + 𝑑𝑓 > 0, 
plasticity does occur such that the recalculated value is equal to zero, 
i.e. 𝑓 = 0. The plastic strain tensor is determined by the PDE for the 
flow rule 
𝑑𝜀𝑖𝑗 = 𝑑𝜆

𝜕𝑓
𝜕𝜎𝑖𝑗

, (3)

where 𝑑𝜆 is the plastic multiplier subject to 𝑑𝜆 ≥ 0. The PDE in (3) 
can be used in the loss function of the LSTM network for the physics 
informed part of the PI-LSTM. The PI-LSTM is setup as following. The 
training data contains the equivalent plastic strain, stress components, 
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Fig. 1. Overview of the workflow of the PI-LSTM.
Fig. 2. The mesh used for the FEM simulations.

the ambient temperature and the current yield stress. The model out-
puts the individual stress components and the current yield stress, from 
which the flow rule can be solved. Additionally, the predicted value 
of the plastic multiplier 𝑑𝜆 is optimized by including it as a trainable 
parameter.

2.3. Generating data with the finite element method

To create the required training data for the PILSTM simulations are 
performed on the solder joint geometry from Table  1. FEM simulations 
have been widely used to simulate the response of solder joints to 
thermal conditions [28,29], it is therefore a natural choice to use here. 
To ensure accurate results for use as the training data the boundary 
conditions, the mesh quality, and the mesh dependency have to be care-
fully selected. The displacement at the left most boundary is restricted 
in horizontal direction, with the lowest point being restricted in vertical 
direction as well. This results in a symmetrical boundary condition 
in that line, reducing the computational cost of simulating the entire 
package by half. To discretize the domain a structured rectangular mesh 
has been used to ensure an acceptable mesh quality. The mesh size is 
refined in areas where the deformations are expected to be greatest, 
e.g. near the solder ball, and a courser mesh is used elsewhere to 
reduce the simulation time. The plastic deformation that occurs inside 
the solder ball is highly dependent on the shape and size of the mesh 
elements used. To mitigate this effect and to obtain accurate results the 
mesh size is deliberately chosen. As the largest plastic strain tends to 
occur at the top right corner of the outermost solder ball, the critical 
3 
mesh size has been chosen to be 12.5 μm by 6.4 μm in accordance 
with [30]. The innermost solder ball have been simulated using a 
courser mesh to further reduce the cost of the simulation. The mesh 
used for all the simulations performed in this work is shown in Fig.  2.

The simulations are performed using COMSOL Multiphysics®  [31], 
using the described discretization. The relevant data is extracted in a 
single point in the critical area of the outermost solder ball, that is the 
top right corner of the solder on the far right. A total of 66 simulations 
have been performed, using the temperature cycles shown in Fig.  3(a), 
where the extrema of the ramp rates are shown in bold. The test cases 
are created by randomly selecting 5 cases. The ramp rates for these 
cases are 11.056, 11.455, 11.887, 11.065 and 13.696 K/min, giving 
a good range of values. Some of the ramp rate values, mainly case 1 
and case 4, are quite close. This is due to the test data being randomly 
selected from the available dataset. The remaining dataset is used for 
training the model.

Because the time dependent behavior of the solder joints requires 
a relatively small time step for an adequate temporal stability, the 
created datasets are very large, causing the training time of the model 
to become very time consuming due to the linear algebra operations 
that have the be done. In order to achieve a reasonable training time 
for the proposed PILSTM model, the size of the datasets is significantly 
reduced, by only exporting the results of every 100th time step of the 
simulation.

3. Predicting plastic strain and reliability

The behavior of the solder joint to the changing ambient temper-
ature has been successfully simulated. An representative example of 
the simulation results is provided in Fig.  4, where the highest plastic 
strain does indeed occur in the critical area, as the case in other 
works [32,33]. This is a good indicator that the simulations performed 
here are able to output a physically valid result. Especially since the 
training data is taken exclusively from this area. Once the PILSTM was 
trained using the 60 training sets, the equivalent plastic strain was 
predicted as is shown in Fig.  5.

The predicted plastic strain is a close match to the FEM results for 
the first few cycles. The increases, decreases and dwell times of the 
ambient temperature can be clearly seen in the response of the plastic 
strain, the plastic strain increases when the temperature is ramping, 
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Fig. 3. The temperature cycles and ramp rates.
Fig. 4. The location of the maximum plastic strain in the solder joint.

but it plateaus once the ambient temperature remains constant. After 
about three thermal cycles the values predicted by the PILSTM are 
seen to be less aligned with the simulated results, i.e. the effect of the 
temperature changes is no longer that pronounced. Nevertheless, the 
predicted plastic strain continues to follow the general upwards trend 
of the plastic deformation, the end value of the plastic strain matches 
closes with the simulated value.

The improvement of the prediction time from the PI-LSTM is note-
able. The FEM simulations performed on a 13th Gen Intel(R) Core(TM) 
i7-1365U, 1800 Mhz, 10 cores, 12 threads with 16 GB RAM, took around 
38 min per simulation. Simulating all 66 simulations took about 41 h. 
This time could be improved by using more powerful computational 
resources, but one should note that here a 2D problem is simulated 
instead of a more computationally expensive 3D problem. Therefore, 
this is still a good indication of the time it takes to create the datasets 
required for training an AI model. Meanwhile, a prediction with the 
PI-LSTM takes but a few seconds, highlighting the efficiency of the 
PI-LSTM over FEM simulations.

Apart from the equivalent plastic strain, the stresses present in the 
critical point are also predicted by the PILSTM, the values for the non-
zero stress components are shown together with the simulated values 
in Figs.  6–9. The predicted stresses show excellent agreement with 
the simulated values. The same cyclical behavior can be observed in 
the predicted stresses along the entire path of the simulated results. 
It can thus be concluded that the proposed PILSTM is able to achieve 
accurate stress predictions. The reason the accurate prediction of the 
stress components does not translate into the same performance in the 
plastic strain prediction is likely due to the prediction of the plastic 
multiplier 𝑑𝜆. The value of the plastic multiplier as predicted by the 
4 
Fig. 5. The equivalent plastic strain 𝜀𝑝𝑒𝑞 from FEM simulations and LSTM predictions.

LSTM model is shown in Fig.  10. The predicted value is in violation 
of the positive plastic multiplier condition 𝑑𝜆 ≥ 0, which implies that 
plasticity could be reversed. However, from Fig.  5 it is observed that the 
plasticity never decreases, so this unphysical behavior does not actually 
happen. In fact, the yield function 𝑓 from (1) behaves as would be 
expected from a cyclical problem, as is shown for the first test case 
in Fig.  11. The values is near zero when the equivalent plastic strain 
increases, and drops below zero during the dwell times.

3.1. Predicting cycles to failure

Having determined the models ability to predict the plastic strain 
and stress components, the applicability of the proposed model in 
reliability assessments is investigated further. The equivalent plastic 
strain can be used to estimate the number of cycles the solder joint 
can withstand until failure. For this estimation multiple models have 
been proposed throughout the years. One such model is the CALCE 
model [36]. The CALCE model related the cycles to failure to the 
equivalent plastic strain by the equation 

𝑁𝑓 = 1
(

𝛥𝜀𝑝𝑒𝑞
)

1
𝑐

, (4)

2 2𝜀𝑓
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Fig. 6. Stress component in x𝑥-direction.

Fig. 7. Stress component in yy-direction.

Fig. 8. Stress component in zz-direction.
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Fig. 9. Stress component in xy-direction.
Table 3
Previous ML studies compared to the PI-LSTM.
 Source Year Method Size of dataset R2-score  
 Bhat et al. [15] 2023 MLP 8000 0.72  
 Quispe-Aguilar et al. [13] 2023 BML 230 0.962  
 Bani Hani et al. [34] 2023 ANN 189 0.94  
 Alavi et al. [16] 2024 DT, RF, LR, KNN, XGBoost, ANN 265 0.5458  
 0.7210  
 0.5824  
 0.6015  
 0.8454  
 0.8493  
 Rebai et al. [17] 2025 MLR, PR, DTR, RFR, SVMR, RR, LAR, EnetR 295 0.987339  
 0.996886  
 0.995743  
 0.997319  
 0.961701  
 0.978226  
 0.979976  
 0.983949  
 Qasaimeh et al. [35] 2025 ANN, LME, MLR, DT 890 0.8895  
 0.9179  
 0.9007  
 0.7752  
 This work 2025 PI-LSTM 66 0.991265072 
Fig. 10. The plastic multiplier 𝑑𝜆 for test case 1.

where 𝜀𝑓  is the fatigue ductility constant and 𝑐 the fatigue ductility 
exponent. Another way to predict the number of cycles to failure comes 
6 
from the work of Syed [37], in which the number of cycles is predicted 
by 

𝑁𝑓 = 1
𝐶𝛥𝜀𝑝𝑒𝑞

, (5)

where the constant 𝐶 is 0.0358 for SAC solder joints. Lastly, a common 
method for estimating the solder joint reliability is the Coffin–Manson 
model. The Coffin–Manson model uses the equation 
𝑁𝑓 = 𝐶(𝛥𝜀𝑝𝑒𝑞)

−𝜂 , (6)

where 𝐶 = 0.235 and 𝜂 = 1.75 for SAC solder joints [38]. The estimated 
cycles to failure for (4)–(6) are provided in Fig.  12 for all five test cases. 
The different equations give different values for the cycles to failure, 
the Coffin–Manson the lowest, Syed higher, and the CALCE is gives 
far higher values. The differences between the values obtain for FEM 
simulations and the predictions from the PI-LSTM are relatively small. 
The proposed LSTM model is therefore not only effective at predicting 
the stresses and strains in the solder joint, but can also be used for 
estimating the lifetime of solder joints.

To compare the proposed PI-LSTM to other methods, the R2-score 
is determined. The R2-score of the 5 test cases are 0.994, 0.983, 0.995, 
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Fig. 11. The yield function 𝑓 .
Fig. 12. Cycles to failure for different reliability models.
0.993, and 0.992 respectively. The average R2-score of the 5 test cases 
is 0.991. This score can be compared to other methods to determine 
the effectiveness of the PI-LSTM. Detailed information on recent works 
using ML to predict the reliability of power electronics is provided in 
Table  3. The table provides information on a wide range of models, the 
size of the dataset used to train the model, and the R2-score the model 
achieved. From Table  3, it can be observed that some methods are able 
to achieve a similarly high R2-score. However, the size of the dataset 
used for training is much larger than the 66 used for the proposed 
PI-LSTM model. This shows that the PI-LSTM is able to achieve good 
results in comparison to other models, while using minimal data for 
train the model.

4. Conclusion

This study presents a novel approach for determining the reliability 
of a solder joint by predicting the plastic strain. Results from FEM simu-
lations were used to train an LSTM model augmented by the inclusion 
of the flow rule within its loss function. This physics informed LSTM 
model demonstrated high accuracy and good stability, for a relatively 
small amount of training data. The PI-LSTM predicts the equivalent 
plastic strain 𝜀𝑝𝑒𝑞 as well as the stress components present in the solder 
joint. The predicted plastic strain can be used to determine the relia-
bility by relating it to the cycles to failure. Multiple reliability models 
show the cycles to failure predicted by the proposed PI-LSTM are in 
7 
close proximity to the results from FEM simulations,highlighting the 
models potential for applications in reliability assessments. When the 
results from the PI-LSTM are compared to other methods from literature 
shows it achieves similar or higher R2-scores, even though these dataset 
used by the PI-LSTM is much smaller. This significantly reduces the 
time required for creating a database for training an AI. Additionally, 
the proposed model can be implement where data availability is too 
limited for other models to achieve sufficient accuracy.
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